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Abstract

Linear and affine subspaces are commonly used to de-
scribe appearance of objects under different lighting, view-
point, articulation, and identity. A natural problem arising
from their use is – given a query image portion represented
as a point in some high dimensional space – find a subspace
near to the query. This paper presents an efficient solution
to the approximate nearest subspace problem for both lin-
ear and affine subspaces. Our method is based on a simple
reduction to the problem of nearest point search, and can
thus employ tree based search or locality sensitive hashing
to find a near subspace. Further speedup may be achieved
by using random projections to lower the dimensionality of
the problem. We provide theoretical proofs of correctness
and error bounds of our construction and demonstrate its
capabilities on synthetic and real data. Our experiments
demonstrate that an approximate nearest subspace can be
located significantly faster than the exact nearest subspace,
while at the same time it can find better matches compared
to a similar search on points, in the presence of variations
due to viewpoint, lighting etc.

1. Introduction
Linear and affine subspaces are a common means of rep-

resenting information in computer vision and pattern recog-
nition applications. In computer vision, for example, sub-
spaces are often used to capture the appearance of objects
under different lighting [4, 18], viewpoint [21, 19], artic-
ulation [7, 20], and even identity [3, 5]. Typically, given
a query image portion, represented as a point in high di-
mensional space, a database of subspaces is searched for
the subspace closest to the query. A natural problem which
arises from this type of search problems is, can the near-
est (or a near) subspace be found faster than a brute force
sequential search through the entire database?
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The related problem of finding the nearest neighbor
within a database of high dimensional points has become an
important component in a wide range of machine vision and
pattern recognition applications. As such, it has attracted
considerable attention in recent years, and a number of ef-
ficient algorithms for approximate nearest neighbor (ANN)
search have been proposed (e.g., [2, 8, 11, 13]). These algo-
rithms achieve sub-linear search times when locating a near,
not necessarily the nearest neighbor, suffices. In light of the
success of ANN methods our goal is to design an approxi-
mate nearest subspace (ANS) algorithm for efficient search
through a database of subspaces.

We present an ANS algorithm, based on a reduction
to the problem of point ANN search. Our algorithm can
thus work in concert with any ANN method, enjoying fu-
ture improvements to these algorithms. For a query point
and a database of n subspaces of dimension k embedded
in Rd, ANS query running time, using our construction,
is O(kd2) + TANN (n, d2), where TANN (n, d) is the run-
ning time for a choice of an ANN algorithm, on a database
of n points in Rd. We achieve further speedup by using
random projections to lower the dimensionality of the prob-
lem. Our method is related to recent work by Magen [15],
who reduced ANS to a nearest hyperplane search. Magen’s
method, however, requires O(nd2

) preprocessing time and
space while our preprocessing requires only O(nkd2).

We next describe our method, provide theoretical proofs
of correctness and error bounds of our construction, and
present both analytical and empirical analysis. We further
demonstrate our method’s capabilities on synthetic and real
data, with an emphasis on image and image-patch retrieval
applications.

2. Nearest Subspace Search

The nearest subspace problem is defined as follows. Let
{S1,S2, ...,Sn} be a collection of linear (or affine) sub-
spaces in Rd, each with intrinsic dimension k. Then, given
a query point q ∈ Rd, denote by dist(q,Si) the Euclidean
distance between the query q and a subspace Si, 1 ≤ i ≤ n,
we seek the subspace S∗ that is nearest to q, i.e., S∗ =
arg mini dist(q,Si).



We approach the nearest subspace problem by reducing
it to the well explored nearest neighbor (NN) problem for
points. To that end we seek to define two transformations,
u = f(S) and v = g(q), which respectively map any given
subspace S and query point q to points u,v ∈ Rd′

for some
d′, such that the distance ‖v − u‖ increases monotonically
with dist(q,S). In particular, we derive below such trans-
formations for which ‖v − u‖2 = µdist2(q,S) + ν for
some constants µ and ν. This is summarized below.

Linear Subspaces: We represent a linear subspace S by a
d × k matrix S with orthonormal columns. Our transfor-
mations map S and q onto Rd′

with d′ = d(d + 1)/2. For
a symmetric d × d matrix A we define an operator h(A),
where h rearranges the entries of A into a vector by tak-
ing the entries of the upper triangular portion of A, with the
diagonal entries scaled by 1/

√
2, i.e.,

h(A) = (
a11√

2
, a12, ..., a1d,

a22√
2
, a23, ...,

add√
2
)T ∈ Rd′

(1)

Finally, we denote by n =
√

2h(I) ∈ Rd′
(I denotes the

identity matrix) a vector whose entries are one for each di-
agonal entry in h(.) and zero elsewhere. We are now ready
to define our mapping. Denote by

u = f(S) = −h(I − SST ) + αn

v = g(q) = γ
(
h(qqT ) + βn

)
, (2)

with
α =

d− k

d
√

2

β = −‖q‖
2

d
√

2

γ =
1

‖q‖2

√
k(d− k)

d− 1
. (3)

We show this construction satisfies the following claim.

Claim 2.1 ‖v − u‖2 = µdist2(q,S) + ν, where the con-
stants µ = γ > 0 and ν ≥ 0 satisfies

ν =
(

1− k

d

)(
k −

√
k(d− k)

d− 1

)

In particular, µ = 1/‖q‖2 and ν = 0 when k = 1 for all d,
and µ ≈

√
k/‖q‖2 and ν ≈ k −

√
k when k � d.

Affine Subspaces: We represent a k dimensional affine
subspace A by a (d + 1) × (d − k) matrix Ẑ whose first d
rows contain orthonormal columns, representing the space
orthogonal to A, and last row contains a vector of offsets.
We further represent the query by homogeneous coordi-
nates, q̂ = (qT , 1)T . Our transformations map A and q̂
to Rd̂′

, where now d̂′ = (d + 1)(d + 2)/2 + 1. Finally,

using the (d + 1) × (d + 1) matrix IA = diag{1, ...1, 0},
we denote by n̂ = (

√
2h(IA), 0) ∈ Rd′

. We define our
mapping as follows:

û = f̂(A) = −(h(ẐẐT ), ĉ(A)) + α̂n̂

v̂ = ĝ(q) = γ̂
(
(h(q̂q̂T ), 0) + β̂n̂

)
. (4)

with

ĉ(A) =

√
M4 − ‖ẐẐT ‖2fro

2

α̂ =
d− k

d
√

2

β̂ = −‖q‖
2

d
√

2

γ̂ =
1

‖q‖2

√
dM4 − (d− k)2

d− 1
, (5)

with a sufficiently large constant M (see Section 2.3). We
show this construction satisfies the following claim:

Claim 2.2 ‖v̂ − û‖2 = µ̂dist2(q,A) + ν̂, with constants
µ̂ > 0 and ν̂ ≥ 0.

The remainder of this section provides a detailed deriva-
tion of these claims. We begin by focusing on the case of
linear subspaces (Section 2.1) and investigate the properties
of our derivation (Section 2.2). Later on (Section 2.3) we
extend this derivation to the case of affine subspaces.

2.1. Linear subspaces

Our derivation is based on the relation between inner
products and norms in Euclidean spaces. We first show that
the squared distance between a point q and a subspace S,
dist2(q,S), can be written as an inner product, and then
that the vectors obtained in this derivation have constant
norms. This leads to a basic derivation, which we later mod-
ify in Section 2.2 to achieve the final proof of Claim 2.1. Let
S be a d × k matrix whose columns form an orthonormal
basis for S, and let Z be a d×(d−k) matrix whose columns
form an orthonormal basis to the null space of S. The dis-
tance between q and S is given by dist(q,S) = ‖ZZT q‖,
where ZZT q is the projection of q onto the columns of
Z. Since ZZT is symmetric and ZT Z = I , implying that
(ZZT )T (ZZT ) = ZZT , we obtain:

dist2(q,S) = qT ZZT q. (6)

This can be written as

qT ZZT q =
d∑

i=1

d∑
j=1

[ZZT ⊗ qqT ]ij , (7)

where we use the symbol ’⊗’ to denote the Hadamard
(element-wise) product of two matrices. In other words, if



we rearrange the elements of the matrices ZZT and qqT as
two vectors inRd2

then the squared distance can be written
as an inner product between those vectors.

Exploiting the symmetry of both ZZT and qqT we can
embed the two vectors in Rd′

with d′ = d(d + 1)/2. This
can be done using the operator h(.) defined earlier in (1):

ū = −h(ZZT ) ∈ Rd′

v̄ = h(qqT ) ∈ Rd′
. (8)

Note, that ZZT = I − SST , and so it is unnecessary to
explicitly construct a basis for the null space. It can now be
readily verified that

ūT v̄ = −1
2

∑
ij

[ZZT ⊗ qqT ] = −1
2
dist2(q, S). (9)

Therefore,

‖ū− v̄‖2 = ‖ū‖2 + ‖v̄‖2 + dist2(q, S), (10)

and it is left to show that both ‖ū‖ and ‖v̄‖ are constants.
Next we show that ‖ū‖ is constant for all subspaces of
a given intrinsic dimension k, while ‖v̄‖ varies with the
query. To see this notice that

‖ū‖2 = (1/2)‖ZZT ‖2Fro, (11)

where ‖.‖Fro denotes the Frobeneous norm, defined as
‖ZZT ‖2Fro = Tr(ZZT (ZZT )T ), and Tr(.) denotes the
trace of a matrix. Using the identity ZZT (ZZT )T = ZZT

and the properties of the trace we obtain Tr(ZZT ) =
Tr(ZT Z) = Tr(I) = d− k, and so ‖ū‖2 = (1/2)(d− k),
implying that our transformation maps each subspace in the
database to a point on the surface of a sphere. Similarly,
‖v̄‖2 = (1/2)‖qqT ‖2Fro = (1/2)‖q‖4 is a constant that
depends on q.

In summary, we found a mapping ū = f̄(S) and v̄ =
ḡ(q) which satisfies

‖ū− v̄‖2 = dist2(q,S) +
1
2
(d− k + ‖q‖4), (12)

where the additive constant depends on the query point q
and is independent of the database subspace S.

Subspaces of varying intrinsic dimension: When the
database {S1, , ...,Sn} contains subspaces with different
intrinsic dimension k1, ..., kn, we obtain a different norm
for each: ‖ūi‖2 = (1/2)(d − ki). We can handle this by
introducing an additional entry to each ūi as follows:

ŭi = −(h(ZZT ), c̆(Si)) ∈ Rd′+1

v̆ = (h(qqT ), 0) ∈ Rd′+1. (13)

with c̆(Si)) =
√

(1/2)(ki − kmin), where kmin is the di-
mension of the thinnest subspace in the database. Note, that
the additional entry does not change ‖v̄‖ or the inner prod-
uct ūT v̄.

Figure 1. The geometry of our mapping. Example of 1D subspaces in
R2, color coded according to distance from a query (left) and their map-
ping (right). In the basic construction (8) the database lines and potential
queries are mapped respectively to a ring and a cone in R3. The figure
shows the query mapped to the cone, then projected to the hyperplane and
scaled to lie on the ring.

2.2. The geometry of the mapped database

The transformations introduced earlier in Section 2.1
map all the linear subspaces of dimension k to points on
the surface of a sphere of radius

√
(d− k)/2 in Rd′

. Fur-
ther inspection of this mapping reveals that all these points
also lie on an affine hyperplane. This is a consequence
of Tr(ZZT ) = d − k, which implies that the sum of the
components of ū that correspond to the diagonal element of
ZZT is constant. At the same time query points are mapped
to the surface of a spherical cone, whose apex is in the ori-
gin and whose main axis is orthogonal to this hyperplane.
We can use these facts to further project the query to the
same hyperplane, and thus reduce the additive constant in-
troduced to the distances by our mapping. This is illustrated
in Figure 1, which shows an example of a database of 1D
linear subspaces in 2D and their mapping to points in 3D.
As is discussed later in Section 3 this will further improve
the performance of the nearest neighbor search.

Using the vector n defined in the beginning of Section 2
we can express the hyperplane by the following formula

−
√

2nT ū = d− k. (14)

We can shift this hyperplane so that it goes through the ori-
gin by setting u = ū + αn with α = (d − k)/(d

√
2). The

hyperplane after this translation is then given by nT u = 0.
Given a query q and its mapped version v̄ we seek to

project v̄ onto this translated hyperplane. That is, we seek
a scalar β such that v = v̄ + βn lies on the hyperplane:

nT (v̄ + βn) = 0. (15)

Notice that
√

2nT v̄ = ‖q‖2 and nT n = d, and so

‖q‖2 +
√

2dβ = 0, (16)

from which we obtain β = −‖q‖2/(d
√

2). Therefore, we
can map the query point q to v = v̄+βn and by this reduce
the additive constant in (12) by (‖q‖2 + d− k)2/(2d).

By uniformly scaling the query point q we can bring
it even closer to the mapped database. Note that uniform



scaling of q maintains the monotonicity of the mapping.
Specifically, we can scale q such that its norm after scal-
ing becomes ((d − k)k/(d − 1))1/4. Then, after mapping
and projection the query will fall on the intersection of the
database sphere and its hyperplane. The obtained squared
distances after these transformations will be related linearly
to the original squared distances by µdist2(q,S) + ν with
the constants µ and ν as given in Claim 2.1. Interestingly,
in the case of subspaces of rank 1 ν = 0, and so if q lies on
S then u and v coincide regardless of d. For subspaces of
higher rank (1 < k < d) ν > 0 and so u and v cannot coin-
cide because the subspaces only sparsely occupy the sphere.

Note, that the case of subspaces of varying dimension is
somewhat more complicated since in this case the mapped
subspaces lie on parallel hyperplanes according to their in-
trinsic dimension. In this case the query can only be pro-
jected to the nearest hyperplane.

2.3. Affine subspaces

With few modifications similar transformations can be
derived for databases containing a collection of affine
spaces. An affine subspace A is represented by a linear
subspace S, provided as a d× k matrix S with orthonormal
columns (or by its null space, provided as a d× (d−k) ma-
trix Z) and a vector of offset values t ∈ Rd−k. Below we
denote by Ẑ the (d+1)× (d−k) matrix whose first d rows
contain Z and last row contains tT . Given a query q ∈ Rd

we use homogenous coordinates, denoting q̂ = (qT , 1)T .
We define a mapping similar to that of linear spaces, this

time using Ẑ and q̂ instead. The columns of Ẑ are not or-
thonormal due to the additional last row. To account for this
we will need to slightly modify our mapping, as follows.

ũ = f̂(A) = −(h(ẐẐT ), ĉ(A)) ∈ Rd̂′

ṽ = ĝ(q) = (h(q̂q̂T ), 0) ∈ Rd̂′
. (17)

ũ and ṽ lie in Rd̂′
, where now d̂′ = (d + 1)(d +

2)/2 + 1. The last entry is added to make the norm
of ũ equal across the database. To achieve this we set

ĉ(A) =
√

(M4 − ‖ẐẐT ‖2fro)/2, where ‖ẐẐT ‖2fro =

‖ZZT ‖2fro+2‖Zt‖2+‖t‖2 = d−k+3‖t‖2 and M is a pos-
itive constant; M must be sufficiently large to allow taking
the square root for all the affine subspaces in the database
(thus it is determined by the affine space with largest ‖t‖).
Note, that we set the last entry of ṽ to zero, so that the
last entry of ũ does not affect the inner product of ũT ṽ.
Consequently, ‖ũ‖2 = (1/2)M4, ‖ṽ‖2 = (1/2)‖q̂‖4, and
ũT ṽ = − 1

2

∑
ij [ẐẐT ⊗ q̂q̂T ] = − 1

2dist2(q,A), and we
obtain

‖ũ− ṽ‖2 = dist2(q,A) +
1
2
(M4 + ‖q̂‖4), (18)

where the additional constant depends on the query point q
and is independent of the database subspace A.

Similar to the case of linear subspaces, the affine sub-
spaces too are mapped to the intersection of a sphere (of ra-
dius M2/

√
2) and a hyperplane −

√
2nT ũ = d− k, and so

the query can be projected into this hyperplane in the same
way as in Section 2.2, yielding the result stated in Claim 2.2.

3. Nearest Neighbor Search
Once the subspaces in the database are mapped to points

we can find the nearest subspace to a query by applying
a nearest neighbor search for points. Naturally, we wish
to employ an efficient solution to this problem. The prob-
lem of nearest neighbor search has been investigated exten-
sively in recent years, and algorithms for solving both the
exact and approximate versions of the problem exist. For
example, for a database containing n points in Rd, exact
nearest neighbor can be found by transforming the prob-
lem to a point location problem in an arrangement of hy-
perplanes [1], which can in turn be solved using Meiser’s
ray shooting algorithm in time O(d5 log n) [14]. This algo-
rithm, however, requires preprocessing time and storage of
O(nd+1), which may be prohibitive for typical vision ap-
plications.

Approximate solutions to the nearest neighbor problem
can achieve comparable query times using a linear (O(dn))
preprocessing time and storage. These algorithms return,
given a query and a specified constant ε > 0, a point
whose distance from the query is at most a (1 + ε)-factor
larger from the distance of the nearest point from the query.
Tree based techniques [2] perform this task using at most
O(dd+1ε−d log n), and despite the exponential term they
appear to run much faster than a sequential scan even in
fairly high dimensions. Another popular algorithm is the
locality sensitive hashing (LSH) [8, 11]. LSH is designed to
solve the near neighbor problem, in which given r and ε we
seek a neighbor of distance at most r(1+ ε) from the query,
provided the nearest neighbor lies within distance r from
the query. LSH finds a near neighbor in O(dn1/(1+ε) log n)
operation. An approximate nearest neighbor can then be
found using an additional binary search on r, increasing the
overall runtime complexity by a O(log n/ε) factor.

Both tree search and LSH provide attractive ways for
solving the nearest subspace problem by applying them af-
ter mapping. However, we should take notice of two issues.
First, our formulation maps subspaces of dimension d to
points of dimension d′ = O(d2). In many vision applica-
tions this may be intolerably large. Second, the mapping in-
creases the distances from a query to items in the database
linearly, with a constant offset that may be large, particu-
larly when the nearest affine subspace is sought. Therefore,
to guarantee finding an answer that is not too far from the
nearest neighbor we may need to use a significantly smaller



Run-time Effective distance error Mean rank percentiles

Figure 2. Varying database size n. Comparing ANS with nearest subspace search, where ambient dimension is d = 60 and intrinsic dimension is k = 4.

Run-time Effective distance error Mean rank percentiles

Figure 3. Varying ambient dimension d. Comparing ANS with nearest subspace search, where database size is n = 5000 and intrinsic dimension is
k = 4.

ε. In particular, suppose we expect the nearest neighbor to
lie at some distance t from a query, and denote by µt2 + ν
the corresponding squared distance produced by our map-
ping. Let a = ν/t2, then to obtain an approximation ratio
of 1 + ε in the original space Rd we would need to select
a ratio 1 + ε′ ≈ (1 + ε)/

√
µ + a in the mapped space Rd′

,
which can be very small particularly if we expect t to be
small. Both issues can lead to a significant degradation in
the performance of the nearest neighbor algorithm.

We would like to note further that when k > 1 the non-
zero constant offset ν is in fact inherent to our method. Us-
ing simple arguments it can be shown that there exists no re-
duction of the nearest subspace problem to nearest neighbor
with points such that ν = 0, except for the trivial mapping.
Specifically, if ν = 0 any query point that is incident to a
subspace, and consequently any two subspaces with non-
trivial intersection, must be mapped to the same point. As
there exists a chain of intersections between any two sub-
spaces, the only possible mapping in the case that ν = 0 is
the trivial mapping.

We approach these problems by projecting the mapped
database and query onto a space of lower dimension and
applying nearest neighbor search to the projected points.
Random projections are commonly used in ANN searches
whenever d � log n. For a set of n points, the celebrated
Johnson-Lindenstrauss Lemma [12] guarantees with high
probability that a random projection into O(ε−2 log n) di-
mension does not distort distances by more than a factor of
1 + ε. Magen [15] (see also [16]) has extended this Lemma

to affine spaces, showing that for a set of n affine spaces of
rank k a random projection into O(ε−3k log(kn)) dimen-
sion distorts distances by no more than a factor of 1 + ε.
Utilizing these results we can either first map the subspaces
in the database to points and then project to a lower dimen-
sional space which is logarithmic in n. Alternatively, we
can first project the subspaces to a space of lower dimen-
sion and then map the projected subspaces to points, this
time obtaining a polylogarithmic dimension in n.

3.1. Algorithmic details

Given a database subspace we apply the mapping (2) if
the subspace is linear, or (4) for affine subspaces. We then
preprocess the database as required by our choice of ANN
scheme (e.g., build kd-trees, or hash tables). Our prepro-
cessing thus requires the same amount of space as would be
used by the selected ANN method, on a database of points
in O(d2).

Given a query our search proceeds by mapping it us-
ing (2) or (4), based on a search for linear or affine sub-
spaces. We then call our selected ANN method to report a
database point near to our query. Our query running time
is thus O(kd2) + TANN (n, d2), where O(kd2) is the time
required for mapping, and TANN (n, d) is the running time
for a choice of an ANN method (e.g., kd-trees, LSH), on a
set of n points in Rd.

In the experiments reported below, we have found that
good results can be obtained with significant speedup, if
both the database and queries are first projected to a low



dimension, before mapping. We do this for NP projections
each of dimension b. On each random projection we extract
c approximate nearest neighbors. Finally, we compute the
true distance between the query and all cNP candidates, and
report the closest match across all projections. Our overall
query running time is NP (O(bd)+O(kb2)+TANN (n, b2)+
cO(dk)), where O(bd) is the time for projecting onto a b di-
mensional subspace, and O(dk) the time for measuring the
true distance between the query and a candidate database
subspace.

4. Experiments
We applied our ANS scheme to both synthetic and real

data. Run times were measured on a P4 2.8GHz PC with
2GB of RAM (thus, data was loaded to memory in its en-
tirety). Our implementation is in C and uses the ANN kd-
tree code of [2], with requested ε = 100. We expect similar
results when using the LSH scheme. For all our matrix rou-
tines we used the OpenCV library. For all our ANS experi-
ments we chose to first project the data to randomly selected
subspaces of dimension b = k + 1, and then map the pro-
jected subspaces to points.

Synthetic data. Figs. 2 and 3 compare run-times and
quality of our ANS scheme and sequential subspace search.
In Fig. 2 we vary the number of database subspaces, and
in Fig. 3 the dimension d. Each test was performed three
times with NQ = 1000 queries. For stability we report
the median result. We used NP = 23 random projections
measuring the true distance to the best c = 15 subspaces in
each projection and reporting the best one.

Subspaces were selected uniformly, at random. Follow-
ing [22], we generate queries such that at least one database
subspace is at a distance of no more than (1 + ε)2R

√
(d)

from each query, where R = 0.1 and ε = 0.0001.
Match quality was measured in two ways. First,

the effective distance error [2, 13], defined as Err =
(1/NQ)

∑
q(Dist′/Dist∗−1), where Dist′ is the distance

from query q to the subspace selected by our algorithm, and
Dist∗ is the distance between q and its true nearest sub-
space, computed off line. In addition, we present the mean
rank percentile (MRP) for each query, measuring what per-
centage of the database is closer to the query than the sub-
space selected by our algorithm.

The results show that our algorithm is faster than sequen-
tial database scan, while maintaining fairly low Err rates.
In addition, the MRP remains largely robust to the database
size n, increasing only moderately in larger dimensions.

Image approximation. We next demonstrate the use
of subspaces to represent local translations of intensity
patches. Our goal here is to approximate the intensities of
a query image by tiling it with intensity patches obtained
from an image of an altogether different scene. A similar
procedure is frequently used in the so called “by-example”

patch based methods for applications including segmenta-
tion [6] and reconstruction [10].

A 1000 random coordinates were selected in a single im-
age (Fig. 5). Then, 16 different, overlapping 5 × 5 patches
around each coordinate were used to produce a k = 4 sub-
space by taking their 4 principal components. These were
stored in our subspace database. In addition, all 16 patches
were stored for our point (patch) database.

Given a novel test image we subdivided it into a grid of
non-overlapping 5× 5 patches. For each patch we searched
the point database for a similar patch using (exact) sequen-
tial and point ANN based search. The selected database
patch was then used as an approximation to the original in-
put patch. Similarly, we used both (exact) sequential and
ANS searches to select a matching subspace in the subspace
database for each patch. The point on the selected subspace,
closest to the query patch, was then taken as its approxima-
tion.

Fig. 4 presents the results obtained by each of the meth-
ods. The full images and additional results are included in
the supplemental material. Note the improved quality of the
subspace based reconstructions over the point based meth-
ods, evident also in the mean L1 error reported in Fig. 5.
In addition, with the exception of the point ANN method,
which did the worst in terms of quality, our ANS method
was fastest, implying that an ANS method can be used to
quickly and accurately capture local translations of image
patches.

Yale faces. We tested the performance of our ANS
scheme on a face recognition task, using faces under vary-
ing illumination. In our experiments we used the YaleB face
database [9], with images scaled down by a factor of 10.
We ran leave-one-out tests, taking one out of the 65 illumi-
nations as a query, and using the rest to produce a database
with intrinsic dimension k = 9 (following [4, 18]). With 10
subjects and 9 poses, the database is too small to provide the
ANS method with a running time advantage over sequential
scan (see Fig. 2). However, a comparison of the accuracy of
the two methods is reported in Fig. 6. These results imply
that although an approximate method makes more mistakes
identifying the correct pose and subject, it is comparable
to sequential search in detecting either the correct pose or
subject.

Yale patches. Motivated by methods using patch data
for detection and recognition (e.g. [17]), we tested the ca-
pabilities of the ANS method when searching for matching
patches sampled from extremely different illumination con-
ditions. For each subject+pose combination (90 altogether)
in the YaleB database, we located 50 interest points. We
then extracted, from all illuminations, the 9×9 patches cen-
tered on each point. Patches from 19 roughly frontal illumi-
nations, were then stored in a point database, containing a
total of 90×50×19 = 85500 patches. These same patches
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Figure 4. Image reconstruction results. Reconstructed using a single outdoor scene image. See Fig. 5 for run-times and error rates. Full images and more
reconstructions included in the supplemental material.

Method Run time
Approx nearest patch 0.6 sec.
Approx nearest subspace 1.2 sec.
(Exact) Nearest subspace 4.2 sec.
(Exact) Nearest patch 27.7 sec.

Figure 5. Image reconstruction details. From left to right, the single database image used for reconstruction, mean run times for each method, and L1
error reconstruction error. Both database and query images were taken from the Corel data set.

were further used to produce a subspace database, contain-
ing subspaces of dimension k = 9, by taking the nine prin-
cipal components of sets of corresponding 19 patches. A
total of 4500 database subspaces were thus collected. Of
the remaining illuminations, we took patches from the most
extreme, to be our queries. Fig. 7 presents examples of illu-
minations used to produce the database and queries.

We evaluate performance as the ability to locate a
database item originating from the same semantic part as
the query (e.g., eye, mouth etc.) We took a random selec-
tion of 1000 query patches, all from the same pose. We
then search both point and subspace databases for matches,
using exact and approximate nearest neighbor (subspace)
methods. Each database item matched with a query then
votes for the location of the face center by computing
(cx, cy) = (qx, qy) + (dbdx, dbdy), where (cx, cy) is the es-
timated center of mass, (qx, qy) is the position of the query

and (dbdx, dbdy) is the position of the selected database
item, relative to its image’s center (using cropped images,
where the face center is located in the center of the image).

The vote histograms computed by each method are pre-
sented in Fig. 7. Under the extreme lighting conditions
used, point based methods failed completely since there are
no good near neighbors in the data. Both subspace methods
managed to locate the correct center of mass, where exact
scan did significantly better, but at a higher running time.

5. Conclusion
The advantages of subspaces in pattern recognition and

machine vision have been demonstrated time and again. In
this paper we have presented a method which facilitates har-
nessing subspaces, and extending their use to applications
involving large scale databases of high dimensions. To this
end we have provided an algorithm for sub-linear approx-



Wrong nearest neighbor Wrong person Wrong person AND pose

Figure 6. Faces under varying illumination. Comparison of face recognition results on the Yale-B face database [9] between exact nearest subspace
search and the proposed approximate search. (Left) The approximated search has more errors than exact search. (Middle) The number of times a wrong
person was detected by ANS is small and shows that in many cases the nearest neighbor returned by ANS is of the same person in a wrong pose. (Right)
In other cases a different person in the correct pose was detected. The frequency at which both the wrong person and the wrong pose were detected is
comparable to that of exact search.

Database Query

(a) (b) (c)
Figure 7. Yale patches. (a) Two examples of images used for the
databases. (b) Two examples of images used for query patches. Queries
were produced from images under extreme illuminations, simulating dif-
ficult viewing conditions. (c) Histograms of face-center votes by each se-
lected database item. From top to bottom: Nearest subspace, our ANS
method, and nearest patch. These demonstrate the number of times the
correct semantic item (e.g., eye, mouth) was selected from the database
by each method. Run-times were 16.3 seconds for exact subspace search,
11.0 seconds for our ANS method, and 9.2 seconds for the point search.

imate nearest subspace search. Our goal is now to fur-
ther this study, by investigating different applications which
might benefit from these improvement in quality and speed.
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