Randomized Algorithms 2025A – Lecture 13* Coresets via Importance Sampling

Robert Krauthgamer

1 Concentration Bounds (for reference; was skipped in class)

Chernoff-Hoeffding bound: Let $X = \sum_{i \in [n]} X_i$ where $X_i \in [0, 1]$ for $i \in [n]$ are independently distributed random variables. Then

$$\begin{split} \forall t > 0, & \Pr[|X - \mathbb{E}[X]| \geq t] \leq 2e^{-2t^2/n}. \\ \forall 0 < \varepsilon \leq 1, & \Pr[X \leq (1 - \varepsilon) \, \mathbb{E}[X]] \leq e^{-\varepsilon^2 \, \mathbb{E}[X]/2}. \\ \forall 0 < \varepsilon \leq 1, & \Pr[X \geq (1 + \varepsilon) \, \mathbb{E}[X]] \leq e^{-\varepsilon^2 \, \mathbb{E}[X]/3}. \\ \forall t \geq 2e \, \mathbb{E}[X], & \Pr[X \geq t] \leq 2^{-t}. \end{split}$$

Exer: Let a_1, \ldots, a_n be an array of numbers in the range [0,1]. Design a randomized algorithm that estimates their average within $\pm \varepsilon$ (i.e., additive error ε) by reading only $O(1/\varepsilon^2)$ elements. The algorithm should succeed with probability at least 90%.

2 Strong Coresets for 1-Median via Importance Sampling

Definition: The sensitivity of a point $x \in X$ is

$$s(x) := \sup_{c \in \mathbb{R}^d} \frac{\|x - c\|}{\sum_{z \in X} \|z - c\|},$$

and the total sensitivity of X is $S(X) = \sum_{x \in X} s(x)$.

Observe that for a given $c \in \mathbb{R}^d$ (i.e., without the supremum) the above ratio is the "desired" sampling probability in Importance Sampling.

Importance Sampling approach: Suppose we sample one point, where each $x \in X$ is picked with probability $q(x) := \frac{s(x)}{S(X)}$. We then give the sampled x new weight $\frac{1}{q(x)}$. Of course, we should average a few repetitions to reduce variance.

^{*}These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

Lemma 1: $S(X) \leq 6$.

Lemma 2: Let Y be a multiset of $m \ge 24/\varepsilon^2$ points, each sampled iid from X according to $q(\cdot)$. Then

$$\forall c \in \mathbb{R}^d$$
, $\Pr\left[\frac{1}{m}\sum_{y \in Y} \frac{\|y - c\|}{q(y)} \in (1 \pm \varepsilon)\sum_{x \in X} \|x - c\|\right] \ge 3/4$.

This does not give a strong coreset, but it is an important step in that direction.

Proof of Lemma 1: Was seen in class by bounding each $s(x) \leq \frac{4}{n} + \frac{\|x - c^*\|}{\text{OPT}/2}$.

Proof of Lemma 2: Was seen in class by applying the Importance Sampling Theorem seen in the previous class for each sample $y \in Y$.

Amplifying the probability: We would like to improve the success probability in Lemma 2 to $1 - \delta$. Using Chebyshev's inequality, this would require increasing m by a factor of $\frac{1}{\delta}$.

Using Chernoff-Hoeffding concentration bounds would be better and require increasing m only by a factor of $O(\log \frac{1}{\delta})$. But for this, we need that no one sample $y \in Y$ ever contributes too much, which indeed holds in our setting.

Lemma 3: $\hat{Z} \leq S(X) \cdot \mathbb{E}[\hat{Z}]$ with probability 1.

Proof of Lemma 3: Was seen in class by direct calculation.

Lemma 4: The success probability in Lemma 2 can be improved $1 - \delta$ by using $m \ge L\varepsilon^{-2} \log \frac{1}{\delta}$ for a suitable constant L > 0.

Exer: Prove this lemma using concentration bounds.

Strong Coreset: To obtain a strong coreset, we need a bound for all $c \in \mathbb{R}^d$ simultaneously. If there were only a few potential centers, then we could apply Lemma 4 to each of them together with a union bound.

The idea is then to discretize the space of potential centers using the ε -ball cover lemma, and show that it suffices to consider only these centers. Then it would suffice to apply Lemma 4 and a union bound.

Theorem 5: Let Y be a multiset of $m \ge L' d\varepsilon^{-2} \log \frac{1}{\varepsilon}$ points from X, each sampled iid according to distribution q(.) and reweighted by $w(x) = \frac{1}{mq(x)}$, for a suitable constant L' > 0. Then with high probability, Y is a strong coreset for the 1-median of X.

Remark: This is not in the scope of the course but the theorem rextends to k-median with roughly linear dependence on k, and moreover the dependence on d is not really needed.

The following lemma will be needed later. It can also be viewed as a sanity check for the total weight of Y, which need not be exactly n, but with high probability should be close.

Lemma 6: Under the conditions of Lemma 4, i.e., $m \ge L\varepsilon^{-2}\log\frac{1}{\delta}$,

$$\Pr[w(Y) \in (1 \pm \varepsilon)n] \ge 1 - \delta.$$

Exer: Prove this lemma using concentration bounds.

Hint: Write $w(Y) = \frac{1}{m} \sum_{y \in Y} \frac{1}{q(y)}$, show a bound $\frac{1}{q(x)} \leq O(n)$ (with probability 1), and then use concentration bound.

Proof of Theorem 5: Was seen in class, by a discretization N of the possible centers (using the method of a ball cover, seen in an earlier class), applying Lemma 4 to the each center $c' \in N$ and taking a union bound. Finally, we show that the bound "extends" from the centers $c' \in N$ to all centers $c \in \mathbb{R}^d$.