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Large Deviation Bounds, Communication Complexity and Existential Proofs via Probabilistic Construction

Moni Naor

1 Large Deviations

The famous concentration bounds are Markov, Chebychev’s and Hoefding. We discussed some
bounds on large deviations that are useful when employing randomized algorithms and specifically
the probabilistic method. One good source is Appendix A of Alon-Spencer [1].

For instance, Corollary A.1.14 there is often useful:

Theorem 1. Let X1, X2, . . . , Xn be indicator random variables (i.e. there are either 0 or 1
indicating whether an event happened and suppose that they are mutually independent. Let Y =∑n

i=1Xi be the sum of the indicators and let E[Y ] = µ. Then for all ε > 0 there is a cε where

Pr[|Y − µ| ≥ εµ] < 2ecεµ.

Note that cε depends only on ε and the value of n does not appear in the bound, just the the value
of the µ.

One thing we mentioned in passing is via a probabilistic existential proof you can put the class
BPP inside P \Poly: the class of polynomial time algorithms that take advice that depends on the
size of the problem and nothing else (sometimes called non-uniform P ).

You can read about Turing Machines that take advice and the class P \ Poly in Arora and Barak
[2] Chapter 6.3 1.

2 Multiset Equality and Memory Checking

We saw an application for the multiset equality problem to memory checking where a processor
with a small memory tries to authenticate the actions of an untrusted memory. In this setting,
a processor has small secret memory and access to a large memory of size n and the goal is to
discover whether the memory malfunctions. The memory malfunctioning means that it does not
return the correct value that was last stored at a given location (i.e/ the last value stored at that

1See https://books.google.co.il/books?id=8Wjqvsoo48MC
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location). There are no assumptions on the memory’s behavior and it might answer in any way it
wishes when executing a read operation. The processor’s goal is to check that all read operations
retrieve what was last written in the location read. It should not declare ‘faulty’ if the memory
functions properly. There are several variants to this problem. We discussed what is known as the
offline problem, where the identification that an error occurred happens after the computation has
ended.

The transformation considered in class was to add a timestamp field to each address in memory;
whenever writing a value to an address add the current-time. This creates READ and WRITE sets
where the elements are of the form (v, i, t) where v is the content, i is the address and t is the time.
One condition to add to the processor’s functionality is that it reads an address i and receives the
v and the content and t as the time (presumably when it was written) the processor compares t to
the current time and makes sure it is smaller.

In more detail, the transformation involves:

• Scan all memory cells before the beginning of the sequence of operations and write in each
cell a value ‘0’ with time = 0.

• After each ‘read’ operation a ‘write’ operation is performed with current time as the times-
tamp.

• Before each ‘write’ operation to location a, a ‘read’ operation to location a is performed.

• At the end of the sequence of operations, the memory is scanned again and all cells are read.

Whenever a ‘read’ operation is performed and a timestamp t is returned, verify that t < current time
(otherwise it is a clear malfunction of the memory). Call the property that this is always the case
the monotone property:

Consider the following two sets:

R = {(v, i, t)|location i was read with value v and timestamp t}

and
W = {(v, i, t)|location i was written with value v and timestamp t}

The algorithm suggested in class tested whether these two sets are equal and that the monotone
property holds. Prove the following: Question: prove the claim

Claim 2. If the monotone property holds, then W = R iff the memory functioned properly.

Hint: the reduction works is that since time grows, if at any point the read is wrong, its timestamp
is smaller than the current time and the tuple will never be inserted into the write set, since the
time only grows.
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3 Communication Complexity

Let f : {0, 1}n × {0, 1}n 7→ {0, 1}. Communication complexity studies the length of the messages
that two parties A and B need to exchange in order to compute f(x, y) where x is the input of A
and y is the input of B. It is a very well-studied topic with a rich structure. There are a couple of
textbooks such as Kushilevitz-Nisan [6] and the More recent Rao-Yehudayoff [9].

Understanding communication complexity protocols is a key to understanding many models and
issues such as VLSI and Streaming algorithms.

We saw a non-trivial example of a deterministic protocol. There is some underlying graph G(V,E)
on n = |V | nodes (fixed and known to both sides). The inputs to the two parties are subsets of
nodes. One party Alice gets a clique C (i.e. a set of nodes in V that induce a complete graph)
and the other party Bob gets an independent set I ⊂ V . Clearly the largest size of the intersection
between C and I is 1. Their goal is to determine whether the two sets intersect or not. There
is an O(log2n) bits protocol for the problem, where the two parties send to each other low and
high-degree nodes respectively. Each such round halves the number of potential nodes that could
be in the intersection. A major result is that this is the best possible: Goos, Pitassi and Watson [4]

Regarding the equality function, where Alice gets x ∈ {0, 1}n and Bob gets y ∈ {0, 1}n and
they need to decide whether x = y, we argued that any deterministic protocol requires n bits of
communication. This was via a covering rectangle argument.

As for randomized protocols, here the question is whether there is shared randomness between
the parties or private randomness. In both cases, the strategy is to consider some hash function
h ∈R H where the probability of collision between two different strings is roughly the size of the
range of h.

In the shared randomness case the function h is defined by the shared random string. In the private
randomness case, one of the parties needs to select the hash function and send it to the other one,
so the length of the description of h, i.e. log |H| is important.

An example of a good function for the shared randomness case is the inner product function
hr(x) =

∑n
i=1 xiri mod 2 where r ∈R∈ {0, 1}n.

Claim 3. For any x, y ∈ {0, 1}n where x ̸= y we have that

Pr[
n∑

i=1

xiri mod 2 =
n∑

i=1

yiri mod 2] = 1/2

where the probability is over the choice of r.

In the private randomness case, we need a small family of functions. We can get such a family using
small-bias probability spaces [7] as a substitute for the above family or using a family based on
polynomial evaluation, similar in nature to the one we saw for Multiset equality last time. In the
original paper that formally introduced communication complexity in 19792, Yao [10] mentioned
that in the private coins case the parties must send Ω(log n) bits. Different proofs for this statement
can be found in either Hastad and Wigderson [5] or Ben-Sasson and Maor [3].

2The paper is four and a half pages long
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We saw an existential result, that for any protocol in the shared randomness setting, there is a
small (O(n)) set of random strings which the two parties can sample from. This implies that in
the private randomness setting with additional round and O(logn) bits of communication we can
have the same power as the shared randomness model. See Newman [8].

The proof was based on a probabilistic construction of a collection of random strings, where one
argues that for each pair (x, y the probability that for at least 2/3 of the strings in the collection
the protocol yields the correct result on (x, y) with probability larger than 1− 1/22n. This means,
from a union bound over bad events, that there is some collection that is simultaneously good for
all input pairs.

We discussed the disjointness problem, where the two parties each receive a subset SA ⊆ U and
SB ⊆ U and the goal is to determine whether the two subsets intersect (whether SA∩SB = ϕ. This
is an important problem in the area and, in general, the bound is Θ(n) where n = |U | (we did not see
the proof, you can find it in Chapter 6 of Rao and Yehudayoff). For the case where |SA| = |SB| = k,
k-disjointness we saw an O(k) randomized algorithm due to Hastad and Wigderson [5].

Question: We said in class that using various data structures, in particular Bloom filters, it is
possible to make this protocol also computationally efficient and consuming fewer bits. Try to
formalize this.

Finally, we mentioned the simultaneous message model for evaluating a function f(x, y): Alice and
Bob share a random string. They receive inputs x and y respectively and each should send a
message to a referee, Charlie, who should evaluate the function f(x, y). They may also have their
own private source of randomness. The goal is for Alice and Bob to send short messages to Charlie.

We considered the equality function in this model and said that the original protocol works here.
What happens when Alice and Bob do not share randomness? Can you think of a non-trivial
protocol for this case?

Question (I don’t know the full answer): is there a poly(k) protocol for k-disjointness in this model
(with shared randomness)? Yes, see homework.

4 Card Guessing

The scenario we are considering is where a deck of n distinct cards (for simplicity labeled 1, 2, . . . , n)
is shuffled and the cards from the deck are drawn one by one. A player called ‘guesser’ tries to
guess the next card, for n rounds and receives a point for each correct guess. We are interested in
the expected number of points the guesser can have.

Suppose that the guesser has perfect memory and can recall all the cards that it has seen, then what
is the expected number of correct guesses? At any point, the guesser picks one of the cards that
have not appeared so far as a guess. If there are i cards left, the probability of guessing correctly
is 1/i and the expected number of guesses is

1 +
1

2
+

1

3
. . .+

1

n
= Hn ≈ lnn.

Note that any guess of an unseen card has the same probability of success, so there is really not
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much of a strategy here.

Question: What can you say about high concentration in this case?

Now consider the opposite scenario, where the guesser has no memory at all. I.e. before it turns
over a card it has no idea what cards have already appeared. But we will give it for free the round
number. So the best strategy it may have is represented by a fixed guess gi for the round i. The
probability that this is correct is 1/n, so the expectation over all n rounds is 1.

See the lectures by O’Donnel on the topic:

• Lectures 23a-d of CS Theory Toolkit https://www.youtube.com/watch?v=mQQ36cDnmR8

References

[1] Noga Alon and Joel Spencer, The Probabilistic Method, Wiley, 2008.

[2] Sanjeev Arora and Boaz Barak Computation Complexity: A Modern Approach

[3] Eli Ben-Sasson and Gal Maor, Lower bound for communication complexity with no public ran-
domness, ECCC TR15-139, 2015.

[4] Mika Goos, Toniann Pitassi, and Thomas Watson Deterministic Communication vs. Partition
Number, Siam Journal on Computing 2018.

[5] Johan Hastad amd Avi Wigderson, The Randomized Communication Complexity of Set Dis-
jointness, Theory of Computing 2007.

[6] Eyal Kushilevitz and Noam Nisan, Communication Complexity, Cambrdige, 1996.

[7] J. Naor and M. Naor, Small-Bias Probability Spaces: Efficient Constructions and Applications,
SIAM J. on Computing, 1995.

[8] Ilan Newman: Private vs. Common Random Bits in Communication Complexity. Inf. Process.
Lett. 39(2): 67-71 (1991).

[9] Anup Rao and Amir Yehudayoff, Communication Complexity and Applications, Cam-
bridge 2020.

[10] Andrew Chi-Chih Yao, Some Complexity Questions Related to Distributive Computing, Proc.
Of 11th STOC, pp. 209-–213, 1979,

5


