Randomized Algorithms 2025A* Lecture 6 – Nearest Neighbor Search in ℓ_1

Robert Krauthgamer

1 Sketching Distances

What is Sketching: We want to compress/summarize some input x into a sketch s(x) (of small size), but want to be able to later compute some f(x) only from the sketch. Often, randomization helps. We'll denote it as $s_r(x)$ where r is the sequence of random coins.

Examples:

- 1. In graphs: a Gomory-Hu tree can report min st-cuts; a spanner can report all pairwise distances (approximately); both are deterministic.
- 2. Sketching $x \in \mathbb{R}^n$ so that later we could estimate any x_i (usually the approximation is good only for large entries).
- 3. Sketching for equality testing: test whether h(x) = h(y) use a hash function $h : \{0,1\}^n \to \{0,1\}^t$, for instance a random function or as in the exercise below. It's important here to choose h using public randomness, i.e., same h for both x, y.

Exer: Show that the hash function $h_r(x) = \sum_{i=1}^n x_i r_i \pmod{2}$, where $\vec{r} \in \{0,1\}^n$ is random, is a good sketch for equality testing in the sense that

$$\forall x \neq y, \qquad \Pr_r[h_r(x) = h(y)] = 1/2.$$

4. Sketching for ℓ_p distance, namely, for all $x, y \in [\Delta]^d$,

$$\Pr[a(s_r(x), s_r(y)) = (1 \pm \varepsilon) ||x - y||_p] > 2/3.$$

The JL transform offers such a sketch for ℓ_2 norm. We saw a specific implementation using a linear sketch $L: \mathbb{R}^d \mapsto \mathbb{Z}^k$ for $k = O(1/\varepsilon^2)$, hence $|s(x)| \leq O(\varepsilon^{-2} \log(d\Delta))$ bits.

Question: Can we use (for ℓ_1 or ℓ_2) only $O(\varepsilon^{-2})$ bits? No if we want an estimate. But maybe for a decision version (output is YES/NO)?

^{*}These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

Definition: In distance estimation, the input is two inputs (e.g., vectors) and the goal is to approximate their distance within factor $1 + \varepsilon$. In the decision (aka promise) version, the goal is to decide whether the distance is $\leq R$ or $> (1 + \varepsilon)R$ for a parameter R > 0 given in advance.

Theorem 1 [Estimating ℓ_1 **distance]:** For every $0 < \varepsilon < 1$ there is a randomized sketch that can estimate the ℓ_1 (or Hamming) distance between two input vectors within $(1+\varepsilon)$ -approximation in the decision version, with sketch size $O(1/\varepsilon^2)$ bits.

Proof: Was seen in class. The sketching algorithm has two steps, first choose $I \subset [n]$ to subsample the coordinates with rate 1/R, and second apply on x_I, y_I the equality testing mentioned above.

Review of key points:

- 1. Design a single-bit sketch with small "advantage"
- 2. Amplify success probability using Chernoff bounds

2 NNS under ℓ_1 norm (logarithmic query time)

Problem definition (NNS): Preprocess a dataset of n points $x_1, \ldots, x_n \in \mathbb{R}^d$, so as to quickly find the closest data point to a query point $q \in \mathbb{R}^d$, i.e. report x_i that minimizes $||q - x_i||_1$.

Performance measure: Preprocessing (time and space) and query time.

Discretization: Assume all points come from $[\Delta]^d$, where $\Delta = \text{poly}(n)$.

Two naive solutions:

- Exhaustive search/Linear scan: query time is O(nd), preprocessing is O(nd)
- Exhaustive storage: prepare all answers in advance with preprocessing space $[\Delta]^d$, then query time is O(d).

Challenge: get query time sublinear (or polylog) in n, but still be polynomial in dimension d.

Approximate version (factor $c \ge 1$): find x_i such that $||q - x_i||_1 \le c \cdot \min_i ||q - x_i||_1$.

Theorem 2 [Indyk-Motwani'98, Kushilevitz-Ostrosvky-Rabani'98]: For every $\varepsilon > 0$ there is a randomized algorithm for $1+\varepsilon$ approximate NNS in \mathbb{Z}^d under ℓ_1 -norm with preprocessing space $n^{O(1/\varepsilon^2)} \cdot O(d)$ and query time $O(\varepsilon^{-2}d\operatorname{polylog} n)$.

Remark 1: We shall omit/neglect the precise polynomial dependence on d.

Remark 2: The success probability is for a single query (assuming it's independent of the coins).

Remark 3: We only need to solve the decision version, i.e., there is a target distance R > 0, and if there is data point x_j such that $||q - x_j||_1 \le R$ then the algorithm reports a point x_i such that $||q - x_i||_1 \le cR$. If no point is within distance cR, then report NONE. Otherwise, can report either answer. This follows by preparing in advance for all powers of $1 + \varepsilon$ as the value of R (then trying all of them or binary search).

Remark 4: WLOG x_i and q are in $\{0,1\}^d$.

Proof: Was seen in class. The main idea is to repeat the above single-bit sketching algorithm $k = O(\varepsilon^{-2} \log n)$ times to reduce the error probability to (say) $1/n^2$, and prepare in advance the answer for every $v \in \{0,1\}^m$ as a possible s(q).

Review of key points:

- 1. "dimension reduction" to $O(\varepsilon^{-2} \log n)$.
- 2. Prepare all answers in advance (exponential in "reduced" dimension).

3 NNS via LSH (sublinear query time)

Consider again approximate NNS in the decision version, with target distance R > 0 and approximation factor c > 1, e.g. $c = 1 + \varepsilon$, but here we actually focus on larger c.

Locality Sensitive Hashing (LSH): A c-LSH is a family H of hash functions $h: \{0,1\}^d \to \mathbb{N}$ whose collision probability for all $x, y \in \{0,1\}^d$ is:

- 1. if $||x y||_1 \le R$ then $\Pr[h(x) = h(y)] \ge p$;
- 2. if $||x y||_1 cR$ then $\Pr[h(x) = h(y)] \le p'$.

Think of R, p as given inputs, c is the approximation factor, and p' determines the performance (should be much smaller than p).

Note: We also need that $h \in H$ can be chosen quickly and h(x) can be computed quickly. Here, we ignore this issue.

Theorem 3 [LSH for Hamming distance; Indyk-Motwani'98]: For every d, R, c and p < 1/3 there is c-LSH for ℓ_1 distance in $\{0,1\}^d$, such that $p' \leq O(p^c)$.

Proof: Was seen in class. For p = 1/e, we construct h(x) by sampling t = d/R coordinates from [d] independently ar random.

We can get any desired smaller p by increasing the number of samples t.

Theorem 4 [c-NNS scheme from c-LSH]: Consider the decision version (with target distance R > 0) and fix an approximation c > 1. Let H be a c-LSH with some p and p' = O(1/n). Then there is c-NNS with query time O(1/p) and preprocessing O(n/p).

Remark: For ℓ_1 norm $p = 1/n^{1/c}$.

Proof: Was discussed shown in class. The main idea is to use the LSH to compute the hash for all data points x_1, \ldots, x_n (at the preprocessing stage), then for the q (at the query stage), and check points x_i in the same bucket with q (i.e., points that collide with the query) by computing the actual distance. A correct output x_i (if exists) has success probability p, which we can amplify by repeating the above O(1/p) times. The time spent on checking points that are too far from q is in expectation by O(p'n) per repetition, and we use Markov's inequality to bound it with high probability.