
Randomized Algorithms 2025A∗

Lecture 6 – Nearest Neighbor Search in `1

Robert Krauthgamer

1 Sketching Distances

What is Sketching: We want to compress/summarize some input x into a sketch s(x) (of small
size), but want to be able to later compute some f(x) only from the sketch. Often, randomization
helps. We’ll denote it as sr(x) where r is the sequence of random coins.

Examples:

1. In graphs: a Gomory-Hu tree can report min st-cuts; a spanner can report all pairwise distances
(approximately); both are deterministic.

2. Sketching x ∈ Rn so that later we could estimate any xi (usually the approximation is good only
for large entries).

3. Sketching for equality testing: test whether h(x) = h(y) use a hash function h : {0, 1}n → {0, 1}t,
for instance a random function or as in the exercise below. It’s important here to choose h using
public randomness, i.e., same h for both x, y.

Exer: Show that the hash function hr(x) =
∑n

i=1 xiri (mod 2), where ~r ∈ {0, 1}n is random, is a
good sketch for equality testing in the sense that

∀x 6= y, Pr
r

[hr(x) = h(y)] = 1/2.

4. Sketching for `p distance, namely, for all x, y ∈ [∆]d,

Pr[a(sr(x), sr(y)) = (1± ε)‖x− y‖p] ≥ 2/3.

The JL transform offers such a sketch for `2 norm. We saw a specific implementation using a linear
sketch L : Rd 7→ Zk for k = O(1/ε2), hence |s(x)| ≤ O(ε−2 log(d∆)) bits.

Question: Can we use (for `1 or `2) only O(ε−2) bits? No if we want an estimate. But maybe for
a decision version (output is YES/NO)?

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

Definition: In distance estimation, the input is two inputs (e.g., vectors) and the goal is to
approximate their distance within factor 1 + ε. In the decision (aka promise) version, the goal is
to decide whether the distance is ≤ R or > (1 + ε)R for a parameter R > 0 given in advance.

Theorem 1 [Estimating `1 distance]: For every 0 < ε < 1 there is a randomized sketch that
can estimate the `1 (or Hamming) distance between two input vectors within (1+ε)-approximation
in the decision version, with sketch size O(1/ε2) bits.

Proof: Was seen in class. The sketching algorithm has two steps, first choose I ⊂ [n] to subsample
the coordinates with rate 1/R, and second apply on xI , yI the equality testing mentioned above.

Review of key points:

1. Design a single-bit sketch with small “advantage”

2. Amplify success probability using Chernoff bounds

2 NNS under `1 norm (logarithmic query time)

Problem definition (NNS): Preprocess a dataset of n points x1, . . . , xn ∈ Rd, so as to quickly
find the closest data point to a query point q ∈ Rd, i.e. report xi that minimizes ‖q − xi‖1.

Performance measure: Preprocessing (time and space) and query time.

Discretization: Assume all points come from [∆]d, where ∆ = poly(n).

Two naive solutions:

• Exhaustive search/Linear scan: query time is O(nd), preprocessing is O(nd)

• Exhaustive storage: prepare all answers in advance with preprocessing space [∆]d, then query
time is O(d).

Challenge: get query time sublinear (or polylog) in n, but still be polynomial in dimension d.

Approximate version (factor c ≥ 1): find xj such that ‖q − xj‖1 ≤ c ·mini ‖q − xi‖1.

Theorem 2 [Indyk-Motwani’98, Kushilevitz-Ostrosvky-Rabani’98]: For every ε > 0 there
is a randomized algorithm for 1+ε approximate NNS in Zd under `1-norm with preprocessing space
nO(1/ε2) ·O(d) and query time O(ε−2dpolylog n).

Remark 1: We shall omit/neglect the precise polynomial dependence on d.

Remark 2: The success probability is for a single query (assuming it’s independent of the coins).

Remark 3: We only need to solve the decision version, i.e., there is a target distance R > 0, and
if there is data point xj such that ‖q − xj‖1 ≤ R then the algorithm reports a point xi such that
‖q−xi‖1 ≤ cR. If no point is within distance cR, then report NONE. Otherwise, can report either
answer. This follows by preparing in advance for all powers of 1 + ε as the value of R (then trying
all of them or binary search).

2

Remark 4: WLOG xi and q are in {0, 1}d.

Proof: Was seen in class. The main idea is to repeat the above single-bit sketching algorithm
k = O(ε−2 log n) times to reduce the error probability to (say) 1/n2, and prepare in advance the
answer for every v ∈ {0, 1}m as a possible s(q).

Review of key points:

1. “dimension reduction” to O(ε−2 log n).

2. Prepare all answers in advance (exponential in “reduced” dimension).

3 NNS via LSH (sublinear query time)

Consider again approximate NNS in the decision version, with target distance R > 0 and approxi-
mation factor c > 1, e.g. c = 1 + ε, but here we actually focus on larger c.

Locality Sensitive Hashing (LSH): A c-LSH is a family H of hash functions h : {0, 1}d → N
whose collision probability for all x, y ∈ {0, 1}d is:

1. if ‖x− y‖1 ≤ R then Pr[h(x) = h(y)] ≥ p;

2. if ‖x− y‖1 cR then Pr[h(x) = h(y)] ≤ p′.

Think of R, p as given inputs, c is the approximation factor, and p′ determines the performance
(should be much smaller than p).

Note: We also need that h ∈ H can be chosen quickly and h(x) can be computed quickly. Here,
we ignore this issue.

Theorem 3 [LSH for Hamming distance; Indyk-Motwani’98]: For every d,R, c and p < 1/3
there is c-LSH for `1 distance in {0, 1}d, such that p′ ≤ O(pc).

Proof: Was seen in class. For p = 1/e, we construct h(x) by sampling t = d/R coordinates from
[d] independently ar random.

We can get any desired smaller p by increasing the number of samples t.

Theorem 4 [c-NNS scheme from c-LSH]: Consider the decision version (with target distance
R > 0) and fix an approximation c > 1. Let H be a c-LSH with some p and p′ = O(1/n). Then
there is c-NNS with query time O(1/p) and preprocessing O(n/p).

Remark: For `1 norm p = 1/n1/c.

Proof: Was discussed shown in class. The main idea is to use the LSH to compute the hash
for all data points x1, . . . , xn (at the preprocessing stage), then for the q (at the query stage), and
check points xi in the same bucket with q (i.e., points that collide with the query) by computing
the actual distance. A correct output xi (if exists) has success probability p, which we can amplify
by repeating the above O(1/p) times. The time spent on checking points that are too far from q
is in expectation by O(p′n) per repetition, and we use Markov’s inequality to bound it with high
probability.

3

	Sketching Distances
	NNS under 1 norm (logarithmic query time)
	NNS via LSH (sublinear query time)

