
Curve Matching

Using the Fast Marching Method

Max Frenkel and Ronen Basri

Weizmann Institute of Science, Rehovot, Israel
{maksimf,ronen}@wisdom.weizmann.ac.il

Abstract. Common techniques for curve alignment find a solution in
the form of a shortest network path by means of dynamic program-
ming. In this paper we present an approach that employs Sethian’s Fast
Marching Method to find the solution with sub-resolution accuracy and
in consistence with the underlying continuous problem. We demonstrate
how the method may be applied to compare closed curves, morph one
curve into another, and compute curve averages. Our method is based
on a local curve dissimilarity function F (t, s) that compares the two in-
put curves C1(t) and C2(s) at given points t and s. In our experiments,
we compare dissimilarity functions based on local curvature information
and on shape contexts. We have tested the algorithm on a database of
110 sample curves by performing ”best matches” experiments.

1 Introduction

Determining similarity is a problem that lies at the heart of computer vision.
Given two line drawings of say a digit 2, one that has a loop at the bottom and
the other that has a sharp corner, such as the curves in Fig. 1(a), how can we
judge that they both depict the digit 2 and not two different digits? In order
to answer this question, we need to define some sort of a similarity measure
to relate objects of the same class and distinguish between objects of different
classes.

Suppose that the input curves are given to us as a sequence of curve coordi-
nates in the order in which they were produced by a pen. One way of assessing
similarity between such curves is by means of dynamic programming (a brief
review of past work is given in Sect. 1.1). Input curves are treated as if they
were strings, and curve points - as if they were letters. Just like a string can be
edited to transform it into another string by inserting, deleting and relabelling
characters, the first curve is stretched, shortened, and bent to match the second
curve. For instance, in order to match SHALL with HELLO, we can delete an
S, change an A to an E and insert an O. If we associate a cost with each of
the three basic operations, then by summing the costs during each edit sequence
we obtain a way of comparing different sequences and picking the optimal edit
operation. The edit distance between the strings is defined as the minimal such
sum of local costs. The string-to-string correction algorithm [18] employs dy-
namic programming to compute this distance between strings S1 and S2 and to

A. Rangarajan et al. (Eds.): EMMCVPR 2003, LNCS 2683, pp. 35–51, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

36 Max Frenkel and Ronen Basri

recover a trace or a matching - a set of non-crossing lines between the letters
of S1 and the letters of S2, where each line corresponds to a relabel operation in
the optimal edit sequence. In the above example, the matching would be {(S,ε),
(H,H), (A,E), (L,L), (L,L), (ε, O)}, where ε corresponds to the empty character.

In a similar fashion, discretized curves can be compared using dynamic pro-
gramming by summing up the local costs of curve deformation operations, and
the optimal curve matching may be recovered. In this paper we intend to study
the dynamic programming approach, point out its inherent drawback related to
curve discretization, and suggest a different way of obtaining the solution using
Sethian’s Fast Marching Method that avoids the shortcoming of the edit distance
approach. Possible areas of application of curve matching include handwritten
character recognition [17], image indexing [1], and tracking [4]. We will test our
algorithm by comparing various handwritten digits and letters.

1.1 Past Work

Edit distances were used extensively in the past to compare curves. Here we only
mention a few relevant examples. [4] introduced a measure that relied on intrinsic
properties of curves (such as curvature), and compared curves using dynamic
programming. [3] proposed a set of properties that a desired similarity function
should possess. Among other things, these properties preferred the deformations
that preserve the part structure of objects over those that modify the parts.
[12, 16] emphasized the importance of a symmetric treatment of curves. [12] also
presented an efficient method (based on [9]) to treat closed curves.

A wide variety of other approaches have been taken to solve the problem of
curve alignment. For example, [6] compared non-rigid object shapes by measur-
ing the amount of deformation required to register the shapes exactly. Assuming
that the amount of deformation between shapes is small, they used gradient de-
scent to determine the deformation parameters. [11] described shapes by a list
of properties and their relations and used pattern matching techniques to judge
similarity. [10] deformed shapes by aligning the principal modes of their mass
and stiffness matrices.

Recently Belongie et al. [2] introduced the shape context, a rich local shape
descriptor that aids in judging shape similarity and in finding correspondences
between similar shape points.

Matching Unordered Point Sets with Shape Contexts. The method em-
ployed by Belongie et al. solves a more general problem of matching an unordered
set of n points P = {p1, ...,pn},pi ∈ IR2 sampled somehow (e.g., by an edge
detector) from the given input image. We would like to match each point pi

from the first set to some point qj from the second set. Consider the set of n−1
vectors that originate at pi and extend to pl, for l �= i. A shape context hi is
a histogram of coordinates of pl relative to pi, namely rli = pl − pi. In the
experiments of Belongie et al., hi is a 5 by 12 array. Length of rli is quantized
into 5 bins, and its orientation is quantized into 12 bins. Thus the shape context
encodes the distribution of relative positions in a robust and compact way.

Curve Matching Using the Fast Marching Method 37

From here, Belongie et al. proceed to define Cij = C(pi, qj) as the cost of
matching pi with qj and use the χ2 test statistic to compare the histograms hi(k)
and hj(k) at pi and qj as follows:

C(pi, qj) =
1
2

K∑
k=1

[hi(k)− hj(k)]2

hi(k) + hj(k)
, (1)

where K is the total number of bins in the histograms. Once the local matching
cost is defined, the total cost H(π) is minimized.

H(π) =
∑

i

C(pi, qπ(i)) , (2)

where π is a permutation of the second shape indexes, i.e., the matching is one-to-
one. The permutation π that achieves the above minimum can be obtained using
various weighted bipartite graph matching algorithms that take the matrix Cij

as input.
The curve matching problem that we are facing is more specific in that it

requires that the points in the input set be ordered. The order of the points is
an extra piece of information that may be utilized. The edit distance algorithm
that we review next does just that.

The Dynamic Programming Approach to Curve Matching. Denote the
curve segments to be matched by C1(t) = (x1(t), y1(t)), t ∈ [0,m] and C2(s) =
(x2(s), y2(s)), s : [0, n], where t is arc-length, x1 and y1 are the coordinates of
curve points,m is curve length, and each is similarly defined for C2. A correspon-
dence between C1 and C2 is specified by a function s(t), which is a monotonic,
one to one mapping from arc-length onto arc-length so that the point C1(t) is
matched with the point C2(s(t)). Given a correspondence s(t), a similarity mea-
sure between C1 and C2 can be defined by a distance function C(C1, C2) that
judges the cost of deforming one curve into the other, e.g., [3]:

C(C1, C2) =
∫
C1

F (κ1(t), κ2(s(t)),
ds

dt
)dt , (3)

where κ1(t) is the curvature of C1 at t and κ2(s) is the curvature of C2 at
s(t). The cost function conveys the goodness of a correspondence between the
two curves. C integrates over the curves a measure F of local differences of
corresponding subsegments. The distance (dissimilarity) C∗(C1, C2) between C1

and C2 is the distance that minimizes C over all possible matchings s(t). One
example of a local cost function is

F (κ1, κ2, s
′) = |κ2s

′ − κ1|+ λ|s′ − 1| , (4)

where the first term penalizes bending and the second term penalizes stretching.
To discretize the problem, the two input contours are represented as ordered

chains: T = {u(t) : t = 0, 1, ...,m} and S = {v(s) : s = 0, 1, ..., n}, where u(t)

38 Max Frenkel and Ronen Basri

are the coordinates of the first contour, parameterized by t, and v(s) are the
coordinates of the other contour, parameterized by s. We then seek to find the
optimal matching (α1, ..., αN), that minimizes C(T, S). Here

αk = (u(tk), v(sk)), tk ∈ {1, ...,m}, sk ∈ {1, ..., n}, k = 1, ..., N , (5)

and if it is assumed that the endpoints of the curves match, then α1 = (u(1), v(1))
and αN = (u(m), v(n)).

Returning to the string matching problem described in the introduction, the
edit distance between strings is defined as the cost of the optimal sequence of
edit operations: relabelling, deleting, and inserting characters [18]. In the curve
matching problem, curve points serve as ”characters”. Bending a curve (changing
the curvature) or stretching it at a point corresponds to relabelling a letter.
Removing a point of C1 is analogous to a deletion, and removing a point on C2

- to an insertion. So the cost measure (3) is related to the optimal amount of
deforming needed in order to make the two curves identical [3].

This problem can also be viewed as an optimal path problem. We let each
match w = (u(t), v(s)) be a node in a graph G and link it to those nodes
that correspond to predecessor matches (u(tp), v(sp)) of w. Further, we assign
a weight to an edge between a predecessor match and the current match that
corresponds to the cost of deforming the segment [u(tp), u(t)] so that it coincides
with the segment [v(sp), v(s)]. Then, finding the matching with the lowest cost
reduces to finding an optimal path in G from the start node to the end node. An
example of such a network path is shown in Fig. 1(b). Diagonal path segments
signify a local ”relabel” operation, while horizontal/vertical segments signify
removing points on one of the curves. Stretching a curve at a point is marked by
red (dotted in black and white production) diagonal segments that jump across
several cells [12].

Sethian [14] discusses network path algorithms and mentions that the net-
work imposes an unnatural metric on the problem. Imagine a rectangular graph
with unit weights on all edges. If we were computing a path from the bottom left
corner to the top right corner according to the L1 distance metric, then several
paths would qualify as ”shortest” (see Fig. 1(c)). However, the true solution is a
straight line diagonal between the source and the destination points (Fig. 1(d)),
and none of the obtained network paths would be of desired length even if the
resolution of the graph was refined (i.e. if the curves were sub-sampled). The
drawback is in the discretization itself in that it is inconsistent with the under-
lying continuous problem. The true solution must be described by the underly-
ing differential equation, and if we had managed to find a continuous solution
then we would in fact solve the problem with sub-resolution accuracy. The Fast
Marching Method provides the means to achieve that goal.

An interesting attempt to modify the dynamic programming procedure to
allow for sub-pixel matching of curves has been proposed in [13]. This method
attempts to store a parametric description of the optimal cost at every node,
and this limits the method to quite specific cost functions. The Fast Marching
Method provides a simpler and more generic way to achieve this goal.

Curve Matching Using the Fast Marching Method 39

��
��
��
��

�
�
�
�
�
�
�
�

����

�
�
�
�

����

��
��
��
��
��
��
��
��

���� ��

�
�
�
�

��

u(1) u(2) u(i) u(m)

v(1)

v(2)

v(j)

v(n)

(a) (b) (c) (d)

Fig. 1. (a) An example of a 2 drawn in different ways. (b) An example of
a discrete alignment curve given as a shortest path in a graph. (c) Multiple
”shortest” network paths and (b) the optimal diagonal path given by the Fast
Marching Method

1.2 The Fast Marching Method

The Fast Marching Method is an O(N logN) technique for solving the Eikonal
equation, |∇T (x, y)| = F (x, y), for T given F on a rectangular grid, where N
is the total number of grid points. An important property of the Fast Marching
Method is that it converges to the continuous viscosity solution of the Eikonal
equation as the rectangular numerical grid is refined [15]. In computer vision,
the Fast Marching Method has been applied to various applications including
active contours [5] and shape from shading [8].

The algorithm is based on the following upwind approximation of the Eikonal
equation:

((max(D−x
ij T,−D+x

ij T, 0))
2 + (max(D−y

ij T,−D+y
ij T, 0))

2)1/2 = fij , (6)

where fij = F (i∆x, j∆y), and D−x
ij T = (Tij − Ti−1,j)/∆x is the standard back-

wards derivative approximation, D+x
ij T = (Ti+1,j − Tij)/∆x is the standard

forward derivative approximation in the x direction, and similarly for the y
direction. In the case of a uniform grid, we have ∆x = ∆y = 1. Then, the
approximation (6) may equivalently be written as

(max(Tij − T1, 0))2 + (max(Tij − T2, 0))2 = f2
ij , (7)

where T1 = min(Ti−1,j , Ti+1,j) and T2 = min(Ti,j−1, Ti,j+1), and the update step
for Ti,j consists of setting up the quadratic equation

Ti,j = T1 + T2 +
√
2f2

ij − (T1 − T2)2 . (8)

If the real solution does not exist, then we set Ti,j = fij + min(T1, T2), which
corresponds to the case when one of the terms in the approximation is zero [8].

The central idea behind the Fast Marching Method is to systematically con-
struct the solution T using only upwind values. The upwind difference structure
of Eqn. (6) allows us to propagate the information one-way, from the smaller

40 Max Frenkel and Ronen Basri

values of T to the larger values. The front is swept along by keeping a narrow
band of grid points around the existing front in a heap structure and marching it
forward bringing in unprocessed points and fixing the smallest computed values
in the band [15].

2 Theoretical Background

Next, we present some results from the theory of curve evolution that are nec-
essary in order to formulate our equations of motion. The following material is
based on [7].

The optimal path between points A and B in IR2 is defined by the weighted
arc-length dτ̃2 = F 2(t, s)dτ2, where dτ =

√
dt2 + ds2 is the Euclidean arc-

length differential and F (t, s) is the weight over the domain. We search for
the path c(τ) = (t(τ), s(τ)), where τ is the arc-length parametrization of c
with |c′(τ)| = 1. The necessary boundary conditions for c(τ) are c(0) = A and
c(L) = B, where L is the total arc-length. The desired path should minimize
minc

∫
F (c(τ))dτ , with |c′(τ)| = 1. For an arbitrary parametrization p of c, the

above geometric functional reads

min
c

∫ 1

0

F (c(p))|c′(p)|dp . (9)

Lemma 1. If a path c(p) satisfies the equation

∇F |c′(p)| = d

dp
(F (c(p))T (p)) , (10)

where T (p) is the unit tangent vector to c(p) defined as T (p) = c′(p)
|c′(p)| , then c(p)

achieves the minimum in (9).

Thus, Eqn. (10) is the Euler-Lagrange (EL) equation of the measure (9).
Next, let T : IR2 → IR be a weighted distance function with |∇T | = F (t, s),
where |∇T | is evaluated at (t, s), with given boundary conditions T (0, 0) = 0.
Let us show that the gradient descent curves of T minimize the measure (9).

Lemma 2. The gradient descent curves c(p) = (t(p), s(p)) defined by the ODE
c′(p) = ∇T satisfy the Euler-Lagrange equation of the measure∫

F (c(p))|c′(p)|dp .

Proof. First, let us observe that c′(p) = (t′(p), s′(p)) = ∇T = (∂T
∂t ,

∂T
∂s) =

(Tt, Ts). Next, we have F (c(p))T (p) = |∇T | ∇T
|∇T | = ∇T . Hence, the right hand

side of Eqn. (10) has the form

d

dp
(F (c(p))T (p)) =

d

dp
∇T =

d

dp
(Tt(t(p), s(p)), Ts(t(p), s(p)))

= (Tttt
′(p) + Ttss

′(p), Tstt
′(p) + Tsss

′(p)) .

Curve Matching Using the Fast Marching Method 41

On the other hand,

∇F |c′(p)| = ∇(|∇T |)|∇T | = (TttTt + TstTs, TtsTt + TssTs)|∇T |
(T 2

t + T 2
s)1/2

= (Tttt
′(p) + Ttss

′(p), Tstt
′(p) + Tsss

′(p)) . �

We have just seen that by solving the Eikonal equation |∇T | = F (t, s) for
T (t, s) we can backtrack the optimal path by starting at the final location B and
by stepping in the direction of the gradient of T . Note that if we set F (t, s) = 1,
then the distance map T (t, s) will be just a series of concentric circles corre-
sponding to the Euclidean distance map, and the optimal path will be a straight
line from B to A.

The weighted distance function T (t, s) reconstructed from the point A may
be thought of as the minimal cost required to travel from A to the point (t, s).
In terms of the original functional, that is

T (t, s) = min
c

∫ (t,s)

A

F (c(τ))dτ . (11)

The level set curve T (t, s) = C is the set of all points in IR2 that can be reached
with minimal cost C [14].

3 The Distance between a Pair of Curves

Equipped with this theory, we can now proceed to define a distance measure
between a given pair of curves C1(t) = (x1(t), y1(t)), t ∈ [0,m] and C2(s) =
(x2(s), y2(s)), s ∈ [0, n], where s and t are arc-length parameters and m and n
are the lengths of the curves. Assuming that the endpoints of the input curves
match, and given some local dissimilarity measure F , we are interested in a path
c through t, s-space from (0, 0) to (m,n) such that

T (m,n) = min
c

∫
c

F (c(τ))dτ . (12)

For such a path we define a distance measure between C1 and C2 as

d(C1, C2) = T (m,n)− λ
√
m2 + n2 + 1− min(m,n)

max(m,n)
, (13)

where λ is a smoothing constant such that λ > 0. Thus, we define the dissim-
ilarity between C1 and C2 as the minimal sum of local dissimilarities between
individual pairs of curve points, and here we note the similarity to the edit dis-
tance approach. The second term in this expression is needed for normalization
and the third term penalizes global stretching of the curves. The significance
of these terms will become apparent in the next section. Now, let us say a few
words about our choice of F .

42 Max Frenkel and Ronen Basri

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

Curve 2

C
ur

ve
 1

(a) (b) (c) (d)

Fig. 2. Comparing a 7, the shape in (a), to itself using curvature information and
λ = 0.111. The graph in (b) shows the resulting F , (c) shows the reconstructed
T (t, s), and (d) - the contour lines of T with the optimal path superimposed

3.1 First Attempt: Curvature-Based Dissimilarity Function

As mentioned in the previous sections, intrinsic properties of curves such as
curvature are frequently used in curve alignment algorithms. Let us first study
a local dissimilarity function based on curvature:

F (t, s) = |κ1(t)− κ2(s)|+ λ . (14)

Here, κ1 and κ2 are the curvatures of C1 and C2 respectively, and λ > 0. Hence,
we have F (t, s) > 0 and the Fast Marching Method may be used to solve for
T (t, s), setting T (0, 0) = 0 since the first points of the curves are assumed to
match. Notice that such a choice of F resembles somewhat the expression (4) in
that it penalizes bending. Stretching is also modelled by the resulting distance
measure d(· , ·), since the more the optimal path c differs from the diagonal line,
the higher the value of T (m,n).

Proposition 3. Let C1(t) = (x1(t), y1(t)), t ∈ [0,m] and C2(s) = (x2(s), y2(s)),
s ∈ [0, n] be two curves of lengths m and n respectively, each parameterized by
arc-length. Let d(C1, C2) be defined as above. Then, the following hold:

1. d(C1, C1) = 0,
2. C1 �= C2 ⇒ d(C1, C2) > 0,
3. d(C1, C2) = d(C2, C1).

Proof. To prove 1., let č(τ) = (t(τ), s(τ)) = (
√

2
2 τ,

√
2

2 τ), τ ∈ [0,m
√
2]. Then,

F (č(τ)) = λ, for τ ∈ [0,m
√
2]. Let us show that č(τ) satisfies Eqn. (10). Since

F (t, s) = λ, on the left we have ∇F |č′(τ)| = (0, 0). And since τ is the arc-length
parameter of č, we have |č′(τ)| = 1, and

d

dτ
(F (č(τ))T (τ)) =

d

dτ
(λ

č′(τ)
|č′(τ)|) =

d

dτ
(
√
2
2
λ,

√
2
2
λ) = (0, 0) .

Curve Matching Using the Fast Marching Method 43

- 5.3 5.4 5.5 5.6 6.4 6.6 7.4 11.2 11.8 12.6 12.7 13.2 14.7 15.3 15.3 15.8 15.9 16.0

- 6.4 7.1 7.4 7.5 7.9 7.9 8.8 9.7 10.5 10.8 10.8 11.1 11.3 11.5 12.0 12.1 12.1 12.3 13.0

- 4.1 4.6 5.2 5.4 5.5 5.6 5.7 5.8 5.9 5.9 6.0 6.0 6.1 6.3 6.3 6.4 6.4 6.6 6.9 9.0 9.7 9.7

- 0.8 0.9 0.9 0.9 1.0 1.1 1.5 1.8 2.7 3.6 3.7 4.1 4.4 4.7 5.2 5.3 5.4 5.4 5.5 5.8 6.0 6.1

- 4.1 4.3 4.3 4.5 4.6 4.6 4.7 4.8 4.8 4.9 5.3 5.4 6.1 6.3 6.5 6.6 7.9 8.5 8.6 8.8 12.3 13.7

- 2.3 2.4 2.6 3.0 3.2 3.3 3.6 4.2 5.9 7.4 7.5 7.7 8.0 8.3 8.3 8.3 8.4 8.8 8.9 9.0 9.6 10.0

- 2.8 3.2 3.5 3.8 3.9 4.0 4.2 5.1 5.3 5.5 6.0 6.1 6.2 6.4 6.5 6.5 6.6 6.8 7.0 7.0 7.1 7.3

- 3.1 3.2 3.7 4.0 4.1 4.2 4.3 4.6 9.6 10.6 11.4 12.4 12.6 12.7 15.3 15.4 15.6 15.8

- 6.1 7.5 7.5 7.8 7.8 8.4 9.0 9.1 9.1 9.1 9.7 9.7 9.9 10.0 10.3 10.4 10.5 10.7 10.8 10.9

Fig. 3. Best matches out of the 110 curves in the database using the curvature-
based dissimilarity function. The number underneath each curve represents its
distance from the left-most curve. An average y curve was used as a y-class
prototype

Since Eqn. (10) is the EL equation of (12), č must achieve the minimum in
T (m,m). Finally, since the length of č ism

√
2 we obtain T (m,m) =

∫
č F (č(τ))dτ

= λm
√
2, which gives 1. To prove 2., let c̄ achieve the minimum in T (m,n).

First, suppose m = n. Since C1 �= C2, ∃ τ s.t. κ1(t(τ)) �= κ2(s(τ)), which implies
that F (c̄(τ)) > λ, and the length of c̄,

∫
c̄
dτ > m

√
2, which in turn implies

T (m,m) =
∫

c̄
F (c̄(τ))dτ > λm

√
2. Property 2. then follows. If m �= n, then we

have |1−min(m,n)/max(m,n)| > 0 and hence d(C1, C2) > 0. Property 3. is true
by the symmetry of F (t, s). �

The above properties play an important role in applications such as hand-
written character recognition. To illustrate with an example, let us compare
a curve that has the shape of a digit 7 with itself (see Fig. 2).

44 Max Frenkel and Ronen Basri

76 60 73 34

Fig. 4. Curvature test results. The curves shown did not place in their corre-
sponding class tables

Using λ = 0.111 (see Sect. 3.4 for an intuition on how we chose λ and
for more examples), we obtain a surface T (t, s) that has two prominent ridges
around otherwise smooth areas. The high-slope regions arise when one of the
input curves has points of high curvature, and the other curve has regions of
low curvature resulting in great local curvature differences - the high ridges in
the graph of F . And since the Eikonal equation |∇T | = F implies that the
magnitude of the gradient is greater at the places where F is greater, we observe
the high slopes on the graph of T in the areas around t = 15 and s = 15 and
relatively low slopes in most other regions. Finally, the gradient descent path
of T is a straight line from (0, 0) to (42, 42) as is expected.

For testing the algorithm, we have used a data-set of 110 sample curves. The
curves were all drawn by a single subject with a mouse in an environment that
tracked mouse motion and produced uniformly spaced curve points Ci = (xi, yi)
to simulate arc-length parametrization. The curvature κi at each curve point
was computed as follows

κi =
4(yi+1 − 2yi + yi−1)∆xi − 4(xi+1 − 2xi + xi−1)∆yi

((∆xi)2 + (∆yi)2)3/2
,

where ∆xi = 1
2 (xi+1 − xi−1), and ∆yi = 1

2 (yi+1 − yi−1). Note that the above
measure tends to infinity as ∆xi → 0, ∆yi → 0. Therefore, we bounded κi

to make sure that it stayed well defined. The obtained curvature vectors were
convolved with a one-dimensional Gaussian filter of width 7 in an attempt to
lessen the presence of noise in the input data. The parameter λ was chosen
automatically per each curve pair (see Sect. 3.4). The prototypes were chosen
in a way so as to represent the associated class ”best” in terms of the number
of class members that place at the top. In some cases, curve averages were
used (see Sect. 3.3 for a description of how averages were obtained). Since the
average curves’ points were not uniformly spaced, a variant of the Fast Marching
Method had to be employed that operates on a non-uniformly spaced grid [14].
Figure 3 shows the results of comparing some of the 110 curves in our data-set
with the rest of the curves. The 13 best matches are shown together with their
corresponding matching distances.

Notice that the results are intuitive. The 3 -shapes are the closest ones to the
reference 3 -shape, the 7 ’s are the closest ones to the reference 7, etc. Also, shapes
that belong to different classes, but appear similar, such as a y and a g or a 6 and
a U, have similar distance measures from the references. It is interesting to note

Curve Matching Using the Fast Marching Method 45

- 4.5 6.2 6.4 7.7 7.8 8.0 8.2 8.3 9.2 26.3 26.5 27.9 27.9 27.9 28.1 28.3 28.7 29.0 29.0

- 7.4 8.4 9.3 9.4 11.1 11.5 11.8 12.1 15.6 16.7 18.4 19.4 21.6 22.4 24.6 26.5 26.5 28.8

- 4.3 5.2 5.3 6.5 6.6 7.3 8.5 8.6 8.8 17.1 18.3 18.6 20.2 20.5 20.6 20.7 20.8 21.1 21.3

- 1.9 2.5 2.7 3.6 4.9 5.2 8.1 9.1 9.8 10.2 14.7 15.0 15.2 15.6 17.0 20.1 35.0 35.5 36.6

- 3.6 4.0 4.1 5.2 5.9 7.6 7.7 8.2 8.7 19.6 20.8 21.2 21.9 22.5 23.0 23.1 23.8 23.9 24.1

- 6.5 7.0 7.2 9.6 9.6 10.6 14.5 16.5 18.7 30.7 31.7 32.3 32.7 33.8 34.6 34.7 34.7 35.2

- 10.7 12.4 12.4 12.7 13.4 13.5 13.5 15.2 16.7 25.9 26.7 27.3 27.7 29.0 30.4 30.6 30.7

- 7.8 8.1 8.9 9.0 9.5 9.6 9.9 10.5 14.5 28.3 30.1 30.5 30.9 31.4 31.7 32.1 33.0 33.3 33.4

- 6.8 8.0 8.4 9.2 10.0 11.8 12.9 16.7 25.1 32.3 33.1 33.9 34.8 35.6 35.9 35.9 36.5 36.9

- 11.7 12.4 12.7 14.3 14.4 14.5 15.1 15.9 17.6 19.1 19.2 19.5 19.7 20.3 21.0 21.3 21.9

Fig. 5. Best matches using shape contexts. Average y and 8 shapes were used
as class prototypes

that the upside-downU -shape ranks very high among the regularU -shapes. This
phenomenon is due to the fact that curvature is an intrinsic curve property that
is invariant with respect to rotation. The local nature of the curvature measure
also causes six of the 1 -shapes to rank closer to a reference 7 -shape than some
of the 7 ’s whose corner is somewhat smoother than that of the reference 7. This
is due to the fact that curvature was bounded and that the 7 and the 1 sample
shapes do not differ much intrinsically at other points.

Figure 4 shows the curves that did not place in their class tables. The cor-
responding ranks are also shown. Locality is also a major cause that misplaces
the 3 ’s with a loop in the middle (instead of a sharp corner that the others pos-
sessed), a g with a sharp corner instead of a loop, and a 2 with a sharp corner

46 Max Frenkel and Ronen Basri

10 20 30 40 50 60 70

10

20

30

40

50

60

g curve points

8
cu

rv
e

po
in

ts

Fig. 6. Some sample curve point correspondences represented by coloring (curve
density in black and white production) and by markers. The curve coloring is
independent of the contour line coloring on the graph

instead of a loop. The misplaced 8 was drawn in such a way that the endpoints
were not matched with the prototype 8.

3.2 Second Attempt: Shape Contexts to the Rescue

The problems due to locality described above served as motivation to seek a dis-
similarity measure that takes into account all the points in the curve instead
of being confined to a local region. Shape contexts (see Sect. 1.1), being more
descriptive in nature, proved also to be more effective in our experiments.

As we have mentioned, C(pi,qj) in expression (1) is a local cost of matching
the points pi and qj that lie on the two input shapes. In the case when the
two shapes are curves, C may be used in place of F , and the expression (2)
resembles (11) in the sense that local dissimilarities are summed. The smoothing
parameter λ was still employed and d(·, ·) remained otherwise unchanged so that
Proposition 3 held.

During shape context computation, point distance was quantized into 5 bins,
as in [2], ranging from 0 to the maximum distance between a pair of points
on a given curve, thereby achieving invariance to scale. The size of the bins
increased exponentially as distance increased in order to give more weight to
nearby points. Orientation was quantized into 12 bins.

Figure 5 shows the results of the top 13 experiment performed on the same
database of 110 curves using the shape contexts. The first thing to notice is that
the problems due to locality are solved. The 3 with a loop instead of a corner
places third in the first table on top even though it is compared to a shape
that has a corner. The g that was problematic before also places in the g class.
Perhaps, most notably, the 2 that has a sharp corner instead of a loop on the
second table from the bottom is given a rank of 25.1 which is closer to the 2 -
class than the next closest shape, an 8 of rank 32.3. In general, curves from
the same class place closer together and are easier to separate from the outliers
than before. For example, the 7 ’s with curly arms place well within the 7 class.
The algorithm has some trouble with rotated shapes. As may be seen on the

Curve Matching Using the Fast Marching Method 47

(a) (b)

Fig. 7. (a) Sample curve point matchings obtained using curvature differences.
The matching points are color coded (or marked by density in black and white
production). (b) Averaging two y’s. The red shape is the average shape. We used
a similar average as a y-class prototype in the ”top matches” experiments (see
Sects. 3.1 and 3.2)

figure, one y is more slanted than the curves in the y class, and that causes it
to place 17’th. That was not a problem before, since curvature is a rotation-
invariant measure. Belongie et al., however, mention that shape contexts may
be computed taking into account the direction of the curve tangents thereby
achieving rotation-invariance.

3.3 Curve Point Correspondence

An extra feature that may be obtained once we have computed the distance
between the input curves is a correspondence between the curve points. As men-
tioned in Sect. 2, backtracking along the gradient from the final location (m,n)
recovers the optimal path that achieves the minimum in (12). Such gradient de-
scent paths may be viewed as sub-pixel resolution curve point correspondences,
since they are continuous paths in (s, t) space, and are analogous to the alignment
curves α in (5). Figures 6 and 7(a) show several examples of correspondences
obtained using the curvature-based measure. It is interesting to note that the
high curvature parts of V and 3 match. Also the upper and lower loops of 8
and g that turn in the same directions (first to the left, then to the right) are
matched regardless of g’s corner. The corner is in a way ”skipped” in favor of
matching the loops as the descent path levels out to a horizontal slope.

Once a correspondence has been recovered, it can be useful in several ways.
For instance, we can form weighted averages between the corresponding point
coordinates, resulting in an average shape (see Fig. 7(b)), that can, for instance,
serve as a representative of a class of shapes. We have used averages in our ex-
periments with a curve database (see Sects. 3.1 and 3.2). On the other hand,
if we vary the weights in a sequence going from 0 to 1 using some small prede-
fined step, interpolating the coordinates, we can generate frames of a morphing
sequence. An example is shown in Fig. 8.

3.4 The Choice of the Smoothing Parameter λ

Both choices of F - either based on curvature or on the shape contexts - contain
the smoothing term λ. But how should we choose it? The parameter λ may be

48 Max Frenkel and Ronen Basri

Fig. 8. Morphing a 3 into a V. The matching was obtained using a curvature-
based measure, hence the sharp corners of 3 and V match

viewed as a driving force that makes sure that the Fast Marching Method keeps
going even when the local dissimilarity term - either the difference of curvatures
or the χ2 test statistic - is zero. Thus λ should not be zero. As mentioned
above, changing the parameter λ also has an effect of smoothing out the solution.
As illustrated on Fig. 9, both the reconstructed surface T and the gradient
descent curve are affected by the choice of λ. When λ is low, surface features are
more pronounced. Plateaus tend to be flatter, making descent more difficult, and
ridges sharpen up. On the other hand, setting λ too high to the point where it
dominates the dissimilarity measure, tends to over-smooth the solution making
the measure insensitive to the local differences, and leading to a distance map
that is essentially a series of concentric circles. In our experiments, we chose λ
automatically, driven by the intuition that it should be comparable in magnitude
to the dissimilarity term so as neither of the terms would dominate the measure.
The average value of F for a given pair of curves C1 and C2 of lengths m and n
served that purpose relatively well in our tests:

λ(C1, C2) =
1
mn

∫
C1

∫
C2

F (t, s)dsdt . (15)

3.5 Comparing Closed Curves

The original dynamic programming technique can handle closed curves in a man-
ner similar to the edit distance approach of [9] to comparing cyclic strings. The

10 20 30 40 50 60 70 80

5

10

15

20

25

30

35

40

45

50

Curve 2

C
ur

ve
 1

10 20 30 40 50 60 70 80

5

10

15

20

25

30

35

40

45

50

Curve 2

C
ur

ve
 1

10 20 30 40 50 60 70 80

5

10

15

20

25

30

35

40

45

50

Curve 2

C
ur

ve
 1

(a) λ = 0.03125 (b) λ = 0.125 (c) λ = 0.5

Fig. 9. The effects of increasing λ on T and on the resulting optimal path

Curve Matching Using the Fast Marching Method 49

10 20 30 40 50 60 70 80 90 100

5

10

15

20

25

30

35

40

45

Curve 2

C
ur

ve
 1

(a) (b) (c) (d)

Fig. 10. (a) The matrix of F values given two curves C1 and C2 of six points,
where C2 is C1 shifted by three points. (b) The matching curve obtained when
comparing (c) with (d). Curve (c) points go along the y-axis, and curve (d)
points go along the x-axis. Some matching points are shown. The gaps on the
curves signify the starting points of curve parametrization

method finds the optimal solution in O(nm logm) steps. One way of applying
the Fast Marching Method to closed curves would be to extend the dynamic
programming technique, but that would require developing a version of the Fast
Marching Method that restricts the computation to a section of the grid between
two given curves and would result in at least a factor of O(logm) increase of the
computation time.

Another approach that is more empirical in nature, but one that does not
increase the complexity, is based on the following observation. Suppose we are
comparing a closed curve C1 discretized at six points with a version of itself
(denoted C2) re-parameterized such that its coordinates begin after a shift of
three points. Then the matrix F where the rows are points of C1 and the columns
are points of C2 (see Fig. 10) will have λ values along diagonals in places where

- 1.2 1.3 1.7 2.5 2.6 2.8 2.8 4.6 4.8 6.1 13.1 13.8 14.2 14.6 14.7 15.3 15.6 15.8 16.0

- 1.0 1.6 1.9 2.1 2.3 2.3 2.5 2.8 4.6 6.5 6.9 7.0 7.3 7.3 7.4 7.8 8.3 8.5

- 2.5 2.7 2.9 3.0 3.8 4.6 4.8 5.6 6.1 7.3 7.4 8.3 9.0 9.1 9.5 9.8 10.9 11.9 12.5 13.2

- 1.5 2.0 2.1 2.2 2.3 2.5 2.5 2.5 2.7 3.4 10.9 12.2 13.1 13.1 13.5 13.6 14.0 14.0 14.1

- 0.2 0.4 0.5 0.5 0.5 0.5 0.6 0.8 0.9 6.0 7.0 7.4 7.4 7.5 7.9 9.0 9.2 9.3

Fig. 11. Best matches of a data-set of closed curves using shape contexts

50 Max Frenkel and Ronen Basri

curve points match. Then, concatenating F with itself horizontally to obtain F̃
that has 6 rows and 12 columns, which is equivalent to duplicating the points
of C2 along the x-axis produces a diagonal of λ values from entry (1, 5) to the
entry (6, 10). Propagating a front from the point (1, 5) according to such an F
and then backtracking from (6, 10) would recover the optimal matching curve.
Concatenating F̃ vertically twice to obtain F that has 18 rows and 12 columns,
propagating a front from (0, 0), and backtracking from (18,12) would produce
a path that would include the optimal matching curve from (1, 5) to (6, 10). In
order to compute the distance between two closed curves, given such a path, we
can re-parameterize C2 so that both curves start at the same point and run the
regular algorithm. Fig. 10 shows an example of a matching curve (b) obtained
when comparing two closed shapes (c) and (d). Fig. 11 shows the results of
running the above procedure using shape contexts on a smaller data-set of 50
closed curves.

References

[1] N. Ayache and O. Faugeras, “HYPER: A new approach for recognition and po-
sitioning of two-dimensional objects,” IEEE Trans. on PAMI, 8(1) (1986) 44–54.
36

[2] S. Belongie, J. Malik, and J. Puzicha, “Shape Context: A New Descriptor for
Shape Matching and Object Recognition,” NIPS 13: (2001) 831–837. 36, 46

[3] R. Basri, L. Costa, D. Geiger, and D.W. Jacobs, “Determining the Similarity of
Deformable Shapes,” Vision Research, 38: (1998) 2365–2385. 36, 37, 38

[4] I. Cohen, N. Ayachi, and P. Sulger, “Tracking points on deformable objects using
curvature information,” In ECCV, (1992) 458–466. 36

[5] L.D. Cohen and R. Kimmel, “Global minimum for active contour models: a min-
imal path approach,” IJCV, 24(1) (1997) 57–78. 39

[6] E. Hildreth, The Measurement of Visual Motion, MIT Press, Cambridge (1983).
36

[7] R. Kimmel, J. A. Sethian, “Fast Marching Methods for Robotic Navigation with
Constraints,” Report, Univ. of California, Berkley, May (1996). 40

[8] R. Kimmel and J. A. Sethian, “Optimal algorithm for shape from shading and
path planning,” Journal of Mathematical Imaging and Vision, 14(2) (2001) 237–
244. 39

[9] M. Maes, “On a cyclic string-to-string correction problem,” Information Process-
ing Letters, 35 (1990) 73–78. 36, 48

[10] A. Pentland, and S. Sclaroff, “Closed-Form Solutions for Physically Based Shape
Modeling and Recognition,” IEEE Trans. on PAMI, 13(7) (1991) 715–729. 36

[11] A. Pope, and D. Lowe, “Learning Object Recognition Models from Images,” ICCV
(1993) 296–301. 36

[12] T. Sebastian, P. Klein, B. Kimia, “On aligning curves,” IEEE Trans. on PAMI,
25(1) (2003) 116–124. 36, 38

[13] B. Serra and M. Berthod, “Optimal subpixel matching of contour chains and
segments,” IJCV (1995) 402–407. 38

[14] J. Sethian, Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics,
Computer Vision and Materials Sciences, Cambridge Univ. Press (1996). 38, 41,
44

Curve Matching Using the Fast Marching Method 51

[15] J.A. Sethian, “A fast marching level set method for monotonically advancing
fronts,” Proc. Nat. Acad. Sci., 93(4) (1996) 1591–1595. 39, 40

[16] H.D. Tagare, “Shape-based nonrigid correspondence with application to heart
motion analysis,” IEEE Trans. Medical Imaging, 18(7) (1999) 570–578. 36

[17] C. Tappert, “Cursive script recognition by elastic matching,” IBM Journal of
Research Development, 26(6) (1982) 765–771. 36

[18] R. Wagner, and M. Fischer, “The string-to-string correction problem,” Journal of
the Association for Computing Machinery, 21 (1974) 168–173. 35, 38

	Curve Matching Using the Fast Marching Method
	Introduction
	Past Work
	The Fast Marching Method

	Theoretical Background
	The Distance between a Pair of Curves
	First Attempt: Curvature-Based Dissimilarity Function
	Second Attempt: Shape Contexts to the Rescue
	Curve Point Correspondence
	The Choice of the Smoothing Parameter \lambda
	Comparing Closed Curves

