
Sublinear Time and Space Algorithms 2024A – Lecture 8

Hash Functions with Limited Randomness and Triangle Counting∗

Robert Krauthgamer

1 Hash Functions with Limited Randomness

Idea: The idea is to replace a truly random function h : [n] → [n] with something that is easier
to store.

As a running example, consider hp,q(i) = pi + q (mod n), where p, q are chosen at random. This
can be also viewed as choosing h from a family H = {hp,q : p, q}. While h(1), . . . , h(n) are random
but with some correlations, they can be stored (even the entire h) with much less space than a
truly random function.

To analyze these families formally, we need some definitions.

Independent random variables: Recall that two (discrete) random variables X,Y are inde-
pendent if

∀x, y Pr[X = x, Y = y] = Pr[X = x] · Pr[Y = y].

This is equivalent to saying that the conditioned random variable X|Y has exactly the same dis-
tribution as X. It implies that E[XY] = E[X] · E[Y].

The above naturally extends to k > 2 variables, and then we say the random variables are mutually
(or fully) independent.

Pairwise independence: A collection of random variables X1, . . . , Xn is called pairwise inde-
pendent if for all i 6= j ∈ [n], the variables Xi and Xj are independent.

Example: Let X,Y ∈ {0, 1} be random and independent bits, and let Z = X ⊕ Y . Then X,Y, Z
are clearly not mutually (fully) independent, but they are pairwise independent.

Observation: When X1, . . . , Xn are pairwise independent and have finite variance, Var(
∑

iXi) =∑
i Var(Xi), exactly as if they were fully independent.

Exer: Prove this.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

Here too, k-wise independence means that every subset of k random variables is independent.

Pairwise independent hash family: A family H of hash functions h : [n] → [M] is called
pairwise independent if h(1), . . . , h(n) are pairwise independent when choosing random h ∈ H.
This means that for all i 6= j ∈ [n],

∀x, y ∈ [M] Pr
h∈H

[h(i) = x, h(j) = y] = Pr[h(i) = x] · Pr[h(j) = y].

A common scenario is that each h(i) is uniformly distributed over [M], although this is not required
in the above definition.

Universal hashing: A family H of hash functions h : [n] → [M] is called 2-universal if for all
i 6= j ∈ [n],

Pr
h∈H

[h(i) = h(j)] ≤ 1/M.

Observe that 2-universality is weaker than (follows from) pairwise independence when each h(i) is
distributed uniformly over [M], but it suffices for many algorithms.

Construction of pairwise independent hashing:

Assume M ≥ n and that M is a prime number (if not, we can pick a larger M that is a prime).
Pick random p, q ∈ {0, 1, 2, . . . ,M − 1} = [M] and set accordingly hp,q(i) = pi+ q (mod M).

The family H = {hp,q : p, q} is pairwise independent because for all i 6= j,

Pr
h∈H

[h(i) ≡ x, h(j) ≡ y] = Pr
p,q

[(
i 1
j 1

)
(p
q) ≡ (x

y)
]

= Pr
p,q

[
(p
q) ≡

(
i 1
j 1

)−1
(x
y)
]

= 1
M2 ,

where we relied on the above matrix being invertible.

Storing a function hp,q from this family can be done by storing p, q, which requires log |H| =
O(logM) bits. One can think of p, q as a random seed that generates (deterministically) the
random variables h(0), . . . , h(n− 1).

In general, log |H| bits suffice to store a choice of a function h ∈ H.

One can reduce the size of the range [M] (from large M ≥ n to M = 2 or say 4/α), with a small
overhead/loss.

Exer: Show that the correctness of algorithm CountMin (for `1 point query) extends to using a
universal hash function, and analyze how much additional storage the hash function requires.

Exer: Show that the correctness of algorithm CountSketch (for `2 point query) can be imple-
mented with limited (pairwise) independence and analyze how much additional storage the hash
function requires.

Hint: use separate randomness for the hash functions and for the signs.

Exer: Show that algorithm AMS (for estimating `2 norm) works even if the random signs {ri}
are only 4-wise independent.

2

2 Triangle Counting

Goal: Report the number of triangles, denoted by T , in a graph G given as a stream of m edges
on vertex set V = [n].

Motivation: The relative frequency of how often 2 friends of a person know each other is defined as

F =
3T∑

v∈V
(
deg(v)

2

) .
We can compute

∑
v∈V

(
deg(v)

2

)
exactly in O(n) space, by maintaining the degree of every vertex,

and we can also approximate it using polylog(n) space using algorithms that estimate `2-norm.

Distinguishing T = 0 from T = 1 is known to require Ω(m) space [Braverman, Ostrovsky, and
Vilenchik, 2013].

We will henceforth assume a known lower bound 0 < t ≤ T .

First Approach [Bar-Yossef, Kumar and Sivakumar, 2002]:

Idea: use frequency moments.

Define vector x ∈ R(n3), where every coordinate xS counts the number of edges internal to a subset
S ⊂ V of 3 vertices. Then

T = #{S ⊂ V, |S| = 3 : xS = 3}.

Lemma: Let Fp = ‖x‖pp be the frequency moments for p = 0, 1, 2 (well, actually F0 = ‖x‖0).
Then

T = F0 − 1.5F1 + 0.5F2.

Proof: As seen in class it suffices to verify that each coordinate xS contributes the same amount
to both sides.

Why such a formula exists?: We are looking for coefficients, i.e., a polynomial f(xS) : R→ R
with specific values f(3) = 1 and f(2) = f(1) = f(0) = 0. We can do polynomial interpolation over
4 points. It would generally require degree 3, but F0 = 1{xS>0} gives an extra degree of freedom.

Algorithm 1:

Update: Maintain the frequency moments p = 0, 1, 2 of vector x ∈ R(n3). Initially x = 0, and when
an edge (u, v) arrives, increment xS for every S ⊇ {u, v}.

Output: Compute moment estimates F̂p and report T̂ = F̂0 − 1.5F̂1 + 0.5F̂2.

Correctness: As was seen in class, suppose we compute frequency estimates F̂P ∈ (1±γ)Fp. We
can then set a suitable γ = Ω(εt

mn) (for given t and ε), and the additive error will be bounded by
εt ≤ εT .

Storage: The storage requirement is O(γ−2 log n) = O(ε−2(mn
t)2 log n) words, which is effective

when t is large (close to mn), but poor for small t.

3

Observe that this algorithm works even for streams with deletions.

4

	Hash Functions with Limited Randomness
	Triangle Counting

