Self-Supervised Natural Scene Reconstruction and Rich Semantic Classification from Brain Activity
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Training on many additional “unpaired"” data:

(i) Images without fMRI recordings =» Adapts to statistics of Natural Images E-D: trained on unpaired images (with no fMRI)

(i) fMRI recordings without images = Adapts to statistics of input test data (50,000 natural images from 1000 rich ImageNet classes without their class labels)
- =» Adapts to the statistics of natural images and novel semantic classes

Semantic classification results — predicting class label out of 1000+ classes
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