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Image-to-image matching methods (e.g., [Faugeras et al. 2001;
Hartley and Zisserman 2000; Xu and Zhang 1996; Bergen et al.
1992; Szeliski and Shum 1997; Zhang et al. 1995; Zoghlami et al.
1997]) are inherently restricted to the information contained in
individual images, i.e., the spatial variations within image frames
(which capture the scene appearance). But there are cases when
there is not enough common spatial information within the two im-
ages to allow reliable image matching. One such example is illus-
trated in Fig. 1. The input images 1.a and 1.b contain a single
object, but we want to match (or align) the entire frame. Align-
ment of image 1.a to image 1.b is not uniquely defined (see Fig.
1.c). However, a video sequence contains much more information
than any individual frame does. In particular, a video sequence
captures information about scene dynamics such as the trajectory
of the moving object shown in Fig. 1.d and 1.e, which in this case
provides enough information for unique alignment both in space
and in time (see Fig. 1.f). The scene dynamics, exemplified here
by trajectories of moving objects, is a property that is inherent to
the scene, and is thus common to all sequences recording the same
scene, even when taken from different video cameras. It therefore
forms an additional or alternative powerful cue for matching video
sequences.

The benefits of exploiting scene dynamics for matching se-
quences was noted before. Caspi and Irani [Caspi and Irani 2000]
described a direct (intensity-based) sequence-to-sequence align-
ment method. Their method is based on finding the space-time
transformation which minimizes the intensity differences (SSD) be-
tween the two sequences, and was applied to cases where the spatial
relation between the sequences could be modeled by a 2D para-
metric transformation (a homography). It was shown to be useful
for addressing rigid as well as complex non-rigid changes in the
scene (e.g., flowing water), and changes in illumination. However,
that method does not apply when the two sequences have differ-
ent appearance properties, such as with sensors of different sensing
modalities, nor when the spatial transformation between the two
sequences is very large, such as in wide base-line matching, or in
large differences in zoom.

This paper illustrates a feature-based approach for space-time
matching of video sequences. The “features” in our method are
space-time trajectories constructed from moving objects. This ap-
proach can recover the 3D epipolar geometry between sequences
recorded by widely separated video cameras, and can handle sig-
nificant differences in appearance between the two sequences.

The advantage of this approach over using regular feature-based
image-to-image matching is illustrated in Fig. 2. This figure shows
two sequences recording several small moving objects. Each fea-
ture point in the image-frame of Fig. 2.a (denoted by A-E) can in
principle be matched to any other feature point in the image-frame
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of Fig. 2.b. There is no sufficient information in any individual
frame to uniquely resolve the point correspondences. Point trajec-
tories, on the other hand, have additional shape properties which
simplify the trajectory correspondence problem (i.e., which trajec-
tory corresponds to which trajectory) across the two sequences, as
shown in Fig. 2.c and 2.d.

Stein [Stein 1998] and Lee et.al. [Lee et al. 2000] described
a method for estimating a time shift and a homography between
two sequences based on alignment of centroids of moving objects.
However, in [Stein 1998; Lee et al. 2000] the centroids were treated
as an unordered collection of feature points and not as trajecto-
ries. In contrast, we enforce correspondences between trajecto-
ries, thus avoiding the combinatorial complexity of establishing
point matches of all points in all frames, resolving ambiguities in
point correspondences, and allowing for temporal correspondences
at sub-frame accuracy. This is not possible when the points are
treated independently (i.e., as a “cloud of points”).

Our algorithm for recovering correspondences between trajecto-
ries across the two sequences is briefly described next. However,
the ideas presented in this paper are not limited to this particular
implementation.

Implementation:
Our current implementation is an extension of standard feature-
based image matching methods (see examples of RANSAC/LMS-
based methods in [Hartley and Zisserman 2000; Xu and Zhang
1996]). The first (and crucial) difference is that we use trajecto-
ries instead of points as our features. Since one trajectory consists
of many points, therefore a single trajectory match induces multiple
point matches (consequently, reducing the complexity of matching
and increasing robustness in presence of errors – see ”Benefits of
the Approach”).

A matching pair of 2D trajectory-features should correspond to
projections of the same 3D trajectory of some 3D point. This 3D
point need not be visible in the images (it can be real or virtual).
For example, in our experiments we tracked moving objects (us-
ing background subtraction method) and extracted specific points
on their blobs (e.g., the object centroid, or the highest point on the
object silhouette, etc). The accuracy of approximating (real or vir-
tual) 3D points from such 2D points on silhouettes is discussed in
[Lee et al. 2000] and [Wong and Cipolla 2001].

The second difference (from standard feature based image
matching implementations) is that we also deal with the temporal
dimension to recover temporal matching as well. Schematically, the
algorithm operates as follows: it searches in the space of possible
trajectory correspondences (by a robust method, such as RANSAC
or LMS). Each candidate trajectory correspondence is used for esti-
mating spatial (homography H or fundamental matrix F) and tem-
poral (∆t) parameters by iterating the following two steps:
(i) Fix ∆t and approximate H (or F) using standard methods.
(ii) Fix H (or F) and refine ∆t by fitting the best linear interpolation
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Figure 1: Spatial ambiguities in image-to-image alignment (a) and (b) show two temporally corresponding frames from two different
video sequences viewing the same moving ball. There are infinitely many valid image alignments between the two frames, some of them
shown in (c). (d) and (e) display the two sequences of the moving ball. There is only one valid alignment of the two trajectories of the ball.
This uniquely defines the alignment both in time and in space between the two video sequences (f).
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(a)Frame from S1 (b) Frame from S2 (c) Sequence S1 (d) Sequence S2

Figure 2: Point correspondences vs. trajectory correspondences. (a) and (b) display two frames out of two sequences recording five small
moving objects (marked by A,B,C,D,E). (c) and (d) display the trajectories of these moving objects over time. When analyzing only single
frames, it is difficult to determine the correct point correspondences across images. However, point trajectories have additional properties,
which simplify the correspondence problem across two sequences (both in space and in time).

value (we allow for sub-frame time shifts).
We then choose the spatial (H or F) and temporal (∆t) candidate
parameters which minimize the overall error. For more details see
the long paper.

Benefits of the Approach:
(i) Trajectory matching requires only a single correct “feature” (i.e.,
trajectory) correspondence, as opposed to 8 feature (point) corre-
spondences as in regular image-to-image matching (for estimat-
ing the fundamental matrix). This provides a significant benefit
in RANSAC-like matching algorithms when the probability to se-
lect at random a sample of eight correct point correspondences is
low. Such cases occur in wide-baseline scenarios where the range
of valid disparities is very large. A complete analysis of the com-
plexity reduction due to the smaller number of required “feature”
(trajectory) matches may be found in the longer version of this pa-
per.
(ii) Since trajectory-features can be constructed from “virtual 3D
points” our method can address cases where the cameras never im-
age the same scene points (e.g., when the cameras are on opposite
sides of the scene, such as in Fig. 5).
(iii) Often corresponding feature points do not have similar appear-
ance properties across cameras such as in the case of multi-sensor
modalities (e.g., Fig 3), or in significantly different zooms (Fig.
4). Yet, their trajectories share common geometric/shape properties
that facilitate the matching (e.g., see Fig. 2) even when the appear-
ance properties are different .
(iv) Unsynchronized video sequences can be temporally matched
(synchronized) at sub-frame accuracy. Such sub-frame synchro-
nization gives rise to new video applications including super-
resolution in time [Shechtman et al. 2002].
(v) Sub-frame temporal alignment also provides higher accuracy
in the spatial matching. Image-to-image matching is restricted to
matching of existing physical image frames. However, when “cor-
responding” frames in time across the two sequences have not been
recorded at exactly the same time (due to a sub-frame temporal
misalignment between the two sequences), this leads to inaccura-

cies in the spatial matching (fundamental matrix or homography).
Sequence-to-sequence matching, on the other hand, is not restricted
to physical (“integer”) image frames.

Examples:
(i) Multi-sensor alignment: Fig. 3 shows results of aligning se-
quences obtained by two cameras of different sensing modalities.
Fig. 3.(a) and 3.(b) display representative frames from a PAL visi-
ble light sequence and an NTSC Infra-Red sequence, respectively.
The scene contains several moving objects: 2 kites, 2 moving cars,
and sea waves. The trajectories induced by tracking the moving ob-
jects are displayed in 3.(c). The two camera centers were close to
each other, therefore the spatial transformation was modeled by a
homography. The output after spatio-temporal alignment via tra-
jectory matching is displayed in 3.(d). The recovered temporal
misalignment was 1.31 sec. The results are displayed after fusing
the two input sequences (using Burt’s fusion algorithm [Burt and
Kolczynski 1993]). We can now clearly observe spatial features
from both sequences. In particular note the right kite which is more
clearly visible in the visible-light sequence, and the left kite which
is more clearly visible in the IR sequence (both marked by circles).
(ii) Matching across significant zoom differences: Fig. 4 shows an
example of aligning sequences obtained at significantly different
zooms. Fig. 4.(a) and 4.(b) display two representative frames from
the reference sequence and second sequence, showing a ball thrown
from side to side. The sequence in column 4.(a) was captured by a
wide field-of-view camera, while the sequence in column 4.(b) was
captured by a narrow field-of-view camera. The cameras where
located next to each other (the spatial transformation was modeled
by a homography) and the ratio in zooms was approximately
1 : 3. The two sequences capture features at significantly different
spatial resolutions, which makes the problem of inter-camera
image-to-image alignment very difficult. The dynamic information
(the trajectory of the ball’s center of gravity), on the other hand,
forms a powerful cue for alignment both in time and in space.
Column 4.(c) displays superposition of corresponding frames
after spatio-temporal alignment. The dark pink boundaries in
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Figure 3: Multi-Sensor Alignment (see text).

4.(c) correspond to scene regions observed only by the reference
(zoomed-out) camera.
(iii) Wide base-line matching: Fig. 5 shows an example of
recovering the fundamental matrix using two cameras situated
on opposite sides of the scene (i.e., the cameras are facing each
other). Figs 5.(a) and 5.(b) display two representative frames from
two sequences.Each camera is visible by the other camera and
is circled and marked by a white arrow. Space-time trajectories
induced by moving objects (ball and players) are displayed in
5.(c)-(d) in different colors for the different objects. The feature
points that correspond to the current frame are marked in yellow.
The recovered epipolar geometry is displayed in 5.(e) and 5.(f).
Points and their epipolar lines are displayed in each image for
verification. Note, that the only static objects that are visible in
both views are the basket ring and the board. Accuracy of the
recovered spatial alignment can be appreciated by the closeness of
each point to the epipolar line of its corresponding point, as well
as by comparing the intersection of epipolar lines with the ground
truth epipole marked by a cross (which is the other camera). In
this example the relative blob size of the moving objects was used
to provide initial correspondence between the trajectories across
the two sequences. Two trajectories (instead of one) were used on
each RANSAC iteration, as most trajectories are planar. An initial
temporal alignment with accuracy within one second (25 frames)
was manually provided, and the final recovered temporal shift was
3.69 frames.

Summary:
We have shown that similar to [Caspi and Irani 2000] (where direct
intensity-based image alignment was extended to sequence align-
ment), feature-based image matching can also be extended into
trajectory-based sequence matching. This allows to address sce-
narios that are very difficult to solve otherwise.

For a more detailed version and example sequences see
www.wisdom.weizmann.ac.il/~vision/traj2traj.html
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(a) Zoomed-out (b) Zoomed-in (c) Super-position

Figure 4: Alignment of sequences obtained at different zooms (see text).
For color sequences see www.wisdom.weizmann.ac.il/�vision/traj2traj.html

(a) (b)

Representative frames
from input sequences:
(a) taken by camera 1,
(b) taken by camera 2.

(c) (d)

Extracted trajectories.

(e) (f)

Recovered epipolar
geometry.

Figure 5: Wide Base-Line Matching (see text).
For color sequences see www.wisdom.weizmann.ac.il/�vision/traj2traj.html


