Deep Learning

Time and Memory Efficiency

. APRIL 29, 2018
PR EVOLING CEUIN welzmanmn INSTITUTe OF sClence

Part 2: ADIR MORGAN DepParTmenT OF COMmPUTEr sclence

Agenda

PART 1 1. Motivation
Classical Algorithms / Build Blocks
3. Hardware

A

PART 2 4. Recent Works

Jaeyoung Chun

Motivation

Why Seeking Efficiency?

ZA'/RIE:' [/ = FILM TV MUSIC TECH GAMING THEATER REALESTATE AWARDS VIDEO V500

FEATURE

Facebook Under Fire: How Privacy
Crisis Could Change Big Data Forever

AlphaGo] ,920 CPUSs

OCCOO 28O GPUs
O‘O $3 OOO Electrlc:lty Bill

eeeee

o an é; TiE
oy PN BcEY oo T aw

e® © o0 © o o0 ® ©

AppStore Download
Restriction

To download an app over 100MB onto your
mobile device,

you must connect to WiFi.

Putting this in perspective,

VGG-16 has 130 million parameters (520MB).

This item is over 100MB.

Unless an incremental download is

available for this item, "Microsoft

Excel" may not download until you
connect to Wi-Fi.

Cancel OK

Dally, NIPS'2016 workshop on Efficient Methods for Deep Neural Networks

Model Size

8 | 1, | 152

LAYERS

22.0

GFLOPS

1.4

GFLOPS

~16% Top-5 Error Rate

~3.5% Top-5 Error Rate

2012 2015
AlexNet ResNet

Jaeyoung Chun

Error Rate (%)

Benchmarked with fb.resnet.torch using four M40 GPUs

Speed of Training

B ErrorRate (%) @ Training Time (days)

12
10.5
10.76
I 10
' J
I o
I 8 @ ERR %
I)
I o
1 6 £
l '
= .] 0
25 : ‘ g Y
: [
: DAYS
2
6.16
ﬂ O

ResNet18 ResNet50 ResNet101 ResNet152

Jaeyoung Chun

Mark Horowitz “Computing’s Energy Problem (and what we can do about it)", ISSCC 2014

Energy Consumption

800

pJ
Cost of data movement is much more huge.
When compared, arithmetic ops is more like a noise.
600 640 pJ
pJ
(32 bits) (32 bits) (32 bits)
. . 400
pJ
ALU
Fetching &
moving data for -
computation pJ
5pJ
3.7 pJ i
° p 0pJ I
. . . 32-bit Local SRAM 32-bit On-Chip SRAM 32-bit Off-Chip
(32-bit FP Multiplication) Read Read LPDDR DRAM Read

LPDDR

c.f) 1.1 pJ for 16-bit FP Mult
0.2 pJ for 8-bit Mult

Modules

(] EfficientInference

7

(*) no clear cut

Efficient Training

Pruning

N\

Weight Sharing
Quantization

Huffman Coding

Low Rank Approximation

Binary/Ternary Network

Deep Compression

Winograd

[:] Algos: Classic/Building Block

[:] Algos: Relatively New

. Hardware

r___

Sparse-Wingograd

- (Tensor Processmg Unit) (Efficient Inference Engine) -

Jaeyoung Chun

Something to Keep in Mind...

e Losing any accuracy?
e Multiple methods interfering each other?

1 Pruning

Trained Quantization

3 Huffman Coding

Understanding the underlying concepts >
& getting insights, and intuitions

Weight Sharing e,

------------- Deep Compression

Implementation and
mathematical details

Jaeyoung Chun

Algorithms for
Efficient Inference

Lecun et al. NIPS'89, Han et al. NIPS'15

Pruning

e
Less number of parameters with almost no loss of accuracy

Original Network

Pruning

> (]
not just to reduce the network complexity,

but also to avoid overfitting

Pruning

Train Connectivity

Prune Connections

Han et al. NIPS'15

Retrain Weights

Learn the connectivity
via normal network
training, as you would
normally do.

Prune the small-weight
connections from the

network.
(below a certain threshold)

2

Retrain the network to
learn the final weights for
the remaining sparse
connections.

Jaeyoung Chun

Han et al. NIPS'15

Pruning

< Pruning w/o Retraining

0.5%
0.0%= omoromirinm g = = % = % e e
05% | "t “

-1.0% 0.

1.5% .
2.0% 5
2.5% 5
-3.0% .
3.5% ,
-4.0% o

-4.5% v
40% 50% 60% 70% 80% 90% 100%

Accuracy Loss

-

Parameters Pruned Away

Pruning

Train
Connectivity

l

Prune
Connections

l

Train
Weights

Accuracy Loss

© Pruning

Han et al. NIPS'15

Pruning+Retraining @ lIterative Pruning and Retraining

0.5%

0.0%-~ .o-.o-.o--:-.r-.-_-_-d

-0.5%
-1.0%
=1:6%
-2.0%
-2.5%
-3.0%
-3.5%
-4.0%

-
- -

-
~ -
<

-

-4.5%
40%

50%

60% 70% 80%
Parameters Pruned Away

90%

100%

Han et al. NIPS'15

Pruning: AlexNet

B Pruned [Remaining

100%
16% 63% 63% 74% 88%
i
84%
75%
50%
37%
: 25%
% 26%
Pretty much you
have to look at all the 12%
pixels of the image
0%
convl conv2 conv3 conv4 convs fc1 fc2 fc3 total

Jaeyoung Chun

Han et al. NIPS'15

Pruning + Image Captioning

ORIGINAL

a basketball player in a white uniform
is a playing with a [SEIl}.

PRUNED 90%

a basketball player in a white uniform

SERIEN e ldak:] basketball !

If our brain loses 90% of neurons,
can we still describe this image
with this high accuracy?

Jaeyoung Chun

Christopher A Walsh. Peter Huttenlocher (1931-2013). Nature, 502(7470):172-172, 2013.

Pruning in Human?

Adult

5 O O trillion synapses Adolescent
-| ’ O O O trillion synapses 1Year OId

Peter Huttenlocher

(1931-2013)
trillion synapses New Born

Jaeyoung Chun

Han et al. ICLR"16

Weight Sharing

Weight Edge (Connection) Weight Edge (Connection)

209 O > | 200 O >
212 O© > 200 O >
192 O > 200 O >
1.87 O > >

200 . ©

Less number of bits per parameter

Too accurate leads to overfitting anyway ' T Effective Weight
or Shared Weight

Han et al. ICLR"16

Weight Shari
e ' g a rl n g Weights are not shared across layers. The shared weights approximate the original

network because the method determines weight sharing after a network is fully trained.

e K-Means Clustering (with K=4)

Cromry | Original weights | EfGeive Weloht
[2.09,212,1.92,1.87] 2.00
Green [1.48,1.53,1.49] 1.50
[0.09, 0.05, -0.14, O, O] 0.00
Yellow [-0.98, -1.08, -0.91, -1.03] -1.00

Only 4 numbers

4x4=16 numbers

Jaeyoung Chun

Han et al. ICLR"16

Weight Sharing

Color Effef:tive
Weight
2.00
Green 1.50
0.00
Yellow -1.00

" Also called “Codebook”

Jaeyoung Chun

Han et al. ICLR"16

Weight Sharing / Quantization

Color Effef:tive Index I|:|dex
Weight (Int) (Binary)
2.00 0 00
Green 1.50 1 01
0.00 2 10
Yellow -1.00 3 M <.

No more 32-bit FP and only 2 bits

Jaeyoung Chun

Han et al. ICLR"16

Trained Quantization: Weight Distribution

20000
The middle part is “pruned”,
15000+ making the distribution look like
bimodal.
Py
‘= 10000:
=
[}
©
5000+
O} X X X OX® 60 0X0 X @ X © € 0 0X0 0 X0 ox oX X X X
—-0.04 ~0.02 0.00 ~ 0.02 0.04 0.06

weight value , . .
AEERIP @ Weight Sharing with K-Means

better represents the distribution
(esp. bimodal part)

X Naive quntization with 4-bit integer
Sampling the space uniformly which doesn’t capture
the distribution well.

Jaeyoung Chun

Han et al. ICLR"16

Pruning and/or Quantization: Accuracy

Pruning + Quantization

Pruning Only Quantization Only
Accuracy ! !
Gain 0.5% . ;
,-0.0% | i
//,/ '0.50/0 1 1
O 1.0% i i -
Accuracy .- 1.5% : :
Identical 2.0% : i :
-2.5% SVvD
'3.09/0 ! 1
-3.5%
-4.0% ' :
Accuracy 4.5% - :
Loss 2% | = 5% 8% 1% 14% 17% 20%
i i Model Size Ratio
Compressed model is After Compression

8% of the original

Han et al. ICLR"16

Pruning and/or Quantization: Accuracy

top5, quantized only < top5, pruned + quantized

top1, quantized only © top1, pruned + quantized
85% ' o

68%

51% fr—

34%

Accuracy

17%

0% ©O= ————

1bit 2bits 3bits | 4bits | 5bits 6bits 7bits 8bits

Number of bits per effective weight in
all layers

Huffman Coding

6x6=36 numbers

2 bits * (24 + 5 + 4 + 3) = 72 bits

V

Han et al. ICLR"16

Color | Srerae e ()| Count | %
2.00 0 00 24 66.67
0.00 2 10 5 13.89
Yellow -1.00 3 il 4 .1
Green 1.50 T o) 3 8.33

Frequent weights » use less bits to represent
Infrequent weights » use more bits to represent

Jaeyoung Chun

Huffman Coding

color | Fpyerave | Ihaex MUTTE count
2.00 0 1 24 66.67
0.00 2 00 5 13.89
Yellow -1.00 3 oM 4 1.1
Green 1.50 1 010 3 833

N

(1 bit *24) + (2 bits * 5) + (3 bits * 4) + (3 bits * 3) = 55 bits

Han et al. ICLR"16

Jaeyoung Chun

Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding” (2015)

Deep Compression

Quantization: less bits per weight

Pruning: less number of weights B R R e T e % Huffman Encoding
7 4 \
 aar e e e R S S ~ \ A T ———— ~
0 N | | Cluster the Weights ! ’ \
' {) 1 : _ O J : : - ~ 1
I | Train Connectivity . I I I . I
original | |) | same ! i i | same : Encode Weights | same
network | <z . !accuracy, Generate Code Book ,accuracy | - - jaccuracy
! 1 U J | | !
E> ! | Prune Connections : E> I IT I I . C>
s 4 I
orlgmal : i & o : 9x-1 :?x | rQuantize the Weigh : 27x-3-1x : Encode Index I 35’(4?"
size s . :reductlon: yith Code Book |reduct|on: L J :reductlon
: Train Weights | I O : e i
\
\\L of : Retrain Code Book :
I i - ' €)
~ -

e —————— ——

Stage 1 Stage 2 Stage 3

Han et al. ICLR"16

Compression Ratio (w/o accuracy loss)

40X

39X

35X

49X

10X

TIX

B Original Size

Lenet-30o NN .07 VB T

0.03 MB

I, .72 VB

BB ocosmB

I 2440.00 MB
AN N ¢ M5

I 550.00 MB
VN N .30 VB

I 500 VB
CoogleNe! S .50 VB

I £/.c0 VB
ResNet8 . - 00 VB

0.1MB T™MB 10MB 100MB

LeNet-5

Jaeyoung Chun

Mark Horowitz “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014

| R\ FRN: 7
Deep Compression — O\
Large DNNSs such as AlexNet, VGGNet are o o
fully fit into on-chip SRAM.
5 pJ 50 pJ 640 pJ

(32 bits) (32 bits) (32 bits)

Fetching &
ALU moving data for
computation

LPDDR

landola, Forrest N,, et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<0.5 MB model size." (2016)

SqueezeNet
+ Deep Compression

Can we apply Deep Compression to
already compact model such as SqueezeNet?

1x1 Conv 7 1x1 Conv 512
Squeeze Squeeze maxpool/2
1x1 Conv 1x1 Conv 1x1 Conv 3x3 Conv
Expand Expand Expand
64 64 512
Output Output
Concat/Eltwise Concat/Eltwise R
128 128
global avgpool

“Dog”. ehh?

Jaeyoung Chun

Algorithms for
Efficient Training

Chuck Moore, "DATA PROCESSING IN EXASCALE-CLASS COMPUTER SYSTEMS", The Salishan Conference on High Speed Computing (2011)

MOOI'e’S LaW A benchmark spec for

CPU integer processing power
A

107 - Scaling a CPU : : : o Tran;is'tors (thou§ands)
F . . . ; : PoLT (Original Moore's law)
at in a number of dimensions ; ; i :
5
10 E :
Single-thread Performance (SPECint)
104 . (Popular version of Moore’s Law)
3 : Frequency (MHz)
10"
2 : Typical Power (watts
10° } yp ()
1 i Number of Cores
10" F .
10°] = z ; z i egateT; i
. e ' i ' - - T > Still increasing

1975 1980 1985

Jaeyoung Chun

Without Moore’s Law (popular version)

® How are we going to continue to scale the performance we need
® to build a better DNN?

Single-thread Performance

Number of Cores

A. Use multiple processors

1975 1990 2005 2010 ® in parallel

Dally, High Performance Hardware for Machine Learning, NIPS2015

Data Parallelism

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
32x32 6@28x28

o Run different images on
. layer 3 . .
o e QT different GPUs in parallel

S2: f. maps
6@14x14

|
| Full comLection | Gaussian connections

Convolutions Subsampling Convolutions ~ Subsampling Eull connection

C3: f. maps 16@10x10
S4: f. maps 16@5x5

CS: layer pg: jayer OUTPUT
120 84 Y 10

C1: feature maps
6@28x28

CIFAR-10

\

Weight updates must
be coordinated
between workers.

S2: f. maps

|
l Full conrkectjon | Gaussian connections

Convolutions Subsampling Convolutions ~ Subsampling Full connection

Jaeyoung Chun

Jeff Dean et al. “Large Scale Distributed Deep Networks” (2013)

Data Parallelism

Aggregate everyone's Ap's, add to
P "o A , theweights, calculate the new
arameter Server P=prap weights, and sends them back to

ooooadl e
o N

—_

00 [0 00 [0 OO [OO
Model | |00 |00 00 |80 oojog |
Workers | 50 [0 00| (OO oglog |0
00 |80 00 |80 00 |80

1 1 1 Each GPU works on some portion
of the dataset and sends their Ap

Data (changes in weights) to
Shards Parameter Server

Dally, High Performance Hardware for Machine Learning, NIPS'2015

Data Parallelism

p'=p+Ap
Model Worker 1 Model Worker 2
g |od g |od
a0 [a a0 [a
g |od g |od
a0 [a a0 [a

P'=p+Ap
pP'=p+Ap

Model Worker 3

Add my weight changes and send the new
weight to the next worker. Go all the way I
around the ring. D4y o

|
|||

Dally, High Performance Hardware for Machine Learning, NIPS'2015

Hyper-Parameter Parallelism

Try many alternative networks in parallel

e Different number of layers > Search in the parameter space
e Different size of convolutional kernels
e Different number of neurons per layer
[]
hidden layer hidden layer 1 hidden layer 3
input layer

put layer

!/ .\

out
7 §
SO /:ﬁ

input layer

N7 o N7
OO H®
X4 L = WL =
VavOay QS SRKA
SKEAOOSIRON?

O<>
NN AN

hidden layer 2

Jaeyoung Chun

Boris Ginsburg, Sergei Nikolaev, Paulius Micikevicius, “Training with mixed precision”, NVIDIA GTC (2017)

Mixed Precision Training

More precision than required - reduce precision

W F16

F16
Actv
Actv —F16 [EERESE

W (F16) ——>

Save by factor of 2 F16 F16 W
Yy Actv Grad «——

BWD-A
<F1—6Actv Grad
° Storage

e Memory bandwidth
(" .F16

W Grad F16 le——— Actv
BWD-W F16
le—— Actv Grad
\C—
F16
N
Master-W (F32) e { Weight Update }L Updated Master-W

Boris Ginsburg, Sergei Nikolaev, Paulius Micikevicius, “Training with mixed precision”, NVIDIA GTC (2017)

Mixed Precision Training: Comparison

AlexNet
Top1 Top5
accuracy, % | accuracy, %
Mixed precision training 58.12 80.71
Inception V3

Top1 Top5
accuracy, % | accuracy, %

Mixed precision training 7117 90.10
ResNet-50
Top1 Top5
accuracy, % | accuracy, %

Mixed precision training 73.6 91.11

Jaeyoung Chun

Hardware

Quick Overview of Hardware Side,
But Why?

Some of the algorithms we
(02 reviewed are actually used in the
hardware design.

“An in-depth look at Google's first Tensor Processing Unit (TPU)"
https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

Google TPU

e Tensor Processing Unit

e Comparedto GPU & CPU

o 15x to 30x faster

o 30x to 80x better energy efficiency
e Onlyinternal use

o e.g.AlphaGo, Street View, Photos, ...

... Can be inserted into a SATA
hard disk slot for easy/fast
deployment to existing
server infrastructure

Fiaeyouns)| B TP

@ Secure | https://cloud.google.com/tpu/

Google Cloud TPU ~w—— SEE &
(znd gen) Why Google Products Solutions Launcher Pricing Securt > CONTACT SALES

CLOUD TRy **

Train and run machine learning models faster than ever before

P M |d Feb 20]8 VIEW DOCUMENTATION

Cloud TPUBE™ announced.
e Supports for inference as well as
training

Accelerated
Machine Learning

Machine learning (ML) has the power to greatly

simplify our lives. Improvements in computer

Jaeyoung Chun

Google Cloud TPU (2nd gen)

Google Cloud Platform
Compute Engine

B VMinstances

Instance groups

E Instance templates
B Disks

Snapshots

[=) Images

&N TPUs

% Committed use discounts

| serouno)| Y IH G

&® deepleamning ~ : @
2

& Create a Cloud TPU

Name /

jaeyoung-node-1
Zone

us-centrall-c ~
TPU type /

tpu-v2 ~

TensorFlow version

1.8 -
Network
defauit -

Jaeyoung Chun

The Secret of Google TPU

Quantization Matrix Multiply Unit

Processes hundreds of thousands of
operations (= matrix operation) in a single
clock cycle.

Optimization technique that uses an 8-bit
integer to approximate an arbitrary value
between a preset minimum and a
maximum value

CISC Instruction Set L .
Minimal Design
High-level instructions specifically
designed for neural network inference. Optimized for neural network inference
only. In the TPU, the control logic is

minimal and takes under 2% of the die.

Jaeyoung Chun

Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Processing Unit” (2017)

Google TPU: Quantization

We have already seen the power of Quantization when discussing Deep Compression.

+3.4E+38
I max
" 32bit | / N {8bit
. float L it
l min A
-3.4E+38 '

Not smooth, but with careful design,
we can still prevent accuracy loss.

Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Processing Unit” (2017)
“RISC vs CISC", https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/risccisc/

Google TPU: CISC Instruction Set

Reduced vs. Complex Instruction Set Computer

A B
(2,3) LOAD A, 2:3

C D LOAD B, 52
PROD A, B

E F STORE 2:3, A

CPU Register

(5,2) Low-level simple
instructions
[Execution Unit] that are commonly
used
6x4 Memory

eqg.

load, store, add, multiply

CisC

MULT 2:3,5:2

High-level instructions
that perform complex
operations

e.g.
compute
multiply-and-add
many times

Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Processing Unit" (2017)

Google TPU: CISC Instruction Set

TPU Instruction Function

Read_Host_Memory Read data from memory
Read_Weights Read weights from memory
MatrixMultiply / Convolve Multiply or convolve with the data

and weights, accumulate the results

Activate Apply activation functions

Write_Host_Memory Write result to memory

[E High-level instructions specifically designed for

neural network inference

Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Processing Unit" (2017)

Google TPU: Matrix Multiplier Unit

Unified Buffer for Local Matrix Multiply Unit 6 ; ; ; 6

Activations &
(96K x 256 x 8b = 24 MiB) (256 x 256 x 8b = 64K) (multiply- and add operations per cycle)

Host Accumulators

Interface (4K x 256 x 32b = 4 Mib)
DRAM DRAM
DDISISES Control Activation Pipeline E?E(;I;EZS

(TPU clock in MHz)

PCle Interface Misc I/O

46x10'

(65,536 x 700M operations per sec)

Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Processing Unit” (2017)

Google TPU: Minimal Design

Unified Buffer for Local Matrix Multiply Unit

Activations /
(96K x 256 x 8b = 24 MiB) (256 x 256 x 8b = 64K)

Others

21.0%
Host Accumulators

I70 Interface (4K x 256 x 32b = 4 Mib)

1005

Compute Control DF?AM Control Activation Pipeline DFEQAM

e —— 2 0% ort ort

30.0% DDR3 DDR3

PCle Interface Misc I/O

Jaeyoung Chun

Han et al. ISCA"l6

EIE (Efficient Inference Engine) -l OX

less computation

Sparse Weight

W (weight) x A (activation)
fW=0—-0xA=0 X

less memory footprint

Weight Sharing

With K-means clustering,

e.g. the blues (2.09, 2.12.,1.92, 1.87) are
treated as 2.0 instead

(i.e. effective weights)

Sparse Activation

e W (weight) x A (activation)
IfA=0->Wx0=0

3 X less computation

Jaeyoung Chun

8 X less memory footprint

EIE: Speedup and Energy Efficiency

Speedup Energy Efficiency
14826
100 115 10000
92
50
1000
10 14
10
5 100
1 i 1
10
1
0.5 0.5 7 .
0.5 1
0.3
1
Alex-8 VGG-8 NT-LSTM Alex-8
B CPUDense (Baseline) [l GPU Dense mGPUDense [EIE B CPU Dense (Baseline)

Han et al. ISCA"l6

11828
8053

5 7
1 1
VGG-8 NT-LSTM

B GPU Dense mGPU Dense [l EIE

Jaeyoung Chun

Break

