Sublinear Time and Space Algorithms 2024A - Lecture 8 Hash Functions with Limited Randomness and Triangle Counting*

Robert Krauthgamer

1 Hash Functions with Limited Randomness

Idea: The idea is to replace a truly random function $h:[n] \rightarrow[n]$ with something that is easier to store.

As a running example, consider $h_{p, q}(i)=p i+q(\bmod n)$, where p, q are chosen at random. This can be also viewed as choosing h from a family $H=\left\{h_{p, q}: p, q\right\}$. While $h(1), \ldots, h(n)$ are random but with some correlations, they can be stored (even the entire h) with much less space than a truly random function.

To analyze these families formally, we need some definitions.
Independent random variables: Recall that two (discrete) random variables X, Y are independent if

$$
\forall x, y \quad \operatorname{Pr}[X=x, Y=y]=\operatorname{Pr}[X=x] \cdot \operatorname{Pr}[Y=y]
$$

This is equivalent to saying that the conditioned random variable $X \mid Y$ has exactly the same distribution as X. It implies that $\mathbb{E}[X Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$.

The above naturally extends to $k>2$ variables, and then we say the random variables are mutually (or fully) independent.

Pairwise independence: A collection of random variables X_{1}, \ldots, X_{n} is called pairwise independent if for all $i \neq j \in[n]$, the variables X_{i} and X_{j} are independent.
Example: Let $X, Y \in\{0,1\}$ be random and independent bits, and let $Z=X \oplus Y$. Then X, Y, Z are clearly not mutually (fully) independent, but they are pairwise independent.
Observation: When X_{1}, \ldots, X_{n} are pairwise independent and have finite variance, $\operatorname{Var}\left(\sum_{i} X_{i}\right)=$ $\sum_{i} \operatorname{Var}\left(X_{i}\right)$, exactly as if they were fully independent.

Exer: Prove this.

[^0]Here too, k-wise independence means that every subset of k random variables is independent.
Pairwise independent hash family: A family H of hash functions $h:[n] \rightarrow[M]$ is called pairwise independent if $h(1), \ldots, h(n)$ are pairwise independent when choosing random $h \in H$. This means that for all $i \neq j \in[n]$,

$$
\forall x, y \in[M] \quad \operatorname{Pr}_{h \in H}[h(i)=x, h(j)=y]=\operatorname{Pr}[h(i)=x] \cdot \operatorname{Pr}[h(j)=y] .
$$

A common scenario is that each $h(i)$ is uniformly distributed over $[M]$, although this is not required in the above definition.

Universal hashing: A family H of hash functions $h:[n] \rightarrow[M]$ is called 2-universal if for all $i \neq j \in[n]$,

$$
\operatorname{Pr}_{h \in H}[h(i)=h(j)] \leq 1 / M
$$

Observe that 2-universality is weaker than (follows from) pairwise independence when each $h(i)$ is distributed uniformly over [M], but it suffices for many algorithms.

Construction of pairwise independent hashing:

Assume $M \geq n$ and that M is a prime number (if not, we can pick a larger M that is a prime). Pick random $p, q \in\{0,1,2, \ldots, M-1\}=[M]$ and set accordingly $h_{p, q}(i)=p i+q(\bmod M)$.

The family $H=\left\{h_{p, q}: p, q\right\}$ is pairwise independent because for all $i \neq j$,

$$
\operatorname{Pr}_{h \in H}[h(i) \equiv x, h(j) \equiv y]=\operatorname{Pr}_{p, q}\left[\left(\begin{array}{l}
i \\
j
\end{array} 1 \begin{array}{l}
1
\end{array}\right)\binom{p}{q} \equiv\binom{x}{y}\right]=\underset{p, q}{\operatorname{Pr}}\left[\binom{p}{q} \equiv\left(\begin{array}{ll}
i & 1 \\
j & 1
\end{array}\right)^{-1}\binom{x}{y}\right]=\frac{1}{M^{2}},
$$

where we relied on the above matrix being invertible.
Storing a function $h_{p, q}$ from this family can be done by storing p, q, which requires $\log |H|=$ $O(\log M)$ bits. One can think of p, q as a random seed that generates (deterministically) the random variables $h(0), \ldots, h(n-1)$.

In general, $\log |H|$ bits suffice to store a choice of a function $h \in H$.
One can reduce the size of the range $[M]$ (from large $M \geq n$ to $M=2$ or say $4 / \alpha$), with a small overhead/loss.

Exer: Show that the correctness of algorithm CountMin (for ℓ_{1} point query) extends to using a universal hash function, and analyze how much additional storage the hash function requires.

Exer: Show that the correctness of algorithm CountSketch (for ℓ_{2} point query) can be implemented with limited (pairwise) independence and analyze how much additional storage the hash function requires.

Hint: use separate randomness for the hash functions and for the signs.
Exer: Show that algorithm AMS (for estimating ℓ_{2} norm) works even if the random signs $\left\{r_{i}\right\}$ are only 4 -wise independent.

2 Triangle Counting

Goal: Report the number of triangles, denoted by T, in a graph G given as a stream of m edges on vertex set $V=[n]$.

Motivation: The relative frequency of how often 2 friends of a person know each other is defined as

$$
F=\frac{3 T}{\sum_{v \in V}\binom{\operatorname{deg}(v)}{2}} .
$$

We can compute $\sum_{v \in V}\binom{\operatorname{deg}(v)}{2}$ exactly in $O(n)$ space, by maintaining the degree of every vertex, and we can also approximate it using polylog (n) space using algorithms that estimate ℓ_{2}-norm.
Distinguishing $T=0$ from $T=1$ is known to require $\Omega(m)$ space [Braverman, Ostrovsky, and Vilenchik, 2013].

We will henceforth assume a known lower bound $0<t \leq T$.

First Approach [Bar-Yossef, Kumar and Sivakumar, 2002]:

Idea: use frequency moments.
Define vector $x \in \mathbb{R}^{\binom{n}{3}}$, where every coordinate x_{S} counts the number of edges internal to a subset $S \subset V$ of 3 vertices. Then

$$
T=\#\left\{S \subset V,|S|=3: x_{S}=3\right\} .
$$

Lemma: Let $F_{p}=\|x\|_{p}^{p}$ be the frequency moments for $p=0,1,2$ (well, actually $F_{0}=\|x\|_{0}$). Then

$$
T=F_{0}-1.5 F_{1}+0.5 F_{2}
$$

Proof: As seen in class it suffices to verify that each coordinate x_{S} contributes the same amount to both sides.

Why such a formula exists?: We are looking for coefficients, i.e., a polynomial $f\left(x_{S}\right): \mathbb{R} \rightarrow \mathbb{R}$ with specific values $f(3)=1$ and $f(2)=f(1)=f(0)=0$. We can do polynomial interpolation over 4 points. It would generally require degree 3 , but $F_{0}=\mathbb{1}_{\left\{x_{S}>0\right\}}$ gives an extra degree of freedom.

Algorithm 1:

Update: Maintain the frequency moments $p=0,1,2$ of vector $x \in \mathbb{R}_{\binom{n}{3}}^{(}$. Initially $x=0$, and when an edge (u, v) arrives, increment x_{S} for every $S \supseteq\{u, v\}$.
Output: Compute moment estimates \hat{F}_{p} and report $\hat{T}=\hat{F}_{0}-1.5 \hat{F}_{1}+0.5 \hat{F}_{2}$.
Correctness: As was seen in class, suppose we compute frequency estimates $\hat{F}_{P} \in(1 \pm \gamma) F_{p}$. We can then set a suitable $\gamma=\Omega\left(\frac{\varepsilon t}{m n}\right)$ (for given t and ε), and the additive error will be bounded by $\varepsilon t \leq \varepsilon T$.

Storage: The storage requirement is $O\left(\gamma^{-2} \log n\right)=O\left(\varepsilon^{-2}\left(\frac{m n}{t}\right)^{2} \log n\right)$ words, which is effective when t is large (close to $m n$), but poor for small t.

Observe that this algorithm works even for streams with deletions.

[^0]: *These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

