
Randomized Algorithms 2025A – Lecture 12∗

Importance Sampling, Counting DNF solutions, and Coresets for

Clustering

Robert Krauthgamer

1 Importance Sampling

Sampling is often used to estimate a sum. When the variance is too large, this method can reduce
the variance, by sampling not uniformly, but rather in a biased manner that roughly imitates the
contributions, while making sure to “factor out” the bias.

Setup: We want to estimate z =
∑

i∈[n] zi without reading all the zi values. The main concern
is that the zi are unbounded, and thus most of the contribution might come from a few unknown
elements. If we happen to have a “good enough” lower bound on each element zi, then we can
sample with probability pi ≥ Ω(ziz).

Theorem 1 [Importance Sampling]: Let z =
∑

i∈[n] zi, and λ ≥ 1. Let Ẑ be an estimator

obtained by sampling a single index î ∈ [n] according to distribution (p1, . . . , pn) where
∑

i∈[n] pi = 1

and each pi ≥ zi
λz , and setting Ẑ = zî/pî. Then

E[Ẑ] = z and σ(Ẑ) ≤
√
λE[Ẑ].

Proof: was seen in class.

Exer: Show that averaging t = O(λ/ε2) independent repetitions of the above approximates z
within factor 1± ε with success probability at least 3/4.

Hint: use Chebyshev’s inequality.

Exer: Prove a variant of Theorem 1, where each zi is read independently with probability
qi ≥ min{1, t ziz }, in which case it contributes zi

qi
(and otherwise contributes 0). Show that with

high probability, the number of values read is O(
∑

i qi) and the estimate is (1±O(1/
√
t))z.

Hint: The difference is here we decide whether to read each zi independently, while in Theorem 1
we read at each step exactly one value zi.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

1.1 Counting DNF solutions via Importance Sampling

Problem definition: The input is a DNF formula f with m clauses C1, . . . , Cm over n variables
x1, . . . , xn, i.e., f = ∨mi=1Ci where each Ci is the conjunction of literals like x2 ∧ x̄5 ∧ xn.

The goal is the estimate the number of Boolean assignments that satisfy f .

Theorem 2 [Karp and Luby, 1983]: Let S ⊂ {0, 1}n be the set of satisfying assignments
for f . There is an algorithm that estimates |S| within factor 1 + ε in time that is polynomial in
m+ n+ 1/ε.

1.2 Counting: A first attempt

Random assignments: Sample t random assignments, and let Z count how many of them are
satisfying. We can estimate |S| by Z/t · 2n.

Formally, we can write Z =
∑t

i=1 Zi where each Zi is an indicator for the event that the i-th sample
satisfies f . We can easily see it is an unbiased estimator:

E[Z/t · 2n] =
t∑
i=1

E[Zi] · 2n/t = |S|.

Observe that its standard deviation is σ(Z/t · 2n) = σ(Z1 · 2n)/
√
t. But even though we can use

Chernoff-Hoeffding bounds since Zi are independent, it’s not very effective because the variance
could be exponentially larger than the expectation.

Exer: Show that the standard deviation (say for t = 1) could be exponentially large relative to
the expectation.

1.3 Counting: A second attempt

Idea: We can bias the probability towards the assignments that are satisfying, but then we will
need to “correct” the bias.

Let Si ∈ {0, 1}n be all the assignments that satisfy the i-th clause, hence |Si| = 2n−len(Ci).

Remark: Our goal is to estimate |S| = | ∪i Si|. We can expand this using the inclusion-exclusion
formula, but it would be too complicated to estimate efficiently.

Algorithm E:

1. Choose a clause Ci with probability proportional to |Si| (namely, |Si|/M where M =
∑

i |Si|).

2. Choose at random an assignment a ∈ Si.

3. Compute the number ya of clauses satisfied by a.

4. Output Z = M
ya

.

Claim 2a: E[Z] = |S| (i.e., this algorithm’s output is unbiased).

2

Claim 2b: σ(Z) ≤ m · E[Z].

The proofs are straightforward and were seen in class.

Exer: Show that |S| can be approximated within factor 1 ± ε with success probability at least
3/4, by averaging O(m2/ε2) independent repetitions of the above.

Hint: use Chebyshev’s inequality.

Exer: Show how to improve the success probability to 1−δ by increasing the number of repetitions
by an O(log 1

δ) factor.

Exer: Explain this DNF counting algorithm using the importance sampling theorem.

Hint: Think what is the relative contribution of each assignment â to |S|.

2 Coresets for Clustering

Let dist(·, ·) denote the Euclidean distance in Rd, including distance between a point and set
dist(x,C) = minc∈C‖x− c‖.

Geometric Clustering: In the k-median problem the input is a set of n data points X =
{x1, . . . , xn} ⊂ Rd, and the goal is to find a set of k centers C = {c1, . . . , ck} ⊂ Rd that minimizes
the objective function

f(X,C) :=
∑
x∈X

dist(x,C) =
∑
i∈[n]

min
j∈[k]
‖xi − cj‖2.

Note that the centers are not required to be from X (the version with this requirement is called
discrete centers or k-medoid).

The k-means problem is similar but using squared distances.

Notation: We shall omit the subscript from all norms, as we always use `2 norms.

Observe that points need not be distinct, i.e., we consider multisets, which is equivalent to giving
every point an integer weight, and admits a succinct representation. We thus would like to reduce
the number of distinct points, denoted throughout by |X|.

Strong Coreset: Let ε ∈ (0, 1/2) be an accuracy parameter. We say that S ⊂ Rd is a strong
ε-coreset of X (for objective f , which in our case is k-median) if

∀C = {c1, . . . , ck} ⊂ Rd, f(S,C) ∈ (1± ε)f(X,C).

Note: A weak coreset is similar, except the above requirement is only for the optimal centers for
the coreset, i.e., C ′ that minimizes f(S,C ′).

Goal: We want to construct small coresets. If done without computing an optimal solution C∗,
then it would be useful for computing a near-optimal solution, because it suffices to solve k-median

3

on the smaller instance S. If the construction requires computing C∗, it could still be useful when
sending (communicating) or storing the data.

We focus henceforth on existence (of coresets of a certain size), the algorithmic implementation
and applications are usually straightforward.

2.1 Coresets via Geometric Decomposition

Theorem 3 [Har-Peled and Mazumdar, 2004: Every set X of n points in Rd admits an
ε-coreset S of cardinality |S| = O(k(9/ε)d log n).

Idea: Discretize the space to create a small set Ŝ, and “snap” every point in X to its nearest
neighbor in Ŝ. Throughout, the (closed) ball of radius r > 0 about c ∈ Rd is defined as

B(c, r) = {z ∈ Rd : ‖z − c‖ ≤ r}.

Lemma 3a (ε-Ball Cover): For every ε ∈ (0, 1), the unit ball B = B(~0, 1) in Rd can be covered
by (3/ε)d balls of radius ε.

The conclusion is that every point in the unit ball can be “approximated” by one of those (3/ε)d

centers, with additive error ε. This argument immediately extends to a ball of radius r > 0, except
that the discretization error is now εr.

We already saw a proof of this lemma (for the unit sphere instead of unit ball, but the proof is the
same).

Proof of Theorem 3: Was seen in class.

Exer: Modify the above proof to be algorithmic, by using an O(1)-approximation to the minimum
cost (meaning a set C ′ such that f(X,C ′) ≤ O(1) ·f(X,C∗)), which can be computed in polynomial
time.

Exer: Extend this argument to k-means using the following generalized triangle inequality: For
every a, b, c ∈ Rd and ε ∈ (0, 1),∣∣‖a− c‖2 − ‖b− c‖2∣∣ ≤ 12

ε ‖a− b‖
2 + 2ε‖a− c‖2.

4

	Importance Sampling
	Counting DNF solutions via Importance Sampling
	Counting: A first attempt
	Counting: A second attempt

	Coresets for Clustering
	Coresets via Geometric Decomposition

