# Sublinear Time and Space Algorithms 2024A - Lecture 9 Sublinear-Time Algorithms for Sparse Graphs* 

Robert Krauthgamer

## 1 Approximating Average Degree in a Graph

## Problem definition:

Input: An $n$-vertex graph represented (say) as the adjacency list for each vertex (or even just the degree of each vertex).
Goal: Compute the average degree (equiv. number of edges).
Concern: Seems to be impossible e.g. if all degrees $\leq 1$, except possibly for a few vertices whose degree is about $n$.

Theorem 1 [Feige, 2004]: There is an algorithm that estimates the average degree $d$ of a connected graph within factor $2+\varepsilon$ in time $O\left(\left(\frac{1}{\varepsilon}\right)^{O(1)} \sqrt{n / d_{0}}\right)$, given a lower bound $d_{0} \leq d$ and $\varepsilon \in(0,1 / 2)$.

We will prove the case $d_{0}=1$ (i.e., it suffices to know $G$ is connected).
Main idea: Use the fact that it is a graph (and not just a list of degrees), although this will show up only in the analysis. A good example to keep in mind is a star graph vs a cycle graph (both have $d \approx 2$ ).

## Algorithm:

1. Choose $s=c \sqrt{n} / \varepsilon^{O(1)}$ vertices at random with replacement, denote this multiset by $S$ and compute the average degree $d_{S}$ of these vertices.
2. Repeat the above $t=8 / \varepsilon$ times, denoted $S_{1}, \ldots, S_{t}$ and report the smallest seen estimate $\min _{i \in[t]} d_{S_{i}}$.
Analysis: We will need 2 lemmas.
Lemma 1a: In each iteration, $\operatorname{Pr}\left[d_{S}<\left(\frac{1}{2}-\varepsilon\right) d\right] \leq \varepsilon / 64$.
Lemma 1b: In each iteration, $\operatorname{Pr}\left[d_{S}>(1+\varepsilon) d\right] \leq 1-\varepsilon / 2$.
[^0]Proof of theorem: Follows easily from the two lemmas, as seen in class.
Proof of Lemma 1b: Follows from Markov's inequality, as seen in class.
Proof of Lemma 1a: Was seen in class, using the fact the degrees form a graph, by considering the high-degree vertices $H \subset V$ and the rest $L=V \backslash H$, and counting edges inside/between them. We saw that a suitable $s=\tilde{O}\left(\varepsilon^{-2} \max \{|H|, n /|H|\}\right)$ works.

Exer: Explain how to extend the result to any $d_{0} \geq 1$.

## 2 Maximum Matching

## Problem definition:

Input: An $n$-vertex graph $G=(V, E)$ of maximum degree $D$, represented such that one has direct access to the $j$-th neighbor of a vertex.

Definition: A matching is a set of edges that are incident to distinct vertices.
Goal: Compute the maximum size of a matching in $G$.
Note: The matching itself is too large to report in sublinear time, we only estimate its cost using $(\alpha, \beta)$-approximation, i.e., $O P T \leq A L G \leq \alpha O P T+\beta$.
Theorem 2 [Nguyen and Onak, 2008]: There is an algorithm that gives ( $2, \varepsilon n$ ) approximation to the maximum matching size in time $D^{O(D)} / \varepsilon^{2}$.

Main idea: It is well-known that maximal matching (note: maximal means with respect to containment) is a 2 -approximation for maximum matching. We will pick one such matching almost implicitly, and then estimate its size by sampling.

## Algorithm GreedyMatching:

1. Start with an empty matching $M$.
2. Scan the edges (in arbitrary order), and add each edge to $M$ unless it is adjacent to an edge already in $M$.

Lemma 2a: The output $M$ is a maximal matching, and thus its size is at least half that of a maximum matching.

Exer: Prove this lemma.

## Algorithm ApproxGreedyMatching:

1. choose random edge priorities $p(e) \in[0,1]$, implicitly defining a permutation $\pi$ of the edges
2. choose $s=O\left(D / \varepsilon^{2}\right)$ edges $e_{1}, \ldots, e_{s}$ uniformly at random from the $D n$ possibilities (note that each edge has two "chances" to be chosen, and some choices may lead to no edge, if the actual degree is smaller than $D$ )
3. for each edge $e_{i}$, compute an indicator $X_{i}$ for whether $e_{i}$ belongs to the maximal matching $M$
corresponding to $\pi$, by exploring the neighborhood of $e_{i}$ incrementally
[stop if the algorithm took too many steps altogether]
4. report $X=\frac{D n}{2 s} \sum_{i} X_{i}$

Running time: Let $M$ be a greedy matching constructed according to the priorities $p$ (i.e., permutation $\pi$ ). As seen in class, to determine whether a single $e_{i} \in M$, we only "expect" to explore paths of length up to $k=O(D)$. Thus, the expected running time is $O\left(s D \cdot D^{c D}\right) \leq D^{O(D)} / \varepsilon^{2}$, and by Markov's inequality there is small probability to exceed it by much.
Correctness: As sketched in class, it follows by conditioning on the priorities $p$ (hence the permutation $\pi$ and matching $M$ are fixed), and applying Chebychev's inequality to $X=\frac{D n}{2 s} \sum_{i} X_{i}$ (using the randomness of the $s$ samples).


[^0]:    *These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

