
Randomized Algorithms 2024-5

Lecture 1

Introduction and the Min Cut Algorithm
∗

Moni Naor

The lecture introduces randomized algorithms. Why are they interesting? Where is randomization
used in computation?

They may solve problems faster than deterministic ones, they may be essential in some settings,
especially when we want to go to the sublinear time complexity realm1. They are essential in
distributed algorithms e.g. for breaking symmetry. They yield the construction of desirable objects
that we do not know how to build explicitly and are essential for cryptography2 and privacy3.

Another type of study is to analyze algorithms when assuming some distribution on the input, or
some mixture of worst case and then a perturbation of the input (known as smoothed analysis).
But our emphasis would be worst-case data where the randomness is created independently of it.
That is we assume the algorithm or computing device in addition to the inputs gets also a random
‘tape’ (like the other tapes of the Turing Machine, but this one with truly random symbols).

One nice feature of some randomized algorithms is that they may be simple. We demonstrated this
in two algorithms.

Randomized algorithms existed for a long time, since the dawn of computing (for instance the
numerical “Monte Carlo Method”4

The Minimum Cut Problem

The algorithm we saw demonstrates simplicity in a spectacular way. No need for flows, just pick
a random edge and contract! The min-cut algorithm is due to Karger from SODA 1993 (the
motivation was a parallel algorithm). There is a faster version with Stein, where the repetition is

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. In the interest of brevity, most references and credits were omitted.

1For instance, the famed PCP Theorem, which states that every NP statement can be verified using a few queries
must use randomness for picking the queries. Another area is property testing.

2Where no task is possible without good randomness
3Differential privacy is a notion for sanitizing data that involves necessarily randomization, e.g. adding noise to

an aggregate of a population.
4Do not confuse with the term “Monte Carlo Algorithm” which is a general name for an algorithm whose running

time is deterministic (usually polynomial) but may err.

1



done in a clever way (i.e. not starting from scratch each time), yielding a near O(n2) algorithm [2]
(see notes by Nikolov on the algorithm [6]) and nearly linear in [1].

Some questions regarding Karger’s algorithm: Question: What happens if instead of picking a
random edge you pick at random a pair of vertices and contract? Is the resulting algorithm a good
min-cut algorithm?

The analysis of the algorithm had the form of analyzing the probability of a bad event in step i of
the algorithm, given that a bad event had not occurred so far (the bad event was picking an edge
from the cut). If that probability has an upper bound of Pi, then the probability of a bad event
ever occurring is bounded by Πn

i=1Pi. In this case Pi = 1− 2/(n− i+ 1).

Question: The algorithm also showed a bound on the number of min-cuts, since for every min-
cut the probability of outputting this specific cut was 2/n2. In contrast, show that for s-t cuts
(where there are two input nodes s and t and should be separated, there can be exponentially
many min-cuts.

The Karger-Stein algorithm essentially develops a tree as below, where each node corresponds to
an execution that contracts the graph a certain number of steps (to a smaller graph on n/

√
2 nodes

in our case) and then makes two recursive calls on the resulting graph. Stopping when there are
n/

√
2 nodes means that for i = n − n/

√
2 − 1 the probability of success when stopping at i is at

least
(n− i)(n− i− 1)

n2
≥ (n/

√
2)2

n2
= 1/2.

The total amount of work to produce a smaller graph is O(n2) (it gets a bit trickier when there are
many parallel edges during the recursion). The total amount of work is therefore O(n2 log n).

Lemma: The probability of success is Ω(1/ log n).

Proof: Consider a full binary where every edge survives with probability 1/2 and the question is
whether there is a path from the root to a leaf of serving edges. Note that the expected number of
such nodes is 1 (for a tree of depth d there are 2d leaves and each such leaf survives with probability
1/2d). But this is not good enough for us, since the survival events are highly correlated. Let g(d)
be the probability that this (survival of at least one leaf) occurs with a tree of depth d. Then we
know that g(d) ≥ 1/2(1 − (1 − g(d − 1))2) where the first 1/2 is the bound of failing in the first
construction and the second expression comes from the independence of success of each recursive
call. Claim: g(d) ≥ 1/(d+ 2)

Proof by induction.

Since the tree is of depth O(log n) we get that the probability of success is Ω(1/ log n).

2



Work

n2 •

2(n/
√
2)2 • •

• •

1/2

1/2

1/2

Another important idea we discussed is amplification. Given an algorithm that has some small
probability of success, but running it many times, as a function of the probability, we can get
a high probability of success. In this case, the basic algorithm had probability 1/n2 of finding
the min-cut, so after running it n2 time and taking the best (smallest cut) we have probability
(1− 1/n2)n

2 ≈ 1/e. Repeating it a few more times gets us a high probability of success.

Concentration bounds: Watch Ryan O’Donell’s Lecture 5a on Markov and Chebychev’s In-
equality (and later the rest of lecture 5) from his course on a Theory Toolkit.
https://www.youtube.com/watch?v=qqHHvOp5N6w

Rabin’s paper on randomized algorithms gave them a serious push in the mid-1970s [7]. For
information on primality testing see Schoof [8]. To read about the history of randomized algorithms,
you can look at Dick Lipton’s blog [5]. Regarding the derandomization of BPP, one of the strongest
results is that of Russell Impagliazzo and Avi Wigderson [4].

References

[1] David Karger, Minimum cuts in near-linear time. J. ACM 47(1): 46-76 (2000).

[2] David Karger and Clifford Stein, A new approach to the minimum cut problem. Journal of the
ACM 43 (4): 601, 1996.

[3] Jon Kleinberg and Eva Tardos, Algorithm Design. Addison Wesley, 2006. The relevant chap-
ter 13.

[4] Russell Impagliazzo and Avi Wigderson, P = BPP if E Requires Exponential Circuits: Deran-
domizing the XOR Lemma, STOC 1997, pp. 220–229.

[5] Dick Lipton’s blog, “Rabin Flips a Coin”, March 2009
https://rjlipton.wordpress.com/2009/03/01/rabin-flips-a-coin/

[6] Aleksander Nikolov, The Karger-Stein Min Cut Algorithm, Advanced Algorithms Note 2, 2020.
http://www.cs.toronto.edu/~anikolov/CSC473W20/Lectures/Karger-Stein.pdf

[7] Michael Oser Rabin, Probabilistic algorithms. In Algorithms and Complexity: New Directions
and Recent Results, pages 21 - 39. Academic Press, New York.

[8] Rene Schoof, Four primality testing algorithms, http://arxiv.org/abs/0801.3840

3


