
Randomized Algorithms 2024/5

Notes on Homework Set 2

Moni Naor

The simultaneous message model: How to get an O(k log k) protocol for the problem of
intersection of sets of size k where Alice, who gets SA ⊆ U , and Bob, who gets SA ⊆ U , and who
share a random string and should send a single message to a referee which will determine whether
the intersection SA ∩ SB is non empty or not. The idea is to map the range into a domain of size
roughly 2k2 using a hash function defined by the shared randomness.

After each parties compute the hash of it set, it sends the referee the list of hash values, which is
at most k log(2k2) which is O(k log k bits long. The referee sees whether there are two hash values
that are the same and declare “non empty” if this is the case. Note that a non-empty intersection
will be declared as such. We need to analyze what happens in this case.

If the two sets are disjoint, the good event is when no element in SA has the same hash value as an
element in SB. There are k2 such potential collisions and the probability for a collision is 1/(2k2).
By the union bound the probability that an unwanted collision occurs is at most 1/2. We need
very little from that hash function, just that any two values are the same should be bounded by
1/(2k2), so pair-wise independence suffices.

Stream verifying a proof of Hamiltonian cycle: two possible approaches to this problem are
to consider the specific properties of Hamiltonian cycles (e.g. the fact that they include every node
exactly twice) or to construct a general solution for all problems in NP . For any language L ∈ NP
we know that there is a witness checking poly-time procedure WL : {0, 1}∗ × {0, 1}∗ 7→ {0, 1} so
that for any x ∈ L there is a y ∈ {0, 1}poly(|x| s.t. WL(x, y) = 1 and for all x ̸∈ L and all y ∈ {0, 1}∗
we have WL(x, y) = 0. The question is how to turn the procedure into one requiring logarithmic
space to get a 1/n error,

The idea I had in mind is that we can use the memory-checking mechanism we saw in class to
simulate any NP verifier that wants to simulate the procedure WL to check a witness, but with
only a small secret memory. The original procedure for WL uses a lot of memory, for instance,
storing x and then performing all sorts of operations depending on the stored x. But the point
is that the procedure is deterministic and the proving attaching a proof to the string can know
ahead of time which read it makes and provide the appropriate value, including the timestamp.
All the low memory verifier needs to do is execute the steps of the memory checker, to see that it
is consistent and of course that the procedure WL accepts at the end given a consistent memory.
The probability of failure is the probability that the memory checker fails.

Homework: show that if a language can be accepted by a low memory verifier (log space) receiving

1



a one-way proof or streaming, as the one above, then it is in NP. This gives us an alternative
definition of NP.

A heavy cut: for a random partition of the nodes into two sets, for each edge the probability that
it is in the cut is 1/2. So the expected value of the cut size is 1/2|E| and therefore there must be
a cut achieving at least the expectation.

How about finding such a cut? The argument needed just pair-wise independence between the
assignment of the endpoints, so taking all functions in a family pf pairwise independent functions
and trying all the possibilities until finding one that defines a heavy cut will work. A natural family
for this purpose is the hr(x) = ⟨x, r⟩ where ⟨x, r⟩ is the inner product over GF [2] and r is a random
vector. The length of the vector r is ⌈log n⌉

Another possibility is to add the nodes one by one in a greedy manner, putting each node in the
part containing at least half its neighbors previously assigned a part.

References

[1] Cynthia Dwork, Moni Naor, Guy N. Rothblum, Vinod Vaikuntanathan: How Efficient Can
Memory Checking Be?. TCC 2009: 503-520

[2] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, Moni Naor: Checking the
Correctness of Memories. Algorithmica 12(2/3): 225-244 (1994).

[3] Richard J. Lipton, Efficient Checking of Computations. STACS 1990: 207-215

2


