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Summary

My research focuses on the behavior of objects in a high-dimensional setting, in search of phenomena that arise
as the dimension (or the number of degrees of freedom) of the system tends to infinity. It spans several domains
of mathematics: probability, metric geometry, functional analysis, mathematical physics, combinatorics, learning
theory and optimization. The study of phenomena in high dimensions, which originally stemmed from the local
theory of Banach spaces, has led to a broad and rapidly growing theory. It turns out that whether probabilistic,
geometric or combinatorial, the behavior a high dimensional object is often dictated by several common unifying
principles and concepts, such as concentration of measure. These concepts play a role in several areas of mathe-
matics, statistics and computer science, and the underlying theory has seen a boost in applications in recent years,
in accordance with the explosion of interest in data science and machine learning, two fields of which this theory
is a cornerstone.

The core of my research can be roughly divided into three general directions: The first direction puts focus on
open problems in high dimensional probability, geometry and mathematical physics, and in particular, on prob-
lems reflecting dimension-free phenomena, meaning that the behavior of a high dimensional object is dictated by
marginals of fixed dimension. The second direction aims to develop new methods towards understanding high
dimensional phenomena via an emerging connection with the theory of stochastic calculus (or pathwise analysis),
and the third direction has to do with the application of concepts from high dimensional theory to more applied
directions, such as learning theory and optimization.

In the first part of this statement, I review some topics in high dimensional probability and geometry, describ-
ing some of the main open problems in which I have been interested. We begin with the role of convexity in
concentration inequalities, focusing on three central conjectures regarding the distribution of mass on high dimen-
sional convex bodies: the Kannan-Lovász-Simonovits (KLS) conjecture, the variance conjecture and Bourgain’s
hyperplane conjecture as well as emerging connections with quantitative central limit theorems, entropic jumps
and stability bounds for the Brunn-Minkowski inequality. Second, we discuss dimension-free inequalities in Gaus-
sian space and on the Boolean hypercube: isoperimetric and noise-stability inequalities and robustness thereof,
transportation-entropy and concentration inequalities, regularization properties of the heat-kernel and L1 versions
of hypercontractivity. Finally, I will discuss my attempt to develop new methods for the analysis of Gibbs distri-
butions with a mean-field behavior, related to the new theory of nonlinear large deviations, and towards questions
regarding interacting particle systems and the analysis of large networks.

In a few recent works, by developing a novel approach of pathwise analysis, my coauthors and I managed
to make progress in several open problems in the theory. This emerging method relies on the introduction of a
stochastic process which allows one to associate quantities and properties related to the high-dimensional object of
interest to corresponding notions in stochastic calculus, thus making the former tractable through the analysis of
the latter. In the second part of the statement I describe this approach; My goal is to extend this method towards
tackling some of the questions mentioned here.

In the final part of this statement, I describe the applied directions of my research, which aim to utilize the recent
developments in the theory of high-dimensional probability and geometry to computational geometry, learning
theory and mathematical optimization. Some examples of those applications are to the bandit convex optimization
(a problem in reinforcement learning), sampling algorithms from high dimensional measures, estimation of volume
and covariance based on random samples and barrier methods in convex optimization.
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1 Introduction

My domain of research spans several fields of mathematics: Probability theory, Metric geometry, Functional analysis,

Mathematical physics, Computational geometry, Combinatorics, Learning theory and Optimization. The questions in

which I am interested are tied by a single common theme: being of high-dimensional nature. In other words, I am

interested in phenomena that arise as the number of degrees of freedom goes to infinity.

To name a few examples, problems of high dimensional nature may have to do with the geometry of convex sets

in Rn as n → ∞, with functional inequalities in (multidimensional) Gaussian space, with the behavior of measures or

functions on the Boolean hypercube, with interacting particle systems (where the number of particles goes to infinity),

with the behavior of random graphs whose number of vertices tends to infinity, with reinforcement learning where the

action space is ”large”, or with the complexity of convex optimization as a function of the dimension.

Problems of this type have inspired a rapidly growing theory. It turns out that, though originating from seemingly

different domains of mathematics, many of those problems share common underlying themes and principles. A

remarkable aspect of the this theory is the abundance of methods and tools that it has inspired, arising from numerous

different fields; in many such problems the path to the solution passes through a topic with no a-priori apparent

connection to the original problem. For example, the Brunn-Minkowski inequality is tightly related to the theory

of transportation of measure; the geometry of sections of high dimensional convex bodies is often understood using

tools from Harmonic analysis and concentration inequalities rely on tools from potential theory, partial differential

equations and geometric measure theory.

In particular, the use of probabilistic language as well as ideas and results from probability theory in the study

of high dimensional objects has paved the way to a long list of discoveries, perhaps the most pioneering example

being the proof of Dvoretzky’s theorem (the language of probability was first used in the proof due to V. Milman),

showing the existence of Euclidean subspaces of a normed space by taking a random subspace. Since then, the

application of concepts and theorems from probability theory has reached increasing levels of sophistication, and

tools such as martingale concentration bounds, moment generating functions and the second-moment method have

become essential ingredients in the high-dimensional geometer’s cookbook.

One of my central long-term projects is to develop an emerging connection with the theory of stochastic calculus

and pathwise analysis. In a series of works ([Eld13, Eld16, Eld15b, EL15, DEZ15, EL14, BEL15, ELL16, Eld17,

EMZ18]), coauthors and I have established connections between quantities related to high dimensional problems

and corresponding notions from stochastic calculus, towards obtaining insights on the behavior of high dimensional

objects.

In this research statement, I will first provide background regarding the theory of high dimensional objects and

mention some central problems in high dimensional probability and geometry that I have been working on as well as

research directions which I plan to pursue in the future. In the second section, I will describe the emerging connection

with the field of stochastic calculus. The third section will cover another direction of research, in which we attempt to

leverage the insights gained from the theory of high dimensional objects towards more applied topics: optimization,

learning theory, statistical analysis and algorithms.

2 Phenomena in high dimensions

The intuition derived from low-dimensional examples in various fields such as PDE’s, topology and statistical mechan-

ics would perhaps lead us to believe that understanding the behavior of high-dimensional objects is rather hopeless,

since their behavior very quickly becomes complex and intractable as the dimension increases. One reason for this

meta-phenomenon, sometimes referred to as ”the curse of dimensionality”, is the simple fact that number of possible
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configurations of a system tends to grow exponentially with respect to the dimension.

The striking fact about the theory of high-dimensional phenomena is that in many examples this intuition is com-

pletely reversed: sometimes the multiplicity of degrees of freedom can be a cause for order and simplicity. The central

limit theorem is a good example: summing a large number of independent random variables, when normalized cor-

rectly, will result in a universal distribution that does not depend on the distributions of the individual variables. Two

striking examples of the emergence of universality in high-dimensional settings are Dvoretzky’s theorem and Klartag’s

central limit theorem for convex sets, both of which rely on a convexity assumption rather than on independence of

coordinates; The former result asserts that typical sections of a high-dimensional convex body are approximately Eu-

clidean and the latter states that typical marginals are normally distributed. Some of these phenomena are at the heart

of theories concerning several more applied fields such as statistical learning theory and can be witnessed in many

real-world applications.

A remarkable feature that illustrates the emergence of simplicity is the dimension-free behavior of several quan-

tities related to a high-dimensional object. Ideologically, dimension free results suggest that the behavior of a high

dimensional space is dictated by that of subspaces or marginals of a fixed (and usually small) dimension. A setting

where this feature is well illustrated is the Gaussian space which we discuss next.

2.0.1 Dimension-free phenomena on Gaussian space: Isoperimetry, noise stability and regularization under
the heat flow

By Gaussian space, we simply mean the Euclidean space Rn equipped with the standard Gaussian measure dγ =

1
(2π)n/2 e

− |x|2
2 dx. Perhaps the most fundamental example of a dimension-free inequality is the Gaussian isoperimetric

inequality due to Borell and Sudakov-Tsirelson, which reads:

Theorem 2.1 (Gaussian Isoperimetric inequality) Let A ⊂ Rn and let H be a half-space satisfying γ(H) = γ(A).

Then for all 0 < ρ < 1,

γ+(H) ≤ γ+(A).

Here, γ+ can be thought of as the (n− 1)-dimensional Hausdorff measure multiplied by the Gaussian density. In

other words, the theorem states that the isoperimetric minimizers in Gaussian space are effectively one-dimensional

objects.

An extension of the latter is Borell’s noise stability inequality [Bor85]. The noise stability of a set A ⊂ Rn is

defined by the formula Sρ(A) = P(X ∈ A, Y ∈ A) where X,Y are ρ-correlated standard Gaussian random vectors

(meaning that X,Y each have the law γ and E[XiYj ] = ρδi,j). Borell’s inequality asserts the following.

Theorem 2.2 (Borell, [Bor85]) Let A ⊂ Rn and let H be a half-space having the same Gaussian measure as that of

A, then for all 0 < ρ < 1,

Sρ(H) ≥ Sρ(A).

This inequality has applications in numerous fields such as approximation theory, rearrangement inequalities,

discrete analysis, game theory and complexity.

A few years back, Mossel and Neeman [MN15] proved robustness results for the aforementioned inequalities,

showing that when the corresponding deficit is small, the set A has to be an approximate half-space in the total-

variation metric sense. In [Eld15b], we have managed to improve their result, obtaining the optimal possible exponent

in the dependence between the deficit and the distance. Moreover, we have found a seemingly more natural metric

(namely, the distance between the centroids) which gives a two-sided bound for the deficit, up to logarithmic factors.

More precisely, defining δ(A,H) =
∫
H Pt[1H ]dγ −

∫
A Pt[1A]dγ we were able to obtain the following bound.
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Theorem 2.3 (E., ’15) If A ⊂ Rn and H is a half-space such that γ(A) = γ(H) then (up to a logarithmic factor)

δ(A,H) ≍ ε(A,H)

where ε(A,H) =
∣∣∫

H xdγ(x)
∣∣2 − ∣∣∫

A xdγ(x)
∣∣2.

A third central dimension-free inequality is the hypercontractivity of the heat operator. Defining Pt[f ](x) :=∫
f(e−t/2x+

√
1− e−ty)dγ(y), the Ornstein-Uhlenbeck heat operator, the hypercontractivity of this operator refers

to the fact that ∥Ptf∥q ≤ ∥f∥p whenever t ≥ 1
2 log

q−1
p−1 . This inequality can be seen as a quantitative bound reflecting

the regularizing effect of the heat operator. Until recently, no dimension-free quantitative bound was known for

general measures (or, for that matter, for the case f ∈ L1). In this context, Talagrand [Tal89] conjectured that the

smoothing effect should take place in the sense that Pt[f ] should satisfy an improved weak-L1 estimate. Together

with J. Lee [EL15], we have been able to prove this conjecture.

Theorem 2.4 (E.-Lee, ’15) Let X be a standard Gaussian random vector. There exists a function g(α) such that

limα→∞ g(α) = 0 and such that for all non-negative functions f satisfying E[f(X)] = 1 one has the improved

Markov inequality

P(Tρ[f ](X) > α) < C(ρ)
α g(α). (1)

Very often, the proofs of dimension-free bounds follow a tensorization argument, which usually tends to be a

simple step in the proof. In the two examples of results given above, tensorization does not seem to work. Instead,

in each of these problems we found a one-dimensional stochastic process that manages to extract the ”significant”

direction in which the phenomenon takes place and, in a way described with more detail below, helps revealing the

one-dimensional nature of the problem.

In the future, we intend to explore several related directions, towards extending these results in the following

ways: (i) An ambitious question in the context of noise stability is to find the maximizers in the case of more than

two sets, known as the standard simplices conjecture of Mossel and Isaksson [IM12]. (ii) Another natural question is

to find the extremizers for isoperimetry and noise stability in the class of symmetric sets. (iii) We also hope to extend

our methods to a discrete setting: Regarding the L1 version of hypercontractivity, it is conjectured by Talagrand

([Tal89]) that an analogous result should hold in the setting of the discrete cube (the latter would imply our result

via an application of the central limit theorem). We therefore propose to look for analogous methods on the discrete

setting towards proving this conjecture. This may also be helpful towards a related conjecture by Coutrade and Kumar

[CK14], regarding a version of noise stability where the L2 norm is replaced by mutual information.

2.1 Concentration of mass on high-dimensional convex bodies

Next, we discuss measure spaces with a convexity property: the uniform measure on a convex set or more generally,

log-concave measures. In this context we mainly focus on three central open problems in high dimensional convex

geometry: the hyperplane conjecture (also known as the slicing problem) of Bourgain, the conjecture of Kannan-

Lovász-Simonovits (in short, the KLS conjecture) related to the isoperimetric inequality on convex bodies and the

variance conjecture (also known as the thin-shell conjecture). These problems have been open for approximately

35, 25 and 15 years, respectively, and a large body of literature has evolved around them. We refer to the books

[AGB15, BGVV14].

It turns out that the assumption of convexity is natural in a high dimensional setting in the sense that it provides

us with the suitable kind of regularity, that when combined with the effects of concentration of measure, we are able
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to obtain remarkable results. For example, according to Klartag’s central limit theorem for convex sets, these objects

exhibit universality in the sense that typical one-dimensional marginals are approximately Gaussian.

Let us now discuss another aspect in which we expect a universal and dimension-free behavior for these objects,

namely in the form of attaining concentration bounds. To that end, let us begin by recalling that an immediate

consequence of the Gaussian isoperimetric inequality (Theorem 2.1) is the concentration bound for Lipschitz functions

under the Gaussian measure, which can be formulated as follows:

Theorem 2.5 Let X be a standard Gaussian random vector on Rn and let φ be 1-Lipschitz. Then,

Var[φ(X)] ≤ 1.

This is perhaps the most basic type of concentration. It has several equivalent formulations (see below) and it plays a

major role in analytical and algorithmic aspects. One of the biggest open problems in convex geometry is to determine

whether the same type of concentration is attained by the uniform measure on a convex body, or more generally, by

any log-concave measure.

Let K be a convex body in Rn (hence a compact convex set with nonempty interior) and let XK be a random

vector uniformly distributed on K. We say that K isotropic if E[XK ] = 0 and cov(XK) = Id, where cov(X) denotes

the covariance matrix of X . Define

Gn = sup
K,φ

√
Var(φ(XK))

where the supremum is taken over all isotropic convex bodies K ⊂ Rn and all 1-Lipschitz functions φ : Rn → R.

The Kannan-Lovász-Simonovits conjecture reads,

Conjecture 2.6 (KLS, [KLS95]) There exists a universal constant C > 0 such Gn < C.

In other words, the KLS conjecture asserts that the concentration of all Lipschitz functions is dictated by that of linear

functions.

Other than being a very basic quantity, a positive answer would have numerous consequences in convex geometry

and in particular in algorithmic aspects thereof. The magnitude of Gn is directly related to the rate of mixing of

Markov chains used to sample from the uniform measure on the convex body K, which is by itself a central ingredient

of many algorithmic and statistical tasks, such as covariance estimation. Other equivalent quantities include the

spectral gap, isoperimetric profile and exponential concentration (see [Mil09]).

A related quantity is the thin-shell concentration of convex sets. Defining,

σ2
n := sup

X∼U(K)
K⊂Rnconvex

Var ∥X∥2
sup|θ|=1Var[X · θ]

,

It is clear that σn ≤ Gn. The following special case of the KLS conjecture was suggested by Anttila-Ball-Perissinaki

and Bobkov-Koldobsky [ABP03, BK03]:

Conjecture 2.7 (Variance conjecture) One has σn < C for a universal constant C > 0.

We have reduced the KLS conjecture to the Variance conjecture up to a logarithmic term, proving:

Theorem 2.8 ([Eld13]) It holds that Gn ≤ C

√
log(n)

∑n
k=1

σ2
k
k , for a universal constant C > 0.
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The main tool used for this reduction is our construction of the ”stochastic localization scheme” described in Sub-

section 3.1 below. Recently, Lee and Vempala ([LV16]), relying on our method, have managed to obtain the state-

of-the-art bound Gn ≤ Cn1/4 as well as an optimal log-Sobolev inequality for convex sets. A remarkable aspect of

their proof is that it is almost completely self contained, and manages to bypass the need to use previous methods

such as concentration of projections, centroid moment bodies or the Log-Laplace transform, giving a rather compact

argument which recovers some of the central bounds regarding concentration of mass (such as thin-shell and Paouris’

theorem) in a way that mostly involves the analysis of the aforementioned process.

Finally, we would like to address a fascinating and basic open problem in convex geometry which has attracted

very significant efforts in the community over the past decades, the slicing problem. This problem is concerned with

the quantity

Ln = sup
K

(
Vol(K)−1/n

)
where the supremum is taken over all isotropic convex bodies K ⊂ Rn.

Conjecture 2.9 (Hyperplane conjecture/Slicing problem) There exists a universal constant C > 0 such that Ln ≤ C.

The conjecture was first suggested by Bourgain, who came up with the bound Ln ≤ Cn1/4 log n. Twenty years

later, Klartag improved the bound to Ln < Cn1/4 [Kla06] which is best-known estimate up to date. Together with

Klartag, we have also proved a reduction of the slicing problem to the variance conjecture:

Theorem 2.10 ([EK11]) One has Ln ≤ Cσn for a universal constant C > 0.

This followed a previous work of Ball and Nguyen ([BN12]) who found a reduction to the KLS conjecture. The

reduction of Ball and Nguyen is based on an estimate on the entropy jump of log-concave random variables. In an

ongoing work with my student Dan Mikulincer, we have found a stochastic approach to the proof of Ball and Nguyen

which we believe may shed more light on these connections.

It is important to emphasize that the above relations only hold globally, in the sense that in order to deduce the

concentration of Lipschitz functions on a specific convex body, a prior bound for the thin-shell concentration over all

convex bodies needs to be known. A related result of Ball and Nguyen [BN12] also gives a body-wise link between

the KLS conjecture and the slicing problem, with an exponential dependence between the respective quantities.

One specific direction which we suggest is to prove a body-wise, rather than a global, version of these connections:

Question 2.11 Is it true that for every isotropic convex body K ⊂ Rn and every 1-Lipschitz function f , one has

V ar[f(XK)] < Polylog(n)V ar[∥XK∥]?

Question 2.12 Is it true that for every isotropic convex body K ⊂ Rn one has

V ol(K)−1/n < Polylog(n)
√
V ar[∥XK∥]?

In recent years, the questions in hand have been found to have close connections with several related aspects of

the behavior of convex bodies: entropic jumps, rates of convergence in the entropic central limit theorem and stability

of the Brunn-Minskowski inequality. Some of them are depicted in Figure 1. We discuss those connections next.

2.1.1 Entropy jumps and rates of convergence in the central limit theorem

The aforementioned reduction by Ball and Nguyen [BN12] builds on a related and independently interesting phe-

nomenon referred to as entropic jump. For a random vector X define by Entγ(X) the relative entropy of X with
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Figure 1: The conjectures, with some of the relations described in Section 2.1.

respect to the standard Gaussian measure. A classical result by Shannon and Stam states that if X is isotropic and has

finite entropy and Y is an independent copy of X , then

Entγ

(
X + Y√

2

)
≤ Entγ(X).

In ([BBN03]) a quantitative version of this inequality in one dimension was established under the additional

assumption that X admits a spectral gap. This was extended to higher dimensions in the work of Ball and Nguyen

[BN12], when the underlying vector is log-concave. These inequalities have the form

Entγ

(
X + Y√

2

)
≤ (1− c(X))Entγ(X)

where c(X) depends on the spectral gap of X . This constitutes the main step in the reduction of the slicing conjecture

to the KLS conjecture. Moreover, an inequality of this type is closely related to the rate of convergence in the entropic

central limit theorem, which concerns with the asymptotics of Entγ
(
X1+...+XN√

N

)
as N → ∞, where X1, ..., XN are

independent copies of X .

In ongoing works with my student, Dan Mikulincer and with Alex Zhai ([EMZ18]) we have developed a pathwise

approach to understanding the above phenomena. First, by embedding a prescribed random vector as a martingale

in the space of Brownian paths, we were able to find a new approach to proving quantitative versions of the central

limit theorems, in particular we obtain new bounds for rates of convergence in entropy and in transportation distance.

Second, our stochastic constructions seem to give a new and rather natural proof of the Ball-Nguyen reduction, which

may shed new light on the connection between the entropy jump and the slicing problem, and also gives a new

connection to thin-shell concentration.

In the future, we intend to pursue the following goals.

1. Find the optimal asymptotics for convergence in the entropic central limit theorem, in particular, we would

like to generalize the Berry-Essen bounds for the entropic central limit theorem, obtained in ([BCG14]), to

arbitrary dimension, and capture the correct dependence on the dimension. Currently, our methods apply under
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the additional assumptions that the random vector in hand is either log-concave or bounded.

2. Capture the correct dependence on the dimension of convergence in entropy and transportation distance in the

log-concave case. These dependencies seem to have a close connection to the asymptotics of the KLS constant

Gn.

3. Find weaker conditions under which entropy jump is witnessed. Our approach to entropy jump gives con-

nections with some new quantities associated with a convex body (related to the symmetry breaking of the

stochastic localization process). We believe that further scrutiny of these quantities may lead to new results.

2.1.2 Stability of the Brunn-Minkowski inequality

In one of its forms, the Brunn-Minkowski inequality states that for two convex bodies K,T of unit volume, one has

V ol

(
K + T

2

)
≥ 1,

and an equality is attained if an only if T is a translation of K. A stability result for this inequality is a quantitative

statement about the case that there is almost an equality in the above equation. In this case, it is reasonable to expect

that K and T are approximately similar to each other with respect to a certain metric. Some examples of possible

metrics are the Hausdorff distance, the Wasserstein distance and the volume of the symmetric difference between the

bodies.

In [EK14], together with Klartag, we approached this topic from a high-dimensional point of view, trying to

attain estimates that have a correct dependence on the dimension. As it turns out, the dependence in several metrics,

including Wasserstein metric, are closely related to the constant σn. For two convex bodies K and T , the Wasserstein

distance between K1 and K2 is defined as

W2(K,T ) = inf
(X1,X2)

Xi∼U(Ki)

√
E∥X1 −X2∥2

where the infimum is taken over all pairs of random vectors (X1, X2) such that Xi is uniform on Ki for i = 1, 2. In

[Eld13], I showed that up to logarithmic terms, the variance conjecture is equivalent to the following.

Conjecture 2.13 For all α > 0 there exists a constant C(α) such that the following holds. Let K,T be two isotropic

convex bodies, such that

Vol

(
K + T

2

)
≤ α

√
Vol(K)Vol(T ).

Then,

W2(K,T ) ≤ C(α).

In our proof of this equivalence, we construct an explicit coupling between the uniform measures using martin-

gales arising from the process described in Subsection 3.1. We hope to be able to combine these ideas with the existing

methods in the literature, including optimal transportation (which seems to be the strongest tool for proving stability

bounds known to date) towards conjecture 2.13.

2.2 Analysis of Boolean functions

A Boolean function is a function f : {−1, 1}n → {−1, 1}. The analysis of Boolean functions is a central pillar

in theoretical computer science and graph theory. Concentration and structure theorems for these functions have a
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wide range of applications, spanning random percolations, algorithmic complexity, threshold phenomena for random

graphs and constraint satisfaction problems.

Concentration inequalities usually relate the variance of f (say with respect to the uniform measure), to the

way in which f oscillates locally. One important notion of local oscillations are the influences of f , defined as

Ii(f) = E(∂if(X))2 where X is uniformly distributed and ∂i is the discrete derivative in the i-th direction.

Perhaps the simplest concentration inequality for Boolean functions is the Poincaré inequality which states that

Var[f ] ≤ 2I(f), where I(f) :=
∑

i Ii(f). Two classical extensions of the Poincaré inequality are the the following:

The Kahn-Kalai-Linial ([KKL88]) states that

Var[f ] ≤ I(f)

mini log(1/Ii(f))
,

improving on the Poincaré inequality by a logarithmic factor when all influences are small. Talagrand’s sensitivity

inequality [Tal94] states that

Var[f ] ≤
∫

|∇f(x)|dµ(x),

thus being an L1 version of the Poincaré inequality.

Each of these extensions exploits a different aspect of the fact that the function is Boolean, and their original

proofs rely on rather different techniques. A 25-year-old conjecture of Talagrand [Tal96] suggests an inequality

which strengthens both of these bounds, in the form

Var[f ] ≤
(∫

|∇f(x)|dµ(x)
)(

log

(
e∑

i Ii(f)
2

))−1/2

.

In a recent work with my student R. Gross [EG19], we have developed a new approach, based on pathwise analysis,

towards proving concentration inequalities for Boolean functions. Using this approach, we settle Talagrand’s conjec-

ture, obtaining the above bound. This approach manages to bypass the use of hypercontractivity and produces several

other new concentration results.

2.3 Localization and concentration of measures the discrete hypercube with applications to inter-
acting particle systems and random graphs

Consider the Boolean hypercube {−1, 1}n, equipped with the uniform measure µ. In several recent works, we derive

structure theorems which attempt to answer the following questions: Given a probability measure ν on {−1, 1}n,

Q1. Are there natural sufficient conditions on the measure ν such that it can be written as a convex combination

ν =
N∑
i=1

νi (2)

where N = o(2n) and νi are probability measures which are in some sense close to a product measure?

Q2. What conditions on the measure ν ensure that it admits concentration, say in the form or either a spectral gap

(with respect to a suitably chosen Dirichlet form), or in the form of concentration of Lipschitz functions?

A decomposition of the form (2) with the property that νi are localized is sometimes referred to in the physics literature

as a pure state decomposition. We address the first question in two different works, considering two interpretations

being close to product measures:
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• A strong form of localization, considered in [Eld17] alludes to the existence of product measures ξi such that

the W1 transportation distance between ξi and νi is small.

• A weaker form of localization, considered in [Eld18] the pairwise correlations between coordinates of νi to be

typically small.

The stronger form of localization relies on a notion of ”complexity” of a measure put forth in [Eld17]. This notion is

inspired by a related notion considered by Chatterjee and Dembo in their earlier work [CD16], which was motivated

by questions regarding to large deviations subgraph counts on random graphs, and our work improves on the bounds

given in this work. Both works [CD16] and our work [Eld17] produce a framework for investigating large-deviations

in random graphs and mean-field approximations, but our work makes one more step by describing the structure of

some large deviation events in additions to calculating the probabilities. An informal and qualitative statement of our

result reads,

Theorem 2.14 ([Eld17]) Let ν be a Gibbs measure on {0, 1}n with Hamiltonian f , which exhibits low-complexity.

Then ν can be decomposed as a mixture,

ν =

∫
νθdm(θ),

where νθ are probability measures, so that the decomposition is entropy-efficient in the sense that

Ent(ν) ≤
∫

Ent(νθ)dm(θ) + o(n).

Moreover, there exists a set Θ with m(Θ) = 1− o(1) such that for all θ ∈ Θ, there exists a product measure ξθ such

that W1(νθ, ξθ) = o(n).

It turns out that in order to obtain a weaker form of localization in the sense of the covariance matrix of the pure

states being small, no assumption is needed on the measure ν. We prove the following theorem:

Theorem 2.15 ([Eld18]) For any measure ν on {0, 1}n and any positive-definite matrix L, there exists a decomposi-

tion of the form

ν =

∫
νθdm(θ),

satisfying

Ent(ν) ≤
∫

Ent(νθ)dm(θ) + log det (Id + Cov(ν)L) (3)

and such that ∫
Cov(νθ)dm(θ) ⪯ L−1.

More recently, we have managed to apply the same techniques towards obtaining sufficient conditions for the

measure ν to satisfy concentration, addressing Q2 above. Our first result concerns with quadratic potentials, hence

measures of the form dν(x) ∝ e−⟨x,Jx⟩+⟨h,x⟩dµ(x), with J being an arbitrary symmetric matrix and h an arbitrary

vector. Together with Koehler and Zeitouni we show that the condition ∥J∥OP ≤ 1/4 implies a Poincaré inequality

with respect to the Dirichlet form given by the Glauber dynamics. A corollary is that the Glauber dynamics mixes in

polynomial time over the Gibbs distribution of the Sherrington-Kirkpatrick spin glass model in high enough temper-

ature. Our result reads,
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Theorem 2.16 ([EKZ20]) If ∥J∥OP ≤ 1/4, then for any test function φ, we have

(1/4− ∥J∥OP )Varν [φ] ≤ Eν(φ).

where Eν is the Dirichlet form corresponding to the Glauber dynamics.

A parallel work with my student Shamir tries to find more general convexity conditions under which the measure ν

attains concentration, in search of a notion of log-concavity for functions on the discrete hypercube. A seemingly

natural notion that we consider is in terms of the multi-linear extension of the density of ν into the solid hypercube.

Recall that any function f : {−1, 1}n → R can be written uniquely in the form

f(x) =
∑
A⊂[n]

f̂(A)
∏
i∈A

xi,

also known as the Fourier-Walsh expansion of the function f . Since the above formula makes sense for any x ∈
[−1, 1]n, we refer to this as the multi-linear extension of f into the solid cube [−1, 1]n. We prove the following,

Theorem 2.17 ([ES20]) Let ν be a probability measure on {−1, 1}n. Let f be the multi-linear extension of dν
dµ .

Suppose that

∇2 log f(x) ≤ βId, ∀x ∈ [−1, 1]n.

Then one has for any 1-Lipschitz function φ : {−1, 1}n → R,

Varν [φ] ≤ n2−c/β.

One corollary of the above theorem obtains the first nontrivial concentration inequality for so-called Rayleigh distri-

butions.

3 The Pathwise Method: from stochastic calculus to inequalities in high dimen-
sions

Many of the aforementioned results are based on an emerging technique based on pathwise analysis, which has been

at the center of my research. In this section we briefly describe this method.

The use of ideas from diffusion and heat-flow to concentration inequalities dates back at least to seminal works of

Nelson and Gross, in the mid 70’s, which introduced the hypercontractivity property of heat semigroups and derived

the Log-Sobolev inequality for Gaussian space, respectively. In the following decades, semigroup and heat-flow

techniques were realized to be a very powerful tool in proving concentration inequalities. These are, for example,

the main ingredients in the celebrated Bakry-Emery theory [BÉ85]. These ideas rely on differentiation formulas for

the heat semigroup, which can in general, using the Feynmann-Kac equation be understood via pathwise integration

along the corresponding diffusion.

Our method takes one more step and inspects the behavior of the process along a single path; it turns out that

when averaging over paths, quite a bit of information is lost. This information can be revealed, with the help of the

theory of stochastic calculus, by undertaking a pathwise approach.

The first applications of stochastic calculus to high dimensional inequalities known to us appeared in the early

2000’s. To mention a few examples, a pathwise approach to heat semigroup proofs, aside from having a pedagogical

value, has yielded several insights and results, see e.g., ([Cat04]). In works of C. Borell ([Bor00, Bor02]), ideas from

stochastic control theory were used to prove concentration inequalities under a convex potential and also give a very
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simple and elegant proof of the Prékopa Leinder inequality. These methods, under a dual perspective, were used a

decade later by Lehec ([Leh13]) to provide simple proofs of several entropy-related inequalities such as Talagrand’s

transportation-entropy inequality and the Shannon-Stam inequality. Recently, Van-Handel has extended the ideas of

Borell, yielding a proof of the Ehrhard inequality ([VH17]).

Our general meta-technique can be described as follows. Given some probability space (Ω, µ) with X ∼ µ, we

would like to sample the random variable X in a way that the random bits are generated infinitesimally, so that we can

differentiate quantities related to X with the respect to the randomness (an example of such quantity is the conditional

probability that X is in some set). This can be done by using a Brownian motion as the source of randomness, or in

other words, by finding a measure-preserving map F from the space of paths of Brownian motion equipped with the

Wiener measure to the space (Ω, µ). Given this mapping, we can use Ito calculus to differentiate with respect to the

filtration associated with the Brownian motion.

Next, we describe two manifestations of this meta-technique (in other words, two constructions of a mapping F

as described above), along with some of the applications of these constructions.

3.1 A stochastic localization scheme

One method for proving concentration inequalities is via localization. The idea is to iteratively reduce the size of

the space while keeping some of the properties intact, until remaining set of focus has more tractable structure. This

technique often allows one to reduce inequalities from arbitrary dimension to one-dimensional bounds. The first

application of this method, known to us, was to derive isoperimetric inequalities on curved surfaces by Gromov and

Milman ([GM87]). It has later been further developed by Lovász and Simonovits [LS93] in the setting of convex

bodies.

These two iterate through halving the space via intersections with half-spaces. In ([Eld13]), we have introduced

a new localization procedure which is conceptually different from existing localizations in several aspects: A. The

localization is carried out on the space of functions rather than the space of sets, and can be thought of as a flow on

measures. B. Randomness is introduced, and the process is driven by a Brownian motion. C. It is continuous in time.

Formally, for a measure µ on Rn our process is defined as the solution of the stochastic differential equation

F0(x) = 1, dFt(x) = ⟨x− a(µt), A(µt)
−1/2dWt⟩Ft(x)

where Wt is a standard Brownian motion, dµt

dµ = Ft and with a(ν), A(ν) being the center of mass and covariance

matrix of ν, respectively.

This process should be thought of as the continuous version of the following iterative scheme: at each time step,

generate a random direction v uniformly in the sphere and define a new measure by multiplying the density of the

current measure by a linear function whose slope is ϵv.

A useful property of this localization is that there is an easy correspondence between time derivatives (or Itô

differentials) of quantities related to µt and its moments. These correspondences are in a sense analogous to formulas

regarding time derivatives of heat semigroups, and also attain a certain similarity to the moment-generating properties

of the Log-Laplace transform (these were used for example, by Klartag in his derivation of the best-known bound for

the isotropic constant). The derivatives become tractable via the use of Itô’s formula and using these relations, we

were able to reduce concentration inequalities to the behavior of moments.

Another strong feature of this process is that after running it for a finite amount of time, the measure µt becomes

”positively curved” in the sense that −∇2 log dµt

dx can be bounded from below by a multiple of the identity. Positively

curved measures are known to admit concentration properties. Thus, this process is helpful in expressing a measure as

a mixture of measures which admit concentration; for this reason we refer to this process as ”localization”. Moreover,
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µt can be shown to converge, as t → ∞, to a Dirac δ-measure, distributed according to µ. (Curiously, a decomposition

into measures attaining good concentration bounds was also recently used by T. Austin [Aus17] to prove that any

measure-preserving automorphism attains a weak-Pinsker property).

Roughly speaking, the stochastic localization process combines the advantages of the classical localization pro-

cesses with moment-generating properties of the Log-Laplace transform and has tractable time differentiation formu-

las analogous to heat semigroups.

Our works [Eld13, EL14, Eld15b] all heavily rely on this process and, as do the recent work of Lee and Vempala

[LV16], where slightly modified versions of the stochastic localization process are used to derive self contained state-

of-the-art bounds for the KLS and thin-shell conjectures and of Klartag [Kla17] where isoperimetric inequalities for

the Gaussian measure of high dimensional complex-analytic sets are derived.

3.2 Stochastic control theory and entropy minimization on path space

Our second main line of works builds on the ideas of Borell and Lehec [Bor02, Leh13], relying on a process from

stochastic control theory which goes back at least to Föllmer and Boué-Dupuis ([Föl85, BD98]).

The main construction, in its most basic setting, is rather simple: Take a measure ν whose density with respect

to the standard Gaussian measure γ is dν
dγ =: f . Now take a Brownian motion Wt with an underlying probability

measure Q and define a new measure P by dP
dQ = f(W1). Clearly, W1 ∼ ν under P and moreover Wt is the process

which minimizes the entropy with respect to the standard Brownian motion under that condition.

An application of Girsanov’s formula that Wt can be alternatively defined in an adaptive manner, by the equa-

tion dWt = dBt + vtdt where vt = ∇ logP1−tf with Ps being the Gaussian convolution operator. The entropy-

minimization property of the process is translated to several very useful properties of the associated drift and, as

illustrated in the aforementioned works, the behavior of the measure ν can often be understood via scrutiny of this

drift. A useful formula by Lehec states that the entropy of ν can be expressed as the ”energy” 1
2E

∫ 1
0 |vt|2dt, which

turns out to be very useful in proving inequalities related to the entropy. For example, the Log-Sobolev in Gaussian

space becomes an easy consequence of the fact that vt is a martingale.

Natural analogues of this process exist beyond the scope of the Gaussian setting. In [Eld17], we have defined a

related process on the discrete hypercube, and in [Leh15], Lehec constructed a counterpart on Riemannian manifolds.

Moreover, in ([ELL16]) together with Lee and Lehec we show that related ideas can be fruitful in the context of

local-to-global mixing bounds for Markov chains.

4 Algorithms, Learning Theory and Mathematical Optimization

In this section I discuss several applied directions of my research, mainly having to do with computational geometry

and learning theory. The common goal shared by the examples below is to successfully apply ideas and theorems

from the theory of high dimensional objects to these types of problems.

4.1 The Convex Bandit problem

The bandit convex optimization problem (see [BCB12] for background and a detailed description) is the following

sequential game: a set K of actions is fixed throughout the game. At each time step t = 1, . . . , T , a player selects an

action xt ∈ K, and simultaneously an adversary selects a convex loss function ℓt : K 7→ [0, 1]. The player’s feedback

is its suffered loss, ℓt(xt). We assume that the adversary is oblivious, that is the sequence of loss functions ℓ1, . . . , ℓT
is chosen before the game starts. The player can select an action xt based on the history Ht = (xs, ℓs(xs))s<t. The
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player’s perfomance at the end of the game is measured through the regret:

RT =

T∑
t=1

ℓt(xt)−min
x∈K

T∑
t=1

ℓt(x),

which compares their cumulative loss to the best cumulative loss which could have obtained in hindsight with a fixed

action. The main line of research regarding this problem has been to find the correct asymptotics of the regret (under

the optimal strategy) in terms of T . A central open problem since [Kle04, FKM05] has been to reduce the gap between

the known
√
T -lower bound and the T 3/4-upper bound for the regret.

In dimension one (i.e., K = [0, 1]) this gap was closed in [BDKP15]. Later on, together with S. Bubeck, we

have settled the general (multi-dimensional) case [BE15]. Our proof is based on the construction of a multi-scale

exploration process for convex functions which we believe to be independently interesting, and for which we hope

to find other applications. This construction relies heavily on recent developments in the theory of high dimensional

convex bodies. In particular, the notion of isotropic position which is closely related to Conjecture 2.9 plays a central

role in the proof. However, our result is non-constructive in the sense that it only establishes the existence of a strategy

with the optimal regret; it does not provide an explicit (efficient) algorithm.

More recently, together with S. Bubeck and Y.T. Lee, we managed to obtain the first polynomial time algorithm

attaining
√
T -regret (and a polynomial dependence on the dimension) [BEL16]. However, the exponent of the depen-

dence on the dimension (n9.5) is far too high for practical purposes.

It seems that the dependence on the dimension in our results, though polynomial, is far from optimal. In the

future, we hope to be able to integrate more knowledge from the theory of high dimensional convex bodies towards a

solution of these problems.

4.2 Sampling from Log-concave measures via random walks

As mentioned above, the KLS constant Gn is related to the rate in which one can sample points from a convex body

or log-concave measure, which is, in turn, an important ingredient in algorithms which perform computational tasks

such as Principal Component Analysis (PCA), volume estimation and convex optimization. The most effective way to

sample a point is via Monte Carlo Markov chains, or in other words via random walks. A classic example to this is the

breakthrough work of Dyer-Frieze-Kannan [DFK91], who found the first polynomial time algorithm that estimates

the volume of a high dimensional convex body given by a membership oracle.

Perhaps the simplest Markov chain associated with a convex body is a random walk on a (fine) grid restricted to

the body, which was considered in [DFK91]. Since then, several other types of random walks have been considered,

and there has been an ongoing attempt to prove upper bounds on the rate of mixing of those chains. The best known

mixing bounds known to date have been obtained by Lovász and Vempala [LV07], attained by the so-called hit-and-

run chain. However, it remains an open question to find a chain with an optimal rate. The question of finding such

a chain is related to the KLS constant Gn, which determines the rate of mixing of a reflecting Brownian motion in

continuous time. However, even if this rate were known, two caveats would remain: 1. Discretization of time and

space poses some new difficulties. 2. The KLS constant is related to the so-called ”relaxation time” which assumes

that one starts from a distribution of bounded density (sometimes known as a ”warm start”).

In a work with S. Bubeck and J. Lehec [BEL15] we propose a new and seemingly natural way to sample from

a log-concave measure restricted to a convex body, using a chain which we call Reflected Langevin Monte Carlo.

Our construction builds the work of Dalalyan [Dal14], and integrates additional ideas from the theory of stochastic

calculus. While we prove that the mixing time is polynomial in the dimension, the dependence that we get is likely far

from optimal. Experimental results, however, suggest that our method competes Markov chains with the best known
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mixing, such as the hit-and-run walk ([LV07]) and there is evidence that in some cases it is faster.

We propose to investigate some of the above sampling schemes in search of the optimal rate. It may be that

the implication between the constant Gn defined in Subsection 2.1 and the rate of mixing can be reversed; perhaps

introducing the correct chain its analysis can help prove new bounds on Gn.

4.3 Complexity lower bounds using probabilistic constructions

In [Eld11] and [Eld15a], I have established some information-theoretical lower bounds on the number of independent

samples drawn from a high dimensional distribution, which is assumed to be unknown to us, needed in order to

estimate some quantities related to that distribution, namely its entropy and its covariance matrix. In [Eld11], it

is shown that in order to estimate the volume of a convex body, one needs a number of samples which is super-

polynomial in the dimension, thus answering a question posed by László Lovasz. In [Eld15a], it is shown that in order

to reconstruct a single entry in the inverse covariance matrix of a high-dimensional distribution, one needs a number

of samples proportional to the dimension, thus answering a question raised by statisticians.

One of the main principles behind these lower bounds is the fact that in order to distinguish a ”typical” high di-

mensional log concave measure from its spherical symmetrization, a very high number of random samples is needed.

There are several interesting questions that arise around this principle: is it true that, given a polynomial number

of samples, any randomly rotated high dimensional log-concave distribution (which is properly normalized) cannot

be told apart from some spherically symmetric distribution? Under what extra assumptions can one reconstruct the

covariance matrix of a log concave distribution with a small number of samples? An answer to the first question may

provide us with a deeper understanding of the distribution of mass in high dimensional convex bodies. An answer

to the second question may be applicable in many data analysis techniques (e.g. in principal component analysis,

discriminant analysis, graphical models).

4.4 Gradient descent methods and self-concordant barriers

A Self-concordant barrier function is a central object in the theory of interior point methods, a class of algorithms that

has revolutionized mathematical optimization. The main idea behind the definition of this function (which amounts

to several relations satisfied by its derivatives) is that when such a function is added to a linear function, the outcome

will attain a property that ensures lower bounds on the number of iterations it takes to converge to a minimal solution

via Newton’s method. See [Nes04] for an exact definition and for further details.

From a theoretical perspective, one of the most important results in this theory is the existence of a self-concordant

barrier over any given convex domain in Euclidean space. The first such construction was suggested by Nesterov and

Nemirovski (1994). Recently, together with S. Bubeck ([BE14]) we have introduced a new construction and have

managed to attain the first improvement over their result. Using elementary techniques from convex geometry, we

were able to construct an (arguably) much simpler barrier, which happens to be the first to attain optimal parameters.

The construction we suggest seems to open many new directions for further study. While the significance of this

result is mainly of a theoretical nature, an algorithmic application to Simulated Annealing has already been found

[AH15]. Naturally, we would like to find additional applications.

Our construction exhibits deep connections to several recent discoveries in the theory of the distribution of mass

on high dimensional convex sets. Several results of Klartag, and in particular the Central limit theorem for convex sets

[Kla07] suggest that the entropic barrier is expected to have certain universality properties, meaning that at typical

points, the behavior of this barrier is in fact independent of the underlying convex body. In the future, we hope to take

advantage of these connections in order to show prove bounds on the convergence rate of gradient descent which uses
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this barrier.
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