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Abstract. Work on photometric stereo has shown how to recover the shape and reflectance properties of an object
using multiple images taken with a fixed viewpoint and variable lighting conditions. This work has primarily relied
on known lighting conditions or the presence of a single point source of light in each image. In this paper we show
how to perform photometric stereo assuming that all lights in a scene are distant from the object but otherwise
unconstrained. Lighting in each image may be an unknown and may include arbitrary combination of diffuse, point
and extended sources. Our work is based on recent results showing that for Lambertian objects, general lighting
conditions can be represented using low order spherical harmonics. Using this representation we can recover shape
by performing a simple optimization in a low-dimensional space. We also analyze the shape ambiguities that arise
in such a representation. We demonstrate our method by reconstructing the shape of objects from images obtained
under a variety of lightings. We further compare the reconstructed shapes against shapes obtained with a laser
scanner.
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1. Introduction

Photometric stereo methods recover the shape and
albedo of an object using multiple images in which
viewpoint is fixed, and only the lighting conditions
vary. Many solutions to this problem exist for labo-
ratory conditions, in which lighting is either known or
can be kept simple. In this paper1 we show how to per-
form photometric stereo under quite general lighting
conditions that need not be known ahead of time. We
consider convex objects that are approximately Lam-
bertian, and assume that lights are relatively distant and

isotropic (no cast shadows or slide projectors). But oth-
erwise, we allow for arbitrary lighting, including any
combination of point sources, extended sources, and
diffuse lighting.

Much work on photometric stereo has assumed that
lighting comes from a single source, generally a point
source or a controlled, diffused source of light (see
Section 2). Some recent approaches allow for images
containing a single point source and a diffuse com-
ponent of lighting, provided that the diffuse compo-
nent is the same for all images (Yuille et al., 1999).
These assumptions are natural for many applications,
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such as inspection, in which one controls viewing
conditions.

In this work, we consider images produced by more
general lighting conditions that are not known ahead
of time. We do this, first, because we may wish to
use shading to construct shapes under everyday light-
ing. This lighting is often quite complex, consisting
of multiple sources of varying kinds, and large sur-
faces such as walls that reflect light. Second, for some
applications, such as modeling large outdoor struc-
tures, it may not be practical to completely con-
trol the lighting. Third, for other applications, one
may wish to reconstruct shape using previously taken
photographs, without having access to the object it-
self. For example, one might wish to use photos of
a person taken many years ago to build a model
of them. Finally, theories for reconstruction under
general, unknown lighting conditions can shed light
on how humans perceive shape under similar condi-
tions. This paper develops basic tools to handle com-
plex lighting conditions, and provides a preliminary
assessment of them using controlled images. It is a
subject of future work to explore these more general
applications.

The starting point for our work is a series of re-
sults that show that the set of images produced by
a convex, Lambertian object under arbitrary lighting
can be well approximated by a low-dimensional lin-
ear subspace of images. Shashua (1997) and Moses
(1993) have shown analytically that, in the absence
of all shadows, a Lambertian object produces a 3D
subspace of images. Basri and Jacobs (2003) and
Ramamoorthi and Hanrahan (2001) show that higher
dimensional subspaces can be used to account for
the effects of attached shadows. This subspace is 4D
when the reflectance function (the amount of light re-
flected by Lambertian materials with unit albedo as a
function of surface normal (Horn, 1986)) is approxi-
mated with the zero and first order spherical harmon-
ics. The set of images is 9D when the second order
spherical harmonics are included. These results imply
that given a number of images under different light-
ing conditions, principal component analysis can pro-
vide a good approximation to an object’s complete
set of images. In this paper, we consider the prob-
lem of translating this linear description of an ob-
ject’s images into a description of its surface normals
and albedos. Existing techniques can then be used to
translate these normals into an integrable surface, if
desired.

To do this, we must fit the low-dimensional space
that represents the actual images with a similar space
that could be produced by a 3D scene. With a first
order approximation, the 4D space of an object’s im-
ages corresponds to its albedo and its surface normals
scaled by albedo (we call these scaled surface nor-
mals). Therefore, we must approximate the observed
images with a 4D space in which one dimension equals
the norm of the other three. This can be done by solving
an overconstrained linear system, in a manner similar
to that used by Tomasi and Kanade (1992) to determine
motion for scaled orthographic projection. With a sec-
ond order approximation, we must find a scene struc-
ture whose images under harmonic lighting match the
observed images. This can be done with an efficient
iterative process, because the scaled surface normals
can be described as three linear combinations of nine
basis images produced by SVD, requiring us to opti-
mize over only 27 variables. We confirm experimen-
tally that these optimization procedures produce good
results.

We also determine the extent to which a linear de-
scription of an object’s images uniquely determine
its surface normals. With the 4D approximation, we
show that the normals are determined up to a subgroup
of the 4 × 4 linear transformations, called Lorentz
transformations. That is, a (scaled) Lorentz transfor-
mation of surface normals and albedo generates new
surface normals and albedo with the same 4D linear
approximation to its images. We also show that after a
small linear transformation of an object’s scaled nor-
mals the 4D approximation to the new object’s images
lies in the old, 9D approximating subspace. This sug-
gests that small linear transformations of a model have
an especially small effect on the images it produces,
making it difficult to resolve an unknown linear trans-
formation of the object shape. Additional constraints,
such as integrability, can be used to further reduce the
ambiguity.

Finally, we describe experiments that illustrate the
potential of these methods. We present simulations that
show that in spite of the approximations made, in ideal
cases we can reconstruct an object’s normals up to a
few degrees of angle. We also compare reconstructions
of real objects to 3D models of the same objects pro-
duced with a laser scanner. In our experiments with the
4D approximation our reconstructed shapes achieve an
accuracy of 95–98% with respect to the laser scanned
shapes, while with the 9D approximation our recon-
structed shapes achieve an accuracy of 97–99%.
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2. Background

This section briefly reviews past work on photomet-
ric stereo (Section 2.1). Since our photometric stereo
method relies on recent results on harmonic modeling
of Lambertian reflectance we review these results in
Section 2.2.

2.1. Previous Approaches

Classical work on photometric stereo has assumed that
the illumination conditions are known, e.g., through
the specification of a reflectance function (Woodham,
1980) (see (Horn, 1986) for a review). Much work
has followed, including some that focuses on deal-
ing with non-Lambertian objects (e.g., Coleman and
Jain (1982), Barsky and Petrou (2003), Georghiades
(2003a,b); Okatani and Deguchi (2001) and Tagare
and Figueiredo (1991)), in some cases capitalizing on
distributed light sources (Ikeuchi, 1981; Nayar et al.,
1990), reflectance examples (Hertzmann and Seitz,
2005), and situations in which the light source is near
the object and near the camera (Kim and Burger (1991)
and Clark (1992)). Further work has attempted to im-
prove photometric stereo reconstruction by applying
local shape from shading (Sakarya and Erkmen, 2003)
and by using known control points (Horovitz and Kiry-
ati, 2004). A continuous form of photometric stereo has
been suggested by Zhang et al. (1996). Applications to
3D texture anaylsis were suggested by Smith (1999).
Finally, class constraints have been employed by Zhou
et al. (2004), and photometric stereo has been combined
with motion by Simakov et al. (2003) and Zhang et al.
(2003).

Our work focuses on reconstruction from images
of Lambertian objects under unknown lighting con-
ditions. We now introduce some notation to allow us
to discuss this situation in more detail. We first con-
sider the image intensity, i , produced by a point on
a 3D Lambertian object illuminated by a point light
source. Let �l3 denote a 3D column vector containing
parameters describing the light. The direction of �l3 pro-
vides the direction from the surface point to the light,
while the magnitude of �l3 encodes the magnitude of the
light. Let ρ denote the albedo of the surface point, and
n̂ = (nx , ny, nz)

T its surface normal (‖n̂‖ = 1). Then
when the surface is facing towards the light source,
Lambertian reflection is described by the equation:

i = ρ�l T
3 n̂. (1)

When there are many surface points, we can write this
in matrix form as:

�i T = �l T
3 S3. (2)

Here �i is an n-dimensional vector containing all im-
age intensities. If we describe the albedo of all surface
points with the vector �ρ, and the components of the
surface normals in the vectors �nx , �ny, �nz , then S3 is a
3 × n matrix whose three rows, �ρ ◦ �nx , �ρ ◦ �ny, �ρ ◦ �nz

are each a vector describing the x, y or z component of
the object’s surface normal at each point, scaled by its
albedo. We use the operator ‘◦’ to denote the Hadamard
(i.e., componentwise) product of two vectors.

Shashua (1997) and Moses (1993) considered the
case in which a set of images is produced each with a
single point source with unknown intensity and direc-
tion.Using (2), they showed that three or more images
provide enough information to determine the scaled
surface normals of an object up to an unknown linear
transformation; in fact each image is a linear combina-
tion of the x, y and z components of the object’s nor-
mals scaled by albedo. This result ignores the effect of
attached shadow, assuming that all the surface normals
face and receive light from all the light sources. Wood-
ham et al. (1991) also consider the problem of unknown
light sources under the same assumptions. Hayakawa
(1994) uses Shashua (1997) and Moses (1993)’s result
in a factorization framework to handle many images.
Belhumeur et al. (1999), Yuille et al. (1999), and Fan
and Wolff (1997) (see also Onn and Bruckstein (1990))
have shown that integrability reduces the ambiguity to
a “generalized bas-relief transformation,” which allows
the recovery of a surface up to a stretch and shear in the
z-direction.

Koenderink and van Doorn (1997) extend this ap-
proach by allowing for a single point source plus a
perfect ambient component to the lighting. This adds
a fourth dimension to a linear description of an ob-
ject’s images, corresponding to albedo. Luong et al.
(2002) used the same space to recover the albedo when
the surface normals are known. Yuille et al. (1999) de-
scribe a reconstruction method for the case in which
each image is lit by a single point source, and all
images share a common background lighting, which
can be arbitrary. All this work shows a progression
towards lighting conditions that are less constrained,
but still the emphasis is on inferring structure based
on the assumption of a single point source in each
image.
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On the other hand, Jacobs et al. (1998) discusses the
case of arbitrary, unknown lighting (assuming lighting
is distant and isotropic). They show that, under these
conditions, it is impossible to perfectly reconstruct the
shape and albedo of an object using any number of
images. In fact, they show that even if the shape of the
object is known, perfect reconstruction of its albedo is
impossible using shading information alone. We skirt
this result because our reconstructions are approximate,
although quite accurate.

2.2. Harmonic Modeling of Lambertian Reflectance

Recently, Basri and Jacobs (2003) and Ramamoorthi
and Hanrahan (2001) have provided a new way to de-
scribe the effect of general lighting on a Lambertian
object. They consider light that may strike an object
from all directions. In this case we can express light
intensity as a function of direction, �(θl , φl) (denoted
alternatively as �(ûl) where ûl denotes a point on the
unit sphere). When light comes from all directions, we
cannot assume, as we did above, that all surfaces in
the scene face a common set of light sources. Even if
we ignore the effect of cast shadows, all surfaces see
light from a hemisphere of directions that varies with
the direction of surface normals.

If we fix the lighting, and ignore the albedo for now,
then the reflected light is a function of the surface nor-
mal alone. We write this function as r (θr , φr ), or r (v̂r ).
If light reaches a point from a multitude of directions
then the light reflected by the point would be the in-
tegral over the contribution for each direction. If we
denote k(û, v̂) = max(ûT v̂, 0), then, we can write:

r (v̂r ) =
∫

S2

k(ûl , v̂r )�(ûl)dul . (3)

where
∫

S2 denotes integration over the surface of the
sphere. The max operation ensures that when a surface
faces away from a light, the amount of reflected light
is zero, not a negative value.

Using an analog to the convolution theorem for func-
tions of direction (called the Funk-Hecke theorem), it
can be shown that this equation describes a convolu-
tion on the surface of the sphere. It states that reflected
light is obtained by convolving the incident light with,
k, a half-cosine kernel, in which negative values are
clamped to zero. This kernel can be shown to act as
a low-pass filter. This means that only the low fre-
quency components of the lighting function, �, have a

significant effect on a Lambertian object’s reflectance
function. It also means that light of a single low fre-
quency is reflected as a somewhat attenuated function
of the same low frequency.

These components are represented as low-order
spherical harmonics. Analogous to the Fourier series,
spherical harmonics form an orthonormal basis for de-
scribing functions on the surface of a sphere. Basri
and Jacobs (2003) proves that for any configuration
of distant lighting, at least 98% of the resulting re-
flectance function can be captured when light is rep-
resented by second order spherical harmonics. A first
order approximation captures at least 75% of the re-
flectance. These bounds are not tight, and in fact many
common lighting conditions yield significantly better
approximations. For example, under a point source illu-
mination the first and second order harmonics approx-
imate the reflectance function to 87.5% and 99.22%
respectively.

This means that to first order, we can approximate
any image of an object, under complex lighting con-
ditions, as a linear combination of four images of the
object, under four low-frequency lighting conditions.
These four harmonic images have the form: (1/

√
4π )�ρ,√

3/4π �ρ ◦ �nx ,
√

3/4π �ρ ◦ �ny,
√

3/4π �ρ ◦ �nz . Because
we are only interested in the linear subspace spanned
by these images we can omit constant factors, obtaining
�h1 = �ρ, �h2 = �ρ◦�nx , �h3 = �ρ◦�ny , �h4 = �ρ◦�nz . Note that
the last three images are the images that Shashua (1997)
and Moses (1993) show are produced by a point source
that faces all surface normals. In this case, we can write:
�i T = �l4

T
S4, where �l4 is a 4D vector describing the low

frequency components of lighting, and S4 is a 4×n ma-
trix whose rows contain these first four harmonic im-
ages. The four harmonic images obtained in this case
are identical to the representation used in Koenderink
and van Doorn (1997), although they interpreted this
as relevant to the case of an object illuminated in each
image by a perfectly diffuse light plus a single point
source that was visible to all surface normals.

If we take a second order approximation to the light-
ing function, �, an image is described by �i T = �l T

9 S9,

where �l9 is a 9D vector and S9 contains the object’s im-
ages under lighting from nine harmonics that provide
a second order approximation. The first four rows of
S9 are the same as S4. The other five rows are: �h5 =
�ρ ◦ (3�nz ◦ �nz −�1), �h6 = �ρ ◦ �nx ◦ �ny , �h7 = �ρ ◦ �nx ◦ �nz ,�h8 = �ρ ◦ �ny ◦ �nz , �h9 = �ρ ◦ (�nx ◦ �nx − �ny ◦ �ny).

In principle, an accurate approximation of the re-
flectance function under some lighting conditions does
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not guarantee an equally accurate approximation of an
image of an object illuminated by the same lighting
condition, since this accuracy depends on the distribu-
tion of the surface normals and albedos of the object.
However, Frolova et al. (2004) showed that on aver-
age, assuming all lighting directions are equally likely,
the accuracy of first and second order spherical har-
monic approximations is at least 87.5% and 99.22%
respectively. Simulations demonstrate that the actual
accuracy is even higher, reaching 95% under a first
order approximation and 99.5% under a second order
approximation.

These results are key to our shape reconstruction
method. Below we show how we can use a set of
images of a Lambertian object to estimate the har-
monic images of the object and consequently to re-
cover its surface normals and albedos. The meth-
ods that we present will be appropriate under the
same assumptions as in Basri and Jacobs (2003) and
Ramamoorthi and Hanrahan (2001), namely, for a con-
vex object illuminated by distant and isotropic lights
that are otherwise unconstrained.

3. Shape Recovery

We assume that a number of images of an object are
taken from the same viewpoint, but with different illu-
mination. Denote the matrix of measurements by M .
M is f × n where f denotes the number of images
and n denotes the number of pixels in each image (so
every image is a row in M). Then, M can be approxi-
mated by linear combinations of the harmonic images,
that is,

M ≈ L S, (4)

where L ( f × r ) contains the low order coefficients
of the lighting and S (r × n) contains the harmonic
images. That is, r is either four or nine, and S is either
S4 or S9. Our goal is to recover the harmonic images,
S, since it is straightforward then to infer the surface
normals and the albedos of the object.

The first step is to factor M using Singular Value
Decomposition (SVD). Assuming f, n ≥ r , L and
S can be recovered up to a r × r linear ambiguity.
Such a method was proposed by Hayakawa (1994) for
the 3D linear space characterized in Shashua (1997)
and Moses (1993) and by Koenderink and van Doorn
(1997) for the 4D space that contains the zero and first

order harmonics. Using SVD we obtain

M = U�V T (5)

where U ( f × f ) and V (n ×n) are orthonormal and �

( f × n) is diagonal and contains the singular values of
M . The bulk of the energy in the images is contained
in the first r components. Consequently:

M ≈ L̃ S̃, (6)

where L̃ = U
√

�( f r ) and S̃ =
√

�(rn)V T , where �( f r )

(and �(rn)) denote the first r columns (and respectively
the first r rows) of �. The notation

√
� denotes the

non-negative square roots of the components of �.
Both the first and second order methods are based

on the assumption that the low order harmonics will lie
very close to the subspace constructed by SVD. This is
reasonable, since we know that they account for most of
the energy in the images. The 4D method assumes that
the first four harmonics span approximately the same
space as the first four principal components of the im-
ages. This makes sense because we know that the 4D
space produced by SVD is the best 4D approximation to
the observed images, while the first four harmonics are
known analytically to be the best possible approxima-
tion to the set of all images an object produces. Based
on this assumption, we then determine which sets of
scaled surface normals lie in this space with an albedo
that also lies in this space. The 9D method makes the
weaker assumption that the first order harmonics lie
somewhere in the 9D space spanned by nine principal
components. This merely assumes that the most sig-
nificant components of an object’s entire set of images
will show up in the set of images the object has actually
produced. In this case we look for scaled normals that
lie in the 9D space, and generate harmonic images that
span a similar space.

Ramamoorthi (2002) has analyzed the relationship
between the subspaces produced by PCA and by im-
ages generated with harmonic lighting. It is a subject of
future work to use these results to analyze the accuracy
of each of our methods.

3.1. The Case of Four Harmonics

We first deal with the case of four harmonics (r = 4).
We have factored M to M ≈ L̃ S̃, where M is f × n,
L̃ is f × 4 and S̃ is 4 × n. This factorization is non-
unique up to a 4×4 nonsingular linear transformation,
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A, since L̃ S̃ = L̃ A−1 AS̃. So S ≈ AS̃ for an unknown
matrix A. In a second step we now show how to use
a constraint on S to reduce this ambiguity to a seven
degree of freedom scaled Lorentz transformation. This
ambiguity can be removed with additional constraints
such as integrability.

Notice that every column �p = (p1, p2, p3, p4)T in
S satisfies: p2

1 = p2
2 + p2

3 + p2
4 (since p1 is the albedo

at a point, and p2, p3 and p4 are the components of
the surface normal scaled by the albedo). This can be
written in matrix notation as

�p T J �p = 0, (7)

where J = diag{−1, 1, 1, 1}. Note the geometric in-
terpretation of this constraint; every column of S is a
point on the surface of the canonical unit sphere in
projective space P3. This constraint is generally not
true for S̃, which may be a linear transformation of S.
We therefore reduce the ambiguity by finding a linear
transformation that forces the points to lie on the unit
sphere.

The unknown ambiguity matrix A maps each column
�q of S̃ to its corresponding column p in S, i.e., �p= A�q.
Substituting for �p in (7) we obtain

�q TATJ A�q = 0. (8)

Denoting B = ATJ A (B is 4 × 4), this constraint be-
comes

�q TB�q = 0. (9)

This equation is linear and homogeneous in the com-
ponents of B. Note that B is symmetric, so the equation
has 10 unknowns, and so at least 9 points are required
to determine B up to an unknown scale factor. To solve
for B we construct a system of equations

Q�b = 0. (10)

Q is n × 10, and every row of Q is based on in-
formation contained in one column of S̃. So for
a column �q in S̃ the corresponding row in Q is
(q2

1 , . . . , q2
4 , 2q1q2, . . . , 2q3q4). �b is a 10-dimensional

vector �b = (b11, . . . , b44, b12, . . . , b34)T , where bi j are
the elements of B. So we can find B up to a scale factor
by looking for the null space (or the best approximation
to the null space) of Q. As a result of this step we find

a 4 × 4 matrix

B̃ = β B = β ATJ A (11)

for some unknown scalar β �= 0.
From B̃ we can obtain an estimate of the ambiguity

matrix A up to scaled Lorenz transformation. Denote
our estimate Ã ( Ã too is 4×4), we obtain this estimate
by factoring B̃ to a product of the form

B̃ = ± ÃTJ Ã. (12)

Since B̃ is symmetric all its eigenvalues are real. More-
over, if all the previous assumptions hold one of the
eigenvalues of B̃ must differ in sign from the remain-
ing three eigenvalues. In other words, one eigenvalue
may be negative while the other three are positive (or
vice versa). To see this observe that

det B̃ = det(β ATJ A)

= β4 det(J )det2(A) = −β4det2 A. (13)

Consequently, for nonsingular A and nonzero β,
det B̃ < 0. Since det B̃ < 0 is a product of the eigen-
values of B̃ then clearly one of the eigenvalues must
differ in sign from the remaining three.

We can use this property to factor B̃ as follows. We
apply an eigenvalue decomposition to B̃,

B̃ = WJ	W T , (14)

where the columns of the 4 × 4 matrix W contain the
eigenvectors of B̃ and 	 is a 4×4 diagonal matrix that
includes the absolute values of the eigenvalues of B̃.
WLOG we order 	 and W so that the negative eigen-
value is first. (If there is only one positive eigenvalue
we reverse the sign of B̃.) Next we define Ã = √

	W T ,
and so B̃ = ÃTJ Ã. (Again, the notation

√
	 denotes

the non-negative square roots of the components of 	).
When the assumptions do not strictly hold, or when
there is significant noise, the eigenvalues of B̃ may not
have the proper signs. In that case we resort to an itera-
tive computation to find Ã that minimizes the Frobenius
norm

‖ ± B̃ − ÃTJ Ã‖, (15)

e.g., using gradient descent optimization. (Note that we
must minimize this expression for both B̃ and −B̃ since
the sign of β is unknown).
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At this point we have recovered a valid ambiguity
matrix Ã, so that the columns of our estimated shape
matrix, given by ÃS̃, lie on the surface of the canonical
unit sphere in projective space. However, there is still
an ambiguity remaining because some linear transfor-
mations of ÃS̃ maintain the columns on the sphere.
Specifically, the factorization of B̃ is not unique since
we can obtain equally valid factorizations by multiply-
ing Ã by any 4 × 4 matrix C̃ that satisfies

C̃TJ C̃ = J. (16)

In other words, the matrix C̃ Ã is a valid ambiguity ma-
trix for every matrix C̃ that satisfies (16), since, using
(12),

B̃ = ± ÃTJ Ã = ± ÃT CTJC Ã. (17)

Matrices that satisfy this condition (16) represent all the
projective transformations that map the unit sphere onto
itself. This set of transformations forms the Lorentz
group that arises in Einstein’s relativity theory and
many other disciplines (for its use in vision, see
Kanatani (1993)).

A Lorentz transformation has six degrees of free-
dom. This is because the quadratic form C̃TJ C̃ = J
provides ten quadratic equations (the form is symmet-
ric) in 16 unknowns, the components of C̃ . These de-
grees of freedom include three rotations of the (scaled)
surface normals and three imaginary rotations that
blend the albedo with the scaled surface normals.

Together with the unknown scale factor β we obtain
a seven parameter ambiguity. Let C satisfy A = C Ã
(recall that A is the matrix that separates S̃ from the true
harmonic space S, and that Ã is the matrix obtained by
enforcing the quadratic constraint), then using B̃ =
β ATJ A and B̃ = ÃTJ Ã we see that C must satisfy
βCTJC = J .

We can resolve the ambiguity, for example, if we
know the surface normals and albedos in two points. Or,
we can remove the ambiguity by enforcing integrability
as in Yuille et al. (1999).

In performing the procedure above we need to keep
an eye on some numerical issues. In particular, the
eigen-decomposition of B̃ (Eqs. (14) and (15)) is sen-
sitive to the particular selection of L̃ and S̃, and its
results can be made numerically stable by an initial
step of normalization. This is analogous to the prob-
lem of motion estimation with a perspective cam-
era, where a preliminary step of normalization has

been proved essential (e.g., Hartley’s normalization
(Hartley, 1997)). In our experiments we noticed that
in many cases the first row of S̃ was 3–4 orders of mag-
nitude higher than the other three rows. Such discrepan-
cies are further amplified by the eigen-decomposition
process and can thus lead to large numerical errors.
Since we are free to modify S̃ and L̃ by applying any
non-singular 4 × 4 matrix to S̃ and its inverse to L̃ we
first scaled the first row of S̃ to bring it to the same or-
der of magnitude as the other rows. In our experiments
we observed that such normalization significantly im-
proved the accuracy of the reconstruction. Moreover,
when a normalization was not applied, we often ob-
tained a matrix B̃ with incorrect signs of eigenval-
ues, the numerical factorization (15) did not converge
to a low value due to numerical errors, and conse-
quently the ambiguity that remained was a non-Lorenz
transformation.

In summary, the initial equation M ≈ L̃ S̃ tells us
already that the scaled surface normals lie in the row
space of S̃, obtained by SVD. Since S̃ has four rows,
this leaves sixteen degrees of freedom in the albedo
and the three scaled normals. We have shown that the
constraint that the first row of S, the albedos, must equal
the norm of the other three rows, the scaled surface
normals, reduces these degrees of freedom to seven. We
have also shown an effective procedure for computing
a valid harmonic space by constructing a matrix Ã that
can be applied to S̃ to provide the albedos and scaled
surface normals, up to this ambiguity.

Our complete algorithm is composed of the follow-
ing steps:

1. Begin with a set of images, each composing a row
of the matrix M .

2. Using SVD M = U�V T , factor M = L̃ S̃, where
L̃ = U

√
�( f 4) and S̃ =

√
�(4n)V T .

3. Normalize S̃ by scaling its rows so as to have equal
norms.

4. Construct Q. Each row of Q is constructed with
quadratic terms computed from a column of S̃.

5. Using SVD, construct B̃ to approximate the null
space of Q (i.e., solve Q�b = 0 and compose B̃
from the elements of �b).

6. Construct Ã.

(a) If B̃ has exactly one positive or one negative
eigenvalue, construct Ã with an eigenvalue de-
composition as follows:

(i) If B̃ has exactly one positive eigenvalue, re-
verse its sign (B̃ ← −B̃).
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(ii) Then, B̃ has exactly one negative eigen-
value. Apply an eigenvalue decomposition
B̃ = WJ	W T , and define Ã = √

	W T .

(b) Otherwise, perform an iterative computation to
find Ã that minimizes: ‖ ± B̃ − ÃTJ Ã‖.

7. Compute the structure ÃS̃, which provides the scene
structure up to a scaled Lorentz transformation.

3.2. The Case of Nine Harmonics

We now present a method based on the weaker assump-
tion that the scaled surface normals lie in the space
spanned by the first nine principal components. Since
at least 98% of the energy in the reflectance function
lie in a 9D space (Basri and Jacobs (2003)), higher or-
der components have little effect on the images, and
therefore on the 9D space found by SVD.

3.2.1. Recovery. As before, let M denote a matrix
containing the images. Our objective is to find an f ×
9 lighting matrix L and a 9 × n shape matrix S that
minimize

E = min
L ,S

‖M − L S‖, (18)

where ‖.‖ denotes the Frobenius norm. The rows of S
are further restricted to contain the second order har-
monics of some shape, i.e., they include �h1, . . . , �h9 in
the form defined in Section 2.2.

We approach this problem as follows. We first use
SVD to construct a 9D approximation such that M ≈
L̃ S̃. So L̃ is an f × 9 matrix, and S̃ is 9 × n. If we
assume that the scaled surface normals lie in the row
space of S̃, then we can structure our search by seeking
a 3 × 9 matrix A, such that:

AS̃ = (�h2, �h3, �h4)T . (19)

Given A, we have an estimate of an object’s structure.
We can evaluate how well this structure matches the
observed images by comparing it to the 9D linear sub-
space generated by the harmonic images. This linear
method of comparing a model to an image is described
in Basri and Jacobs (2003), but we review it briefly here.
From AS̃, we construct a 9 × n matrix, SA, containing
the harmonic images of AS̃. Then we determine how
well this matches all images by computing the error

(18), E(A), as:

E(A) = min
L

‖M − L SA‖ (20)

where L is chosen so as to minimize the error. Find-
ing this error is a linear problem. We can solve it by
projecting M onto the space spanned by the harmonic
images in SA, and then measuring the distance from
M to this projection. Our goal, then, is to find A that
minimizes E .

We do this using an iterative optimization. First, as
a starting point, we guess that the scaled surface nor-
mals will be the second, third and fourth rows of S̃,
which are associated with the second through fourth
largest singular values of M . We know that in theory,
the scaled surface normals, which are the first order har-
monics, are most important after the DC component,
which contains the albedos of the object. We then can
use any general purpose optimization method to try to
find the A that minimizes E , from this starting point.

3.2.2. A Linear Ambiguity. When we represent an
object’s images using a 9D linear subspace, the ques-
tion of ambiguity becomes: when do two different sets
of scaled surface normals lead to the same 9D space?
It is straightforward to show that if we rotate the scaled
surface normals or scale their components uniformly,
we will not change the 9D space of their harmonic im-
ages. Therefore, we know that our method can only
recover the scaled normals up to a scaled rotation, at
best. However, we also know that applying an arbitrary
linear transformation to the scaled surface normals of
an object will not change the entire set of images that
it produces, called its illumination cone (Belhumeur
et al., 1999). On the other hand, applying a 3×3 linear
transformation to the scaled normals of an object does
change its 9D space of harmonic images. This is easily
verified numerically. So a linear transformation alters
our 9D approximation to the illumination cone without
altering the cone itself. We know the 9D approxima-
tion is quite accurate, and this leads us to suspect that
our approach can only accurately recover the surface
normals up to a linear transformation.

In the appendix we provide some evidence that this
is indeed the case. We show analytically that small lin-
ear transformations applied to the surface normals will
have an especially small effect on their first four har-
monic images. We also show some simple simulations
that quantify this. As a consequence, we expect that any
solution produced by our 9D algorithm will be unsta-
ble with respect to linear transformations of the surface
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normals. So our solutions should be considered valid
only up to an unknown linear transformation.

In sum, the method of this section finds a set of
scaled surface normals whose harmonic images match
the observed images well. Two things make it possible
to solve this problem efficiently. One is that because
the true scaled surface normals lie near the 9D space
produced by performing PCA on the images, we have
reduced the number of unknowns needed to specify
the scaled surface normals in a scene from 3n to 27.
The second is that we can use simple linear methods
to evaluate how well a set of normals fit the observed
images. We can then solve this problem with straight-
forward optimization techniques, whose effectiveness
is demonstrated in Section 5. However, we also show
that this method can only stably recover the normals
up to a linear transformation.

4. From Normals to Surfaces

Our work focuses on finding the scaled surface nor-
mals of an object. Often, we would like to turn these
into an integrable surface, with height, z = f (x, y) so
that the partial derivatives (∂ f/∂x, ∂ f/∂y, −1) match
the normals. We face two problems here, the linear am-
biguity in the normals, and turning a set of normals into
a surface.

The linear ambiguity can be resolved by finding a
linear transformation of the normals that make them
consistent with an integrable surface. This can be done
up to a subset of transformations called the general-
ized bas-relief transformations (see Belhumeur et al.
(1999) and Yuille et al. (1999)). Since our work fo-
cuses on finding the scaled normals, we remove re-
maining ambiguities by hand in our experiments, but
here we make a few remarks about the interaction be-
tween the integrability constraint and the ambiguities
of our approach.

With the addition of an integrability constraint, the
9D method can determine a surface up to a bas-relief
transformation. However the bas-relief transformations
are different from the Lorentz transformations. For ex-
ample, if we scale the z component of the scaled sur-
face normals, this is a simple bas-relief transformation.
It preserves the first order harmonics, but transforms
the albedos outside the space spanned by the scaled
surface normals (this follows from the derivation in
Section 3.2.2), and therefore changes the 4D harmonic
space of the normals. So this is not a Lorentz transfor-
mation.

In fact, because the Lorentz ambiguity is different
from the bas-relief ambiguity, adding integrability to
the 4D method should in theory lead to a unique so-
lution for the surface. This amounts to removing the
bas-relief ambiguity using the statistical assumption
that the first four harmonic images can be identified as
the dominant components of the image. Our analysis
of the ambiguity in Section 3.2.2, however, indicates
that removing the ambiguity with this approach may
be sensitive to measurement errors.

Once we have resolved any linear ambiguity, we may
also wish to turn the normals into a surface. This is
straightforward; we can use standard techniques to fit
the surface, which has one degree of freedom per pixel,
to unit surface normals, which have two degrees of free-
dom, by solving a quadratic minimization with linear
constraints.

Specifically, denote the surface by z(x, y). The
directions of the normals are given by n(x, y) =
(p, q, −1)T , with p = zx and q = zy where zx and
zy denote the partial derivatives of z with respect to
x and y respectively. The (recovered) scaled surface
normal (nx , ny, nz) roughly satisfies

(nx , ny, nz) = ρ√
p2 + q2 + 1

(p, q, −1), (21)

from which we obtain

p = −nx

nz

q = −ny

nz
, (22)

On a discrete grid, we may approximate p and q using
forward differences by

p ≈ z(x + 1, y) − z(x, y)

q ≈ z(x, y + 1) − z(x, y). (23)

Combining (22) with (23) we obtain the following con-
straints:

nzz(x + 1, y) − nzz(x, y) = nx

nzz(x, y + 1) − nzz(x, y) = ny . (24)

These are merely linear constraints on z(x, y), and can
be solved as an overconstrained linear system. Note
that the constraints are invalid near the rim of the ob-
ject since there nz ≈ 0. In this case a different con-
straint can be used. This constraint depends on the two
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Figure 1. Top row: Five of the 64 volleyball images used for reconstruction. Middle row: reconstruction using the 4D method, including the

recovered 3D shape (left), the recovered albedo (middle) and the recovered shape painted with the albedo. Bottom row: reconstruction using the

9D method.

Figure 2. Blowups of the reconstructed volleyball (using the 4D method) reveals the stripes (middle) and the logo and writing (right).

above constraints, but does not involve nz . The con-
straint comes from the fact that p/q = nx/ny , and is
given by:

ny(z(x, y)−z(x + 1, y)) = nx (z(x, y) − z(x, y + 1)).

(25)

We can solve the obtained linear set of equations using
a least squares fit or we can apply in addition boundary

constraints due to the rim points of the object (where
the values of p and q can be estimated directly from
the image).

5. Experiments

We now present experiments to evaluate these methods.
Because they ignore higher order harmonics, even in
the absence of any sensing error, our methods will have
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Figure 3. A pair of images of a face statue obtained with a point source (left and middle) and their average produced in order to obtain an

image with two point sources (right).

Figure 4. Top row: Five (of 32) averaged images used for reconstruction. Saturated pixels shown in white. Middle row: reconstruction using

the 4D method (shape, albedo, and albedo painted shape). Bottom row: reconstruction using the 9D method.
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Figure 5. Top row: Five (of 11) images used for reconstruction. Second row: ground truth obtained with a laser scanner (surface, albedo, and

albedo painted surface) and an image taken from roughly the same view (right). Third row: reconstruction using the 4D method (including shape,

albedo, albedo painted shape and difference from ground truth surface). Bottom row: reconstruction using the 9D method.

Figure 6. Top row: Rendering the reconstructed shape so as to best fit the original images (top row of Fig. 5). Bottom row: difference between

rendered images and the original images.
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Figure 7. Top row: Five (of 13) images used for reconstruction. Second row: ground truth obtained with a laser scanner (surface, albedo, and

albedo painted surface) and an image taken from roughly the same view (right). Third row: reconstruction using the 4D method (including shape,

albedo, albedo painted shape and difference from ground truth surface). Bottom row: reconstruction using the 9D method.

some built in error. So we first describe experiments on
synthetic data to establish some basic properties of the
methods.

We generate square surfaces with random heights,
and extract 81 surface normals from them. We then
generate 20 images of each surface, using lighting con-
ditions that are a combination of several random point
sources and a diffuse component for each image. We
then solve for the normals using the above two meth-
ods. For the 9D method, we optimize using the MAT-
LAB minimization routine “fminunc,” which performs
a line search in the gradient direction. This has the
virtue of being the easiest possible method to program.

This method requires only a few seconds for small sim-
ulations and about an hour for real images, sufficient
for our experiments.

Since we have ground truth available, once we com-
pute surface normals, we can find the linear or Lorentz
transformation that best fits our solution to the correct
one. Then we measure the average angle between the
true surface normals and the recovered ones. Repeat-
ing this 400 times, for the 9D method we find a mean
error of 2.8 degrees, and error of 3.6 degrees for the 4D
method. (The standard deviation of the means are 0.04
and 0.12 degrees, respectively.) This tells us that our
method will produce small errors even in the absence
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Figure 8. Top row: Four (of 11) images used for reconstruction. Second row: ground truth obtained with a laser scanner (surface, albedo, and

albedo painted surface) and an image taken from roughly the same view (right). Third row: reconstruction using the 4D method (including shape,

albedo, albedo painted shape and difference from ground truth surface). Bottom row: reconstruction using the 9D method.

of sensing error.
We can also use synthetic data to estimate how often

optimization finds an optimal solution in the 9D case.
To do this, we can project the scaled surface normals
onto the 9D SVD space of the images. This is the solu-
tion closest to ground truth in the space the algorithm
searches. We use this as a starting point for optimization
to produce an estimate of the minimal error solution.
We find that 97% of the time, our algorithm finds a so-
lution in which the error function is no more than 1%
greater than this solution.

In a second set of experiments we have run our al-
gorithms on six sets of real images. In some cases,
these images contain unreliable pixels that have been

saturated. We remove these, and use Wiberg’s algo-
rithm (Wiberg, 1976) to fill in the missing data (see
also Jacobs (2001) and Shum et al. (1995)). In each
case, to resolve any ambiguity of the method we gener-
ate a surface after applying a transformation obtained
by matching some points in the scene with hand chosen
surface normals.

In the first two experiments we use images taken
by researchers at Yale under controlled lighting. In the
first experiment (Fig. 1) we use 64 images containing
a volleyball lit by a single point source. These con-
trolled images could be used by other algorithms (e.g.,
Yuille et al. (1999)), but our algorithms do not make
any assumptions that take advantage of the presence of
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Figure 9. Top two rows: Six (of 10) images used for reconstruction. Third row: ground truth obtained with a laser scanner (surface, albedo,

and albedo painted surface) and an image taken from roughly the same view (right). Fourth row: reconstruction using the 4D method (including

shape, albedo, albedo painted shape and difference from ground truth surface). Bottom row: reconstruction using the 9D method.

a single source in each image. Figure 2 shows a blowup
of the reconstruction to demonstrate its accuracy. Note
the stripes and writing carved on the volleyball sur-
face. Next, we use a similar set of controlled images of
a statue of a face, but in this case we average pairs of
images, to simulate having 32 images with two point
sources in each image (Fig. 3). Pixels are marked satu-
rated in the average image if saturated in either one of
the original images. Results are shown in Fig. 4.

In the final four experiments we use images obtained
under uncontrolled lighting that include different, un-
restricted combinations of fluorescent lights, a light
projector, and a desk lamp. In each case we provide

10–15 images to the algorithms. The images include
toy objects with dimension along the longest axis is
about 15 cm. The camera was placed at a distance of
1.5 m from the objects and the lights were placed at dif-
ferent locations in the room at distances between 1–2.5
m from the object. The images included 1024 × 768
pixels with the reconstructed objects taking the bet-
ter part of these images. We further cropped the im-
ages before applying our algorithms. Reconstruction
results are shown in Fig. 5–9. For comparison, we
also used a handheld laser scanner to obtain ground
truth surfaces. In addition in each case we display
an image of the object taken from roughly the same
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Table 1. Relative accuracy of reconstruction: 1 − ‖ẑ −
z‖2/‖z‖2, where ẑ denotes the reconstructed depth and z de-

notes the laser scanned depth.

4D 9D

Hippo 0.96 0.97

Elephant 0.95 0.98

Camel 0.97 0.99

Dino 0.98 0.99

view. Using a Matlab implementation on a PC with
a Pentium 4 processor our non-optimized implemen-
tation of the 4D method took 20–30 seconds to re-
construct each set and about an hour with the 9D
method.

In general, the results of both our 4D and 9D al-
gorithms appear to be very similar to those produced
by the laser scanner, with the 9D algorithm produc-
ing slightly more accurate results than those produced
by the 4D method. Difference maps are included in
all figures showing the differences between our recon-
structions and the laser scanned shapes. Table 1 further
quantifies this, showing the relative accuracy of our re-
constructions with respect to the laser scanned shapes.
As can be seen, the 9D method reaches an accuracy of
97–99%, whereas the 4D method reaches an accuracy
of 95–98%. We are unaware of any other algorithm de-
signed to handle unknown lighting for such complex
lighting conditions.

6. Summary and Conclusions

This paper describes new methods for recovering
the surface normals in a scene using images pro-
duced under very general unknown lighting condi-
tions. The first insight that allows us to do this
is that results due to Basri and Jacobs (2003) and
Ramamoorthi and Hanrahan (2001) show that even
under very general lighting conditions, the scaled sur-
face normals of a Lambertian object will lie in the low-
dimensional space spanned by the principal compo-
nents of the image. This reduces the search for surface
normals to a problem with relatively few variables.

We have presented two reconstruction methods,
one that uses a first order harmonic approximation
operating in a 4-dimensional space, and a second
method that uses a second order harmonic approxi-
mation operating in a 9-dimensional space. The 9D
method produces slightly more favorable results, but

involves an iterative optimization and requires at least
nine images. In contrast, the 4D method is based on a
sequence of closed form formulae, and requires fewer
images (at least four images). Both methods lead to
fairly accurate reconstructions. The small errors ob-
tained can be attributed to several factors, including
the accuracy of the first and second order harmonic
approximation, the extent to which the low order har-
monics coincide with the linear spaces derived with
SVD, the adequacy of the Lambertian model, camera
noise, etc.

Appendix

In this appendix we show analytically that small lin-
ear transformations applied to the surface normals will
have an especially small effect on their first four har-
monic images. We later demonstrate this with simula-
tions. We suppose that we apply a linear transformation
to the scaled surface normals of an object, (�h2, �h3, �h4)T .
We denote this 3 × 3 transformation by T and denote

(�h′
2,

�h′
3,

�h′
4)T = T (�h2, �h3, �h4)T , (26)

where �h′
i represents the harmonic images that result

from the transformation.
We first note that, according to the above equation,

�h2, �h3 and �h4 all lie in the linear subspace spanned by
�h′

2,
�h′

3 and �h′
4. So any image effects produced by first

order harmonic lighting can be accounted for by any
surface normals that are a linear transformation of the
true surface normals.

We next consider the effect of a small linear trans-
formation on the first harmonic image, �h1. We con-
sider the derivative of the angle between �h1 and the
space spanned by �h′

1, . . .
�h′

9, with respect to a small
linear transformation of the surface normals. We show
that this derivative is zero. Consequently, a small lin-
ear transformation of surface normals has essentially
no effect on their ability to account for zero and first
harmonic components of a set of images.

Using SVD, we can write T as R1 DR2, where R1 and
R2 are 3×3 rotations, and D is a 3×3 diagonal matrix.
We can understand the effect of T on the 9D subspace
generated by the scaled surface normals by consider-
ing the effect of each of these transformations. Rotat-
ing the scaled surface normals causes a phase shift;
each harmonic image becomes a linear combination of
the harmonics of that order, but no energy is shifted
across frequencies. Therefore, the rotations leave the
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9D space of harmonic images unchanged, and we need
only consider changes caused by the diagonal matrix.

We write D = diag{1 + δ2, 1 + δ3, 1 + δ4}, and take
the limit as δi → 0. Without loss of generality, it will
suffice to consider the case in which δ2 = δ3 = 0.
By symmetry, a change in a different direction would
have a similar effect on the rotated surface normals.
Then our problem reduces to determining how �h1, the
albedo, changes as we scale �h4 (which is the Hadamard
product of the albedo and the z component of the sur-
face normals). For notational simplicity, we consider
the harmonic images at just one point.

Our approach will be to determine how a small
change to h4 affects the zero’th order harmonic, h1,
and also the second order harmonic h5. We will show
that the old harmonic h1 lies in the space spanned by
h′

1 and h′
5, for small δ4. This will show that the new 9D

subspace contains the first four harmonics of the orig-
inal subspace, and can provide a good approximation
to images well approximated by the original subspace.

We want to compute the following derivatives: dh1

dh4

and dh5

dh4
. For this we use: h1 =

√
h2

2 + h2
3 + h2

4, and,
using the substitutions ρ = h1 and z = h4

h1
:

h5 = 1

2
h1

(
3h2

4

h2
1

− 1

)
= 1

2

(
3h2

4

h1

− h1

)
. (27)

These imply:

dh1

dh4

= h4

h1

= z, (28)

and

dh5

dh4

= ∂h5

∂h1

dh1

dh4

+ ∂h5

∂h4

= 1

2

(
− 3h2

4

h2
1

− 1

)
h4

h1

+ 3h4

h1

= −3

2
z3 + 5

2
z

(29)

If we now change h4:

h′
4 = h4(1 + δ4) = ρz(1 + δ4) (30)

(so h′
4 = h4 + �h4 with �h4 = ρzδ4). Then,

h′
1 = h1+ dh1

dh4

�h4 + O
(
δ2

4

) = ρ(1 + z2δ4) + O
(
δ2

2

)
,

(31)

h′
5 = h5 + dh5

dh4

�h4 + O
(
δ2

4

)
= ρ

1

2

(
3z2 − 1

) +
(

− 3

2
z3 + 5

2
z

)
(ρzδ4) + O

(
δ2

4

)
= ρ

2
(3z2 − 1 + (5 − 3z2)z2δ4) + O

(
δ2

4

)
. (32)

Finally,

h′
1 − 2

3
δ4h′

5 = ρ
(
1 + z2δ4

) − 1

3
δ4ρ

(3z2 − 1 + (5 − 3z2)z2δ4) + O(δ2
4)

= ρ

(
1 + 1

3
δ4 + O

(
δ2

4

))
. (33)

h1

(
1 + 1

3
δ4

)
= h′

1 − 2

3
δ4h′

5 + O
(
δ2

4

)
(34)

When we take the limit as δ4 goes to zero, we can
ignore the O(δ2

4) terms. This tells us that the deriva-

tive of the angle between �h1 and the space spanned by
�h′

1, . . . ,
�h′

9, taken with respect to a linear change in the
surface normals, is zero. Therefore, all components of
the images due to �h1, �h2, �h3, �h4 can also be produced
by the new 9D linear subspace we get after any linear
transformation near the identity.

We show a simple simulation to demonstrate this
result. We generate a random object with 100 scaled
surface normals. We then apply a linear transformation
of the form D = diag{1 + δ2, 1 + δ3, 1 + δ4} to the ob-
ject. We do this by randomly selecting (δ2, δ3, δ4). We
then scale these three values so that their total magni-
tude varies from zero to one. Near zero the transfor-
mation is almost an identity transformation; near one
it is significantly different. In Fig. 10 we plot the angle
between the new 9D linear subspace of the harmonic
images and the old harmonic images. The angles for
h2, h3 and h4 are always zero, and not shown. The an-
gle between h1 and the subspace is shown as a solid
curve. We can see that for small changes in the model,
the slope of this curve is zero, as our analysis predicts.
Moreover, we can see that this curve always remains
extremely small, even outside the range in which a first
order analysis might be expected to hold. The angles
of the five second order harmonics, shown as dashed
lines, increase much more rapidly, but still remain less
than one degree. Repeating these simulations with dif-
ferent models and other linear transformations yielded
similar results.
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Figure 10. The solid line shows the angle between �h1 and the 9D

harmonic subspace formed after a linear transformation of surface

normals, for a random object and a random change. The vertical

axis shows the angle, in degrees, while the horizontal axis shows the

magnitude of the change. The dashed lines show the same angles for

the second order harmonics.

The zero and first order harmonics have a much
greater effect on an object’s images than the second or-
der harmonics. This means that when the correct scaled
surface normals account well for the images, this will
be primarily because of the first four harmonic images
they produce. Applying a linear transformation to the
normals will, to first order, generate a linear space that
contains these four harmonics, so that the new har-
monics also account well for the images. Moreover,
results from simulations, and known results about the
illumination cone, suggest that even large linear trans-
formations to a model will have only a small effect on
the 9D harmonic subspace that it produces. Therefore,
our reconstruction based on the nine, second order har-
monics will be unstable to a linear transformation of
the normals. We observe this experimentally, as well.
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Note
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(2001).
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