Sublinear Time and Space Algorithms 2024A – Lecture 8 Hash Functions with Limited Randomness and Triangle Counting^{*}

Robert Krauthgamer

1 Hash Functions with Limited Randomness

Idea: The idea is to replace a truly random function $h : [n] \to [n]$ with something that is easier to store.

As a running example, consider $h_{p,q}(i) = pi + q \pmod{n}$, where p, q are chosen at random. This can be also viewed as choosing h from a family $H = \{h_{p,q} : p, q\}$. While $h(1), \ldots, h(n)$ are random but with some correlations, they can be stored (even the entire h) with much less space than a truly random function.

To analyze these families formally, we need some definitions.

Independent random variables: Recall that two (discrete) random variables X, Y are independent if

$$\forall x, y \qquad \Pr[X = x, Y = y] = \Pr[X = x] \cdot \Pr[Y = y].$$

This is equivalent to saying that the conditioned random variable X|Y has exactly the same distribution as X. It implies that $\mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$.

The above naturally extends to k > 2 variables, and then we say the random variables are mutually (or fully) independent.

Pairwise independence: A collection of random variables X_1, \ldots, X_n is called *pairwise independent* if for all $i \neq j \in [n]$, the variables X_i and X_j are independent.

Example: Let $X, Y \in \{0, 1\}$ be random and independent bits, and let $Z = X \oplus Y$. Then X, Y, Z are clearly not mutually (fully) independent, but they are pairwise independent.

Observation: When X_1, \ldots, X_n are pairwise independent and have finite variance, $\operatorname{Var}(\sum_i X_i) = \sum_i \operatorname{Var}(X_i)$, exactly as if they were fully independent.

Exer: Prove this.

^{*}These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

Here too, k-wise independence means that every subset of k random variables is independent.

Pairwise independent hash family: A family H of hash functions $h : [n] \to [M]$ is called *pairwise independent* if $h(1), \ldots, h(n)$ are pairwise independent when choosing random $h \in H$. This means that for all $i \neq j \in [n]$,

$$\forall x,y \in [M] \qquad \Pr_{h \in H}[h(i) = x, h(j) = y] = \Pr[h(i) = x] \cdot \Pr[h(j) = y].$$

A common scenario is that each h(i) is uniformly distributed over [M], although this is not required in the above definition.

Universal hashing: A family H of hash functions $h : [n] \to [M]$ is called 2-universal if for all $i \neq j \in [n]$,

$$\Pr_{h \in H}[h(i) = h(j)] \le 1/M.$$

Observe that 2-universality is weaker than (follows from) pairwise independence when each h(i) is distributed uniformly over [M], but it suffices for many algorithms.

Construction of pairwise independent hashing:

Assume $M \ge n$ and that M is a prime number (if not, we can pick a larger M that is a prime). Pick random $p, q \in \{0, 1, 2, ..., M - 1\} = [M]$ and set accordingly $h_{p,q}(i) = pi + q \pmod{M}$.

The family $H = \{h_{p,q} : p, q\}$ is pairwise independent because for all $i \neq j$,

$$\Pr_{h \in H}[h(i) \equiv x, h(j) \equiv y] = \Pr_{p,q}\left[\binom{i}{j} \frac{1}{1}\binom{p}{1} \equiv \binom{x}{y}\right] = \Pr_{p,q}\left[\binom{p}{q} \equiv \binom{i}{j} \frac{1}{1}^{-1}\binom{x}{y}\right] = \frac{1}{M^2},$$

where we relied on the above matrix being invertible.

Storing a function $h_{p,q}$ from this family can be done by storing p, q, which requires $\log |H| = O(\log M)$ bits. One can think of p, q as a random seed that generates (deterministically) the random variables $h(0), \ldots, h(n-1)$.

In general, $\log |H|$ bits suffice to store a choice of a function $h \in H$.

One can reduce the size of the range [M] (from large $M \ge n$ to M = 2 or say $4/\alpha$), with a small overhead/loss.

Exer: Show that the correctness of algorithm CountMin (for ℓ_1 point query) extends to using a universal hash function, and analyze how much additional storage the hash function requires.

Exer: Show that the correctness of algorithm CountSketch (for ℓ_2 point query) can be implemented with limited (pairwise) independence and analyze how much additional storage the hash function requires.

Hint: use separate randomness for the hash functions and for the signs.

Exer: Show that algorithm AMS (for estimating ℓ_2 norm) works even if the random signs $\{r_i\}$ are only 4-wise independent.

2 Triangle Counting

Goal: Report the number of triangles, denoted by T, in a graph G given as a stream of m edges on vertex set V = [n].

Motivation: The relative frequency of how often 2 friends of a person know each other is defined as

$$F = \frac{3T}{\sum_{v \in V} \binom{\deg(v)}{2}}.$$

We can compute $\sum_{v \in V} {\binom{\deg(v)}{2}}$ exactly in O(n) space, by maintaining the degree of every vertex, and we can also approximate it using $\operatorname{polylog}(n)$ space using algorithms that estimate ℓ_2 -norm.

Distinguishing T = 0 from T = 1 is known to require $\Omega(m)$ space [Braverman, Ostrovsky, and Vilenchik, 2013].

We will henceforth assume a known lower bound $0 < t \leq T$.

First Approach [Bar-Yossef, Kumar and Sivakumar, 2002]:

Idea: use frequency moments.

Define vector $x \in \mathbb{R}^{\binom{n}{3}}$, where every coordinate x_S counts the number of edges internal to a subset $S \subset V$ of 3 vertices. Then

$$T = \#\{S \subset V, |S| = 3: x_S = 3\}.$$

Lemma: Let $F_p = ||x||_p^p$ be the frequency moments for p = 0, 1, 2 (well, actually $F_0 = ||x||_0$). Then

$$T = F_0 - 1.5F_1 + 0.5F_2.$$

Proof: As seen in class it suffices to verify that each coordinate x_S contributes the same amount to both sides.

Why such a formula exists?: We are looking for coefficients, i.e., a polynomial $f(x_S) : \mathbb{R} \to \mathbb{R}$ with specific values f(3) = 1 and f(2) = f(1) = f(0) = 0. We can do polynomial interpolation over 4 points. It would generally require degree 3, but $F_0 = \mathbb{1}_{\{x_S > 0\}}$ gives an extra degree of freedom.

Algorithm 1:

Update: Maintain the frequency moments p = 0, 1, 2 of vector $x \in \mathbb{R}^{\binom{n}{3}}$. Initially x = 0, and when an edge (u, v) arrives, increment x_S for every $S \supseteq \{u, v\}$.

Output: Compute moment estimates \hat{F}_p and report $\hat{T} = \hat{F}_0 - 1.5\hat{F}_1 + 0.5\hat{F}_2$.

Correctness: As was seen in class, suppose we compute frequency estimates $\hat{F}_P \in (1 \pm \gamma)F_p$. We can then set a suitable $\gamma = \Omega(\frac{\varepsilon t}{mn})$ (for given t and ε), and the additive error will be bounded by $\varepsilon t \leq \varepsilon T$.

Storage: The storage requirement is $O(\gamma^{-2} \log n) = O(\varepsilon^{-2}(\frac{mn}{t})^2 \log n)$ words, which is effective when t is large (close to mn), but poor for small t.

Observe that this algorithm works even for streams with deletions.