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Abstract

Images of outdoor scenes are often degraded by haze,
fog and other scattering phenomena. In this paper we show
how such images can be dehazed using internal patch re-
currence. Small image patches tend to repeat abundantly
inside a natural image, both within the same scale, as well
as across different scales. This behavior has been used as
a strong prior for image denoising, super-resolution, im-
age completion and more. Nevertheless, this strong recur-
rence property significantly diminishes when the imaging
conditions are not ideal, as is the case in images taken un-
der bad weather conditions (haze, fog, underwater scatter-
ing, etc.). In this paper we show how we can exploit the
deviations from the ideal patch recurrence for “Blind De-
hazing” - namely, recovering the unknown haze parameters
and reconstructing a haze-free image. We seek the haze pa-
rameters that, when used for dehazing the input image, will
maximize the patch recurrence in the dehazed output im-
age. More specifically, pairs of co-occurring patches at dif-
ferent depths (hence undergoing different degrees of haze)
allow recovery of the airlight color, as well as the relative-
transmission of each such pair of patches. This in turn leads
to dense recovery of the scene structure, and to full image
dehazing.

1. Introduction
Images of outdoor scenes are often degraded by a scat-

tering medium (e.g., aerosols, dust particles and water
droplets). Haze, fog and even underwater scattering are
such phenomena, whose degradation effect on the resulting
images grows with scene depth. This degradation is double
folded: (i) the irradiance L(x) emitted from scene points is
attenuated due to scattering caused by haze particles along
the line of sight, and (ii) ambient airlight A is also scat-
tered by haze particles, causing some of it to be reflected
into the line of sight and reach the camera. The resulting
image I(x) exhibits reduced contrast and distorted colors,
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Figure 1. Constraints induced by co-occurring patches: While
a pair of co-occurring patches P1 and P2 look very different in
the hazy image I(x), they originate from the same (unknown) de-
hazed patch L(x). This provides a strong prior for image dehaz-
ing, constraining the relative transmission parameters t2/t1 and
the shared airlight A of such pairs of patches (see Sec. 2).

and is typically modeled [7, 15, 17] by:

I(x) = t(x) L(x) + (1− t(x))A, (1)

where t(x) is the corresponding attenuation factor, known
as the transmission

t(x) = e−βZ(x), (2)

where β is a scattering coefficient and Z(x) is the distance
to the scene point. t(x) is typically assumed to be the same
for all three color channels (R,G,B) [4, 7].

Blind image dehazing, namely, recovering the haze pa-
rameters A and t(x) and inverting Eq. (1) to recover a haze-
free image, is an under-constrained problem. Different de-
hazing methods proposed different ways to cope with this
problem. Some assume having multiple images of the same
scene (e.g., taken under different polarizations [15, 16] or
under different weather conditions [12, 13, 14]).

More recently, methods based on a single image have
been proposed, which tackle the lack of constraints by in-
corporating various priors. Tan [18] assumed maximal lo-
cal contrast in the dehazed image (which occasionally leads
to an exaggerated contrast). He et al. [7] recovered the t-
map t(x) by using the Dark Channel Prior, and Tang et
al. [19] combined these notions and others into a learning
framework. Zhu et al. [20] performed image dehazing by



Figure 2. Dehazing by maximizing patch recurrence. Our algorithm seeks the haze parameters such that, when used for dehazing the
input image I(x), will maximize the patch recurrence in the output haze-free image L(x). This maximization results in successful dehazing
even of extremely distant forest regions (best viewed on screen).

learning a linear color attenuation model. All four meth-
ods [7, 18, 19, 20] estimate A by implicitly assuming that
regions at infinity (e.g., the sky) are visible in the image,
and that the airlight color A is the brightest color among
these regions. Fattal [4] assumed that the scene irradiance
L(x) and transmission map t(x) are locally uncorrelated,
and used a user assisted approach to estimate A. In his later
works [5,17], haze parameters were recovered by assuming
that the distribution of pixels inside constant albedo patches
can be described as lines in RGB space.

In this paper we propose to use the internal patch recur-
rence property as a strong prior for single-image blind de-
hazing. Small image patches (e.g., 5×5, 7×7) tend to repeat
abundantly inside a single natural image, both within the
same scale, as well as across different scales of the image.
This patch recurrence property has been used as a strong
prior to solve a variety of ill-posed vision problems, includ-
ing super-resolution [6], image denoising [1,2], image com-
pletion [3], and more. More recently, it was shown [9, 10]
that under significant camera blur, the recurrence property
significantly diminishes, thus encoding information about
the unknown global blur kernel. This was used for blind
super-resolution [9] and blind deblurring [10].

Nevertheless, degradation is not limited to blur; other
types of degradations in the imaging process may also lead
to diminished patch recurrence. Deviations from the ideal
patch recurrence encode valuable information about the un-
known degradation process, in general. In particular, im-
ages taken under bad weather conditions (haze, fog, etc.)
suffer from diminished patch recurrence. Recurring patches
at different depths undergo different amounts of haze, hence
no longer look the same (e.g., see the patches P1 and
P2 in Fig. 1). Nevertheless, these differences between
such “co-occurring patches” (patches with high normalized-
correlation) allow recovery of their shared airlight color
A and their relative transmission parameters. Combining
the information from a sparse set of co-occurring pairs of
patches in the image, yields the global airlight color A and
a dense t-map t(x). This in turn allows for complete image
dehazing. Generally speaking, we seek the haze parame-

ters t(x) and A such that, when used for dehazing the input
image I(x), will maximize the patch recurrence property in
the output haze-free image L(x) (See Fig. 2).

Unlike [7, 18, 19, 20], our method does not require scene
points at infinite distance to appear in the image, nor does it
make any prior assumption about the brightness of A.

A brief overview of our algorithm is outlined below, and
is detailed in Sections 2,3,4.

Overview of the Algorithm:

Input: Hazy image I(x)
Output: Airlight Â, t-map t̂(x), dehazed image L̂(x)

1. Detect “co-occurring pairs”: (Sec. 3)

(a) Extract structured (high-variance) patches
from image I(x).

(b) Search for matching patches (with high
normalized-correlation).

2. Extract Pairwise haze parameters for each pair:

(a) Estimate relative t-values t2/t1 (Sec. 2.1).

(b) Estimate their shared airlight (Sec. 2.2).

3. Estimate Global haze parameters:

(a) Recover global airlight Â using all pairwise
airlight estimates (Sec. 4.1).

(b) Recover dense t-map t̂(x) which:
(i) is smooth, and (ii) satisfies the sparse
pairwise constraints (Sec. 4.2).

4. Recover haze-free L̂(x): L̂(x) = I(x)−Â
t̂(x)

+ Â.

The rest of this paper is organized as follows. Sec. 2
introduces the constraints induced by pairs of co-occurring
patches. Sec. 3 explains how such pairs of patches can be



found reliably in a hazy image. Sec. 4 describes our algo-
rithm for recovering global dense haze parameters. Exper-
imental results are presented in Sec. 5, obtaining state-of-
the-art performance on established benchmark datasets.

2. Constraints Induced by Pairs of Patches

In this section we show how a single pair of “co-
occurring patches” at different depths (i.e., the same lo-
cal structure undergoing different degrees of haze) encodes
valuable information about the unknown haze parameters:
the airlight color, as well as the relative-transmission of the
two patches. Most existing methods (e.g., [7,15,17,18,20])
assume a uniform global airlight A for the entire image.
Our current algorithm (Sec. 4) also follows this assump-
tion. Nevertheless, in this section we show that pairs of
patches can potentially provide information for the more
general case, when the airlight is spatially varying (which
may happen e.g., when the sun is low in the sky, or when
the scene is illuminated by multiple light sources).

Let P1[x] and P2[x] denote a pair of small co-occurring
patches1 (7 × 7) that emanate from the same underlying
haze-free patch L[x], but are located at different scene
depths, Z1[x] and Z2[x]. Since these patches are very small,
we can assume constant depths in each patch, Z1[x] ≡ Z1

and Z2[x] ≡ Z2, hence also constant transmission values,
t1 and t2 (since t = e−βZ). We further assume that the
airlight is locally uniform within each patch (A1[x] ≡ A1

and A2[x] ≡ A2), even if not uniform in the entire image.
According to Eq. (1):

P1[x] = L[x] t1 +A1 (1− t1) (3)
P2[x] = L[x] t2 +A2 (1− t2)

Note that under ideal (haze-free) imaging conditions, the
patches P1 and P2 should be identical (and equal to their
shared underlying haze-free patch L). However, due to the
haze and their different depths, they look quite different
(See Fig. 1).

Eliminating the Airlight Component: When the trans-
mission t and airlight A in Eq. (1) are locally uniform, sub-
tracting the local mean-color eliminates the airlight compo-
nent. This observation was made by Narasimhan [11] for
uniformly colored regions. However, it is generally true
for almost any small image patch (uniform or textured), as
long as A and t are locally uniform within the patch (an as-
sumption violated only for patches at depth discontinuities).
The elimination of the airlight is obtained by subtracting the

1We use square brackets [x] to denote coordinates within a columned-
stacked patch P , and regular parentheses (x) to denote coordinates in the
entire image.

mean value of each side of Eq. (3), which yields:

P̃1[x] = L̃[x] t1 (4)

P̃2[x] = L̃[x] t2

where P̃i[x] = Pi[x]-mean(Pi) and L̃[x] = L[x]-mean(L)
(the mean is computed separately for each color channel
within each patch). Note that the elimination of the airlight
Ai is done independently for each patch, and can be done
even if different patches have different airlight colors.

2.1. Obtaining Pairwise Relative Transmission

Given a pair of co-occurring patches, we can now pro-
ceed to obtain their relative transmission parameters t2/t1.
Eq. (4) entails:

||P̃1|| = ||L̃ t1|| = ||L̃|| t1 (5)

||P̃2|| = ||L̃ t2|| = ||L̃|| t2

Recall that t1 and t2 are scalars (between 0 and 1). Thus:

t2
t1

=
|| P̃2||
|| P̃1||

, (6)

Assuming l2 norm, the ratio between the transmission pa-
rameters of two co-occurring patches, P1 and P2, reduces
to a simple ratio of their standard-deviations:

t2
t1

=
std(P2)

std(P1)
. (7)

Note that the relative transmission parameters t2/t1 can be
recovered even if the airlight colors of the two patches P1

and P2 are different (A1 6= A2).
Without loss of generality, we will assume from here on

that 0 ≤ t2/t1 ≤ 1, since we can always denote by P2 the
patch with the smaller standard-deviation, and by P1 the
patch with the larger standard-deviation.

2.2. Obtaining Pairwise Shared Airlight

Assuming that a pair of co-occurring patches share the
same airlight color, A1 = A2 = A, we can proceed to
obtain this shared airlight (even if not shared by all other
image patches). Eq. (3) can be rewritten as:

P1[x]−A = (L[x]−A) t1 (8)
P2[x]−A = (L[x]−A) t2

which entails that:

(P2[x]−A) =
t2
t1

(P1[x]−A) (9)

Combining the constraints from Eqs. (4) and (9) yields:

(P2[x]−A) P̃1[x]− (P1[x]−A) P̃2[x] = 0, (10)



This last constraint holds for all pixels x in those two
patches, thus providing an overdetermined set of linear con-
straints on each of the three airlight color components,
A = (AR, AG, AB). The shared airlight A can thus be
estimated, e.g., using Least-Squares:

A =

[
P̃2 − P̃1

]T [
P1 ◦ P̃2 − P2 ◦ P̃1

]
‖ P̃2 − P̃1 ‖2

, (11)

where ◦ denotes the element-wise vector multiplication
(also known as the Hadamard product).

Note that our recovery of the airlight A does not require
having scene points at infinity in the image. This is in con-
trast to [7, 18, 19, 20], which rely on this assumption.

The pairwise constraints derived above typically provide
information about the t-ratios and shared airlight only for a
sparse set of patches in the image (those reliably detected
as co-occurring patches). In Sec. 4 we show how these can
be used to recover dense and global haze parameters for the
entire image.

3. Unveiling Patch Recurrence
Informative co-occurring patches image the same local

structure L[x], but at different scene depths. The variations
between such patches is what allows recovery of their rel-
ative transmission parameters, but also pose a challenge on
reliable detection of such co-occurring pairs. In this section
we explain how to “unveil” patch recurrences, despite being
“fogged” by the haze.

3.1. Searching for Normalized-Nearest Neighbors

The obscuring effect of the airlight A is removed in the
mean-free patches P̃1 and P̃2 (Eq. (4)). However, their dif-
ferent transmissions still obscure their similarity. Therefore,
we normalize the mean-free patches, P̃1 and P̃2, by their
norms (which is equivalent to normalizing by the standard-
deviation of each patch, in the case of l2 norm):

P̃1[x]

||P̃1||
=
t1L̃[x]

t1||L̃||
=
L̃[x]

||L̃||
(12)

P̃2[x]

||P̃2||
=
t2L̃[x]

t2||L̃||
=
L̃[x]

||L̃||
.

Yielding P̃1/||P̃1|| = P̃2/||P̃2||. (13)

Thus, normalizing the mean-free version of all hazy im-
age patches unveils their recurrence property. Pairs of co-
occurring patches can now be detected by applying Nearest-
Neighbors (NN) search on the normalized patches.2

2This is equivalent to finding pairs of patches with high normalized cor-
relation. The advantage of first normalizing each patch and then searching
for NNs, is that it allows to use also l2-based NN search algorithms.

Since our final goal is to recover a haze-free image with
maximal patch recurrence across multiple scales, we search
for normalized-NNs (co-occurring patches) across multi-
ple scales of the input hazy image I(x). Note that scaling
down the hazy image does not change the physical param-
eters of the scene (the airlight A at infinity, the depth of
scene points Z, or the haze scattering parameters β); it only
has a zoom-out effect. Thus, scaling down the hazy image
only coarsens the transmission-map (t-map), but preserves
its absolute range of values.

Given a hazy input image I(x), we generate multi-
scale versions of it: {Isc}, with scale factors, e.g., sc =
1, 0.75, 0.5, 0.25. We apply NN-search only to patches
which have high std (above 25 grayscale levels). Seeking
NNs only for high-std patches prevents overfitting the noise
and increases the numerical stability. For each such patch,
we seek k-NNs 3 in multiple image scales. We discard pairs
of patches whose normalized-correlation is lower than 0.7.

3.2. Handling Outliers and Pairwise Errors

While the normalization in Eq. (13) unveils the similarity
of co-occurring patches, it also yields many false matches.
A pair of patches with different haze-free patches L1[x] and
L2[x], which satisfy L2[x] = aL1[x] + b (for any scalars
a and b), will be falsely identified as a co-occurring pair by
our NN search (e.g., two arbitrary vertical edges).

We next show that the physical lower bound on the trans-
mission t(x) suffices for detecting such false matches.
A Lower-Bound on t(x): Transmission values must sat-
isfy t(x) ≥ 0, ∀x. The haze free image L(x) must further
satisfy L(x) ≥ 0, ∀x. Incorporating these two constraints
in Eq. (1) yields:

I(x) = L(x) t(x) +A (1− t(x)) ≥ A (1− t(x)). (14)

The constraint in Eq. (14) holds for each pixel, and for each
of its color channels. Hence we can define for every pixel a
Lower-Bound tLB(x) on t(x), by rearranging Eq. (14) and
taking the maximum over R, G, B:

t(x) ≥ max
c∈R,G,B

{
1− Ic(x)

Ac

}
, tLB(x). (15)

This lower bound shares a similar reasoning with the Dark
Channel Prior (DCP) exploited by He et al. [7], but unlike
the DCP, it holds for every pixel x in the image.

Note that computing tLB [x], given the estimated Â of
a pair of patches, is very easy, and does not require com-
plex estimation of the true absolute t[x]. It simply involves
computing the term in (15) for every pixel in the patch.

We later use this lower bound in Sec. 4 for constrained
optimization, when recovering the t-map t(x). Neverthe-
less, this lower bound can also be used to identify outlier

3In our implementation we used a KD-tree search (its approximate-NN
version with ε = 1), with k = 9 (i.e., 9 NNs for each patch).



pairs of patches, as shown next.

Claim: (tLB preserves t-ratios)
A true (inlier) co-occurring pair of patches (that share the
same L[x]) satisfies

tLB2 [x]

tLB1
[x]

=
t2[x]

t1[x]
. (16)

Proof: Rewriting tLB [x] of Eq. (15) in terms of L[x], t[x]
and A, yields

tLB [x] = max
c∈R,G,B

{
1− Pc[x]

Ac

}
=

= max
c∈R,G,B

{
1− Lc[x]t[x] + (1− t[x])Ac

Ac

}
=

= t[x]

(
1− min

c∈R,G,B

{
Lc[x]

Ac

})
. (17)

Two true co-occurring patches share the same underlying
L[x], hence the ratio of their tLB [x] reduces to their true
t-ratio:

tLB2 [x]

tLB1
[x]

=
t2[x]

t1[x]

[
1− min

c∈R,G,B

{
Lc[x]
Ac

}]
[
1− min

c∈R,G,B

{
Lc[x]
Ac

}] =
t2[x]

t1[x]
. (18)

�

In contrast, a false (outlier) pair rarely satisfies Eq. (16),
since

tLB2 [x]

tLB1
[x]

=
t2[x]

t1[x]

1− min
c∈R,G,B

{
aLc[x]+bc

Ac

}
1− min

c∈R,G,B

{
Lc[x]
Ac

} 6= t2[x]

t1[x]
.

(19)
Thus, given a pair of patches with high normalized cor-

relation, we estimate their likelihood to be an inlier pair
as follows: we estimate their shared airlight Â, and use
that to estimate tLB1

[x] and tLB2
[x] (for each pixel in the

patches). We further estimate their t-ratio from the hazy im-
age t2

t1
= std(P2)

std(P1)
(Eq. (7)). Then, for each pixel in the patch,

we compute the difference
∣∣∣ tLB2

[x]

tLB1
[x] −

t̂2
t1

∣∣∣ between the es-

timated t-ratio t̂2
t1

and the tLB-ratio. The average over all
pixels in the pair of patches, constitutes a good indicator for
the inlier/outlier reliability of the pair. Patches for which
this average difference exceeds a certain threshold (0.07 in
our current implementation) are detected as outliers.

4. The Algorithm
So far we saw how the recurrence of patches undergoing

different amount of haze induces constraints on their shared
airlight A and their relative transmission parameters t2/t1.

Figure 3. Recovered t-maps. Red/blue indicate large/small t(x),
which correspond to near/far scene points.

These constraints, however, are imposed only at sparse im-
age locations (where co-occurring patches were reliably de-
tected), and the t-ratios provide only relative quantities, and
not absolute transmission values. In this section we explain
how to exploit those sparse relative pairwise constraints to
obtain a global airlight A and a dense absolute t-map t(x).
Once these are recovered, they lead to the recovery of the
haze-free image L(x) using Eq. (1):

L(x) =
I(x)−A
t(x)

+A. (20)

4.1. Recovering the Global Airlight

Let {(Pk1 , Pk2)}
K
k=1 be all the pairs of reliably de-

tected co-occurring patches (after outlier rejection) in the

input image I(x). Let
{
Âk

}K
k=1

be their pairwise esti-
mated airlights, computed using Eq. (11). The single global
airlight estimate Â for the entire image could in principle
be computed as the average Â = 1

K

∑
k Âk. However, not

all pairs of patches are equally informative for recovering
the global A. Pairs of patches originating from significantly
different depths (hence undergoing different haze) are more
informative than those with similar amounts of haze. Thus
our global airlight estimate Â is a weighted average

Â =

∑
k wk Âk∑
k wk

, (21)

giving higher weights wk to more informative pairs of
patches. Informative pairs should have a very large pair-
wise t-ratio ( t1t2 � 1). But this on its own is not enough;
two very distant patches with very small t1 and t2 may have
a large t-ratio, but are not very informative. Therefore we
also want a large pairwise t difference (t1 − t2). Since we
do not know the absolute t at this stage, we substitute it with
weights based on the lower bound tLB , defined in Eq. (15).



We found that setting the weights to

wk =

[
(tLB1

− tLB2
)

(
tLB1

tLB2

− 1

)]2
(22)

achieves the desired weighting effect, where tLBi of patch
Pi (i = 1, 2) is defined as tLBi = max

x∈Pi

tLBi [x].

Since the weights wk depend on tLB , which in turn de-
pend on the desired estimate Â, we compute (21) and (22)
iteratively. Our initial guess for Â is the regular average of
all Âk’s, and we iterate until the rate of change in Â is very
small (typically up to 20 iterations). Our experiments show
that this iterative weighing process reduces the estimation
error of A by ∼25% compared to the initial guess.

4.2. Recovering the Transmission Map t(x)

Given the recovered airlight Â, we seek a dense trans-
mission map t(x) such that, when dehazing the input image
I(x) with this transmission map, the resulting haze-free im-
age L(x) will have maximal internal patch recurrence (both
within and across different scales of L(x)). In particular,
we seek the t-map t(x) that will minimize:

argmin
t(x)

{ ρL (t(x))︸ ︷︷ ︸
patch-recurrence-term

+ λρs (t(x))︸ ︷︷ ︸
smoothness-term

} s.t. tLB(x) ≤ t(x) ≤ 1︸ ︷︷ ︸
constrained range

(23)
where ρL(t) is the patch recurrence constraint on the
resulting dehazed image L(x) (expressed in terms of the
unknown t(x)), ρs(t) is a smoothness term on the recovered
t-map, and λ was empirically set to 0.5. The t-map t(x)
is further constrained, at every pixel x, to lie between the
lower bound tLB(x) (defined in Eq. (15)) and the upper
bound 1.

The patch-recurrence data term: ρL(t) is computed over
all reliably detected pairs of co-occurring patches (within
and across scales of the input image I(x)). A pair of co-
occurring patches P1 and P2 (that share the same L[x]),
should be equal to each other after dehazing, namely:
L1[x] = L2[x]. This can be rewritten in terms of t(x) as:
P1−Â
t1

+ Â = P2−Â
t2

+ Â, and can be further turned into
a linear expression in the unknown t(x): (P1 − Â)t2 =
(P2 − Â)t1. Therefore, we would like for the t-map t(x) to
minimize the following patch-recurrence penalty term:

ρL(t(x)) =
∑
k∈pairs

‖
(
Pk1 − Â

)
tk2(x)−

(
Pk2 − Â

)
tk1(x) ‖2 .

(24)
where tk1(x) and tk2(x) are the transmission values corre-
sponding to the center pixels of patches Pk1 and Pk2 , re-
spectively.

In order to have a spatially denser patch-recurrence con-
straint, we augment the set of co-occurring patches ex-
hibiting high normalized-correlation (described in Sec. 3),

by searching for pairs of patches exhibiting low Sum
of Squared Differences (SSD). These low-SSD pairs of
patches not only co-occur (share the same underlying L[x]),
but also undergo the same degradation by haze, which
means they share the same t(x). Hence for them we mini-
mize this modified version of the term in Eq. (24):∑

k ∈ low−SSDpairs

‖ tk2(x)− tk1(x) ‖2 . (25)

Combining the two sets of pairs increases the spatial
density of the patch recurrence constraint. Our experiments
show that more than 20% of the t-map pixels are directly
effected by it in any image we have experimented with
to-date (more than 50 images).

The smoothness term: ρs(t) is computed over all pixels
in the image:

ρs (t(x)) =
∑

all pixels x

w(x) ‖ ∇ log(t(x)) ‖2 (26)

where w(x) is a decreasing sigmoid function4 of ∇L(x).
Recall from Eq. (2) that log(t(x)) ∝ Z(x). Thus, the
“depth map” log(t(x)) is penalized for having large deriva-
tives (large depth discontinuities), except at strong edges in
the dehazed image L(x). Since we do not know L(x) in
advance (as it depends on the estimated t(x)), we solve the
objective function in Eq. (23) using iterative minimization.

Iterative minimization: We solve Eq. (23) iteratively,
where each iteration is a constrained non-convex optimiza-
tion problem. We start with an initial guess t(x) = tLB(x).
Note that tLB(x) already satisfies the constrained range of
t(x), as well as the t-ratio constrains (see claim in Sec. 3.2),
but is usually not smooth.

At each iteration we approximate L(x) by using Eq. (20)
with t(x) from the previous iteration. We re-estimate the
weights w(x) = sigmoid(∇L(x)) of the smoothness term
using the current L(x), and re-estimate t(x) by minimizing
Eq. (23). This process is iterated until there is no significant
change in the error term (typically around 20 iterations).

The above iterative process results in our final t-map t(x)
and our dehazed image L(x). Examples of recovered t-
maps are shown in Fig. 3. Since small amount of haze is
present even on clear days, totally haze-free images tend to
look unnatural [7]. Therefore, we allow for a small amount
of haze to be left in our final dehazed output images L̂(x),
namely: L̂(x) = α L(x)+(1−α) I(x). We used α = 0.85
in our displayed images.

5. Experiments
We evaluated our results on a large database of fifty im-

ages (the database used by [5], enriched with images we

4We used w(x) = sigmoid(∇L(x)) =
(
1 + e48(‖∇L(x)‖−0.1)

)−1
.



Figure 4. Evaluating the accuracy of recovered airlight. Top: Examples of hazy images, along with their manually extracted ground
truth airlight color (GT), and the estimated airlights of Sulami et al [17], He et al [7], and Ours. Bottom: Errors estimated on 40 heavily
hazed images (from which GT airlight could be reliably extracted). Black arrows indicate bars corresponding to the example images at
the top (same order of appearance). The table shows that our method reduces the mean and median errors by 14% and 21%, respectively,
compared to the state-of-the-art method of [7].

added). Please refer to our project website www.wisdom.
weizmann.ac.il/˜vision/BlindDehazing/ to
see all our results.

In order to quantitatively evaluate the quality of the re-
covered airlightA, we performed the following experiment.
Ground truth airlight is typically not available in real-world
hazy images. Nevertheless, under the assumption of a sin-
gle global airlight, if the image exhibits strong haze, and
contains points at infinite distance (e.g., the sky), then their
color should coincide with the airlight color A [15]. There-
fore, in severely hazed images where the sky or distant
scene points are visible, we can manually obtain a good ap-
proximation of the ground-truth airlight.

Forty (heavily-hazed) images in the database contained a
visible piece of sky or a very distant scene point. We man-
ually marked that region, and computed its average color.
This served as the ground-truth airlight A for our global
airlight estimation. The graph in Fig. 4 plots the errors be-
tween the estimated airlight and the ground-truth airlight,
computed for 3 methods (using the online codes published
by the authors): Ours (red bars), He et al. [7] (green bars),
and Sulami et al.5 [17] (blue bars). The results of the mean
and median errors are further reported in the table in Fig. 4.
The results show that our estimated global airlight A for
these images is more accurate than both methods. Note that

5The online code available on the project page of [17] is not the full
implementation of [17], but rather a more limited one which assumes a
fixed albedo image (based on personal communication with the authors).

those images contain distant scene points, thus satisfy the
assumption of [7,18,19,20] (an assumption that neither our
method, nor [17], rely on). Despite that, the results show
that our method provides a decrease in the average and me-
dian estimation errors by 14% and 21%, respectively, com-
pared to the current state-of-the-art method by He et al. [7].

Figs. 2,5,6 show results of our dehazing algorithm. Fig. 2
examplifies the power of the patch recurrence property. It
shows how the maximization of patch recurrence in the
haze-free image results in successful dehazing even of ex-
tremely distant and very hazy forest regions.

Figs. 5,6, as well as many more images on our project
page, show a comparison of dehazing results, along with
the corresponding recovered airlight colors A, between our
method and that of [7], on all the images in the dataset.
We chose to compare to [7] because it is the state-of-the-art
end-to-end blind dehazing algorithm (both recovering the
airlight A and the dehazed image, in a single framework).
Moreover, its online available code allowed the comparison
also on the challenging images we added to the dataset. In
addition, we present the results using the recently released
commercial dehazing tool6 of Adobe Lightroom [8].

The images in Fig. 5 contain heavily hazed regions (ei-
ther the sky or just dense haze regions), thus satisfy the un-
derlying assumptions of [7, 18, 19, 20]. Interestingly, the
airlight colorA recovered by our method does not necessar-

6We applied the dehazing effect of [8] with maximal (+100) dehazing
settings on all images.

www.wisdom.weizmann.ac.il/~vision/BlindDehazing/
www.wisdom.weizmann.ac.il/~vision/BlindDehazing/


Figure 5. Dehazing results on images containing heavily-hazed distant scene points: The hazy input image (first column), our blind
dehazing result (second column), result by [7] (third column) and the results using [8] (last column). The recovered airlight color Â of our
and He’s dehazing results is presented in a framed rectangle above it. (Best viewed on screen.)

ily coincide with the brightest color of these regions (e.g. in
image (a)), yet using it for dehazing yields better results.

Fig. 6 presents images that do not satisfy the assumptions
in [7, 18, 19, 20]. It shows the advantage of our method in
cases where the image does not contain regions of dense
haze (images (a) and (b)), or in images taken underwater
(image (c)), in which case the airlight is not bright, nor does
it coincide with the brightest image region.

6. Conclusion

We showed that the unknown haze parameters can be re-
covered from a single hazy image, by seeking the haze pa-
rameters that, when “removed”, maximize the patch recur-
rence in the output haze-free image. Pairs of co-occurring
patches at different depths (undergoing different haze) al-
low recovery of their relative transmission and their shared
airlight color. Unlike most blind dehazing methods, our
method does not rely on imaging points at infinity, nor

does it assume that the airlight is necessarily bright. While
in this paper we assumed a single uniform airlight A, we
showed that pairs of co-occurring patches encode informa-
tion of their shared airlight color, even if not uniform in
the image. Extending our algorithm to handle non-uniform
airlight A(x) is part of our future work.
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