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Abstract

We propose a new approach for measuring similarity between two signals, which
is applicable to many machine learning tasks, and to many signal types. We say
that a signalS1 is “similar” to a signalS2 if it is “easy” to composeS1 from few
large contiguous chunks ofS2. Obviously, if we use small enough pieces, then
any signal can be composed of any other. Therefore, the larger those pieces are,
the more similarS1 is to S2. This induces alocal similarity score at every point
in the signal, based on the size of its supported surrounding region. These local
scores can in turn be accumulated in a principled information-theoretic way into a
global similarity scoreof the entireS1 to S2. “Similarity by Composition” can be
applied betweenpairs of signals, betweengroups of signals, and alsobetween dif-
ferent portions of the same signal. It can therefore be employed in a wide variety
of machine learning problems (clustering, classification, retrieval, segmentation,
attention, saliency, labelling, etc.), and can be applied to a wide range of signal
types (images, video, audio, biological data, etc.) We show a few such examples.

1 Introduction

A good measure for similarity between signals is necessary in many machine learning problems.
However, the notion of “similarity” between signals can be quite complex. For example, observing
Fig. 1, one would probably agree that Image-B is more “similar” to Image-A than Image-C is. But
why...? The configurations appearing in image-B are different than the ones observed in Image-A.
What is it that makes those two images more similar than Image-C? Commonly used similarity
measures would not be able to detect this type of similarity. For example, standard global similarity
measures (e.g., Mutual Information [12], Correlation, SSD, etc.) require prior alignment or prior
knowledge of dense correspondences between signals, and are therefore not applicable here. Dis-
tance measures that are based on comparing empirical distributions of local features, such as “bags
of features” (e.g., [11]), will not suffice either, since all three images contain similar types of local
features (and therefore Image-C will also be determined similar to Image-A).

In this paper we present a new notion of similarity between signals, and demonstrate its applicability
to several machine learning problems and to several signal types. Observing the right side of Fig.1,
it is evident that Image-B can be composed relatively easily from few large chunks of Image-A (see
color-coded regions). Obviously, if we use small enough pieces, then any signal can be composed
of any other (including Image-C from Image-A). We would like to employ this idea to indicate high
similarity of Image-B to Image-A, and lower similarity of Image-C to Image-A. In other words,
regions in one signal (the “query” signal) which can be composed usinglarge contiguous chunks
of data from the other signal (the “reference” signal) are considered to have high local similarity.
On the other hand, regions in the query signal which can be composed only by using small frag-
mented pieces are considered locallydissimilar. This induces asimilarity score at every point in
the signalbased on the size of its largest surrounding region which can be found in the other signal
(allowing for some distortions). This approach provides the ability to generalize and infer about new
configurations in the query signal that were never observed in the reference signal, while preserving



Image-A: The “reference” signal: (Image-A)

Image-C: Image-B: The “query” signal: (Image-B)

Figure 1:Inference by Composition – Basic concept.
Left: What makes “Image-B” look more similar to “Image-A” than “Image-C” does? (Noneof
the ballet configurations in “Image-B” appear in “Image-A”!)
Right: Image-B (the “query”) can be composed using few large contiguous chunks from Image-
A (the “reference”), whereas it is more difficult to compose Image-C this way. The large shared
regions between B and A (indicated by colors) provide high evidence to their similarity.

structural information. For instance, even though the two ballet configurations observed in Image-B
(the “query” signal) were never observed in Image-A (the “reference” signal), they can be inferred
from Image-A via composition (see Fig.1), whereas the configurations in Image-C are much harder
to compose.

Note that the shared regions between similar signals are typicallyirregularly shaped, and therefore
cannot be restricted to predefined regularly shaped partitioning of the signal. The shapes of those re-
gions are data dependent, and cannot be predefined. Our notion of signal composition is“geometric”
and data-driven. In that sense it is very different from standard decomposition methods (e.g., PCA,
ICA, wavelets, etc.) which seek linear decomposition of the signal, but not geometric decomposi-
tion. Other attempts to maintain the benefits of local similarity while maintaining global structural
information have recently been proposed [8]. These have been shown to improve upon simple “bags
of features”, but are restricted to preselected partitioning of the image into rectangular sub-regions.

In our previous work [5] we presented an approach for detecting irregularities in images/video as
regions that cannot be composed from large pieces of data from other images/video. Our approach
was restricted only to detecting local irregularities. In this paper we extend this approach to a general
principled theory of “Similarity by Composition”, from which we derive local and global similarity
and dissimilarity measures between signals. We further show that this framework extends to a wider
range of machine learning problems and to a wider variety of signals (1D, 2D, 3D, .. signals).

More formally, we present a statistical (generative) model for composing one signal from another.
Using this model we derive information-theoretic measures for local and global similarities induced
by shared regions. The local similarities of shared regions (“local evidence scores”) are accumulated
into a global similarity score (“global evidence score”) of the entire query signal relative to the
reference signal. We further prove upper and lower bounds on the global evidence score, which are
computationally tractable. We present both a theoretical and an algorithmic framework to compute,
accumulate and weight those gathered “pieces of evidence”.

Similarity-by-Composition is not restricted to pairs of signals. It can also be applied to compute
similarity of a signal to agroup of signals(i.e., compose a query signal from pieces extracted from
multiple reference signals). Similarly, it can be applied to measure similarity between two different
groups of signals. Thus, Similarity-by-Composition is suitable for detection, retrieval, classifica-
tion, and clustering. Moreover, it can also be used for measuring similarity or dissimilaritybetween
different portions of the same signal. Intra-signal dissimilarities can be used for detecting irregu-
larities or saliency, while intra-signal similarities can be used as affinity measures for sophisticated
intra-signal clustering and segmentation.



The importance of large shared regions between signals have been recognized by biologists for
determining similarities between DNA sequences, amino acid chains, etc. Tools for finding large
repetitions in biological data have been developed (e.g., “BLAST” [1]). In principle, results of such
tools can be fed into our theoretical framework, to obtain similarity scores between biological data
sequences in a principled information theoretic way.

The rest of the paper is organized as follows: In Sec.2 we derive information-theoretic measures for
local and global “evidence” (similarity) induced by shared regions. Sec.3 describes an algorithmic
framework for computing those measures. Sec.4 demonstrates the applicability of the derived local
and global similarity measures for various machine learning tasks and several types of signal.

2 Similarity by Composition – Theoretical Framework

We derive principled information-theoretic measures for local and global similarity between a
“query” Q (one or more signals) and a “reference”ref (one or more signals). Large shared re-
gions betweenQ andref provide high statistical evidence to their similarity. In this section we
show how to quantify this statistical evidence. We first formulate the notion of “local evidence” for
local regions withinQ (Sec.2.1). We then show how these pieces of local evidence can be integrated
to provide “global evidence” for the entire queryQ (Sec.2.2).

2.1 Local Evidence

Let R ⊆ Q be a connected region withinQ. Assume that a similar region exists inref . We would
like to quantify the statistical significance of this region co-occurrence, and show that it increases
with the size ofR. To do so, we will compare the likelihood thatR was generated byref , versus
the likelihood that it was generated by some random process.

More formally, we denote byHref the hypothesis thatR was “generated” byref , and byH0 the
hypothesis thatR was generated by a random process, or by any other application-dependent PDF
(referred to as the “null hypothesis”).

Href assumes the following model for the “generation” ofR: a region was taken from somewhere
in ref , was globally transformed by some global transformationT , followed by some small possible
local distortions, and then put intoQ to generateR. T can account for shifts, scaling, rotations, etc.
In the simplest case (only shifts),T is the corresponding location inref .

We can compute the likelihood ratio:

LR(R) =
P (R|Href )
P (R|H0)

=

∑
T

P (R|T, Href )P (T |Href )

P (R|H0)
(1)

whereP (T |Href ) is the prior probability on the global transformationsT (shifts, scaling, rotations),
andP (R|T,Href ) is the likelihood thatR was generated fromref at that location, scale, etc. (up
to some local distortions which are also modelled byP (R|T,Href ) – see algorithmic details in
Sec.3). If there are multiple corresponding regions inref , (i.e., multipleTs), all of them contribute
to the estimation ofLR(R). We define theLocal Evidence Scoreof R to be the log likelihood ratio:

LES(R|Href ) = log2(LR(R)).

LES is referred to as a “local evidence score”, because the higherLES is, the smaller the proba-
bility that R was generated by random (H0). In fact,P ( LES(R|Href ) > l | H0) < 2−l, i.e., the
probability of getting a scoreLES(R) > l for a randomly generated regionR is smaller than2−l

(this is due toLES being a log-likelihood ratio [3]). High LES therefore provides higher statistical
evidence thatR was generated fromref .

Note that the larger the regionR ⊆ Q is, the higher its evidence scoreLES(R|Href ) (and therefore
it will also provide higher statistical evidence to the hypothesis thatQ was composed fromref ). For
example, assume for simplicity thatR has a single identical copy inref , and thatT is restricted to
shifts with uniform probability (i.e.,P (T |Href ) = const), thenP (R|Href ) is constant, regardless
of the size ofR. On the other hand,P (R|H0) decreases exponentially with the size ofR. Therefore,
the likelihood ratio ofR increases, and so does its evidence scoreLES.



LES can also be interpreted as the number of bitssavedby describing the regionR usingref ,
instead of describing it usingH0: Recall that the optimal average code length of a random variable
y with probability functionP (y) is length(y) = −log(P (y)). Therefore we can write the evidence
score asLES(R|Href ) = length(R|H0) − length(R|Href ). Therefore, larger regions provide
higher saving (in bits) in the description length ofR.

A regionR induces “average savings per point” for every pointq ∈ R, namely,LES(R|Href )
|R| (where

|R| is the number of points inR). However, a pointq ∈ R may also be contained in other regions
generated byref , each with its own local evidence score. We can therefore define themaximal
possible savings per point(which we will refer to in short asPES = “Point Evidence Score”):

PES(q|Href ) = max
R⊆Q s.t. q∈R

LES(R|Href )
|R| (2)

For any pointq ∈ Q we defineR[q] to be the region which provides this maximal score forq.
Fig. 1 shows such maximal regions found in Image-B (the queryQ) given Image-A (the reference
ref ). In practice, many points share the same maximal region. Computing an approximation of
LES(R|Href ), PES(q|Href ), andR[q] can be done efficiently (see Sec3).

2.2 Global Evidence

We now proceed to accumulate multiple local pieces of evidence. LetR1, ..., Rk ⊆ Q bek disjoint
regions inQ, which have been generated independently from the examples inref . Let R0 =
Q\ ∪k

i=1 Ri denote the remainder ofQ. Namely,S = {R0, R1, ..., Rk} is a segmentation/division
of Q. Assuming that the remainderR0 was generated i.i.d. by the null hypothesisH0, we can derive
a global evidence scoreon the hypothesis thatQ was generated fromref via the segmentationS
(for simplicity of notation we use the symbolHref also to denote the global hypothesis):

GES(Q|Href , S) = log
P (Q|Href , S)

P (Q|H0)
= log

P (R0|H0)
k∏

i=1

P (Ri|Href )

k∏
i=0

P (Ri|H0)
=

k∑

i=1

LES(Ri|Href )

Namely, the global evidence induced byS is the accumulated sum of the local evidences provided
by the individual segments ofS. The statistical significance of such an accumulated evidence is
expressed by:P ( GES(Q|Href , S) > l | H0) = P (

∑k
i=1 LES(Ri|Href ) > l | H0) < 2−l.

Consequently, we can accumulate local evidence of non-overlapping regions withinQ which have
similar regions inref for obtaining global evidence on the hypothesis thatQ was generated from
ref . Thus, for example, if we found5 regions withinQ with similar copies inref , each resulting
with probability less than10% of being generated by random, then the probability thatQ was gen-
erated by random is less than(10%)5 = 0.001% (and this isdespite the unfavorable assumptionwe
made that the rest ofQ was generated by random).

So far the segmentationS was assumed to be given, and we estimatedGES(Q,Href , S). In order
to obtain the global evidence score ofQ, we marginalize over all possible segmentationsS of Q:

GES(Q|Href ) = log
P (Q|Href )
P (Q|H0)

= log
∑

S

P (S|Href )
P (Q|Href , S)

P (Q|H0)
(3)

Namely, the likelihoodP (S|Href ) of a segmentationS can be interpreted as a weight for the like-
lihood ratio score ofQ induced byS. Thus, we would likeP (S|Href ) to reflect the complexity of
the segmentationS (e.g., its description length).

From a practical point of view, in most cases it would be intractable to computeGES(Q|Href ), as
Eq. (3) involves summation over all possible segmentations of the queryQ. However, we can derive
upper and lower boundsonGES(Q|Href ) which are easy to compute:
Claim 1. Upper and lower bounds on GES:

max
S

{ logP (S|Href ) +
∑

Ri∈S

LES(Ri|Href ) } ≤ GES(Q|Href ) ≤
∑

q∈Q

PES(q|Href )

(4)
proof: See Appendixwww.wisdom.weizmann.ac.il/˜vision/Composition.html .
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Practically, this claim implies that we do not need to scan all possible segmentations. The lower
bound (left-hand side of Eq. (4) ) is achieved by the segmentation ofQ with the best accumulated
evidence score,

∑
Ri∈S LES(Ri|Href ) = GES(Q|Href , S), penalized by the length of the seg-

mentation descriptionlogP (S|Href ) = −length(S). Obviously, every segmentation provides such
a lower (albeit less tight) bound on the total evidence score. Thus, if we find large enough contiguous
regions inQ, with supporting regions inref (i.e., high enough local evidence scores), and define
R0 to be the remainder ofQ, thenS = R0, R1, ..., Rk can provide a reasonable lower bound on
GES(Q|Href ). As to the upper bound onGES(Q|Href ), this can be done by summing up the
maximal point-wise evidence scoresPES(q|Href ) (see Eq.2) from all the pointsin Q (right-hand
side of Eq. (4)). Note that the upper bound is computed by finding the maximal evidence regions
that pass through every point in the query, regardless of the region complexitylength(R). Both
bounds can be estimated quite efficiently (see Sec.3).

3 Algorithmic Framework

The local and global evidence scores presented in Sec.2 provide new local and global similarity
measures for signal data, which can be used for various learning and inference problems (see Sec.4).
In this section we briefly describe the algorithmic framework used for computingPES, LES, and
GES to obtain the local and global compositional similarity measures.

Assume we are given a large regionR ⊂ Q and would like to estimate its evidence score
LES(R|Href ). We would like to find similar regions toR in ref , that would provide large local
evidence forR. However, (i) we cannot expectR to appear as is, and would therefore like to allow
for global and local deformations ofR, and (ii) we would like to perform this search efficiently. Both
requirements can be achieved by breakingR into lots of small (partially overlapping) data patches,
each with its own patch descriptor. This information is maintained via a geometric “ensemble” of lo-
cal patch descriptors. The search for a similar ensemble inref is done using efficient inference on a
star graphical model, while allowing for small local displacement of each local patch [5]. For exam-
ple, in images these would be small spatial patches around each pixel contained in the larger image
regionR, and the displacements would be small shifts inx andy. In video data the regionR would
be a space-time volumetric region, and it would be broken into lots of small overlapping space-time
volumetric patches. The local displacements would be inx, y, andt (time). In audio these patches
would be short time-frame windows, etc. In general, for any n-dimensional signal representation,
the regionR would be a large n-dimensional region within the signal, and the patches would be
small n-dimensional overlapping regions withinR. The local patch descriptors are signal and appli-
cation dependent, but can be very simple. (For example, in images we used a SIFT-like [9] patch
descriptor computed in each image-patch. See more details in Sec.4). It is the simultaneous match-
ing of all these simple local patch descriptors with their relative positions that provides the strong
overall evidence score for the entire regionR. The likelihood ofR, given a global transformation
T (e.g., location inref ) and local patch displacements∆li for each patchi in R (i = 1, 2, ..., |R|),
is captured by the following expression:P (R|T, {∆li},Href ) = 1/Z

∏
i

e
− |∆di|2

2σ2
1 e

− |∆li|2
2σ2

2 , where

{∆di} are the descriptor distortions of each patch, andZ is a normalization factor. To estimate
P (R|T,Href ) we marginalize over all possible local displacements{∆li} within a predefined lim-
ited radius. In order to computeLES(R|Href ) in Eq. (1), we need to marginalize over all possible
global transformationsT . In our current implementation we used only global shifts, and assumed
uniform distributions over all shifts, i.e.,P (T |Href ) = 1/|ref |. However, the algorithm can ac-
commodate more complex global transformations. To computeP (R|Href ), we used our inference
algorithm described in [5], modified to compute likelihood (sum-product) instead of MAP (max-
product). In a nutshell, the algorithm uses a few patches inR (e.g.,2-3), exhaustively searchingref
for those patches. These patches restrict the possible locations ofR in ref , i.e., the possible can-
didate transformationsT for estimatingP (R|T, Href ). The search of each new patch is restricted
to locations induced by the current list of candidate transformationsT . Each new patch further
reduces this list of candidate positions ofR in ref . This computation ofP (R|Href ) is efficient:
O(|db|) + O(|R|) ≈ O(|db|), i.e., approximately linear in the size ofref .

In practice, we are not given a specific regionR ⊂ Q in advance. For each pointq ∈ Q we want to
estimate its maximal regionR[q] and its corresponding evidence scoreLES(R|Href ) (Sec.2.1). In



(a) (b) (c)
Figure 2: Detection of defects in grapefruit images. Using the single image (a) as a “refer-
ence” of good quality grapefruits, we can detect defects (irregularities) in an image (b) of different
grapefruits at different arrangements. Detected defects are highlighted in red (c).

(a) Input1: Output1: (b) Input2: Output2:

Figure 3:Detecting defects in fabric images (No prior examples).Left side of (a) and (b) show
fabrics with defects. Right side of (a) and (b) show detected defects in red (points with small intra-
image evidenceLES). Irregularities are measured relative to other parts of each image.

order to perform this step efficiently, we start with a small surrounding region aroundq, break it into
patches, and search only for that region inref (using the same efficient search method described
above). Locations inref where good initial matches were found are treated as candidates, and
are gradually ‘grown’ to their maximal possible matching regions (allowing for local distortions in
patch position and descriptor, as before). The evidence scoreLES of each such maximally grown
region is computed. Using all these maximally grown regions we approximatePES(q|Href ) and
R[q] (for all q ∈ Q). In practice, a region found maximal for one point is likely to be the maximal
region for many other points inQ. Thus the number of different maximal regions inQ will tend to
besignificantly smallerthan the number of points inQ.

Having computedPES(q|Href ) ∀q ∈ Q, it is straightforward to obtain an upper bound on
GES(Q|Href ) (right-hand side of Eq. (4)). In principle, in order to obtain a lower bound on
GES(Q|Href ) we need to perform an optimization over all possible segmentationsS of Q. How-
ever, any good segmentation can be used to provide a reasonable (although less tight) lower bound.
Having extracted a list of disjoint maximal regionsR1, ..., Rk, we can use these to induce a reason-
able (although not optimal) segmentation using the following heuristics: We choose the first segment
to be the maximal region with the largest evidence score:R̃1 = argmaxRiLES(Ri|Href ). The
second segment is chosen to be the largest of all the remaining regions after having removed their
overlap withR̃1, etc. This process yields a segmentation ofQ: S = {R̃1, ..., R̃l} (l ≤ k). Re-
evaluating the evidence scoresLES(R̃i|Href ) of these regions, we can obtain a reasonable lower
bound onGES(Q|Href ) using the left-hand side of Eq. (4). For evaluating the lower bound, we
also need to estimatelog P (S|Href ) = −length(S|Href ). This is done by summing the descrip-
tion length of the boundaries of the individual regions withinS. For more details see appendix in
www.wisdom.weizmann.ac.il/˜vision/Composition.html .

4 Applications and Results

Theglobal similarity measureGES(Q|Href ) can be applied between individual signals, and/or be-
tween groups of signals (by settingQ andref accordingly). As such it can be employed in machine
learning tasks like retrieval, classification, recognition, and clustering. Thelocal similarity mea-
sureLES(R|Href ) can be used for local inference problems, such as local classification, saliency,
segmentation, etc. For example, the local similarity measure can also be appliedbetween different
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(a) (b) (c)
Figure 4: Image Saliency and Segmentation. (a) Input image. (b) Detected salient points,
i.e., points with low intra-image evidence scoresLES (when measured relative to the rest of the
image). (c) Image segmentation – results of clustering all the non-salient points into 4 clusters
using normalized cuts. Each maximal regionR[q] provides high evidence (translated to high affinity
scores) that all the points within it should be grouped together (see text for more details).

portions of the same signal(e.g., by settingQ to be one part of the signal, andref to be the rest of the
signal). Such intra-signal evidence can be used for inference tasks like segmentation, while theab-
sence of intra-signal evidence(local dissimilarity) can be used for detecting saliency/irregularities.
In this section we demonstrate the applicability of our measures to several of these problems, and
apply them to three different types of signals: audio, images, video. For additional results as well as
video sequences seewww.wisdom.weizmann.ac.il/˜vision/Composition.html

1. Detection of Saliency/Irregularities (in Images): Using our statistical framework, we define a
pointq ∈ Q to be irregular if its best local evidence scoreLES(R[q]|Href ) is below some threshold.
Irregularities can be inferred either relative to a database of examples, or relative to the signal itself.
In Fig. 2 we show an example of applying this approach for detecting defects in fruit. Using a single
image as a “reference” of good quality grapefruits (Fig.2.a, used asref ), we can detect defects
(irregularities) in an image of different grapefruits at different arrangements (Fig.2.b, used as the
queryQ). The algorithm tried to composeQ from as large as possible pieces ofref . Points inQ
with low LES (i.e., points whose maximal regions were small) were determined as irregular. These
are highlighted in ”red” in Fig.2.c, and correspond to defects in the fruit.

Alternatively, local saliency within a query signalQ can also be measured relative to other portions
of Q, e.g., by trying to compose each region inQ using pieces from the rest ofQ. For each point
q ∈ Q we compute itsintra-signal evidence scoreLES(R[q]) relative to the other (non-neighboring)
parts of the image. Points with low intra-signal evidence are detected as salient. Examples of using
intra-signal saliency to detect defects in fabric can be found in Fig.3. Another example of using
the same algorithm, but for a completely different scenario (a ballet scene) can be found in Fig.4.b.
We used a SIFT-like [9] patch descriptor, but computed densely for all local patches in the image.
Points with low gradients were excluded from the inference (e.g., floor).

2. Signal Segmentation (Images): For each pointq ∈ Q we compute its maximal evidence
regionR[q]. This can be done either relative to a different reference signal, or relativeQ itself (as is
the case of saliency). Every maximal region provides evidence to the fact that all points within the
region should be clustered/segmented together. Therefore, the valueLES(R[q]|Href )) is added to
all entries(i, j) in an affinity matrix,∀qi∀qj ∈ R[q]. Spectral clustering can then be applied to the
affinity matrix. Thus, large regions which appear also inref (in the case of a single image – other
regions inQ) are likely to be clustered together inQ. This way we foster the generation of segments
based on high evidential co-occurrence in the examples rather than based on low level similarity as
in [10]. An example of using this algorithm for image segmentation is shown in Fig.4.c. Note that
we have not used explicitly low level similarity in neighboring point, as is customary in most image
segmentation algorithms. Such additional information would improve the segmentation results.

3. Signal Classification (Video – Action Classification): We have used the action video database
of [4], which contains different types of actions (“run”, “walk”, “jumping-jack”, “jump-forward-on-
two-legs”, “jump-in-place-on-two-legs”, “gallop-sideways”, “wave-hand(s)”,“bend”) performed by
nine different people (altogether 81 video sequences). We used a leave-one-out procedure for action
classification. The number of correct classifications was79/81 = 97.5%. These sequences contain
a single person in the field of view (e.g., see Fig.5.a.). Our method can handle much more complex
scenarios. To illustrate the capabilities of our method we further added a few more sequences (e.g.,
see Fig.5.b and5.c), where several people appear simultaneously in the field of view, with partial
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(a) (b) (c)
Figure 5:Action Classification in Video.

(a) A sample ‘walk’ sequence from the action database of [4]. (b),(c) Other more complex sequences
with several walking people in the field of view. Despite partial occlusions, differences in scale, and
complex backgrounds, these sequences were all classified correctly as ’walk’ sequences. For video
sequences seewww.wisdom.weizmann.ac.il/˜vision/Composition.html

occlusions, some differences in scale, and more complex backgrounds. The complex sequences
were all correctly classified (increasing the classification rate to98%).

In our implementation, 3D space-time video regions were broken into small spatio-temporal video
patches (7 × 7 × 4). The descriptor for each patch was a vector containing the absolute values
of the temporal derivatives in all pixels of the patch, normalized to a unit length. Since stationary
backgrounds have zero temporal derivatives, our method is not sensitive to the background, nor does
it require foreground/background separation.

Image patches and fragments have been employed in the task of class-based object recognition
(e.g., [7, 2, 6]). A sparse set of informative fragments were learned for a large class of objects (the
training set). These approaches are useful for recognition, but are not applicable to non-class based
inference problems (such as similarity between pairs of signals with no prior data, clustering, etc.)

4. Signal Retrieval (Audio – Speaker Recognition): We used a database of 31 speakers (male and
female). All the speakers repeated three times a five-word sentence (2-3 seconds long) in a foreign
language, recorded over a phone line. Different repetitions by the same person slightly varied from
one another. Altogether the database contained 93 samples of the sentence. Such short speech
signals are likely to pose a problem for learning-based (e.g., HMM, GMM) recognition system.
We applied our global measureGES for retrieving the closest database elements. The highestGES
recognized the right speaker 90 out of 93 cases (i.e.,97% correct recognition). Moreover, the second
bestGES was correct 82 out of 93 cases (88%). We used a standard mel-frequency cepstrum frame
descriptors for time-frames of25 msec, with overlaps of50%.
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