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Abstract. We introduced an algorithm for sequence alignment, based on maxi-
mizing local space-time correlations. Our algorithm aligns sequences of the same
action performed at different times and places by different people, possibly at
different speeds, and wearing different clothes. Moreover, the algorithm offers a
unified approach to the problem of sequence alignment for a wide range of sce-
narios (e.g., sequence pairs taken with stationary or jointly moving cameras, with
the same or different photometric properties, with or without moving objects).
Our algorithm is applied directly to the dense space-time intensity information
of the two sequences (or to filtered versions of them). This is done without prior
segmentation of foreground moving objects, and without prior detection of corre-
sponding features across the sequences. Examples of challenging sequences with
complex actions are shown, including ballet dancing, actions in the presence of
other complex scene dynamics (clutter), as well as multi-sensor sequence pairs.

1 Introduction

Given two video sequences of a dynamic scene, the problem of sequence alignment is
defined as finding the spatial and temporal coordinate transformation that brings one
sequence into alignment with the other, both in space and in time. In this work we focus
on the alignment of sequences with similar dynamics, but with significantly different
appearance properties. In particular, we address two applications in a single unified
framework:

1. Action Alignment The same action is performed at different times and places by
different people, possibly at different speeds, and wearing different clothes (optionally
with different sensors). We would like to recover the space-time transformation which
best aligns the actions (the foreground moving object), regardless of their backgrounds
or other dynamic scene clutter.

2. Multi-Sensor AlignmentThe same dynamic scene is recordsehultaneoushby
multiple cameras (of same or of different sensing modalities). In this case (of simul-
taneous recording) we would like to bring into alignment the entire scene (both the
foreground moving objects and the background scene).

While sequences obtained by different sensors have significantly different spatial
appearances, their temporal properties (scene or camera motion, trajectories of moving
objects, etc.) are usually invariant to the sensing modalities, and are therefore shared by
the two sequences. The same observation is true also for sequences of the same action



performed by different people at different times and places. Such temporal changes are
not captured in any individual frame. They are, however, contained in the space-time
volumes generated by the two sequences. Sequence-to-sequence alignment is there-
fore a more powerful approach to handle those difficult scenarios than image-to-image
alignment.

Several approaches to sequence alignment were suggested. Most of these methods
assume that the video sequences are recorded simultaneously. Moreover, they are re-
stricted to a particular scenario (e.g., moving objects [5], moving cameras [3], similar
appearance properties [4]). Moreover, none of these methods is applicable to alignment
of actions performed at different times and places.

Methods for aligning actions were also suggested (e.qg., [10, 6, 2]). However, these
require manual selection of corresponding feature points across the sequences. Some
of them provide only temporal synchronization. In [11] an approach was proposed for
detecting behavioral correlations in video under spatial and tempbiféd Its output
is a coarse space-time correlation volume. This approach does not account for spatial
nor temporal scaling (nor more complex geometric deformations), nor was it used for
aligning video clips (since video alignment requires sub-pixel and sub-frame accuracy).

In this paper we propose a unified approach to sequence alignment which is suited
both for sequences recorded simultaneously (for a variety of scenarios), as well as
for action sequences. Our approach is inspired by the multi-sensor image-alignment
method presented in [8]. We extend it into space-time, and take it beyond multi-sensor
alignment, to alignment of actions. Alignment in space and time is obtained by max-
imizing the local space-time correlations between the two sequences. Our method is
applied directly to the dense space-time intensity information of the two sequences (or
to filtered versions of them), without prior segmentation of foreground moving objects,
and without prior detection of corresponding features across the sequences. Our ap-
proach offers two main advantages over existing approaches to sequence alignment:

1. It is capable of aligning sequences of the saiion performed at different times

and places by different people wearing different clothes, regardless of their photometric
properties and other static or dynamic scene clutter.

2. It provides a unified approach to multi-sensor sequence alignment for a wide range
of scenarios, including: (i) sequences taken with either stationary or jointly moving
cameras, (ii) sequences with the same or different photometric properties, and (iii) se-
quences with or without moving objects. Our approach does assume, however, that the
cameras are rigid with respect to each other (although they may move jointly).

The remainder of this work is organized as follows: Sec. 2 formulates the problem,
Sec. 3 presents the space-time similarity measure between the two sequences. Sec. 4
presents the space-time alignment algorithm. Sec. 5 provides experimental results on
real sequences. Sec. 6 discusses the robustness of the algorithm to noise and to other
dynamic scene clutter.

2 Problem Formulation

Given two sequenceg,andg, we seek the spatio-temporal parametric transformation
that maximizes a global similarity measuvebetween the two sequences after bringing



them into alignment according @ f andg may be either the original video sequences,
or some filtered version of them, depending on the underlying application (see Sec. 5).

For each space-time poifit, y, t) in the sequencé, we denote its spatio-temporal
displacement vector by = (u1, us,us). u is a function of both the space-time point
coordinates and the unknown parameter veptore.,u = u(x,y, t; p).

We assume that thelative internal and external parameters between the cameras
are fixed (but unknown). The cameras may be either stationary or moving (jointly). In
our current implementation we have chosen a 2D affine transformation to model the
spatial transformatiorbetween corresponding frames across the two sequences (such a
model is applicable when the scene is planar, or distant, or when the two cameras are
relatively close to each other). A 1D affine transformation was chosen to modehthe
poral transformationbetween the two sequences (supporting sequences with different
frame rates as well as a time offset between the sequences). The space-time transfor-
mationp therefore comprises of 8 parameters, where the first 6 paramgters.(, pg)
capture the spatial 2D affine transformation and the remaining 2 paramgieps)(
capture the temporal 1D affine transformation. The spatio-temporal displacement vec-
tor u(x,y, t; p) is therefore:

uy(z,y,t;p) P1T + D2y + D3
u(z,y,t;p) = | u2(z,y, t;p) | = | pax + psy + pe
US(xayvt;p) p7t+p8

This can be written more compactly as:
u(z,y,t;p) = X(z,y,t) - p (1)
wherep = (p1,...,ps), and:

xy100000
X(x,y,t)=|000xy100
000000¢t1

3 The Similarity Measure

Sequences of actions recorded at different times and places, as well as sequences ob-
tained by different sensing modalities (e.g., an IR and a visible light camera) have
significantly different photometric properties. As such, their intensities are related by
highly non-linear transformations.

In [8] the following observations were made for a multi-seriseagepair: (i) the
intensities of images taken with sensors of different modalities are usually related by a
highly non-linear global transformation which depends not only on the image intensity,
but also on its image location. Such intensity transformations are not handled well by
Mutual Information (which assumes spatial invariance). Nevertheless, (ii) for very small
corresponding image patches across the two images, their intensitlesahgrelated
by somelinear intensity transformation. Since normalized-correlation is invariant to
linear intensity transformations, it can be used &scal similarity measure applied to
small image patches.



Our approach is based on extending this approach to space-time, and takes it be-
yond multi-sensor alignment, to alignment of actions. Local normalized correlations
are computed within smalpace-time patche@n our implementation they were of
size7 x 7 x 7). A global similarity measure is then computed as the sum of all those
local measures in the entire sequence. The resulting global similarity measure is thus
invariant to spatially and temporally varying non-linear intensity transformations.

Given two corresponding space-time patches/windawsandw,, one from each
sequence, their local Normalized Correlation (NC) can be estimated as follows [7]:
NC(wp,wy) = ——2Mer:09) __ \yherecov andvar stand for the covariance and

v/ var(wy)y/var(wg) !

variance of intensities. Squaring the NC measure further accounts for contrast rever-
sal, which is common in multi-sensor sequence pairs. Our patch-wise local similarity
measure is therefore:

cov? (wy,wy)
var(wy)var(wy) + «

Clwg, wg) = 2

where the constant is added to account for noise (in our experiments we used10,
but the algorithm is not particularly sensitive to the choicepf

Theglobal similarity measure\/ between two sequenceg éndg) is computed as
the sum of all thdocal measure«” applied to small space-time patches around each
pixel in the sequence:

M(f,g):ZZZC(wf(%y,t),wg(x,y,t)) (3)

This results in a global measure which is invariant to highly non-linear intensity trans-
formations (which may vary spatially and temporally over the sequences).

Our goal is to recover the global geometric space-time transformation which max-
imizes the global measurk/ between the two sequences. To do so, we reformulate
the local measuré€’ and the global measur®/ in terms of the unknown parametric
transformatiorp. For each space-time poifit, y, ¢) in the sequencg and its spatio-
temporal displacement vectar = (u1, uq, u3), the local normalized correlation mea-
sure of Eq. (2) can be written as a functiomaof

C@YD (u) = C (wy(x,y,t), wy(x + ur,y + ug, t +uz))

wherewy(z,y,t) is the7 x 7 x 7 space-time window around pixét, y, ¢) in f, and
wg(x+u1,y+us, t+ug) is the? x 7 x 7 space-time window around pixet + u.,y +

ug,t + uz) in g. We can therefore formulate the alignment problem as follows: Find
p (the set of global spatio-temporal parameters) that maximizes the global similarity
measureV! (p):

M(p)= Y C@¥)(u(z,y t;p)) (4)

(zy,t)ef



4 The Alignment Algorithm

4.1 The Maximization Process

We use Newton’s method [9] for the optimization task. Local quadratic approximations
of M(p) are used in order to iteratively converge to the correct value of the space-time
transformationp. Let py be the current estimate of the transformation parameters
We can write the quadratic approximation/df(p) aroundp, as:

M(p) = M(po) + (VpM(po))" 8, + 567 Hus(p0)3,

whereV,M and H,, are the gradient and hessian/df, respectively (both computed
aroundpy), andd,, = p— po is the unknown refinement step. By differentiating this ap-
proximation with respect té,, and equating to zero, we obtain the following expression
for §,:

8y = = (Hy(po)) ™" - VpM(po) (5)

From Egs. (1) and (4) and the chain rule of differentiation, we can evaligfd and
Hy:

V,M(p) = Z vpc(x,y,t)(u)

(w,yt)ef
= ¥ (XT.quth)(u)) ©)
(wyt)ef

Hup)= Y, (X7 Howwog)  X) (7)
(myt)ef

whereV,C®¥* and Hq..,.., are the gradient and hessian @f*¥*) (u), respec-
tively, computed aroundyy, = wu(z,y,t; po). Substituting Eqg. (6) and Eq. (7) into
Eq. (5), we get the following expression for the refinement stgpin terms of the
normalized correlation functio@'(*-¥:!) (w):

-1

Sp=—| D X"HowwnuyX| - D X VuCED (uy) (8)
(zy,t)ef (zy,t)Ef

In order to calculate the refinement step of Eq. (8) we need to differentiate the normal-
ized correlation functior®(*:¥:) of each space-time poifi, v, t) around its currently
estimated displacement vectay = u(x,y,t; po). This is done as follows: For each
space-time pointz, y, t), a local normalized correlation function (volum@}®¥:*) (u)

is evaluated for a set of spatio-temporal displacements aragndhen, the first and
second derivatives af'(*-¥-Y) with respect tax = (u, uz, u3) are extracted in order to
obtainV,C® %Y and Hg ..o

oC @) gowt) oy’

WOEYh =
v Ox y ot




920 (= u:t) §2c(z,y.t) §2c(w,y.t)

Ox2 Ox0y Ox 0t
| s2o@ut g2out) g20(@y.t)
Ho@wn = dydw dy? dyot ©)

920 @ w:t) g20(z.ut) g2c(zy.t)
otox Otoy ot2

In practice, we evaluat€(*:¥:!)(u) for displacements ofiy + 2 in x,y,t (i.e., the
correlation function is a volume of sizex 5 x 5). To account for large misalignments,
the above maximization scheme is performed within a coarse-to-fine data structure. The
resulting algorithm is therefore as follows:

The Algorithm:

1. Construct a space-time Gaussian pyramid for each sequence (Sec. 4.3).

2. Find an initial guesp, for the space-time transformation parameters in the coarsest
(smallest) pyramid level (Sec. 4.4).

3. Apply several maximization iterations in the current pyramid level until convergence.
In each iteration do:

(a) Use the current parameter estimpgefrom the last iteration to compute the refine-
ment step,, (Eq. (8)).

(b) Update the current parameter estimage= po + 0.

(c) Test for convergence: If the change in the values/df) for two successive itera-
tions is small enough, go to step 4. Otherwise, go back to step 3.(a).

4. Proceed to the next pyramid level and go back to step 3.

4.2 Confidence-Weighted Regression

To further stabilize the maximization process, we consider only space-time pojpts)
in which the quadratic approximation of the normalized correlation functioansave
Other space-time points are ignored (are outliers), since they incorporate false informa-
tion into the regression. Moreover, the contribution of each space-time point is weighted
by its reliability, which is measured by the degree of concavity of the normalized cor-
relation function at this point.

A twice-differentiable function is concave at a point if and only if the hessian of the
function at the point is negative semidefinite [12], i.e., if allkt§ order leading prin-
cipal minors are non-positive for an oddand non-negative for an evén Therefore,
the hessian matri¥/ c.v.0 () Of EQ. (9) is checked for negative semidefiniteness by:

9%C(ug) 9°C(uo)
0z2 Oxdy >0 820(U0) <0

92C(ug) 92C(ug) | — 0x?2 —
Oyox oy?

|Houy| <0,

where C(ug) = C@¥)(uy), and| - | denotes the determinant of a matrix. Only
space-time pointgr, y, ) in which the corresponding hessidf =, 1 (4,) iS Negative
semidefinite are considered as inliers in the maximization process. dietote this set

of inlier space-time points. Each space-time poinfirs further weighted by the de-
terminant of its corresponding hessian, which indicates the degree of concavity at that



point. This outlier rejection and weighting scheme is incorporated into the algorithm by
extending Eq. (8):

-1

Sp=—| D w(uo) X Howup) X| - D w(uo) X" VauC(uo)
z,y,t)ES (z,y,t)€S
wherew(uo) = w™¥H (ug) = — |[He(uy) |-

4.3 The Space-Time Gaussian Pyramid

To handle large spatio-temporal misalignments between the two sequences, the opti-
mization is done coarse-to-fine (in space and in time). Caspi and Irani [4] presented a
space-time Gaussian pyramid for video sequences. Each pyramid level was constructed
by applying a Gaussian low-pass filter to the previous level, followed by sub-sampling
by a factor of 2. The filtering and sub-sampling phases were performed both in space
and intime (i.e., inc, y andt). Our coarse-to-fine estimation is performed within such a
data structure, with a small modification to handle sequences whose temporal and spa-
tial dimensions are significantly different (otherwise, the coarsest pyramid level will be
too coarse in one dimension, while not coarse enough in the other dimensions). Filter-
ing and sub-sampling is first applied along the largest dimension(s), until it is of similar
size to the other dimensions, and then proceeding as in [4]. To guarantee numerical
stability, the coarsest (smallest) pyramid level is at I8ast 30 x 30.

4.4 The Initial Parametric Transformation pq

An initial guessp, for the space-time parametric transformation is computed at the
coarsest pyramid level. We seek for initial non-zero values only for the translational
parameters op in z,y andt (i.e., p3, pg andpg), leaving all the other parameters to

be zero. This is done by evaluating the similarity measuref Eq. (4) for each possi-

ble spatio-temporal integer shift within a search radius (in our implementation we used
a radius 0f25% of the sequence in each dimension). The translation parameters that
provide the highest similarity valug/ are used in the initial guegs, for the trans-
formation parameters. Initializing onjy;, ps andps is usually sufficient for the initial
guess. The remaining parameterspiriend to be smaller, and initializing them with
zero-values usually suffice for convergence. All the parametepsare updated dur-

ing the optimization process. Note that although an “exhaustive” search is performed
at the coarsest pyramid level, this processd$ time consuming since the smallest
spatio-temporal pyramid level is typically of si2@ x 30 x 30.

5 Applications and Results

Recall that we focus on two applications of sequence alignment: (1) Alignment of action
sequences, taken at different times and places, and (2) Alignment of sequences recorded
simultaneously by different cameras, where the most difficult case is when these are



Fig. 1. Action alignment. (a) and (b) show frames 74 of the two input sequerfcaad g. (c)

and (d) show the absolute value of their temporal derivatiié®(in magenta ang;?*® in

green). (e) Initial misalignment (superposition of (c) and (d)). (f) Superposition of corresponding
frames after alignment both in space and in time. The white color is a result of superposition of
the green and magenta. (g) and (h) show superposition of the input sequences before and after
alignment (one in green and one in magenEx color figure and full video sequence see
http://www.wisdom.weizmann.ac.il~vision/SpaceTimeCorrelations.html.

sensors of different modalities. We use the same alignment algorithm for these two
applications. However, we apply the algorithm to different sequeepresentations
which are obtained by pre-filtering the original input sequences with different linear
filters. These prior filters emphasize the part of the data which we want to bring into
alignment. The chosen filters for each application along with experimental results are
presented next.

5.1 Multi-Sensor Alignment

The common information across a multi-sensor pair of sequences (e.g., infra-red and
visible-light) is thedetailsin the scene (spatial or temporal). These are captured mostly
by high-frequency information (both in time and in space). The multi-sensor pair differ
in their photometric properties which are captured by low frequencies. Thus, to enhance
the common detail information and suppress the non-common photometric properties,
differentiation operators are applied to the sequences. Since directional information is
important, the input sequencgsandg are differentiated separately with respecttgy

andt, resulting in three sequences of directional derivatives f,, f: andg., gy, g¢).

An absolute value is further taken to account for contrast reversal. Thus, the global
similarity measure of Eq. (3) becomes:

M(f,g) =M(£7*,g3) + M(£;"*,93"°) + M(f**, ")

Due to lack of space we omitted the figures of the multi-sensor alignment results
from the paper. However, these results (i.e., multi-sensor sequences before and after
space-time alignment) can be found on our web site:
http://www.wisdom.weizmann.ac4vision/SpaceTimeCorrelations.html. We display
there different examples of multi-sensor pairs obtained under different scenarios — in



a)

<)

d)

Fig. 2. Action alignment. (a) and (b) show several frames of the two input sequefiGes] g

(with same frame numbers). (c) shows superposition of (a) and (b) before alignfriergreen

andg in magenta). (d) shows superposition of corresponding frames after alignment both in space
and in time. This compensates for thbal parametricgeometric deformations (spatial scale,
speed, orientation, position, etc.) The residoah-parametric locableformations highlight the
differences in performance of the two dancdfer color figure and full video sequence see
http://www.wisdom.weizmann.ac.il~vision/SpaceTimeCorrelations.html.

one case the cameras are moving, while in another case the cameras are still and there
are moving objects in the scene. All these sequence pairs were brought into space-time
alignment using the above algorithm. Previous methods for sequence alignment were
usually restricted to one type of scenario (either moving cameras [3] or moving objects

[3)-

5.2 Action Alignment

Given two sequences that contain a similar action, performed by different people at
different times and places, we would like to align only the action (i.e., the foreground
moving objects), ignoring the different backgrounds and the photometric properties of
the sequences. For example, given two sequences of walking people, we want to align
only the walking people themselves, regardless of their backgrounds, the scale and ori-
entation of the walking people, the walking speed, the illumination, and the clothing



Fig. 3. Action alignment vs. background alignment. (a) and (b) show frame 45 of the two input
sequences. (c) Initial misalignment (superposition of (a) and (b)). (d) Superposition after space-
time alignment using temporal derivatives only (Eqg. (10)). (e) Superposition after space-time
alignment using spatial derivatives only (Eq. (1E9r color figure and full video sequence see
http://www.wisdom.weizmann.ac.il~vision/SpaceTimeCorrelations.html.

colors. The common information in two such sequences is captured mostly by the tem-
poral variations (derivatives), and not by the spatial ones. Therefore, for the purpose of
Action Alignment, Eq. (3) becomes:

M(f,g) = M (f**, gi**) (10)

The two sequences in Fig. 1.a and 1.b contain a person walking at different times
and in different places (the cameras are stationary). There are four significant differ-
ences between the two input sequences: (1) their backgrounds are different (trees in
one sequence, and a wall in the other), (2) the spatial scale of the walking person is
significantly different (by approximatel§6%), (3) the walking speed is different (be
approximately13%), and (4) the clothing colors are different. Figs. 1.c and 1.d show
the absolute values of the temporal derivativg®{ andg2**) of the input sequences.

Fig. 1.e displays the initial misalignment between the two sequences through an overlay
of 1.c and 1.d before alignment. Fig. 1.f shows the same display after alignment of the
actions both in space and in time. The white color in Fig. 1.f is obtained from super-
position of the green and magenta, which indicates good alignment (please see color
figures and color sequences on our web site). Figs 1.g and 1.h display super-position
of the two input video sequences before and after alignment, respectively (where one
sequence is displayed in green and the other sequence is displayed in magenta).

The two sequences in Fig. 2.a and 2.b contain two different dancers that perform a
similar ballet dance. Figs 2.c display super-position of the two input video sequences
before alignment (where the first sequence is displayed in green and the second se-
quence is displayed in magenta). Initially, the two dancers are misaligned both in space
and in time. 2.d shows a similar super-position after alignment. The two dancers are
now aligned both in space and in time (although their movements are not identical).
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Fig. 4. Robustness to noise. (a) and (b) show frame 74 of the two noisy input sequences
(see text for more details). (c) and (d) show the absolute value of the temporal derivatives
of (a) and (b), respectively. (e) Initial misalignment (superposition of (c) and (d)). (f) Super-
position after alignment in space and in tink&r color figure and full video sequence see
http://www.wisdom.weizmann.ac.il~vision/SpaceTimeCorrelations.html.

d)

Applications: This capability of aligning actions can be used for various applications,
including: (i) Action/Event recognition: Given a sequence of an action and a database
of sequences with different actions, find the action in the database that achieves best
alignment with the query action, i.e., that yields the highest value for the mea&sure

of Eqg. (4). (ii) Identification of people by the way they behave: Given a sequence of a
person performing some action, and a database of different people performing the same
action, find the database sequence that provides the best alignment (maximal/3core
with the query sequence. This will allow to identify the person in the query sequence.
Carlsson [2] proposed an algorithm for recognizing people by the way they walk. How-
ever, his algorithm required manual marking of specific body locations in each frame
of the two sequences, whereas our approach is automatic. (iii) Comparing performance
and style of people in various sport activities.

Action Alignment vs. Background Alignment: The choice of the sequence represen-
tation is important. For example, consider the two input sequences in Fig. 3.a and 3.b.
There are two different people walking against the same background (recorded at dif-
ferent times). Fig. 3.c shows the initial misalignment between the two input sequences.
Note that both the walking people and their backgrounds are not aligned. Fig. 3.d shows
the results of applying the alignment algorithm to the derivatives of the input sequences
with respect ta alone (using the global similarity measure in Eq. (10)). As expected,
only the actions are aligned, and the backgrounds are not aligned. Figure 3.e shows
the results of applying the alignment algorithm to the derivatives of the same input se-
quences, but this time differentiated with respect @ndy. This is done by replacing

Eq. (3) with:

M(f,g) = M (£3°,95%) + M (£, 9;") (11)



Fig.5. The locking property. (a) Frame 61 of the first sequence: a mixture of the sequence of
Fig. 1.a with a flag sequence. (b) Frame 61 of the second sequence: a mixture of the sequence of
Fig. 1.b with a waterfall sequence. (c) and (d) show the absolute value of the temporal derivatives
of (a) and (b), respectively. (e) Initial misalignment (superposition of (c) and (d)). (f) Superposi-
tion after alignment in space and in time. The algorithm locks onto the common walking action,
despite the presence of other scene dynantios.color figure and full video sequence see
http://www.wisdom.weizmann.ac.il~vision/SpaceTimeCorrelations.html.

Since only the spatial variations of the sequences are used in the alignment process, the
backgrounds are brought into alignment, while the walking people are not.

6 Robustness & Locking Property

One of the benefits of a coarse-to-fine estimation process is the “locking property”,
which provides robustness to noise, as well as the ability to lock onto a dominant space-
time transformation. Buret al. [1] discussed this effect in the contextiofage align-

mentin the presence of multiple motions. According to [1], since pyramids provide

a separation of the spectrum into different frequency bands, motion components with
different frequency characteristics tend to be separated. This separation causes the mo-
tion estimator to “lock” onto a single (dominant) motion component, even when other
motions are present. A similar phenomena occurs in our sequence alignment algorithm,
which tends to lock onto dominant space-time coordinate transformatimtween the

two sequences. Figs. 4 and 5 demonstrate the locking property.

Fig. 4 displays the robustness of our algorithm to noise. Gaussian noise with zero
mean and a standard deviation of 40 gray-level units (out of 255) was added to the
two input sequences of Fig. 1.a and 1.b. The resulting sequences are shown in Figs.
4.a and 4.b. Figs. 4.c and 4.d display the absolute values of the temporal derivatives of
the input sequences. The presence of a significant noise is clearly seen in these figures.
An overlay of 4.c and 4.d before alignment is shown in Fig. 4.e. Fig. 4.f displays an
overlay of corresponding frames after alignment in space and in time. Good alignment
is obtained despite the significant noise.

Fig. 5 displays the locking property in the case of multiple transparent layers. Again,
we took the two input sequences of Fig. 1.a and 1.b, but this time mixed them with two



different sequences that contain significant non-rigid motions (a waving flag and a wa-
terfall). The first input sequence (Fig. 5.a) contains a walking person (with trees in the
background) mixed with a waving flag, and the second input sequence (Fig. 5.b) con-
tains a walking person (with a wall in the background) mixed with a waterfall. Figs. 5.c
and 5.d display the absolute values of the temporal derivatives of the input sequences.
The presence of the multiple layers is clearly seen in these figures. An overlay of 5.c and
5.d before alignment is shown in Fig. 5.e. Fig. 5.f displays an overlay of corresponding
frames after alignment in space and in time. The white color in Fig. 5.f indicates that
the algorithm automatically locked on the common walking action, despite the other
scene dynamics. The regression was applied to the entire sequence. This illustrates the
strong locking property of the algorithm. The results can be seen much more clearly in
the video on our web site.

7 Summary

We introduced an algorithm for sequence alignment, based on maximizing local space-
time correlations. Our algorithm aligns sequences of the same action performed at dif-
ferent times and places by different people, possibly at different speeds, and wearing
different clothes. Moreover, the algorithm offers a unified approach to the sequence
alignment problem for a wide range of scenarios (sequence pairs taken with stationary
or jointly moving cameras, with the same or different photometric properties, with or
without moving objects). Our algorithm is applied directly to the dense space-time in-
tensity information of the two sequences (or to filtered versions of them). This is done
without prior segmentation of foreground moving objects, and without prior detection
of corresponding features across the sequences.
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