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Chapter O

Introduction

One of the classical problems in invariant theory is the wtoidbinary quantics. The main
object is to give an explicit description of the ridg[V']°L2, whereV is the space of all homo-
geneous forms of degrean two variables and study the geometric propertieS bf quotients
of projective space for a suitable choice of linearizatidne natural generalization of this clas-
sical problem is the following;

Let K be an algebraically closed field. Lét be a semi-simple algebraic group over
T a maximal torus of7, B a Borel subgroup of: containing7’, N the normalizer ofl" in
G and,IW = N/T the Weyl group. For a parabolic subgro@pof G containing, consider
the quotient varietyV\ \ (G/Q). In the case whety = SL,(K), the special linear group and
@ is the maximal parabolic subgroup 61.,,(K’) associated to the simple roet, one knows
thatG /@ is the Grassmanniai, ,, of two- dimensional subspaces of amlimensional vector
space. One also has an isomorphism:

N\\(G/Q)**(L2) = N\\(G2,n)**(L2) = SLA\(P(V))*,

whereV is the vector space of homogeneous polynomials of degred¢wo variables and’,

is the line bundle associated to the fundamental weightand the varietyS L,\\P(V)** is
precisely the space of binary quantics, (for example, se@tbof of Theorem-1 and the proof
of Theorem-4 of [100]). More generally one has the followisgmorphism;

T\\(G/P)*(Ly) = T\\(Grn)* (Lr) = SLANEH)",

whereG = SL,(K), P is the maximal parabolic subgroup associated to the singalecr,,
G, is the Grassmannian ofdimensional subspaces of arlimensional vector space ad
is the line bundle o6/ P = G.,.,, associated tao,.

One direction of our work is the study of projective normabf GIT quotient varieties for
finite group actions and another direction is to study theistable points for a maximal torus
action on the homogeneous sp@¢eP, whereG is a semi-simple simply connected algebraic
group andP is a parabolic subgroup @f. Both studies arose out of an attempt to understand
the quotients, \ (7\\G2.,)**.



0.1 General Layout of the Thesis

We now describe the organization of this thesis. The thesisists of four chapters. A con-
scious effort is made to make this thesis self-containedraader-friendly. Chapters 1 and
2 are preliminary in nature and are intended to introducet mbthe basic concepts used in
this thesis. We do not aim to give a complete account of theggies but try to give most of
the definitions and results used later and provide appr@amederences for these results. Then
while using these results we refer to the first two chaptestead of referring to the original
papers, which we have anyway referred to in the introduatbapters. Chapters 3 and 4 report
the work done by the author.

In Chapter 1 we give a brief account of the theory of algebgatzips. In this chapter, we
introduce some definitions and terminologies which we kespguthroughout this thesis. For
a detailed study of the theory of algebraic groups, we réfer¢ader to [2], [46], [115].

Chapter 2 is a survey of computational invariant theory atdigroups as well as reduc-
tive algebraic groups. In this chapter we present many iciasas well as modern results in
invariant theory. In the last section of this chapter “Getmmaenvariant theory” is introduced.

Chapter 3 is about torus action 6fy P. Mainly under the action of a maximal torus we
describe all the minimal-dimensional Schubert varietie&'j P admitting semi-stable points
with respect to an ample line bundle, whereis a semi-simple simply connected algebraic
group andP is a maximal parabolic subgroup @t In this chapter we also describe all Coxeter
elementsw € W for which the corresponding Schubert varietyw) admits a semi-stable
point for the action of a maximal torus with respect to a navigl line bundle onG/ B.

In Chapter 4 we investigate the projective normality of GUiotent varieties for the action
of finite groups. At the end of this chapter, we also take th@oojpinity to describe some of the
guestions that remain to be answered.

At the end of this thesis we have included two appendices,edaas Appendix-A and
Appendix-B. In Appendix-A we give a C-program that is usedGhapter 3. Appendix-B
collects the most important pieces of information aboutltleealgebras associated to semi-
simple algebraic groups.



Chapter 1

Algebraic Groups

This chapter is the most basic and at the same time the mesitedpart of this thesis. Here
we define all the required terms and review the basic reswitequt proof) that are needed
later in this thesis. The theory of linear algebraic growgms well-developed topic and there are
many excellent books available on it. Mostly, we refer to4@, 115] for simplicity.

1.1 Basic Definitions and Properties

1.1.1 Definition and Examples

An affine algebraic group is a grodp equipped with a structure of an affine variety such that
the multiplication mape : G x G — G, u(g1,92) = g192 and the inverse map : G —
G, i(g) = g~! are morphisms of affine varieties.

Since any variety has atleast one smooth point and the asfti@mon itself by left translation
is transitive GG is a smooth variety.

A homomorphism of algebraic groups G; — G5 is a homomorphism of groups and also
a morphism of varieties. An isomorphism of algebraic groigpa bijective homomorphism
¢ : G1 — G5 such thaty~! is also a morphism of varieties. An isomorphism fréhto itself
is called an automorphism.

Example : An example of an affine algebraic group is the gratip, of n x n invertible
matrices. Indeed, we have

oL, —{(

and forX,Y € GL,, the entries of the productY are polynomial functions in the entries of
X andY. We callGL,, the general linear group.

X 0

0 2 ) sdet(X)xpy =1}

3



Remark: In this chapter we consider only affine algebraic groupshe@tjective "affine” will
be sometimes omitted.

A closed subgroup of7L,, is called a linear algebraic group. It is easy to see that i§
a subgroup of an algebraic grogpand also a closed subvariety Gf thenH is an algebraic
subgroup. So we have several examples of algebraic sulbgyadafy.,,. We list some of them
below:

Example: D,,: the group of invertible diagonal matrices.

B,,: the group of upper triangular matrices.

U,.: the group of unipotent upper triangular matrices.

SL, ={X € GL, : det(X) = 1}: the special linear group.

0,={X e GL, : X'X = I,,}: the orthogonal group, (whet&’ denotes the transpose of the
matrix X and/, is the identity matrix inG'L,,).

SO, = SL,NO,: the special orthogonal group. This group can also be deéiséd < GL,, :

1 0 0
. . In \ .. .
XtJX = J}, whereJ € GL, is the matrlx( IO ¢ ) ifnisevenand 0 0 [
B 0 foa O
2

if nis odd (charK # 2).
Span = {X € GL, : X'JX = J}: the symplectic group, wheré € GL,, is the matrix

0o I,
(5. 0)
Example : (Finite groups). Any finite seX with n elements admits a canonical structure of
an affine algebraic variety (ovéf). This variety has: irreducible one-point components and
the algebra of regular functions [ X] is the direct sum of. copies of the fieldx: K[X] =
K @ --- @ K. In particular, anyK-valued function onX is regular, and any maf — Y

to another affine variety” is a morphism. This shows that any finite gratghas a canonical
structure of an affine algebraic group.

Example : (Additive and multiplicative groups). The additive grodp, is the affine line
K with group lawu(z,y) = x + y andi(z) = —z. The multiplicative group,, is the
affine open subset™™ c K with u(z,y) = xy, i(z) = x~*. Clearly, they are commutative
one-dimensional algebraic groups. The gr@up may be realized a&'L;, but for a matrix
realization ofGG, one need8 x 2-matrices:

{((1) T):ceK}.

Infact G, andG,, are the only connected one-dimensional algebraic groups.

Again, the direct product of two affine algebraic groups has@onical structure of an
affine algebraic group. So, we can construct many examplakgebraic groups, for example:
the direct product’ = G*, is a commutative algebraic group called an algebraic torus.

For an algebraic grou@’ the connected compone@f containing the identity element is a

closed normal subgroup of finite index and coincide with tineducible component contain-
ing identity. So, the notions of irreducibility and connedihess coincide for affine algebraic

4



groups. Sincé: L, is an open subset df/,,,,, itis irreducible. So(7L,, is connected. One can
check that the commutator subgroldp ;] of a connected algebraic grodpis connected. In
particular,SL,, is connected being commutator@Gf.,, .

1.1.2 Actions and Representations of Algebraic Groups

Let X be an algebraic variety an@ an algebraic group. A morphistd x X — X is said to
be an algebraic action, if it satisfies the following proest

(i) e.x = x foranyx € X;

(i) g1.(g2-x) = (9192).x forany g, g» € G,z € X.

Example: There are three actions of a groGpon itself, which are considered most often.
1

Namely,g.g1 = 991, 9.91 = 019", 9.1 = 919"

We refer to [46] for the definition of orbit, stabilizer andetet of fixed points of an action.
The subsef © of G-fixed points is closed itX and for anyr € X the stabilizeiG,, is a closed
subgroup ofz. Further, the orbit7.x is a smooth locally closed subvariety &f and orbit of
the smallest dimension is closedih Moreoverdim(G) = dim(G,) + dim(G.x).

Definition : A rational representation of an algebraic grasipn a finite dimensional vector
spaceV is a homomorphismy : G — GL(V') of algebraic groups. Her¥ is said to be a
rationalG-module.

Any representatiop : G — GL(V) defines an actiodr x V' — V, g.v = p(g)v. Such
actions are called linear.

Remark : A rational representation @ L,, is a homomorphism : GL,, — GL(V') such that
the matrix entries of(A) are polynomials i, m, whereV is a finite dimensional vector
space. The presence% motivates the term "rational”.

Remark : Standard constructions of representation theory (réistnis to invariant subspaces,
guotient and dual representations, direct sums, tensdupts, symmetric and exterior powers
etc.) allow to produce numerous ratioiaimodules from given ones.

Remark : Any rational representation: G — GL(V') defines a natural algebraic action on
the projective spac(V); g.[v] := [p(g)v].

If X is an affineG-variety then, there is a natural action Gfon the algebra of regular
functionsK [X]:

(9-f)(@):= flg7"x); feK[X], z€X, ged.

The G-module K'[X] is locally finite i.e. any elemenf € K[X] is contained in a finite
dimensional rational submodule.



The next theorem explains why we call an affine algebraic gtimear.

Theorem 1.1.1. Any affine algebraic group is isomorphic to a closed subgrotip:/L,, for
somen € N.

1.2 Jordan Decomposition in Linear Algebraic Groups

In this section we will assume théat is an algebraic closed field.

A matrix z € M,(K) is semi-simple ifx is diagonalizable: there is@c G L, (K) such that
grg~'is a diagonal matrix. Alsay is unipotent ifx — I, is nilpotent:(x — I,,)* = 0 for some
natural numbek. For givenz € GL,(K), there exist elements, andz, in GL,(K) such
thatz, is semi-simpley, is unipotent, and = z,.z, = z,.xz,. Furthermoregx, andzx, are
uniquely determined (see [46, pg. 96]). Now suppose ¢hat an affine algebraic group. We
can choose and an injective homomorphistm: G — G L, (K) of algebraic groups. I € G,
the semi-simple and unipotent patt&y), and¢(g), of ¢(g) lie in ¢(G).The elementg, and
g, such that(gs) = ¢(g)s ando(g.) = ¢(g)., depend only oy and not on the choice aof (or
n). The elementg, andg, are called the semi-simple and unipotent parg,akespectively. An
elementy € G is semi-simple ify = g4, and unipotent ity = g,,.

Theorem 1.2.1.(Jordan-Chevalley Decomposition ([46, pg. 99])4lE G, there exist unique
elementsgy, and g, in G such thaty = ¢,.9. = g..9s, gs IS Semi-simple, and, is unipotent.
Further, Jordan decompositions are preserved by homomsmuhof algebraic groups.

For any algebraic grou@ the setG, = {g, : ¢ € G} is a closed subset ¢f. An algebraic
groupd is called unipotent if all of its elements are unipotent. ExampleG,, is unipotent.

A solvable (resp. nilpotent) algebraic group is an algebgaoup which is solvable (resp.
nilpotent) as an abstract group. Now {etbe an arbitrary connected algebraic group. Suppose
that A and B are two closed connected normal solvable subgrougs.ofhen AB is again
a closed connected normal solvable subgroup: @ontaining bothA and B. It follows that
G contains a unique closed connected normal solvable supgrfomaximal dimension. This
is called the radical of7, denoted byR((G). An algebraic group is calledemi-simpléef its
radical R(G) = e. Similarly the unipotent radical a¥, denoted byR,(G) is the unique closed
connected normal unipotent subgroup of maximal dimensian.algebraic group is called
reductiveif its unipotent radical?,(G) = e. SinceR,(G) is unipotent, it is nilpotent, hence
solvable. Thusk,(G) C R(G). So semi-simple groups are reductive.

For exampleSL,, is a semi-simple group bdt,, has a one dimensional radical consisting
of the scalar matrices. ThusL,, is not semi-simple, but since scalar matrices are semiieimp
its unipotent radical is trivial, s&/L,, is reductive.



1.3 Lie Algebra of an Algebraic Group

Let G be alinear algebraic group. The tangent bufd|€') of G is the setH omk ., (K [G],
K|t]/(t?)) of K-algebra homomorphisms from the affine algebig] of G to the algebra
KIt]/(t?). If g € G, the evaluation mag — f(g) from K[G] to K is a K-algebra isomor-
phism. This results in a bijection betweéhand Hom _.,,( K[G], K). Composing elements
of T(G) with the mapa + bt + (¢?) — a from K[t]/(t*) to K results in a map frori’(G) to
G = Homg_q,(K[G], K). The tangent spack (G) of G at the identity elemenit of G is the
fibre of T(G) overl. If X € T1(G) and f € K[G], thenX (f) = f(1) + tdx(f) + (¢?) for
somedx(f) € K. This defines a magy : K[G] — K which satisfies:

dx(fifa) = dx(f1)f2(1) + ()dx(f2), f1, f2 € K[G]

Let u* : K[G] — K[G] ® K[G] be theK-algebra homomorphism which corresponds to
the multiplication mag: : G x G — G. Setéx = (1®dx)opu*. The mapy : K[G] — K[G]
is aK-linear map and a derivation:

Ox (fif2) = Ox(f1)fo + fiox(f2), f1, f2 € K[G].

Furthermorej is left-invariant:l,6x = dxl, forallg € G, where(lgf)(¢') = f(g7'q), f €
K[G]. The mapX — dy is aK-linearisomorphism of; (G) onto the vector space &f-linear
maps fromK'[G] to K[G] which are left-invariant derivations.

Letg = 71(G). Define[X, Y] € gby d;xy) = dx 0 dy — dy o dx . Theng is a vector space
over K and the may-, -| satisfies:

(1) [, -] is bilinear

(2)[X,X]=0forall X € g

@)X, Y], Z|+[[Y,Z]. X]|+ [[Z.X],Y] =0forall X, Y, Z € g (Jacobi identity).
Thereforeg is a Lie algebra oveK'. We call it the Lie algebra of-.

Example : If G = GL,(K), theng is isomorphic to the Lie algebrg,, (K) which is M,,(K)
equipped with the Lie brackéX, Y| = XY — Y X, XY € M, (K).

Example : The Lie algebras of the algebraic groups,,, SO,,, andS P, aresl,:= the trace

A B)GGLQnZA:

zero matricesso,,:= the anti-symmetric matrices ang,,, := {( c D

—DT B = BT, C = CT} respectively.
Let ¢ : G — G’ be a homomorphism of linear algebraic groups. Compositiith the

algebra homomorphism* : K[G'] — K|[G] results in a mafg'(¢) : T(G) — T(G’). The
differential d¢ of ¢ is the restrictiond¢ = T'(¢)|, of T'(¢) to g. Itis a K-linear map fromy to



g/, and satisfies
do([X,Y]) = [do(X),do(Y)], XY € g.

That is,d¢ is a homomorphism of Lie algebras. d¢fis bijective, theny is an isomorphism if
and only ifd¢ is an isomorphism of Lie algebras. M has characteristic zero, any bijective
homomorphism of linear algebraic groups is an isomorphism.

In characteristic zero the correspondence between algaim@ups and their Lie algebras
is very nice. IfH is a closed subgroup of a connected linear algebraic gégupen (via the
differential of inclusion) the Lie algebraof H is isomorphic to a Lie subalgebra gf Infact
the correspondencd — b is 1 — 1 and inclusion preserving between the collection of closed
connected subgroup? of G and the collection of their Lie algebras, regarded as sebais
of g. And H is a normal subgroup & if and only if  is an ideal ing ([X, Y] € h whenever
X € gandY € h). If G is solvable (resp. nilpotent), thenis solvable (resp. nilpotent). If
G is semi-simple (resp. reductive), thgns semi-simple (resp. reductive). Recall that a Lie
algebrag is said to be semi-simple ifad(g): the maximal solvable ideal is O and reductive if
rad(g) = Z(g).

If g € G, thenint, : G — G, Int,(90) = 9909 ", 9o € G, is an isomorphism of algebraic
groups. So0,Ad(g) := d(Int,) : g — g is an isomorphism of Lie algebras and the map
Ad : G — GL(g) is a homomorphism of algebraic groups, calleddadmint representationf
G.

Jordan decomposition in the Lie algebra:We can define semi-simple and nilpotent elements
in g in @ manner analogous to definitions of semi-simple and Weige&lements id- (asg is
isomorphic to a Lie subalgebra gf, (/) for somen). If X € g, there exist unique elements
X,andX, € gsuchthatX = X, + X,,, [X,, X,] = [X,,, X,] =0, X, is semi-simple, and
X, is nilpotent.

1.4 Homogeneous Spaces

Let G be an affine algebraic group affia closed subgroup @¥. The set of left coset§'/ H
admits a natural transitive-action: g.g1H = gg1H. The following celebrated theorem of
Chevalley gives a structure of an algebraic varietyHiH/ such that the action above becomes
algebraic.

Theorem 1.4.1.(Chevalley [14] (1951)). Le& be an affine algebraic group and a closed
subgroup of7. Then,

(1) There is a rational representatign: G — G L(V') and a non-zero vectar € V' such
thatH = {g € G : p(g)v € K.v}.

(2) If the subgroup is normal, then there is a representatiph: G — G'L(V") such that
H = Ker(p).



Now, the induced action aff on P(V') is algebraic, and there exigt] € P(V') such that
the stabilizer offv] coincides withH. The orbitG[v] is open in its closure and thus has a
structure of a quasi-projective variety with an algebraamsitive G-action. The orbit map
G — P(V), g — g.[v] defines a bijectiotz/H — G|v], and induces a structure of a quasi-
projective variety orG/H such that the natural action 6f on G/ H is algebraic. Infact we
have more;

Corollary 1.4.2. The setGG/H of left cosets admits a unique structure of a quasi-proyecti
algebraic variety such that the natural action@fon GG/ H is algebraic. In addition ifH is a
closed normal subgroup @f, then the quotient grouG'/ H has a unique structure of an affine
algebraic group such that the projectien — G /H is a homomorphism of algebraic groups.

Let G be a unipotent group and choosesuch that(; is a closed subgroup @¥L,,, then
there is ag € G, such thatyGg~—! C U,. In particularG is nilpotent. IfV is a non-zero
rational G-module, therl’¢ #£ (0. For an affineG-variety X, the G-orbits are closed. For if
there exists: € X such thatZ = G.x is not closed inX, thenY = Z — Z is a non-empty
closed subset of. So there existg € I(Y) \ {0} such thaty.f = f forall ¢ € G. Hence
f(g.z) = f(z) and f is constant orZ, and so onZ. But f is zero onY, and sof = 0, a
contradiction.

It follows that if H is a closed subgroup of an unipotent graipthen the varietys/ H is
affine (see [118, pg. 397]).

The following proposition is sometimes helpful for commpgtinvariants.

Proposition 1.4.3.Let G be an algebraic group and/ a closed subgroup. Then the pro-
jection morphismG — G/H is open andK[G/H] = K[G)" := {f € K[G] : f(gh) =
f(g) foranyg € G,h € H}.

For a reductive algebraic group, the following theoremezhlihe “Matsushima criterion”
gives a necessary and sufficient condition for a homogengmace to be affine.

Theorem 1.4.4.(Matsushima [75]) IfG is reductive thenG/H is affine if and only ifH is
reductive.

We end this section with some examples of homogeneous spaces

Example : (Grassmannians and Flag Varieties). The gr6up, acts transitively on the set of
k-dimensional subspaces bf = K" (1 < k < n). The stabilizer of the standa#d-subspace

<617 €2, ", €k> IS
Pk, n) = {( o ) A€ GLLC € GLy 4, B € My ).

Hence the homogeneous sp&cg,, / P(k,n) is isomorphic to the Grassmanniéfr (k, n)
of k-dimensional subspaces in Now consider the subgrouB, C GL,. Itis the stabilizer
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of the standard complete flag
{0} - <61> - <€1762> Cc---C <€1,€2,"‘,€n> - Kn

in K™. SinceGGL,, acts transitively on the set of complete flags, we again Heat&tL,, /B, is
isomorphic to the flag variet§ (V). In this case the homogeneous spaGe&k, n) andF (V)
are projective.

Example (Homogeneous spaces f6r= S L)

(1) LetG = SLyandH = B := {A € T : det(A) = 1}. In order to apply Chevalley’s
theorem, consider the tautologic®l,-moduleV = K? and the first standard vecter ¢ V.
Clearly, B = {A € SLy : Ae; € K.e;}. SinceSL, acts transitively on one dimensional
subspaces i, the homogeneous spaéé. /B is isomorphic to the projective ling'.

(2) LetG = SLy, andH = U := U,. Again conside’V = K? andv = ¢;, and note that
U={A€ SLy: Aie; = e;}. Thus,SLy/U is isomorphic to the orbit of; in V. Thisis a
quasi-affine (non-affine) varieti \ {0}.

(3) Finally, takeG = SL, andH =T := {A € D, : det(A) = 1}. LetV be the three-
dimensional space & x 2-matrices with trace zero, wherfel., acts by conjugationA.C =

ACA™L. Set
(1 0
v = 0 —1 .

The stabilizer ofv coincides withT", and the orbitGv consists of matrices with eigenvalues
1 and -1. This orbit is defined il by the equationiet(C) = —1. ThusSL,/T is an affine
quadric inA3.

1.5 Tori

Atorus is a linear algebraic group which is isomorphic todfrect producG¢ = G,, x - - - x
G, (d times), wherel is a positive integer. It is easy to see that a linear algelyia@upG is a
torus if and only ifG is connected and abelian, and every elemeidt &f semi-simple.

A character of a toru§" is a homomorphism of algebraic groups frafto G,,. The
set X(T") of characters of" is a free abelian group. A one-parameter subgroufl’ & a
homomaorphism of algebraic groups frai, to 7. The setY (7") of one-parameter subgroups
of GG is also a free abelian group. Tt ~ G,,, then X (7') = Y(T') and the only characters
are of the formz — 2", wherer € Z. In general,l’ ~ G¢ for some positive integef, so
X(T) ~ X(G,,)?* ~ 74 ~Y(T). We have a pairing

() X(T)xY(T)—Z; {x,n)—rwherexon(x)=uzx", x€ G,

Let GG be a linear algebraic group which contains at least one tdrasn the set of tori in
GG has maximal elements, relative to inclusion. Such maxinemhents are called maximal tori
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of G. All the maximal tori inG are conjugate. Theank of GG is defined to be the dimension of
a maximal torus irz. Thesemi-simple rankf G is defined to be the rank ¢f/ R(G), and the
reductive ranlof G is the rank ofG/ R, (G).

Now suppose that is a linear algebraic group arfdis a torus inG. Recall that the adjoint
representationld : G — GL(g) is @a homomorphism of algebraic groups. TherefdrET")
consists of commuting semi-simple elements and so is dalgable. Giverw € X (T), let
g ={X €g:Ad(t)X = a(t)X, ¥Vt eT}. The nonzerex € X(7') such thag, # 0 are the
rootsof G relative to7". The set of roots of+ relative to7" will be denoted by)(G, T').

The centralizetZ; (7)) of T in G is the identity component of the normalizat, (1) of
T in G. TheWeyl grouplW (G, T') of T"in G is the (finite) quotientN(7T')/Z(T'). Because
W (G, T) acts onl’, W (G, T) also acts onX (T"), andW (G, T') permutes the roots &f in G.
WhenT is a maximal torusZq(7') = T and, hencéV (G,T) = N¢(T')/T. Since any two
maximal tori inG are conjugate, their Weyl groups are isomorphic. The Wegugrof any
maximal torus is referred to as the Weyl group‘of

1.6 Solvable Groups and Borel Subgroups

Assume in this section th&f is algebraically closed. As in the theory of finite groupdyable
groups are well studied in the theory of algebraic groupssiae with the structure theorem
of these groups.

Theorem 1.6.1.Let GG be a connected solvable group. Then, the(sgof all unipotent ele-
ments o7 is a closed connected normal subgrougtbfAll the maximal tori ofG are conju-
gate, and ifl" is any one of them, thef is the semi-direct product &f acting onG,. If G is
abelian, then the set of semi-simple eleméhtss also a closed subgroup, add~ G, x G,,.

Remark: If G is a unipotent group then the mapp : Lie(G) — G is an isomorphism of
algebraic varieties. S€' is connected and is isomorphic (as an variety) to an affineespi
in additionG is commutative then the above map is an isomorphisia(G) is considered as
an additive group of the underlying vector space. It follatvat any commutative unipotent
algebraic group is isomorphic @".

Definition: A variety Z is complete if for every variety” the projectionmap : Y x 7 — Y
is a closed map, i.e., it takes closed sets to closed setprdjéictive varieties are complete. A
complete and quasi-projective variety is projective.

The following celebrated fixed point theorem is due to Borel.

Theorem 1.6.2.(Borel’s Fixed Point Theorem ([46, pg. 134] (1956)). Let anoected solvable
algebraic groupG acts on a complete variety. ThenG has a fixed point inX.

Letp : G — GL(V) be a finite dimensional rational representation of a coretksblv-
able algebraic group. Thed acts onP(V') and hence~ has a fixed point. This fixed point
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corresponds to &-stable linel in V', andG acts onL via some charactey of G. So, we have;

Theorem 1.6.3.(Lie-Kolchin Theorem ([46, pg. 113]) (1948)). Létbe a connected solvable
algebraic group ang : G — GL(V) be a rational representation. Then there is a non-zero
vectorv € V such thatp(g)v = x(g)v for somey € X(G) and anyg € G.

Note that the above theorem is analogous to Lie’s theorem $olvable Lie algebra, which
says that ifg is a solvable Lie subalgebra gf(1"), V finite dimensional, thed’ contains a
common eigen vector for all the endomorphismg.in

Again letG be a connected solvable algebraic group ang tet — G L(V') be a rational
representation. Since the flag variefyf1”) of complete flags i/ is projective, the natural
action of G on F(V') has a fixed point. By taking a basis ihcompatible with ai-fixed flag
we havedp(G)A~! C T, for someA € GL(V),n = dimV .

A Borel subgroupf an algebraic grour is a connected solvable subgrouplofvhich is
maximal in the partial order on closed subgroups given blusion of subsets.

Let B be a Borel subgroup af and B, be a Borel subgroup of maximal dimension. By
Borel’s fixed point theorem3 has a fixed point ot/ By, or, equivalently, thereisa € G
with ¢gBg~! C B,. By maximality of B, gBg~! = B,. Now take two maximal tori; andT5
in G. SinceT; andT; are connected and solvable, there are Borel subgrBy@sd B, with
T, C By, Ty, C B,. Since,gB.g~ ' = B, for someg € G, T, andT}; are conjugate. Similarly
the maximal unipotent subgroups@fare all conjugate. So we have;

Theorem 1.6.4.In an algebraic group the maximal tori (resp. Borel subgrepmaximal
connected unipotent subgroups) are conjugate.

Let B be a Borel subgroup of largest possible dimension in an &gelgroupG. By
Chevalley’s theorem there exists a ratiotamoduleV” and a non-zere € V such thatB =
{9 € G : gv € Ku}. LetF, be the closed subvariety of the flag varietyV’) consisting
of complete flags with the first elemeftv. The subvarietyF, is B-invariant, and by Borel's
fixed point theorenB has a fixed point’ € F,. Hence the stabilizer» = B and theG-orbit
of I is closed inF(V), since it is of minimal dimension. Sd;/B ~ G.F is closed in the
projective varietyF (1), thus is projective too. This gives the following importdmeorem;

Theorem 1.6.5.Let G be an algebraic group ané a Borel subgroup of7. Then the homoge-
neous spacé// B is projective.

The following theorem shows that conjugatesb€over the whole groug:.

Theorem 1.6.6.Let B be a Borel subgroup of a connected algebraic grakpthenG =
UgecgBy™!, Ng(B) = B, Z(B) = Z(G)°. Further if B is nilpotent, thenB = G. In
particular GG is nilpotent.

A parabolicsubgroupP of G is any closed subgroup @f such that7/P is a projective
variety. LetB be a Borel subgroup df. It acts onG/P with a fixed point, sayBgP = gP.
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This implies thatg~!Bg C P, i.e., P contains a Borel subgroup. Conversely, suppBse
contains a Borel subgroup. Then the mag:/B — G/ P is surjective and(z/ B is complete.
This shows, the varietg/ P is complete and quasi-projective. $9/ P is projective.

Let P be a parabolic subgroup @f. Then P contains a Borel subgroup of GG. Let
r € Ng(P). Then bothB andzBx~! are Borel subgroups af’, so they are conjugate by
an elemeny € P° and hencejz € Ng(B) = B. Thusz € P° i.e., P° = P = Ng(P).
So the parabolic subgroups are self-normalizing, condeé&terther, ifP, () are two conjugate
parabolic subgroups @ containing a Borel subgroup, thenP = Q.

1.7 Root Systems and Semi-simple Theory

An abstract root system in a Euclidean space (a finite dimmeasvector space ov@& endowed
with a positive definite symmetric bilinear fortn, -) ) V, is a subse® of V' that satisfies the
following axioms:

(R1): @ is finite, ® spansl” and0 ¢ .

(R2): If « € @, then there exists a reflection, relative toa such thats,(®) C . (A
reflection relative tay is a linear transformation sendiagto —« that restricts to the identity
map on a subspace of co-dimension one).

(R3): If a, B € @, thens, (5) — [ is an integer multiple of..

A root system igeducedf it has the property that ift € ®, then+« are the only multiples
of o which belong to®. The rank of® is defined to belim (V). The abstract Weyl group
W (®) is the subgroup of7 L(V') generated by the sét,, : « € ®}. Note thatiV'(®) is finite,
since it permutes the finite sét

Example: Let G be a connected reductive group. Zebe a torus inG and letd = &(G, 7).
Let Z® be the subgroup ok (7') generated by and letV = Z® ®; R. Then the setb
is a subset of the vector spateand is a root system. [f' is a maximal torus in=, then
d = (G, T)isaroot systemiV = ZP ®z R, and itis reduced. The rank &fis equal to the
semi-simple rank of7, and the abstract Weyl grodp’(®) is isomorphic tal = W (G, T).

A base ofd is a subsef\ = {ay,---,«;}, such thatA is a basis oft” and eachy € ® is
uniquely expressed in the form= 22:1 c;a;, Where the;’s are all integers, no two of which
have different signs. The elements/fare called simple roots ar@ard(A) is therank of .
The set of positive root$ " is the set oix € ® such that the coefficients of the simple roots in
the expression fot as a linear combination of simple roots, are all nonnega®umilarly, d~
consists of those € ® such that the coefficients are all non-positive. Cledrlg the disjoint
union of ®* and®~. Givena € @, there exists a bask containinga. Given a basé\, the set
{s4 : @ € A} generate$lV = W (®). The reflections,,, a € A are called simple reflections.
For simplicity we set; = s,,, 1 <1 < [. The length function ofV relative tosy, sa, - - -, s
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is given by
l(w) =min{k :w = s;,8;, 55, 1 <iiy, i <1}

If w=s; 5, s, With k = [(w), this is called aeduced expressidior w. There is a unique
elementw, of largest length i1/, called thelongest elemenadf 1. The elementy, has the
property thatuy(a) < 0 forall o > 0, i.e.,wy(P*) = &~. There is a partial order i/, called

the Bruhat order with w’ < w if there exists a sequendey;,, - - -, ;, } of simple reflections
such thatv'oy; - - - o, = w.

If a,3 € @, thens,(6) = B — (2(6,a)/(a,a))a. A Weyl chambem V' is a connected
component in the complement of the union of the hyperplan&®gonal to the roots. The set
of Weyl chambers i and the set of bases @fcorrespond in a natural way, ahid permutes
each of them simply transitively.

If a € ®, definea’ = 2a/(a, ). The sed of elementsy” (called co-roots) forms a root
system inV/, called the dual o®. The Weyl grougV (®") is isomorphic tdV (®), via the map

So > Sy

A root system® is said to be irreducible ifo cannot be expressed as the union of two
mutually orthogonal proper subsets. In genetatan be partitioned uniquely into a union of
irreducible root systems in subspaces of V.

Let ® be a root system in an Euclidean sp&cwith Weyl grouplV'. Let
A={ eV :(\a):=20\a)/(a,a) € Z, o€ D}

Then A is a lattice (abelian subgroup generated by a basig)otalled weight lattice and
elements ofA are called weights. Note that contains®. Let A, be the lattice generated by
®, called root lattice. Fix a basi& of . An element\ € A is called dominant if A, o) > 0,
Va € A and strongly dominant ifA, ) > 0, Va € A. We denote byA" the set of dominant
weights. Each weight is conjugate undér to one and only one dominant weight. Xfis
dominant, thero(\) < A, for all o € . Moreover forA € A* the number of dominant
weightsy < A is finite.

Let A = {ay, 0, -+, }, then the vectorQa;/(«;, ;) also form a basis of/. Let
wy, W, - - -, w; be the dual basis, i.e2(w;, ;) /(a;, ;) = 9;;. Note thatw,’s are dom-
inant weights called fundamental dominant weights. Evdeynent\ € V can be writ-
ten as\ = > m;w;, wherem; = (\,«;). Therefore,A = Zw; @ ---®Zw, and AT =
Zsow, @ --- @ Zsow;. SinceA andA, are of same rank, the group/A, is a finite group,
called thefundamental groupf ®. The set of fundamental weights and the associated funda-
mental group for each type of simple Lie algebras are listeappendix-B.

1.7.1 Classification of Root Systems

Let (V,®) be a root system and lek = {ay,---,} be a base oft. The Cartan matrix
A = (aij)1<ij<i is the matrix witha,; ; = (s, o), where(a, 8Y) := 2(3,a)/(a, ). Since
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all the bases are conjugate under the actior/ofthe Cartan matrix is an invariant of the root

system (up to simultaneous permutation of rows/columnsgretare some basic properties
about this matrix:

(Cl) Qi = 2.
(C2) Fori # j,a;; € {0,—1,—-2,—-3}.
(C3)a;,; =0ifand only ifa;, = 0.

We can completely recover the fortn -) on V up to a scalar multiple from the Cartan
matrix. We can also recovdr since the Cartan matrix contains enough information to com-
pute the reflections,, for eachi = 1,---,l and® = W.A. So an irreducible root system is
completely determined up to isomorphism by its Cartan matri

A convenient shorthand for Cartan matrices is given by thekbydiagram. This is a graph
with vertices labelled by, - - -, . There arey; ;.a;; edges joining vertices; anda;, with
an arrow pointing towards; if («;, ;) < (aj,a;) (equivalentlya; ; = —1,a;, = —2,—3).
Clearly the Cartan matrix, hence the root system can be esedvirom the Dynkin diagram.
Now we have a classification theorem for root systems.

Theorem 1.7.1.1f ¢ is an irreducible root system of rarikthen its Dynkin diagram is one of
the following:

An(n> 1) : (i O O --- O—O0

Bn(n>3): o O o --- Oo———0
1

cn(n>3): o o 0 --- O==<=0
1

2 3 n-1 n
n-1
/O
Dn (n> 4): Q © ©, - ©
1 2 3 n-3 n—Z\o
n
2
O
Es O O O @) o)
1 3 4 5 6

15



O

E, O O O O o) O
1 3 4 5 6 7
2
O
Es O @) @) O O O O
1 3 4 5 6 7 8
3 4
Ga 1 é 2

1.7.2 Classification of Semi-simple Lie Algebras and Algelaic Groups

First we start with a semi-simple Lie algebra and build a system out of it, and vice versa.
Let us begin with a finite dimensional semi-simple Lie algepover an algebraically closed
field K. Theng possesses a non-degenerate invariant symmetric bilioear4(X,Y) =
Tr(adXadY) called the Cartan Killing form, where invariant here meaisX,Y], Z) =
k(X,[Y, Z]). Note that ifg is simple, there is a unique such form upto a non-zero scalar.

A maximal toral subalgebrg of g (also called th€€artan subalgebrpis a maximal abelian
subalgebra, all of whose elements are semi-simple. It muwhghat in a semi-simple Lie alge-
bra, maximal toral subalgebras are non-zero, and they becerglugate under automorphisms
of g. Now fix a maximal toral sub-algebia Firstly, the restriction of the invariant formon
g to b is still non-degenerate. So we can define a map

b* = b, ta,

wheret,, € b is the unique element satisfyingt,, h) = «a(h) for all h € h. Now we can even
lift the non-degenerate form dnto h*, by defining(«, ) = k(ta, t5).

Fora € b*, define

8o = {X € g|[h, X] = a(h)X foreveryh € h}.
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Clearly,g = h®,g.. Setd = {0 # o € h* : g, # 0}. Then we have the Cartan decomposition

of g:
g="bo P g

aced

Theg, are one dimensional anklsatisfies all the properties of a root system. Vdte the real
vector subspace d¢f spanned byp. The restriction of the form oh* to V' turns out to be real
valued, and makeg into a Euclidean space.

Now start with a reduced root systebrand choose a basis = {ay, as, - - -, ay } of ®. For
eachi € {1,2--- 1} we associate three symbals y;, h; and letg be the free Lie algebra with
generators:;, y;, h; (i € {1,2---,1}). Consider the ideal of g generated byh;h;], [z;y;] —
hiy [2iys] (0 # J), [hiag] = (g, i)y, [hayg] + (o, ca)y;, (ad(xy)) =@+ (2;)(i # j) and
(ad(y;))~ (@ *L(y;)(i # j) and defingg = g/I. It turns out that the Lie algebrgis semi-
simple and has root system isomorphic to the gikenThe above relations igp among the
generators are called Chevalley-Serre generators artbredaNow we have a map from the
category of semi-simple Lie algebras to the set of Dynkingbams (root systems) and vice
versa. So we have;

Theorem 1.7.2.The map from semi-simple Lie algebras to Dynkin diagramegarbijection
between isomorphism classes of semi-simple Lie algeb@®gnkin diagrams. The decom-
position of a semi-simple Lie algebra as a direct sum of st algebras corresponds to the
decomposition of the Dynkin diagram into connected comisne

Assume that the ground field is of characteristicThen a connected algebraic graotps
semi-simple if and only ify is semi-simple. In that casdd G = G/Z(G). Note that for semi-
simpleG, Z(G) is finite. So theorem (1.7.2) almost classifies the semi-gimlgebraic groups
in characteristi®: the isomorphism type aff/Z(() at least is classified by the isomorphism
type ofg. Since the latter are classified by Dynkin diagrams, so a&edmterless semi-simple
groups.

Recall that ifg is simple ther(G is simple over an arbitrary field. B&L,, in characteristic
dividing n gives us an example wheteis simple bufg is not. So theorem (1.7.2) is not true in
positive characteristic.

The following theorem classifies semi-simple algebraicugsoin terms of fundamental
groups.

Theorem 1.7.3.([46, pg. 196]). IfG and G’ are simple algebraic groups having isomorphic
root systems and isomorphic fundamental groups, theand G’ are isomorphic, unless the

root system ig); (I > 6) and the fundamental group has ordgrin which case there may be

two distinct isomorphic types.

Remark: The groupG is simple (or almost simple) iz contains no proper nontrivial closed
connected normal subgroup, equivalentlg a simple Lie algebra. Note that a simple algebraic
groupG may contain a proper normal subgroup. For example fakebutG/Z(G) is simple
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as an abstract group. Whéhis semi-simple and connected, théns simple if and only if®
is irreducible.

The reduced irreducible root systems are those of ypen > 1, B,,n > 2,C,,n >
3,D,,n >4, Eg, 7, Eg, Fy, andG,. For eachn > 1 there is one irreducible non-reduced root
system,BC,,. If n > 2, the root system of7L,,(K) (relative to any maximal torus) is of type
A,,_1. The root system ofp,,,(K) is of typeC,, if n > 3, and of typeA; and B, forn = 1
and2 respectively.

1.7.3 Weights and Representations

Throughout this subsection the ground fidldis an algebraic closed field of characteristic
0. A classical theorem of Herman Weyl says that all finite disienal representations of a
semi-simple algebraic group (Lie algebra) are semi-simptewe need to consider only finite
dimensional irreducible representations. Finite-dinn@ma representations of semi-simple Lie
algebras ovef have been well-studied, from various points of view: theshhgic “highest
weight” theory of E. Cartan (see [11]), the compact groupwaieint of H. Weyl, the geometric
viewpoint of A. Borel, A. Weil, R. Bott (see [19, 20]). We williscuss here the highest weight
theory and the representations.

Universal Enveloping Algebra : Let g be a Lie algebra. Any associative algebtaan be
made into a Lie algebra by the operation| = xy — yx for z,y € A. Roughly speaking, to a
Lie algebrag we will associate an associative algebi@) which containg and the Lie algebra
operation org becomes usual bracket operatiorlifg). An associative algebré(g) with a
mapi : g — U(g) which is a Lie algebra homomorphism is called tivéversal enveloping
algebraif it satisfies the following universal property: for any asmtive algebral if we have
a Lie algebra map : g — A, then there exists an algebra homomorphisni/(g) — A such
thatg = ¢ o i.

Let T'(g) be the tensor algebra gf Consider the ideal generated by elementsy| —
(r®@y—y®x)inT(g) forz,y € g. DefineU(g) = T(g)/J and the map : g — U(g) by
sending elements @fto in the 1st component of the tensor algebra. Ttiég) is the required
universal enveloping algebra. Note thag ifs abelian theri/(g) is the symmetric algebra. The
map: in the definition ofU(g) is injective and hencg can be identified with its image. A
theorem of Poincare-Birkhoff-Witt (see [45, pg. 92]) salys has countable dimension with a
basis{z,zy, -}, then{l,z,x; -2y, :m € Z1, 1 < iy < --- <1} Iisabasisol/(g). It
is easy to see that any representatiop if a representation @f (g) and vice-versa.

Let V' be ag module. Then the Cartan subalgebraf g acts diagonally oiv'. For\ € h*,
letVy={v eV :hov=Ah)v, hebh}. WhenevelV, # 0, we call\ a weight ofl” andV, the
weight space correspondingXolf V' is finite dimensional, thely = @®,c4- V). Write the root
space decomposition gfasg = h Goco go- Then,g, mapsV, intoVy,, (A € b*, a € ®). It
follows that, in respective of dimension, the stihof all weight space¥’, is ag submodule
of V.
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Choose a basid = {«ay, as, - - -, oy} of . A maximal vector (of weighd) in a g-module
V is a non-zero vectos® € V), such thatg,.v™ = 0 (a € A). If dim(V) is finite, then the
Borel subalgebra(A) := h @, g. has a common eigen vector by Lie’e theorem, and this is
a maximal vector i/,

In order to study finite dimensional irreducilgjenodules, it is useful to study first the larger
class ofg-modules generated by a maximal vectorV1f= U(g).v™ for a maximal vectow™
(of weight \), we say thal’ is standard cycliqof weight\) and we call\ the highest weight
of V. In this caseV is the direct sum of its weight spaces and the weights areeofdim
= A\— 22:1 ko, (k; € Zsp). This justifies the terminology highest weight far since
1 < A. AgainV is an indecomposablgmodule, with a unique proper maximal submodule
and a corresponding unique irreducible quotient. If furtheitself was irreducible, then™ is
the unique maximal vector i, up to non-zero scalar multiples. It is easy to check that suc
cyclic module is unique upto isomorphism if it exists.

For the existence, there are two ways to construct a cyaimdule of highest weighk for
any\ € h*. The first way of construction is to consider the one dimemaigector spac®, =
K. and define an action @& = b(A) = h @, go ON Dy, by h.ot = A(h)vt, x,.01T =0,
Consider thé/(g)-moduleZ(\) = U(g) ®u( Dx. Then,Z(A) is a standard cyclic module of
weight A and the element @ v* is a highest weight vector of weight(see [45, Ch. 6]). The
other way of construction is the Verma module. Considereftsdeal /() in U(g) generated
by {z,, a € ®"} and{h, — A(h,).1, « € ®}. ThenU(g)/I(\) is ag-module with highest
weight \. There is a canonical homomorphism of 1&ftg)-modulesU(g)/I(\) — Z()\)
sending the coset of 1 onto the maximal veetor Again using PBW basis df (g) it is easy to
see that the above map is infact an isomorphism. The stawgtalid moduleZ(\) of weight
A has a unique maximal submodug\) and thereforel (\) = Z(\)/Y () is an irreducible
standard cycligg-module of weight\.

We now discuss the following: (1) For which theV(\) are finite dimensional. (2) De-
termine for such/ (), exactly which weightg occur and give the formula for multiplicity of
V(A) inV(A).

Supposé/ is a finite dimensional irreduciblg-module. Thenl/ has atleast one maximal
vector, of uniquely determined weight and the submodule it generates must be all"dfy
irreducibility. Therefore}” isisomorphic td/()\). By considerind” as arsl,-module it is easy
to see thah (h;) are nonnegative integers, i.e, the highest welghtdominant. More generally,
if V' is any finite dimensional-module and: is a weight of/, thenu(h;) = (i, ;) € Z. An
element\ € h* suchthat\(h;) € Z is called an integral weight and if ali(»;) are nonnegative
integers then it is called a dominant integral weight. Asobefwe denote\™ by the set of
dominant integral weights. The converse of the above résuallso true, that is ih € b* is
dominant integral, then the irreducilbdemoduleV () is finite dimensional. The Weyl group
W permutes the set of weights occurringlinanddim(V,,) = dim(V,,) forc € W. Letus
summerize;

Theorem 1.7.4.(1) For any A € h*, there exists an unique (upto isomorphism) irreducible
standard cyclic module of weight
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(2) If X € b* is dominant integral, then the irreducibjemoduleV () is finite dimensional.

(3) Every finite dimensional irreduciblemoduleV is isomorphic ta’ () for some domi-
nant integral weight\.

(4) The Weyl groupl” permutes the set of weights occurrindiranddim(V),) = dim/(V(,))
foro e W.

Corollary 1.7.5. The map\ — V() induces a one-one correspondence betwgérand the
isomorphism classes of finite dimensional irreducipi®odules.

The representation theory of semi-simple Lie algebras and-simple algebraic groups is
same. We just need to translate the Lie-algebra languageup gheoretic settings.

Let G be a semi-simple algebraic group ov&r Let 7" be a maximal torus ofr and B
be a Borel subgrou containing?. Letp : G — GL(V) be a finite dimensional rational
irreducible representation ¢f. ThenV may be regarded asZamodule. Then the complete
reducibility of 7" implies thatV” is the direct sum of weight spaces, i.¥.= @, cx(r)Vy, Where
Vi={veV:tv=x(t)v,t € T}. We sayy € X(T)is aweightinV if V, # 0.

By Lie-Kolchin theorem there is a one dimensional subsggcef ' stable undep(B).
The generator of the one-dimensional subspakgis called a maximal vector; equivalently,
0 # v lies in some weight spack, and fixed by allU,, whereU,, is the unique connected
T-stable (relative to conjugation B¥) subgroup ofG having Lie algebrg,. Let V' be the
GG submodule ofi” generated by. Then the irreducibility o impliesV’ = V. It turns out
thatv is unique (upto a scalar multiple) ands a dominant weight with multiplicity one called
the highest weighof V. Conversely, for any\ € X (7'), dominant there exists an irreducible
G-moduleV () of highest weight\. Again any two irreduciblés modules are isomorphic
if and only if their highest weights are same. Then we havedhewing theorem (see [46,
Ch. 9));

Theorem 1.7.6.There is a bijection between irreducible rationdl modules and dominant
weights.

For a connected semi-simple groapwith Lie algebrag one considers the categories
Repr(G) of the representations ¢f on finite dimensional vector spaces ovérand Repr(g),
the category of the representationgiafn finite dimensional vector spaces ovér Any repre-
sentation ofG on a vector space induces a representationarf the same vector space. This
defines a functof : Repr(G) — Repr(g), which is fully faithful, i.e., Homg(Vi, Vo) —
Homg(V4, V2) is a bijection. Further? is simply connected if and only § is an equivalence.

The representation theory of a semi-simple Lie algebraefakyc group) over an algebraic
closed field of positive characteristic can be found in [44].

Weyl Dimension Formula: Supposé/ () is an irreducible representation of a semi-simple
algebraic groug with highest weight\. Letp = 3 >~ ;. «. Then the dimension df (\) is
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given by
HaGCI>+ <Oé, A + p)
HQECDJF <O{, p>

dim(V()\)) =

Weyl Character Formula: Sometimes it is convenient to write the elementsX@f/") multi-
plicatively. So, we introduce symbots for A € X (7') subject to the rule*.e# = e*+. The
character of an irreducible representatiof) is given by

P wew (1) (e )

) = e e )

Kostant Multiplicity Formula: Suppose: is an element of the root lattice. Letu:) denote
the number of ways thai can be expressed as a linear combination of positive rodts wi
non-negative integer co-efficients. The functjois called theKostant partition function

Suppose that’(\) is a finite dimensional irreducible representation of a sgimiple alge-
braic groupG with highest weight\. If 4 is a weight ofl/()), then the multiplicitym,, () is
given by

mu(A) = Y (=1)'p(w.(A+ p) — (1 + p)).

1.8 Reductive Group

Recall that, a linear algebraic groapis said to be reductive if its unipotent radidal,(G) is
trivial. If G is connected, the®(G) is a torus. The following theorem reduces the study of
reductive groups to the study of semi-simple groups and tori

Theorem 1.8.1.Let G be a connected reductive algebraic group. Then we ha(@) =
Z(@)°, G = R(G)|G, G], and the subgroufi7, GG] is semi-simple.

Let G be a connected reductive group. Léte a torus inG. ThenZ;(T') is reductive.
This fact is useful for inductive arguments. L{@t) be the subgroup ok (7") generated byb
and letV = (®) ®z R. Then the se® is a subset of the vector spakeand is a root system. If
T is a maximal torus, then the root system is reduced. The rattkioequal to the semi-simple
rank of G, and the abstract Weyl grodp (®) is isomorphic toV = W (G, T).

Now let us assume th&t is a maximal torus. Let be the Lie algebra of” and let® =
¢(G,T). Then

(Dg=1td P, o 9o anddimg, = 1 forall o € .

(2)If a € @, letT, = (Kera)°. ThenT, is a torus of co-dimension one i
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B)Ifae d,letz, = Zg(T,). ThenZ, is a reductive group of semi-simple rank 1, and
the Lie algebrg,, of Z,, satisfieg, =t® g, P g_.. The group’ is generated by the subgroups
Zo, o0 € DT,

(4) The centreZ(G) of G is equal toN,co T,

(5) If a € @, there exists a unique connectéestable (relative to conjugation ) sub-
groupU,, of G having Lie algebra,. Also,U, C Z,.

(6) Letn € Ng(T), and letw be the corresponding elementdf = W (G, T). Then
nUun™! = Uy foralla € .

(7) Leta € ®. Then there exists an isomorphism G, — U, such thatie,(z)t™! =
ca(a(t)z),t € T,z € G,.

(8) The groupd/,,, o € ®, together withl", generate the grou@.

The Bruhat Decomposition: Let B be a Borel subgroup af, and letT” be a maximal torus
of G contained inB. Thend is the disjoint union of the double cosetsw B, asw ranges over
a set of representatives M (7") of the Weyl grouplV’ (BwB = Bw'B if and only if w = v’
in W), i.e.,

G = uwewaB.

Remark: More generally the Bruhat decomposition holds for a grough\&i/V-pair. A BN-
pair in a group is a datum(B, N, S) consisting of sub-group8 and N, such thatB N N is
normal in N, and a set of involutions' in the quotient groupl = N/(B N N). The datum
satisfies the following properties:

(1) The setB U N generates..

(2) The setS generates$V'.

(3) Foranys € S, andw € W we havesBw C BwB U BswB.

(4) For anys € S we havesBs ¢ B.

The grouplV is called the Weyl group of th& N-pair (see [3, pg. 15]). It follows from

these properties th&tV, S) is in fact a Coxeter system, and moreover the third propentybe
refined to

BswB if I(sw)=1(w)+1.

BsBuwlb = { BwBU BswB if l(sw)=1Il(w)— 1.

Let G be a connected reductive group. ThemBiis a Borel subgroup andl is a maximal
torus in B, the pair of subgroup® and N = Ng(T) is a BN-pair for G, where the sefb is
equalto{s, : a € A} C W.
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1.8.1 Classification of Reductive Algebraic Groups

Like semi-simple algebraic groups are classified by rodesys, the reductive algebraic groups
are classified by an invariant calledot datum An abstract root datuns a quadruplel =
(X,Y,®,®Y), whereX andY are free abelian groups such that there exists a bilineapimgp
(-,+) + X xY — Z inducing isomorphism&X ~ Hom(Y,Z) andY ~ Hom(X,Z), and

® C X and®¥ C Y are finite subsets, and there exists a bijectior> o of ® onto®". The
following two axioms must be satisfied:

(RD1): (v, cr) =2

(RD2): If s, : X — X ands,v : Y — Y are defined by, (z) =  — (z,a")a, and
sav(y) = y — (a,y)a, thens,(®) C ® ands,v(PY) C ®Y (for all « € D). (see [115,
pg. 124])

If ® # (), then® is a root system i/ = (®) ®z R, where(®) is the subgroup ofX
generated byp. The set®” is the dual of the root system. The quadruple = (Y, X, Y, @)
is also a root datum, called the dual\bf A root datum igeducedf it satisfies a third axiom

(RD3):a € & = 20 ¢ ®.

Let G be a connected reductive group andlldie a maximal torus id-. Then the quadru-
ple¥(G,T) = (X,Y,®,9) = (X(T7),Y(T),V(G,T), ¥ (G,T)) is a root datum and it is
reduced.

Anisomorphism of a root datu = (X, Y, ®, &) onto aroot datund’ = (X', Y’ &', d'V)
is a group isomorphisnf : X — X’ which induces a bijection b onto ®’ and whose dual
induces a bijection ob’V onto®". If G’ is a linear algebraic group which is isomorphiaio
and7” is a maximal torus ifi?’, then the root dat& (G, 7") and ¥ (G’, T") are isomorphic.

If ¥ is a reduced root datum, there exists a connected reductivg ¢ and a maximal
torus7T in G such thatl = (G, T). The pair(G,T') is unique up to isomorphism. So we
have (see [115, Ch. 9, 10]);

Theorem 1.8.2.For every root datum, there exists a corresponding redectigebraic group.
Further, any two reductive algebraic groups are isomorpifiiand only if their root datums
(relative to some maximal tori) are isomorphic.

1.9 Parabolic Subgroups

Recall that a parabolic subgroup of G is a closed subgépupG such thatz /@ is a projective
variety. Note that a subgroup of G is parabolic if and only if it contains a Borel subgroup.

Let @ be a parabolic subgroup containing a Borel subgrBupLet R(Q) be the radical
of (), namely, the connected component through the identity eheof the intersection of all
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the Borel subgroups a. Let R,(Q) be the unipotent radical @@ and let®, be the subset
of T defined byd™ \ &), = {a € &+ : U, C R,(Q)}. Letd, = -0, &g = 5 U @,
andAgp = AN ®y. Then®y is a subroot system ab called the root system associated to
@, with Ay as a set of simple roots artﬁdé (resp. ) as the set of positive (resp. negative)
roots of @, relative toA,. On the other hand, given a subskebf A, the subgroug) of ¢
generated by3 andU_,,, a € &1 = {2 scsapB + ag > 0} N T is a parabolic subgroup
of G containingB. Thus the set of parabolic subgroups containthgs in bijection with the
power set ofA. In particular forQ) = B (resp.G), A is the empty set (resp. the whole 26t
The subgroup of) generated by" and{U, : « € ¢4} is called the_evi subgroumssociated
to A, and is denoted by.,. We have that) is the semidirect product ak,(Q) and Lg
called thelLevi decompositionf ). The set of maximal parabolic subgroups containthgs

in one-to-one correspondence with Namely givemy € A, the parabolic subgrou@ where
Ag = A\ {a} is a maximal parabolic subgroup, and conversely. We shabidethe maximal
parabolic subgrou@), whereAy = A\ {a;} by P,.

1.9.1 The Weyl Group of a Parabolic Subgroup

Given a parabolic subgroup, let W, be the subgroup ofl” generated bys, : a € Ag}.
Wy, is called the Weyl group af. Note thatiV, ~ N (T)/T, whereNy(T') is the normalizer
of T"in Q. In each cosewWW, € W/Wy, there exists a unique element of minimal length.
Let W5 be the set of minimal length representativediofiV, . We havelj™ = {w €
W l(ww') = l(w) + l(w'),forall w' € Wy}, In other words, each element € W can
be written uniquely as = uv whereu € W§*™", v € Wy andl(w) = I(u) + I(v). The set
Wg can also be characterized @8} = {w € W : w(a) > 0,forall o € Ag}. WG is
also denoted byV“. Similarly in each cosewW, € W/W,,, there exists a unique element
of maximal length and the sét'/;** of maximal length representatives 13f/ 1/, is equal to
{w e W :wla) < 0,forall « € Ag}. Further ifwg is the unique element of maximal
length inWg,, then we havéV 5 = {wwq : w € Wg?”m}. If @ is the parabolic subgroup
corresponding to a subsebf A, thenl, (resp.1W?) is also denoted biy/; (resp.W7).

1.10 Schubert Varieties

Let G be a semi-simple algebraic group over an algebraicallyeddgeld K. Let T be a
maximal torus ofG' and B be a Borel subgroup aff containing7’. The projective variety
G/P is called a generalised flag variety. For the left actioriiobn G/ P, there are only
finitely many fixed points{e,, := wWp : w € W/Wp}. Forw € W/Wp, the B-orbit

Cp(w) := Be, = BwP/P in G/P is a locally closed subset @/ P, called theSchubert
cell. The Zariski closure of'»(w) with the canonical reduced structure is ehubert variety
associated tav, and is denoted by r(w). Thus Schubert varieties &/ P are indexed by
WP, Note that if P = B, thenWp = {id}, and the Schubert varieties @/ B are indexed by
the elements ofl’. We denote the Schubert variety corresponding te W by X (w).
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Dimension of Xp(w): If P = B, then forw € W, the isotropy subgroup i’ at theT fixed
pointe,, in G/B is wBw™!; hence, the isotropy subgroup in the unipotent radigalof B)
ate,, is generated by the root subgrouds,,a € ®* : U, C wBw™'},i.e.,{U,,a € ®* :
w~!(a) > 0}. Hence we get an identification

Cp(w) ~ H U,

{aedt:w—1(a)<0}

Sincel{a € &+ : w™!(a) < 0}| = I(w), Op(w) is isomorphic to the affine spad€/ ™). Hence
we have
dimXp(w) = dimCp(w) = l(w).

For a general paraboli®, considerw € W/Wp and denote the unique representative
for w in W2 (resp. W) by wi™ (resp. wn**). Now under the canonical projection
7p : G/B — G/ P, Xp(wp™) maps birationally ont& »(w), andX g (wp®) = 75 (Xp(w)).
Hence we obtain

dimXp(w) = dimXpg(wy™) = L(wH™).

Note that,G/B = X (wy), wo being the longest element i¥. The cellCg(wy) is the
unigue cell of maximal dimension (fw,) = |®*|); itis affine, open and dense @y B, called
the big cell of G/B. Itis denoted a®). Let B~ = w,Bw, ' be the opposite Borel subgroup
to B. The B~ orbit B~e;,; is again affine, open and dense(i B, and is called thepposite
big cellof G/B, and it is denoted a®~. For aw € W, Yg(w) = Xp(w) N O~ is called the
opposite cell iNXz(w).

There is a partial order ol/p, known as the Bruhat order, induced by the partial order
on the set of Schubert varieties given by inclusion, nanfelyy,, wy € Wp,w; > wy <
Xp(w1) 2 Xp(ws). Taking@ = B, we obtain a partial order oV,

The Bruhat decomposition 6/ P and X p(w) are induced by the Bruhat decomposition of
G/B.Theyare//P = | |,cyyr BewP(modP) andXp(w) = [ewr o, expw)) Béw P(modP)
respectively.

Example: LetG = SL,,; andP = P,,. The semi-simple part of thi® is justSL,. Thus
Wp = S, and has the longest eleméenty)p = s, (Sn_15,) - (s2- - $,). Note thatw, =
(wo)p(s1---s,). The number of Schubert varietiesdy P is then[IW : Wp| = n + 1. These
id if i =0;

aregivenbythesequenm%‘:{s s1 f1<i<n
8 <i<n.

1.10.1 Line Bundles on G/P

For the study of7/ B, there is no loss in generality in assuming t&ais simply connected; in
particular, the character group(7") coincides with the weight latticA. Henceforth, we shall
suppose thafr is simply connected. The canonical projection G — G/B is a principal

B-bundle with B as both the structure group and fiber. Ahye X (7') defines a character
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A : B — G, obtained by composing the natural mBp— 7 with A : T" — G,,. Then we
have an action o8 on K, namelyb.k = A\g(b)k, b € B, k € K. SetE = G x K/ ~, where
~ is the equivalence relation defined by, b.k) ~ (g9,k),g € G,b € B,k € K. ThenE is
the total space of a line bundle oM@y B. We denote byC()), the line bundle associated o
Thus we obtain a map

L:X(T)— Pic(G/B), A — L(N),
wherePic(G/B) is the Picard group af// B which is by definition, the group of isomorphism
classes of line bundles di/B. By a theorem of Chevalley [16] the above map is in fact an
isomorphism of groups sind& is simply connected.

On the other hand, consider the irreducible divis&r8ugs;), 1 < i < lonG/B. Let
L; = Og/p(X(wps;)) be the line bundle defined by (wys;), 1 < ¢ < [. The Picard group
Pic(G/B) is a free abelian group generated by thgs, and under the isomorphisf} :
X(T) ~ Pic(G/B), we havel(w;) = L;, 1 < i < (see [16]). Thus for = 3! (), a;)w;,
we havel()\) = @l_, £,

For a general parabolié, any\ € X (7") can not be lifted to a character Bfalways. To be
a character of’ the weight\ must be orthogonal to the positive roots/éf Therefore A must
be an integral linear combination of the fundamental weight,, - - -, =, dual to the simple
roots inAp. We callwy, - - -, w, the fundamental weights @ and the sublatticA, C A they
generate the weights af.

A line bundle£ on an algebraic varietX is very ample if there exists an immersion
X — P™ such that*(Op-(1)) = L. Aline bundleL on X is ample if£™ is very ample for
some positive integen. > 1. A line bundle£ on X is said to benumerically effectiveif the
degree of the restriction to any algebraic curveXims non-negative.

The following theorem summarizes some well-known factaiaboe bundles ordz/ P (for
example see [113]).

Theorem 1.10.1.Let X = G/P, whereG is a semi-simple algebraic group and P is a
parabolic subgroup. Letoy,---,w, be the fundamental weights &f and let £ be a line
bundle onX defined by\ = ", m;w; € Ap. Then

1) X = X; x--- x X, whereX; = G;/P,, G; is a simple algebraic group an®, is a
parabolic subgroup of7;,i =1, -- -, s.

@) L=pril;®---Qprily, wherel; is aline bundle onX;,i =1,---,s.

(3) Pic(X) ~ Ap. In particular, Pic(X) ~ Z if P is a maximal parabolic subgroup 6f.

(4) £ is numerically effective if and only ¥ is dominant.

(5) L is very ample if and only ik is a regular dominant weight(\, ;) > 0, for all a; € A).

As we have described above, [Btdenote the total space of the line bundlé)\), over
G/B. Leto : E — G/ B be the canonical map(g, c) = ¢gB. Let

My ={f € K[G]: f(gb) = A(b)f(9), g € G, beG}.

Then M, can be identified with the space of sectidd$(G/B, L(\)) := {s : G/B —
E : 0os = idgp} as follows. Tof € M,, we associate a section: G/B — E by
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settings(¢gB) = (g, f(g)). To see that is well defined, consides’ = ¢b, b € B. Then
(9. f(g") = (gb, f(gb)) = (gb, A(b)f(9)) = (gb,bf(g)) ~ (g, f(g)). From this, it follows
that s is well defined. Conversely, given € H°(G/B, L())), considergB € G/B. Let
s(gB) = (¢', f(¢')), whereg’ = gbfor someb € B (note thaty’ B = g3, sinceo o s = idg/p).
Now the point(¢’, f(¢')) may also be represented loy, A\(b) "' f(gb)) (since (¢, f(g')) =
(gb, f(gb)) ~ (g, \(b)~1f(gb)). Thus giverny € G, there exists a unique representative of the
form (g, f(g)) for s(¢B). This defines a functiotf : G — K. Further, thisf has the property
that forb € B, f(g) = M(b)"'f(gb), i.e., f(gb) = A(b)f(g), b € B, g € G. Thus we obtain
an identification

My, = H(G/B, L(\)).

It can be easily verified that the above identification presethe respectivé’-module struc-
tures.

1.10.2 Weyl Module

In this section we assume that the ground fiel€isLet G be a semi-simple algebraic group
over C with root system® and the set of simple rootd. Letg = Lie(G) and letU(g)
be the universal enveloping algebragflLet U+ (g) be the subalgebra @f(g) generated by
{X, : a € A}, andU; (g) be the KostanZ-form of U™ (g), which is by definition theZ-
subalgebra ot/ *(g) generated by{%, a € dt ne N}

Let A be a dominant weight, anid(\) be the irreducibl&r-module overC. Fix a highest-
weight vectoru, in V of weight \; we have that the weightin V' (\) has multiplicity one. For
w € W, fix a representative,, for w in Ng(7'), and setu,, » = n,u,, known as arextremal
weight vectorit is a weight vector it/ (\) of weightw(\), and is unique up to scalars. Having
fixed \, we shall denote, (resp.u.,») by justu (resp.u,, ). SetV,, z(\) = U (g)u,,. For any
field K, letV,, » = Vi z(A) @ K, w € W. ThenVg(\) := Vyon = Viz(A) @ K is theWeyl
modulewith highest weight\, and forw € W, V,,  is theDemazure moduleorresponding to
w and\ (see [72, pg. 25]). The vectorts, ) for w € W are also called extremal weight vectors
in Vk(A). Then the following theorem can be found in [49].

Theorem 1.10.2.H°(G /B, L(X)) ~ Vi (A\)* and HO(X (w), L(N)) ~ V: ,.
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Chapter 2

Invariant theory

This chapter is a brief survey of invariant theory of finitegps as well as reductive algebraic
groups. Here we present many classical as well as moderhisr@sinvariant theory mostly
on computational aspects. In the last section of this chd@eometric invariant theory” is
introduced.

2.1 Introduction

Invariant theory served as one of the major motivationstferdevelopment of commutative al-
gebra: from Hilbert’'s basis theorem to Noetherian ringsraodules. It is primarily concerned
with the study of group actions, their fixed points and theits. The actions are usually on
algebras of various sorts, the fixed points are subalgebdeathe orbits form a variety of groups
on rings and the invariants of the action, e.g. the fixed sgoaind related objects. The basic
object to study is the ring of invariants. In this chapter waldvith only linear actions. i/ is a
finite group acting linearly on a vector spacever a fieldK', then the action may be extended
to K[V], the algebra of polynomial functions éf, by the formulag f)(v) := f(g~'.v) for all

v € V and the ring of7-invariant polynomials is([V]% .= {f e K[V]: gf = f Vg € G}. If

G is alinear algebraic group acting on an affine varigtythen the same formula above defines
an action on the coordinate ring[X] of X and K[X|¢ .= {f € K[X]:gf = fV g € G}.

In this section we focus on the case whEn= V is a representation df and, when we talk
about algebraic group actions, the base fi€lt algebraic closed, unless stated otherwise. The
G action onK V] preserves degree aid[V'|“ C K[V] inherits the grading.

The basic question in invariant theory is wherki§/]¢ finitely generated ? If it is finitely
generated then find the generators and relation&fof]“ (fundamental systems of invariants),
find the degree bounds for the generators. WheR [§]“ a polynomial ring ? If not then
what is the distance ok [V]“ from being a polynomial ring ? and, what is the distance of
K[V]¢ from being free as module over a homogeneous system of ptar® What is the
cohomological co-dimensionlepth( K[V]¢) ?
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2.2 Finite Generation

The question, whether there is always a finite set of fundémhevariants for arbitrary groups
was considered to be one of the most important problems ith X@ntury algebra. It was
proved to be true, using explicit calculations, by P Gordanf = C andG = SLy(C) in
the 1860/70’s. In 1890 David Hilbert introduced new methwdmvariant theory, which still
today are basic tools of modern algebra (Hilbert’s basierém). Applying these he was able
to prove finite generation for the invariants of the generadr groups~L,,(C).

In the year 1900, on the occasion of the international caasgod mathematics in Paris,
Hilbert posed the general question of finite generation adiiiant rings for arbitrary groups
as the 14'th of the now famous “Hilbert problems”. In gendha answer to this question is
negative: In 1958 Nagata gave a counterexample to this.

For finite groups, Hilbert's 14'th problem has been solvedratively: In 1916 Emmy
Noether had considered the problem specificallyfoe= C, where she was able to find con-
structive procedures to compute fundamental systemsogtkpli Ten years later (1926) she
proved that the invariant ring is finitely generateddifis a finite group ands is an arbitrary
field. The price one has to pay for this generality is, thattoef is not constructive and does
not provide an immediate algorithm how to compute a finiteof@indamental invariants.

Theorem 2.2.1.(Hilbert [40], 1890; Noether [88, 89], 1916, 1926). Let G bdinite group.
Then the ring extensioR [V |9 C K[V] is finite andK [V]¢ is a finitely generateds-algebra.

In the general setting, finite generation no longer holdsf@r|“. There are many counter
examples. This is the Nagata’s famous counter example teeH® 14’th problem.

Nagata’'s counter example [79] Let G’ be the subgroup of? equal to the set of solutions
(t1,---,t,) of a system of linear equatio@;‘:1 a;;x; =0, ¢ =1,2,3. The groupG’ acts on
the affine spac€?" by the formula(t, - - -, t,) (w1, y1, - Tn, Yn) = (21 + t1y1, Y1, -+, T +
tnYn, yn). Now consider the subgrouli = {(hy,---,h,) € G - [[\_, hi = 1} of G, It
acts onC?" by the formula(hy, - -+, hy).(z1, Y1, Tn, Yn) = (hixy, hays, -+ hn@y ho ).
Both of these groups are identified naturally with subgrooips$ L., and we enlarg&s’ by
considering the groupr = G'H. Then Nagata showed that, in an appropriate choiae&f
and the numben the algebra of invariant&’[z,, - - -, x,,, y1, - - -, ¥, is not finitely generated.
For example, taking: = 16 anda,;’s are algebraically independent ov@ the invariant
algebra is not finitely generated (see [22, pg. 43]).

Remark: Here are some more counter examples involving the additvey~,. Let K be an
algebraically closed field of characteristic Roberts [94] found a non-linear action Gf, on
KT such that the invariant ring is not finitely generated. RégeDaigle and Freudenburg [18]
found the following counter example in dimension 5. Consttle action of7, on K° defined
by g.(a,b,z,y,2) = (a,b,x + ga®,y + g(ax + b) + %gza?’, Z 4 gy + %gz(ax +0b) + %g?’a?’).
ThenCla, b, x,y, 2% is not finitely generated. However far < 3, Zariski [125] showed that
for any rational action of7, on K that the invariant ring is finitely generated and/ifis a
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representation of;, over a fieldK™ of characteristi®), Weitzenbock [122] proved that[V]¢
is finitely generated.

Reductivity, Linear Reductivity and Geometric Reductivity: We first recall the definition
of a reductive algebraic group from last chapter. A linegehtaic groug- is called reductive

if its unipotent radicalR,(G) is trivial, i.e., the largest connected normal unipoterigsoup
of G is trivial. The examples aré&' L, all semi-simple groups, tori, finite groups, etc. A
linear algebraic groug- is called linearly reductive if for any rational represdia V' and
any nonzero invariant vecterc V' there exists a linear-invariant functionf on V' such that
f(v) # 0. Equivalently every rational representatioiof GG is completely reducible. A linear
algebraic groupg- is called geometrically reductive if for any rational repeatationl” and any
nonzero invariant vector € V there exists a homogeneodsinvariant polynomialf on V/
such thatf (v) # 0.

In characteristi©), an algebraic group is reductive=- linear reductivee- geometrically
reductive. For any characteristic reductiviéy= geometric reductivity. Clearly in any char-
acteristic linear reductivity—=- geometric reductivity. The converse is not true, thought Fo
example a non-trivial finite-group in characteristip is geometrically reductive but not lin-
early reductive. Nagata [80] proved that in characterjstidinear algebraic grou@' is linearly
reductive if and only ifG" is a torus andG /G°| is not divisible byp. These groups are com-
pletely classified: finite groups whose order is not divisiby p, tori, and extensions of tori by
finite groups whose order is not divisible py

Example: Define a regular action @, on K? by g.(z,y) = (x+9.y,y), g € Ga, (v,y) € K2
ThenK[z,y]“ = K[y]. If v € K \ {0} = (K?)%, then every invariants vanishes onThe
group is therefore not geometrically reductive.

In 1964 Nagata proved the following finiteness theorem fangetrically reductive groups.

Theorem 2.2.2.(Nagata [81]). If X is an affineGG-variety andG' is a geometrically reductive
group, thenk [ X ¢ is finitely generated. In particular if’ is a representation af?, thenK [V ]
is a finitely generateds-algebra.

The converse is also true. Popov proved the following.

Theorem 2.2.3.(Popov [90]). If K[X]“ is a finitely generated algebra for every affite
variety X, thenG must be reductive (Geometrically reductive).

2.3 Construction of Invariants

Let V' be a finite dimensional representation of a finite gréipver a field K. For an orbit
B c V* define the orbit polynomiabs (X) = [],.5(X + b) € K[V]9[X]. Note thatpp(X)
is a polynomial inX of degred B| and expanding we gets(X) = >_, ._ 5 ci(B).X7. The
defining classes;(B) € K[V]“ are calledorbit Chern classesf the orbit B. Thefirst orbit

30



Chern class: (B) is the sum of the orbit elements. |IB| = k thenc,(B) is the product of all
the elements in the orbi® and called théop Chern clas®f the orbit. Ifb € B then the top
Chern class oB is also referred to as theormof b. The first Chern class is additive and the
norm is multiplicative.

Theorem 2.3.1.(L. Smith and R.E. Stong [108]). L&t be a representation of a finite groudp
over a fieldK'. Suppose either the field is of characteristic zero or that the order 6fis less
than the characteristic of(. ThenK[V'| is generated by orbit Chern classesblis the size
of the largest orbit of7 acting onV* then K'[V]“ is generated by classes of degree at ndost

In [23], Dickson showed that for z2zdimensional representation of the quaternion grQup
over the fieldk = F;, K|z, y]“® is not generated by orbit Chern classes. So the assumption
that the characteristic of is zero or larger than the order [@f| in the above theorem cannot
be relaxed to the assumption th&t is prime to the characteristic &f.

There are many other cases where the orbit Chern classesatgettee ring of invariants:
if G is solvable and the characteristic Bfdoes not dividdG| (see [110]); ifG = A, is the
alternating group and the characteristidofs prime to| A,,| (see [111, 112]); if7 is a Coxeter
group containing no factor of the foridg, £, Es (see [71]).

2.4 Hilbert Series of an Invariant Algebra

Let V' be a linear representation of a grogpover a field K. We would like to compute
the dimension of the homogeneous compon’éﬁf]f consisting of invariant polynomials of
degreej. These numbers may be conveniently arranged in a genefatietjon called the
Hilbert series (Poincaré Series). The Hilbert series ofaaled K -algebrakR = @gecz. R IS
the formal power series defined BY(R, t) = 3~ ., dimg(Rq)t". .

Whend is finite, there is a beautiful theorem about the Hilberteseof invariant ring in
non modular case and in the modular case when the group astynpermutation. Assume
that characteristic o’ does not dividéG| and letl” be a finitely generate® G-module. It is
known from representation theory (for example see [99, @]).df finite groups, that there is a
“Brauer lift” V to zero characteristic: in brief terms, this is @t-module which is free as an
O-module, wher&? is a suitable discrete valuation ring with quotient fiéldf characteristic
zero and a maximal ideal of O such that?/m ~ K andV ®o K ~ V. In particular for each
g € G there is a "lift" of detg|y) € K tode(g|;) € O.

Theorem 2.4.1.(Molien [77]). LetG be a finite group acting on a finite dimensional vector
spaceV over a fieldK of characteristics does not dividé&|, then one has

oo 1 1
WU 0= a1 2 ety

If characteristic ofK is 0, thendet(1 — g|;..t) can be taken aget(1 — g
If K is arbitrary andG < S, thenH (K[K"|% t) = H(C[C"]|%, ).

pet).
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The Molien’s formula can be generalized to arbitrary rethecgroups as well. Assume
that K = C. SinceG always contains a maximal compact subgraypve can choose a Haar
measurely, on C' and normalize it such thzfg dp = 1. LetV be a finite dimensional rational
representation afr. Then the Hilbert series is given by (see [22, pg. 180])

Gy _ i
H(C[V] J)—/Cm

For ar-dimensional toru§” andV” a rational representation @f, there is a simple formula for
the Hilbert series of the invariant ring. Choose generators,, - - -, z,. of X(T') ~ Z". The

action of7" on V* is diagonal and given by the matriag(m,(z), ma(2), - - -, my(z)), where
my,my, -+ -, m, are Laurent monomials igy, 25, - - -, 2,. Then the Hilbert series ok [V]T is
given by (see [22, pg. 184]) the co-efficientg - - - 20 = 1in

1

(I —=my(2)t)(1 —ma(2)t) -+ (1 — my,(2)t)

Let V' be a rational representation of a connected reductive gfbaper an algebraic closed
field K of characteristic 0. There is a formula by Weyl for computhiidpert series of the
invariant ring K[V]“. Fix a maximal torug” of G’ and a Borel subgroup of G containing
T. Let W be the Weyl group of7 and A\, Ao, - - -, A\, be the fundamental weights. Let us
denote the character @f associated to a weight € X (T') by 2*. Then every character of
T is a Laurent monomial in*’s. The action ofl" on VV* is diagonal and given by the matrix
diag(my(z),ma(2),- -, my(2)), Wheremy(z), mo(2),- -+, m,(z) are Laurent monomials in
2*’s. Then the Hilbert series (see [22, pg. 186)) is the coefficdfz” in

Dwew (—1)1)z0@
(1 =m(2)t)(1 = ma(2)t) - - - (1 = mn(2)1)
wherep is the half sum of positive roots.

2.5 UFD and Polynomial Algebra

In this section we investigate when is a ring of invariantsEDUand when is it a polynomial
algebra. We begin with an example where the invariant riflg fa be both.

Example: Let K be a field of characteristic not equal Consider the action df, on K[z, y]
by algebra automorphisms: — —z andy — —y. Then the ring of invariant¥ [z, y|2* =
K[z% y?, xvy]/((zy)? — 2*y?), which is not a UFD (and not a polynomial ring).

As a positive result we have the following theorem;

Theorem 2.5.1.([86, pg. 27]). Letp : G — GL(V) be a representation of a finite group
over a fieldK. If there is no non-trivial homomorphisnis — K*, thenK[V]¢ is a UFD.

The above theorem covers several interesting cases, such ssa simple non-abelian
group, G is perfect (equals to its own commutatarhar(K) = p andG is a finite p-group,
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|K| = gandG is a group such thated(|G|, ¢ — 1) = 1, K = Q andG is a group of odd order,
K = F; andG is finite or K = F3 andG has odd order.

Let V' be a vector space of dimensiorover a fieldK. A linear transformatiom : V' — V
is called a pseudo-reflection, if it fixes pointwise a subspaicco-dimension one. L&t <
GL(V) be a finite group acting linearly ori. We say that is a pseudo-reflection groupdt
is generated by pseudo-reflections.

The list above is the most special cases of the followingaittarization of representations
with UFD ring of invariants due to Nakajima.

Theorem 2.5.2.(Nakajima [83]). Letp : G — GL(V) be a representation of a finite grodp
over a fieldK. Denote byH the subgroup of7 generated by all the pseudo-reflectiongin
Then the following are equivalent:

1. K[V]% is a UFD.
2. G/ H has no non-trivial one-dimensional representation.

3. K[VI{ == {f € K[V] : g.f = Xyg).f Vg € G} is a free K[V]9-module for every
one-dimensional representation G — K*.

G.C. Shephard and J.A. Todd showed in 1954 that the ring afismts of a finite group over
a field of characteristic zero is a polynomial ring if and orlyne action ofG onV' is generated
by pseudo-reflections. Their proof of the “if” half of thisebrem was by classification. In
1955, C. Chevalley gave an elegant algebraic proof thaheifaction of a finite groug: on
V is generated by reflections (still assumirigir (K) = 0), thenK[V]¢ is a polynomial ring.
Soon thereafter, J.P. Serre observed that Chevalley’s prasalso valid for actions generated
by pseudo-reflections and that it therefore provided anbaége proof of the “if” half of the
Shephard-Todd theorem.

Theorem 2.5.3.(Chevalley-Serre-Shephard-Todd, [15, 98, 106]). Ldie a finite dimensional
representation of a finite grou@@ over a fieldK'. Assume that the order 6f is relatively prime
to the characteristic of(. ThenG is generated by pseudo-reflections if and onli{#/]¢ is a
polynomial algebra. In this case one also H&§ = [[._, deg(f;), wheref, f2,-- -, f, are the
generators of [V]¢.

Recently (2007) Broer gave an extension of the above thetwgrositive characteristic.

Theorem 2.5.4.(Broer [5]). Supposé/ is an irreducible representation of a finite grodp
over a fieldK, then K[V]¢ is a polynomial algebra if and only iff is generated by pseudo-
reflections and there is a surjectivé[V]“ linear mapr : K[V] — K[V]C.

The following criterion due to Kemper is valid over any field.

Theorem 2.5.5.(Kemper [60]). Letl” be an-dimensional representation of a finite group
G over a fieldK. ThenK|[V]% is a polynomial ring if and only if there is a homogeneous
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system of parametér,, - - -, h,, of K[V]% with |G| = []}_, deg(h;). In particular K[V]¢ =
Klhy, hy, -+, hy) implies|G| =[], deg(h;).

If G < GL(V) is generated by pseudo-reflections, but the characteof#ic divides the
order of G, then the ring of invariant&’[V]“ need not be a polynomial algebra. For example
([86, pg. 193]) for the Weyl groupl’ of type F}, the ring of invariants is not a polynomial
algebra at the prima (3 divides|WW| = 1152).

The following theorem shows that for a pseudo-reflectiorugrdhe ring of invariants is
always a UFD.

Theorem 2.5.6.(A. Dress [28]). Letp : G — G L(n, K) be a representation of a finite group
over a fieldK'. If p(G) is generated by pseudo-reflections thefi’]“ is a unique factorization
domain.

An element) € GL(V) is called a transvection Ker(/ —n) C V has co-dimension 1 and
Im(I —n) C Ker(I —n). The hyperplandd,, = Ker(I — n) is called the hyperplane of.
We say that? C GL(V) is a transvection group i is generated by transvections (see [109,

pg. 242]).

Theorem 2.5.7.(Nakajima [82]). LetV be a finite dimensional irreducible representation of a
finite groupG over a fieldK'. Assume thathar(K) # 2, dim(V') > 3 and thatG is generated
by transvections. TheR [V]“ is a polynomial algebra if and only & is conjugate orG L (V)

to SL(n, F,), whereF, is a finite field of characteristig.

Definition: Assuming that the ground field is of positive characteristig, a p-subgroup
G of GL(V) is called a Nakajima-group (onV) if there is a basif3 = {z1, 23, -, 2, } of
V' such that under this basis is upper triangular and such th@t= G, - - - G,,, where each
subgroup; := {g € G|gz; = 2, for j # i}. The basisB is called a Nakajima basis (see [10,
pg. 141]).

Obviously Nakajimap-groups are modular reflectigngroups. But a reflectiop-group
may not be a Nakajima-group (see [124, pg. 4]).

The following important result concerns Nakajimrgroups.

Theorem 2.5.8.(Nakajima [85]). LetV be a finite-dimensional vector space over the prime
field F,,, and P a p-subgroup ofZL(V'). ThenP is a Nakajimap-group if and only ifF,[V]
is a polynomial ring.

The above result does not extend to other fields of charatitarias is shown by an example
due to Stong (see [86, pg. 164]). However whinis a field of characteristip, in 1983
Nakajima proved that if” is a Nakajima group thek [V]” = K[N(z),---, N(z,)], where
N(zi) = [1,ep 9-2, the orbit product of;. Recently (2008) Y. Wu in his Ph.D thesis proved
the converse.
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Theorem 2.5.9.(Nakajima [85], Wu [124]). P is a Nakajima-group with respect tB if and
only if K[V]? is a polynomial ring. In that cas& [V'|” is generated b (z;)’s.

The following theorem shows that for an abelian pseudogatdie groupG the property
that K[V]“ be a polynomial algebra is controlled byylow subgroup in characteristic

Theorem 2.5.10.(Nakajima [84]). Letp : G — GL(V') be a pseudo-reflection representation
of an abelian groug> over a fieldK of characteristigp. Then, K [V]%¥»(©) is a polynomial al-
gebra if and only ifK[V]¢ is a polynomial algebra, whergyl,(G) denote a Sylow-subgroup
of G.

Kemper and Malle classified all irreducible representaibnof G such thatK[V]“ a
polynomial ring.

Theorem 2.5.11.(Kemper-Malle [61]). Letl” be a finite dimensional irreducible representa-
tion of a finite groupG over a fieldk. ThenK[V]“ is a polynomial ring if and only if7 is a
reflection group and< [V']“" is a polynomial ring for every non-zero linear subspateof V/,
whereGy, = {g € G : g.w = w for everyw € W}.

Very recently (2010), Fleischmann and Woodcock [36] shaothetlif |G| = p™ andchar(K) =
p then there is a non-linear faithful action 6fon K [z, - - -, z,,] such thatK [z, - - -, z,] is a
polynomial ring.

A method for classifying those reductive groups having gpomial ring of invariants was
suggested in 1976 by V. Kac, V. Popov and E. Vinberg [50]. gshis method G. Schwarz
[97] in 1978, and independently O. Adamovich and E. Goloyitjan 1979, enumerated the
representations of complex connected simple algebraigpgrénaving a polynomial ring of
invariants. In 1989, P. Littelmann [74] listed (up to the mglence relation called castling) the
irreducible representations of connected semi-simplgxexgroups whose rings of invariants
are polynomial rings. While the result of Shephard and Taddgysimple conditions foK [V/]
to be a polynomial algebra @ is finite, there is no known similar simple characterization
a semi-simple algebraic group.

WhenG = T a torus, in 1994, D. Wehlau [121] gave two constructive dateach of

which determines those representationg’dbr which the ring of invariants is a polynomial
ring.

2.6 Cohen-Macaulay Property

In a graded Noetheriafr-algebrall = ©gcz., R4, @ sequencgy, fo, - - -, f. of homogeneous
elements ofR is called ahomogeneous system of parameters, f>, - - -, f, are algebraically
independent and is finitely generated as a module over the subring- K|[f1, fo, -, f+],

i.e., if there existy, g2, -+, g € R such thatR = Ag, + Agy + --- + Ag,,. The Noether
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normalization lemma asserts th&talways has a homogeneous system of parameters. The
numberr is called theKrull dimensionof R. The ring R is Cohen-Macaulayf R is a free
K[hy, ha, - -, h.]-module for some homogeneous system of paramétera,, - - -, h,.. It can

be shown that ifR is Cohen-Macaulay theR is a free K[hy, hs, - - -, h,]-module for every
homogeneous system of parametérsh., - - -, h,. If R = K[V]¢ then the elements of a ho-
mogeneous system of parametefis,fo, - - -, [ are calledprimary invariantsand the module
generatorsy, g»,- -+, g, € R are calledsecondary invariants Together, primary and sec-
ondary invariants generat€[V]“. Of course there are many choices for primary invariants
and secondary invariants.

Theorem 2.6.1.(Hochster and Eagon [41]). Lét be a finite dimensional representation of a
finite groupG over a fieldK . If char(K) 1 |G|, thenK[V]¢ is Cohen-Macaulay.

The above theorem is false in the modular case. In 1980 gsHud-Skjelbred [30] showed
that F,[V,,|» is not CM for allp > 5.

The following theorem is due to Campbell, Hughes, KempeanghWehlau [9].

Theorem 2.6.2.Let char(K) = p > 0 and let N be a normal subgroup off with cyclic
factor groupG/N =~ C,. Then for every representatiori of GG, the ring K[mV]% is not
Cohen-Macaulay forn > 3.

The following two theorems due to Kemper give simple cradar an invariant ring to be
Cohen-Macaulay in positive characteristic.

Theorem 2.6.3.(Kemper [63]). Letchar(K) = p and letV be a finite dimensional repre-
sentation of @ group G over K such thatk [V]“ is Cohen-Macaulay, the@ is generated by
bi-reflections, i.e., by € G which fix a subspac€& C V' of co-dimensior.

Theorem 2.6.4.([22, pg. 98]). LetV be a finite dimensional faithful representation of a fi-
nite groupG over a field K. Let f1,---, f, € K[V]Y be primary invariants of degrees
dy,--+,d,, and letg,-- -, g,, be a minimal system of secondary invariants. THE | is
Cohen-Macaulay if and only i| G| = [[\_, d;.

The following theorem shows that the Cohen-Macaulay prtyéris [V]¢ in characteristic
p is controlled by a-Sylow subgroup of-.

Theorem 2.6.5.([109, pg. 257]). LetV be a representation of a finite group over a field
K of characteristicp. If K[V]%»(©) is Cohen-Macaulay then so &[V]“, whereSyl,(G)
denote a Sylow-subgroup of?.

The following theorem can be found in [109, pg. 260].

Theorem 2.6.6.Letp : G — GL(V) be a finite dimensional representation of a finite group
G over F,. If p(Syl,(G)) = Uni(m, F,) for some integerm < n then F,[V]¢ is Cohen-
Macaulay, wheré/ni(m, F},) denote the group of unipotent matrices.
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Kemper has classified all groups, whose modular regulaeseptation has a Cohen-Macaulay

ring of invariants.

Theorem 2.6.7.(Kemper [64]) For a finite groug- with group algebral’G, F|F'G]¢ is Cohen-
Macaulay if and only ithar(F) 1 |G| or G € {Za, Z3, 7o x Z3}.

The following theorem is due to Hochster and Roberts for@dity reductive group over a
field K that is not necessarily algebraically closed.

Theorem 2.6.8.(Hochster and Roberts [42]). I is a representation of a linearly reductive
group over a fieldk, then K [V] is Cohen-Macaulay.

If X is a smooth affin€7-variety, Hochster and Huneke [43] proved that the ring vari
ants is Cohen-Macaulay. Kemper proved a partial convertigecdbove theorem.

Theorem 2.6.9.(Kemper [65]). Suppose thét is a reductive group and that for every ratio-
nal representatiot of G the invariant ring K [V] is Cohen-Macaulay. The@ is linearly
reductive.

Since in characteristi¢ the notion of reductivity and linear reductivity are sana, 4 re-
ductive group the ring of invariant is Cohen-Macaulay. Bbt above theorem shows that
the classical groups in positive characteristic have malisepresentation with non-Cohen-
Macaulay invariant rings. The following example shows tloaita rational representation of
a non-reductive group, the ring of invariants can be Coheaxaddlay.

Example: Let V' be a rational representation 6f, over C. The action ofG, on V' can be
extended to an action &fL,(C), and since4, is a maximal unipotent subgroup 6f.,(C),
we have an isomorphisi[V]%(©) ~ C[V @& C?]512(© ([114, pg. 69]), where5S L, (C) acts
naturally onC2. Now sinceS Ly (C) is linearly reductiveC[V]% is Cohen-Macaulay, although
G, is not reductive.

2.7 Depth of an Invariant Ring

In the last section we saw that the ring of invariants may re@ahlvays Cohen-Macaulay.
If it is not Cohen-Macaulay, then the question is, how clasa iK' [V]¢ to being a Cohen-
Macaulay ring ? That is measured tpth(K[V]¢) := maximal regular sequence ii[V]¢.
From Auslander-Buchsbaum-formula it follows thgf’|“ is Cohen-Macaulay if and only if
depth(K[V]9) = dim(K[V]9).

The first formula for the depth of a cyclicgroup was given by Ellingsrud and Skjelbred
[30].

Theorem 2.7.1.Let V' be a finite dimensional representation of a cygligroup (withp =
char(K)). Thendepth(K[V]%) = min{dimx (V) + 2, dimg (V) }.
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The following theorem is due to Kemper.

Theorem 2.7.2.(Kemper [66]). LetV be a finite dimensional representation of a finite group
G over a fieldK. Suppose thal7] is divisible byp = char(K) but not byp®. Letr be the
smallest positive number such thdt (G, K[V]) # 0. Then

depth(K[V]9) = min{dimg (V") +r + 1, dimg (V)},

whereP < (G is a Sylowp-subgroup.

A group G is calledp-nilpotent if it has a normab-complement, i.e. a normal subgroup
N of order co-prime tg, such thatz/N is ap-group (which then has to be isomorphic to a
Sylow p-group of G) (see page 68 of [10]). Then recently (2005) Fleischmanmer and
Shank [34] proved the following:

Theorem 2.7.3.1f G is p-nilpotent with cyclic Sylow p-subgroup < G, thendepth(K[V]%) =
min{dimg (V') + 2, dimg(V)}.

Let K be an algebraically closed field. For a finitely generatedigdacommutativey -
algebraR, let cmdef(R) := dim(R) — depth(R) denote the Cohen-Macaulay defect®f
Then the following result can be found in [68].

Theorem 2.7.4.LetG be a linear algebraic group ovek that is reductive but not linearly re-
ductive. Then there exists a faithful rational represeiotat’ of G such thatmde f (K [V ®*)%) >
k —2forall £ € N.

2.8 Noether’'s Degree Bound

Let V' be a finite dimensional representation of a graup We define theNoether Number
of V, B(K[V]Y) := min{d : K[V]¢ is generated by homogeneous invariants of degre&
and theNoether Numbeof G, 5(G) := max{B(K[V]Y) : V arepresentation of'}.

In the second proof (1926) of the finite generation of the iilawvd ring of a finite group
Noether also proved that the invariant ring can be genefayeldomogeneous invariants of
degree at most the order 6f, provided the characteristic & is 0 or bigger thanG|. For the
case thap = char(K) is smaller thanG| butp { |G|, the question whether Noether’s bound
holds was open for quite a while. Recently (2001) Fleischmamd Fogarty independently
found proofs for the general non-modular case.

Theorem 2.8.1.(Noether [89], Fleischmann [33], Fogarty [37]). For a finitgroup G, if
char(K) 1|G|, theng(G) < |G].

Remark: Noether bound is sharp in the sense that no better bound cgivdrein terms of
group order. Consider a finite cyclic groapof ordern and letchar(K) = 0 and containing
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a primitive n’* root of unity, . Let g be a generator off. There are exactly. inequivalent
irreducible representation$y, Wy, ---, W, _; of G, each of which is one dimensional. The
action of G on W; is given bygv = &' for all v € W;. It is easy to see thak [W;]¢ =
F[z"/9¢dm)] and thus ifi is relatively prime ton then3( K [W;]¢) = n. Therefore we see that
Noethers bound is sharp for cyclic groups. However Schn6ilp@oved that ifG' is non-cyclic
andchar(K) = 0, theng(G) < |G|. Domokos and Hegedus [26] examined Schmid’s proof by
induction and sharpened the bound. Sezer extended thésresabn-modular case.

Theorem 2.8.2.(Sezer [103]). Letz be a finite, non-cyclic group anthar(K) 1 |G|. Then

31G] if |G| is even
4
BLG) —{ Si¢] if |G is odd

The following theorem says, in order to compute Noether remalb a group in character-
istic 0, it is sufficient to consider only the regular representatdbthat group.

Theorem 2.8.3.(Schmid [96]). LetG be a finite group and lek be a field of characteristi@.
LetV,., denote the regular representation@f Then3(G) = B(K[V,e,|).

In the modular case the Noether bound does not hold and trevioein of 3(K[V]¢) is in
sharp contrast to the non-modular situation.

Example: Let G = C5 acts onFy[xq, - - -, 2k, 41, - - -, yi| @S algebra automorphism by z; —
i, Vi=1,--- k. Fork > 3, the elementf := xy---x, + y1 - - - yx IS iNdecomposable in
Fylzy, - ae,y1, -+ -, ]9, i.e., can not be written as a polynomial in lower degreeriaves.

So the Noether bound does not hold in the modular case.

Theorem 2.8.4.(Richman [93], (1996)). Lef be a field of characteristip, G be a finite
group whose order is divisible lyand letV be a faithful representation @f. Then

m(p—1)

BK[VE™E) > m

The above theorem shows that there is a positive numlzipending only onG| andp,
such that every set dt -algebra generators @& [V “™]“ contain a generator of degreeam.
So, 4(G) may be infinite wher(G is a finite modular group. Indeed the next theorem due to
Bryant and Kemper shows this is always the case.

Theorem 2.8.5.(Bryant-Kemper [7]). LetG be any linear algebraic group. I8(G) is finite
thenG is a finite group withG| is invertible in K.

However, if we content ourselves with finding a so-calledasapng subalgebra of invari-
ants rather than the entire ring of invariants then, theriamés of degree at mog&#| will always
suffice (see [22, pg. 54]).

Derksen and Kemper (see [22, pg. 117]) proved the followimgniol for any modular rep-
resentation of a finite group.

39



Theorem 2.8.6.Let V' be ann-dimensional modular representation of a finite gradpThen
BIKIVI?) < n(|G] = 1) + (|G| Dm0 (2,

Campbell, Geramita, Hughes, Shank and Wehlau [8] showetdifth&[V'|“ is Goren-
stein then,3(K[V]%)) < max{|G|,dim(V)(|G|] — 1)}. Then Broer [4] showed that for
any representatio’’ of a finite groupG if K[V]“ is Cohen-Macaulay thed(K[V]%)) <
max{|G|,dim(V)(|G| — 1)}. Then many people conjectured that the hypothesis of Cohen-
Macaulayness is not required. Recently (2009) Symondsegrthe conjecture.

Theorem 2.8.7.(Symonds [117]). For any finite dimensional representaiioof a finite group
G we have3(K[V]Y) < max{|G|,dim(V)(|G| —1)}.

Kemper has conjectured thatlifis a representation of a finite grogpsuch thatik' [V is
Cohen-Macaulay thef(K[V]%] < |G].

The 2p — 1 Conjecture: It has been conjectured thatlif, is the regular representation G,
over F, then3(V,.,) = 2p — 3. Then recently (2006) Fleischmann, Sezer, Shank, Woodcock
[35] proved the conjecture with a more general result.

Theorem 2.8.8.For any representatio” of C,, we have3(F,[V]%) = (p — 1)dim(V) +
p— 2.

Kemper [62] found the following lower bound for a permutatr@presentation. Lét be a
faithful modular permutation representation of the finiteup G over a fieldK of characteristic
p and supposé: contains an element of ordef for somek € N. Theng3(K[mV]¥) >
m(p* — 1). About the same time Fleischmann obtained the followingesesult.

Theorem 2.8.9.(Fleischmann [32]). Leti’ = S, be the symmetric group an = p* letters
acting naturally by permuting a basis of thedimensional representatioii over the fieldF,,
of orderq = p". Thens(K[mV]%") = maz{n,m(n —1)}.

For a gradedy-algebralk = ®©,cz., R4, define the constant( ) as the smallest integer
such that there exist homogenequsfs, - - -, f. € R with deg(f;) < dfor all i andR is finite

overK(fi, fa, -+, fr]-

For a connected semi-simple algebraic group Popov gave piiciexupper bound for
B(K[V]E) interms ofy(K[V]%).

Theorem 2.8.10.(Popov [91, 92]). Supposk is an almost faithful representatiof-dimensional
kernel) of a connected semi-simple gratiplefined over a field of characteristic zero. Then

In 1989, Knop gave the following improvement of the aboveoteen.

Theorem 2.8.11.(Knop [67]). LetV be a representation of a connected semi-simple algebraic
group G defined over a field({ of characteristic). Suppose:,,as,---,a, iS @ homogeneous
system of parameters féf[V]. Then3(K[V]Y) < max{a,+as+---+a,—r,a1,as, -, a,}.
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In 1999, Derksen gave a better upper bound 6K [V]“) in terms ofy(K[V]) for a
reductive group.

Theorem 2.8.12.(Derksen [21]). LetG be a reductive group defined over an algebraically
closed fieldx” of characteristic zero. Thef(K[V]“) < maxz{2, 3r(v(K[V]%))?}, wherer is
the Krull dimension of<[V]°.

In the case oty = T a torus Wehlau gave a better upper bound¥ak [V]%). LetV be an
n-dimensional faithful representation of ardimensional torus with weights, @, - - -, @,,.
The character groufy (7) of T is isomorphic tdZ" and has a natural embedding iXq7") ®,

R ~ R". We have the usual volume foridv on R” which is independent of the chosen basis of
X(T).

Theorem 2.8.13.(Wehlau [120]). In the situation above we haweK [V]?) < maz(n —r —
1, 1)rlvol(Cy ), whereCy, is the convex hull ofo,, @y, - - -, @, IN R".

2.9 Vector Invariants

Let V' be ann dimensional representation 6f over a fieldK. Form € N, we denote by
mV thenm dimensional representationl :=V © V @ --- © V on which acts diagonally

m coples
via g.(vi, va, -+, V) = (gu1, gua, -+, gu,,). Invariants lying inK[mV]¢ are called vector
invariants ofi/. The first fundamental theorem of invariant theory:tfefers to a description of
a minimal system of homogeneous generatots pfi} | and the second fundamental theorem
of invariant theory describes the relations among thesergéors. In this section we talk about
only the first fundamental theorem for Weyl groups and ctadgjroups. Ifm = 1 then a
generating set for the algebfa[mV]“ of invariants in one vector variable is called a system
of basic invariants. The classical procedure, known agfzal#on constructs invariants etV
from invariants ofi” as follows. Letf € K[V']“ be a homogeneous polynomial of degre&or

U1, Vg, Uy € Voandty, ty, - - -, t,,, are indeterminates, we consider the functfad _, ¢,v;).
Then
f(z tivi) - @ fa(vh"'avm)taa (21)
i a€(ZT)™,|al=d

where thef, € K[mV]“ are multihomogeneous of the indicated degieeHere fora =
(a1,az, -+, an) € (ZH)™, we havet® = ¢t™ ...t and|a| = a1 + ... + a,. We call the
polynomialsf,, thepolarizationsof f.

Polarizations of a polynomial can also be defined in term®ofeslinear differential oper-

ators called the polarization operators. Choosing a basig fand writingv; = (z;1, - - -, xi,)
we define
- 0
Dzj - Z Ti o B
k=1 J



The operators);;'s are called polarization operators. They commute withatigon of G on
K[mV] and applying successively operatds (i > j) to f € K[V] we obtain precisely (up
to a constant) the polarizations 6fin any number of variables.

The following theorem is due to H. Weyl (see [123, Ch. I1]).

Theorem 2.9.1.Supposé/ is a representation of a finite grou@ over a field K of char-
acteristic zero. Ifm € N is an integer withm > n then a complete fundamental system of
invariants for K [mV]“ is obtained by polarizing a complete fundamental systemwafriants

for K[nV]C.

Let V' be ann-dimensional vector space ov&r = C and letG be a finite subgroup of
GL(V) generated by reflections. #f = 1 then the algebra’[V]¢ of invariants in one vector
variable is very nice. As discussed earlier a celebratearéime of Chevalley implies [V ] is
a polynomial ring. Let? be a Weyl group andl’” be the natural representationléf. A set of
basic invariants for each type of Weyl groups is listed ineayx-B.

The first fundamental theorem fo7 = S,, is proved by Weyl long ago. Then Wallach
[119] and Hunziker [48] independently proved the same foyMyeoup of typeB,, = C,, and
Go.

Theorem 2.9.2.Let W be a Weyl group of typd,,, B,, = C,, or G, then the polarization of a
set of basic invariants generate[mV]".

However for Weyl group of type),, Wallach observed that the polarizations of a set of
basic invariants do not generate the algelifa: V|V for m > 2. Explicitly, Wallach [119]
used bidegree considerations to show that the invariant

n
. A 3
[= T1Tg -~ T TnlY;
i=1

can not be expressed in terms of polarizations of a set ot lbiagriants (Herer; = z,; and
y; = x2;). Then Wallach introduced the notion of a generalized pzddion operator as follows.

Assume that we have chosen a orthonormal basig fdfork = 1,2, - - -, n define
" 0f, 0
Dk; = E— ils .« e , in) =
4 lzl 6ZL‘Z‘1 (l’ ! v )61‘]‘1
wherefi, f5,-- -, f, are basic invariants. The operatc@%’s are called generalized polariza-

tion operators. For typ®,, the polynomials

i=1
can be taken as a system of basic invariants. In [119], Walpaoved that the generalized
polarizations off, - - -, f, generatek’[mV]". Then Hunziker [48] sharpened his result in the
following way: For oddr > 1 define

n ) 9
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wherez; = x1; andy; = xq;. Then;

Theorem 2.9.3.The algebrak'[2V]" is generated by the polarizations of the basic invariants
and the generalized polarizations

k
PP (fy) (ri>10dd Y r; <n—k)
=1

of the basic invarianf,,.

Theorem 2.9.4.For m > 2, the algebrak'[mV]" is generated by the polarizations&f2V]".

For the other types of Weyl group the problem of finding a gatieg set forK [mV ]|V
is still open. Recently Domokos [27] found a generating setaf class of pseudo-reflection
groups.

Let V' be a finite dimensionak’-vector space. Consider the representatiotz6f1’) on
the vector spac®’ := V @ V*%7 consisting ofp copies ofl/ andq copies of its dual space
V*, given by

gor, -, Upy G1, w5 Bg) 2= (U1, -+, gUp, 91, -5 9Pq)

wherege; is defined by(g;)(v) := ¢;(g 'v). The elements of are classically called vectors,
those of the dual spadé* covectors. For every paiti,j), i = 1,---,p, j = 1,---,q, we
define the bilinear functiofi|j) on W := Ve @ V*¥ by

(Z|.]) : (Ulu sy, Up, d)lu Ty qu) = (’UZ‘QbJ) = ¢](Uz)
These functions are usually called contractions. They leaglg invariant:
(i) (g(v, 0)) = (9;)(gvi) = ¢3(9™" guv) = (i) (v, ¢).

Now the first fundamental theorem (shortly FFT) states thase functions generate the ring
of invariants.

Theorem 2.9.5.(FFT for GL(V), [70, Th. 2.1]).
The ring of invariants for the action @f'Z(V') on V® ¢ V*®? is generated by the invariants

(ilj) -
K[V oV W) = K@) ci=1---.pj=1,--,4q]

Letn := dimV. Fixabasiquv, - - -, v,} of V and choose ifv * the dual basi$¢;, - - -, ¢, }.
Then the determinantet(vy, - - -, v,) is defined for every:-tuple of vectorsy, € V = K™ as
the determinant of the x n matrix consisting of the column vectors, - - -, v,,. This allows to
define, for every sequende< i; < iy < --- < i, < p, anSL(V)-invariant function

[Z.la Ty Zn] VP D V*q - K7 (Ua ¢) = det(vim e 7vin)'
Similarly the determinants
[,j17 e 7.7n]* VP S V*q - K7 (U7 (b) = det(¢j17 ) <b]n)

areSL(V) invariants.
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Theorem 2.9.6.(FFT for SL(V), [70, Th. 8.4]).
The ring of invariants for the action of (V') on V¢ @ V*®? is generated by the scalar
products(j|i) and the determinants,, - - -, i, and[ji, - - -, jn)s-

For the action of0,, and SO,, on Ve = (K™)®P, clearly the functiongi|j) defined by
(il5)(v1, - - -, v,) == (vs]v;) are invariants.

Theorem 2.9.7.(FFT for O,, and SO,,, [70, Th. 10.2]).

(a) The invariant algebra([V/“?]°~ is generated by the invariants|;),
(b) The invariant algebrak [V ®7]%9» is generated by the invarian{g|j), 1
together with the determinanis, - - - ,i,],1 < iy < iy < -+ <1, < p.

—_
IA

For every pairl < i,j < p the following functions ori/? are invariant bySps,,:

(t]g) (v, -+ - vp) = (vi|v;).

Theorem 2.9.8.(FFT for Sps,,,, [70, Th. 10.3]).
The algebrai [V ¥r]°P2m is generated by the invariantg|j), 1 <: < j < p.

2.10 Geometric Invariant Theory

Though there are several good introductory books on thigstjbin this section we will try to
explain the most important concepts in Geometric Invaribabry. Through out this section
we assumé is an affine algebraic group over an algebraic closed field

2.10.1 Group Actions on Algebraic Varieties

The main purpose of Geometric Invariant Theory is as follolsen a variety (or schemey
and a group>, acting on.X, one wants to construct a quotient of this action. In thegate
of sets one just take¥ /G to be the set of orbits. In the category of varieties (or sant

is far more difficult. In general there will be no quotient whiis an orbit space. This is easy
to see. Suppose thai/G has the structure of a variety, such that the mapX — X/G is

a morphism. Then in particular each orbit has to be closethuser is continuous. But this
need not always be the case as the following example shows.

Example: The action ofGL,,(K) on K™ has two orbits{0} and K™\ {0}. The orbitK™\ {0}
is not closed.

This trivial example is typical: the fact is almost neveraibits of the actions considered
are closed. However, we will see that “in most cases” theig®an open séf C X such that
U/G has the structure of algebraic variety diid— U/G is a morphism (so in particuldr is
a union of closed orbits).
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The following definition gives us the minimal requiremerdaswhat we should call a quo-
tient of an algebraic group action.

Definition: Leto : G x X — X be an algebraic group action. A categorical quotienXdfy
G is a varietyY with a morphism® : X — Y such that

1. the diagram

Gx XZ—-X
po lcb
X—2 sy

commutes, i.e P is constant on orbits, and

2. if ¥ : X — Zis any morphism that is constant on orbits, then there egistsique
morphismy : Y — Z with & = 7o P,

Note that if a categorical quotient exists, it is unique aad good functorial properties, but
not necessarily good geometric ones.

Example: G,, acts onkK? by \.(x,y) = (Az, A~'y). The orbits are (1) for each € K*, the
conic{(x,y) : xy = a}, (2) the punctured-axis{(z,0) : x € K*}, (3) the punctured-axis
{(0,y) : y € K*}, (4) the origin{(0,0)}. In order to get a separated quotient, one has to
combine the last three orbits listed and indeed one thenagedsegorical quotient isomorphic
to K, the quotient morphism being given by, y) — xy. One cannot obtain a separated orbit
space (that is, as a variety), even if one deletes the §tbi)) }, which has lower dimension
than the others, since both punctured axes are limits ofttier orbits agy — 0.

Example: G,, acts onK™ (n > 2) by A.(z1, -+, x,) = (Az1, -+, Ax,). The origin lies in the
closure of every orbit, so any morphism which is constantdnit®is constant. Thus there is
no orbit space but there is a categorical quotient congistim single point.

Example: G,, acts onK™ \ {(0,0)} by the same formula. This time the projective sp&¢e!
is a categorical quotient and also an orbit space.

In order to construct categorical quotients in general wa fiestrict our attention to a
special case. Supposéis an affine variety on whicl’ acts rationally and, leK’[X] denote
the algebra of morphism& — K. Then we have an rational action 6fon K[X]. Now,
we can ask for a candidate for a categorical quotiénSuppose it exists and is affine, write
Y = Spec(B). The definition of categorical quotient tells us that such@phism factors
throughY if and only if it is constant on orbits. Algebraically this ares thatB = K[X]¢.

So, if Y is to be affine, K[ X]“ has to be finitely generated. In general, given a rational ac-
tion of an algebraic grou@’ on a finitely generated& -algebraR, the subalgebra of invariants
R% is not finitely generated as we have already discusséd22). This is the famous coun-
terexample of Nagata against Hilbert's fourteenth probldtowever, we have seen already
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that by Nagata’s theorem (Th. 2.2.2) whéhis geometrically reductives[X]“ is finitely
generated. We recall the notion of linear reductivity andrgetrically reductivity frong-(2.2).

A linear algebraic groug- is called linearly reductive (resp. geometrically redwe}iif
for any rational representatiori and any nonzero invariant vectore V there exists a ho-
mogeneousg--invariant polynomialf on V' with deg(f) = 1 (resp. deg(f) > 1) such that
f(v) # 0. In characteristic 0 an algebraic group is reductive- linear reductive—- ge-
ometrically reductive. For any characteristic reducyivit= geometric reductivity and also
clearly linear reductivity—- geometric reductivity. The converse is not true though isifpce
characteristic, as discussedH(2.2).

The aim of the rest of this sub-section is to give a theorenuglhe categorical quotient of
an affine variety for the action of a reductive group. Befoeegive this theorem, we give some
more definitions. There are more properties one would likeetce when one has constructed
a categorical quotient.

Definition: Leto : G x X — X be an algebraic group action. A good quotienfoby G is a
varietyY and a morphisn® : X — Y such that

(1) Y (together with®) is a categorical quotient,
(2) for any subset/ C Y, the inverse imag@® ' (U) is open if and only if is open,

(3) for any open subsdt C Y, the homomorphisn®* : K[U] — K[® '(U)] is an
isomorphism onta<[®~1(U)]“, and

(4) @ is surjective.
If we are in the situation of the definition above, it follovst
(1) if W is a closed>-invariant subset ok, then® (1) is closed inY’, and

(2) if W, andW, are closed>-invariant subsets ok with W, N W, = (), then®(1W7) N

In fact one can rephrase the definition above using theseegrep of closed invariant sub-
sets.

Definition: Leto : G x X — X be an algebraic group action. A geometric quotienkolby
G is avarietyY and a morphisn® : X — Y such that

(1) Y (together with®) is a good quotient, and
(2) the image of the map : G x X — X x X givenby(g,x) — (o(g,2),z)is X xy X.

A geometric quotient is the best we can hope for, becauseeiteén an orbit space for the
action ofG on X.
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Recall we were looking for a categorical quotient for theacof an algebraic group on an
affine variety. The following theorem says that, if the grasipeductive, our candidate for an
affine categorical quotient is in fact a very good candidate.

Theorem 2.10.1.Let G be a reductive group acting on an affine varieXy ThenY =
Spec(K[X]%), together with the map : X — Y is a good quotient ok by G.

Usually we will work in this thesis with projective varietigand not with affine varieties. In
the next paragraph we will look more closely at reductiveugractions on projective varieties.

2.10.2 G.L.T. Quotients

Until now we required our actions on affine varieties to bedn i.e. the groups act via a
rational representation. The analogue of this, when weidensctions on quasi-projective
varieties, is the concept of linearization with referenza tine bundle.

Definition: Leto : G x X — X be an algebraic group action on a quasi-projective variety
X, and let£ be a line bundle oX, with projection mapx : £ — X. A linearization of this
action is an actiow : G x £ — L such that
1. the diagram
GxLl—r
lidxw Lﬂ'
GxXT—X

commutes, and
2. forallz € X and allg € G, the mapl, — L,(,.) given byy — ((g,y) is linear.

We call aG-linearized line bundle oveX a pair of a line bundI&€ and its linearization. A
morphism ofGG-linearized line bundles is @-equivariant morphism of line bundles. Thus we
can speak of isomorphism classesblinearized line bundles o and one can show (see [25,
Ch. 7]) that the set of isomorphism classes‘bfinearized line bundles oX has an abelian
group structure. We denote this group By (X ), and we have a natural homomorphism

6 : Pic®(X) — Pic(X)
which is forgetting the linearization. This homomorphismbt necessarily surjective.

Definition: Let X be a quasi-projective variety with an action of a reductigelraic group
G. Let £ be aG-linearized line bundle oX. Letz € X.

1. x is called semi-stable with respect foif there existsn > 0 ands € H°(X, L®™)¢
such thatX, = {y € X|s(y) # 0} is affine and contains,
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2. z is called stable with respect t0 if there existsn > 0 ands € H°(X, L®*™)“ such
that X, = {y € X|s(y) # 0} is affine and contains, G, is finite and all orbits of7 in X are
closed, and

3. z is called unstable with respect tbif x is not semi- stable.

Here are some notations we us&**(L): locus of semi-stable pointsy*(£): locus of
stable points,X“*(L): locus of unstable pointsy***(L) := X**(L£) \ X*(L). Often we will
omit the line bundle in question and wrifé’, etc.. Elements ok *** are called strictly semi-
stable points which are not stable.

Remark: In the definition of semi-stable points above, if the line thenC is ample, the sek,

is affine automatically. So in that case we only have to finchaariant section (of a power) of
L which is non-zero on. This is important for us because all line bundle we will ddes are
ample.

As shows the following theorem, the semi-stable locus ispnsubset ok over which a
good quotient exists.

Theorem 2.10.2.(Mumford) LetG be a reductive group acting on a quasi-projective variety
X. LetL be aG-linearized line bundle oX. Then there exists a good quotient

T XH(L) — X*(L)//G.

There exists an open sEtC X*(L£)//G such thatX*(£) = #~1(U) and the restriction ofr
to X*(L) is a geometric quotient oX*(L) by G. Moreover: X**(L)//G is a quasi-projective
variety.

The following corollary we will use in practice.

Corollary 2.10.3. If in the theorem above, we further assume tiats projective, and_ is
very ample, we have
X*(L)//G ~ Proj(R®)

where
R = ®pez, HY(X, L),

ThusX**(L)//G is a projective variety.

Remark: If X C P", £ := Ox(1) in corollary (2.10.3) and the action is by the grotip=
SL, 1 and, itis linearized with respect to thi§ the unstable points are precisely the points on
which all invariant functions vanish. We define:

N = X"(L)={r € X :s(x)=0forall s € R°}.

The idea to consider this sé&f goes back to Hilbert. It is called theullconeand its
elements are callegullforms Nullforms can’t be distinguished by invariant functiors.fact
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if we consider the special case thit is generated by generatoys - - -, s;, of the same degree,
then the rational mayx --» P* given by

7= (s0(), -+, su(@))

is the quotient map (when restricted to the semi-stableslpcLhe nullcone is the locus where
this map isn't defined.

In most cases it turns out to be very difficult to find explioitariants. Nevertheless we have
a useful tool to determine which points are (semi-)stabl@is Ts the so called one-parameter
criterion or numerical criterion for stability. The ideaas follows. LetG be a reductive
algebraic group acting on a projective variety C P" via a homomorphisnt: — GL, 1.
In other words: the action is linearized with respect to the bundle£ corresponding to the
embeddingX c P". We can consider the induced action(@bn the affine con& ¢ K™t
Let # € X be a point whose class is € X. Then another way to say whether or nots
unstable is given by this equivalence:

reN <0 e Gi.

We could also check this for subgroups@f If 0 € Hz for some subgroupg! C G, x is
unstable, becaus€z C Gz. In fact the numerical criterion will say it is sufficient tthieck
this only for the one-parameter subgroup-of

Recall from the last chapter that a one-parameter subgroGp®a non- trivial homomor-
phism of algebraic groups,, — G and we denote the set of one-parameter subgroups of
by Y (G).

A one-parameter subgroupof GG can be viewed as an action @f,, on X, or as an action
on X. Itis a fact (see [87]) that we can choose coordinates statitte action onX is given
by

At)T = (t"xg, - -, " xy,)

for certainay, - - -, a,, € Z. Now consider the map
¢r AN\ {0} — K"t ()2

If this map can be extended to a map — K" *! by sending the origin to the origin then it is
clear that) is in the closure of the orbit of of the one-parameter subgroup®f so thatz is
unstable. Using the diagonal form of the action we see(ti&in this closure if and only if all
a; for which x; # 0 are strictly positive. This observation leads to the foilogvdefinition.

Definition:

pE(z, ) = —min{a; - 2; # 0}.
One can show that the functigit doesn’t depend on the diagonalization of the one-parameter
action. We can use this function to check unstability. If @-@arameter subgroupof G and

a pointz € X satisfyu“(z, \) < 0, thenx is unstable. Now we are in a position to state the
numerical criterion.

49



Theorem 2.10.4.(Hilbert-Mumford) LetG be a reductive group acting on a projective variety
X. Let the action be linearized with respect to an ample linedde L. Letx € X. Then:

r € X*(L) <= p“(z,\) >0 forall A € Y(G)

r € X5(L) <= p“(z,\) >0 forall A € Y(G).

2.10.3 Linearization of the Action

We probably hoped, in the previous section, that an actioanoalgebraic groug: on X
can always be linearized with reference to some line buddl& his is certainly true in the
example we consider in this thesis. In fact we will see in a ronthat often more than one
linearization is possible, with fixed line bundlz The quotient can change together with a
change of linearization. Whenever no confusion arises asich linearization we choose, we
just write X**(L£)/ /G for the GIT quotient. It will happen, however, that we do ddes our
quotients with respect to different linearization. Wheis ik the case, we denote B;(L) the
semi-stable locus for the linearizatigh: G x £ — L, and byX3(L£)//G it's GIT quotient.
We give some theorems saying how many linearizations argilgedor a given action and a
line bundle.

Let x(G) denote the group of rational charactergbfRecall that : Pic%(X) — Pic(X)
is the homomorphism that forgets the linearization. Theeathision of the kernel op is a
measure of the amount of linearizations a given line bundl& @llows.

Theorem 2.10.5.1f K[G x X|* = p; /(K [G]*) then

ker(¢) ~ x(G).

The condition is fulfilled for example iX is just affine space or iX is connected and
proper overk’, because in those casE$X|* = K*.

The following is the main theorem ([25%, 7.2]) about the existence and the amount of
linearizations.

Theorem 2.10.6.Let GG be a connected, affine algebraic group acting on a normaletgtk
then, we have an exact sequence of groups

0 — ker(¢) — Pic(X) -5 Pic(X) — Pic(G).

Remark: Since it can happen that there are many possible lineatmatia priori there are
many different quotients for the same action. It turns owwéwxer, that in the case of line
bundles giving projective geometric quotients, there ary &initely many quotients and all
these are birational to one another. See an article of Dbtgaand Hu [26]. We will not focus
in this thesis on all possible linearizations and their itgsy quotients, but almost always take
a standard linearization.
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Chapter 3

Torus Quotients of Homogeneous Spaces

This chapter reports the work done in [57]. Our main aim i thapter is to describe all the
minimal Schubert varieties admitting semi-stable poiotstiie action of a maximal torus on
G/ P, whereG is a semi-simple simply connected algebraic groupAtsla maximal parabolic
subgroup of7. We also describe for any semi-simple simply connectedoatge group’ and
for any Borel subgrouB of GG, all Coxeter elements for which the Schubert variet (7)
admits a semi-stable point for the action of the maximalgdruwith respect to a non-trivial
line bundle onGG/B. In this chapter the author also gives a C-program that deescall the
minimal Schubert varieties admitting semi-stable pointslie exceptional algebraic groups.

3.1 Introduction

Let G be a simply connected semi-simple algebraic group overgebahically closed field .
Let 7" be a maximal torus ofr and letB be a Borel subgroup af containing?'. In [52, 53],
Kannan described all parabolic subgroupsf G containingB for which there exists an ample
line bundleL on G/ P such that the semi-stable poinits/ P)5?(L£) are the same as the stable
points(G/P)5(L). In [116], Strickland gives a shorter proof of Kannan’s feskn [126] and
[127], Zhgun studied how the quotients vary as the line beindties. In [107], Skorobogatov
described the automorphism grouplof\ (G/P).

Let £ be an ample line bundle ad/P. It is an interesting question to study the minimal
Schubert varieties id// P admitting semi-stable points with respectddor the action of a
maximal torus?’. In [56], when@ is a maximal parabolic subgroup 6fand. = L, where
w is a minuscule dominant weight, it is shown that there existgue minimal Schubert variety
X (w) admitting semi-stable points with respectdoNote that this includes typé.

Let G be a simple algebraic group of typg C' or D and P is a maximal parabolic subgroup

of G. Let £ be an ample line bundle o@/P. In §-3.3, we describe all minimal Schubert
varieties inGG/ P admitting semi-stable points with respectdo
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In the case of7 /@), whereG is of exceptional typels, £, Es, Fy and(Gy), Q is a maximal
parabolic andC is an ample line bundle, the combinatorics of minimal eletmenc W/W,
for which X (w)3*(L) # 0 is complicated. 1r§-3.3, we give a C-program that describes all such
w € W/WQ

Now, letG be a semi-simple simply connected algebraically group amealgebraic closed
field K. LetT be a maximal torus off and letB be a Borel subgroup af containing?’. A
Schubert varietyX (w) in G/ B contains a (ranks)-dimensionall’-orbit if and only ifw > 7
for some Coxeter element So, it is a natural question to ask if for every Coxeter eleime
there is a non-trivial line bundl€ on G/ B such thatX (7)5: (L) # 0. In §-3.4 we describe all
such Coxeter elements

3.2 Preliminary Notations and Combinatorial Lemmas

In this section we recall some notations from chapter-1 andggsome combinatorial lemmas.

Let G be a semi-simple algebraic group over an algebraicallyedd®ld K. LetT be a
maximal torus of7, B a Borel subgroup ofr containing?” and letU be the unipotent radical
of B. Let Ni(T') be the normalizer of ' in G. LetW = N¢(T')/T be Weyl group ofG with
respect td’ and® denote the set of roots with respecflipd™ positive roots with respect tB.
As in chapter-1, for the enumeration of roots we refer to [&}t U, denote the one dimensional
T-stable subgroup off corresponding to the roet and letA = {«ay, -, o} € ®* denote
the set of simple roots. For a subdetC A denotelV! = {w € Wl|w(a) > 0, a € I}
and IW; is the subgroup ol generated by the simple reflections,« € I. Then every
w € W can be uniquely expressed as= w’.w;, with w! € W! andw; € W;. Denote
P(w) = {a € ®* : w(a) < 0} andwy is the longest element 61 with respect tA. Let
X(T) (resp.Y (T)) denote the set of charactersiofresp. one parameter subgroupd9f Let
E, = X(T)®R,E,=Y(T)®R. Let(.,.) : | x £ — R be the canonical non-degenerate
bilinear form. Choosé\,’s in E, such thata;, \;) = §;; for all i. LetC' := {\ € Ey|(a, \) >

0Va e &7} and for alla € @, there is a homomorphisi$iL, RLNYe. (see [12, pg. 19]). We

haved : G,, — G defined bya(t) = %(( é tg
forallaw € ®andy € E;. Sets; = s,, Vi=1,2,--- . Let{w; : 1 = 1,2,---,1} C E; be

the fundamental weights; i.€w;, a;) = ¢;; forall i, 5 =1,2,--- L.

)). We also have,(x) = x — (x, &)«

We recall the definition of the Hilbert-Mumford numericalnfttion and definition of the
semi-stable points from chapter-2. We also refer to the sdrapter for notations in geometric
invariant theory.

Let X be a projective variety with an action of reductive gr@eipLet A be a one-parameter
subgroup of5. Let £ be aG-linearized very ample line bundle ox. Letx € P(H°(X, £)*)
andz = >, v;, where each; is a weight vector oh of weightm,. Then we have

ﬂﬁ(x, A) =—min{m; :i=1,---,r}
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A pointz € X is said to be semi-stable with respect tG'dinearized line bundIl& if there is
a positive integem € N, and aG-invariant sectiors € H°(X, £™) with s(z) # 0.

For any charactey of B, we denote by_,, the line bundle oriz/ B given by the character
x- We denote byX (w)5?(L,) the semi-stable points of (w) for the action ofl” with respect
to the line bundleC,,.. For the simplicity of notation we will denote h¥ (w) for a Schubert
variety in bothG/B andG/ P, whereP is a maximal parabolic subgroup 6f

We now recall the following definition from [54, pg. 90]. Let ¢ € W. DefinelV ™~ (w, ¢) =
{r <w:®T(r)Nd*(¢) = 0}. By [54, lemma. 5.4(1)}V~(w, ¢) has a unique maximal ele-
ment in the Bruhat order and is denotedyw, ¢).

The following proposition describes a criterion for a Scohdlyariety to admit semi-stable
points.

Proposition 3.2.1.Let y = > .. a,@™, be a dominant character df which is in the root
lattice. Letl = Supp(x) = {a € A : a, # 0} and letw € WI*, wherel¢ = A\ I . Then
X (w)sE(L,) # 0 if and only ifwy < 0.

Proof. Let X (w)5*(L,) # 0. SinceX (w)i¥(L,) is an open subset of the irreducible variety
X(w), we haveX (w)5(L,) N BwPr/P; # 0 whereP; is the parabolic corresponding fo
Letz € X (w)¥(L,) N BwP;/P;. Then by Hilbert-Mumford criterion ([Ch. 2, Th. 2.10.4],
we havey“x(z, \) > 0 for all one parameter subgrowpof 7.

On the other hand by [101, lemma. 5.1] we ha¥e(x, \) = —(wx, \) for all one param-
eter subgroup of 7' lying in the dominant chamber. Se(wy, A) > 0 for all one parameter
subgroup\ of 7" lying in the dominant chamber. Heneey < 0.

Conversely, letvy < 0.

Step 1- We prove that ifw, 7 € W' are such thak (w) C ey #X (1), then,w < 7. Now,
suppose thak (w) C ey ¢X (7). Then, sinceX (w) is irreducible andV is finite, we must
have

X(w) C ¢X(1), forsomegp € W.

Hence,¢p ' X (w) C X (7). Now, let P; = BW;B and consider the projection
7:G/B— G/P;

Then,m 1 (¢~ X (w)) C 7~ 1(X(7)). Letw™**(resp.7™*) be the unique maximal element in
wWie (resp.7Wre). Then we have) ' X (w™) C X (7). So, we may assume that= A.

Now, since¢p !X (w) C X(7), we have¢tw; < 7, Vw; < w. Thereforew,;¢ <
71V w; < wl. Hence, by the definition af~, we haver—(w=!, ¢ 1) < 771

Now we claim thaty™! < 7= (w !, ¢ N forallw, ¢ € W, i.e.,w < 7~ (w, ¢)p~! for all
w,p e W.
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We will prove this by induction oi(¢). Let$ = s,. Now we consider two cases.
Case-lws, < w.

By [54, lemma. 5.6] we havers, < 77 (w, 54)S4. SINCET™ (w, $4)Sa(a) < 0 andws, <
7~ (w, S$4)Sa, We havew = maz{w,ws,} < 77 (w, S )Sa-

Case-2ws, > w
Again by [54, lemma. 5.6] we haves,, < 7~ (w, s,)s,. Hencew < ws, < 77 (w, Sq)Sa-

Assume by induction that < 7~ (w,n)n~! for all < ¢ and let¢ = s, for somea € A
such that(¢) = 1+ I(n).

Case-1lw(a) > 0

In this casav < ws,,.

Now we have ws, < 77 (wsq,n)n~' by induction, sincé(n) = i(¢) — 1.
= 77 (wSa, Psa)

= 7 (w,¢)sen' by[54, lemma. 5.4, 4(b)]
= 7 (w,¢)o7!

Hencew < 77 (w, )¢~ L.
Case-2w(a) <0
Thenws,(«a) > 0.
Now we have w < 77 (w, ¢s.)sa¢~ ' by induction, sincé(¢s,) = I(¢) — 1.
= T (WS4, ®)SaSa®™ "t by[54, lemma. 5.4, 4(b)]
= 7 (wsa, P!
= 7 (w,9)¢" by[54, lemma. 5.4, 4(a)]

Hence we havey ! < 7= (w™!, ¢ 717~ L. Thusw < 7.

Now, letw € W be such thatvy < 0. Then by step-1, there exist a point X (w) \ W-
translates of{ (1), 7 € W!*, 7 # w. — (1).

Step 2 We prove that: is semi-stable.

Let \ be an one parameter subgrougofChoosep € W such thatp\ € C. Letr € W!*
be such thabx € U, 7P;.

By (1) we havew < 7. Hence;y < wy < 0.
Hence, by [101, lemma. 5.1], we hanéx(z, \) = p“x(opx, pA) = (=7x, dA) > 0.
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Hence, by Hilbert-Mumford criterion ([Ch. 2, Th. 2.10.4]js semi-stable. O

We recall the following elementary properties of minusautghts from [56], which were
derived by Kannan and Sardar and they are be crucial in ogrigéen.

Lemma 3.2.2.Let/ be any nonempty subset®fand letu be a weight of the for@aiel m;o;—
Zaz&] myo;, Wherem; € Qforall i,1 <i<n—1;m; >0forall o; € I andm; > 0 for all
a; € A\ I. Then there is am € [ such thats, (x) < p.

Proof. Sinces. (1) = p — {(u, &)a, we need to find amv € I such that(u,a) > 0. Since
(D a,er Milis Yo i) > 0, we can find anv € I such that(y ], mia;, &) > 0. Now
we know that for anyv;, o; € A, i # j, {a;, ;) < 0. Hence,(3_, ., mia;, &) < 0 for this
a € I. Thus(u, &) > 0. This proves the lemma. O

Lemma 3.2.3.Let A be any dominant weight and lét = {a« € A : (\,&) = 0}. Let
wy, wy € W be such thatv; (\) = wo(N), thenw; = ws.

Proof. See [12] and [45]. ]

In the rest of this sectiony will denote a minuscule weight and:= {« € A : (w, &) = 0}
Lemma 3.2.4.Leta € A and7 € W such thati(s,7) = I(7) + 1 ands,7 € W/, then
T €W s47(w) = 7(w) — .

Proof. The proof of the first part of the lemma is clear. Newr(w) = 7(w) — (7(w), >
Since the forrr(.,.} is W-invariant,( (w),a) = (w,77'e). Again smcel(sar) = (1) +
1

we haver'a > 0. Let7'a = Y07 miay;, m; € Zso. Now, if (w,77'a) = 0, then
m; >0 = (w, T—lal) = 0for1 <i <n — 1. This gives a contradiction, smGgT e W!and
saT(T7 ) = so(a) < 0. Thus,(w,7-1a) = 1. Hence the lemma is proved. O

Corollary 3.2.5. 1. For anyw € W, the number of times that, 1 <i < n — 1 appearsin a
reduced expression af = (coefficient oty; in w) — (coefficient ofy; in w(w)) and hence it is
independent of the reduced expressionof

2. Letw € W' and letw = s;,.s;,...s;, € W' be a reduced expression. Theffw) =

w— Yk ay,. andl(w) = ht(w — w(w)).
Proof. Follows from lemma (3.2.4). ]
Lemma 3.2.6.Letw = s;,s;, . ..s;, € W suchthatit(w—s;, s, . .. s, (w)) = kthenw € W!

andl(w) = k.

Proof. This follows from the corollary (3.2.5). O
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Lemma 3.2.7.Letw = Zlizl mia;, m; € Qso be a minuscule weight. Lét= {a € A :
(w, &) = 0}. Then, there exist a unique € W' such thatw(w) = 3_\_, (m; — [m,])o; where

for any real number,

7] = x if x is an integer
I 1]+ 1 otherwise

Proof. Using lemma (3.2.2) and the fact thatis minuscule we can find a maximal sequence
Si.s Si,_qs - - -5 Siy; Of sSimple reflections i} such that for each, 2 < j < k + 1, coefficient of
i, INs;,_ .8, ...5,(wy) is positive ands;, s, _, ... si,(wr)) = Wy — Zle «y, for eachy,

1 < j < k. The existence part of the lemma follows from here. The uengss follows from
lemma (3.2.3). ]

Now onwards, we say that for two elementandr in W, w < 7if I(7) = [(w) +1(Tw™1).
Note that this order if finer than the Bruhat order.

Lemma 3.2.8.Letw and I be as in the lemma (3.2.7) ando € W!. Thenr(w) < o(w) &
oc=XT.

Proof. (=) The proof is by induction oht(o(w) — 7(w)) which is a non-negative integer.
ht(w(ow) — 7(w)) = 1: This meansr(w) = 7(w) + « for somea € A. Applying s, on both
the sides of this equation, we have,

Sa0(W) = —a + saT(w) )
T(w) — (w, o 1a>a =2a+7(Ww) — (w, T o)
— (w,07'a) = 24 (w, 7 ')

Sincew is minuscule, we gefw,o—'a) = 1 and (w,7-'a) = —1. So, by lemma (3.2.6),
[(sq0) = l(w) + 1 ands,w € WI. Now, we haves,o(w) = 7(w). Hence, by lemma (3.2.3),
we getr = s,o with [(7) = [(c) + 1. Thus the result follows in this case.

Let us assume that the result is true fofo (w) — 7(w)) < m — 1.
ht(o(w) = 7(w)) = m: Leto(w) — 7(w) = >_, o, mia; WhereJ C A andm;’s are positive

integers. Since) ., miai, ), c;mid;) > 0 there exist any; € J such that(o(w) —
7(w), @;) > 0. Hence eithefo(w), ;) > 0 or (1(w), @) < 0.

Casel: Let us assuméo(w),d;) > 0. Theni(s,,0) = I(0) + 1 ands,,oc € W'. Now
ht(sq,0(w) — 7(w)) = m — 1. Hence, by induction = ¢,5,,0 With I(7) = I(¢1) + [(54,0).
Thus takingp = ¢,.s,, we are done in this case.

Case/I: Let us assumér(w), ;) < 0. Thenl(s,,7) = (1) — 1 ands,, 7 € W'. Since
0(w) — 8q,7(w) = m — 1 by inductions,, 7 = ¢y0 With [(s,,7) = I(¢2) + I(c). Thus taking
¢ = 54,92 We are done in this case also. This completes the proof.

(<)o =17=0<7.S07(w) < 0o(w) O
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Corollary 3.2.9. Letw, w and I be as in lemma (3.2.7). Lete W' be such that(nw) < 0
for some positive integer. Then, we have) < o.

Proof. The proof follows from lemma (3.2.7), (3.2.8) and the faeitth is minuscule. O

This corollary solves our problem in the case of minusculgits since the order we have
defined above is finer than the Bruhat order. Now we list alhtireuscule findamental weights
and the corresponding elemenof the Weyl group for each type of simple algebraic group.

Type-A: All the fundamental weights are minuscule. For theatiption of the correspond-
ing w such thatX (w)3¥ # (0, see theorem (3.3.1) in the next section.

Type-B, C, D: The only minuscule fundamental weights in typeandC,, are w, and
w; respectively. For typé,,, the fundamental weights, w,_; andw, are minuscule. For
each of the fundamental weight the corresponding Wey! gesement is written explicitly in
theorem (3.3.3).

Type-Es: The minuscule fundamental weights ate andws. The corresponding Weyl
group elements ar@ sgs153545552545351 andsgs5835451535254855¢ respectively.

Type-E;: The only minuscule fundamental weightis and the corresponding Wey! group
element i$78556528485538481535284555687.

Type-Fs, Fy, G5 There is no minuscule fundamental weight in these cases.

3.3 Minimal Schubert Varieties in G/ P admitting Semi-stable
Points

In this section, we describe all minimal Schubert variefids) in G/ P, whereG is a simple
algebraic group an@ is a maximal parabolic subgroup 6f, for which X (w) admits a semi-
stable point for the action of a maximal torus Gfwith respect to an ample line bundle on
G/P. Let L, denote the line bundle corresponding to the fundamentajivei,.

3.3.1 Classical Types

For typeA, the following theorem is due to Kannan and Sardar (see §6ima. 2.7]).

Theorem 3.3.1.Let rank(G) = n = qr +t, with1 < ¢t < r and letw € W' . Then
X(w)¥(Ly,) # Difand only ifw = (sq, -+ 81) - (84, -+ $), Wwhere{a; : i = 1,2---r}
is an increasing sequence of positive integers such dhat i(¢ + 1) V i < t — 1 and
a; =i+ (t+1)Vit<i<r.
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Now assume= is of type B, C' or D, and P is a maximal parabolic subgroup 6f for
which X (w) admits a semi-stable point for the action of a maximal torfu§ vith respect to
an ample line bundle o'/ P.

Let /., = A\ {«a,} and letP;,, = BW;, B be the maximal parabolic corresponding to the
simple roota,.. Let £, denote the line bundle associated to the wetght In this section we
will describe all minimal elements 67~ for which X (w)353(L,.) # 0.

At this point, we recall a standard property of the fundarakeneights of typed, B, C' and
D which will be used in the proof of our next proposition.

In typesA,, B, C,, and D,,, we have|(w,, @)| < 2 for any fundamental weight;, and
any roota.

Proof. Now (w,, &) < (w,, ), wheren is a highest root for the corresponding root system.

The highest root for typed,, is a; + as + ... + «,, the highest roots for typ#,, are
a; +2(as + ...+ o) anda; + as + ... + a,, the highest roots for typ€,, are2(a; + as +
oot 1) + oy, andag +2(as + . ..+ oy, 1) + o, @and the unique highest root for ty@e, is
ag +2(ae+ ... apa) + an_1 + .

In all these cases, we haye,, 17) < 2. So|(w,, )| < 2, for any roota. O

Let G be a simple simply-connected algebraic group of tigp€’ or D. LetT be a maximal
torus of G and letA be the set of simple roots with respect to a Borel subgrBupf G
containing’'.

Proposition 3.3.2.Letr € {1,2,---,n} such thato, is non-miniscule. Let. = A\ {«,.} and
letw € W be of maximal length such that(ww,) € Q>¢A. Writew(w,) = >_1, a;a; and
leta = maz{a; : i = 1,2,---,n}. Thena € {1, 3}. Further, ifa = 2, thenr must be odd and
G must be of typé,, witha = a,,_, Or a = a,,.

Proof. Letr € {1,2,---,n} such thato, is non-miniscule. Then # n in type B,,, r # 1in
typeC,,r # 1,n— 1,nintypeD,,.

Assume that ¢ {1, 2}, thena > 2 ora = 1. We first show that, # 2.

Assumen > 2. Leti, be the least integer such that = a. Using the tables in appendix-B
we see thaly # 1. We first observe that,, w(w,) = w(w,) — (w(w@,), diy) iy = 2, Gici+
(@ — (w(w,), diy) )i, € QoA since(w(w,), a;,) <2 < a=a;.

For all the cases exceppt=n intypeB,, iy = n—1,nintypeC, andic =n—2,n—1,n
intype D,,, we have(w(w@, ), ai,) = 2a — (aj,—1 + aig41) > 0. S0,8,, w > w, a contradiction
to the maximality ofw.

Now, we treat the special cases explicitly.
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ip = n in typeB,,: In this case{w(w,), a,) = —2a,_1 + 2a, > 0, sincea,, = a > a,_1. SO,
spw > w, a contradiction to the maximality af.

ip = n—1intypeC,: In this cas€w(w,), a,_1) = —an_2 + 2a,_1 — 2a, and(w(w,), a,) =
2a,, — a,—1. SO we have
(w(wy), n-1) + (w(w,), d,) > 0.

So we have eithefw(w,),a,—1) > 0 or (w(w,),a,) > 0. If (w(w,),a,—1) > 0, then
sp—qw > w, a contradiction to the maximality af. Otherwise,(w(w,),d,) > 0. Then,
spw(w,) = Z#n_ﬂz‘%‘ + (ap-1 — an)a, € QsA. Hence,s,w > w, a contradiction to the
maximality ofw.

ip = nin typeC,: In this casqw(w,), a,) = 2a, — a,—1 > 2 asa,, = a > 2. This gives a
contradiction to the fact thatw,, @)| < 2, for any roota.

ip, = n in type D,,: Here, we havw(w,),d,) = 2a, — a,—2 > 2 a@Sa, = a > a, o, a
contradiction to the fact tha{ew,., &)| < 2, for any roota.

io = n — lintypeD,: This case is similar to the previous case.

ip = n—2intypeD,: We have{w(w, ), a,_2) = —an_3+2a,_2—ayp_1—ap, (W(w,), 0y_1) =
20,1 — a,—s and(w(w,), a@,) = 2a, — a,_2. Now if (w(w,), a,,_2) > 0thens, w > w,
a contradiction to the maximality af. Otherwise we claim that, eithew(w, ), a,,—1) > 0 or
(w(w,), dy,) > 0.

Now assuméw(w,), a,,—2) < 0. Thena,_; + a, > a,_», Sincea,_3 < a,_». Then we
have eitheRa,,_y > a,_» Of 2a,, > a,_». Then, eithefw(w,), a,,—1) > 0 or (w(w,), a,) >
0. If (w(w,),an-1) > 0, thens,_;w > w, a contradiction to the maximality af, since
Sp_qw(w,) = E#nfl a;; + (ap—2 — an—1) € QxoA. Similarly, if (w(w,), a,,) > 0, we geta
contradiction.

Thus, we conclude that < 2.

Now we show thatu # % Assume in contrary that = % Then using the tables in

appendix-B we see thatis odd with the following four possibilities;

a, = 5 intypeC,
ap-1 = a, = £ intypeD,
an-1=0,a, =1 intypeD,
ap-1 =%, a, =0intypeD,.

In first two casesw(w,) iS conjugate tow;, a contradiction. In third and fourth case
w(w,) = %a. So 2w, is conjugate to the unique highest raot + 2(as + -+ + @,-2) +
a,—1 + o, = sy, a contradiction.

Thus, we conclude thate {1, 3}.

Now, if a = g then clearlyr is odd andG is not of typeB,, (see Appendix-B). We now
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prove thatG can not be of typ€,,.

Suppose on the contrary I&tbe of typeC,,. We first note thatw(w, ), a,,) = 3—a,_1 < 2.
So, we have,,_; = 1. Lett be the least positive integer such t@f;tl ; + %an < w(w,).
If t <n-—2,then0 < syw(w,) = ZZ_# a;o; < w(w,). So,s,w > w, a contradiction to the
maximality ofw. Hencea,,_» = 0.

We now claim that;; = 0 V i < n — 3. For otherwise, lethn < n — 3 be the largest integer
such that,,, = 1. Then,(w(w@,), ¥mi1 + Amio + ... a,_1) = —3, a contradiction to the fact
that|(w(zw,), B)| < 2 for all root 3. So0,a; = 0V i < n — 2. Hencew(w,) = a,-1 + 2a,.
But then,w(w,) is conjugate tao,, a contradiction.

Thus,G can not be of typ€’,,.

Now let G be of typeD,,. We have already proved that < % Vi=12,---,n. We
now claim thata,,_; + a, < 2. Suppose on the contrary, let_, = a,, = % We claim that
a,, = 0V m < n—3. Otherwise, let be the least positive integer such t@fj ai+%an_1+
%an < w(w,). Then,a,_; = 0andt <n — 3.

Hence,(w(w,), a; + aupq + ... a1 + o) = 3, acontradiction to the fact thitw (e, ), 3)| <
2 for all root 3. Thus,a,, =0V m <n —3. So,w(w,) = @, o + %(an,l + ay).

Then, (w(w@,), n_s + an_1 + ay,) = 3, a contradiction to the fact thatw(w,), )| < 2
for all root 5.

Thus, in typeD,, not botha,,_, anda,, can bes. O

Notation:.J, , = { (i1, %2, -,ip) 1 ix € {1,2,---,¢q} V k andigq — i, > 2}.

Now, we describe the set of all elementss 1! of minimal length such thatw, < 0
for typesB,, C,, andD,,. Note that forw € W we havew(w,) = w, if and only ifw € W,
and that ifw € W thenw is the unique minimal element of the cosét/; .

Theorem 3.3.3.LetV" = Minimal elements of the set of allc 1!~ such thatX (7)5: (L, ) #
0.

(1)TypeB,: (i) Letr = 1. Thenw = s,,5,,_; ...s;. Further, W = {w}.

(i) Let r be an even integer i2,3,---,n — 1}, Foranyi = (i1, iz, - -,iz) € Jr 1,
such thatw;(w,) = —(Zézl a;, ). Further, W

man

there exists unique; € W

min - {wi : l €
J%,nfl}-

(iii) Let » be an odd integer iq2,3,---,n — 1}. Foranyi = (iy, iz, - - ~,i%) € Jroi o

r—1
there exists unique; € W, such thatw;(w,) = —(3_,2, i, + ay,). Further, W = {w; :

man
Le J%l,n72}'
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(iv) Letr = n. If nis even, theny = wn - wy, where,w; = sg;_1...8,, i =1,2,---%
and ifn is odd, thenw = Win g - Wi, wherew; = sgi—1...5,, i =1,2,---[3]+1. Further,

Wi = {w}.
(2) TypeC,,: (i) Letr = 1. Thenw = s,,5,_1 . .. s1. Further, Wl = {w}.

(i) Let r be an even integer if12, 3, - - -, n}. Foranyi = (iy, 4, -,iz) € Jr .1, there
exists uniques; € W such thatw,(w,) = —(37_, ;). Further, W = {w, :i €

J%,nfl}-

(iii) Let » be an odd integer ig2, 3, - - - ,n}. Foranyi = (i1, 7o, - - ,i%l) € J%lvn_Q, there

r—1
exists uniquey; € W, such that(ww,) = —(3°,2, a;, + 1a,). Further, W,

min {wl : l €
J%l,nf2}'

(3)TypeD,.: (i) Letr = 1. Thenw = s,5,,_; ... s;. Further, W = {w}

(i) Letr be an evenintegerife, 3, - - -, n—2}. Foranyi = (iy, iz, - -, iz ) € Jr ,\ Z, there
such thatw;(w,) = —<z,§:1 @, ), whereZ = {(iy,ig, -+, iz _2,n —
={w;:1€ J:,\ Z}.

exists uniquey; € W'

2,n) i€ {1,2,---,;n—4} andip; —ix > 2V k}. Further,WT{;.n

(iii) Let » be an odd integer iq2, 3, - - -, n — 2}. For anyi = (iy, iz, - - "“7‘1) € Jri s

r—1
such thatw;(w,) = —(3,2; @i, + 3an-1 + 30,). Also, for
such thatw; ; (w,) =

there exists unique; € W

min
anyi = (i, iy, -,ir1) € Jr1, ,, there exists unique,;; € Wl
2 2 k3]

—(3,2, iy + 21 + 3a,) and there exists unique,, € W,

k=l min
—-(>2.2 aik+%an_1+%an). Further,W,fr;n ={w,;:i¢€ J%l,n%} (Hwi; i€ JTTA’,%Q andj =
1,2},

such thatw; »(w,) =

(iv) Letr =n —1orn. Thenw = HE;TI w;, where,
{ 7;8, Ifiisodd
w; =

T:Sn—1 If 7 1S even

W|th, Ti = S2i—1---Spn—2, 1= 17 2, cee [%] Furthel‘,Wﬁm = {U}}

Proof. Proof of 1
D =a1+as+ ...+ a,.
Takew = s,5,_1 ...51. Thenw(w,) = —a,, < 0. Clearly, W1 = {w}.
(i) Let r be an even integer 2,3, - -+, n — 1}.
We havew, = 30— ic, + (e + ...+ ap), 2<7 < (n—1).
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Now, Jr 1 = {(i1, 49, -+ ,iz) s ix € {1,2,---,n — 1} andigyy — iy > 2 V k}. Consider
the partial order onJr ,,_y, given by (i, iz, -+ ir) < (ji,Jo, -+, jz) if ip < jx V k and
(i1, 02, i) < (Ji,J2, - -+, Jz ) if i < s, for somek. We will prove by descending induction

on this order that there existaiac W' such thatv(w,) = —(z,ézl Q).

For(ji, ja2, -+, jz) = (n—r+1,n—r+3,---,n—1),we have(s, ,1...51)(Sn—rt3. .- 52)
)..

T
oo (S s%)(snsn,l o S%H)(snsn,l o Srya). .. (SnsSn—1---Se)(wr) = =D 21 Mnri2—1)-

Now, if (iy, 19, - -,ig) € Jrn is not maximal, then, there existsmaximal such that
w<n-—r-+2t—1.

Now, (il, 1oy oy b1y L0, Gygq, v oy Z%) S J%,n—l and(il,ig, R N A PR PR ,Z%) >
(11,19, -+ ,i%). So by induction, there exists, € W such thatv, @, = —(Zk# QG 04, ).

Takingw = 814, S;, W1 We havewa = _(Egzl Oél'k).
Hence, foranyi,, iy, - - -, ix) € Jr ,_1, there existsy € W' such thaww, = —(3°7_; a;, ).

Now, we prove that thev's in W/ having this property are minimal in the setofwvith
7(w,) < 0.

Letw € W such thatvew, = —(Zézl Q).

Supposev is not minimal. Then there exists€ ®* such thatsw(w,) < 0 andl(szw) =
[(w)—1. Sowe have-(>"7_, a;,) = w(w,) < sgw(w,) < 0. Again sincei,1 —ix > 2V k,
B = «,, for somet = 1,2,--- 5. Hencespw(w,) = —(3_, 4 i) + i, £ 0, @ contradiction.
Thus, all thew’s are minimal.

Now, it remains to prove that for all elements of two type3,—(i(z,§:1 a;,) and (i)
—(>"r_1 @), s > % in the weight lattice such thdty;,, a;,,,) # 0, for some £, there does

not existw € W minimalin the set ofr with 7(z,.) < 0 such thatvw, = —(Zézl Q;, ).

We first consider the first case. Let= —(z,ézl @;,) be such thata;,, oy, ) # 0 for
somek. Chooset minimal such thata, , a;, . ,) # 0.

If ix. = n—1, thenipy = 1 ands,w(w,) = —(32; 4, ;) > —(z,ﬁzl «;, ). Hence,
sp,w < w, a contradiction to the minimality ab.

Otherwises;, w(w,) = —(3;., ;) > —(Zézl a;, ). Hence,s;, w < w, a contradiction
to the minimality ofw.

We now consider the second case. ket —(3>°,_, a;,), s > §. Using the same argument
as above we see that there does not exist1W/* minimalin the set ofr with 7(cz,) < 0 such
thatwew, = — (>, @i,)-

Hence W

man

= {w; : i € Jr ,.} follows from proposition (3.3.2).
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(iii) Let r be an odd integer i2,3,---,n — 1}.
The proof is similar to the case wherns even.
(iv) We havew, = £ 7 ia;.

Then, 2w, = "7, ioy.

Case 1 :niseven.

Takew; = Soi1...Sp, i =1,2,--- 2.

[\

Letw = wa - w;. Thenw(2w,) = — Zi%:l g1 < 0.
Case 2 :nis odd.

Takew; = Soj1...Sp, i =1,2,---, 2L

n+1

Letw = wap - -wp. Thenw(2w,) = — 3.2 a1 < 0. Note thativ

o = {w}, since
. A 2
w,, IS miniscule.

Proof of 2

(|) We have,w1 =1 t+ay+ ...+ 50,

1
2
Then2w; =2(a1 +ag + ... + ap_1) + ay.

miniscule.

= {w}, sincew; is
Proof of (ii) and (iii) are similar to Cases (ii) and (iii) ofpe B,,.

Proof of 3
(i) We have,w; = Z;:f o; + %(an,l + ). Then 2w, = 2(2?:_12 ;) + a1 + .

Takew = s,8,-1...51. Thenw(2w;) = —(a,—1 + a,,) < 0. Note thatW,fjm = {w},
sincews; IS miniscule.

Proof of (ii) and (iii) are similar to Cases (ii) and (iii) ofpe B,,.
(iv) We havew, | = %(al +2a0+ ...+ (n—2)a, 2) + i(nan,l + (n — 2)ay,).

Thendw, | =2(ay + 20+ ...+ (n — 2)a,_2) + na,—1 + (n — 2)ay,
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Take
{ TiSn—1 if 71s odd
w; =

Tis, If i iseven
Whel’e,n = 82i—1---Sp—2, L= 17 27 U [%]

Letw = HE;TI] w;. Then,

iw—2a, ifn=0 (mod4),

w—2a, 1 ifn=2 (mod4),

=20, 9—30, 1 —a, fn=1 (mod4),
=209 — 0y 1 —3a, fn=3 (mod4),

w(dw,_1) =

n—1

where,u = —Q(EE?} Q2i-1).
We haver, = 3(a; 4+ 200 + ... + (n — 2)ay,—2) + 1((n — 2)a,—1 + nay,).

Then 4w, = 2(a; + 2a3 + ... + (n — 2)ap_2) + (n — 2)a,_1 + nay,.

Take -
T;8, If 7isodd
TiSp—1 If 7 1S even
where,7; = s9;_1...8,-9, 1 =1,2,--- [%]

Letw = HZT;] w;. Then,

p—2a, 1 ifn=0 (mod4),

p—2a, ifn=2 (mod4),

=20, 9—a,1—3a, fn=1 (mod4),
=20, _9—30, 1 —a, fn=3 (mod4),

w(4w,) =

n—1

where,u = —2(E£;’1 }aQH). Note thatiV’i |

= {w} for i = n — 1,n, sincew,_; and

w,, are miniscule. O

3.3.2 Exceptional Types

In this section, we describe all minimal Schubert variefigs) in G/ P (wheredG is a simple
algebraic group of typé’s, F-, Ex, F; or GGy, and P is a maximal parabolic subgroup 6 for
which X (w) admits a semi-stable point for the action of a maximal tofu§ avith respect to
an ample line bundle o/ P.
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Let I, = A\ {«,} and letP;,, = BW; B be the maximal parabolic corresponding to the
simple roota,.. Let £, denote the line bundle associated to the wetght In this section we
describe all minimal elements &F ’ for which X (w)353(L,.) # 0.

Now, we describe the set of all elementss 1! of minimal length such thatw, < 0
for type Eg, E7, Eg, I, or G,. For the Dynkin diagrams and labelling of simple roots, wierre
to chapter-1 and for fundamental weights we refer to appeBdi

Type Fy :
(1) @y = 2071 + 3as + 4dag + 20y
(5251)(5352848389251)(w1) = —ag
(5152)(835284838281) (1) = —y

(2) Wy = 30[1 + 60[2 + 80[3 + 40(4

(5354)(515251835251548382) (o) = —ag — 203
(5453)(515251535251548382)(wa) = —a — 20
(5152535251548352535152)(wa) = —201 — Qg
(5251535253548352535152)(wa) = —ay — 209
(5452535152535152548352)(wa) = —an — 20

(3) w3 = 2071 + 4ag + 63 + 3oy

(5152)(535453525354515283)(w3) = —a; — y
(5251)(535453525354515283)(w3) = —ay —
(5153)(5253548352583515283)(w3) = —aq — g
(5354)(525153525354515283)(w3) = —2a3 — ay
(5453)(525354515283545283)(w3) = —az — 2y

(4) wy = ag + 20 + 3a3 + 20y

(8354)(828351528354)(wa) = —au3
(s453)(s25351525384) (W) = —y
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(1) w1 = 201 + g

$981(w1) = —aq — 4oy
$18981828182(w1) = =201 — Qg
(2) wy = 3a1 + 29

S981(wy) = —ap — baw
$18981898182(wa) = —3a; — 209

Type E67 E77 ES .

Since the combinatorics in this case is very complicatedyifeen a fundamental weight
we give a C-program that will generate all thec W such thatvww < 0. For the program
please refer to appendix-A.

Program Description:

Given a fundamental weight we can write it as a tuple of rational numbéts, as . . . ;).
Sincew(w) < 0 if and only if w(kw) < 0, by multiplying a suitable integer we can assume
that all the co-ordinates of the tuple are positive integ&isace we are interested in minimal
Schubert varieties admitting semi-stable points, so gavdinmdamental weight- we need to
compute all the minimal length Weyl group elements haviregptoperty thatv(w) < 0, i.e.,
all the entries of the tuple is non-positive. Letdenote the reflection corresponding to the
simple roota;. We keep applying the simple reflections to the tuple. We bayoperatiors;
is valid for this tuple if” > 0 ands;(w”) < w@”, wherew" is the resultant tuple after”
operation. A sequence of’s is valid if at each stage the operation applied is validr gnal is
to find all valid sequence of operations which when appliatsecutively, takes each element
of the tuple to a non-positive integer. Also, if two or mordidaequences map the tuple to
the same tuple of non-positive numbers, we want to retairotigewhich is lexicographically
smallest and this is possible by lemma (3.2.3). Note thawdf valid sequences map to the
same value, they must be of the same length. This follows frendefinition of valid.

The algorithm does an exhaustive search through the sdtpdsdible function sequences
i.e. sequence of;’s, with a little pruning to cut down on the running time. Ndl&t this set
is infinite, but in our case, we know a bound on the length ohsusequence, thus restricting
the set to only finitely many sequences. This is based on tl@viag observation: Given a
fundamental weightss = (a,, as, . . . @), the length of the sequence is boundedbya;. For
the cases we are interested in (Tyige E-, Ex), the sum of the weights does not exceed 200
for any tuple. Hence, we restrict our search space to allesemps of;’s of length at most 200.
Let us call this sef//.

It is clear that we can define a lexicographical orderingdnThe algorithm goes through

the elements id/ in a lexicographical manner. However, the algorithm dogsansider every
element in order to cut down on the running time. Certainti@ia listed below are used to
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prune equivalent sequences:

1. The commuting relations;s; = s;s; if ¢, 7 are not neighbouring vertices.

2. The Braid relationss;s;s; = s;s;s; if i, j are neighbouring vertices.

Moreover, once a valid sequengdas been found to map to a tuple of non- positive integers,
we do not consider sequences which hawes a prefix, since they clearly would not be valid.
Apart from this, a sequence which containssafollowed by anotheg; is not considered, since

s? = 1. Algorithmically speaking, we build sequences in lexiaghical order, in increasing
order of length i.e. starting with some as the first operation, we recursively keep appending
operations (in lexicographically order i.e. would be tried before, ;) to the sequence, whilst
preserving validity and applying the above heuristics fanmutativity etc.

Even after employing these conditions we could not handiétbck commutation of;’s,
for example in typ&-s, the program was not able to detect the equivaleneesgfs; s525351 5452
and sss7SgS55452538154 1.€. that the two sequences map to the same tuple. We madéncert
modifications to the program to get around these duplicati@ince the output is integer val-
ued andw;(\) = wy(\) if and only if w; = w,, we could use hashing map to filter out the
repeated elements.

We represent the fundamental weight asdnple (a1, a, ..., ;). We keep on applying
reflections till each of the component entries in the tupleobee less than or equal to 0. It
can be checked easily that none of the entries of the finalpasitive tuple go beyond-S.
We now define the hashing functign: {0, -1,—-2..., -7} — N, which maps a reflected
tuple to a unique value iN. Let the tuple after reflections He/, d} ..., a;). Let us define
r;=a,+7,1<i<1I[ Then0 < z; <7, and the tuplz;, xs, ..., z;) can be interpreted
as an octal number, read from left to right (s the unit position). We can then map the octal
number to its decimal value. Thus, the hash function is défasefollows:

I
hid),ay... a) = ZSi’l(a; +7)

i=1

Here, (a},d), ... qa;) is a reflected tuple. It is easy to see that the hashing fuméimnjective.
We know that two octal numbers are equal if and only if themeesponding digits are equal,
and thus, two tuples map to the same value if and only if theneponent entries are same.

Input and Output formats:

Create an input file called “data” in the same directory agpttogram. The top-most line
of the input file contains the length of the tupte T or 8) . The rest of the lines contain a tuple
of the given length. For the output, the file generated by tbgnam is “output”. For each line
of input (except the first line, which is used to give the lér)gthe program generates pairs of
lines. The first line in each pair corresponds to the sequehoperations applied, while the
second line corresponds to the final tuple obtained aftelyaqgpthe sequence to the tuple in
the corresponding input line. For example, in tylgg w, = (1 2 2 3 2 1), so the input and
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output are given below:

Input: 6122321
Output:
00000-100
S2545S3S15S554S2S3S4S5S¢6
0000-1000
S2S45S351S55452S35S4S6S5
000-10000
S2S45S351S5545S2S3SS554
00-100000
S25453S1S5S54S2S6S5S4S3
0-1000000
S2S45S351S5545S3S6S5S4S2
-10000000

S5254535554525655545351

The last two zeros in the output are filling up the dummy pladeish are reserved for type
E; andEs. Since the output is huge we list here only the number of mahBchubert varieties
admitting semi-stable points in each of the three cases.

Let n denote the number of minimal Schubert varieties admittérgisstable points.

Type Eg :
Fundamental weights n
3w; =(435642) |1
wy=(122321) 6
3w; =(56101284) 6
wy =(234642) 30
3ws =(46812105) 6
3wg=(234654) |1

Type E; :

Fundamental weights n

= =(2234321) 7
20, =(47812963) |10
=, —(3468642) 51

=1 —(46812963) 186
205 =(6 9 12 18 15 10 5 52
=5 =(2346542) 15
290, =(23465 4 3) 1
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Type Eg :

Fundamental weights n

w1 =(45710864 2) 21
wy, =(5810151296 3) 192
w3 =(710142016 128 4) | 623
wy =(10 15203024 18 12 6) 4014
ws =(812 16 24 201510 5)| 2115
we =(691218151284) | 589
w; =(468121086 3) 94
ws =(23465432) 8

3.4 Coxeter Elements admitting Semi-stable Points

In this section, we describe all Coxeter elements W for which the corresponding Schubert
variety X (w) admits a semi-stable point for the action of a maximal torith wespect to a
non-trivial line bundle oG/ B.

We now assume that the root systénis irreducible.

Coxeter elements of Weyl group:

An elementw € W is said to be a Coxeter element if it is of the form= s;,s;, ... s;,,
with s;. # s;, unlessj = k, see [47, pg. 74].

Letx = > ca ao be @ non-zero dominant weight anddebe a Coxeter element oF .

Lemma 3.4.1.1f wy < 0anda € Ais such that(ws,) = l[(w) — 1, then,

(1) 1{8 € A\ {a} : (3,a) # 0} = 1 or 2.

(2) Furtherif|{8 € A\ {a} : (8,a) # 0}| = 2, then® must be of typel; and x is of
the forma(2a + 3 + ) for someu € Z,, whereq, 3 and~ are labelled as

Oﬁ Oa O

~

Proof. Since ® is irreducible andy is non zero dominant weight,s is a positive rational
number for eactt € A. Further sincevy < 0, x must be in the root lattice and sg is a
positive integer for everyg in A.

Sincew is a Coxeter element arilvs, ) = [(w)—1, the coefficient ofv in wy = coefficient
of ain s, x. — (1)
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We have s,x = x — (x, &)«

BeA

=Y asB - as(B,a)a.

BeA BeA
The coefficient ofv in s x is — (35 A\ (o (5, Dag + aa). — (2)
Sincewy < 0, from (1) and (2) we have

_(ZﬂeA\{a} (8, d)ag + aq) < 0.
Hence, —(3_sca\ () (B d)ag) < aq
Thus, we have —2(3_ 5. a\ (o) (8: d)ag) < 2aa. — (3)

Sincey is dominant, we have,

(x;8)>0,VBeA
= (X,eaa7:0) 20
=D ea a,(v,0) >0
Now if (3, &) # 0, the left hand side of the inequality2s; — a,—(a non-negative integer).
Thus, we have2ag > a, if (5,a) # 0 — (4).
Now if [{# € A\ {a}: (8,a) # 0}| > 3, from (3) and (4) we have,

B, < —(2 Y (B.d)ap) < 2aq.
BeA\{a}

This is a contradiction to the fact that is a positive integer.
Sol{p e A\{a}: (B,a) # 0} < 2.
Proof of (2):

Suppose{s € A\ {a} : (6,&) # 0} = 2. Let 3,~ be the two distinct elements of this
set. Using (3) and the facts thgt, &) < —1, (y,a) < —1, we have

2(ag + ay) < =2((8, @)as + (v, ¥)a,) < 2a, — (5)
Since(y, ) > 0 and(y, ¥) > 0 we have

2a3 > — Z (0, B)ag + a, and
5406,
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2a, > — Z (0,9)as + Gq.

Iy,

Hence,— 25#6,a<57 B)ag - 25#7,a<57 ’Vy>a’5 + 2aq < 2(&5 + a“{)'

Using (5), we get

B Z <5’ B>a5 - Z <57 ’3/>a'5 + 20'04 S 20'04-

0# B, 0F,a

= > (=0 checkB)as + »  (=6,%)as <0, since (8, ) = (7, 3) =0

0F#~,08,a d#7,8,a
Since each, is positive and —4, 3), (-4, §) are non-negative integers, we have

(=6,3) =0and(—8,%) =0, V6 # a,f,7.

Since @ is irreducible, we have\ = {a, 3,v}. So, from the classification theorem (
theorem (1.7.1)) of irreducible root systems, we havey) € {—1, —2}.

If (5,a) =—2,then(y,a) = —1.
Hence, from (3) we get  4as + 2a, < 2a, — (6)

Again, from (4) we hav@ag > a, and2a., > a,. So using (6), we gela, < 4as+ 2a, <
2a,, a contradiction to the fact that, is a positive integer. Thug?, @) = —1.

Using a similar argument, we see thiat @) = —1.
Now, let us assume that, 5) = —2.

Then, § §
0<(x.0) = ay{(7,0) —2aa +2a5
= —2a, + 2ag, since(y,) =0
= 2a, < 2ag.

From (3), we have 2ap + 2a, < 2a4 < 2ag.
Hence2a, < 0, a contradiction. Sda, 5) = —1. Similarly (o, ¥) = —1.

Hence® is of the typeAs.

O@ Oa O

~

We now show thag = a(5 + 2« + ), for somen € Z>,.
Let x = an + agf + a,y. By assumption, we have sgs,(x) < 0.
So(ag + ay — ag)a+ (ag — as)y + (ay — as) B < 0.

Hence, we haves + a, < a, —(7)
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Sincey is dominant, we havéy, 5) > 0 and(y, ¥) > 0.
So we haveg, < 2ag anda,, < 2a, — (8).
Using (7) and (8)2a, > 2(ag + a,) > 2a,. This is possible only iRas = a, = 2a,.

Then,x must be of the forna(3 + 2a + ), for somea € Z. W

Let G be a simple simply connected algebraic group. We now desalibthe Coxeter
elementsy € W for which X (w)5? (L) # 0.

Theorem 3.4.2.(A) TypeA,: (1) As: For any Coxeter element, X (w)5$(L,) # () for some
non-zero dominant weight.

(2) A,,n > 41 If X (w)5°(L,) # 0 for some non-zero dominant weightindw is a Coxeter
element, themw must be eithes,,s,, 1...s10rs;...s18;41...5, forsomel <i <n — 1.

(B) TypeB,: (1) B,: For any Coxeter element, X (w)3*(L,) # 0 for some non-zero
dominant weighiy.

(2) B,,n > 3: If X(w)5*(L,) # 0 for some non-zero dominant weightindw is a Coxeter
element, themw = s,,8,,_1 ... 5.

(C) TypeC,,: If X (w)53(L,) # 0 for some non-zero dominant weightindw is a Coxeter
element, themw = s,,5,,_1...5;.

(D) TypeD,,: (1) Dy: If w is a Coxeter element, theXi(w);?(L,) # () for some non-zero
dominant weighty if and only if[(ws2) = l[(w) + 1 andl(ws;) = l[(w) — 1 for exactly one

i # 2.

(2) Dp,n > 50 If X(w)3(L,) # 0 for some non-zero dominant weightand w is a
Coxeter element, then = s,,5,,_1 ... s;.

(E) Eg, E7, Ex: There is no Coxeter elementfor which there exist a non-zero dominant
weighty such thatX (w)5*(L,) # 0.

(F) Fy: There is no Coxeter elemeatfor which there exist a non-zero dominant weight
such thatX (w)5* (L) # 0.

(G) Gy: There is no Coxeter elementfor which there exist a non-zero dominant weight
x such thatX (w)52(L,) # 0.

Proof. By proposition (3.2.1)X (w)5*(L,) # 0 for a non-zero dominant weightif and only
if wy < 0. So, using this lemma we investigate all the cases.

Proof of (A):
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(1) The Coxeter elements ol; are preciselys;sass, $15352, $25153, S35251. FOr w =
518382, takex = a; + 2as + asz. Otherwise taker = a; + as + a3. Thenwy < 0.

(2) Letn > 4, and letwy < 0 for some dominant weight. By lemma (3.4.1), il (ws;) =
l(w)—1,theni =1o0ri=n.

If i(ws,,) # [(w) — 1, then using the fact that commute withs; for j # i — 1,7 + 1, itis
easy to see that = s,,s,,_1 ... $2571.

If [(ws,) = l(w) — 1, then, leti be the least integer ifil,2,---,n — 1} such thatw =
®Siy1-. .Sy, for some¢p € W with [(w) = I(¢) + (n — i). Then, we have to show that
(b = S$;{Sij—1.--51-.

If ¢ = ¢15; forsomej € {2,3,---,7— 1}, thenw is of the form

w = (blSj(SiJrl c. Sn,lsn)
= ¢1(Si+1 cee Sn—lsnsj)-

This contradicts lemma (3.4.1). So= {1,i}. Againj = i is not possible unless= 1 by the
minimality of <. Thus, we have = s; ... s;.

Proof of (B):
(1) Forw = s1s9, takey = ay + 2as.
Forw = sys1, takey = a1 + as.
(2) Forw = s,8,-1...51, takex = a3 + as + ... a,. Thenwy = —a,, <0.

Conversely, letv be a Coxeter element and hetbe a non-zero dominant weight such that
wy < 0. Bylemma (3.4.1), if (ws;) = [(w) — 1 then eitheri = 1 ori = n.

If [(ws,) # l(w) — 1, then using the fact that commute withs; for j # i — 1,7+ 1, itis
easy to see that = s,,s,,_1...595;.

We now claim that(ws,,) = [(w)+ 1. If not, then, the coefficient af,, in wy = coefficient
of a,, In s, .

Now, the coefficient otv, in s, x is 2a,,_1 — a,. Sincewy < 0, we hava,,_; — a,, < 0.
= 20,1 < ap. — (1)

Sincey is dominant, we havéy, a,,_1) > 0. Thus, we get
—Cp_o + 20,1 — a, > 0.

= a,_2 < 2a,_1 —a, <0, by (1).
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Soa,_» = 0, a contradiction to the assumption that> 3 andy is a non-zero dominant
weight. Thud(ws,) = l(w) + 1.

So the only possibility fokw is s,,8,_1 . . . s1.
Proof of (C):
Forw = s,s,_1...s;, takexy = 2(Zi;£n a;) + a,. Then,x is dominant andvy = —a,,.

Conversely, letv be a Coxeter element and hetbe a non-zero dominant weight such that
wy < 0. Bylemma (3.4.1), if (ws;) = l(w) — 1 theni € {1,n}.

If i(ws,,) # l[(w) — 1, then using the fact; commute withs, for j # ¢ — 1,7+ 1, itis easy
to see thatv = s,,5,_1 . . . 525;.

Claim: l(ws,) = l(w) + 1.
If not, then, the coefficient af,, in wy = coefficient of«,, in s, x.
Now, the coefficient otv, in s, x iSa,,_1 — a,. Sincewy < 0, we havea,,_, — a,, < 0.
Hence, we have,,_; < a,,. —(2)
Sincey is dominant, we havéy, a,,_1) > 0. Thus, we get
—Cp_o + 20,1 — 2a,, > 0.
= ap_o < 2a,_1 — 2a, <0, by (2).

Soa,_o = 0, a contradiction to the assumption thais a non-zero dominant weight. Thus
l(wsy,) =l(w) + 1.

So the only possibility fokw is s,,8,_1 . . . s1.
Proof of (D):

(1) The Coxeter elements in this case are precisedys,si, s4515253, S3515254, S4525351,
§2545351, 53525451, $4535152, $1525354.

Forw = s4838951, takex = 2(a; + o) + az + ay, for w = s4s1s9s3, takey = 2(az +
ag) +ag +ag and forw = s3sq5954, takex = 2(ay + az) + a1 + az. Thenw(y) < 0in each of
these cases. For other Coxeter elements we have &ither) # [(w)+ 1 orl(ws;) = l(w) —1
for more than oné # 2. In these cases we show that there is no dominant wgighich that
w(x) < 0.

Assume that there exists a dominant weight of the fqrm: Zizl apoy and there exist
i,j € {1,3,4} such that(ws;) = l(w) — 1 or [(ws;) = l(w) — 1 with w(x) < 0. Since
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w(x) <0, we haven, < a; anda; < a;. Then(x, as) < 0, a contradiction to the fact thatis
dominant.

Now assumé(wss) # l(w) + 1, thenw = s4s35152. Then by lemma (3.4.1)(1), the proof
follows.

The converse follows from lemma (3.4.1).
(2) Forw = s,5,_1...5;, takey = 2(2?:_12 ;) + a1 + a,. Thenwy < 0.

Conversely, letv be a Coxeter element and hetbe a non-zero dominant weight such that
wy < 0. Bylemma (3.4.1), if(ws;) = l(w) — 1 then: € {1,n — 1,n}.

Now, if [(ws;) = l(w) — 1, then, it is easy to see that= s,s,, 1 ... s251.
So, it is sufficient to prove thdfws, ) = l(w) + 1 andl(ws,—1) = l[(w) + 1.

If l(ws,) = l(w) — 1, then, the coefficient ofy,, in wy = coefficient ofc,, in s,x =
Ap—9 — Ap.

Sincewy < 0, we havea,,_» — a,, <0. — (4)
Sincey is dominant we havéy, «,,_») > 0. Therefore, we have
20p_o > Gp_1 + Qp_3 + ay. — (5)
Also, since(x, a,,—1) > 0 and(x, a,,—3) > 0, we have
20,1 — Qp_o >0 — (6)
and 203 — Up—a — Qp_g > 0. — (7)
From (5), we get
4a,_o > 20,1 + 2a,_3 + 2a,,
> ap_o+ (ap_yg + ay_2) + 2a,, from (6) and (7)
> 2059 + 202 + an_4, DY (4)
=4a, 9+ Qy_4.

Soa,_4 = 0, a contradiction to the assumption thats a non-zero dominant weight. So
l(wsy,) = l(w) + 1.

Using a similar argument, we can show thats, ) = [(w) + 1.

Proof of (E):
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Type Eg :

Let w be a Coxeter element and letbe a non-zero dominant weigfgtsuch thatoy < 0.
Further, ifl(ws;) = I(w) — 1, then by lemma (3.4.1),€ {1, 2, 8}.

Case 1:1=8

Co-efficient ofag in wy = Co-efficient ofag in sg(x) = ar — ag < 0.
Sincey is dominanty, ;) > 0V i € {1,2,3,4,5,6,7,8}.
(x,d7) > 0= 2ar > as + as > ag + ar.
Hence, we have; > ag.
(X,d6) > 0= 2a6 > as +ar > a5 + ag

= ag > Gs5.
(X,a5) > 0= 2a5 > as + ag > as + as.

= a5 = a4
(x,a3) > 0= 2a3 > a; + ay.
(x,da) > 0= 2ay > ay.
Now, (x, dy) > 0 = 2a4 > as + az + as

= 4day > 2a9 + 2a3 + 2as.
> a4 + a; + aq + 2a4, SINCeas > ay.

So,a; = 0. Thus in this case, there is no Coxeter elemeffior which there is a non-zero
dominant weight such thaty < 0.

Case 2 :1=1
Co-efficient ofa; in wy = Co-efficient ofa; in s;y = as — a; <0.
Sincey is dominant, we havéy, ai) > 0. Thereforeas > a; + ay > as + a4
Hence, we haves; > a4 .
Since,(x, d4) > 0, we havea, > a3 + as + as.

Since,(x, dz) > 0 and(x, ds) > 0 we havea, > a4 and2as > a4 + ag.
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Then,4a, > 2a3 + 2a3 + 2a5 > 2a4 + a4 + a4 + ag, from the above inequalities.

So,a¢ = 0. Hence we have = 0. Thus, in this case also, there is no Coxeter element
for which there exist a non-zero dominant weighdéuch thatoy < 0.

Case 8 :1=2
Co-efficient ofas, in wy = Co-efficient ofas in sox = ay — as < 0.
Sincey is dominanty, a;) > 0V i € {1,2,3,4,5,6}.
(x,ds) > 0= 2a5 > a4 + ag.
(x,a3) > 0= 2a3 > a; + ay.
(x,aq) > 0= 2a4 > asz + ay + as.
So, we haveay, > 2a3 + 2as + 2as.

> (a1 + aq) + 2a4 + (ag + ag) = ay + ag + 4ay.

= a1 +ag = 0. S0,a; = ag = 0.

Hence, we havg = 0. Thus, in this case also, there is no Coxeter elemefdr which
there exist a non-zero dominant weighsuch thatoy < 0.

Type Eq, E7 :

Proof is similar to the case di.
Proof of F:

Let w be a Coxeter element. Lgtbe a non-zero dominant weight such that < 0. If
l(ws;) = l(w) — 1, theni € {1,4}, by lemma (3.4.1).

Case 1 :i=1

Co-efficient ofa; in wy = Co-efficient ofa; in s;y = as — a; <0.
Sincey is dominant, we havéy, as) > 0 and(x, ds) > 0.

(x,d2) > 0= 2ay > ay + az > ay + as, SinCeay < ay.

Hence, we have, > as.

(x,a3) > 0= 2a3 > 2as + a4 > 2a3 + ay.

So, we haver, = 0. Hence,y = 0. Thus, in this case there is no Coxeter elemeriior
which there exist a non-zero dominant weighdéuch thatvoy < 0.
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Case 2 11 =4

Co-efficient ofay in wy = Co-efficient ofay in syx = a3 — ay < 0.
Sincey is dominant, we havéy, as) > 0 and(x, ds) > 0.

(x,d3) >0 = 2a3 > 2ay + ay > 2ay + as, Sinceas < ay.

Hence, we haves; > 2a,.

(x,a2) > 0= 2ay > ay + ag > a; + 2as.

So, we haver; = 0. Hence,xy = 0. Thus, in this case also, there is no Coxeter element
for which there exist a non-zero dominant weighdéuch thatoy < 0.

Proof of G:
Letw be a Coxeter element and= a;a; + asan, be a dominant weight such thafy < 0
Case 1 :1l(ws;) =1l(w)— 1.
Co-efficient ofa; in wy = Co-efficient ofa; in sy x = as —a; < 0.
Sincey is dominant, we havéy, ay) > 0.
= 2a9 > 3aq > 3as.

So, we haver, = 0. Hence,y = 0. Thus, in this case, there is no Coxeter elemefibr
which there exist a non-zero dominant weighgéuch thatvoy < 0.

Case 2 : l(wsg) = l(w) — 1.
Co-efficient ofas in wy = Co-efficient ofas in sy = 3a; — as < 0.
Sincey is dominant, we havéy, a;) > 0.

= 2aq1 > ay > 3a,.

So, we haver; = 0. Hence,xy = 0. Thus, in this case also, there is no Coxeter element
for which there exist a non-zero dominant weighduch thatoy < 0. O

We now turn to the general case. L@&tbe a semi-simple simply connected algebraic
group. ThenG is of the formG = []_, G;, for some simple simply connected algebraic
groupsGy, - -+, G,. So, a maximal toru§’ (resp. a Borel subgroup containingT’) is of
the form[[;_, 7; (resp. [[,_, B:), where eacll; is a maximal torus of;, and eachB; is a
Borel subgroup of7; containing?;. Also the Weyl group of+ with respect tdl" is of the form
[T;_, Wi, where eachV; is the Weyl group of; with respect tdl;.
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Now, letx = (x1, - x») € ®/_,X(7T;) be a dominant weight, whet¥ (7;) denote the
group of characters df;. Then, clearly eacly; is dominant. Letw = (wq,ws, -+, w,) €
[I;—, W; be a Coxeter element &F. Then, eachu; is a Coxeter element. Then, we have;

Theorem 3.4.3.X (w)5(L,) # 0 if and only ifw; must be as in theorem (3.4.2) for alsuch
that x; is nonzero.

Proof. Follows from theorem (3.4.2) and the fact thay < 0 if and only if w;x; < 0 for all
i=1,2,-,1 ]
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Chapter 4

Projective Normality of GIT Quotient
Varieties

This chapter reports the work done in [55, 58, 59]. In thisptBawe investigate projective
normality of quotient varieties modulo finite groups. Intsaas (4.2) and (4.3) we prove that
for any finite dimensional vector spadé over an algebraically closed field, and for any
finite subgroup= of GL(V') which is either solvable or is generated by pseudo reflessoich
that|G| is a unitin K, the projective varietf(1') /G is projectively normal with respect to the
descent of0(1)®/¢1. In section (4.4) we prove the projective normalityRi{fi’™) /W, where
V™ denotem-copies of the standard representatiof the Weyl grouplV of a semi-simple
algebraic group of typel,,, B,,, C,,, D,,, F, andG, overC. In section (4.5) we prove a result
connecting normality of an affine semigroup and the EGZ @0

4.1 Introduction

Projective Normality: A projective varietyX is said to be projectively normal if the affine
coneX overX is normal at its vertex, i.e., the stalk at the vertex is a rdromain. Projec-
tive normality depend on the particular projective embaddf the variety (unlike the affine
varieties) as the following example shows.

Example: The projective lindP! is obviously projectively normal since its cone is the affine
planeK? (which is non-singular). However, it can be also embeddétt ias the quartic curve,
namely,

Vi ={(a* a’b,ab’ b*) € P*: (a,b) € P},

ie.,V, =V (XT -YZ TY?*— XZ?), but the coordinate ring of its corié which is
K[X,Y,Z,T]/(XT —YZ,TY? — X Z?) is not normal.

Remark: Let £ be a very ample line bundle on a projective varigfy Then the polarized
variety (X, £) is projectively normal if the natural magym™H°(X, L) — HY(X,L™) is
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surjective for allm > 0 (see [39, Ch. II, Ex. 5.14]).

Let GG be a finite group. Lel” be a finite dimensional representation(obver a fieldK'.
In 1916, E. Noether proved that if characteristic &fdoes not divideG|, then thek -algebra
of invariantsK [V]¢ is finitely generated. 11926, she proved that the same result holds in all
characteristics (Th. 2.2.1). So, whénis algebraically closed, it is an interesting problem to
study quotient varietie¥ /G = Spec(K[V]¢) andP(V)/G. Also,Vx € P(V), the isotropy
G, acts trivially on the fiber of the line bundt@(1)®/“l at . Hence, by a descent lemma of
Kempf (see [29]), whenG| is a unit in K, the line bundleD(1)®/“! descends to the quotient
P(V)/G, whereO(1) denotes the ample generator of the Picard group(of). Let us denote
it by £. On the other hand//G is normal. So, it is a natural question to askPi{fi’)/G is
projectively normal with respect to the line bundle More generally, an interesting question
is the following:-

Question: Let GG be a finite group acting on a projectively normal polarizedetst (X, O(1)),
whereO(1) is G-linearized very ample line bundle makidg C P(V') projectively normal and
L € Pic(X/G) is the descent aD(1)®/% on X. Is the polarized varietyX /G, £) projectively
normal ?

Here we give an affirmative answer to this question in mangsas

4.2 Solvable Case

In this section, we prove projective normality of the quntiearietyP(V')/G when the group
G is solvable. We begin the section with the celebrated theaneadditive number theory due
to Erdos, Ginzburg and Ziv.

Erd6s-Ginzburg-Ziv Theorem [31]: Letn > 1 anday,...,as,-1 € Z. Then there exist
i1,...,1, SUch thata;, + - - -+ a;, = Omodn.

Proposition 4.2.1.Let GG be a finite solvable group, and I&t be a finite dimensional faithful
representation ofy over a field X' of characteristic not dividindG|. Letm = |G|, R :=
®asoRa; Ry = (Sym¥™V*)%. ThenR is generated as & -algebra byR;.

Proof. Stepl: We first prove the statement whéhis cyclic of orderm. Let¢ be a primitive

m!" root of unity in an algebraic closui of K. Let F = K (&). SinceF is a freeK module,
we haveV’ @ F = (V @k F). Hence, we may assume tifat K.

LetG =< g >. WriteV = EB;’;BlVZ- whereV; == {v eV :gv==¢0},0<i<m-—1.
NOW, |etf € Rd be Of the formf = XQ'Xl e mel W|th XZ = Xi,l-Xi,2 tee Xivai € Sym‘”‘/;,
whereX, ; € V; such thatzg)1 a; = dm. Sincef is G-invariant we have

-1
1.a; = 0modm

3

-
I
o
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If d =1, f € Ry; SO we may assume that> 2. Now, consider the sequence of integers

0,000, 1,1, o m—1,....m—1
— h ~~ 4
ao tIMmes q«; times am—1 tIMESs

Since the sequence hds: terms and! > 2, by a theorem of Erdds-Ginzburg-Ziv (see [31]),
there is a subsequence with exaetlterms whose terms add up to a multipleof Thus there
exist f; € R; andf, € R, 1 such thatf = f;.f,. Hence the proof follows by induction on

deg(f).

Step2: Now we assume thdt is any finite solvable group of ordet. We use induction on
m to prove the statement. We may assume that not a prime number. Singg is solvable it
has a normal subgroufd such thatz/H is a cyclic group of prime order.

Let W = (Sym!/HV)H. SinceH is a normal subgroup of/, both W @ ... ® W and
—_——

d|G/H| copies
(Sym@H1V)H have naturaty /H-module structures. Let, = G/H. Since|H| < |G|, by
induction, the homomorphisit @ ... @ W — (Sym®“V)# is surjective. (1)
—_——

d|G,| copies
Claim: The natural magSym®“ilW)& — (Symd©V) is surjective. )

The surjectivity of the natural magym®“1W — (Sym¢IV)H of G;-modules follows
from (1) and the following commutative diagram

®d‘G1‘W  — (Symd‘GH/)H

—

SymdIGi
Hence applying Reynold’s operator we have the claim.

Now, consider the commutative diagram:

®d(5ym‘G1|W)Gl . (Symd.\cl\w)&

| |

RY(Sym!¢IV)E (Sym®IGhy)&

The first horizontal map is surjective by stép and the second vertical map is surjective by
(2). Thus the second horizontal map is surjective. Thus thegsitipn follows. O

Theorem 4.2.2.Let GG be a finite solvable group, and |&t be a finite dimensional faithful
representation of5 over a field X' of characteristic not dividindG|. Then, the polarized
variety (P(V')/G, L) is projectively normal.
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Proof. The polarized varietyP(V) /G, L) is Proj(Sacz.,(H(P(V), O(1)®4¢)&) which is
same asPr0j(Daez-, (SymA“V*)E). Let R := ©ysoRy; Ry = (Sym®V*)¢. By proposi-
tion (4.2.1), the magym?R, — Ry is surjective. So the result follows from the remark in the
last section. O

4.3 Group Generated by Pseudo Reflections

In this section, we prove the projective normality of the Gierat varietyP(1') /G when the
groupd is generated by pseudo reflections. First we prove a condrinblermma which will
be used frequently in this chapter.

Leta=(ay,as,---a,) € N"andN, = []/_, ;. Consider the semigroup
My = {(my,mga,---m,) € Z5y : >°;_; ma; = 0modN,} and the set

Sq = {(my,ma,---m,) € ZLy: > i  mia; = Ny}

Lemma 4.3.1. M, is generated by, fora € N".

Proof. Supposém,,ms, ---m,) € Z%, such that:
oy mi.a; = q. Ny, with ¢ > 2.

Letn = ¢.N,. Choose any. x r matrix
T T2 - Tar
To1 T2 o X2 . . . .
A= . CL .| with entriesz; ;'sin {0, 1} such that each row subn’_, i is
Tp1 Tp2 - Tpy
equal to 1 and for each= 1,2, - -, r, thej* column sum>_"" | z; ; is m;a;.

Sinceq > 2 we haven > 2.a,. Therefore, the sequenée;, x5, - - -, x,1} has atleas?a,
number of terms. Hence, applying the theorem of Erdos{&irg=Ziv repeatedly (see [31]) and
rearranging the rows if necessary, we can assume thattéens of the sequence can be par-
titioned intoﬁ number of subsequencgs i, za1, -, Ta1 }y {T(ai+1)1 Tlai+2)15 5 T2a11 }
AT (m—a+ D)1 Tn—ar+2)15 -+ Tn1 }, €ACH of lengthy; and sum of terms of each of these
subsequences is a multipleaf.

Again, consider the sequen® L, ., ngﬂ“ Tig, -, Z?:_nfaﬁrl Tip}. Using the same
argument as above we can assume that this sequence canibengattinto "~ number of
subsequences each of lengthand sum of terms of each subsequence is a multiplg.of

Proceeding in this way, we can see that for each 1,2, - -, r, the sum of the firstV,-
terms in thejth column of the matrix4 is a multiple ofa;.
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Letb;, = vajl z;;. By construction of ther;;'s , b; is a multiple ofa; for every; =
1,2,---,r. So, for eachj = 1,2,---,r, write b; = a,c;, with ¢; € Z>,. Now, since
> Ty =1, Vi=12--n wehave) ' b = N, Hence(cy,co ,c) € Sy
Asmja; = Y x;5, by < mj;foreveryj = 1,2, --- r. Thus, we havém,,msy, -, m,) =
(c1,¢9,+++,¢) + (my — c1,ma — coy -+, my — ¢,), With (¢q,¢2,- -+, ¢,) € S,. So, the lemma
follows by induction ony. O

Corollary 4.3.2. Let V' be a finite dimensional vector space over a fi&ld Let G be a finite
subgroup ofGL(V') which is generated by pseudo reflections. Further assuntetizaacter-
istic of K’ does not dividéG/|. Let R, := (Sym®/“I(V*))¢. ThenR = ®4ez.,Rq is generated
by Ry.

Proof. By a theorem of Chevalley-Serre-Shephard-Todd (Th. 2.53)m(V*))% is a poly-
nomial ring K[ f1, f2, - - -, f.] with each f; is a homogeneous polynomial of degreeand
[1;_, @i = |G|. Thus, proof follows from lemma (4.3.1). O

Theorem 4.3.3.LetV be a finite dimensional vector space over a figldLetG be a finite sub-
group of GLV') which is generated by pseudo reflections. Further assuntectizaacteristic
of K does not divideG|, then the polarized varietyP(V') /G, L) is projectively normal.

Proof. Proof follows from corollary (4.3.2). O

4.4 \ector Invariants and Projective Normality

Let G be a semi-simple algebraic group of ranlover C. LetT' be a maximal torus ofs.
Let N¢(T') be the normaliser of" in G and letW = Nq(T')/T be the Weyl group of+
with respect tdl". Consider the standard representafior-= Lie(T") of W. For every integer
m > 1, the grouplV acts on the algebr&[VV"| of polynomial functions on the direct sum
Vm.=V @---@V of m copies ofl’ via the diagonal action

(wf)(vy, -, vm) = flw vy, -, w o), f € C[V™,w e W.

If m = 1 then the algebr&[V]"" of invariants in one vector variable is generatedibgige-
braically independent homogeneous invariafitsfs, - - -, f,, of degreesl;, ds, - - -, d,, respec-
tively such thaf [}, d; = || by a theorem of Chevalley-Serre-Shephard-Todd (Th. 2.5.3)
We will refer to such a system of generators@#/]"" as a system of basic invariants. Ex-
plicit systems of basic invariants are known for each typeretiucible Weyl groupsV (see
appendix-B).

Theorem 4.4.1.Let G be a semi-simple algebraic group of tyge, B,,, C,., D,,, F, or G,. Let
W denote the corresponding Weyl group. Lébe the standard representation Bf. Then
P(V™)/W is projectively normal with respect to the line bundi1)®!"!,
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Proof. By a theorem of Chevalley-Serre-Shephard-Todd (Th. 2.58)C-algebraC[V]" =
(Sym(V*))W is a polynomial ringC[ f1, f2, - - -, f»] With eachf; is a homogeneous polynomial
of degreed; and[[;_, d; = |IV]|.

Let R == @,>0R,; whereR, = (Symd"IV*™)W_ Since theC-algebrar is integrally
closed, so to prove our claim, it is enough to prove that itasegated byz;. We prove this
dealing case by case.

Type A,,B,,,C,, :

We first note that the Weyl groups of tyge, andC),, are same, and the root systems are
dual to each other. Hence, the standard representdtfon 3,, and the standard representation
V' for C,, are also the same. So, here we need to deal with cgsaad ,, only.

For the diagonal action of the Weyl group i, in type A,, by H. Weyl and in types,,,
by a theorem of Wallach, the algebtdl’™]" is generated by polarizations of the system of
basic invariantdi, fo,- - -, [, (see Th. 2.9.2).

Foreach € {1,2,---,n}, let{f;; : j = 1,2,---a;} denote the polarizations ¢gf where
a; is a positive integer. Since the polarization operafogs= >, _, xik% do not change the
o
total degree of the original polynomial, we have

degree off;; = degree off, =d;,, Vj=1,2,---q,. 4.1)

Let us take an invariant polynomigl € (Symd"l(V™)W whereq > 1. Sincef;;'s
generateC[V™]" with out loss of generality we can assurfids a monomial of the form

[T T £

Sincef = [Ti_, [I5, fi; 7 € (Sym?™I(V™)™, we have

n n

Zzlmijdi =qW| = (J(H d;)

=1 j=1 =1

Letm,; = Z;‘;l m;; then we have """ | m;d; = ¢([].—, d;), and hencgm,,my, - - -, m,)
is in the semigroup/y = {(my, my, - -my) € Z%, : 37, md; = 0modN}.

By lemma (4.3.1), the semigrould, is generated by the sél; = {(mq, mo,---m,) €
7%y > myd; = T]7, d;}. So there existém|, mj, - --mj,) € ZZ, such that for each

n n
i=1 =1

Again, sincem; < m; = 3’| m;;, for eachi andj there existsn;; < m,; such that
a;
!/ /
m =3 .
j=1
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Theng = [T, [T52, fgij is W-invariant and is in{ Sym/!"I(V™))W.

Let f' = 5 Then f/ ¢ (Sym @ DIWI(ym)W and so by induction o, f is in the
subalgebra generated byym!"!(Vm)W,

Hencef = g.f’is in the subalgebra generated (sym!"|(V ™))V,

Type Dy, :

Before proving the theorem for this case let us recall thmadaif the Weyl group of type
B, andD,, on the Euclidean spad®”. Let W/ and!¥/’ denote the Weyl group of typ®,, and
B, respectively. Them/” acts onz = (xy, 2o, -+, x,) € R™ by permutation ofy, z, - - -, z,,
and the sign changes — —x; and the groupV acts onx by permuting the coordinates and
changes an even number of signs. Then it is clear that thepdiGus generated by the group
W and a reflectiorr defined by

O'(l‘l,l‘g, e 73771—173771) - (ZL‘l,fEQ, crry Tp—1, _xn)

We can take the polynomials
fi:szi’ i:1727"'7n_1
k=1

and fo=21.29... 2,
for the basic invariants o[V ]V (see appendix-B).

For C[V]"" we can take the basic invariants the polynomials
fi=> ap i=12-n-1
k=1

and fh =2 i

For oddr > 1, define the operator

3
Q

wherez, x5, are standard coordinates®f". The operatoi®, commutes with the diagonal
action of W andW’ on C[V?] and preserve€[V?]".

Now by theorem (2.9.3) the algebqV?]"" is generated by the polarizations of the basic
invariantsfi, fo,- - -, f, and the polynomials

l
Py P(fy) (ri>10dd > ry<n-—1).
i=1
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Note that the degree of the polynomial( f,,) isn+r—1 and so the degrees of the polynomials
P ---P.(f), (rn>1 odd S\ r <n—1)are

n+(ri+r+...+r)—1<2n-—2.
SoC[V?W is generated by homogeneous polynomials of degree — 2.
Now we will prove the theorem for typ®,, by dealing with two cases.
Case -1nis even

In this case note that the degrees of the basic invarignts, - - -, f,, are all even. So
the degrees of the polynomial3, - - - P, (f,,), (r; > 1 odd Zizl r; < n —1[) are all even.
Since the polarizations of the basic invariants have theesdggrees as the basic invariants, we
conclude that in this case the algelitf/%]"" is generated by homogeneous polynomials of
even degrees less than or equakto— 2.

Now for m > 2, by theorem (2.9.4), the algeb@V™]" is generated by the polarizations
of the generators of[V2]"V. Again since the polarization operators do not change thecge
of the original polynomial we conclude that the algetii&™]" is generated by homogeneous
polynomials of even degrees same as the degrees of the naiants. So in this case we can
employ the same proof as in the case of tylye B,, andC,,.

Case -2nis odd

In this case since the degree of the basic invarfans odd andr;'s are all odd, we have
degrees of all the polynomial3, - - - P, (f,), (r; >1 odd Y\ ,r; <n —1) are odd.

Again, since form > 2, the algebraC[V™]" is generated by the polarizations of the
generators off[V2]", among the generators @f1/™]"" we have some odd degree invariants
as well which are not necessarily having the same degreée aegree of,,.

Now, let us take one odd degree invarigntg C[V™]" and write

f=olf)  [+o()
2 * 2

f=
whereo is the reflectionz, xo, - - -, 21, ) — (21,29, -+, Tn_1, —x,) defined before.

SincelV is a normal subgroup of the Weyl grolip’ of type B,, andW/’ is generated by’
ando, we have
f+o(f)

2

Again, sincef is homogeneous of odd degree, the degre€'8. is odd and hencé* 7\ is
equal to) sinceC[V™]"" is generated by polarizations of the basic invarigits,, - - -, fu_1, f*
which are all of even degrees. Hence, for an odd degree amigric C[V™]", we have

o(f) =~

e clym™W’
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So for anylV-invariant polynomialsf andg of odd degrees we haveg f.g) = fg and hence
we conclude that?, g> and f¢ are inC[V™]"'’

Now let us take a typical invariant monomial
HH SRS .y € (Sym@VTymW
i j=1

where f;;'s € C[V™]" are the even degree invariants of degrégsls, - - -, d,_; obtained
by taking the polarizations of the even degree generato®\6f]"" andh;’s € C[V™]" are
the odd degree invariants obtained by taking the poladmatof the odd degree generators of
C[vZ]W

Again sinceh? andh;,.h; are inC[V™]""", they are polynomials iffi ;'s and the polarizations
of the even degree basic invarigfjt So we may assume that?_, [, = 0 or 1.

Suppose Y, I; = 1, then fis of the form

HH 50).h e CVMY,

i j=1

whereh is of odd degree, say So we have

i j=1

This is not possible sincé’s are all even andlV| is even. So we conclude that?_, [, = 0
and hencef is of the formg;" g5 ... g/~ whereg,’s are all of even degrees less than equal to
2n. So in this case we can proceed with the proof as in the casgpefA,,, B,, andC,,.

TypeF4 and G :

Since the cardinality of the Weyl group of Tyg& is 12 = 22.3 and the cardinality of the
Weyl group of TypeF} is 1152 = 27.32, by Burnside'sp®q® theorem (see [95, pg. 247]), they
are solvable. Hence the result is true for each case by time@r2.2). O

Remark: Although the reflection groups of typeare not Weyl group, they are solvable. So
by theorem (4.2.2), the projective normality holds for #ngsoups.

We deduce the following result of Chu-Hu-Kang (see [17]) asm@sequence of the above
theorem.

Corollary 4.4.2. Let G be a finite group of orden andU be any finite dimensional represen-
tation of G overC. Let L denote the descent 6%(1)*"". ThenP(U)/G is projectively normal
with respect to’.
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Proof. LetG = {g1, 92, -, gn} and let{uy, us, - - -, u; } be a basis of/. Let V' be the natural
representation of the permutation grabip Let {z;, xo,- - -, 2z, } be a basis o¥/; then the set
{211, Tp1y -+ Tiky -+, Top IS @ basis of/*.

Consider the Cayley embedditg— S,,, g — (g, := gg;). Then
n- Sym(Vk) — Sym(U), xq— gi(w)
is aG-equivariant and degree preserving algebra epimorphism.
Now we will use Noether’s original argument (see [89]) towlhbat the restriction map
7 Sym(VF)* — Sym(U)“
is surjective. For any’ = f(uy,---,ux) € Sym(U)“, we define

, 1
f = ;(f<3711,3712, s ,xlk) +...+ f((xnlwrn% T 7xnk)) € Sym(vk>sn

Then we have

n(f') = %(f(gl(ul),gl(w), e gu(uk)) A f(gn(un), gn(uz), - -+ gn(ur)))

= %(glf(ul,u%---,uk)+...gnf(u1,u2,...,uk)) =f

Hence;(f') = f and7 is surjective. So the corollary follows from theorem (4)4.1 O

4.5 Normality, Projective Normality and EGZ Theorem

LetV be a finite dimensional representation of a finite cyclic grGlover the field of complex
numbersC. Let £ denote the descent of the line bundlél)®!“! to the GIT quotienP (V) /G.
By theorem (4.2.2), the polarized variet$(V')/G, £) is projectively normal. Proof of this
uses the well known arithmetic result due to Erdos-Ging#iv (see [31]).

In this section, we prove that the projective normalityBfV') /G, L), the Erdos-Ginzburg-
Ziv theorem and normality of an affine semigroup are all egjet.

4.5.1 Normality of a Semigroup

An affine semigroupl/ is a finitely generated sub-semigroupZf containing0 for somen.
Let NV be the subgroup of" generated by/. Then, M is called normal if it satisfies the
following condition: ifkz € M for somer € N andk € N, thenz € M.
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For an affine semigroup/ and a fieldK” we can form the affine semigroup algetf&\/| in
the following way: as d< vector spacés [M] has a basis consisting of the symbal$, a € M,
and the multiplication o[ M| is defined by the<-bilinear extension of{¢. X = X+?,

We recall the following theorem from [6, Th. 4.40].

Theorem 4.5.1.Let M be an affine semigroup, arid be a field. Ther/ is normal if and only
if K[M]is normal, i.e., itis integrally closed in its field of fraotis.

4.5.2 A Result connecting a Normal Semigroup and the EGZ Theem

Theorem 4.5.2.The following are equivalent

1. Erdds-Ginzburg-Ziv theorem: Léty, as, - -+, a,), m > 2n — 1 be a sequence of elements
of Z/nZ. Then there exists a subsequefeg, a,,, - - - , a;, ) of lengthn whose sum is zero.

2. LetG be a cyclic group of orden and V" be any finite dimensional representationtobver

C. LetL be the descent @(1)®". Then(P(V)/G, L) is projectively normal.

2'. LetG be a cyclic group of orden and V' be the regular representation 6f overC. Let L

be the descent @ (1)®". Then(P(V')/G, L) is projectively normal.

3. The sub-semigroup/ of Z" generated by the s&t = {(mo, my, -, mp_1) € (Z>o)" :
S my =n and Y1) im; = 0 mod n} is normal.

Proof. We first prove1), (2) and(2') are equivalent.
(1) =2
Proof follows from the arguments given in proposition (4)2.
(2) = (2)
Proof is straightforward.
(2)= (1)

Let G = Z/nZ =< g > and letV be the regular representation@foverC. Let¢ be a
primitive nth root of unity. Let{ X; : i = 0,1,---,n — 1} be a basis of/* given by:

g.X; =¢'X,, foreveryi=0,1,---,n— 1.

By assumption the algebraycz. , (Sym™V*)“ is generated bySym™V*)¢ *)
Let(ay,aq,---,an), m > 2n—1 be a sequence of elementgafConsider the subsequence
(al, Ao, - -+, a2n_1) of IengthQ’I’L — 1.

Takea = —(32" " a;). Then([[";" X,,). X, is aG-invariant monomial of degre2n,
e, ([ Xa,) - Xa € (Sym*VH)<,

90



By (*), there exists a subsequenge,, a;,,- -, a;,) Of (a1, as, -, as,_1,a) of lengthn
such thaf [}_, Xa,, Is G-invariant. Sop 7, a;; = 0. Thus, we have the implication.

We now proveg1l) = (3) and(3) = (2’), which completes the proof of the theorem.
(1) = (3)

Let NV be the subgroup df" generated by/. Suppose(mg, mq,---,m,_1) € M,q € N
and(mg, my, -+, m,_1) € N. We need to prove thdtng, my,---,m,_1) € M.

Sinceq(mg, my,--+,m,_1) € M we haveg.m; > 0V i. Hence,m; > 0V i. SinceN is
the subgroup o%" generated byl// and M is the sub-semigroup & generated by, N is
generated by as a subgroup of”. Therefore, the tuplémy, m4,---,m,_1) is an integral
(not necessarily non-negative) linear combination of eets ofS, i.e.,

(mo, ma, -+, my_1) = Z a;j(mog, Mg, Mp-1)5),
wherea; € Zforall j = 1,2,---,pand(mgj, mi;,- -, mu-1),;) € S. Therefore,
n—1 n—1 p p n—1 p
> omi=> Y ami; = a;(O>_miy) = (> a;n=kn
i=0 i=0 j=1 j=1 i=0 j=1

for somek € Z. Moreoverk > 0, sincem; > 0V 1.

If k£ =1then} ", "m; = n and hence(mg, my,---,m,_1) € M. Otherwisek > 2 and
consider the sequence of integers

0,000, 1,001, o om—1,....n—1
—— ~~ g
mo tIMes m; times mn_1 tIMES

This sequence has atle&@st terms, slncezZ o m; = kn, k> 2 and the sum of it's terms is
divisible by n by the assumption thgt>}", 0 im; = 0 mod n. So by (1) there exists a subse-

guence of exactly, terms whose sum is a multiple of i.e., there existémg, my,---,m,_,) €
7%, with m; < m;, ¥ i such thaty"?"/m, = n and El o im; is a multiple ofn. So
(mg, my,---,ml_y) € M. Then, by |nduct|or(m0,m1, cee Mpoy) — (MG, my, -, ml_q) €
M and, hencémg, my,---,m,_1) € M as required.

(3) = (2)

The polarized varietyP(V) /G, L) is Proj(Daez.,(H°(P(V), O(1)24¢N ) which is same
as Proj(®aez., (SymGIV*)9). Let R := @4=0Ra; Ra = (SymV*)¢. Fix a generatoy
of G and let¢ be a primitiventh root of unity. WriteV* = ® CX;, where{X; : i =
0,1,---,n — 1} is a basis oV * given by:¢. X; = ¢'X;, foreveryi = 0,1,---,n — 1.

Let R’ be theC-subalgebra of®[V] generated by?, = (Sym™V*)¢. We first note that
{Xgo. X7 X (mg,my, -+, my ) € M} is aC-vector space basis fdt’. We now

n—1
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define the map
® : C[M] — R’ by extending linearly the map

P(X (momimast)y = X X X for (mg, ma, -, M) € M.

cn—1
Clearly ® is a homomorphism df-algebras. SincéX (momu-ma=1)  (mg my, -+ m,_ ) €
M} is aC-vector space basis f@HM] and{ X" . X" ... X" : (mg,my, -+, m,_1) € M}

is aC-vector space basis fdt’, ¢ is an isomorphism of-algebras. Henc&’ is the semigroup
algebra corresponding to the affine semigrddp Since by assumptiof/ is a normal affine
semigroup, by theorem (4.5.1) the algel®as normal. Thus, by [39, Ex. 5.14(a)], the impli-
cation(3) = (2) follows. O

4.6 A Counter Example

Let F' be a field of characteristip # 2 andV be the natural representation of the permuta-
tion groupG = Sps,s > 2 overF. ConsiderU = V@V @ ... V. Then by a result of

(p*)! COpies

Fleischmann (Th. 2.8.9), we have

B(U, G) = max{p®, (p°)!(p* — 1)} = (p)'(»° — 1),

where3(U, G) denote the Noether number, which can be defined as the mimumabert,
such that the algebrslym (U*) of invariants can be generated by finitely many elements of
degree at most

So there exists a homogeneous polynonfia (Sym?U*)%; d = (p*)!(p® — 1) which is
not in the subalgebra generated(Byym™U*)%; m < (d — 1).

Hence,f € Rys—1) = (Sym® ~DI¢ly*)¢ put not in the subalgebra generated By =
(Syml€lU*)E. Thus, projective normality does not hold in this case.

Remark 1:We couldn't find any reference for the generator&€f ™| for type Es, E7, Es.
We are now working on it. Due to time constraint, we will writén the future work.

Remark 2:We believe that from theorem (4.4.1), we will be able to prtwe Projective
normality result for any finite dimensional representatdny Weyl group. We are working
on this problem.

Remark 3:tis an interesting and important problem to answer thefaihg question:
Let G be a reductive group (not necessarily finite) acting momgdhion a projective variety

X. Let M be aG-linearized very ample line bundle ox such thatM descends to the quotient
X//G. Let £ be the descent. Is the polarized variély/ /G, L) projectively normal ?
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Appendix-A

The C-Program:

#include<stdio . h>
#include<stdlib .h>
FILE xfin ,xfout;
int recStack[200][9],n,funcStack[200];
long cnt=0;
int adj[9][9];
int check[16777216];
long long oct[8]={1,8,64,512,4096,32768,262144L,2097152L
long long hash ,hashmax=-1;
int min=1;
int blkComm(int i,int level)
{
int I=—1,j=level -1,
while (j>=1 & (adj[i][funcStack][j]]==0))
{
if (I < funcStack[j])!=funcStack][j];
j—=
}
if (I>i) return 1;
else if(j>=2 & (i==funcStack[j—1]) & (i > funcStack]|
i]) & (adj[i][funcStack[j]]==1)) return 1;
else return O;
}
void DFS(int level)
{
int flagt=0;
for (int z=1;z<=n;z++)
if (recStack[level-1][z]>0) flagt=1;
if (flagt==0)
{
hash=0;
for (int j=1;j<=8;j++)
{
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33

34
35
36
37
38
39

40
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42
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45
46
47
48
49

50
51

52
53
54
95
56

57

58
59
60
61
62

}

hash=hash+(oct[{1]«x(recStack[level
—1001+7));

if (check[hash]==0)

{

}

return ;

}

int flag=0;

cnt++;

check[hash]=1;

for (int j=1;j<=8;j++) fprintf(fout , "%d
.",recStack[level-1][j]);

fprintf (fout,”\n");

for (int k=1;k<level;k++) fprintf(fout,
"s%d.” ,funcStack|[k]) ;

fprintf (fout,”\n");

for (int i=1;i<=n;i++)

{

if (recStack[level-1][i]>0 & (i !'= funcStack]

{

level —1]) & (blkComm (i, level)==0) && !(
level>1 & (i==funcStack[level-2]) & (i >
funcStack[level-1])))

if ((i==5 || i==6 || i==7) & (recStack
[level —1][i —1] + recStack[level-1][i
+1] < 2xrecStack[level-1][i]))

{
funcStack[level]=i;
for(int j=1;j<=n;j++)
{
if (j!=1) recStack]
level][j]=recStack]|
level —1][j1;
else recStack[level ][]
]= recStack|[level
—1][j —1] + recStack]|
level —1][j+1]—
recStack[level-1][]
1;
}
DFS(level+1)
flag=1;
}

else if(i==1 & (recStack][level
—1][3] <2«recStack[level-1][1]))
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69
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72
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76
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85
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88
89

90
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funcStack[level]=1;
for (int j=1;j<=n;j++)

{
if (j!'=1) recStack]|
level][j]=recStack]|
level —1][j1;
else recStack[level][]
]= recStack|[level
—1][3] — recStack]
level —1][j 1;
}
DFS(level +1)
flag=1;

}

else if(i==8 & (recStack|[level
—1][7]<2«recStack[level-1][8]))

{
funcStack[level]=8;
for(int j=1;j<=n;j++)
{
if (j!=8) recStack]
level][j]=recStack]|
level —1][j1;
else recStack[level ][]
]= recStack|[level
—1][7] — recStack]
level —1][j1];
}
DFS(level+1)
flag=1;
¥

else if(i==2 & (recStack[level
—1][4] <2«recStack[level-1][2]))
{

funcStack[level]=2;
for(int j=1;j<=n;j++)
{
if (j!=2) recStack]
level][j]=recStack|
level —1][j 1;
else recStack[level ][]
]= recStack|[level
—1][4] — recStack]
level —1][j1;
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93
94
95

96
97
98
99
100

101

102
103
104
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107
108
109
110
111

112

113
114
115
116
117

DFS(level +1)
flag=1;
}
else if(i==4 & (recStack[level—1][3]
+ recStack[level-1][5] + recStack]|
level —1][2]<2xrecStack[level-1][4])

)

{
funcStack[level]=4;
for(int j=1;j<=n;j++)
{
if (j!=4) recStack]
level][j]=recStack]|
level —1][j1;
else recStack[level ][]
]= recStack]|[level
—1][3] + recStack]|
level —1][5] +
recStack[level
—1][2] — recStack]|
level —1][j1;
}
DFS(level+1)
flag=1;
¥

else if(i==3 & (recStack[level—-1][1]
+ recStack[level-1][4] <2«xrecStack]|
level —1][3]))

{
funcStack[level]=3;
for (int j=1;j<=n;j++)
{
if (j!=3) recStack]
level][j]=recStack]|
level —1][j1];
else recStack[level ][]
]= recStack|[level
—1][1] + recStack]
level —1][4] —
recStack[level-1][j
l;
}
DFS(level +1)
flag=1;
}
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118 }

119 }

120 int main ()

121 {

122 fin = fopen(”data”,’r”);

123 fout = fopen(”output”,”w”);

124 adj[1][3]=adj[3][1]=1;

125 adj[2][4]=ad][4][2]=1;

126 adj[3][4]=ad][4][3]=1;

127 adj[4][5]=adj[5][4]=1;

128 adj[6][5]=adj[5][6]=1;

129 adj[6][7]=adj[7][6]=1;

130 adj[8][7]=adj[7][8]=1;

131 while (fscanf (fin ,"%d”,&n) !=EOF){

132 int i;

133 for(i=1;i<=n;i++) fscanf(fin,h "%d”,&
recStack [0][1]);

134 DFS(1);

135 fprintf (fout,”\n
*****************************************\
n");

136 }

137 printf("%d”,cnt);

138 fclose (fin);

139 fclose (fout);

140 }
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Appendix-B

Most of the information given in this appendix are collecberm [13] and [45]. For the Weyl
group invariants we refer to [73].

Type A,:

Dynkin diagram:

An(n> 1) : @) O O --- O o
2 3 n-1 r
Cartan matrix:
1 2 3 n—1 n
1 2 -1
2 -1 2 -1
3 -1 2
n—1 . 2 —1
n —1 2

Dimension: dim(g) = n(n + 2).

Coxeter number: h = M%ﬂ =n+ 1.

Weyl group: W = S,,41, [W] = (n+ 1)

Longest element ofV: s,,(s,—15,) - - (S2- -+ Sp) (51 - Sn)-

The root system:® = {¢; —¢; : 4,5 =1,2,--- ,n+1, i # j}, where{e, ez, -, €41} IS
an orthonormal basi$®| = n(n + 1)

Simple roots: a; = ¢; — €;41, 1 < i < n.
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Highest long root: a; + as + - - - + a,.

Fundamental weights:w; = —5[(n — i+ 1)ay +2(n —i+ ag+ -+ (i = 1)(n —i+
D1 +i(n—i+ 1oy +i(n — i)+ +iay] i =1,2,-- - n.

Minuscule fundamental weightsEvery fundamental weight is minuscule.
Fundamental group: Z,, ;1.

Group of diagram automorphisms: I' = Zs.

Basic polynomial invariants of W: f = " 2F (1 <k <n).

Type B,,:

Dynkin diagram:

O
O
I
I

Bn(n>3): o
1

2 3 n-1 n
Cartan matrix:
1 2 3 . . . . n=2 n—-1 n

1 2 -1

2 -1 2 -1

3 -1 2

n—2 . 2 —1

n—1 . —1 2 —1

n —2 2
Dimension: dim(g) = n(2n + 1).
Coxeter number: h = 2n.
Weyl group: W = (Zy)" X S, |W| = 2"nl.

Longest element ofV: wy = s1(s251)(535281) -+ (SpSn—1- - $251)(SnSn_1+ " S2)(SnSn_1 -

 (S$pSp—1)sp = —id.

The root system:® = & U ®y: &y = {£e; £ : 0,5 =1,2,---,n, i # j}, Py = {£e;:
i=1,2,---,n} where{ey, e, - -, €, } is an orthonormal basi$®| = 2n?.
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Simpleroots: a; = ¢, — €41, 1 <i <n—1,a, = €,.
Highest long root: a; + 2as + - - - + 2a,.
Highest short root: oy + as + - - - + .

Fundamental weights: @; = a3 + 209 + -+ (1 — Va1 + iy + apq + - + )
i=1,2,---,n—1.

@, = 3(a1 + 200 + -+ + nay,).

Minuscule fundamental weightsw,,.

Fundamental group: Z,.

Group of diagram automorphisms: I" = 1.

Basic polynomial invariants of W: f, = > 22 (1 < k < n).
Type C,,:

Dynkin diagram:

O
O
I
I

Cn(n>3): o
1

Cartan matrix:

1 2 3 . . . . n=-2 n—-1 n

n—2 . 2 —1
n—1 .o —1 2 —2

Dimension: dim(g) = n(2n + 1).
Coxeter number: h = 2n.

Weyl group: W = (Zy)" x S, |[W| = 2"n!.
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Longest element ofV: wy = s1(s251)(535281) -+ (SpSn—1- - $251)(SnSn_1+ " S2)(SnSn_1 "
o (SpSp_1)sp = —id.

The root system:® = & UPy: &y = {de;+€; 14,5 =1,2,---,n, i #j}, Py = {£2¢; :

i=1,2,---,n}where{e, e, - -

-, €, } is an orthonormal basis®| = 2n?.

Simpleroots: a; = ¢; — €41, 1 < i <n—1,a, = 2¢,.

Highest long root: 2a; + 2ais + - - - + au,.

Highest short root: oy + 2a + -+ - + 2a, 1 + .

Fundamental weights:w; = oy +2as+- - -+ (i— 1)1 +i(;+ i1+ -+ a1+ %an)

i=1,2,.,n.

Minuscule fundamental weightsco;.

Fundamental group: Z,.

Group of diagram automorphisms: I" = 1.

Basic polynomial invariants of W: f, = Y"1 27% (1 < k < n).

Type D,:

Dynkin diagram:

Dn (n> 4):

Cartan matrix:

(\]

n—2
n—1

i=1"1

O O o --- ©)
1 2 3 n-3 n—Z\o
n
1 2 3 . . . . n—=2 n—-1 n
2 -1
-1 2 -1
-1 2
2 -1 -1
-1 2
-1 2
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Dimension: dim(g) = n(2n — 1).
Coxeter number: h = 2n — 2.

Weyl group: W = (Zy)" ! x S, |W|=2""1nl.

Longest element ofV: If nisodd:wy = s1(s251)(835251) * * * (Sn_1Sn—2 -+ $281)(SpSn_o -+ - S251)
(8n—15n—252)(SnSn—2" - 53)(Sn—15n—2 - - 54)(SnSn—2 - 55) - - (8,5,—2)Sn—1.

If niseveniwy = s1(s251)(535251) <+ - (Sp—15p—2 - - 5251)(SpSp—2 - - 5251)(Sp—15n—2 - - - 52)
(Snsn—Z T 33)(3n—15n—2 e 54)(5n5n—2 e 55) e (Sn—lsn—Z)Sn - _Zd

The root system: ® = {£¢; £¢; 14,5 =1,2,---,n, i # j}, where{e;, e, - -, ¢, } isan
orthonormal basig®| = 2n(n — 1).

Simpleroots:a; = ¢, — €41, 1 <i<n—1,a, =€, 1 + €,.
Highest long root: a; + 2 + - -+ + 20,2 + 1 + Q.

Fundamental Weights:wi = o] + 20[2 + .-+ (’L — ].)Oéi_l + ’L(Ozl + iyl + -+ Ozn_g) —+
iy +ap)i=1,2,---,n—2.

2
Wpo] = %(al +2a0+ -+ (n—2)a, o+ %nan,l + %(n —2)ay,).
Wy = %(al +2a0+ -+ (n—2)a, o+ %(n —2)a, 1+ %nan).
Minuscule fundamental weightscw;, @,,_1, @,,.

Fundamental group: Z, if [ is odd andZ, x Z, if n is even.

Sy ifn=4,
Lo if n > 4.

Group of diagram automorphisms: I" = {
Basic polynomial invariants of W: f, = >""  22* (1 <k <n—1)andf, = zi2s...,.
Type Eg:

Dynkin diagram:

©)

Eg:

e
o

Cartan matrix:
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6
172 -1 0 0 0 0
21 -1 2 -1 O 0 0
310 -1 2 -1 -1 0
41 0 0o -1 2 0 0
51 O 0 -1 0 2 -1
6\ 0 0 0 0o -1 2

Dimension: dim(g) = 78.
Coxeter number: h = 12.
Order of the Weyl group: |W| = 273%5.

Longest element ofilV: Wy = 81(825351)(84828381)(8453)(8584828381)(8483)(858482)
(568584828381)(8483)(858482)(8685848381).

The root system: & = {+e; +¢; @ 4,j = 1,2,---,5, i # jJU{EYY e ¢ =
+1, [[,c = 1, ¢ = ¢7 = s}, where{e,, e, - - -, g} is an orthonormal basis &°. |®| =
72.

Slmple roots: a; = €; — €41, 1<i<4, a5 =€4+ €5, 05 = —%(61 +ée 4+ 68).

Highest long root: a; 4+ 2 + 2a3 + 3y + 2a5 + ag.

Fundamental weights:w; = (4ay + 3as + bas + 6ay + 4as + 205).

W = (1 + 20[2 + 20(3 + 30(4 + 20(5 + Ag.

w3 = %(50[1 + 60[2 + 100[3 + 120&4 + 80(5 + 40(6).

wy = 20 + 3 + dag + 6y + das + 20.

(40&1 + 60[2 + 80(3 + 120&4 + ].00(5 + 50(6).

W=

Wy =

(201 + 3avg + dag + 6ayy + Havy + dag).

W=

We —
Minuscule fundamental weights: @, wg.
Fundamental group: Zs.

Group of diagram automorphisms: Z,.
Basic polynomial invariants of W: f,, = >0 (yi+y) ™+ 0, (4i—y)™ = > (yitys)™,

m=2,5,6,8,9,12, where
y1 = dbr1+H4xo+3x3+2x4+ x5, Yo = —v1+H4ro+303+ 204475, Y3 = —x1 —229+ 323+ 224+ 75,
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Yy = —T1 — 209 — 323 + 204 + T5, Y5 = —T1 — 200 — 33 — 4224 + 75, Yg = — E?Zl y; and
Yy = —3(371 + 21’2 + 3373 + 2374 + x5 + 21’6)

Type Ex:

Dynkin diagram:

O

E.:

Ne)
o)

Cartan matrix:

1 2 3 4 ) 6 7
172 -1 0 0 0 0 0
21 -1 2 -1 0O 0 0 0
310 -1 2 -1 0 0 0
41 0 o -1 2 -1 -1 0
o1 0 0 0o -1 2 0 0
61 O 0 0 -1 0 2 -1
7T\ 0 0 0 0 0o -1 2

Dimension: dim(g) = 133.

Coxeter number: h = 18.

Order of the Weyl group: |[W| = 2'0.315.7.

Longest element ofilV: Wy = 81(828381)(84828381)(8483)(8584828381)(8483)(858482)
(865554525351 (5453)(S55452)(S655545351)(S7565554525351)(5453)(S55452)(S655545351)(S756555452)
(8384858687) = —id.

The root system:® = {+e;+¢; :i,j = 1,2,-+,6, i £ j}U{E(er+es) UL S e
¢ = =£1, Hle c; = 1, c; = cg}, where{ey, €5, - - -, €} is an orthonormal basis &5, |®| =
126.

Simple roots: a; = ¢; —€;41, 1 <1 <5, a6 = €5 + €6, a7 = —%(61 + e+ -+ €g).

Highest long root: 2a; + 2as + 3ag + 4ay + 3as + 206 + .

Fundamental weights: @, = 2a; + 2as + 3ag + 4oy + 3as + 206 + .
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@y = 2(4aq + Tas + 8az + 12a4 + 9as + 6ag + 3arr).
w3 = a1 + dag + 6as + 8oy + 6as + 4ag + 2a7.

wy = 4aq + 6ag + 8ag + 12a4 + Yas + 6ag + 3.

wy = %(60[1 + 9ay + 12a3 + 18ay + 15a5 + 1006 + bary).
we = 201 + 3ag + das + 6y + Das + dag + 2.

wy = %(2041 + 3ae + 4az + 6y + bas + dag + 3ar).
Minuscule fundamental weights: w-.

Fundamental group: Zs.

Group of diagram automorphisms: 1.

Basic polynomial invariants of W: f,, = EKJ-(%‘ + ;)" 4,5 € {1,2,---,8}, m =
2,6,8, ]_0, ]_2, ]_4, 18, Wherey1 = 3x1 + 225 + x3 — X7, Y = —T1 + 2r9 + 13 — 77, Yz =

—Xr — 2[L‘2 + T3 — X7, Yg = —T1 — QI‘Q - 3[L‘3 — L7y, Ys = —T1 — 2[L‘2 - 3l‘3 - 4[L‘4 — X7,
Y — —I1 — 2[L‘2 - 3[L‘3 - 4[L‘4 - 4l‘5 — Ty, Y7 = —X1 — QI‘Q - 3[L‘3 - 4[L‘4 - 4[L‘5 - 4l‘6 — X7,
Type FEjs:

Dynkin diagram:

O

O

Es: O
1

Cartan matrix:

1 2 3 4 ) 6 7 8
1/2 -1 0 0 0 0 0 0
2l -1 2 -1 0 0 0 0 0
310 -1 2 -1 0 0 0 0
41 0 0o -1 2 -1 0 0 0
51 0 0 o -1 2 -1 -1 0
61 O 0 0 0o -1 2 0 0
71 0 0 0 0 -1 0 2 -1
8\ 0 0 0 0 0 0o -1 2




Dimension: dim(g) = 248.

Coxeter number: h = 30.

Order of the Weyl group: |[W| = 214.35.52.7.

Longest element ofiV: wy = s1(s25351)(54525351)(5453)(S554525351)(5453)(855452)
(865554525351 (5453)(S55452)(S655545351)(S7565554525351)(5453)(S55452)(S655545351)(S7565554)
(828384858687)(8887868584828381)(8483)(858482)(8685848381)(8786858482)(8384858687)

(8887868584828381)(8483) (858482) (8685848381)(8786858482)(838485868788) = —id.

The root system: & = {+e; +¢; @ 4,5 = 1,2,---,8, i # jJU{EYY e ¢ =
+1, [, ¢ = 1}, where{e;, e5, - - -, 5} is an orthonormal basis @, |®| = 240.

Simple roots: o; = ¢, — €41, 1 <@ <6, a7 = €5 + €7, a7y = —%(61 + e+ -+ €g).

Highest long root: 2a; + 3an + 4ag + 6ay + Sas + 4ag + 3ar + 2as.

Fundamental weights:w; = 4a; + 5ap + Tag + 100y + 8as + 6ag + 4ar + 2as.

wy = day + 8ag + 103 + 15ay + 1205 + 9ag + 67 + 3as.

wsy = Taq + 10y + 14as + 20y + 16as + 1204 + 8ary + 4ag.

wy = 10a; + 15y + 203 + 300y + 245 + 18 + 1207 + Garg.

ws = 8ay + 120 + 16z + 24y + 20a5 + 15a6 + 107 + das.

we = 6 + 9as + 12a3 + 18ay + 15a5 + 120 + 8ar + 4a.

wr; = 4oy + 6ag + 8ag + 12a4 + 10a5 + 8ag 4+ 6ay + 3as.

wg = 201 + 3ag + 4as + 6y + das + dag + 3ar 4+ 2a5.

Minuscule fundamental weights:No miniscule fundamental weights.

Fundamental group: 1.

Group of diagram automorphisms: 1.

Basic polynomial invariants of W f,, = 237, _[(vi+ ;)™ + (i —¥5) "1+ 21 ee 1021
O ex)™ 1,5 €{1,2,---,8}, m = 2,8,12,14, 18, 20, 24, 30, wherey,; = 2z + 2x5 + 223 +
204 + 225 + 16 + T8, Yo = 209 + 223 + 2004 + 225 + 16 + T, Y3 = 223+ 204 + 225 + 16 + T8,
Yo = 2@y + 205 + T + Ts, Y5 = 205 + Te + Ts, Yo = Te + Ts, Y7 = Tg + Ts, Ysg =
2wy + 4x9 + 623 + 824 + 1025 + 726 + 427 + DT8.

Type Fj:
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Dynkin diagram:

O o)
Far 1 2 -
3 4
Cartan matrix:

1 2 3 4
1 2 —1 0 0
21 —1 2 —1 0
3 0 -2 2 —1
4 0 0 —1 2

Dimension: dim(g) = 52.
Coxeter number: h = 12.

Weyl group: W = (Z3 x Sy)

X 53, |W| = 27.32.

Longest element ofiV: wy = $15251535251535253545352515352835453525153825384 = —id.

The root system: & = {+¢;

te i) =1,2,34 i# j}U{xe :

i =1,2,3,4} U

(1300 ciei i = £1, [[i, e = 1}, where{e;, e, €3, €4} is an orthonormal basi$d| = 48.

Slmple rootS: vy = €1 — €9, (vg = €9 — €3 (v3 = €3, Oy = —fT’CLC12(—€1 — €y — €3 + 64).

Highest long root: 2a; + 3a
Highest short root: oy + 2

Fundamental weights:w;, =

+ 40(3 + 20(4.
+ 3az + 2.

20(1 + 30(2 + 40(3 + 20[4.

Wy = 30(1 + 60(2 + 80(3 -+ 40[4.

w3 = 207 + 4as 4+ 6as + 3ay.

wy = + 20[2 + 30(3 + 20(4.

Minuscule fundamental weights:No miniscule fundamental weights.

Fundamental group: 1.

Group of diagram automorphisms: 1.

Basic polynomial invariants
1,3,4,6.

Type Gs:

of Wi fo, = El§i§j§4<(xi + 2;)* 4 (2
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Dynkin diagram:

Cartan matrix:

Dimension: dim(g) = 14.

Coxeter number: h = 6.

Weyl group: W = Dg: the dihedral group|W| = 12.
Longest element ofil: wy = (s152)(s152)(s152) = —id.

The root SystemZCD = {:l:(—2€1 + € + 63), :|:(€1 — 269 + Eg) + :|:(€1 + €2 — 263), :l:(El —
€9), (€a — €3), 2(€1 — €3)}, Whereey, e, €3 is an orthonormal basis @. |®| = 12.

Simple roots: a; = —2¢; + €5 + €3, ap = €1 — €a.

Highest long root: 3a;; + 2as.

Highest short root: 24 + as.

Longest element oflV: -id.

Fundamental weights:w; = 2a; + as.

wy = 31 + 20u9.

Minuscule fundamental weights:No miniscule fundamental weights.
Fundamental group: 1.

Group of diagram automorphisms: 1.

Basic polynomial invariants of W: f, = 3. . viy;, fa = (y1y2ys)? i,j = 1,2,3, where
Y1 = 35(?1 + X2, Y2 = X9 andy3 = —Y1 — Ya2.
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