
Viewpoint-Aware Object Detection and Pose Estimation

Daniel Glasner1, Meirav Galun1, Sharon Alpert1, Ronen Basri1, and Gregory Shakhnarovich2

1Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science
2Toyota Technological Institute at Chicago

Abstract

We describe an approach to category-level detection and
viewpoint estimation for rigid 3D objects from single 2D
images. In contrast to many existing methods, we directly
integrate 3D reasoning with an appearance-based voting
architecture. Our method relies on a nonparametric rep-
resentation of a joint distribution of shape and appear-
ance of the object class. Our voting method employs a
novel parametrization of joint detection and viewpoint hy-
pothesis space, allowing efficient accumulation of evidence.
We combine this with a re-scoring and refinement mech-
anism, using an ensemble of view-specific Support Vector
Machines. We evaluate the performance of our approach in
detection and pose estimation of cars on a number of bench-
mark datasets.

1. Introduction
The problem of category-level object detection has been

at the forefront of computer vision research in recent years.
One of the main difficulties in the detection task stems from
variability in the objects’ appearance due to viewpoint vari-
ation (or equivalently pose variation). While most existing
methods treat the detection task as that of 2D pattern recog-
nition, there is an increasing interest in methods that ex-
plicitly account for view variation and that combine detec-
tion with pose estimation. This paper presents an approach
that integrates detection and pose estimation using 3D class
models of rigid objects and demonstrates this approach on
the problem of car detection.

Building a viewpoint-aware detector presents a number
of challenges. The first question is how to acquire a 3D rep-
resentation of a class. The recent availability of CAD mod-

Research was supported in part by the Vulcan Consortium funded by
the Magnet Program of the Israeli Ministry of Commerce, Trade and La-
bor, Chief Scientist Office. The vision group at the Weizmann Institute
is supported in part by the Moross Laboratory for Vision Research and
Robotics.

els, 3D cameras, and robust structure-from-motion (SfM)
software have simplified this problem. Using SfM meth-
ods or 3D cameras makes it straightforward to relate the
available 3D representations to the appearance of objects
in training images. Secondly, finding the pose of an ob-
ject at test time requires search in the 6D space of possi-
ble Euclidean transformations. This can be accomplished
by searching exhaustively through a discrete binning of this
6D space. An alternative is to use a combinatorial search
(e.g. RANSAC [7]) procedure. Both options, however, can
be computationally expensive. Finally, how should detec-
tion and pose estimation be integrated? Pose estimation can
deteriorate significantly when detection is inaccurate. Can
detection be improved if pose estimation is integrated into
the process?

We suggest an approach that combines a nonparamet-
ric voting procedure with discriminative re-scoring for de-
tection and pose estimation of rigid objects. We con-
struct a class model by merging 3D shapes of objects, ob-
tained by applying state-of-the-art SFM reconstruction soft-
ware [19, 8] to a training set that we have collected. A non-
parametric voting procedure serves as an attention mecha-
nism to propose candidates for detection. Each image fea-
ture can vote for a detection of a class instance along with
its 3D pose. These proposed detections are then fed to SVM
classifiers to assign a score, refine their location and bound-
ing box, and improve their pose estimates. We focus our ex-
periments on cars and apply our algorithm to four datasets:
Pascal 2007, 3D-pose data set [18], EPFL car data set [17],
and the data set we have collected and annotated for this
work.

We present several contributions:

• Our efficient voting procedure uses single feature votes
to index the 6D space of transformations.

• The 6D space of transformation is treated as a con-
tinuous space. This allows us to estimate novel poses
through a mean-shift mode seeking process.

• The combination of our 3D model and the collected

training data allows us to achieve favorable detection
and pose estimation results on a variety of publicly
available datasets compared to existing, view-aware
detection methods.

2. Background
A common approach for coping with viewpoint variabil-

ity is to use multiple, independent 2D models. This multi-
view approach describes the appearance of an object class
at a discrete set of representative viewpoints. These algo-
rithms (e.g., [25, 6, 17, 13]) assume that the 2D appearance
of an object near the representative views varies smoothly
and that local descriptors are robust enough to handle these
appearance variations. [10] extend this approach to allow
for continuous viewpoint estimation by learning a linear
model around each of the discrete representative views.

Another line of studies [18, 24, 21] approaches the prob-
lem of view variation by building 2D multi-part represen-
tations and establishing correspondences among the parts
across different class views. The resulting model accounts
for a dense, multiview representation and is capable of rec-
ognizing unseen views.

Algorithms that utilize 3D CAD models, have been sug-
gested in [15, 20]. To predict the appearance of objects in
2D images from the CAD models, these methods render the
CAD models and extract features (e.g., edges) from the ren-
dering. A related work [14], utilizes both CAD and real
images, but proposes to treat appearance and geometry as
separate learning tasks. In all of these works [15, 14, 20] the
pose estimation is limited to a discrete set of viewpoints.

In other work, Arie-Nachimson and Basri [1] construct
a 3D model by employing an SfM process on the entire
training set of class images. Their method requires finding
correspondences between parts as they appear in different
class instances. Sun et al. [22] suggest the use of depth
information, and train models using depth maps acquired
with a range camera. Detections are generated by depth-
encoded voting. Pose estimation is then achieved by regis-
tering the inferred point cloud and a 3D CAD model. The
Poselets method [3] requires viewpoint invariant annotation
of parts in training data, and creates a model by clustering
parts based on appearance. Finally, a hybrid 2D-3D model
is suggested in [11]. The model consists of stick-like 2D
and 3D primitives. The learning selects 3D primitives to
describe viewpoint varying parts and 2D primitives where
appearance is viewpoint invariant.

3. Nonparametric detection
We approach the problem of object detection and pose

estimation in two stages. First we apply nonparametric vot-
ing to produce a bank of candidate detections along with
their estimated poses. Then we apply a discriminative re-

scoring procedure designed to improve the detection and
pose estimation results. In this section we describe the con-
struction of a 3D model and the voting in the 6D space of
possible pose variables. The re-scoring step is described in
Section 4.

Hough-like voting procedures have proved effective in
object detection both in 2D [12] and in 3D methods [1, 23].
Their success is due to the frequent resemblance of corre-
sponding visual elements across instances of a class. Thus,
for example, an image region similar to a stored patch de-
picting the appearance of a bottom left windshield corner in
a previously seen car may indicate the presence of a wind-
shield corner of a (possibly different) car in the test image.
Moreover, since appearance can change significantly with
viewpoint, such a match may also indicate the viewpoint
from which the car is observed. Naturally, such evidence
would not be very reliable, as we confine ourselves to small
regions. Voting allows us to overcome this by accumulating
information from a large number of regions and identifying
constellations of patches that cooperatively look like parts
of previously seen class instances. These patches are seen
from similar viewpoints, and arranged in positions consis-
tent with each other under that viewpoint.

3.1. Model representation

The object category of interest is represented by a set
of 3D models of object instances. Each single model con-
sists of a cloud of 3D points in a class-centered coordinate
frame, i.e., the 3D models of the different class instances are
aligned to produce consistent poses. Along with these 3D
models we store a collection of regions obtained from the
set of training images at different scales. Each image region
(patch) is associated with a particular 3D position and a par-
ticular viewpoint and scale. These patches are the basic ele-
ments of our nonparametric model. Each patch is described
by a 3D feature represented as a tuple f3 = 〈e, l, t,x〉,
where e is a descriptor of the patch appearance, l is the 3D
location of the associated keypoint, and t and x are related
to the training image from which the patch associated with
f3 was extracted. t indexes the image and scale, and x is
the location of the patch in that image. Note that multiple
features will share the same 3D location l, but will have dif-
ferent t values (indicating that they come from different im-
ages at different scales) and possibly different appearance e
(see Figure 1). We will refer to the entire collection of 3D
features f31 , . . . , f

3
D pooled from all the models as the 3D

database. Preservation of multiple instances in the model
allows us to mix and match parts from different instances,
without potential loss of discriminative information associ-
ated with quantization, which has been pointed out in [2].

Finally, we include in our model a set of m designated
3D points P = {pdes

1 , . . . ,pdes
m }. For our car model we use

m = 4 and select the origin along with three vertices of

Figure 1. 2D appearances An example of the different 2D appear-
ances {e} of a 3D point l (denoted as a green dot) as seen from
different view-points and scales (corresponding to different train-
ing image indices t)

a cube of side length one half, centered at the origin. We
discuss the role of these designated points at greater length
below.

3.2. Pose-sensitive voting

The objective of the voting step is to identify clusters
of features that vote for the class in positions consistent
with a particular pose setting. This voting step lies at the
core of our method and differs from previously proposed
voting schemes in two ways. First, the votes are cast in-
dependently by individual features. This is different and
more efficient than existing methods that either discretely
sample the 6D pose space (and often just a small subset of
the subspace) or resort to exhaustive enumeration of sub-
sets of feature constellations in the input. Second, we cope
with the non-uniformity of the space of Euclidean transfor-
mations (SO(3)× R3) by representing the transformations
using their effect on the set of designated points, which pro-
duces an embedding amenable to a Euclidean norm.

As is typical of nonparametric models, most of the com-
putation occurs at test time, when an input image is fed to
the detector. The image is covered by an overlapping grid of
patches; each patch corresponds to a 2D feature represented
by f2 = 〈e,x〉 where e is the descriptor extracted from the
patch, and x is the 2D coordinates of the patch.

An input feature f2i = 〈ei,xi〉 “solicits” votes from the
instance models, as follows. We find the K nearest neigh-
bors of ei among the descriptors of model patches, and con-
sider the corresponding 3D features to be the matches for
f2i . Without loss of generality, let these be f31 , . . . , f

3
K . A

match f2i = 〈ei,xi〉 → f3k = 〈ek, lk, tk,xk〉 implies a
hypothesized transformation Ti,k, as explained below.

In this work we consider the weak perspective projection
model: an object undergoes isotropic scaling, 3D rotation

and 2D translation parallel to the image plane, followed by
orthographic projection onto the image plane. The scaling is
equivalent to translation along the axis orthogonal to image
plane prior to projection. Projective transformations in this
family have six degrees of freedom (DOF): two for in-plane
translation, one for scaling, and three for rotation.

We assume that an object point’s appearance is invariant
under translation but varies under rotation and scale. We
can thus hypothesize that since the patch of f2i is similar to
that of f3k , the corresponding object point is viewed from the
same viewpoint and at the same scale (equivalently transla-
tion along the optical axis z). Thus, four out of six DOF
of Ti,k can be inferred directly from f3k (by looking up the
scale and viewpoint of the training image indexed by tk).
The remaining two parameters of translation parallel to the
image plane are recovered from the equation

Ti,k(lk) = xi.

We now need to turn the estimated Ti,k into a vote in the
space of transformations. In the spirit of Hough transform,
we choose a parametrization for this 6D space, keeping in
mind the eventual need to identify peaks and evaluate sim-
ilarity between votes. We solve this with the help of the
designated points, defined in Section 3.1. Specifically, we
represent Ti,k as a point in R2m:

V (i, k) = [Ti,k(p
des
1)T , . . . , Ti,k(p

des
m)T]T , (1)

where {pdes
j } denote the designated points in the model and

Ti,k(p
des
j) = xi +

(
xtk
j − xk

)
. (2)

Here xtk
j is the projection of the j’th designated point onto

the training image indexed by tk. This is illustrated in
Fig. 2. Note that the weak perspective assumption allows us
to store the locations of the projections of designated points
in each training image and simply apply the translation part
of Ti,k at test time to generate a vote. We denote by V the
set of all the votes cast by features of the input image; if the
number of 2D features extracted from the input image isN0

then |V| = K ·N0.

3.3. Vote consolidation

Once all votes have been cast, we seek peaks as modes
of the estimated density of votes, subject to pose consis-
tency. These can be found by the mean-shift algorithm
which climbs the estimated density surface from each vote.
We found this to be somewhat slow in practice, and there-
fore resorted to a multi-stage approximation, described in
some detail in Section 5.

Finally, we form vote clusters by a greedy procedure.
The top ranked mode V ′

1 is associated with the first cluster.
In general, V ′

1 is a point in the 2m-dimensional voting space

Figure 2. Voting process. Four patches from the test image (top
left) are matched to database patches. The matching patches are
shown with the corresponding color on the right column. Each
match generates a vote in 6D pose space. We parameterize a point
in pose space as a projection of designated points in 3D onto the
image plane. These projections are shown here as dotted triangles.
The red, green and blue votes correspond to a true detection, the
cast pose votes are well clustered in pose space (bottom left) while
the yellow match casts a false vote.

which may not correspond to a valid transformation (i.e. it
is not obtainable as a projection of the designated points
in the weak perspective model). We therefore compute a
valid transformation for each mode which maps the desig-
nated points to a similar constellation. This is equivalent
to the problem of camera calibration from correspondences
betweenm image points in V ′ and their known 3D counter-
parts in the form of designated points. We solve it as such,
using the method in [27] as implemented in the “camera
calibration toolbox”, and use the resulting transformation
to reproject the designated points onto the test image. We
denote this “corrected” mode, now guaranteed to be valid,
as Ṽ ′.

Now we associate with the cluster represented by Ṽ ′ all
votes that are sufficiently similar to Ṽ ′ in the location of the
detected object and the estimated viewpoint (see Section 5
for details). The points associated with the top-ranked mode
are culled from the vote set V . The second ranking mode
(if it has not been associated with the first cluster) is cor-
rected, and the votes still in V are associated with it based
on similarity. The process continues until we have the de-
sired number of clusters or V is empty.

4. Verification, refinement, and rescoring
The voting procedure described in the previous section

results in a set of hypothesized detections, represented by

Ṽ ′
1 , . . . , Ṽ

′
N . These are passed to the second stage of our

detector, which ranks detection candidates, improves local-
ization and bounding boxes, and resolves opposite view-
point ambiguities. The overall objective is to improve the
precision-recall performance.

We cast this as a scoring problem: given a region b in
the image, we assign a score value S(b) which is higher
the more likely we deem b to be the bounding box of an
object instance. This score can be used to classify the re-
gion, by thresholding S, and to rank detections, ordering by
decreasing value of S.

SVM scoring We use Support Vector Machine (SVM)
to estimate the score S(b). A region b is represented as a
feature vector h(b) which is a concatenation of histograms
of oriented gradients computed over a pyramid of spatial
bins. We train the SVM on a set of feature vectors {bn}
computed from labeled example regions. Details are given
in Section 5. Once trained, the SVM score is computed as

S(b) =
∑
n∈SV

αnK(h(b), h(bn)) (3)

where αn are positive coefficients, SV is a subset of indices
of training examples and K is an RBF kernel function

K(x, x′) = exp

{
− 1

σ2
‖(x− x′)‖22

}
.

Viewpoint specific training We can either train a single
SVM, or a set of SVMs, designating a separate machine per
sector in the viewpoint sphere. Our motivation for choosing
the latter is related to the observation, shared by [5], that
pose changes may be better fit by a mixture of appearance-
based models. In this case, we provide a different set of
positive examples to each SVM - namely those in which the
correct viewpoint falls within the associated viewpoint re-
gion. The set of negative examples is shared across SVMs.

At test time we use the viewpoint estimated by the vot-
ing procedure to determine which SVM to apply. Given a
candidate detection with an estimated viewpoint, we com-
pute the score of the SVM “responsible” for that viewpoint,
and its opposite, corresponding to the 180 degree reversal
of viewpoint. This is due to the empirical observation that
the errors “flipping” the object seem to be far more frequent
than other errors in viewpoint estimation. The higher SVM
score is used as the detection score and the pose is flipped
if this score was produced by the SVM responsible to the
flipped direction.

Refinement Inspired by [6] we also use the SVM scor-
ing to refine the detection bounding box via local search.
Given the initial bounding box b generated by the voting,
we consider a set of perturbed versions of b, obtained by
a fixed set of shifts and scale changes relative to b. Each
of these is scored, and the version with the highest score is
used.

5. Experiments
We evaluate our approach on the problem of car detec-

tion. Below we describe the training data and the model
obtained, and report the results on a number of benchmark
data sets.

5.1. Training data and the model

Data collection and initial model building We col-
lected and processed 22 sets of images of different car mod-
els. A set consists of approximately 70 images on aver-
age, of one car taken from different viewpoints which cover
a full rotation around the car. The pictures were taken in
an unconstrained outdoor setting using a hand-held camera.
There are significant illumination changes, many images in-
clude cars in the background, and in some images the car is
cropped or occluded. See Figure 3 (a).

Model construction and alignment We use
Bundler [19] and PMVS2 software [8] to turn a collection
of images of an instance from the class into a model. This
yields a set of models with coordinate frames that are some-
what arbitrary. We transform the coordinates so that the
object centroid is at the origin, and the coordinate frame
is aligned with the three principal components of the 3D
point cloud (enforcing a left-handed system to avoid am-
biguities) for each instance. We then manually identify an
image of each instance that is closest to an (arbitrarily de-
fined) canonical viewpoint, and refine the alignment. Fi-
nally, each point cloud is scaled so that the extent along a
selected dimension is 1 (for cars we use the width). Note
that this process modifies the values of l, but not e or x, of
the 3D features; it also modifies the viewpoint assigned to a
specific image and scale indexed by t. See Figure 3.

Pruning Combined with high image resolution and
the relatively dense sampling of the viewpoints in our data,
the initial output from PMVS2 contains an extremely large
number of 3D keypoints sampled very densely in some re-
gions, and, consequently, of patches. We concluded that
this density increases computational burden on a nonpara-
metric detector without significant benefit. Thus we chose
to prune the database. For each model, we divided the 3D
bounding box of the cloud of 3D keypoints constructed by
PMVS2 into equal sized cells. In each cell, we used the
estimation of the normal direction as produced by PMVS2
to select a small number of representative keypoints. We
binned the points according to the octant in which their nor-
mal resides and selected one representative from each bin
as the one closest to the cell center. The pruned database
consists, for each model, of the 3D features corresponding
to these representatives.

Efficient similarity search Even after the pruning de-
scribed above, the 3D database remained prohibitively large
for a brute force similarity search. Instead, we used the
ANN library by Mount and Arya [16], and built a data struc-

ture allowing sublinear time approximate nearest neighbor
search. The metric used on descriptors was `2.

5.2. Implementation details

Patch descriptors We use a descriptor [9] which is
similar to the HoG descriptors used extensively in the liter-
ature. Given a reference point x, we take the square region
with side B ∗C, with x at its left corner. This region is par-
titioned into a grid of B × B square blocks of size C × C
pixels. Within each block, we compute intensity gradient
at each pixel, bin the gradient orientations into P orienta-
tion bins, and compute the histogram of total gradient mag-
nitudes within each bin. Finally, all B2 such histograms
for the region are divided by the total gradient energy aver-
aged over the B2 blocks, truncated at 1, and concatenated.
Parameters B, P and C are set to 3, 5 and 8 respectively,
producing 45-dimensional descriptors.

Finding modes of vote density At each recorded vote
Vi we compute a kernel density estimate (KDE) p̂(Vi) using
RBF kernels in the R2m vote representation space. We se-
lect the n votes with the highest value of p̂; to these we
add n′ randomly selected additional votes. Then, using
mean-shift, we find the mode associated with each of the
selected votes. These n + n′ modes are then ordered ac-
cording to their densities (again estimated by KDE, using
all the votes).

Vote clustering We used two criteria, the conjunction
of which implies sufficient similarity between a vote and a
cluster prototype. First, let the bounding box implied by
Ṽ ′ be b′, and the viewpoint be represented by a unit norm
vector r′. The bounding box implied by a transformation is
the bounding box of the projection of the model on to the
test image.

A vote Vi with bounding box bi and viewpoint vector ri
is similar to Ṽ ′ if

o(bi,b
′) ≥ 0.5 and |∠(ri, r′)| ≤ π/8,

where the bounding box overlap is defined by

o(bi,b
′) =

bi

⋂
b′

|bi

⋃
b′|

, (4)

and ∠(ri, r′) is the angle between two 3D vectors.
SVM training and application A region b is repre-

sented by a histogram of oriented gradients, computed over
a pyramid of spatial partitions similar to [26]. At the first
level, we simply compute the histogram of gradient ener-
gies over the entire region, binned into P orientations. At
the second level, we partition the region into 2 × 2 subre-
gions, and compute the four histograms, one per subregion,
and similarly for the third level producing 16 histograms.
The histograms for all levels are concatenated to form a sin-
gle descriptor for the region. A region is considered positive

(a) car images (b) 3D scene (c) instance models (d) class model

Figure 3. Model construction. We construct the model from multiple sets of car images, some example frames from two different
sequences can be seen in (a). Using Bundler we reconstruct a 3D scene (b). The car of interest is segmented and aligned (c). Finally a view
of the class model is shown in (d).

if its overlap with the bounding box of a known object de-
tection, as defined in (4), is above 0.5, and negative if the
overlap is below 0.2.

To refine detections, we consider vertical shifts by
{0,±0.2 ·H} pixels, and horizontal shifts by {0,±0.2 ·W}
where H and W are the height and width of b. For each
combination of shifts, we scale the bounding box around its
center by {80%, 90%, 100%, 110%, 120%}. This results in
45 bounding boxes (one of which is the original b), among
which we choose the one with the highest value of SVM
score S.

5.3. Results

We present detection (localization) and pose estimation
results on three publicly available datasets.

The car category of the Pascal VOC 2007 challenge [4],
the car category of the 3D-pose dataset of [18] and the EPFL
multi-view cars dataset [17]. We also report pose estimation
results on the car dataset we generated for this work.

Pascal VOC detection results We evaluate the detec-
tion performance of our detector on the car category of the
Pascal VOC 2007 data-set. The reported average precision
(AP) scores were computed using the Pascal VOC 2007
evaluation protocol.

As a baseline for detection evaluation we use our voting
mechanism in a redundant “2D mode”. In the “2D mode”
each match generates a vote for the location of a 2 dimen-
sional bounding box. 3D voting slightly outperforms the 2D
voting with an AP of 16.29% compared to 15.86%.

We train an SVM classifier as described in Section 4,
for positive examples we use windows from the 3D-pose
dataset, the EPFL dataset, our car dataset and the train-
ing images in the car category of Pascal VOC2007. Neg-
ative examples were taken from the training subset of Pas-

cal VOC2007. The view-independent SVM classifier in-
creases the AP for both 2D and 3D voting. The 3D retains a
slight advantage with 27.97% compared to the 2D score of
24.34%.

In the final experiment we apply viewpoint specific SVM
classifiers to the 3D votes. We train the classifiers as de-
scribed in Section 4, using the same training data used in
the view independent training but omitting the Pascal pos-
itive training examples, which are not labeled with (suffi-
ciently fine) viewpoint information. The pose estimated by
the 3D-voting is used to index the different classifiers. The
combination of 3D voting and 8-viewpoint specific SVM
classifiers produces the best result with an AP of 32.03%.
Note, that this score is achieved without any positive train-
ing examples from Pascal. Our AP score of 32.03% is a sig-
nificant improvement compared to the AP score of 21.8%
reported in [22]. The AP results are summarized in Table 1
and the recall precision curves are shown in Figure 4(a).
Note that the result of [22] was achieved using different
training data. Namely, the authors collected images of 5
cars from 8 viewpoints and used these to transfer approx-
imate depth information to Pascal training images which
were then used to train their detector. To reduce effects of
additional training data we excluded all positive examples
from the 3D-pose dataset, and the EPFL dataset and reran
this last experiment using only positive examples from our
own dataset without using any positive Pascal training im-
ages. The AP decreased from 32.03% to 29.43%.

3D-pose dataset The 3D-pose dataset was introduced
by [18] to evaluate detection and pose estimation. In this
work we report state-of-the-art results for both detection
and pose estimation on the car category of this data-set.
The car category includes 10 sets of car images, each set
includes 48 images taken at 3 scales, 8 viewpoints and 2

2D voting 2D voting + SVM 3D voting 3D voting + SVM 3D voting + 8view-SVM
AP 15.86% 24.34% 16.29% 27.97% 32.03%

Table 1. Pascal VOC 2007 cars. Average precision achieved by our detectors compared to a 2D baseline.

(a) recall-precision. 3D voting fol-
lowed by 8-view SVM (red) out-
performs 3D voting (blue) and 3D
voting followed by SVM (green).
We achieve an average precision
of 32.03% without using positive
training examples from Pascal.

(b) pose estimation. A subset of
the cars was annotated with one of
40 different labels corresponding to
approximately uniform samples of
the azimuth range. We show our la-
bel differences alongside those re-
ported in [1].

Figure 4. Pascal VOC 2007 cars.

voting voting + SVM voting + 8view-SVM
AP 90.17% 94.85% 99.16%
AA 83.88% 85.28%

Table 2. Results on 3D-pose cars. Average Precision (AP) and
Average Accuracy (AA) for pose estimation.

different elevations. We follow [20], and use sets 1-5 for
training and sets 6-10 for testing. We train an SVM using
sets 1-5 along with positive examples from our own dataset,
negative examples are taken from Pascal. AP scores were
computed using the Pascal VOC2010 evaluation protocol
and are summarized in Table 2. The combination of 3D vot-
ing and an 8-view SVM produces an AP result of 99.16%
this is an improvement over the previous state-of-the-art (to
the best of our knowledge) of 89.8% reported in [20]. Note
that [20] use different training data, they rely on 41 car CAD
models while we rely on our dataset of 22 cars.

We also achieve state-of-the-art results for pose classifi-
cation on this dataset. Our average classification accuracy
results are given in Table 2. Our best result of 85.28% is
an improvement over 81% of [20]. Note that [20] report
their average accuracy score of 81% on a smaller set (AP
= 81.3%) while we achieve a better classification accuracy
score on a larger set (AP = 99.16%). A confusion matrix
and label differences are presented in Figure 5.

Pose estimation on Pascal The Pascal data includes
only coarse pose labels (frontal / rear / right / left). Arie-
Nachimson and Basri [1] augmented the pose labels on a
subset of the 2007 test category. They labeled approxi-
mately 200 car instances with one of 40 labels which corre-
spond to an approximately uniform sample of azimuth an-

Figure 5. 3D-pose cars - pose estimation. A confusion matrix and
a histogram of label differences. Average accuracy is 85.28%.

(a) EPFL multiview cars - pose
estimation. A histogram of the an-
gular errors in pose estimates. Our
median angular error is 24.83 de-
grees. Computed on an 89.54% AP
detection set.

(b) Our car dataset - pose estima-
tion. We achieve a median angular
error of 10.4 degrees.

Figure 6. Pose estimation results.

gles. In their paper they report differences between the la-
bels of their estimated pose and the ground truth labels for
188 objects. We detected 180 of these objects, and com-
pared our pose estimation to theirs in Figure 4(b).

EPFL car data set The EPFL multiview car dataset
was introduced in [17]. The dataset was acquired at a car
show, 20 different models were imaged every 3 to 4 degree
while the cars were rotating to produce a total of approxi-
mately 2000 images. We train 8-view SVM classifiers us-
ing the positive examples from the first 10 models along
with images from our dataset and from the 3D-pose dataset.
Negative examples were taken from Pascal training images.

We ran our 3D-voting followed by SVM on the last 10
models achieving an average precision of 89.54% (mea-
sured using Pascal VOC 2010 evaluation protocol). We
then evaluate our pose estimates on the true detections. We
achieve a median angular error of 24.83 degrees. We show
a histogram of the angular errors in our pose estimates in
Figure 6(a). [17] shows a similar histogram, however our
results are not directly comparable since they report pose
estimates on all of the windows which were considered by
their classifier and overlapped the ground truth by more than
one half.

Pose estimation on our car dataset We conclude with
a pose estimation experiment on our car dataset. We par-
tition the 22 cars into three sets of size 7,7 and 8 and run
three experiments in which we use one set for testing and
the other two to generate our 3D model and 3D voting de-
tector. We then take the top-scoring detection from each
image. In some of the images the top scoring detection is
a car in the background of the image. We discard these
detections and evaluate pose on the remaining detections
in which the pose annotated car was detected. We achieve
fairly accurate pose estimation with a median angular error
of 10.4 degrees. A histogram of angular errors is shown in
Figure 6(b).

6. Conclusions
In this paper we have described an approach that handles

detection and viewpoint estimation as a joint task, and inte-
grates reasoning about appearance and shape of the objects
in a “native” way. Along the way we have made a number
of choices that stand in contrast to related work in the lit-
erature. One is the construction of a nonparametric model,
which maintains multiple instances of objects and multiple
features without quantization or clustering. Another is to
reason about detection and viewpoint jointly in a 6D param-
eter space, and to parametrize hypotheses in this space by
means of projecting a set of designated points. Finally, we
use the viewpoint estimate provided by the voting method to
apply viewpoint-aware verification and refinement mecha-
nism. We believe that these choices all serve to improve
performance of the detector, as demonstrated in our experi-
ments.

In the current system each vote counts equally. We be-
lieve that one can improve performance significantly by dis-
criminatively learning weights to be assigned to 3D fea-
tures; such an extension is the subject of our current work.

References
[1] M. Arie-Nachimson and R. Basri. Constructing implicit 3d

shape models for pose estimation. In ICCV, 2009. 2, 7
[2] O. Boiman, E. Shechtman, and M. Irani. In defense of

nearest-neighbor based image classification. In CVPR, 2008.
2

[3] L. Bourdev, S. Maji, T. Brox, and J. Malik. Detecting peo-
ple using mutually consistent poselet activations. In ECCV,
2010. 2

[4] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The pascal visual object classes (voc)
challenge. IJCV, 88(2), 2010. 6

[5] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part
based models. PAMI, 2010. 4

[6] P. Felzenszwalb, D. McAllester, and D. Ramanan. A dis-
criminatively trained, multiscale, deformable part model. In
CVPR, 2008. 2, 4

[7] M. Fischler and R. Bolles. Random sample consensus: a
paradigm for model fitting with application to image analysis
and automated cartography. Communications of the ACM,
24(6), 1981. 1

[8] Y. Furukawa and J. Ponce. Accurate, dense, and robust multi-
view stereopsis. PAMI, 2010. 1, 5

[9] D. Glasner and G. Shakhnarovich. Nonparametric voting ar-
chitecture for object detection. TTIC Technical Report, (1),
2011. 5

[10] C. Gu and X. Ren. Discriminative Mixture-of-Templates for
Viewpoint Classification. In ECCV, 2010. 2

[11] W. Hu and S. Zhu. Learning a Probabilistic Model Mixing
3D and 2D Primitives for View Invariant Object Recognition.
In CVPR, 2010. 2

[12] B. Leibe, A. Leonardis, and B. Schiele. Robust object detec-
tion with interleaved categorization and segmentation. IJCV,
2008. 2

[13] Y. Li, L. Gu, and T. Kanade. A robust shape model for multi-
view car alignment. In CVPR, June 2009. 2

[14] J. Liebelt and C. Schmid. Multi-view object class detection
with a 3d geometric model. In CVPR, 2010. 2

[15] J. Liebelt, C. Schmid, and K. Schertler. Viewpoint-
independent object class detection using 3D feature maps.
In CVPR, 2008. 2

[16] D. Mount and S. Arya. ANN library.
www.cs.umd.edu/˜mount/ANN. 5

[17] M. Ozuysal, V. Lepetit, and P. Fua. Pose estimation for cate-
gory specific multiview object localization. In CVPR, 2009.
1, 2, 6, 7

[18] S. Savarese and L. Fei-Fei. 3D generic object categorization,
localization and pose estimation. In ICCV, 2007. 1, 2, 6

[19] N. Snavely, S. M. Seitz, and R. Szeliski. Photo Tourism:
Exploring Image Collections in 3D. In ACM Transactions
on Graphics (Proceedings of SIGGRAPH 2006), 2006. 1, 5

[20] M. Stark, M. Goesele, and B. Schiele. Back to the future:
Learning shape models from 3d cad data. In BMVC, 2010.
2, 7

[21] H. Su, M. Sun, L. Fei-Fei, and S. Savarese. Learning a dense
multi-view representation for detection, viewpoint classifica-
tion and synthesis of object categories. In ICCV, 2009. 2

[22] M. Sun, G. Bradski, B. Xu, and S. Savarese. Depth-Encoded
Hough Voting for Joint Object Detection and Shape Recov-
ery. ECCV, 2010. 2, 6

[23] M. Sun, G. Bradsky, B. Xu, and S. Savarese. Depth-encoded
hough voting for joint object detection and shape recovery.
In ECCV, 2010. 2

[24] M. Sun, H. Su, S. Savarese, and L. Fei-Fei. A Multi-View
Probabilistic Model for 3D Object Classes. In CVPR, 2009.
2

[25] A. Thomas, V. Ferrar, B. Leibe, T. Tuytelaars, B. Schiel, and
L. Van Gool. Towards multi-view object class detection. In
CVPR, volume 2, 2006. 2

[26] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Mul-
tiple kernels for object detection. In ICCV, 2009. 5

[27] Z. Zhang. A flexible new technique for camera calibration.
PAMI, 2002. 4

