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We provide:

1. Proofs for the claims of Section 4.
2. Description of the various Caltech-101 benchmark subsets.
3. The PASCAL-VOC 2010 subset and results.

1. Proofs for the claims of Section 4

Claim 1 [A single shared region between two images]
Let R be a region which is shared by two images, I1 and I2 of size N . Then:
(a) Using S random samples per descriptor, guarantees to detect the region R with
probability p ≥

(
1− e−S |R|/N

)
.

(b) To guarantee the detection of the region R with probability p ≥ (1 − δ), requires
S = N

|R| log(
1
δ ) random samples per descriptor.

Proof: Let R1 and R2 denote the instances of a region R in I1 and I2. In order to
detect the entire region R, at least one descriptor d1 ∈ R1 has to randomly sample
its correct match d2 ∈ R2 (following which the entire region will be ‘grown’ due to
the propagation phase of the Region Growing Algorithm described in Section 4). So,
the probability of detecting a region is equal to the probability that at least one of the
descriptors d1 ∈ R1 will randomly sample its correct match d2 ∈ R2.

The probability of a single descriptor d1 ∈ R1 to randomly fall on its correct match
d2 ∈ R2 is 1

N (where N is the size of the image). Therefore, the probability that it will
NOT fall on d2 is (1− 1

N ). The probability that NONE of its S samples will fall on d2 is
(1− 1

N )S . Therefore, the probability that NONE of the descriptors in R1 will randomly

fall on their correct match is q ,
(
1− 1

N

)S|R1|
=
(
1− 1

N

)S|R|
. Thus the probability

of detecting the shared region R is p , (1− q).

(a) for N ≥ 1 it holds that
(
1− 1

N

)N ≤ e−1. Implying that q =
(
1− 1

N

)N S|R|
N ≤

e−
S|R|
N . So p = (1− q) ≥ 1− e−

S|R|
N . �

(b) We need to guarantee that p = (1− q) ≥ 1− δ, and ask what is minimal number of
samples S required. We know from (a) that p = (1− q) ≥ 1− e−

S|R|
N . So if we require
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1− e−
S|R|
N ≥ 1− δ we will satisfy the condition. Switching sides we get: e−

S|R|
N ≤ δ.

Applying log gives us: −S|R|N ≤ log(δ). Rearranging the terms: S ≥ N
|R| log(

1
δ ). �

Claim 2 [Multiple shared regions between two images]
Let R1, . . . , RL be L shared non overlapping regions between two images I1 and I2. If
|R1|+ |R2|+ . . . |RL| = |R|, then it is guaranteed to detect at least one of the regions
Ri with the same probability p ≥ (1−δ) and using the same number of random samples
per descriptor S as in the case of a single shared region of size |R|.

Proof: R1, . . . , RL are non-overlapping regions, so their probabilities of detection are
statistically independent of each other. The probability that all of the regions are not
detected is therefore equal to the product of the probabilities of each region not being

detected:
∏L
i=1

(
1− 1

N

)S|Ri|. This is equal to
(
1− 1

N

)S∑L
i=1 |Ri| =

(
1− 1

N

)S|R|
=

q. So the probability of detecting at least on region is equal to 1 − q which is identical
to the term obtained in claim 1.a for the probability of detecting a single shared region
with size |R|. Similarly, we also get the same term for the required number of samples
S as was obtained in claim 1.b. �

We now consider the case of detecting a shared region between a query image and
at least one other image in a large collection of M images. For simplicity, let us first
examine the case where all the images in the collection are “partially similar” to the
query image. We say that two images are “partial similar” if they share at least one
large region (say, at least 10% of the image size). The shared regions Ri between the
query image and each image Ii in the collection may be possibly different (Ri 6= Rj).

Claim 3 [Shared regions within an image collection]

Let I0 be a query image, and let I1 . . . , IM be images of size N which are “partially
similar” to I0. Let R1, . . . , RM be regions of size |Ri| ≥ αN such that Ri is shared
by I0 and Ii (the regions Ri may overlap in I0). Using S = 1

α log( 1δ ) samples per
descriptor in I0, distributed randomly across I1, .., IM , guarantees with probability
p ≥ (1− δ) to detect at least one of the regions Ri.

Proof: We will first develop a term for the probability of not detecting a specific region
Ri(i = 1, . . . ,M). The only change from claim 1.a is that the search space is M times
larger (since there are M other images instead of only one). So this probability is equal
to (1 − 1

NM )S|Ri|. If there were no overlaps between the regions, then the probability
q̃ that none of the regions are detected (as was shown in claim 2) equals to the product
of the probabilities of each region not being detected:
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q̃ =
∏M
i=1(1 −

1
NM )S|Ri| =

(
1− 1

NM

)S∑M
i=1 |Ri| ≤

(
1− 1

NM

)SMαN
=((

1− 1
NM

)NM)Sα ≤ e−Sα.

An overlap between the regions will not change this term. This is due to the fact that
on the one hand there are fewer descriptors in the union of all the regions, but on the
other hand each descriptor has a higher probability of finding a good match at random.
It is easy to show that these two terms cancel each other.

Therefore, the probability of detecting at least one of the regions is equal to p =
(1 − q̃) ≥

(
1− e−Sα

)
. Finally, in order to guarantee detection of at least one region

with probability ≥ (1− δ) we need to use S ≥ 1
α log( 1δ ) samples. �

Claim 4 [Multiple images vs. Multiple images]
Assume each image in the collection is “partially similar” with at least M

C images
(shared regions ≥ 10% image size), and S = 40C samples per descriptor. Then one
‘simultaneous iteration’ (all the images against each other), guarantees that at least
95% of the images will generate at least one strong connection (find a large shared
region) with at least one other image in the collection with high probability. This prob-
ability rapidly grows with the number of images, and is practically 100% forM ≥ 500.

Proof: According to claim 3, in order to guarantee with probability p ≥ 98% that an
image I0 will detect at least one region which is at least 10% of the size of the image
and is shared with another image, we are required to use S = 40 random samples per
descriptors (δ = 0.02 and α = 0.1). This is the required number of samples S when all
the M images are “partially similar” to I0. When only M

C of the images are “partially
similar” to I0, then S must be C times larger, i.e. S = 40C (using similar derivations
to those in claim 3).

This, however, was for one specific image I0. When applying this process simulta-
neously to all the M images, we would like to check what percent of the images will
detect with very high probability at least one shared region with another image. We
will regard the event of each image trying to detect a shared region as an independent
Bernoulli trial with success probability of p = 0.98 (the guaranteed probability of de-
tecting a shared region per trial). We have M images, thus M Bernoulli trials, all with
the same success probability p. Therefore, The number of successes, i.e., the number of
images which detect a shared region, has a Binomial distributionBin(M,p). Similarly,
the number of failures has also a a Binomial distribution Bin(M, 1− p).

When M is several hundreds (100 ≤ M ≤ 1000) and 1 − p = 0.02 is quite small,
the resulting product M(1− p) is of an intermediate size (between 2 and 20). It is well
known that in these cases, the binomial distribution Bin(M, 1−p) can be approximated
well with a Poisson distribution with parameter λ = (1 − p)M = 0.02M . In other
words, the probability that k images did not detect a shared region can be approximated
by e−λ(λ)k

k! .

The probability that at least rM of the images detected at least one shared region is
equal to the probability that all the images detected a region (k = 0), or that all but one
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detected a shared region (k = 1), . . . or that all but (1− r)M detected a shared region.
Therefore, it can be approximated by

∑(1−r)M
k=0

e−λ(λ)k

k! .
The graph below shows this probability for r = 95% as function of the number

of images M . We can see that the probability that at least 95% of the images detected
a shared region is very high and goes to 1 as M increases (is practically 100% for
M ≥ 500). �
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2. Description of the various Caltech-101 benchmark subsets

We used the following benchmark subsets of Caltech-101 (this is the experimental set-
ting defined by [7]):

1. 7 classes - Faces (first 100 images), Motorbikes (first 100 images), Dollar bill (52),
Garfield (34), Snoopy (35), Stop sign (64) and Windsor chair (56). These are a total
of 441 images.

2. 20 classes - Faces (first 100 images), Motorbikes (first 100 images), Dollar bill
(52), Garfield (34), Snoopy (35), Stop sign (64), Windsor chair (56), Leopards (first
100 images), Binocular (33), Brain (98), camera (50), Car side (first 100 images),
ferry (67), Hedgehog (54), Pagoda (47), Rhino (59), Stapler (45), Water Lilly (37),
Wrench (39) and Yin yang(60). These are a total of 1230 images.

3. 4 classes - Faces (first 50 images), Dalmatians (first 50 images), Hedgehogs (first
50 images) and Okapi (39). These are a total of 189 images.

4. 10 classes - Faces (first 50 images) ,Dalmatians (first 50 images), Hedgehogs (first
50 images), Okapi (39), Leopards (first 50 images), Car Side (first 50 images),
Cougar Face (first 50 images), Guitar (first 50 images), Sunflower (first 50 images)
and Wheelchair (first 50 images). These are a total of 489 images.

Bellow are some typical example images from these subsets:
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3. The PASCAL-VOC 2010 subset and results

We next present the PASCAL-VOC 2010 subset used in our experiments, followed by
our clustering results on the subset. The subset contains 100 images per category (cars,
bicycles, horses and chairs). The object size in each category ranges from 5% of the
image size to almost the entire image. The full subset is provided next:

Cars (100 images):
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Bicycles (100 images):
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Horses (100 images):
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Chairs (100 images):
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Clustering results

We ran our clustering algorithm on this subset and obtained the following confusion
matrix:

Each row in the confusion matrix represents one cluster and the columns show the
distribution of images from different categories within the cluster. Ideally, we would
like the values on the diagonal to be 100% and the off-diagonal values to be 0%.

As can be seen, the strongest confusion is between Horses and Bicycles. The reason
for this confusion is due to the very unique yet almost identical pose of the human riding
these two types of objects. Some examples of this can be seen in the figure below:

Such a similar non-trivial pose of the rider induces strong affinities between those im-
ages, thus resulting in confusion between those two categories.

Similarly, there is some confusion between Cars and Horses. This is because several
of the horse images contain carriages, which resemble cars, inducing strong affinities to
car images. Some examples of this can be seen in the figure below:
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Nevertheless, observing the graph below, we can see that most of the mis-clustered
images (marked by a red X on the graph) have equally good affinities to two different
clusters (the second cluster usually being their correct cluster). The N-cut algorithm
forces them into one of the clusters - unfortunately, the wrong one. In contrast, most
of the well-clustered images (marked by a green O on the graph) have strong affin-
ity to only one cluster – their correct cluster (and weak affinity to all other clusters).
This indicates that replacing N-cuts with an iterative refinement of the final clustering
assignment can significantly improve our clustering results. This is part of our future
work.


