
Randomized Algorithms 2025A – Lecture 13∗

Coresets via Importance Sampling

Robert Krauthgamer

1 Concentration Bounds (for reference; was skipped in class)

Chernoff-Hoeffding bound: Let X =
∑

i∈[n]Xi where Xi ∈ [0, 1] for i ∈ [n] are independently
distributed random variables. Then

∀t > 0, Pr[|X − E[X]| ≥ t] ≤ 2e−2t
2/n.

∀0 < ε ≤ 1, Pr[X ≤ (1− ε)E[X]] ≤ e−ε2 E[X]/2.

∀0 < ε ≤ 1, Pr[X ≥ (1 + ε)E[X]] ≤ e−ε2 E[X]/3.

∀t ≥ 2eE[X], Pr[X ≥ t] ≤ 2−t.

Exer: Let a1, . . . , an be an array of numbers in the range [0, 1]. Design a randomized algorithm
that estimates their average within ±ε (i.e., additive error ε) by reading only O(1/ε2) elements.
The algorithm should succeed with probability at least 90%.

2 Strong Coresets for 1-Median via Importance Sampling

Definition: The sensitivity of a point x ∈ X is

s(x) := sup
c∈Rd

‖x− c‖∑
z∈X ‖z − c‖

,

and the total sensitivity of X is S(X) =
∑

x∈X s(x).

Observe that for a given c ∈ Rd (i.e., without the supremum) the above ratio is the “desired”
sampling probability in Importance Sampling.

Importance Sampling approach: Suppose we sample one point, where each x ∈ X is picked
with probability q(x) := s(x)

S(X) . We then give the sampled x new weight 1
q(x) . Of course, we should

average a few repetitions to reduce variance.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.
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Lemma 1: S(X) ≤ 6.

Lemma 2: Let Y be a multiset of m ≥ 24/ε2 points, each sampled iid from X according to q(·).
Then

∀c ∈ Rd, Pr
[

1
m

∑
y∈Y

‖y − c‖
q(y)

∈ (1± ε)
∑
x∈X
‖x− c‖

]
≥ 3/4.

This does not give a strong coreset, but it is an important step in that direction.

Proof of Lemma 1: Was seen in class by bounding each s(x) ≤ 4
n + ‖x−c∗‖

OPT/2 .

Proof of Lemma 2: Was seen in class by applying the Importance Sampling Theorem seen in
the previous class for each sample y ∈ Y .

Amplifying the probability: We would like to improve the success probability in Lemma 2 to
1− δ. Using Chebyshev’s inequality, this would require increasing m by a factor of 1

δ .

Using Chernoff-Hoeffding concentration bounds would be better and require increasing m only by
a factor of O(log 1

δ ). But for this, we need that no one sample y ∈ Y ever contributes too much,
which indeed holds in our setting.

Lemma 3: Ẑ ≤ S(X) · E[Ẑ] with probability 1.

Proof of Lemma 3: Was seen in class by direct calculation.

Lemma 4: The success probability in Lemma 2 can be improved 1− δ by using m ≥ Lε−2 log 1
δ

for a suitable constant L > 0.

Exer: Prove this lemma using concentration bounds.

Strong Coreset: To obtain a strong coreset, we need a bound for all c ∈ Rd simultaneously. If
there were only a few potential centers, then we could apply Lemma 4 to each of them together
with a union bound.

The idea is then to discretize the space of potential centers using the ε-ball cover lemma, and show
that it suffices to consider only these centers. Then it would suffice to apply Lemma 4 and a union
bound.

Theorem 5: Let Y be a multiset of m ≥ L′dε−2 log 1
ε points from X, each sampled iid according

to distribution q(.) and reweighted by w(x) = 1
mq(x) , for a suitable constant L′ > 0. Then with

high probability, Y is a strong coreset for the 1-median of X.

Remark: This is not in the scope of the course but the theorem rextends to k-median with roughly
linear dependence on k, and moreover the dependence on d is not really needed.

The following lemma will be needed later. It can also be viewed as a sanity check for the total
weight of Y , which need not be exactly n, but with high probability should be close.

Lemma 6: Under the conditions of Lemma 4, i.e., m ≥ Lε−2 log 1
δ ,

Pr[w(Y ) ∈ (1± ε)n] ≥ 1− δ.

Exer: Prove this lemma using concentration bounds.
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Hint: Write w(Y ) = 1
m

∑
y∈Y

1
q(y) , show a bound 1

q(x) ≤ O(n) (with probability 1), and then use
concentration bound.

Proof of Theorem 5: Was seen in class, by a discretization N of the possible centers (using the
method of a ball cover, seen in an earlier class), applying Lemma 4 to the each center c′ ∈ N and
taking a union bound. Finally, we show that the bound“extends” from the centers c′ ∈ N to all
centers c ∈ Rd.
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