Randomized Algorithms 2025A — Lecture 12*
Importance Sampling, Counting DNF solutions, and Coresets for
Clustering

Robert Krauthgamer

1 Importance Sampling

Sampling is often used to estimate a sum. When the variance is too large, this method can reduce
the variance, by sampling not uniformly, but rather in a biased manner that roughly imitates the
contributions, while making sure to “factor out” the bias.

Setup: We want to estimate z = Zie[n] z; without reading all the z; values. The main concern
is that the z; are unbounded, and thus most of the contribution might come from a few unknown
elements. If we happen to have a “good enough” lower bound on each element z;, then we can
sample with probability p; > Q(%).

Theorem 1 [Importance Sampling]: Let 2 = > ., 2, and A > 1. Let Z be an estimator
obtained by sampling a single index ¢ € [n] according to distribution (p1, ..., p,) where zie[n] p; =1
and each p; > {, and setting Z = z;/p;. Then

E[Z]=z and o(Z) <VAE[Z].

Proof: was seen in class.

Exer: Show that averaging t = O(\/e?) independent repetitions of the above approximates z
within factor 1 4 ¢ with success probability at least 3/4.

Hint: use Chebyshev’s inequality.

Exer: Prove a variant of Theorem 1, where each z; is read independently with probability
¢; > min{1,¢%}, in which case it contributes % (and otherwise contributes 0). Show that with

high probability, the number of values read is O(3", ¢;) and the estimate is (1 + O(1/v))z.

Hint: The difference is here we decide whether to read each z; independently, while in Theorem 1
we read at each step exactly one value z;.

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1.1 Counting DNF solutions via Importance Sampling

Problem definition: The input is a DNF formula f with m clauses C, ..., C,, over n variables
T1,...,Tp, 1., f =V C; where each C; is the conjunction of literals like 2 A Z5 A .

The goal is the estimate the number of Boolean assignments that satisfy f.

Theorem 2 [Karp and Luby, 1983]: Let S C {0,1}" be the set of satisfying assignments
for f. There is an algorithm that estimates |S| within factor 1 + ¢ in time that is polynomial in
m+n+1/e.

1.2 Counting: A first attempt
Random assignments: Sample ¢t random assignments, and let Z count how many of them are
satisfying. We can estimate |S| by Z/t - 2™.

Formally, we can write Z = 2221 Z; where each Z; is an indicator for the event that the i-th sample
satisfies f. We can easily see it is an unbiased estimator:

E[Z/t 2"] = Zt:IE[Zi] L2/t =19

=1

Observe that its standard deviation is o(Z/t - 2") = o(Z; - 2")/+/t. But even though we can use
Chernoftf-Hoeffding bounds since Z; are independent, it’s not very effective because the variance
could be exponentially larger than the expectation.

Exer: Show that the standard deviation (say for ¢ = 1) could be exponentially large relative to
the expectation.

1.3 Counting: A second attempt

Idea: We can bias the probability towards the assignments that are satisfying, but then we will
need to “correct” the bias.

Let S; € {0,1}" be all the assignments that satisfy the i-th clause, hence |S;| = 2n~1en(Ci),

Remark: Our goal is to estimate |S| = | U; S;|. We can expand this using the inclusion-exclusion
formula, but it would be too complicated to estimate efficiently.

Algorithm E:

1. Choose a clause C; with probability proportional to |S;| (namely, |S;|/M where M =" |S;|).
2. Choose at random an assignment a € 5.

3. Compute the number y, of clauses satisfied by a.

4. Output Z = yMa

Claim 2a: E[Z] =|S| (i.e., this algorithm’s output is unbiased).

Claim 2b: o(Z) <m-E[Z].
The proofs are straightforward and were seen in class.

Exer: Show that |S| can be approximated within factor 1 + ¢ with success probability at least
3/4, by averaging O(m?/e?) independent repetitions of the above.

Hint: use Chebyshev’s inequality.

Exer: Show how to improve the success probability to 1—4 by increasing the number of repetitions
by an O(log %) factor.

Exer: Explain this DNF counting algorithm using the importance sampling theorem.

Hint: Think what is the relative contribution of each assignment a to |S|.

2 Coresets for Clustering

Let dist(-,-) denote the Euclidean distance in R?, including distance between a point and set
dist(z, C') = mineec||z — ||

Geometric Clustering: In the k-median problem the input is a set of n data points X =
{x1,...,2,} C R and the goal is to find a set of k centers C' = {c1,...,cx} C R? that minimizes
the objective function

f(X,C):= Z dist(z,C) = Z min|jz; — ¢j|2.
zeX ie[n]je[k]

Note that the centers are not required to be from X (the version with this requirement is called
discrete centers or k-medoid).

The k-means problem is similar but using squared distances.
Notation: We shall omit the subscript from all norms, as we always use ¢2 norms.

Observe that points need not be distinct, i.e., we consider multisets, which is equivalent to giving
every point an integer weight, and admits a succinct representation. We thus would like to reduce
the number of distinct points, denoted throughout by | X]|.

Strong Coreset: Let € € (0,1/2) be an accuracy parameter. We say that S C R? is a strong
e-coreset of X (for objective f, which in our case is k-median) if

VC = {c1,...,cx} CRY, f(5,0) e (1+e)f(X,C).
Note: A weak coreset is similar, except the above requirement is only for the optimal centers for
the coreset, i.e., C' that minimizes f(S,C").

Goal: We want to construct small coresets. If done without computing an optimal solution C*,
then it would be useful for computing a near-optimal solution, because it suffices to solve k-median

on the smaller instance S. If the construction requires computing C*, it could still be useful when
sending (communicating) or storing the data.

We focus henceforth on existence (of coresets of a certain size), the algorithmic implementation
and applications are usually straightforward.

2.1 Coresets via Geometric Decomposition
Theorem 3 [Har-Peled and Mazumdar, 2004: Every set X of n points in R? admits an
e-coreset S of cardinality |S| = O(k(9/¢)?logn).

Idea: Discretize the space to create a small set S , and “snap” every point in X to its nearest
neighbor in S. Throughout, the (closed) ball of radius r > 0 about ¢ € R? is defined as

B(ce,r) ={z € RY |z —c| < r}.

Lemma 3a (e-Ball Cover): For every € € (0,1), the unit ball B = B(0,1) in R? can be covered
by (3/¢)? balls of radius ¢.

The conclusion is that every point in the unit ball can be “approximated” by one of those (3/¢)?
centers, with additive error €. This argument immediately extends to a ball of radius r > 0, except
that the discretization error is now er.

We already saw a proof of this lemma (for the unit sphere instead of unit ball, but the proof is the
same).

Proof of Theorem 3: Was seen in class.

Exer: Modify the above proof to be algorithmic, by using an O(1)-approximation to the minimum
cost (meaning a set C’ such that f(X,C’) < O(1)- f(X,C*)), which can be computed in polynomial
time.

Exer: Extend this argument to k-means using the following generalized triangle inequality: For
every a,b,c € R and € € (0,1),

lla—cl* = lIb = c[?| < Zlla—b]* + 2ella — >

	Importance Sampling
	Counting DNF solutions via Importance Sampling
	Counting: A first attempt
	Counting: A second attempt

	Coresets for Clustering
	Coresets via Geometric Decomposition

