Sublinear Time and Space Algorithms 2024A - Lecture 7 Streaming of Graphs and Connectivity in Dynamic Graphs*

Robert Krauthgamer

1 Streaming of Graphs

Basic model: Consider an input stream that represents a graph $G=(V, E)$ as a sequence of edges on the vertex set $V=[n]$. Denote $m=|E|$.

It can be viewed as an insertion-only stream of edges. We may allow deletions of edges, and then it is called a dynamic graph stream.

Semi-streaming: The usual aim is space requirement $\tilde{O}(n)$, which can generally be much smaller than the trivial bound $O(m)$ of storing the current graph explicitly (but without extra workspace an algorithm may need).
For many problems, $\Omega(n)$ storage is required (even to get approximate answers).
Connectivity: Determine whether the graph G is connected (or even which pairs $u, v \in V$ are connected).

In the insertions-only model, it can be solved with storage requirement $O(n)$ words, by maintaining a spanning forest...

Distances: Compute the distances in the graph, i.e., given as query $u, v \in V$ report their distance.
Theorem: All distances can be computed within approximation $2 k-1$ (for integer $k \geq 1$) in insertions-only streams with storage requirement $O\left(n^{1+1 / k}\right)$ words.

The idea is to use a greedy spanner construction by [Althofer, Das, Dobkin, Joseph and Soares, 1993].

Proof: Create and store a subgraph G^{\prime} as follows. Initially G^{\prime} is empty. When an edge (u, v) arrives, check if currently the distance between its endpoints in G^{\prime} is $d_{G^{\prime}}(u, v) \leq 2 k-1$. If it is not, then add the edge to G^{\prime} (otherwise, do nothing).

It is not difficult to verify that eventually

$$
\forall u, v \in V, \quad d_{G}(u, v) \leq d_{G^{\prime}}(u, v) \leq(2 k-1) d_{G}(u, v) .
$$

[^0]The number of edges in G^{\prime} is bounded by $O\left(n^{1+1 / k}\right)$ by a theorem from extremal graph theory, because its girth (length of shortest cycle) is $g \geq 2 k+1$.

Exer: Show how to 2-approximate maximum matching and vertex-cover using space of $O(n)$ words.

2 Connectivity in Dynamic Graphs

Dynamic graph model: The input stream contains insertions and deletions of edges to G. Recall that we assume $V=[n]$.
The tool of choice is linear sketching, where decrements are supported by definition.

Motivations:

a) updates to the graph like removing hyperlinks or un-friending
b) the graph is distributed (each site contains a subset of the edges), and their linear sketches can be easily combined

Theorem [Ahn, Guha and McGregor, 2012]: There is a streaming algorithm with storage $\tilde{O}(n)$ that determines whp whether the graph is connected (In fact, it computes a spanning forest and can determine which pairs of vertices are connected.)

Idea: To grow (increase) connected components, we need to find an outgoing edge from each current component. Using ℓ_{0}-sampling and especially its linear-sketch form, we can pick an outgoing edge from an arbitrary set. Informally, if we already have a connected component $Q \subset V$, then we will use a method where edges inside Q get canceled, and outgoing edges survive.

Notation: Let $N=\binom{n}{2}$. For each vertex v define a vector $x^{v} \in \mathbb{R}^{N}$ where coordinate $\{i, j\}$ for $i<j$ is given by

$$
x_{\{i, j\}}^{v}= \begin{cases}+1 & \text { if }(i, j) \in E \text { and } v=i \\ -1 & \text { if }(i, j) \in E \text { and } v=j \\ 0 & \text { otherwise }\end{cases}
$$

The above defines n frequency vectors, where each x^{v} is affected only by edges incident to v. Given $Q \subset V$, we can find a nonzero coordinate of $\sum_{v \in Q} x^{v}$ by relying on a linear sketch of this vector.

Algorithm AGM:

Update (on a stream/dynamic graph G):

1. for each vertex $v \in V$, create a virtual stream for $x^{v} \in \mathbb{R}^{N}$ and maintain an ℓ_{0}-sampler for this x^{v} (using the same coins for all v, as these are linear sketches that may be added).
2. repeat the above $\log n$ times independently (i.e., $\log n$ "levels" of samplers for each $v \in V$).

Output (to determine connectivity):
3. initialize a partition $\Pi=\{\{1\}, \ldots,\{n\}\}$ where each vertex is in a separate connected component.
4. repeat for $l=1, \ldots, \log n$:
5. for each connected component $Q \in \Pi$, sum the level l samplers for all $v \in Q$, to obtain a sampler for $\sum_{v \in Q} x^{v}$. Then activate the sampler to obtain a coordinate from $[N]$ (which we will see is a random outgoing from Q).
6. Use the $|\Pi|$ sampled edges to merge connected components and update Π
7. Output "connected" if $|\Pi|=1$ (all vertices are in one connected component).

Analysis: To simplify the analysis, we assume henceforth that G is connected (see below), and that the samplers are perfect (i.e. ignore their polynomially-small error probability).

Exer: Extend the analysis to the case that G is not connected, to determine whether $s, t \in V$ given at query time, are connected.

Claim 1: If the number of connected components at the beginning of an iteration is $k>1$ (and the samplers succeed in producing outgoing edges), then their number at the end of the iteration is at most $k / 2$.

Exer: prove this claim.
Claim 2: Fix a set $Q \subset V$. Then $\sum_{v \in Q} x^{v}$ is nonzero only in coordinates $\{i, j\}$ corresponding to an edge outgoing from Q, i.e., $|Q \cap\{i, j\}|=1$.

Proof: Was seen in class.
Corollary 3: Fix a set $Q \subset V$. Then summing ℓ_{0}-samplers of x^{v} over all $v \in Q$ (assuming these samplers use a linear sketch and same coins) creates an ℓ_{0}-sampler for $\sum_{v \in Q} x^{v}$ that reports an outgoing edge from Q.

Storage: The main storage is for ℓ_{0}-samplers for each of the n vertices and each of the $\log n$ levels. Each sampler requires $O\left(\log ^{4} n\right)$ bits (in the construction seen in class). Thus the total storage is $O\left(n \log ^{5} n\right)$ bits.

[^0]: *These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

