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Chapter I. Algebraic geometry

§1. Fi-algebras

1.1. Definition and examples. First of all, a semigroup is a set provided with an associative
binary operation. If a semigroup contains a neutral element, it is called a monoid. A homomorphism
of semigroups (resp. monoids) is a map compatible with the operations on them (resp. and taking

the neural element to the neutral element).

1.1.1. Definition. (i) An F;-algebra is a commutative multiplicative monoid A provided
with elements 1 =14 and 0 =04 such that 1- f = fand 0- f =0 for all f € A.
(ii) A homomorphism of Fi-algebras ¢ : A — B is a map from A to B which is compatible

with the operations on A and B and takes 04 and 14 to Og and 1pg, respectively.

The category of Fi-algebras admits final and initial objects. Namely, the trivial Fi-algebra,
which consists of only one element (which is 0 as well as 1), is its final object, and the field F,
which consists of precisely two elements 0 and 1, is its initial object. Notice that the sets of homo-
morphisms of Fi-algebras Hom(A, B) are provided with the canonical structure of a commutative

semigroup.

1.1.2. Definition. (i) An element f of an Fj-algebra A is said to be a zero divisor if it is
nonzero and there exists a nonzero element g € A with fg = 0.

(ii) An Fi-algebra A is said to be integral if the equality fh = gh implies that either f = g or
h=0.

(iii) An Fj-algebra A is said to be F-field if every nonzero element of A is invertible.

If A has no zero divisors, then the subset A = A\{0} is preserved under multiplication, i.e., it

is a submonoid of A. The correspondence A — A gives rise to an equivalence between the category
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of F'i-algebras without zero divisors and that of commutative monoids without zero. Furthermore,
the correspondence A — A gives rise to an equivalence between the category of integral F;-algebras
and that of commutative monoids with the cancellation property. Finally, an Fi-algebra A is an
F-field if and only if A = A*, and the correspondence A — A* gives rise to an equivalence between

the category of Fi-fields and that of abelian groups.

Let S be a sub-semigroup of an Fi-algebra A. The localization of A with respect to S is a
homomorphism of Fi-algebras A — S~!A such that the image of every element of S in S™1'A is
invertible and any homomorphism A — B to an Fi-algebra B with the latter property goes through
a unique homomorphism S~*A — B. The homomorphism A — S~!A is unique up to a unique
isomorphism, and S~ A can be constructed as the set of equivalences classes of pairs (f,s) € Ax S
with respect to the following equivalence relation: (f,s) ~ (f’,s) if there is t € S with fs't = f’st.
The equivalence class of a pair (f,s) is denoted by f If S is generated by one element f € A,
S~1A is denoted by A. If A has no zero divisors, the localization of A with respect to A is called
the fraction F1-field of A and denoted by Frac(A).

1.1.3. Examples. (i) The multiplicative monoid A" of any commutative ring A with unity
(e.g., Z) can be considered as an Fj-algebra. If the ring is a field, the corresponding F;-algebra is
an F;-field. For example, F; corresponds to the field of two elements, i.e., F1 = F5.

(i) The sets of non-negative numbers Ry and of non-negative integers Z, and the unit interval

[0, 1], provided with the usual multiplication, are Fy-algebras. The Fi-algebra R, is an Fy-field.

(iii) Given a set I, let F1[T;];c; be the set consisting of 0 and expressions of the form T} -.. . T/
with i1,...,4, € I and pq, ..., u, € Zy (the latter are called monomials in the variables {T;};cr).
It is an integral F;-algebra with respect to the evident multiplication. More generally, for an F;-
algebra A, let A[T;];c; denote the set consisting of 0 and expressions of the form aTi’i el Ti’: "
with a € A, i1,...,i, € I and U1y tn € Zy. It is also an Fi-algebra with respect to the evident
multiplication, and its elements are said to be terms over A (or terms with coefficients in A). Notice

that there is an isomorphism of Fi-algebras F1[T},],,>1 = Z . induced by the map that takes 7, to

the n-th prime number, and it extends to an isomorphism F3[T,],,>1 — Z'.

(iv) Let I be a poset (i.e., partially ordered set) which has unique maximal and minimal
elements and in which every pair of elements e, f € I has supremum sup(e, f) (i.e., a unique
minimal element that is greater or equal than each of them). Then I can be considered as an F;-
algebra in which the supremum sup(e, f) is the product of e and f and the maximal and minimal

elements are zero and one, respectively. In this Fi-algebra every element e is idempotent, i.e.,
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e? = e. Conversely, every idempotent F1i-algebra I (i.e., an Fi-algebra in which all elements are

idempotents) can be considered as a poset with the above properties with respect to the following

partial ordering: e < f if ef = f (see §1.6).

1.2. Ideals and spectra.

1.2.1. Definition. An ideal of an Fi-algebra A is an equivalence relation which is compatible
with the operation on A, i.e., a subset £ C A x A which is an equivalence relation and an Fi-

subalgebra. (The latter is what is usually called a congruence relation.)

Given an ideal E C A x A, the set of equivalence classes A/E provided with the evident
multiplication is an F'y-algebra. For example, if A denotes the diagonal homomorphism A — Ax A,
then A(A) is an ideal which is contained in all other ideals of A (it is therefore called the minimal
ideal of A). If G is a subgroup of A*, then the set of pairs of the form (f, fg) with f € Aand g € G
is an ideal, and the corresponding quotient is the set A/G of orbits under the action of G on A.
An ideal E C A x A is generated by a subset S C A x A if it is the minimal ideal that contains S.
(Notice that the intersection of any family of ideals is again an ideal.) An ideal E is nontrivial if

it does not coincide with A x A, i.e., the quotient F;-algebra A/E is nontrivial.

1.2.2. Definition. A Zariski ideal is a subset a C A with the property that fg € a whenever
f€aand g€ A

A Zariski ideal a gives rise to the ideal Ey = A(A) U (a x a). (For example, E5) = A(A).)
The corresponding quotient A/FE, is denoted by A/a. A Zariski ideal a is nontrivial if it does not
coincide with A. Notice that the union of any family of nontrivial Zariski ideals is also a nontrivial
Zariski ideal. In particular, there is a unique maximal Zariski ideal my, it coincides with A\ A*.
For an ideal E C A x A, the set ap = {f € A|(f,0) € E} is a Zariski ideal. For example, ag, = a.

Let ¢ : A — B be a homomorphism of F-algebras.

1.2.3. Definition. (i) The kernel of ¢ is the ideal Ker(p) = {(f,g) € A x A|o(f) = ¢(9)}-
(ii) The Zariski kernel of ¢ is the Zariski ideal Zker(¢) = {f € A|p(f) = 0}.
(iii) The preimage of an ideal F' of B is the ideal o' (F) = {(f,g) € A x A|(¢(f).¢(9)) € F}.

(iv) The preimage ¢~ *(b) of a Zariski ideal b C B is defined as the preimage of the associated
ideal Fy,. The Zariski preimage of b is the Zariski ideal z¢~(b) = {f € A‘(p(f) € b}.

Notice that the quotient A/Ker(p) is canonically isomorphic to the image of ¢, and that the

ideal associated with z~!(b) does not necessarily coincide with p=!(b).
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1.2.4. Definition. (i) An ideal II C A x A is prime if it is nontrivial and possesses the
property that, if (fh,gh) € II, then either (f,g) € II or (h,0) € II, i.e., the quotient A/II is a
nontrivial integral F-algebra. The set of prime ideals of A is called the spectrum of A and denoted
by Fspec(A).

(ii) A Zariski ideal p C A is prime if it is nontrivial and possesses the property that, if fg € p,
then either f € p or g € p, i.e., the quotient A/p is nontrivial and has no zero divisors. The set of

Zariski prime ideals of A is called the Zariski spectrum of A and denoted by Zspec(A).

Notice that the union of any family of Zariski prime ideals is a Zariski prime ideal. The
maximal Zariski prime ideal is the maximal Zariski ideal m 4.

Given a Zariski prime ideal p C A, the fraction F;-field of A/p is denoted by k(p), and the
localization of A with respect to the submonoid A\p is denoted by Ap. The maximal Zariski ideal of
Ap coincides with pAp, and one has Ay 5 k(p)*. There is a canonical map Fspec(A4) — Zspec(A) :
Il — py = {f € A|(f,0) € II}. The prime ideals from the preimage of a Zariski prime ideal p C A

are said to be p-prime.

1.2.5. Proposition. Given a Zariski prime ideal p C A, there is a canonical bijection between
the set of p-prime ideals and the set of subgroups of the group (p)*.

Proof. Given a p-prime ideal II, the set Gy of elements of x(p)* of the form L where f,g & p

r
and (f, g) € II, is a subgroup of k(p)*. Conversely, given a subgroup G C k(p)*, the set Il of pairs
(f,g) with either f,g € p, or f,g & p and 5 € (G is a p-prime ideal of A. We claim that the maps
IT1 — G and G — g are inverse to each other. (It is clear that the maps preserve the inclusion
relation.)

The equality G = G, and the inclusion II C Ilg,, are trivial. Let (f,g) € llg,. If f,g € p,
then (f,g) € II. Assume therefore that f,g & p. Then 5 € G, i.e., there exists an element
(u,v) € II with u,v € p and 5 = =. The latter means that fvh = guh for some h ¢ p. Since the
ideal IT is p-prime, it follows that (fv,gu) € II. But (gu,gv) € II and, therefore, (fv,gv) € IL.
Again, since II is prime, a;p = p and v ¢ p, it follows that (f,g) € IL. .

1.2.6. Corollary. Let A — B be an injective homomorphism of F1-algebras. Then for the

induced commutative diagram
Zspec(B) N Zspec(A)

I [

Fspec(B) -5 Fspec(A)
one has Im(p) = 7~ 1(Im(v))). In particular, surjectivity of ¢ is equivalent to that of 1.
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Proof. The inclusion Im(p) C 7~ (Im(v))) is trivial. Let p be a Zariski prime ideal of A from
the image of ¢b. We have to show that all p-prime ideals of A lie in the image of ¢. The assumption
implies that pB N A = p and, therefore, the canonical homomorphism A/p — B/pB is injective.
We may therefore replace A by A/p and B by B/pB and assume that A has no zero divisors and
p = 0. Furthermore, let F' = k(p) be the fraction F;-field of A. Then the canonical homomorphism
from F to the localization of B with respect to A = A\{0} is injective. We may therefore replace
A by F and B by that localization and assume that A is an F;-field. By Proposition 1.2.5, prime
ideals correspond to subgroups of A*. If G is such a subgroup, then the corresponding prime ideal
is the intersection IT N (A x A), where II is the prime ideal of B which is the union of mp x mp
with the set of pairs (f,g) € B* x B* with 5 €G. .

The prime ideal that corresponds to the unit subgroup and the whole group x(p)* will be
denoted by Ilp and Il(p), respectively. One has Iy = {(f, g)| either f,g € p, or f,g & p and
fh = gh for some h ¢ p}, and [I(py = (p x p) U (A\p x A\p). Notice that Il = Ker(4 — x(p)),
and the set of ideals of the form II(p) coincides with the set of maximal ideals of A as well as with

the set of ideals E such that A/E = F;.

In what follows, we will consider Zspec(A) as a partially ordered set (or, briefly, a poset) with
respect to the partially ordering opposite to the inclusion relation (i.e., p < qif q C p). We notice
that this partial ordering possesses the following property: every subset S C Zspec(A) has the
infimum inf S (i.e., a unique maximal element z with the property that z < y for all x € S5).
Namely the infimum corresponds to the union of the Zariski prime ideals from the subset. We call
a poset X with the latter property an inf-poset. Thus, Zspec(A) is an inf-poset. Notice that, if
a subset S of an inf-poset X admits an element z € X with y < «x for all y € S, then it has the

supremum sup S (i.e., a unique minimal element with the latter property).

1.2.7. Lemma. Let p,,...,p, be Zariski prime ideals of A. Then

(i) if a Zariski prime ideal p contains p, N ...Np,,, then p D p,; for some 1 < i < n;

(ii) if a prime ideal 11 contains Ip N...NIyp , then there is a nonempty subset J C {1,...,n}
such that 11 D Iy, where q = J;c s b;-

Proof. (i) Suppose that p 2 p, for all 1 < i < n. Let h; € p,\p and h = []_, h;. then
hep,N...Np, and h & p, which contradicts the assumption.

(ii) If p = py, then p D p; N...Np,,, and (i) implies that p D p; for some 1 < i < n. Let J
be the set of all 1 < i < n with p D p;. We claim that 11 D Ilg, where q = {J;c;p;- Indeed, let
(f,9) € Ilq. If f,g € q C p, then (f,g) € TI. Assume therefore that f,g ¢ q. Then the inclusion
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(f.g) € llg implies that (f,g) € lIp for alli € J. If i ¢ J, take an element h; € p;\p and set
h =1lizshi- Then h € p; for all i ¢ J. It follows that (fh,gh) € Iy N...N1IIp CIL Since Il is
a prime ideal and h & p, we get (f, g) € II. .

1.3. Modules over an Fi-algebra and K-vector subspaces.

1.3.1. Definition. (i) A module over an Fi-algebra A (or an A-module) is a set M provided
with an element 0 = 0p; and an action of A on M, ie., amap A x M — M : (f,m) — fm,
satisfying the following conditions: (fg)m = f(gm), 1am = m and 04m = 0j; for all f,g € A and
me M.

(ii) A homomorphism of A-modules is a map M — N compatible with the action of A.

Notice that such a homomorphism M — N takes 0j; to Oy, and the set Hom (M, N) of
homomorphisms of A-modules has a canonical structure of an A-module. The category of A-
modules is denoted by A-Mod. An A-module is trivial if it has only one element 0. The trivial
A-module is the initial and final object of the category A-Mod. An A-algebra is an F-algebra B
which is also an A-module. The structure of an A-algebra on B gives rise to a homomorphism of
F-algebras A — B and, conversely, the latter defines the former. If the canonical homomorphism
A — B is injective, we will say that we are given an extension of Fq-algebras B/A, and we will
identify A with its image in B. An A-module M is said to be integral if the equality am = an with
a € A and m,n € M implies that either a = 0, or m = n, and the equality am = bm with a,b € A
and m € M implies that either a = b, or m = 0. For example, an F;-algebra A is integral as an

A-module if it is an integral F-algebra.

1.3.2. Definition. An A-submodule of an A-module M is an equivalence relation £ C M x M
such that (fm, fn) € E for every f € A and (m,n) € E.

For example, A-submodules of A, considered as an A-module, are ideals of A. Given an A-
submodule E C M x M, the set of equivalence classes M /FE provided with the evident action of A
is an A-module. An A-submodule E C M x M is generated by a subset S C M if it is the minimal
A-submodule that contains S. (Notice that the intersection of any family of A-submodules is again
an A-submodule.) An A-submodule E is nontrivial if it does not coincide with M x M, i.e., the

quotient M/E is nontrivial.

1.3.3. Definition. A Zariski A-submodule of an A-module M is a subset N C M such that
fn € N whenever f € A and n € N.



A Zariski A-submodule N gives rise to an A-submodule Ey, which consists of the pairs (m,n)
with either m = n or m,n € N. The corresponding quotient is denoted by M/N. The intersection
and the union of any family of Zariski A-submodules over A is a Zariski A-submodule. For an
A-submodule E C M x M, the set Ng = {m € M|(m,0) € E} is a Zariski A-submodule. For
example, A itself is an A-module, and its A-submodules and Zariski A-submodules over A are
precisely ideals and Zariski ideals, respectively.

Let ¢ : M — N be a homomorphism of A-modules.

1.3.4. Definition. (i) The kernel of ¢ is the A-submodule Ker(p) = {(m1,m2)|p(m1) =
p(m2)}.

(i) The Zariski kernel of ¢ is the Zariski A-submodule Zker(p) = {m € M|¢p(m) = 0}.

(iii) The preimage of an A-submodule F of N is the A-submodule o~ !(F) = {(m,n) € M x
N|(e(m), () € F}.

(iv) The preimage ¢~ 1(P) of a Zariski A-submodule P C N is defined as the preimage of the
associated A-submodule Ep. The Zariski preimage of P is the Zariski A-submodule z¢~(P) =
{m € M|p(m) € P}.

(v) The image of ¢ is the Zariski A-submodule of N defined by Im(yp) = ¢(M).

Notice that ¢ gives rise to an isomorphism of A-modules, M/Ker(p) = Im(¢p).

The category of A-modules admits projective and inductive limits. The projective limits
coincide with the corresponding set theoretic projective limits provided with the evident structure
of an A-module. As for inductive limits, it suffices to construct coequalizers of two homomorphisms
and direct sums. First of all, given two homomorphisms ¢,1 : M — N of A-modules, their
coequalizer is the quotient of N by the A-submodule generated by the pairs (¢(m),(m)) for
m € M. Furthermore, if {M,};c; is a family of A-modules, their direct sum @;c;M; is the union
of M;’s in which their zeros are identified and which is provided with the evident action of A. An
example of the latter is the direct sum AY) of copies of A taken over a set I. A module over A
isomorphic to AU) for some I is called free. If I is a finite set of n elements, it is denoted by A™).
An A-module is said to be finite if there is a surjective homomorphism of A-modules A — M.

If n =1, M is said to be cyclic. An A-algebra is said to be finite if it is finite as an A-module.

1.3.5. Lemma. The following properties of an A-module M are equivalent:
(a) M is free;
(b) there exists an A-module N such that the A-module M & N is free;

(c) for any epimorphism w : P — @ and any homomorphism ¢ : M — @, there exists a
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homomorphism ¢ : M — P with m = .

Proof. The implications (a)==-(b)==-(c) are trivial. Suppose that M possesses the property
(c). We take an arbitrary epimorphism 7 : F' — M from a free A-module F = A(). By the property
(c) applied to the identity homomorphism M — M, the epimorphism 7 has a section o : M — F.
For ¢ € I, let A; be the corresponding free A-module of rank one, and we set J = {i € I| there
exists m € M\ {0} with o(m) € A;}. We claim that © induces an isomorphism A) = M. Indeed,
surjectivity of the latter homomorphism follows from that of w. For ¢ € J, let e; be the canonical
generator of A; and set m; = mw(e;). Let also m be a nonzero element of M with o(m) € A;, i.e.,
o(m) = ae; for some a € A. It follows that m = am; and, therefore, ae; = ao(m;). The latter

implies that o(m;) € A; and, in fact, o(m;) = e;. The claim follows. .

The category of A-modules is a symmetric strict monoidal category with respect to the tensor
product which is defined as follows. Given A-modules M, N and P, amap ¢ : M x N — P is called
A-bilinear if o(fm,n) = p(m, fn) = fe(m,n) for all f € A and (m,n) € M x N. The tensor
product of M and N over A is an A-module M ®4 N provided with a bilinear homomorphism
M x N - M ®4 N such that, for any A-bilinear homomorphism ¢ : M x N — P, there exists a
unique homomorphism of A-modules M ® 4 N — P which is compatible with ¢. The tensor product
is unique up to a unique isomorphism, and is constructed as follows. It is the quotient of M x N
by the A-submodule generated by the relations (fm,n) ~ (m, fn) for f € A, m € M and n € N.
If A’ is an A-algebra, then M’ = M ®4 A’ is an A’-module. Notice that, for an A-submodule
E of M, there is a canonical isomorphism of A’-modules M/E ®4 A’ = M'/E’, where E’ is the
A’-submodule of M’ generated by the image of E. Furthermore, if B and C are A-algebras, then

sois By C.

Modules over an Fi-field K are said to be K-vector spaces. Every K-vector space M has a
canonical decomposition into a direct sum of cyclic K-vector spaces. Indeed, if I = M JK* is the
set of orbits of the multiplicative group K* acting on the set M = M\{0} and {m;};cs is a set of
representatives, then M = @®;c;Km;. Such a set of representatives, called a basis of M, defines a
surjective homomorphism of K-vector spaces K /) — M which is bijective if and only if M is a free
K-vector space, or if and only if the action of K* on M is free. If M is a cyclic K-vector space, the
stabilizers of any two nonzero elements of M in K* coincide (and are called the stabilizer of M),
and the isomorphism class of M is determined by this stabilizer. If, in addition, K’ is an F;-field
that contains K, then the K’-vector space M @y K’ is also cyclic, and its stabilizer coincide with

the stabilizer of M. Thus, if M is an arbitrary K-vector space and M = @;c;Km; is its canonical
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decomposition into a direct sum of cyclic K-vector spaces, then M @ K' = ®;c1K'm;, then the
isomorphism class of M is determined by the family {G;};cr of stabilizers of the cyclic K-vector
spaces K'm;, and the stabilizer of each K'm,; in K’* coincides with that in K* (i.e., G;). We are
now going to describe the above canonical decomposition for finite modules over finitely generated
K-algebras.

Let A be the Fi-algebra Fy[T1,...,T,]. We consider the free A-module A for m > 1. Its
basis elements will be denoted by eq,..., e, and its nonzero elements will be called monomials.
Let us fix a monomial order < on the set of monomials, i.e., a total order that possesses the property
that, if f < g and TH # 1, then f < THf < T*g (see [Eis, §15]). We extend this order to a total
order on the whole A(™) by 0 < f for all f # 0. The simple but important fact is that every
nonempty subset of A(™ has a unique minimal element (see [Eis, 15.2]).

Let now K be an Fi-field, and B = K[T1,...,T,]. Nonzero elements of B(™) will be called
terms. For a nonzero term f = aT*e; € B™), we set in(f) = T"e; € A, and we set in(0) = 0. For a
B-submodule E of B(™, let in(E) denote the Zariski A-submodule of A™) whose nonzero elements
are of the form max{in(f),in(g)} for (f,g) € E with in(f) # in(g). For example, in(A(B™)) =0
and, for a Zariski B-submodule N ¢ B in(N) = in(Ey) consists of elements of the form in(f)
with f € N. Notice that in(Ng) C in(E). The following is a version of a theorem of Macaulay
([Eis, 15.3]).

1.3.6. Lemma. For any B-submodule E of B\, the images of monomials from A(™\in(E)
in the quotient B"™) /E form a basis of its canonical decomposition into a direct sum of cyclic
K -vector spaces.

Proof. First of all, the inclusion (f,ag) € E for a € K* and two distinct elements f,g €
A™N\in(E) is impossible since max{in(f),in(ag)} is f or g, but both of them are outside in(E).
It remains to show that for every element f € BU™\ Ny there exist elements g € A)\in(E) and
a € K* with (f,ag) € E. Multiplying f by an element of K*, we may assume that f € A If
f € AU"N\in(E), there is nothing to prove, and so assume that f € in(F). Then there exists an
element (f,ag) € E with a € K*, g € A(™ and f > g. We may assume that for such a pair g is
minimal, and in this case we claim that g € A)\in(E). Indeed, if this is not true, then g € in(E)
and, therefore, there exists an element (g,bh) € E with b € K*, h € A and g > h. It follows that
(f,abh) € E, and this contradicts the minimality of g. .

For a B-submodule E of B let in(E) denote the Zariski A-submodule of A™) whose nonzero
elements are of the form max{in(f),in(g)} for (f,g9) € E with f # g. One has in(E) C in(E). If

9



K = F1, then in(E) always coincides with in(E).

1.3.7. Corollary. The following properties of a B-submodule E of B("™) are equivalent:

(a) W(E) = in(E);

(b) the quotient B'™ /E is a free K-vector space.

Proof. (a)==-(b). Suppose (b) is not true. By Lemma 1.3.6, we can find a minimal element
f € AUN\in(E) with (f,af) € E for some a € K*\{1}. By the assumption, there exists an element
(f,bg) € E with g € A™ b e K* and g < f. It follows that (g,ag) € E, which contradicts the
minimality of f.

(b)=>(a). Suppose there exists an element f € in(E)\in(E). This implies that (f,af) € E

for some a € K*\{1}, i.e., a stabilizes the image of f in B("™)/E, which is a contradiction. ]

1.4. The F;-algebra of terms.

1.4.1. Proposition. Let A be an Fi-algebra, B the A-algebra of terms A[T;);cr, and P(I)
the set of all subsets of I. Then there is an isomorphism of partially ordered sets Zspec(A) x P(I) =
Zspec(B) : (p,J) — p.

Proof. For a Zariski primes ideal p C A and a subset J C I, let p; be the Zariski ideal
generated by p and the elements T; for i ¢ J. It is a Zariski prime ideal, and B/p; = A/p[Ti]ics.
(For example, (m4)yp = mp, and (0); = (0).) The map (p,J) — p; is evidently injective and
preserves the partial orderings of both sets. Let now ¢ be a nonzero Zariski prime ideal of B, and
let p=qnNAandJ= {z‘TZ & q}. We claim that ¢ = p;. Indeed, it is clear that p; C q. Assume
that fT" = fI;" ... Ty € q, where f € A\p and v; > 0. Then there exists 1 < k < n with
v, > 1 and T}, € q. By the definition of .J, one has iy, ¢ J and, therefore, fT" € p;,ie, qCp;. =

1.4.2. Corollary. If A is an Fi-algebra whose Zariski spectrum is finite, then the Zariski

spectrum of any finitely generated A-algebra is finite. "

For example, let A be an Fq-algebra finitely generated over an Fi-field K. Every surjective
homomorphism ¢ : K[T},...,T,] — A gives rise to an isomorphism between the partially ordered
set Zspec(A) and a subset Z(A) C P({1,...,n}) which is preserved under intersections. Namely,
for a Zariski prime ideal p C A let Iy be the subset of {1,...,n} for which 2~ (p) is generated by
T; with i € Ip. One evidently has p C q if and only if Iq C Ip and Ipyq = Ip N Iq, and so Zspec(A)
is identified with the set Z(A) = {Ip|p € Zspec(A)}. We are now going to deduce from the above

observation an additional property of the Zariski spectra.
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We say that a poset X is sup-complete if it possesses the following property: if every finite

subset of a set S C X has the supremum, then S itself has the supremum.

1.4.3. Proposition. The Zariski spectrum Zspec(A) of any Fi-algebra A is a sup-complete

inf-poset.
First of all, we remark the following fact which easily follows from the definition of the spectra.

1.4.4. Lemma. Suppose that A is a filtered inductive limit lim A; of a family of Fi-
—
algebras {A;}icr. Then there are canonical bijections Zspec(A) = lim Zspec(A4;) and Fspec(A) =
p

lim Fspec(A;). "
%

Proof of Proposition 1.4.3. That Zspec(A) is an inf-poset was already noticed in §1.2. This
implies that, to prove the statement, it suffices to show if, a subset S C Zspec(A) possesses the
property that the intersection of every finite family of elements from S contains a Zariski prime
ideal, then the intersection of all elements from S contains a Zariski prime ideal. Let {A;}ier
be the filtered family of F;-subalgebras of A which are finitely generated over F;. By Corollary
1.4.2, the Zariski spectra Zspec(A) are finite sets. The assumption implies that the image of S in
Zspec(A;) has the supremum p, € Zspec(A;). If j > 4, then the preimage p;; of p; in A; lies in p;,
i.e., p; < pj;. Using again the finiteness of Zspec(A), we can find such j > i that, for every k > j,
one has py, = p;;. We denote the latter Zariski prime ideal of A; by q;. Then for every pair j > i
the preimage of q; in A; coincides with g,. By Lemma 1.4.4, the tuple {q;};cr defines a Zariski
prime ideal q C A which has the property that p < q for all p € S. It follows that the set S has

the supremum. "

Let now A be the ring of integers of a finite extension of Q. Every nonzero prime ideal p C A
is a Zariski prime ideal of the Fj-algebra A with k(p) = Up U {0}, where Up is the group of
units of Ap, the localization of A with respect to the complement of p. The image of p under the
canonical map Spec(A) — Fspec(A’) corresponds to the subgroup Uﬁ ={a € Up‘a = 1(mod p)}.
Furthermore, the union pg of any set S of nonzero prime ideals of A is a Zariski prime ideal of A",
and one has k(p) = Ug U {0}, where Ug is the group of units of the localization of A with respect

to the complement of pg.

1.4.5. Proposition. In the above situation, each nonzero Zariski prime ideal of A’ is of the

form pg for some set S of prime ideals of A.

1.4.6. Lemma. Let A be an Fi-algebra, and let B be an Fi-algebra that contains A and
such that, for every element g € B, there exists n > 1 with g" € A. Then Zspec(B) = Zspec(A).

11



Proof. Let p is a Zariski prime ideal of A. Then q = {g € B‘g” € p for some n > 1} is a
Zariski prime ideal of B. Indeed, if gh € q, then there exists n > 1 with ¢", A" € A and g"h"™ € p. It
follows that either ¢g" € p, i.e., g € q, or h™ € p, i.e., h € q. Thus, the map considered is surjective.
Let now ¢’ be another Zariski prime ideal of B over p. If g € g, then ¢" € p C ¢’ for some n > 1
and, therefore, ¢ C ¢’. On the other hand, if g € ¢/, then ¢" € ¢ N A = p for some n > 1 and,

therefore, g € p, i.e., ¢ C q. .

Proof of Proposition 1.4.5. Since the class number of A is finite, there exists n > 1 such
that n-th power p™ of every prime ideal of A is a principal ideal. We fix its generator fp. Let K be
the F-field A* U {0}. Then there is an injective homomorphism of F;-algebras B = K[Tp]p — A’
that takes T to the element fy. Since A is a Dedekind ring and its class number is finite, it follows
that ¢g" € B for all elements g € A. Lemma 1.4.6 implies that Zspec(A') = Zspec(B), and the

required fact follows from Proposition 1.4.1. "

1.5. Finitely generated integral K-algebras. Let K be an Fi-field, and let A be a finitely
generated integral K-algebra. It can be considered as a K-subalgebra of its fraction Fi-field L.
To relate Zspec(A) to a familiar object, consider the finitely generated abelian group L*/K* as an
additive group N. The cone C of Ng = N ®z R generated by the image of A is a rational convex
polyhedral cone. Let face(C') denote the set of faces of C. It is a partially ordered set with respect

to the inclusion relation which admits the infimum of every pair of elements.

1.5.1. Proposition. For every Zariski prime ideal p C A, the cone Fy of Ngr generated by
the image of A\p is a face of C, and the correspondence p Fy gives rise to an isomorphism of
partially ordered sets Zspec(A) = face(C) : p — Fy.

Proof. Since Zspec(A/K*) = Zspec(A) and L/K* is the fraction Fi-field of the integral
F;-algebra A/K*, we can replace A by A/K* and assume that K = F;. In this case the monoid
A is finitely generated and, therefore, the same is true for the monoid B = {\ € L*‘)\” € A for
some n > 1} (the saturation of A). It follows that B = B U {0} is also a finitely generated integral
Fi-algebra and, by Lemma 1.4.6, Zspec(B) — Zspec(A). We can therefore replace A by B and
assume that the monoid A is saturated. Furthermore, since Zspec(A/Af, ) = Zspec(A), we can

replace A by A/A}, .., and so we may also assume that the group L* has no torsion. In particular,
we can identify the monoid A with the monoid of integral points C' N N in the cone C. If now p
is a Zariski prime ideal of A, then the cone F} generated by the monoid A\p is a face of C'. Since

A\p = Fp NN, it follows that the map p — Fj is injective. On the other hand, if I is a face of
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C, then p = A\F is a Zariski prime ideal of A with Fjy = F, i.e., the above map is bijective. Since
p C q if and only if Fy C Fy, the required fact follows. "

The Zariski-Krull dimension of an Fi-algebra A is the maximal length n of a chain of Zariski
prime ideals p, C p; C ... C p,, (with p; # p;;; for 0 < i < n —1). The height ht(p) (resp.
depth dt(p)) of a Zariski prime ideal p is the maximal length n of a chain of Zariski prime ideals
Po=pPDOp; D...Dp, (resp. pg=p Cp; C... Cp,). One evidently has ht(p) = dim(Ap) and
dt(p) = dim(A/p).

1.5.2. Corollary. In the situation of Proposition 1.5.1, the following is true:

(i) for every Zariski prime ideal p C A, one has dim(Fjp) = dt(p) + rk(A*/K*);

(ii) if n > 1 (i.e., A is not an Fi-field) and f;(A) denotes the number of Zariski prime ideals
of depth i, then Y . (=1)"f;(A) = 0.

Here dim(F}) is the (topological) dimension of the face Fp, and rk(A*/K™) is the (rational)
rank of the abelian group A*/K*.

Proof. The statement (i) is a direct consequence of Proposition 1.5.1, and (ii) is a consequence

of the Euler relation for polytopes. .

1.6. Idempotent Fi-algebras. Let I be an idempotent F-algebra. By Example 1.1.3(iv),
I can be considered as a poset. The restriction of the partial ordering to the subset of nonzero
elements I gives a poset with the following two properties: I has a unique minimal element and
every pair of elements x,y € I, for which there exists z € S with x,y < z, has supremum sup(z, ).
Conversely, any poset with the latter two properties can be considered as the subset of nonzero
elements of an idempotent Fi-algebra.

Let I be an idempotent Fi-algebra. Then x(p) = F; for all Zariski prime ideals p of I and,
therefore, the canonical map Fspec(I) — Zspec(I) is a bijection. Let M be an I-module (e.g.,
M =1T). For a Zariski prime ideal p C I, let Fj denote the I-submodule of M generated by the
prime ideal Iy = {(e, f)‘ either e, f € p, or e, f & p}, i.e., Fp is generated by pairs of the form
(em,m) and (fm,0) with m € M, e ¢ p and f € p.

1.6.1. Lemma. (i) Fp = {(m, n)| there exists e ¢ p with either em = en, or em,en € pM};

(11) r-]]JEZspec(I) Fp = A(M)
Proof. (i) The set on the right hand side is an I-submodule of M that contains the above

generators of Fyy and, therefore, it contains Fyy. If (m,n) is a pair with em = en (resp. em, en € pM)
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for some e ¢ p, then the inclusions (m,em), (n,en) € Fyp imply that (m,n) € Fy, i.e., the set on
the right hand side is contained in Fy.

(ii) Let (m,n) be a pair from the intersection, and suppose m # 0. Let p be the maximal
Zariski ideal of I with m &€ pM. We claim that p is prime. Indeed, assume that fg € p for some
f,9 € p. By the maximality of p, we have m = fu = gv for some u,v € M. It follows that
m = fm = gm and, therefore, m = fgm € pM, which is a contradiction. Since (m,n) € Fy, there
exists e € p with either em = en, or em,en € pM. By the maximality of p again, we have m = eu
for some u € M and, therefore, em = eu = m ¢ pM. It follows that en € pM and m = em = en.
If q is the similar Zariski prime ideal of I that corresponds to the element n, then q D p and there

exists an element f & qM with n = fn = fm. It follows that m = efm = efn =n. "

1.6.2. Corollary. Let A be an Fi-algebra that contains I (and so Fy is an ideal of A), E an
ideal of I, and F' the ideal of A generated by E. Then

(i) Fp N (I x I) = Iy and, in particular, the ideal Fy is nontrivial;

(ii) F' = ﬂEch Fp;

(iii) E=FN (I x I).

Proof. (i) Let (f,g) € FpN (I x I). By Lemma 1.6.1(i), one has there exists e ¢ p with either
fe = ge, or fe,ge € pA. In the latter case, one has fe = ua and ge = vb for some u,v € p and
a,b € A and, therefore, fe = feu € p and ge = gev € p. Since p is prime and does not contain e, it
follows that f,g € p, i.e., (f,g) € llp. Assume therefore that fe,ge & pA. Then fe = ge € p and,
therefore, f, g & p, i.e., (f,g) € Ilp.

(ii) The statement follows from Lemma 1.6.1(ii) applied to the I-module A/F.

(iii) By (ii), one has E = () Bciy lp and F' = Bciy Fy and, therefore, the required fact

follows from (i). .

Furthermore, every element e € I defines the Zariski prime ideal p, = {f € I } f £ e} (it is
the maximal Zariski ideal that does not contain the element ¢e), and so we get an injective map
I — Zspec(I) : e — p,, which preserves the partial orderings of both sets. The prime ideal that
corresponds to p, is denoted by Il. (instead of Il ), and one has Il. = {(f,g) € I x I| either

fg<e or fg£e}.
1.6.3. Lemma. In the above situation, if I is an inf-poset, then the map I — Zspec([) is an

inf-map.

A map of inf-posets is said to be an inf-map if it takes the infimum of a family of elements to

the infimum of their images.
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Proof. Let J be a subset of I, and set f = inf(J) and p = (J,; p.. The inclusion prOpis
trivial. Suppose they do not coincide, i.e., there exists an element g € p,\p. Then p, D p, for all

e € J. This implies that g < e for all e € J and, therefore, g < f. But the latter is impossible since

Every element e € I defines a map Zspec(I) — F; = {0, 1}. If we consider {0,1} as a poset in
which 0 < 1, then the above map belongs to Hom;,¢(Zspec(I),{0,1}) where, for inf-posets P and
Q, Hom;u¢ (P, Q@) denotes the set of maps P — ) that commute with the partial orderings and take
the infimum of any family of elements of P to the infimum of their images in Q. In this way we
get an injective homomorphism of idempotent Fi-algebras I < Homy,¢(Zspec(I),{0,1}).

The latter idempotent Fi-algebra can be described as follows. Let X(I) denote the set
Zspec(I) U {Ox} in which the image of p € Zspec(I) is denoted by ps;. We provide X(I) with
multiplication as follows: if the intersection p N q does not contain a Zariski prime ideal of I, then
ps; - s, = Oy and, otherwise, py, - gy, = vy, where v is the maximal Zariski prime ideal lying in
pNg. An element p, € X(I) defines a map ¢p : Zspec(/) — {0,1} that takes q € Zspec(I) to
1, if p < q (ie, g Cp)and to 0, otherwise. The correspondence py, — pp gives rise to a ho-
momorphism of idempotent Fi-algebras and if, for ¢ € Homiye(Zspec(l), {0,1}), p is the minimal
element of Zspec(I) with ¢(p) = 1, then ¢ = ¢p. Thus, there is a canonical isomorphism of idem-
potent Fi-algebras (1) = Homyjy,¢(Zspec(I),{0,1}). The composition of the latter with the map

I — ¥(I) : e — p, gives rise to an injective homomorphism I < Homiy¢(Zspec([), {0,1}).

1.6.4. Lemma. The following properties of an idempotent F1-algebra I are equivalent:
(a) the poset I is noetherian;

(b) I = Zspec(I);

(c) I = Homyy¢(Zspec(I),{0,1}).

A poset is called noetherian if any ascending sequence of elements stabilizes.

Proof. (a)==(b). The assumption implies that any subset of I has a maximal element. In
particular, given a Zariski prime ideal p C I, there exists a maximal element e in the subset I'\p.
It follows that e is a unique maximal element outside p and that p is a maximal Zariski ideal of I
that does not contain e, i.e., p = p,.

(b)=(c). Let ¢ be a map of partially ordered sets Zspec(I) — {0,1} that commutes with
the infimum operation, and assume that it is not identically zero. Since the partially ordered set

Zspec(I) admits the infimum of any set of elements, there is a unique minimal element p € Zspec([I)
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with ¢(p) = 1. By the assumption, one has p = p, for some element e € I, and it is easy to see
that ¢ is precisely the map associated to the element e.

(c)=>(a). Let e; < ey < ... be an ascending sequence of elements of I, and let p be the
maximal Zariski ideal of I with e; ¢ p for all ¢ > 1. Then the map ¢ : Zspec(I) — {0, 1}, defined
by p(q) =1, p < q (i.e, q Cp), and p(q) = 0, otherwise, belongs to Homiy¢(Zspec(I),{0,1}) and,
therefore, it corresponds to an element e € I, i.e., ¢(q) = 1, if e & q, and p(q) = 0, otherwise. It
follows that p = p,, i.e., e is a unique maximal element outside p. In particular, e; < e for all ¢+ > 1.
If e #e; foralli > 1, then e; € pU e for all # > 1, which contradicts maximality of p. Thus, e = ¢;

for some 7 > 1 and, therefore, the sequence stabilizes. "

Of course, if I is finite, the poset I is noetherian. But the converse is not true in general. For
example, this is not true for the idempotent Fi-algebra I = {0,1,e1, €2, ...} with e;e; = 0 for i # j.
An idempotent Fi-algebra possessing the equivalent properties of Lemma 1.6.4 will be said to be
almost finite.

Notice that a noetherian poset is an inf-poset if and only if it has a unique minimal element.

1.6.5. Corollary. The correspondence I — I gives rise to an anti-equivalence between the
category of almost finite idempotent Fi-algebras and the category of noetherian inf-posets (with
inf-maps as morphisms).

Proof. A homomorphism of almost finite idempotent Fi-algebras ¢ : I — I’ induces a map
between their spectra Zspec(I’) — Zspec(I), and Lemma 1.6.4 implies that the correspondence
considered is a contravariant functor. The map «,, : I' — I, induced by the latter map, takes an
element e’ € I’ to the maximal element e € I with ¢(e) < ¢/. Conversely, any inf-map a : I’ — T
is induced by the homomorphism ¢, : I — I’ that takes an element e € I to zero, if there is no an
element ¢/ € I’ with e < 4(¢’), and to the infimum of all ¢/ € I’ with e < 1)(e’), otherwise. It is easy
to see that one has ¢,, = ¢ and a,,, = o and, in particular, the functor considered is fully faithful.
Let now I be a noetherian inf-poset. We introduce the structure of an idempotent F;-algebra on
the set I = {0} U {e;},c; as follows: e;e; = 0, if sup(i, j) does not exist in I, and e;e; = esup(i ),
otherwise. The multiplication operation defined in this way is associative and commutative, and
the unit for it is the idempotent e; for the minimal element i of I. The poset associated with this
idempotent Fi-algebra is the poset I. It follows that I is almost finite, and we get the required

statement. -

§2. Commutative algebra of F;-algebras
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2.1 Noetherian F;-algebras.

2.1.1. Definition. A module M over an F;-algebra A is said to be noetherian (resp. Zariski
noetherian) if any increasing sequence of A-submodules (resp. Zariski A-submodules) of M stabi-

lizes. If M = A, A is said to be noetherian (resp. Zariski noetherian).

An A-module M is noetherian (resp. Zariski noetherian) if and only if all of its A-submodules
(resp. Zariski A-submodules) are finitely generated. If M is noetherian, then it is Zariski noetherian,
but the converse is not true in general. For example, any F-field K is Zariski noetherian but, if
the group K* is not finitely generated, K is not noetherian. The proof of the following analog of
Hilbert Basis Theorem for Zariski ideals imitates the proof of the latter.

2.1.2. Proposition. If an Fi-algebra A is Zariski noetherian, then any finite module over a
finitely generated A-algebra is Zariski noetherian.

Proof. It suffices to prove the statement for the A-algebra B = A[T]. Every nonzero element
g € B has the form fT"™ with f € A and n > 0. The integer n is the degree of g, and the element f
is the initial coefficient of g. Let b be an ideal of B. We construct as follows a sequence of elements
9o, 9g1,--. of b. First of all, gy is an element of b of minimal degree. Assuming that elements
go, - - -, gn. are already constructed and the ideal generated by them does not coincide with b, we
choose an element g,41 € b\ U, ;A of minimal degree. Consider the ideal a of A generated by
the initial coefficients f; of g;. By the assumption, a = U}, f; A for some n > 0, and we claim that
b = Ul 9, B. Indeed, if the latter is not true, then for the element g,+1 € b\ U, ¢; B one has
fn+1 = fih for some 1 <i <mnand h € A. Since the degree of g; is at most the degree of g,,+1, the

latter implies that g,+1 € ;B C b, which is a contradiction. "

2.1.3. Corollary. Let A be a Zariski noetherian Fi-algebra. Then for every Zariski ideal
a C A and every finite A-module M one has
o0
ﬂaiM:{m6M|m:am for some a € a} .
i=1
Proof. Let aq,...,a, be generators of the ideal a. The homomorphism of A-algebras ¢ :
AlTy, ..., T,] — A that takes T; to a; makes A an A[T},...,T,]-algebra, and the homomorphism of
A-modules ¢ : M[T1,...,T,] = M : T;m +— a;m is in fact a homomorphism of finite A[T1,...,T,]-
modules. If m € (2, a’M, for every i > 1 there exists F; € M[Ty,...,T,] of degree i with
©(F;) = m. By Proposition 2.1.2, the Zariski submodule of M[T1,...,T,] generated by the F;’s
is generated by Fi,..., Fy for some k£ > 1. It follows that Fj41 = GF; for some 1 < i < k and
G e A[Th,...,T,], and we get m = o(G)m with p(G) € a. .
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The proof of the following analog of Hilbert Basis Theorem for ideals (Proposition 2.1.6) is
based on Proposition 2.1.2 and the idea of Grobner bases (see [Eis, §15]), which was already used

in the previous subsection. Let K be an F;-field.

2.1.4. Definition. A K -vector subspace of a K-vector space M is a K-submodule £ C M x M
possessing the following property: if (f,Af) € E for A € K, then either f = Af or f € Ng (i.e.,
(f,0) € E).

In other words, a K-vector subspace is a K-submodule E with the property that for every
element f ¢ Ng the stabilizer of f in K* coincides with that of its image in M/FE. For example,
if M is a free K-vector space, the latter condition on E means that the quotient M/FE is also a
free K-vector space. Furthermore, the K-submodule Ey associated with any Zariski K-submodule
N C M is a K-vector subspace. The intersection of any family of K-vector subspaces is a K-vector
subspace. If A is a K-algebra, its ideals which are K-vector subspaces are said to be K-ideals. For
example, the ideals of K|[T1,...,T,] that possess the equivalent properties of Corollary 1.3.7 are
precisely K-ideals.

2.1.5. Lemma. The following properties of a module M over a K-algebra A are equivalent:

(a) every increasing sequence of A-submodules, which are K-vector subspaces, stabilizes;

(b) every A-submodule, which is a K-vector subspace, is finite.

Proof. First of all, we notice that the union of any increasing sequence of K-vector subspaces
of a K-vector space is a K-vector subspace. This immediately gives the implication (b)==(a).
Assume that (a) is true. Since the A-submodules of M associated with Zariski A-submodules are
K-vector subspaces, it follows that any such A-submodule is finite. Let now E be an arbitrary
A-submodule of M, which is a K-vector subspace. By the above remark, Ng is is finite. If F
is not finitely generated, we can find an increasing sequence of finitely generated A-submodules
E, C E5 C ... which does not stabilize. Since Ng is finite, we can increase the A-submodules F;
and assume that Ng, = Ng for all ¢ > 1. Then all E;’s are K-vector subspaces of M, and we get

a contradiction. n

A module M over a K-algebra A possessing the equivalent properties of Lemma 2.1.5 is said
to be K-noetherian. The K-algebra itself is said to be K-noetherian if it is K-noetherian as an
A-module. If K = Fy, this definition coincides with that introduced at the beginning of this

subsection.

2.1.6. Proposition. Any finite module over a finitely generated K-algebra is K-noetherian.
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In particular, any finitely generated K-algebra is K-noetherian.

Let us set B = K[T1,...,T,] and A = F,[T1,...,T,], and fix a monomial order on A(™) as in
§1.3. A Grébner basis of an B-submodule E of B(™) is a system of elements (f1,91), ..., (fx,gx) € E
with in(f;) # in(g;) for all 1 < ¢ < k and such that the monomials max{in(f;),in(g1)}, ...,
max{in(f;),in(gr)} generate the Zariski A-submodule in(E) of A"). By Proposition 2.1.2, all
Zariski A-submodules of A(™) are finite and, therefore, every B-submodule of B("™) admits a

Grobner basis.

2.1.7. Lemma. Let E be a B-submodule of B") which is a K-vector subspace. Then any
Grébner basis of E generates E.

Proof. Let (f1,91),---,(fr,gx) be a Grobner basis of a B-submodule E with in(f;) > in(g;)
for all 1 <i < m, and let E’ be the ideal generated by them. Multiplying each pair (f;, g;) by an
elements of K, we may assume that f; = T" e, ;) € A for all 1 <4 < m and some 1 < o(i) < m. If
E’' # E, we can find a pair (f,g) € E\E’ with in(f) > in(g) and minimal in(f). Then f # g, and
since E is a K-vector subspace, it follows that in(f) > in(g). Multiplying (f, g) by an element of K,
we may assume that f = T"e; € A. By the assumption, the monomial T"e; is divisible by T" e, ;)
for some 1 <i <m. (In particular, e; = e,(;).) It follows that (f,g;T+7"¢) = (f;TF™":, g;TH ") €
E’ and, therefore, (g,¢9;T#~"") € E\E’. This contradicts the minimality of in(f). Indeed, we have
f >in(g), and since f; = T"e; > in(g;), then f = fiTF™" > in(g;)TH":. .

Proof of Proposition 2.1.6. Lemma 2.1.7 and Proposition 2.1.2 imply the required fact in
the case K = F;. We reduce the general case to this one as follows.

For a K-vector space M, let M denote the quotient M/K* which is an Fi-vector space, and,
for an element m € M, let ™ denote its image in M. Furthermore, for a K-vector subspace E of
M, let E denote the Fi-vector subspace of M that consists of the pairs (7, n) with (m,n) € E.
We claim that, if E' C E" are K -vector subspaces of M such that E = E//, then E' = E". Indeed,
since Ng» and Ng» are the preimages of Nz and Ny, respectively, it follows that Ngs = Ngr.
Furthermore, let (m,n) € E”\(Ng» X Ng~). By the assumption, there exists an element A\ € K*
with (m,An) € E’. Since E' C E”, it follows that (n,An) € E”. Since E” is a K-vector subspace,
we get n = An and, therefore, (m,n) € E’, i.e, the claim is true.

Let M be a finite module over a finitely generated K-algebra A, and assume we are given
an increasing sequence 4 C Fy C ... of A-submodules which are K-vector subspaces of M. By
Step 1, the finitely generated Fi-algebra A = A/K* and the finite A-module M = M/K* are

noetherian. It follows that the sequence E; C E5 C ... of A-submodules of M stabilizes, i.e., there
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isn >1with E,, = E,, 41 = .... Step 2 implies that F,, = E,;1 = ..., i.e., M is K-noetherian. =

2.2. Radicals of F;-algebras and modules. Let A be an F-algebra, and M an A-module
(e.g., M = A).

2.2.1. Definition. (i) The the Zariski annihilator of a subset N C M is the Zariski ideal
zann(N) = {f € A’fm =0 for all m € N}.

(ii) The Zariski nilradical of M is the Zariski ideal zn(M) = {f € A|f™ € zann(M) for some
n>1}.

(iii) The Zariski radical zv(N) = zrp;(N) of a Zariski A-submodules N C M is the Zariski
ideal zn(M/N). The Zariski radical zr(E) of an A-submodule E is the Zariski ideal zn(M/E).

For example, zann(A) = 0, and zn(A) is the set of nilpotent elements of A. An A-module is

said to be Zariski reduced if zn(M) = zann(M ). Furthermore, zry;(0) = zn(M).

2.2.2. Proposition. One has zn(M) = ﬂp p, where p runs through Zariski prime ideals that
contain zann(M).

Proof. Let f be an element of A which is not nilpotent at M. By Zorn’s Lemma, there exists
a Zariski ideal a maximal among those which do not intersect with the set {f*}r>1. We claim that
a is prime. For this we assume that gh € a and that both g and h are not in a. Then the Zariski
ideals of A generated by a and g and h, respectively, contain some powers of f, i.e., f* = ag and
f' = bh for some k,1 > 1 and a,b € A. It follows that f*¥! = abgh € a which is a contradiction.
It remains to show that every element g € zann(M) lies in a. If ¢ ¢ a, then the maximality of
a implies that f¥ = ga for some k > 1 and a € A. It follows that f* annihilates M, which is a

contradiction. n

2.2.3. Corollary. For a Zariski A-submodule N C M, one has zr(N) = ﬂp p, where p runs
through Zariski prime ideals that contain zann(M/N). .

2.2.4. Definition. (i) The annihilator of a subset N C M is the ideal
ann(N) = {(f,g) € M x M|fm =gm for all m € N}.
(ii) The nilradical of M is the ideal
n(M) = {(f,g9) € M x M| there exists k > 1 with f'm = g'm for all i > k and m € M} .

(iii) The radical r(E) of an A-submodule E of M is the preimage of n(M/E) in A x A.
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Notice that it is enough to require that the actions of f* and g* on M coincide for two successive
values of 7. Indeed, assume that f*m = ¢*m and f**t! = g**1m for some k > 0 and all m € M.
Then ffgm = ¢*T'm = f*tlm and, therefore, figm = f*t'm for all i > k. By induction on j,
we get figim = fi*im for all i > k and j > 0 and, by symmetry, we have fig/m = ¢**/m for all
i >0and j > k. It follows that fim = g'm for all i > 2k. Notice also that Aann(v) = zann(M)
and an(pr) = zn(M).

An A-module M is said to be reduced if n(M) = ann(M). For example, any integral F-algebra
A is reduced. Indeed, if for non-nilpotent elements f and g one has f? = ¢* for all i > n, then
f-fi=fitl =gt = g. f? and, therefore, f = g. Notice that for any Zariski prime ideal p of an
F;-algebra A the canonical map n(A4) — n(A/p) is surjective. In particular, if A is reduced, then

the quotient A/p is reduced for any Zariski prime ideal p C A.

2.2.4. Proposition. One has n(M) = (II, where II runs through prime ideals that contain
ann(M); in particular, one has n(A) = (Ilp, where p run through Zariski prime ideals of A.

Proof. We can replace A by A/ann(M) and assume that ann(M) = A(A). It follows that
n(M) = n(A) and, therefore, it suffices to show that n(A) = (IIp, where p run through Zariski
prime ideals of A. That n(A) is contained in the intersection is trivial. Let (f,g) be an element
from the intersection. If both f and ¢ are contained in all Zariski prime ideals of A, then, by
Proposition 2.2.2, they are nilpotent and, in particular, (f,g) € n(A). Assume therefore that it
is not the case. It is easy to see that the image of (f,g) in Ay x Ay is contained in the similar
intersection for A¢. Since the image of f in Ay is invertible, it follows that the image of g in Ay
is also invertible. Since (f,g) € I, , there exists an element h € (Af)* with fh = gh in Ay
and, therefore, the images of f and g in A coincide, i.e., there exists m > 0 with f™g = f™*1.
By symmetry, there exists n > 0 with fg" = ¢g"t!. It follows that f* = ¢’ for all i > m + n, i.e.,
(f,9) € n(A). .

Proposition 2.2.4 implies that the radical of an ideal coincides with the intersection of all prime
ideals that contain it. An ideal E of A is said to be radical if E = r(E).

For an Fi-algebra A, let I4 denote the set of all idempotents in A. It is an idempotent
F;-subalgebra of A (the idempotent F1-subalgebra of A).

2.2.5. Proposition. Let A be an Fy-algebra, and let B = A/n(A). Then I, = Ip.

Proof. The injectivity of the map considered is trivial. Suppose that an element f € A
represent an idempotent in B. This means that (f2, f) € n(A), i.e., there exists n > 1 with
f% = fi for all i > n. We claim that f*t% = f**! for all i > 1. Indeed, if i = 1, there is nothing
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to prove, and so assume that ¢ > 2 and that the claim is true for all smaller values of i. We have
frritl = podicl g2 — g2(ndi—1) L g2 — f2(ndi) — et and so the claim is true. It follows that

for the idempotent e = f**1, one has ¢! = f? for all i > i + 1, i.e., (e, f) € n(A). .

2.3. Primary decomposition for Zariski ideals and Zariski modules. Let A be an

F;-algebra, and M an A-module (e.g., M = A).

2.3.1. Definition. A Zariski A-submodule N C M is said to be primary if it is nontrivial
and possesses the property that, if fm € N, then either m € N or f € zr(V).

If N is primary, the Zariski radical zr(N) is a Zariski prime ideal p and N is said to be p-
primary. For example, any Zariski A-submodule N C M with zr(N) = m 4 is primary. Notice that
the intersection of two Zariski p-primary A-submodules is a Zariski p-primary A-submodule.

A Zariski A-submodule N C M is said to be decomposable if it admits a primary decomposition,
i.e., a representation in the form ﬂle N;, where N; are primary Zariski A-submodules. A primary
decomposition N = ﬂle N; is said to be minimal if all of the Zariski prime ideals p; = zr(NN;) are
pairwise distinct and, for every 1 <i <k, [ 2 IV ¢ N;. Notice that every decomposable Zariski
A-submodule admits a minimal primary decomposition.

For a Zariski A-submodule P C M and a subset @) C M, one denotes by (P : Q) the Zariski
ideal {f € A‘fQ C P}. For example, (0: Q) = zann(Q).

2.3.2. Proposition (The first uniqueness theorem). Let N be a decomposable Zariski A-
submodule provided with a minimal primary decomposition (\;_, N;, and let p, = zr(N;). Then
{p; }1<i<n coincides with the set of Zariski prime ideals of the form zr(N : m) with m € M. In

particular, the set {p, }1<i<yn does not depend on the choice of the minimal primary decomposition.

2.3.3. Lemma. (i) (P: Q)= A if and only if Q C P;

(i) (Niz1 P - Q) = Nizy (P : Q);

(iii) if P is p-primary and Q ¢ P, then (P : Q) is a Zariski p-primary ideal of A.

Proof. (i) One has (P: Q) =Aifand only if 1 € (P: @), i.e., Q C P.

(ii) One has f € (N, P, : Q) if and only if fQ C (), P;. The latter is obviously equivalent
to the inclusion f € (_, (P : Q).

(iii) We claim that zr(P : Q) = p. Indeed, the inclusion p C zr(P : @) is trivial. Suppose
that f € zr(P : Q), i.e., there is k > 1 with f*m € P for all m € Q. If m € Q\P, the latter

inclusion implies that (f*)! € zr(P) = p for some [ > 1, and the claim follows. Assume now that
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fg e (P:Q),ie., fgm e P forallm e Q. If g € p, then fm € P for all m € @ and, therefore,
fe(P:Q). .

Proof of Proposition 2.3.2. By Lemma 2.3.3, one has zr(N : m) = Npygn,p; for every
element m € M. If the intersection is a Zariski prime ideal, Lemma 1.2.7(i) implies that it coincides
with some p;. Conversely, if m € ([;; N;)\V;, then zr(N : m) = p;, and the required statement

follows. n

In the situation of Proposition 2.3.2, p, are said to be the Zariski prime ideals associated to
N, the minimal (resp. non-minimal) elements of {p;,...,p,} are said to be the isolated (resp.

embedded) Zariski prime ideals associated to N.

2.3.4. Corollary. Suppose that the zero ideal of A is decomposable, and let py,...,p,, (resp.
Pyt --sPn) be the associated isolated (resp. embedded) Zariski prime ideals. Then

(i) pq,...,Pp,, are precisely the minimal Zariski prime ideals of A;

(ii) the set of zero divisors in A coincides with |J}_, p;;

(iii) if f ¢ J;~, p; and fg = 0, then g € zn(A).

Proof. (i) Let py,...,p,, be the isolated ideals. Then zn(A) = -, p,. If p is a Zariski prime
ideal of A, then it contains the latter intersection and, therefore, it contains p, for some 1 < i < m.

(ii) The set of zero divisors of A is a Zariski ideal which coincides with the union (J;_,(0 : f).
On the other hand, it coincides with its own radical, i.e., with the union Uf;éo zr(0 : f). By
Proposition 2.3.2, the Zariski ideals p, are among sets in the union. Since zr(0: f) = ﬂf@i p,, the
required fact follows.

(iii) If g € zn(A), (i) implies that g & p, for some 1 < i < m. Since f ¢ p;, it follows that

fg & p; which contradicts the assumption fg = 0. .

2.3.5. Corollary. Let ¢ : A — B be a homomorphism of Fi-algebras, and suppose that
Zspec(A) is finite. Then a Zariski prime ideal p C A lies in the image of Zspec(B) if and only if
¢~ (pB) =p.

Proof. The direct implication is trivial. To prove the converse implication, we can replace
A by A/p and B by B/pB, and so we may assume that A has no zero divisors, p = 0 and the
homomorphism ¢ is Zariski injective, i.e., Zker(¢) = 0. Consider first the case when B is finitely
generated over A. By Corollary 1.4.2, the Zariski spectrum of B is finite and, in particular, the
Zariski nilradical zn(B) is decomposable, i.e., zn(B) = (;_, q; for some Zariski prime ideals of
B. Since ¢ is Zariski injective, it follows that (;_, ¢ *(q;) = 0. Corollary 2.3.4 implies that

at least one of the Zariski prime ideals ¢~ !(g;) should coincide with 0. In the general case, let
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{B;}icr be the filtered system of finitely generated A-subalgebras of B. By the previous case, for

every i € I the finite set of Zariski prime ideals ¢ C B; with ¢~1(q) = 0 is nonempty. Since

Zspec(B) = lim Zspec(B;), it follows that there is a Zariski prime ideal ¢ C B with ¢ =1(q) =0. =
%

2.3.5. Proposition (The second uniqueness theorem). In the situation of Proposition 2.3.2,
let p be a Zapiski prime ideal of the form p, U...Up, , and set N®) = ﬂpicp N;. Then NP =
{m e M‘fm € N for some f € A\p}. In particular, the Zariski A-submodules N; that correspond
to the isolated Zariski prime ideals associated to N are determined by N.

Proof. Assume first that m € N®). We pick up an element fi € p;\p for every j with p; Z p,
and denote by f their product. Then we can replace f by its power so that fm € N; for all j with
p; & p. It follows that fm € N. Conversely, assume that fm € N for some f € A\p. Since for
every ¢ with p, C p one has fm € N; and f ¢ p,, it follows that m € N;, i.e., m € NP, "

2.3.6. Definition. An A-module M is said to be Zariski decomposable if the zero Zariski
A-submodule of M is decomposable. In this case, the corresponding associated Zariski prime ideals

will be said to be Zariski associated to M, and their set is denoted by Zass(M) = Zass(M).

2.3.7. Lemma. If M is a Zariski decomposable A-module, then for any sub-semigroup S C A
the S~1 A-module S~ M is also Zariski decomposable and Zass(S™*M) = Zass(M)NZspec(S™1A).

Proof. Let p be a Zariski prime ideal of A with p NS = (). We claim that, if N is a p-
primary Zariski A-submodule of M, then SN is a S~'p-primary Zariski S—!A-submodule of
S~1M. Indeed, suppose that % - ¢ STIN, where s,t € S. It follows that afm € N for some
a € S and, therefore, one has either m € N or af € p. Since pN S = (), the latter inclusion implies
that f € p, and the claim follows. Let 0 = ﬂle N, be a minimal primary decomposition with
p, = zr(N;), and suppose that p, NS = () for only 1 < i <. It follows that 0 = ﬂizl SN, and,
by the above claim, each S™!N; is S~1p,-primary. In particular, the Zariski S~!A-module S~ M
is decomposable and Zass(S™1M) C Zass(M) N Zspec(S~1A). Finally, by Proposition 2.3.1, each
p; is of the form zr(0 : m) for some m € M. This easily implies that zrg-1,(0 : m) = S~!p,, and

the converse inclusion follows. n

2.3.8. Proposition. Let A be a Zariski noetherian F1-algebra, and M a Zariski noetherian
A-module. Then

(i) M is Zariski decomposable;

(ii) Zass(M) coincides with the set of Zariski prime ideals of the form zann(m) with m € M.

Proof. (i) A Zariski A-submodule N C M is said to be irreducible, if it possesses the property
that if N = PN Q then either N = P or N = Q. To prove (i), it suffices to verify the following two
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facts:

(1) every Zariski A-submodule is the intersection of a finite number of irreducible Zariski
A-submodules;

(2) every irreducible Zariski A-submodule is primary.

(1) If the statement is not true, then the set of all Zariski A-submodules for which it does not
hold is nonempty and, therefore, contains a maximal element N. Since N is not irreducible, there
exist Zariski A-submodules P and @ different of IV and such that N = PN Q. Then P and @ can
be represented as intersections of finite sets of irreducible Zariski A-submodules, and so the same
is true for IV, which is a contradiction.

(2) If N is an irreducible Zariski A-submodule, then replacing M by M /N, we may assume
that N = 0. Assume that fm = 0 and m # 0. For k > 1, let Py denote the Zariski A-submodule of
M that consists of the elements n with f*n = 0. The chain of Zariski A-submodules P, C P, C ...
stabilizes and, therefore, P, = Py41 for some k > 1. We claim that f*M N Am = 0. Indeed, if
fFn = gm for some n € M and g € A, then f**ln =gfm =0, ie.,n € P.y1. We get n € Py, ie.,
fFn =0, and the claim follows. Since the zero ideal is irreducible, it follows that f*M = 0.

(ii) First of all, we claim that every Zariski ideal mazimal among nontrivial Zariski ideals of the
form zann(m) = (0 : m) with m € M is Zariski prime. Indeed, let zann(m) be such a Zariski ideal,
and suppose that fg € zann(m) and g & zann(m), i.e., fgm = 0 and gm # 0. Then fgm = 0 and,
therefore, AfUp C zann(gm). The maximality of zann(m) implies that f € zann(m), and the claim
follows. Let now p € Zass(M). To prove the required property of p, consider first the case when
p is the maximal Zariski ideal of A, i.e., A\p = A*. By Proposition 2.3.2, one has p = zr(0 : m)
for some m € M. Since A is Zariski noetherian, the above claim implies that there is a Zariski
prime ideal q of the form zann(n) with n € M that contains zann(m). For the same reason, there
is k > 1 with p* C zann(m) and, since p is the maximal Zariski ideal of A, it follows that p = q. In
the general case, we can use Lemma 2.3.7 and apply the previous case to the localizations Ap and
Mp. Tt follows that there is an element ™* € My such that pAp = zann(*). This easily implies

that p = zann(m). .

2.4. Primary decomposition for ideals and submodules. Let A be an Fi-algebra and

M an A-module (e.g., M = A).

2.4.1. Definition. (i) An A-submodule E of M is said to be primary if it is nontrivial and
possesses the property that, if (fm, fn) € E, then either (m,n) € E or f € zr(E) = zn(M/E).

(ii) An A-module M is said to be quasi-integral if the minimal A-submodule A(M) is primary.
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An A-submodule FE of an A-module M is primary if and only if the A-module M/E is quasi-
integral. If E is a primary A-submodule of M, then ann(M/FE) is a primary ideal of A. In this case,
the radical and the Zariski radical of the latter, which coincide with r(E) and zr(E), are a prime
ideal IT and a Zariski prime ideal p, respectively, and F is said to be II-primary or p-primary. If E is
a p-primary A-submodule, then ann(M/FE) is a p-primary ideal. Notice that, given a finite system
of p-primary A-submodules {E;};c; with II; = r(£;), the intersection (,c; £; is a II-primary A-

submodule with IT = (.., II;. Notice also that an A-module M is primary if and only if zn(M) is

iel
a Zariski prime ideal p of A and the canonical homomorphism M — My is injective.

2.4.2. Lemma. Let M be a nonzero A-module, p a Zariski prime ideal of A, N a nontrivial
Zariski Ap-submodule of My with zr(N) = pAp, and £ = Ker(M — My /N). Then

(i) E is a p-primary A-submodule of M;

(ii) if M = A, then E is Ilp-primary;

(iii) the Zariski ideal a = zanna(My/N) is p-primary, and F' = Ker(M — My /aMy) is unique
minimal among primary A-submodules of M with zann(M/F) = a.

Proof. (i) The assumption zr(IN) = pAp implies that zr(E) = p. Assume now that (fm, fn) €
E. If f ¢ zr(E) = p, then the image of f in Ap is invertible and, therefore, the images of m and n
in Mp/N coincide, i.e., (m,n) € E. Thus, the A-submodule E is p-primary.

(ii) Let (f,g) € r(E), i.e., there exists k£ > 1 such that (f,¢°) € E for all i > k. It follows
that, if fg € p, then f,g € p and, therefore, (f,g) € Ilp. Assume therefore that f,g & p. Then
their images in Ap are invertible. Since the images of f%and ¢* in Ap/N are equal for all i > k, it
follows that the same is true for the images of f* and ¢* in Ap, and this implies that the images of
f and g in Ap coincide, i.e., (f,g) € Ip.

(iii) Since a = zann(M/E), (i) implies that the Zariski ideal a is p-primary and the ideal F
is p-primary. Furthermore, if an element f € A annihilates Myp/aMp, it annihilates My /N and,
therefore, f € a, i.e., zann(M/F) = a. That the p-primary ideal F' is minimal with the latter

property is trivial. "

2.4.3. Definition. (i) An A-submodule E of M is said to be decomposable if it admits
a primary decomposition, i.e., a representation in the form ﬂle E;, where E; are primary A-
submodules. It is said to be weakly decomposable if its radical r(F) is decomposable.

(iii) A primary decomposition E = ﬂle E; is said to be minimal if all of the Zariski prime

ideals zr(E;) are pairwise distinct and, for every 1 <i <k, (), E; ¢ E;.
For example, if the Zariski spectrum of A is finite then, by Corollary 2.2.5, all ideals of A
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are weakly decomposable. Notice also that every decomposable A-submodule admits a minimal
primary decomposition. Indeed, let £ = ﬂle FE; be a primary decomposition of an A-submodule
E of M, and let II; = r(E;) and p, = zr(E;). If p, = p;, we replace the pair of ideals F;, E; by their
intersection F;NE;, which is a p,-primary ideal. Furthermore, withdrawing from the decomposition
all of the ideals F; that contain [ 2 By, we get a minimal primary decomposition.

For an A-submodule £ C M x M and a subset F' C M x M, we denote by (E : F') the Zariski
ideal {f € A|(fm, fn) € E for all (m,n) € F}. For example, (A(M) : F) = ann(F).

2.4.4. Proposition (The first uniqueness theorem). Let E be a decomposable A-submodule
of M provided with a minimal primary decomposition E = ﬂle E;, and let p; = zr(E;). Then
{p;1<i<k coincides with the set of Zariski prime ideals of the form zr(E : (m,n)) with m,n € M.

In particular, this set does not depend on the choice of the minimal primary decomposition.

2.4.5. Lemma. (i) (N, Ei: F) = N, (E:i : F);

(ii)) (E: F)= A ifand only if F C E;

(iii) if F ¢ E and E is p-primary, then (E : F') is a Zariski p-primary ideal.

Proof. (i) One has f € (ﬂf:1 E; : F) if and only if (fm, fn) € ﬂle E; for all (m,n) € F.
The latter is obviously equivalent to the inclusion f € ﬂle(Ez-, F).

(ii) One has (E: F)=Aifand only if 1 € (E : F), i.e., (m,n) € E for all (m,n) € F.

(iii) First of all, we show that zr(E : F) = p. Since zann(M/E) C (E : F), it follows that
p =zr(E) C zr(E : F). Conversely, assume that f € zr(E : F). Then f* € (E : F) for some k > 1,
i.e., (f*m, fFn) € E for all (m,n) € F. Since there exists (m,n) € F\E, it follows that f* € p and,
therefore, f € p. Thus, zr(E : F') = p. Assume now that fg € (E : F), i.e., (fgm, fgn) € E for all
(m,n) € F. If g & p, it follows that (fm, fn) € E for all (m,n) € F and, therefore, f € (E : F),
ie., (F: F)is a Zariski p-primary ideal. .

Proof of Proposition 2.4.4. By Lemma 2.4.5, one has

zr(E: (m,n)) = ﬂ zr(E; : (m,n)) = ﬂ p; -

i=1 (m,n)¢E;

If the latter is a Zariski prime ideal, it coincides with some p;. Conversely, if (m,n) € (), £;)\Ei,

then zr(E : (m,n)) = p;, and the required statement follows. .
In the situation of Proposition 2.4.4, p, are said to be the Zariski prime ideals associated to E.

2.4.6. Proposition. (The second uniqueness theorem). In the situation of Proposition

2.4.4, let p be a Zariski prime ideal of the form p; U...Up, , and set E® = mp.cp E;. Then
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E® = {(m,n)|(fm, fn) € E for some f & p}. In particular, the ideals E; that correspond to the
Zariski prime ideals p; minimal among {p, }1<i<k are determined by E.

Proof. Assume first that (m,n) € EP). For every p; ¢ p, take an element f; € p;\p.
Replacing f; by its power, we may assume that f; € zann(M/E;). Then (f;m, fym) € E;. If f is
the product of the above elements f;, we get (fm, fn) € E and f ¢ p. Conversely, assume that
(fm, fn) € E for some f ¢ p. It follows that, for every 1 < i < k, either (m,n) € E; or f' € p, for

some | > 1. If p; C p, the second inclusion is impossible and, therefore, (m,n) € EW, "

2.4.7. Definition. (i) An A-module M is said to be decomposable (resp. weakly decomposable)
if the minimal A-submodule A(M) is decomposable (resp. weakly decomposable).
(ii) If M is decomposable, the Zariski prime ideals associated to A(M) are said to be associated

to M, and their set is denoted by Ass(M) = Assa(M).
Notice that, if M is decomposable, it is also Zariski decomposable and Zass(M) C Ass(M).

2.4.8. Lemma. If an A-module M is decomposable, then for any sub-semigroup S C A the
S~1 A-module S~ M is also decomposable, and one has Ass(S™1M) = Ass(M) N Zspec(S™1A).

Proof. For an A-submodule E, let S~'E be the preimage of F in S~'A. Suppose that E is
II-primary with a p-prime ideal II. We claim that

(1) if pNS #0, then the S~ A-submodule S™'E is trivial;

(2) ifpNS =0, then the S~ A-submodule S~*E is S~ II-primary.

(1) Let f € pNS. Then there is k > 1 with (f*m,0) € E for all m € M. This implies that
(,0) € S~'E forallm € M and s € S, i.e., ST'E is a trivial S~!A-submodule.

(2) Suppose that (% . m7£ - 2) € ST'E. Then (faBtm, fafsn) € E for some 8 € S and,

therefore, one has either (tm, sn) € E, ie., (%, %) € S7IE, or faB € p. Since pN S = 0, the latter
inclusion implies that f € p, and the claim follows.

Let A(M) = ﬂle E; be a minimal primary decomposition with p, = zr(F;), and suppose
that p, NS = () precisely for 1 < i < [. By the above claim, A(S™1M) = ﬂizl STIE; is a
primary decomposition and, in particular, S™1M is decomposable and Ass(S™'M) C Ass(M) N
Fspec(S™1A). By Proposition 2.4.4, each p, is of the form zr(A(M) : (f,g)) for some (f,g) €
M x M. This easily implies that zrg-1 4(A(S™Y(M) : (f,g9)) = S~!p;, and the converse inclusion

follows. n

The following proposition summarizes properties of minimal primary decompositions for de-

composable F1-algebras.
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2.4.9. Proposition. Suppose that A is decomposable, and let A(A) = (;_, E; be a minimal
primary decomposition, and p, = zr(E;). Then

(i) the set {p; }1<i<n contains all minimal Zariski prime ideals of A;

(ii) for every 1 < i <mn, E; is llp -primary and the p;-primary ideal E = Ker(A — Ap /a;Ap )
with a; = {f € A|(f,0) € E;} lies in E;; in particular, A(A) = (I, E/ is also a minimal primary
decomposition;

(iii) if A is reduced, then A(A) = (;_, Ip , and so it is also a minimal primary decomposition,
and all of the ideals Ily , ... Iy lie in the set of minimal prime ideals of A.

Proof. (i) follows from Corollary 2.3.4(i).

(ii) By Lemma 2.4.2, E} = Ker(A — Ap /a;Ap ) is a unique minimal among primary ideals F
with a; = {f € A‘(f, 0) € F} and, therefore, E! C E;. Since E! is Il -primary, then so is Ej.

(iii) Suppose (a,b) € ;2 Ip . Then there exists m > 1 such that, for every 1 < < n, the
images of a™ and b™ in Ap_lie in a;Ap . It follows that (a?,b7) € N, E} for all j > m. Since the
latter is A(A) and A is reduced, we get a = b. .

2.4.10. Example. Let A be a decomposable Fy-algebra isomorphic to the quotient B/b of
an integral domain B by a Zariski ideal b. Then Ass(A) = Zass(A). Indeed, let p € Ass(A). By
Proposition 2.4.4, there exist elements f, g € B such that the preimage q of p in B coincides with
the set {b € B‘ either b f = b"g, or b" f,b"g € b for some n > 1}. Since B is an integral domain,
it follows that q = {b € B‘b”f € b for some n > 1}, i.e., v € Zass(A), by Proposition 2.3.2.

2.4.10. Corollary. In the situation of Proposition 2.4.4, if the ideal E is radical, then all of

the prime ideals associated with E lie in the set of minimal prime ideals that contain F. "

For an A-module M, let ass(M) denote the set of all prime ideals of A of the form ann(m) with
m € M. Notice that, if such an ideal IT = ann(m) is p-prime, then p = zann(m) and, by Proposition

2.3.8, the image of ass(M ) under the canonical map Fspec(A) — Zspec(A) lies in Zass(M).

2.4.11. Proposition. Let A be a noetherian Fi-algebra, and M a noetherian A-module.
Then

(i) M is decomposable;

(ii) the set ass(M) is finite, and the map ass(M) — Zass(M) is surjective;

(iii) there is a chain of Zariski A-submodules Ny = 0 C Ny C ... C Ny = M such that each

quotient N;/N;_; is isomorphic to an A-module of the form A/, where Il is a prime ideal of A.

The proof of (i) uses only the assumption that M is noetherian. In §2.7, the conclusions (i)-(iii)
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are extended to a more general case.

Proof. (i) An A-submodule E C M x M is said to be irreducible if it possesses the property
that, if E = E'NE”, then either E = E’ or E = E”. To prove (i), it suffices to verify the following
two facts:

(1) every A-submodule is the intersection of a finite number of irreducible A-submodules;

(2) every irreducible A-submodule is primary.

(1) is verified in the same way as the corresponding fact from the proof of Proposition 2.3.8(i).

(2) If E is an irreducible A-submodule, then replacing M by M/E, we may assume that
E = A(M). Assume that fm = fn and m # n. For k > 1, let Ej be an A-submodule of M
consisting of the pairs (p,q) with f*p = f¥q. One has (m,n) € E; C Ey C ... and, therefore,
there exists k > 1 with E, = E; for all i« > k. We claim that A(M) = Ex N F, where F is the
A-submodule A(M) U (f*M x f*M). Indeed, let (p,q) be an element from the intersection with
p # q. Then p = f*p’ and ¢ = f"q¢’ for some p’,q' € M. Since f*p = fFq, we get f2kp’ = f2*¢
and, therefore, (p'q’) € Eo, = Ey, i.e., p = fFp' = f"¢’ = ¢, which is a contradiction. By the
assumption, one has either Ey = A(M), or ' = A(M). The former case is impossible since m # n,
and in the latter case we have f¥p =0 for all p € M, i.e., f € zn(M).

(ii) First of all, we claim that every ideal mazimal among nontrivial ideals of the form ann(m)
with m € M is prime. Indeed, let ann(m) be such an ideal, and suppose that (fh,gh) € ann(m)
and h & ann(m), i.e., fhm = ghm and hm # 0. Then (f,g) € ann(hm) and, therefore, the ideal
generated by (f,g) and ann(m) is contained in ann(hm). The maximality of ann(m) implies that
(f,9) € ann(m), and the claim follows.

Let p € Zass(M ), and suppose first that p is the maximal Zariski ideal of A, i.e., A\p = A*.
By Proposition 2.3.2, one has p = zr(zann(m)) for some m € M. Then there is k& > 1 with
p* C zann(m) and, therefore, the ideal E = A(A) U (p* x p*) associated to p* is contained in
ann(m). Since A is noetherian, the above claim implies that there exists a prime ideal IT of the
form ann(n) with n € M that contains E. The maximality of p implies that IT is an p-ideal. In the
general case, we apply Lemma 2.3.7 to the localizations Ap and Mp. It follows that there exists an
pAp-prime ideal II' C Ap x Ap of the form anty, (m) with m € M. We claim that the p-prime ideal
IT1 C A x A, which is the preimage of II', has the form ann(tm) for some t € A\p. Indeed, since A
is noetherian, II is generated by a finite set of pairs (f1,91),..., (fx,gx). For every 1 <i < k, the
inclusion (%, ) e ann.y, (m) implies that there is t; € A\p with f;t;m = g;t;m. If ¢ is the product
of all ¢;’s, then t € A\p and, in particular, tm # 0, and f;tm = g;tm for all 1 <14 < k. The required
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claim follows.

For p € ann(M), let M®) denote the subset of M consisting of zero and elements m with
ann(m) = p. Since the quotient of A by a prime ideal is an integral domain, it follows that
M®) is a Zariski A-submodule of M. It follows also that, for distinct p,q € ass(M), one has
M® A M@ =0. Since M is Zariski noetherian, this implies that the set ass(M) is finite.

(iii) If M is nonzero, we can find a prime ideal II € ass(M), i.e., II = ann(m) for some
m € M. Then A/II 5 Ny, where N is the Zariski A-submodule of M which is the image of the
homomorphism A — M that takes 1 to m. If N1 #% M, we can apply the same construction to the
quotient A-module M/N; and so on. Since M is Zariski noetherian, this procedure stabilizes, and

we get the required fact. "

2.5. Artinian F;-algebras.

2.5.1. Definition. (i) An Fj-algebra A is said to be Zariski artinian if it satisfies the
descending chain condition for Zariski ideals.
(ii) A Zariski artinian F-algebra A is said to be local if m = m 4 is its only Zariski prime ideal

(and, in particular, m = zn(A)).

Notice that, in comparison with rings, a Zariski artinian F;-algebra is not necessarily Zariski
noetherian or satisfies the descending chain condition for ideals. Indeed, let I be the idempotent
Fi-algebra {0,1,e1,ez,...} with e;-e; = ening; ;) for all 4, j > 1. If a is a Zariski ideal that does not
contain an element e,,, then a lies in the Zariski ideal a,,_; = {0,e1,...,e,_1} and, therefore, A is
Zariski artinian. On the other hand, the ascending chain of Zariski ideals a; C ay C ... does not
stabilize, i.e., I is not Zariski noetherian. Furthermore, for every n > 1 the union of A(I) and the
set of pairs (e;,e;) with 4,j > n is an ideal E,,, and the descending chain of ideals E; D E; D ...
does not stabilize. Notice also that if an idempotent Fi-algebra I is Zariski artinian, it is almost
finite. Indeed, an ascending chain of nonzero idempotents e; < ey < ... gives rise to the descending

chain of Zariski prime ideals p,, D p., D ... and, therefore, it stabilizes.

2.5.2. Proposition. Let A be a Zariski artinian F-algebra, and I4 the idempotent F1-
subalgebra of A.. Then

(i) the Zariski nilradical zn(A) is nilpotent;

(ii) 14 is Zariski artinian and, in particular, it is almost finite;

(iii) the canonical map Zspec(A) — Zspec(l4) is a bijection.

Proof. (i) Let n = zn(A). By the assumption, the descending chain n D n? O ... stabilizes,
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i.e., there ism > 1 with n™ = n™*! = . ..

. We claim that the ideal a = n™ is zero. Indeed, assume
a # 0, and let S be the set of nonzero Zariski ideals b with a-b # 0. Since A is an element in
S and it is Zariski artinian, there exists minimal b with the above property. Let f € b be such
that fa # 0. Since fA C b and b is minimal, it follows that b = fA. Furthermore, one has
(fa)a = fa? = fa # 0. Since fa C b, it follows that fa =b = fA and, in particular, f = fg for
some g € a. It follows that f = fg = fg? = .... Since g is nilpotent, we get f = 0, which is a
contradiction.

(ii) Corolary 1.6.2(iii) implies that, for every Zariski ideal a C I4, one has bN I = a, where
b = aA. It follows that a descending chain a; D as D ... of Zariski ideals of I4 gives rise to a
descending chain by D by D ... of Zariski ideals of A and, therefore, it stabilizes.

(iii) That the map considered is a surjection follows from Corollary 1.6.2. Let p be a Zariski
prime ideal of A.

Step 1. There exists an element h € p with Ap = Ayp,. Indeed, for every pair (f,g) € Ker(A —
Ap), there is an element h = h(s 4y & p with fh = gh. For a finite subset J C Ker(A — Ap), let
a; be the Zariski ideal generated by the element hy = [] h(s 4), where the product is taken over
elements of J. Since A is Zariski artinian, the family of Zariski ideals {a;}; has a minimal element.
Let h be the element h; that corresponds to such a minimal ideal a7, and let (f, g) € Ker(A — Ap).
If (f,g) € J, then of course fh = gh. Assume therefore that (f,g) ¢ J. Since a; = ajui(s,g)}, it
follows that h = hh(y gu with u € A, and, therefore, fh = gh. It follows that Ap = Aj.

Step 2. One can find an idempotent ep among the elements h with the property of Step 1.
Indeed, since A is Zariski artinian, the descending chain of Zariski ideals hA D h? D h3A O ...
stabilizes. It follows that h™ = h?"v for some n > 1 and v € A\p and, therefore, the element
ep = h"v, which also possesses the property of Step 1, is an idempotent.

Step 3. The element e = ep is a unique mazimal idempotent that does not lie in p, and one
has p = q.. Indeed, let ¢’ be an idempotent outside p. Then the images of e and f = €’e in Ap are
equal to 1 and, therefore, f = fe = e. In particular, ¢/ < e. Let now p’ be a Zariski prime ideal that
contains p. Then ey <e. Ife ¢ p’, then e < ep’ and, therefore, ep: = e. It follows that Ap/ = Ap,
and this implies that p’ = p, i.e., p = q,.. In particular, the map Zspec(A) — T4 : p ep is
injective.

Since T4 = Zspec(I4), it follows that Zspec(A) = Zspec(I4). .

2.5.3. Corollary. A Zariski artinian Fi-algebra A is local if and only if I4 = {0,1}. Fur-

thermore, in this case A has finite dimension over the Fi-field K = A* U{0}, and, in particular, it
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is Zariski noetherian.

Proof. The first statement follows Proposition 2.5.2(iv). Suppose that A is local. By (i),
m” = 0 for some n > 1, and so to prove the second statement it is enough to show that, for every
1 <i<n,m’/m'" is a finitely dimensional K-vector space. But this is clear because every Zariski

K-submodule of the latter corresponds to a Zariski ideal of A. "

2.5.4. Proposition. The following properties of a Zariski artinian F-algebra A are equiva-
lent:

(a) A is Zariski noetherian;

(b) the Zariski spectrum Zspec(A) is finite;

(c) the idempotent algebra 1, is finite.

2.5.5. Definition. An Fi-algebra A is said to be artinian if it is Zariski artinian and possesses

the equivalent properties of Proposition 2.5.4.

Notice that every quotient of an artinian F;-algebra is artinian, and every local Zariski artinian

F-algebra is artinian.

Proof of Proposition 2.5.4. The equivalence (b)<(c) follows from Proposition 2.5.2.

(a)=>(c). Suppose that I is not finite. We claim that I4 is not Zariski noetherian. Indeed,
suppose that 4 is Zariski noetherian, and let ey, es, ... be a sequence of pairwise distinct nonzero
idempotents. If a, denotes the Zariski ideal generated by eq,...,e,, then the ascending chain
a; C ag C ... stabilizes, i.e., a,, = a,41 = ... for some n > 1. This implies that e, < epy1 < .... If
we apply the same reasoning to the sequence e, 41, €y, €n13,€n42,..., We get a contradiction, and
the claim follows. Let a; C as C ... be a sequence of Zariski ideals of 14 that does not stabilize.
If b; is the Zariski ideal of A generated by a; then, by Corollary 1.6.2(ii), a; = b; N 14, and so the
sequence of Zariski ideals by C by C ... does not stabilize, which contradicts the assumption (a).

(b)=(a). Let n be the number of Zariski prime ideals of A. If n = 1, A is local and the
property (a) follows from Proposition 2.5.2(ii). Suppose n > 2, and the property (a) holds for
Zariski artinian Fi-algebras with strictly smaller number of Zariski prime ideals. Let a; C a,, C ...
be an increasing sequence of Zariski ideals, and let p be a minimal Zariski prime ideal of A. The
sequence of Zariski ideals a; Np C as Np C ... stabilizes because this is true for the local Zariski
artinian algebra Ap. We may therefore assume that a; Np = a; Np for all 4,5 > 1. By the induction
hypothesis applied for the quotient A/p, the sequence a; Up C agUp C ... stabilizes and, therefore,

the previous fact implies that the same is true for the sequence a; C ay C .. .. "
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2.5.6. Proposition. Every ideal of an artinian F1-algebra A is decomposable.

Proof. It suffices to verify the statements for the minimal ideal A(A). For e € I4, let F, be
the ideal of A generated by II. (see §1.6). One has A/F, = A./peAe. It follows that the only
idempotents in A/F, are 0 and 1. Corollary 2.5.3 then implies that A/F, is a local artinian F;-
algebra and, in particular, it is quasi-integral. It follows that F, is a primary ideal. By Corollary

1.6.2(i), one has A(A) =N F, and, therefore, A is decomposable. .

e€la

2.5.7. Corollary. The following properties of an artinian Fi-algebra A are equivalent:

(a) A is reduced;

(b) for any e € I, p, A, is the maximal Zariski ideal of A..

Proof. The implication (b)=-(a) follows from fact that A is embedded in the direct product
[I.ci, A/Fe and, by (b), all of the multipliers A/F. = A./p A, are F;-fields. Suppose now that
A is reduced, and let a be an element of A whose image in A, lies in m4,_\p. A, for some e € Ia.
Since A, is also reduced, we can replace A by A. and assume that e = 1. We have a ¢ p; A and
a”™ € p; A for some n > 2. the latter means that a” = bf for some idempotent f # 1. It follows

that a® = (af)® for all i > n. Since A is reduced, we get a = af which contradicts the assumption

a gplA' | ]

2.6. Integral extensions of Fi-algebras. Let A be an F;-subalgebra of an Fi-algebra B.

2.6.1. Definition. An element f € B is said to be integral over A if f™ = af™ for some

element a € A and integers m > n > 0.

For elements fi,..., f, € B, let A[f1,..., fn] denote the A-subalgebra B generated by those

elements.

2.6.2. Proposition. The following properties of an element f € B are equivalent:

(a) f is integral over A;

(b) the Fy-algebra A[f] is a finite A-module;

(c) the element f is contained in an Fi-subalgebra C' C B which is a finite A-module.
Proof. The only non-evident implication is (¢)==-(a). To prove it, we need the following

simple fact.

2.6.3. Lemma. Let M be a finite A-module, x1,...,xq generators of M, and a a Zariski
ideal of A. Then for any endomorphism ¢ : M — M with (M) C aM there exist elements

ai,...,aq € a and integers m > n > 0 such that ¢ (z;) = a;p™(z;) for all 1 < i < d.
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Proof. There exist elements ay,...,aq € a and a map o : {1,...,d} — {1,...,d} such that
o(z;) = i To(4) for all 1 < i < d. For some k > 1 the images of the maps oF and o*t! coincide.
Replacing therefore by ¢, we may assume that for the image I of o one has I = o([), i.e., there
is a permutation 7 of the set I such that o(i) = 7(i) for all 4 € I. It follows that o”(i) = 7% (i)
for all k > 1 and ¢ € I. Furthermore, we can find k& > 1 such that 7% is the identity map on I.
Thus, replacing ¢ by ¢*, we may assume that o induces the identity map on the set I. We get
©*(x;) = (ai,()) = aZTe) = aip(a;) for all 1 < < d. .

Let x1 = 1,2, ...,24 be generators of the finitely generated A-module C. We apply Lemma
2.6.3 to the multiplication by the element f on C' and the trivial ideal a = A. It follows that there
exist elements a1, ...,aq € A and integers m > n > 0 such that f™z; = a;f"x; for all 1 < i < d.

Since z1 =1, we get f™ = a1 f™. "

2.6.4. Corollary. (i) The set C' of elements of B integral over A is an A-subalgebra of B;

(ii) if f1,..., fn € C, the A-subalgebra Al[fi,..., fn] is a finite A-module.

Proof. (i) If f,g € A, the A-subalgebras A[f] and A[g] are finite A-modules. It follows that
the Fy-subalgebra A[f] - A[g] is a finite A-module. Since the element fg is contained in the latter,
it follows that it is integral over A.

(ii) The statement is obtained by induction using the simple fact that, given F;-algebras
A cC A" c A” such that A’ is a finite A-module and A" is a finite A’-module, then A” is a finite

A-module. "

The A-subalgebra C' from Corollary 2.6.4 is called the integral closure of A in B. If C = B,
B is said to be integral over A (or that A C B is an integral extension of Fi-algebras). If C' = A,
A is said to be integrally closed in B. An integral F'i-algebra is said to be normal if it is integrally

closed in its fraction F';-field.

2.6.5. Proposition. Let A C B be an integral extension of Fi-algebras. Then

(i) the canonical map Zspec(B) — Zspec(A) is surjective, and it takes mp to ma;

(ii) the canonical map Fspec(B) — Fspec(A) is surjective;

(iii) (Lifting Theorem) given chains of Zariski prime idealsp, C ... C p,,in Aandq, C ... C q,,
in B with m < mn and q; N A = p, for all 1 < i < m, the second chain can be extended to a chain

q, C...Cq, such that q, N A=1p, forall1 <i<n.

2.6.6. Lemma. In the situation of Proposition 2.6.5, if B is an integral Fi-algebra, then A
is an Fy-field if and only if B is an F1-field.
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Proof. Since B is an integral Fi-algebra, it follows that, for every element g € B, there exists

n > 1 with g € A, and the required fact follows from Lemma 1.4.4. "

Proof of Proposition 2.6.5. (i) Let p be a Zariski prime ideal of A. Then the localization
By of B with respect to A\p is integral over Ap. We can therefore replace A and B by Ap and
By, respectively, and we have only to verify the last statement. The intersection p = mp N A is a
Zariski prime ideal of A, and B/mp is integral over A/p. By Lemma 2.6.6, A/p is an Fy-field, i.e.,
p=myu.

(ii) follows from (i) and Corollary 1.2.6.

(iii) The situation is easily reduced to the case when n = 2 and m = 1. Replacing A and B
by A/p, and B/q;, we may assume that p; = 0 and q; = 0. In this case, the required fact follows

from (i). .

Let K be an Fi-field. Lemma 2.6.6 implies that any integral domain L, which contains K and
is integral over it, is also an Fi-field. Such an F;-field L is said to be an algebraic extension of K.
An element x € L integral over K satisfies an equation ™ = a with n > 1 and a € K and, if n is
minimal with this property, this equation is said to be minimal. (If ™ = b for m > 1 and b € K,
then m = gn and b = a? for some ¢ > 1.) An F;-field L is said to be a finite extension of K if it
contains K and is a finitely generated free K-module. Of course, it is then an algebraic extension
of K.

Furthermore, let A be an an integral domain, and K the fraction Fi-field of A. Then the
integral closure of A in an F-field L that contains K corresponds to the saturation of A = A\{0}

in L* (i.e., the set of elements z € K* with 2" € A for some n > 1).

2.6.7. Lemma. Let K be an F-field, and let A be an integral finitely generated K-algebra
which is an integral domain. Then the integral closure of A in any finite extension of its fraction
F-field is a finite A-algebra.

Proof. If L is the fraction Fi-field of A, then L/K™* is the fraction F;-field of the integral
domain A/K*. Thus, replacing A by A/K*, the situation is reduced to the case when A is a
finitely generated Fi-algebra. Furthermore, by Corollary 2.6.4(ii), it suffices to verify that the
integral closure considered is finitely generated over F;. The required statement therefore follows
from the well known fact that the saturation of a finitely generated submonoid in a finitely generated

group is a finitely generated monoid. "

An Fi-field K is said to be algebraically closed if the group K* is divisible (i.e., any equation
T" = a with n > 1 and a € K has a solution in K). This is equivalent to the property that, for
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any algebraic extension L of K, there exists a K-homomorphism L — K. Every Fi-field K has
an algebraic closure, i.e., an algebraically closed Fi-field K? that contains K and possesses the
property that any injective homomorphism K to an algebraically closed field L can be extended to
an injective homomorphism K? — L. The latter is equivalent to the property that it is a unique
(up to a canonical isomorphism) algebraic extension of K such that, for every algebraic extension
L of K there exists a K-homomorphism L — K?. The multiplicative group of K? is what is called
the “divisible hull” of the group K* (see [Lam, §3]).

2.6.8. Remark. The analog of the descent theorem from the theory of integral extensions of

rings holds in the much stronger form of Lemma 1.4.6.

2.7. Valuation Fi-algebras. An ordered Fi-field is an Fi-field I' provided with a total
ordering < which has the following two properties: (1) 0 < f, and (2) if f < g, then fh < gh for all
f,9,h € I'*. For example, R is an ordered Fi-field. Notice the structure of an ordered F;-field on
I" extends in a unique way to a similar structure on the algebraic closure I'* of I'. (For f, g € (I'*)*,
one has f < g if a < b, where a,b € I'* are such that f* = a and ¢" = b for some n > 1.)

A wvaluation on an Fi-field K is a homomorphism K — T' : f — |f| to an ordered F;-field
I". Notice that, for such a valuation | | on K, the image |K| is an ordered F;-subfield of I'. Two
valuations | | : K — I" and | | : K — I are said to be equivalent if there is an isomorphism of
ordered Fi-fields )\ : |K| = |K| such that A(|f|) = |f|’ for all f € K. A valuation F-field is
an Fi-field K provided with an equivalence class of valuations. An embedding of valuation Fi-
fields (K, | |) < (K’,| |) consists of compatible embeddings of F;-fields K < K’ and of ordered
Fi-groups |K| < |K’|. In this situation we also say that we are given an eztension of valuation
F,-fields K' /K.

A valuation | | : K — T is said to be of rank zero, or trivial, if |K| = {0,1}. A valuation
| | : K — T is said to be of rank one if it is nontrivial and there is an embedding of the ordered
Fi-fields [K| — R.. If, in addition, the image of |K*| is discrete in R (i.e., either the valuation
is trivial, or the group |K*| is infinite cyclic), the valuation is said to be discrete.

Furthermore, an Fi-subalgebra A of an Fi-field K is said to be a valuation F1-subalgebra if,
for any element f € K*, one has either f € A or f~! € A. Of course, in this case K is the fraction
F-field of A, and A is integrally closed in K. A valuation Fi-subalgebra A in K is said to be
trivial if A = K. An abstract Fi-algebra A is said to be a wvaluation Fq-algebra if it is integral
and is a valuation Fp-subalgebra in its fraction F-field. Notice that the quotient A/p of such an

F;-algebra by any Zariski prime ideal p is also a valuation F;-algebra.
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2.7.1. Lemma. (i) If| | : K — T is a valuation on K, then A = {f € K||f| < 1} is a
valuation F-subalgebra in K;

(ii) the correspondence | | — A gives rise to a bijection between the set of equivalence classes
of valuations on K and the set of valuation F1-subalgebras in K.

Proof. Given a valuation Fi-algebra A in K, the set I' = {0} U K*/A* has the structure of
an ordered valuation F;-field: if | f| denotes the image of an element f € K* in T, then |f| < |g] if

fg~! € A. Thus, the map | | : K — T is a valuation whose valuation Fi-algebra is A. .

2.7.2. Proposition. Let A be an Fi-subalgebra of an F-field K. Then for any Zariski
prime ideal p C A there exists a valuation Fq-subalgebra B in K that contains A and such that
mpNA=p.

Proof. First of all, replacing A by Ap, we may assume that p = mu. Let S be the set of all
F-subalgebras A C B C K with mp N A = m4. The set S is nonempty since A € S, and it is
provided with the partial ordering for which B < C' if B C C and mg N B = mp. This partial
ordering satisfies the condition of Zorn’s lemma; therefore, there exists a maximal element B in
S. We claim that B is a valuation Fi-algebra in K. Indeed, let f € K\B. Then the F;-algebra
B|[f] generated by B and f does not belong to S and, therefore, mpB[f] = B[f]. It follows that
bef™ = 1 for some b € mp, ¢ € B and n > 0. Since b is not invertible in B, then n > 1 and,
therefore, (f~1)" € B, i.e., the element f~1! is algebraic over B. From Lemma 1.4.4 it follows that

for the Fy-algebra C' = A[f~!] one has mc N B = m. Since B is maximal, we get f~! € B. .

2.7.3. Corollary. Given an extension of Fi-fields L/K, every valuation on K extends to a
valuation on L. If the extension is algebraic, such an extension is unique.

Proof. Let A be a valuation F1-subalgebra in K. That there exists a valuation F;-subalgebra
B in L that contains A and such that mg N K = m 4 follows from Proposition 2.7.2. Notice that in
this case one has BNK = A. Assume that L is algebraic over K. We claim that B = {f € L‘f” €A
for some n > 1}. Indeed, since L is algebraic over K, for every f € L there exists n > 1 with
fme K. If f € B, we have f* € BN K = A. Conversely, if f* € A, then f™ € B and, therefore,
f € B because B is integrally closed in L. "

2.7.4. Corollary. Let A be a Fi-subalgebra of an Fi-field K. Then the integral closure of A
in K coincides with the intersection of all valuation F1-subalgebras in K that contain A.

Proof. That the integral closure is contained in the intersection follows from the fact that
valuation Fi-algebras are integrally closed. Let f be an element of K which is not integral over A.

We claim that the Zariski ideal b of C = A[f~'] generated by m4 and f~1 is nontrivial. Indeed,
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if this is not true, then either abf~™ = 1 for some a € m4, b € A and m > 0, or ¢f~"™ = 1 for
some ¢ € A and n > 1. Since a is not invertible in A, then m > 1. It follows that in both cases the
element f is integral over A which is a contradiction. Thus, b C m¢. By Proposition 2.7.2, there
exists a valuation Fi-algebra B in K that contains C and such that mp NC = m¢. It follows that

f~! € mp and, therefore, f & B. -

Let K be an Fi-field and A an Fi-subalgebra of K. If a nontrivial valuation ring B in
K contains A, one says that B has center in A, and the Zariski prime ideal mp N A is said
to be the center of B in A. The set of all nontrivial valuation Fj-subalgebras in K over A is
said to be the Zariski-Riemann space of K over A, and it is denoted by Zar(K, A). The space
Zar(K, A) is provided with a topology whose basis of open subsets is formed by sets of the form

Ufr,.... fa) = Zar(K, Alf1, ..., fu]) with fi,..., fa € K.

2.7.5. Proposition. The space Zar(K, A) is quasicompact.

Proof. We have to show that, given a family S of closed subsets of Zar(K,A) with the
property that any finite subfamily of sets from S has a nonempty intersection, the intersection
of all elements of S is nonempty. By Zorn’s lemma, we may assume that S is maximal with that
property. This immediately implies that (1) if a closed set X contains an element of S, then X € S,
(2)if Xq,..., X, € S,then X;N...nX,, € S,and (3) if X5,...,X,, are closed and X;U...UX,, € S,
then X; € S for some 1 < i < n. For f € K*, we set V(f) = {B € Zar(K,A)|f € mp}. Tt is a
closed subset of Zar(K, A) since its complement is U(f~1). We claim that any set X € S different
from Zar(K, A) is contained in some V(f) € S. Indeed, the nonempty complement of X contains
an open set of the form U(fy,..., f,) with fi,..., f, € K*. By (1), the complement of the latter
lies in S and, since it coincides with V(f; " )U.. .UV (f; 1), one has V(f; ') € S for some 1 < i < n,
by (3). The claim implies that (ycg X = (pcp V(f), where F' = {f € K*|V(f) € S}. Let C
be the A-subalgebra of K generated by all elements of F. Since V(f) NV (f~1) = 0, it follows
that none of the elements f € F' is invertible in C, i.e., FF C m¢. By Proposition 2.7.2; there
exists a valuation Fq-subalgebra B C K that contains C' and such that mg N C' = m¢, and we get

B e mXeS X. u
Let A be a valuation Fi-algebra.

2.7.6. Proposition. Let A’ be an A-algebra which is integral as an A-module and such that
my N A=my. Then for every A-module M the following is true:
(i) the homomorphism of A-modules M — M' = M ®4 A’ : m — m ® 1 is injective (and so

M can be identified with its image in M’);
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(ii) for an A-submodule E of M, the A’-submodule E' of M’ generated by E consists of the
pairs (a'm,b'n) with m,n € Ng and (a’m,a’n) with (m,n) € E, where a’,b' € A’;

(iii) one has Ng = A'Ng;

(iv) the map E — E' commutes with finite intersections.

Proof. (i) and (ii). Consider first the case when the A-module M is free. Then the A’-module
M’ is also free, the statement (i) holds for trivial reason, and the property (1) implies that, if
aymy = ab,my for nonzero elements a},al, € A" and my, ms € M, then there exists a € A with
either m; = amy and aa} = afy, or am; = my and a) = ad)y. To prove (ii), it suffices to verify
that the set of pairs considered forms an ideal, and the only non-evident property to check is
transitivity. It suffices to consider the following pairs (of pairs) (a) (ajmi,a)n1) and (abma, abns)
of the second type with a’ny = abms, and (b) (a’'my,a’ny) and (b'ma, ¢'ny) of the second and first
type, respectively, with a'n; = ¢/'my. We may assume that all of the considered elements of A’ and
M are nonzero.

(a) By the property (1), we may assume that there exists an element a € A with o} = aa} and
any = my. Since (mq1,n1) € E, one has (amy,ms2) = (amqy,any) € E and, since (ma,n3) € E, it
follows that (amq,n2) € E. We get (afjma,abng) = (ab(amq),abns) € E.

(b) We may assume that my,n; € Ng. By the property (1) again, there exists an element
a € A with either @’ = al’ and any = ma, or aad’ = ¢ and n; = ams. By the assumption, the latter
case is impossible. One therefore has (ami,my) = (amy,any) € E and, in particular, am; € Ng
and (amq,n2) € E. Tt follows that (a'my,b'ng) = (b'(amy),b'ng) € E.

Notice that the property (2) was not used so far.

In the general case, we take a surjective homomorphism ¢ : P — M from a free A-module
P, and notice that the A’-submodule E' = Ker(P’ — M’) is generated by the image of the A-
submodule E = Ker(P — M). Suppose first that m ® 1 = n ® 1 (in M’) for some elements
m,n € M, and take elements p, g € P with ¢(p) = m and ¢(q) = n. It follows that (p,q) € E’ and,
by the previous case, one has either (p,q) = (a’p1,b'q1) with p1,¢1 € Ng (call it the case («)), or
(p,q) = (a'p1,d’q1) with (p1,q1) € E (the case (3)), where o/, € A’. If p = a’p;, the property
(1) implies that there exists a € A with either a’ = a, or aa’ = 1. In the latter case, the property
(2) implies that a € A* and a’ = a~!. All this easily implies that m = n = 0 in the case («) and
m = n in the case (), i.e., the statement (i) is true, and we may identify M with its image in M’.
If now E is an arbitrary ideal of M, then its preimage F in P generates the preimage of E’ in P’.
Applying the description of F” in terms of F, we get the required description of the ideal E’ in

terms of F.
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(iii) Suppose first that the A-module M is free. If m’ € N/, the statement (ii) implies that
the pair (m’,0) is of the first type and, therefore, m = a’m for some o’ € A" and m € Ng. If
M is arbitrary, we take a surjective homomorphism ¢ : P — M from a free A-module P. Then
Ng» = ¢(Np/), where F' is the ideal of P which is the preimage of E, and since Np» = A'Np, it
follows that Ng = A’ Np.

(iv) First of all, we claim that, if aa’ = ba’ for a,b € A and o’ € A’\{0}, then a = b. Indeed,
we may assume that there exists ¢ € A with a = ¢b and @’ = ca’. By the property (3), the latter
equality implies that ¢ = 1 and, therefore, a = b.

As above, the situation is easily reduced to the case when the A-module M is free. It suffices
to verify that, given A-submodules F; and E5 of M, the A’-submodule E{ N E) is generated by
EiNEs. Let (m/,n’) € B N EY, and consider the following three cases.

Case 1: the pair (m/,n’) is of the first type with respect to both F{ and FE}. In this case
it suffices to show that the Zariski A’-submodle N g N N, Bl is generated by Ng, N Ng,. Let
m’ € Ng; N Ngy, ie, m' = aymy = aymy with a},a; € A, m; € Ng, and ma € Ng,. We may
then assume that there exists a € A with o} = aa}, and am; = ms. It follows that ms € Ng, N Ng,
and, therefore, m’ = a4ymo € A'(Ng, N Ng,).

Case 2: the pair (m’,n’) is of the second type with respect to both E} and Ej, i.e., (m',n') =
(aimq,ainy) = (ayme, ahng) with (mq1,n1) € Ey, (ma,n2) € Es and af,a) € A’. We may assume
that there exists a € A with a} = aa), and my = amy. Furthermore, there exists b € A with either
ay = bal, and my = bmy, or ab, = ba} and m; = bmsy. In the former case, the property (3) implies
that a = b and, therefore, (mg,n2) = (amq,any) € E1 N Ey. In the latter case, one has a} = aba)
and again, by the property (3), ab = 1. The property (2) implies that b = a~! € A and, therefore,
(ma,ng) = (amy,any) € By N Ey. In both cases, (m/,n’) = (ajmi, ainy) lies in the ideal generated
by E1 N Es.

Case 3: the pair (m’,n’) is of the first (resp. second) type with respect to Ej (resp. Ej), i.e.,
(m/,n') = (a’'m1,b/n1) = ('ma,ng) with my,ny € Ng,, (m2,n2) € E5 and a',b',¢ € A. We
may assume that there exists a € A with o’ = ac¢’ and ms = am; and, in particular, ms € Ng,.
Furthermore, there exists b € A with either ¥’ = bc’ and ny = bny, or ¢ = ba’ and n; = bny. In
the former case, one has ny € Ng,. In the latter case, one has @’ = aba’ and, by the property (3),
ab = 1. The property (2) implies that b = a=! € A and, therefore, ny = an; € Ng,. In both cases,

(m/,n) = (¢'ma, n2) lies in the ideal generated by E; N Fs. .

2.7.7. Corollary. In the situation of Proposition 2.7.6, the following is true:
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(1) there is a canonical isomorphism M /E ®4 A" — M'/E’;

(ii) if the A-module M is integral, then the equality a’m = b'n with a’,b' € A" and m,n € M
implies that there exists an element a € A such that either «’ = ab’ and am = n, or aa’ = b and
m = an.

Proof. The statement (i) directly follows from Proposition 2.7.6(ii). Suppose that the A-
module M is integral, and we are given an equality a’m = b'n with o/,0' € A" and m,n € M. Let
@ : P — M be an epimorphism from a free A-module P that take the standard generators of P to
nonzero elements of M. Then its Zariski kernel is zero, i.e., Ng = 0, where E = Ker(y). If p and ¢
are elements of P with ¢(p) = m and ¢(q) = n, then (a’p,b'q) € E’, where E’ is the kernel of the
induced epimorphism P’ = P®4 A’ — M’. Proposition 2.7.6 implies that Ng» = 0 and, therefore,
a'p = dpy and b'q = 'q1, where ¢ € A" and (p1,q1) € E. The first equality implies that there
exists an element a € A with either (1) aa’ = ¢ and p = apy, or (r) @’ = ac’ and ap = p1, and the
second equality implies that there exists an element b € A with either (1) bb’' = ¢’ and ¢ = bqy, or
(r) o' = bc’ and bg = q1. If both equalities are of type (1), we may assume that § € A, and we get
2a’ =0 and m = $bmy = $m, where m; = ¢(p1) = ¢(q1). Furthermore, if the firs equality is of
type (1) and the second one is of type (r), we get (ab)a’ = bc’ =" and m = amy = (ab)n. Finally,
if both equalities are of type (r), we may assume that ¢ € A, and we get o’ = ¢(bc’) = £’ and

b(3m) = bn. Since M is an integral A-algebra, the latter implies that $m = n. .

For a field K with a fixed valuation | |, we denote by K° the corresponding valuation F;-
algebra {f € K||f| <1}, by K°° its Zariski maximal ideal {f € K°||f| < 1}, and by K its residue
field K°/K°°. Notice that there is a canonical isomorphism of Fi-field K/(K°)* = |K| and that
the canonical embedding K < K° induces an isomorphism K* 5 (K°)*,

Let L/K be an extension of valuation Fi-fields. Then there is an exact sequence of groups
1— L*/K* — L*/K* — |L*|/|K*| — 1

We say that an extension of valuation Fi-fields L/K is unramified if |L| = |K|, i.e., L*/K* 5
L*/K*. Tt is easy to see that this is equivalent to the property that the Zariski ideal L°° of
L° is generated by K°°. An extension of valuation Fi-fields L/K is said to be purely ramified
if K L, ie, L*/K* 5 |L*|/|K*|. Every extension of valuation F;-fields L/K has a unique
maximal unramified subextension K C M C L such that L is purely unramified over M. Namely,
M is generated by L over K (i.e., M = K - L).

Let L be a finite extension of K. By Corollary 2.7.3, the valuation on K extends in a unique way

to a valuation on L. The ramification index e(L/K) is the order of the quotient group |L*|/|K*|.
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The ramification degree f(L/K) is the degree [L : K].

2.7.8. Proposition. In the above situation, one has [L : K| = f(L/K)e(L/K) and, in
particular, f(L/K) = [M : K| and e(L/K) = [L : M], where M is the maximal unramified
subextension.

Proof. It suffices to consider the case when L is generated by an element g € L* with
BP = a € K* for some prime p > 2. Suppose first that |a| € |[K*|P. Then oo = P’ with o/,y € K*
and |o/| = 1. Replacing 5 by %, we may assume that o € (K°)*. In this case, § € (L°)*, the
elements 1,4, ...,8°~! form a basis of L over K and, therefore, f(L/K) = p. If g € L°°, then
g="6 with0<i<p-1andye K, ie., e(L/K)=1. Suppose now that || & |K*|P. Then
|L*| is generated by |K*| and |8| and, therefore, e(L/K) = p. Furthermore, if g € L* and |g| = 1,
then g = y3" with 0 <i < p—1 and v € K* such that |a|" = |[y~1|P. Since |a| ¢ |[K*|P, it follows
that i =0, i.e., g € K*. Thus, L = K, i.e., f(L/K) =1. .

2.7.9. Remark. If the valuation on K is discrete, then L° is a finite K°-algebra and e(L/K)
is equal to the dimension of the L-vector space L°/(K°°), where (K°°) is the Zariski ideal of L°
generated by K°°. If the valuation on K is not discrete, then L° is not necessarily finitely generated
as a K°-algebra. Indeed, let K an Fi-field with nondiscrete valuation of rank one and such that,
for some prime number p, the group |K*| is not p-divisible. Let a be a nonzero element from K°°
with |a| € |K*|P, and let A be the finitely generated integral K°-algebra K°({/a). The fraction
Fi-field of A is L = K({/«), and the integral closure of A in L is the K°-algebra L° which is not
finitely generated over K°. Indeed, suppose that L° is generated by nonzero elements f31,..., Bm
over K°. We may assume that all of these elements do not lie in K and, since (L°)* = (K°)*, one

has e = max |Bi| < 1. Then |B| < ¢ for each element 3 € L°\K°. The latter is impossible because
<i<m

there exists an element a € K* with ¢|8;1| < |a| < |51], i.e., € <

Zariski ideal L°° of L° is generated by K°°.

< 1. By the way, the maximal

a
B1

2.8. Finitely presented K-algebras and modules. Let K be an F;-field.

2.8.1. Definition. A K-algebra A is said to be finitely presented if it is isomorphic to a
quotient of K[T1,...,T,] by a finitely generated ideal.

2.8.2. Proposition. The following properties of a K-algebra A are equivalent:

(a) A is finitely presented;

(b) there exist an F1-subfield K' C K with finitely generated group K'* and a finitely generated
K'-subalgebra A’ C A such that A’ @ K = A;
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(c) A is finitely generated and the family of the stabilizers in K* of its nonzero elements is a
finite set of finitely generated subgroups.

Proof. (a)=(b) Assume that A is the quotient of B = K[T1,...,T,] by a finitely generated
ideal F, and let K’ be the Fi-subfield of K which is generated by coefficients of all term components
from a finite set of generators of E. Let also E’ be the ideal of B’ = K'[T},...,T,] generated by
the same system of generators, and set A’ = B’/E’. Then the ideal of B generated by E’ coincides
with E and, by Corollary 2.8.2, B'/E’' @ K = B/E. It follows that A’ is a finitely generated
K'-subalgebra of A and A’ @' K = A.

(b)=(c) Since the family of stabilizers of nonzero elements does not change after tensoring
with a bigger F-field, we may assume that the group K™ is finitely generated. This gives, by the
way, the fact that the stabilizers are finitely generated groups, and we have to show that there are
at most finitely many distinct among them. For this we take a finite system of generators g1,..., g,

of A over K, and consider the map

Zh = A= (pn, ) = gt =gt gl

We provide Z7} with the partial ordering with respect to which p < v if and only if p; < v; for all
1 <4 < n, and notice that, if 4 < v and g* # 0, then g" divides g and, therefore, the stabilizer

G(g*) of g is contained in G(g").

2.8.3. Lemma. For every sequence u"), u(®, ... of elements of 7'}, there is a strictly increas-

ing sequence of positive integers ky < ko < ... such that p*) < pk2) <

An equivalent way to formulate Lemma 2.8.3 is to say that any subset of Z} has at most a

finite number of minimal elements.

Proof. If n = 1, the statement is trivial. Suppose that n > 2 and that the statement is true
for n — 1. By the case n = 1, we can replace our sequence by a subsequence and assume that
their first coordinates do not decrease: ugl) < ,ug) < .... Consider now the following sequence in
Zﬁfl: v = (,ugi), .. ,,usf )). By the induction hypothesis, there is a strictly increasing sequence of

positive integers k1 < ko < ... such that vk < plk2) < ..., and we get u(kl) < u(kz) <... n

Suppose now that there is an infinite sequence of nonzero elements fi, fa,... such that their
stabilizers G(f1),G(f2),... are pairwise distinct subgroups of K*. Choose a representation of
each f; in the form g“(i) with () € 7" . By Lemma 2.8.3, we can replace our sequence by a

subsequence and assume that p(!) < u(® < ..., We get an increasing sequence of abelian subgroups
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G(f1) C G(f2) C ... of the finitely generated abelian group K*. But any such sequence stabilizes,
and this contradicts the assumption that all of the subgroups G(f1), G(f2), ... are pairwise distinct.

(¢c)==(a) Consider a surjective homomorphism of K-algebras B = K[I1,...,K,] > A: T, —
gi, and denote by E its kernel. Furthermore, choose a Grobner basis of E and denote by E’
the ideal of B generated by it. Lemma 1.3.1 implies that the canonical surjective homomorphism
B/E'" — A = B/FE induces a bijection between the sets of cyclic Zariski K-submodules of both
K-algebras. Furthermore, let {G;};c; be the finite set of finitely generated stabilizers of nonzero
elements of A, and, for every i € I, fix a finite system {\;;};c, of generators of G;. As in the proof
of the previous implication, we consider the map Z} — A : p+ g# and Z7 — B : p+— TH. For
i € I, let ¥; be the set of all ;1 € Z7 such that the element g* is nonzero and its stabilizer G(g*)
coincides with Gy, and let {u(*)};c . be the finite set of minimal elements of ¥; (see the remark after
the formulation of Lemma 2.8.3). We claim that the ideal E is generated by E’ and the set of pairs
{(Tu(il),)\ijTu(il))}iej’jeji7leLi. Indeed, let E” denote the latter ideal of B. Since the canonical
surjective homomorphism B/E” — A = B/FE induces a bijection between the sets of cyclic K-
vector subspaces of both K-algebras, to establish the equality E” = FE, it suffices to verify that
(T, \TH*) € E" foralli € I, A € G; and p € ;. Let () be a minimal element of ¥; with p(*9) < p.
Since (T, A\T#™) € E”. it follows that (T#, XT") = (T*"" . Tr=r" \Tu"™ . pu—n""y c B u

2.8.4. Corollary. (i) The kernel of any epimorphism B — A from a finitely generated
K-algebra B to a finitely presented K-algebra A is a finitely generated ideal of B;

(ii) the quotient A/E of any finitely presented K-algebra A by a finitely generated ideal E is
a finitely presented K -algebra;

(iii) given homomorphisms from a finitely generated K-algebra A to finitely presented K-
algebras B and C, the K-algebra B ® 4 C' is finitely presented;

(iv) given a finitely presented algebra A and a K-field K', A @ K’ is a finitely presented
K'-algebra, and Zspec(A) = Zspec(A @k K');

(v) given a homomorphism of finitely presented K-algebras ¢ : A — B, there exist an Fi-
subfield K’ C K and finitely generated K'-subalgebras A’ C A and B’ C B with the properties of
Proposition 2.8.2(b) and such that ¢ is induced by a homomorphism of K’'-algebras A" — B’.

Proof. The statements (ii), (iv) and (v) are trivial.

(i) Consider first the case when B = K[T1,...,T,]. Let K’ be an F;-subfield of K with finitely
generated group K'* and A’ be a finitely generated K’-subalgebra of A with A’ @+ K. We can
increase the Fy-subfield K’ and assume that the induced homomorphism B’ = K'[Ty,...,T,| — A’
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is surjective. Its kernel E’ is finitely generated, and we claim that E is generated by E’. Indeed, let
E" be the ideal of B generated by E’. Then there is a canonical isomorphism B'/E'® K = B/E".
But the left hand side of the latter is A’ ® g+ K which is A. This implies that the canonical
epimorphism B/E"” — B/E = A is bijective and, therefore, E” = E, i.e., the claim is true. In the
general case, we take an arbitrary surjective homomorphism of K-algebras C = K|[1y,...,T,] — B.
By the above case, the kernel of the induced epimorphism C' — A is finitely generated. Since it is
the preimage of the kernel F of the epimorphism B — A, it follows that F is finitely generated.
(iii) First of all, if A = K, the statement follows from the property (b) (or (c)) of Proposition
2.8.2. If A is arbitrary, B ® 4 C' is a quotient of B ® g C' by the ideal generated by elements of the
form (ab ® ¢,b® ac) for a € A, b € B and ¢ € C. It remains to notice that it suffices to take the

elements a, b and ¢ from finite systems of generators of A, B and C, respectively. "

2.8.5. Corollary. Let A be a finitely presented K-algebra. Then for any Zariski prime ideal
p C A, the following is true:

(i) the localization Ap is a finitely presented K-algebra;

(ii) for any Zariski ideal a C p, the ideal £ = Ker(A — Ap/aAyp) is finitely generated; in
particular, the ideal lly is finitely generated;

(iii) the kernel and cokernel of the canonical homomorphism K* — k(p)* are finitely generated.

Proof. (i) Let f1,..., f, be generators of A over K, and assume that f; & p for 1 < i < m,
and f; € p for m+1 <4 <n. Then Ap is generated over A by the elements f%, cee f%n’ ie.,itisa
finitely generated K-algebra. That it is finitely presented follows from Proposition 2.8.2.

(ii) We may assume that we are in the situation of Proposition 2.8.2(b) and that the Zariski
ideal a is generated by a’ = an A’. Since the Fi-algebra A’ is finitely generated, it is noetherian,
and so it suffices to verify that the ideal E' is generated by the ideal E' = Ker(A’ — Aij, ja Aij/) of
A’, where p’ =pn A’ Let (f,g) € E\(a x a). Then there exists an element h ¢ p with fh = gh.
One has f = af’, g = bg’ and h = ch’ for some a,b,c € K* and f',¢',h/ € A’\a'. Tt follows that
af'h’ = bg’'h’. By Proposition 2.8.2, this implies that b = Aa for A € K’*. Replacing ¢’ by A¢’, we
get f'h =4¢'W, ie., (f,¢) € E and (f,g9) = (af’,ag’).

(iii) Since r(p)* = (Ap)*, (i) allows us to replace A by Ap, and so it suffices to show that
the kernel and cokernel of the homomorphism A — A* are finitely generated. The kernel is the
stabilizer of 1 € A and, therefore, it is finitely generated. Furthermore, let f1,..., f, be generators

of A over K, and assume that f; € A* for 1 < i <m, and f; € A* for m+ 1 < ¢ < n. Then the

group A* is generated by the elements f1,..., f,, and the image of the group K*. It follows that
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the cokernel of the homomorphism K* — A* is finitely generated. .
Let A be an Fi-algebra.

2.8.6. Definition. An A-module M is said to be finitely presented if it is isomorphism to a
quotient of a free A-module of finite rank A by a finitely generated A-submodule.

The proof of the following is a natural extension of the proof of Proposition 2.8.2.

2.8.7. Proposition. Let A be a finitely presented K-algebra. Then the following properties
of a finite A-module M are equivalent:

(a) M is finitely presented;

(b) there exist K’ and A’, as in Proposition 2.8.2(b), and a finite Zariski A’-submodule M’ C M
such that M’ @y K = M;

(c) the set of stabilizers of nonzero elements of M in K* is a finite set of finitely generated
subgroups.

Proof. (a)==(b). We represent M as a quotient of A™) by a finitely generated A-submodule,
and A as a quotient of B = K[T1,...,T,] by a finitely generated ideal. Then M can be considered
as an B-module, which is a quotient of B(™) by a finitely generated B-submodule E. Let K’ be the
K'-subfield of K generated by the coefficients of all term components from a finite set of generators
of E, B' = K'[T},...,T,], E' the B'~submodule of B'("™) generated by the same set of generators,
and M’ = B'™) /E'. Then M’ @ K = M.

(b)=(c). As in the proof of the corresponding implication of Proposition 2.8.2, we may
assume that the group K* is finitely generated. Fix finite systems of generators gi1,...,¢9, of A
over K and eq,...,e; of M over A. Suppose there is an infinite sequence mi,ms, ... of elements of
M such that their stabilizers G(m;), G(mz), ... are pairwise distinct. Replacing this sequence by a
subsequence, we may assume that, for some 1 < 57 <[, each m; is of the form g“(i) ej with ' e 7.
By Lemma 2.8.3, we can again replace this sequence by a subsequence so that p(t) < p® < ...
and, in particular, G(my) C G(msg) C .... Any such sequence of subgroups of K* stabilizes, and
this contradicts the assumption that all of the groups G(m;) are pairwise distinct.

(c)==(a). Fix a surjective homomorphism of K-algebras B = K[T4,...,T,,] - A: T, — ¢;
and a finite system eq,...,e, of generators of M over A, and denote by E the kernel of the
induced homomorphism of B-modules B("™) — M. Furthermore, choose a Grébner basis of E and
denote by E’ the B-submodule of B(™) generated by it. By Lemma 1.3.1, the canonical surjective
homomorphism B /E’ — M = B /E induces a bijection between the sets of cyclic Zariski

K-submodules. Furthermore, let {G;};c; be the finite set of finitely generated stabilizers of nonzero
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elements of M and, for every i € I, fix a finite system {\;;} e, of generators of G;. For i € I
and 1 < k <[, let X;; be the set of all 4 € Z" such that the element gtej is nonzero and its
stabilizer G(g"ey) coincides with G;, and let {u(*D},cp . be the set of minimal elements of ¥;.
Then the reasoning from the proof of the corresponding implication of Proposition 2.8.2 shows that

(ikl)

the B-submodule E is generated by E’ and the set of pairs (T“(ikl)ek, XijTH " er)icrje; ichin- ™

2.8.8. Corollary. Let A — B be a homomorphism of K-algebras, and assume that A is a
finitely presented K-algebra. Then the following are equivalent:

(a) B is a finitely presented K-algebra and a finite A-module;

(b) B is a finitely presented A-module. .

The following property corresponds to the commutative algebra property of a coherent ring.

2.8.9. Corollary. Let A be a finitely presented K-algebra. Then any finitely generated
Zariski ideal of A is a finitely presented A-module. .

Let A be a finitely presented K-algebra, and M a finitely presented A-module.

2.8.10. Proposition. (i) The A-module M is decomposable, and it admits a minimal primary
decomposition A(M) = (;_, E; with finitely generated A-submodules E;;

(ii) the set ass(M) is finite, and the map ass(M) — Zass(M) is surjective;

(iii) there is a chain of Zariski A-submodules No = 0 C Ny C ... C Ny = M such that each
quotient N;/N;_; is isomorphic to an A-module of the form A/, where II is a prime ideal of A;

(iv) the radical r(E) of any finitely generated A-submodule E of M is a finitely generated ideal
and, in particular, the nilradical n(M) of M is a finitely generated ideal.

Proof. By Proposition 2.8.7, there exist an Fi-subfield K’ C K with finitely generated group
K'*, a finitely generated K’-subalgebra A’ C A and a finitely generated Zariski A’-submodule
M' C M such that A'®@y K = Aand M’ @ K = M. Then A’ is a finitely generated Fi-algebra.
This implies A’ and M’ are noetherian and, by Proposition 2.4.11, the properties (i)-(iii) hold for
A’ and M'.

We claim that for any primary A’-submodule E' of M’ the A-submodule E of M generated
by E' is also primary. Indeed, we have to show that, if (fm, fn) is a nonzero pair in E with
f € Aand m,n € M, then either (m,n) € E, or f € zn(M/E). We may assume that f € A’,
and let m = am’ and n = n’ for o, 8 € K* and m’,n’ € M’. By Proposition 2.7.6(ii), the pair
(fm, fn) = (afm’,Bfn’) is of one of two types. If (afm’, Bfn’) = (am”,bn’) with m”,n" € Ng

and a,b € K, we get fm' = 2m” and fn' = %n”. It follows that %,% € K’* and, since the Zariski
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A-submodule Ng: of M’ is primary, it follows that either m’,n’ € Ng/, or f € zn(M'/Ng/) C
m(M'/E'") C zn(M/E). If (afm/,Bfn’) = (am”,an”) with (m”,n") € E' and a € K, we get
(fm/, fn)) = (%m”,%n”). It follows that %,% € K’* and, therefore, % € K. One also has
(f(gm'), fn') = (&m”, &n") € E" and, therefore, either (gm/, fn’) € E', or f € zn(M'/E") C
zn(M/E). If the former inclusion holds, it implies the inclusion (m,n) € E, and the claim follows.

The claim and Propositions 2.7.6(iv) imply that, any minimal primary decomposition A(M') =
Ni—, B} (which exists, by Proposition 2.4.11(i)) gives rise to a minimal primary decomposition
A(M) = N, E;, where E; is the ideal of A generated by EI, ie., we get the statement (i).
It follows also that the canonical surjective map Fspec(A’) — Fspec(A) gives rise to a bijection
ass(M) — ass(M’'). Since the canonical bijective map Zspec(A) = Zspec(A’) gives rise to a
bijection Zass(M) = Zass(M'), Proposition 2.4.11(ii) implies the statement (ii). The statement
(iii) follows from Proposition 2.4.11(iii). Finally, increasing the above F;-subfield K’ of K, we may
assume that the A-submodule E is generated by an A’-submodule E’ of M’. Then it is easy to see

that the radical r(F) of E is generated by the radical r(E’) of E’, and (iv) follows. .

For an integer n > 1, let A™ denote the K-subalgebra of A generated by elements of the form
frfor f e A

2.8.11. Lemma. (i) A" is a finitely presented K-algebra;

(ii) A is a finitely presented A™-module;

(iii) there exists d > 1 such that, for every n > 1 divisible by d, the K-algebra A™ is reduced.

Proof. (i) and (ii). Let elements fi,..., f,, generate the K-algebra A. Then the K-algebra
A" is generated by the elements f{*,..., f)., i.e., it is finitely generated. It is finitely presented since
the condition (c) of Proposition 2.8.2 is satisfied. Furthermore, the A™-module A is generated by
elements of the form fli1 oos fimowith 0 <y, ..., 4, < m — 1. Tt is therefore a finitely presented
A™module, by Corollary 2.8.8.

(iii) Consider first the case when K = F;. Then the F;-algebra is noetherian and, in particular,
the ideal £ = {(f,g9) € A x A|f” = g" for some n > 1} is finitely generated. It follows that there
exists d > 1 such that for any (f,g) € E one has f¢ = g%. We claim that for any n > 1 divisible
by d the Fq-algebra A™ is reduced. Indeed, let (f™,¢") € n(A™). Then (f,g) € E and, therefore,
f¢ = g?. Since n is divisible by d, it follows that f* = g".

Consider now the case when the group K™ is finitely generated. Then A can be viewed as a
finitely generated Fi-algebra, and let B denote the latter. Then A™ = KB", and the validity of
the required fact for B implies its validity for A.
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Finally, consider the general case. Let K’ be an Fi-subfield of K, and A’ a finitely generated
K'-subalgebra of A with A = A’ ®p+ K. Then A" = A" @+ K, and the required fact for A follows

from the previous case. .

2.8.12. Corollary. Let A — B be a homomorphism of finitely presented K-algebras, and
assume that B/n(B) is a finitely presented A-module. Then B is a finitely presented A-module.

Proof. The situation is easily reduced to the case when K = F;. Let n be a positive integer
such that the Fi-algebras A™ and B™ are reduced. In particular, the map f + f™ gives rise to an
isomorphism B/n(B) = B™. The assumption implies that B™ is a finitely presented A™-module.
Since B is a finitely presented B""-module, it follows that B is a finitely presented A”-module and,

therefore, B is a finitely presented A-module. .

2.8.13. Remarks. The statement of Proposition 2.8.10(i) is not true if the K-algebra A is
only finitely generated but not finitely presented. For example, assume that there is a sequence of
subgroups Go = {1} C G1 C Gy C ... C K* with G; # G4 for all i > 0, and let A be the quotient
of K[T)] by the ideal E consisting of the zero pair (0,0) and all pairs of the form (AT%, uT*) with
M\ € K* and \p~! € G;. If t is the image of T in A, each nonzero element of A is equal either
to t™, or to At" with n > 0 and A\ € G,,. There are two Zariski prime ideals p = 0 and m = At.
The only p-primary ideal is Ilp, which is generated by the pairs (A, 1) with A € G = Ui=, Gi, and
each m-primary ideal contains the m-primary ideal E,, = Ker(4A — A/m") for some n > 1. The
intersection Ilp N E,, contains the elements (At",t") with A € G\G,,, and so it is strictly bigger
than A(A).

§3. Topology on the spectrum of an F;-algebra

3.1. Definition and basic properties. Both spectra Zspec(A) and Fspec(A) of an F;-
algebra A are provided with topology as follows.

A base of topology on Zspec(A) is formed by sets of the form D(f) = {p € Zspec(A)‘f Zp}.
The family of closed subsets consists of sets of the form V(a) = {p € Zspec(A)|a C p}, where a is
a Zariski ideal of A. (One has V(a) UV (b) = V(anb) and D(f) N D(g) = D(fg).) The Zariski
spectrum Zspec(A) is in fact not interesting as a topological space. For example, the maximal
Zariski ideal m 4 is a unique closed point of Zspec(A), and any open neighborhood of m 4 coincides
with the whole space. We will mostly consider Zspec(A) as a partially ordered set with respect to
the partially ordering introduced in §1.2 (it is opposite to the inclusion relation). For example, if

A is a valuation Fy-algebra, Zspec(A) is a totally ordered set.
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Furthermore, Fspec(A) is provided with the weakest topology in which sets of the form
D(f,g) ={Il Fspec(A)‘(f, g) ¢ 11}, where f,g € A, are open. A base of this topology is forms
by finite intersections (i, D(f;, g:;) with f;,g; € A. The canonical map Fspec(A) — Zspec(A) :
M—pg={fe€ A}(f, 0) € 11} is evidently continuous. The restriction of the topology of Fspec(A)
to the fiber of the above map at a Zariski prime ideal p is such that its base of open sets consists
of collections of subgroups of x(p)* that do not intersect with a fixed finite set of elements (see
Lemma 1.2.5). In particular, IIy is the generic point of the fiber, and Il(p) is a unique closed point
of the fiber.

Notice that sets of the form V(E) = {II € Fspec(A)|E C II}, where E is an ideal of A, are
closed in Fspec(A) and, in fact, the topology on Fspec(A) is the weakest one with respect such
sets are closed. We will say a subset of Fspec(A) is strongly closed if it is a finite union of sets of
the form V' (F). The family of strongly closed subsets is preserved under finite (but not arbitrary)
intersections. It follows that every closed subset of Fspec(A) is the intersection of a filtered family of
strongly closed subsets. Indeed, if ¥ is a closed subset, every point x ¢ 3 has an open neighborhood
U =, D(fi,g:) that does not intersect with X. Since the complement of U/ is the strongly closed
set U, V(E;), where E; is the ideal generated by the pair (f;, g;), the claim follows.

Every homomorphism ¢ : A — B gives rise to continuous maps Fspec(B) — Fspec(A) : II —
@ 1(IT) and Zspec(B) — Zspec(A) : p — 2o 1(p). If ¢ is surjective, these maps induce homeomor-
phisms of Zspec(B) and Fspec(B) with their images in Zspec(A) and Fspec(A), respectively, and
the image of Fspec(B) is closed whereas the image of Zspec(B) is not necessarily closed.

If B is a commutative ring with unity, then every homomorphism of Fi-algebras A — B’
gives rise to a continuous map Spec(B) — X = Fspec(A). Namely, it takes a prime ideal g
of B to the prime ideal Ker(A — (B/q)’) of A. For example, there is a canonical continuous
map Spec(B) — Fspec(B’) whose composition with the canonical map Fspec(B') — Zspec(B') is
injective.

We will denote points of X by letters z, y and so on. For a point x € X, we denote by II,
and p, the corresponding prime and Zariski prime ideals, and by k(z) the fraction F;-field of the
integral domain A/II,. The image of an element f € A in k(z) will be denoted by f(x). For
example, for f,g € A, one has D(f,g) = {z € X‘f(x) # g(x)}.

3.1.1. Theorem. The spectrum Fspec(A) is a quasi-compact sober topological space.

Recall that a topological space is called sober if every irreducible closed subset has a unique

generic point. Notice that the similar statement for the Zariski spectrum Zspec(A) is trivial.
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Proof. Step 1. For a (usual) field k, let k[A] denote the set of finite sums Y ., \;f; with
Ai € k and f; € A. The set k[A] provided with the evident addition and multiplication is a
commutative k-algebra. The canonical homomorphism of Fi-algebras A — k[A] gives rise to a
continuous map 7 : Spec(k[A]) — Fspec(A). Then the image of T contains all prime ideals of
the form Il for Zariski prime ideals p C A. Indeed, the kernel of the homomorphism of F;-
algebras A — k[A/Il(p)]" = k coincides with II(py. Thus, if q is the kernel of the homomorphism
k[A] — k[A/IL(p)] = k, then its image in Fspec(A) is the ideal Ip).

Step 2. Given points z,y € Fspec(A), one has x € @ if and only if 11, C II,. Indeed, one
has x € @ if and only if every open neighborhood of the point x contains the point y. Suppose
first that = € {y}, and let (f,g) € II,. If (f,g) & 11, then € D(f, g) and, therefore, y € D(f,g),
ie., (f,g) € II, which contradicts the assumption. Conversely, suppose that II, C II,, and let U/ be
an open neighborhood of the point z of the form (;_, D(fi, ;). Then (fi,g;) ¢ IL, and, therefore,
(fi,gi) ¢ I, for all 1 < i < n, i.e., y € U. The claim implies that, given a Zariski prime ideal
p C A, any open set that contains the p-prime ideal II(p) contains all p-prime ideals.

Step 3. The space Fspec(A) is quasi-compact. Indeed, let {U;};cr be an open covering of
Fspec(A). Then for any field k, {771(U;)}icsr is an open covering of the quasi-compact space
Spec(k[A]) and, therefore, there is a finite subset J C I such that Spec(k[A]) = U, 7 H(Ui). We
claim that Fspec(A) = (J,c ; U;. Indeed, let I is a prime ideal of A over a Zariski prime ideal p C A.
By Step 1, there exists ¢ € J with I(p) € U; and, by Step 2, one has II € U;.

Step 4. The space Fspec(A) is sober. Indeed, let V' be a nonempty closed irreducible subset
of X. We claim that the ideal E of A consisting of the pairs (f,g) with f(x) = g(z) for allz € V
is prime. Indeed, suppose that (fh,gh) € E, i.e., f(x)h(x) = g(x)h(z) for all x € V. The equality
implies that the set V lies in the union of the closed sets X\D(f,¢) and X\D(h,0). Since V
is irreducible, one has either V- C X\D(f,g), or V. C X\D(h,0). In the former case, we get
(f,g9) € E and, in the latter case, we get (h,0) € E, i.e., E is a prime ideal. We now claim that
V= @, where xo is the point of X with I, = E. Indeed, (i) implies that V C @, and so
it suffices to verify that zo € V. Suppose that zg € V. Then there exists an open neighborhood
U=y D(fi,g:) of zo withitd NV = 0. It follows that V C J_; X\D(fi, ;). Irreducibility of V
implies that V' C X\D(fi, ¢;) for some 1 < i <mn, ie., fi(x) = gi(z) for all z € V. This means that
fi(x) = gi(x) for all x € V| i.e., (fi,9i) € I,,, which contradicts the inclusion zo € D(f;, g;). .

The following is a consequence of the proof of Theorem 3.1.1.

3.1.2. Corollary. (i) The map z +— {x} gives rise to a bijection between Fspec(A) and the
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set of closed irreducible subsets of Fspec(A), and one has Fspec(A/II,) = {x};
(ii) the map p — Il gives rise to a bijection between Zspec(A) and the set of closed points
of Fspec(A). .

3.1.3. Proposition. The following properties of a Zariski prime ideal p C A are equivalent:

(a) the set Fspec(Ap) is open in Fspec(A);

(b) Fspec(Ap) is a neighborhood of the prime ideal I1(p) in Fspec(A);

(c) Ap = Ay for some element f € A\p.

Proof. The implications (¢)==(a)==-(b) are trivial. Suppose that (b) is true. Then there
exist elements a1,b1,...,a,,b, € A such that Iy € D(ay,b1)N...N D(ay,b,) C Fspec(Ap). It
follows that, for every 1 < ¢ < n, either a; € p and b; € p, or a; € p and b; € p. We may assume
that a; ¢ p and b; € p for all 1 < i < n. We claim that Ap = Ay for f = a1 -... a,. Indeed,
since f & p, then Ay C Ap. Let q be the maximal Zariski ideal of A that does not contain any
powers of f. Then q is a Zariski prime ideal that contains p, and one has Ay = Aq. Since a; € q
and b; € p C q, it follows that IIq) € D(ay,b1) N...N D(an,b,) C Fspec(Ap). This implies that
q=p,ie Ap = Ay .

We now consider an example. Let I be an idempotent F;-algebra. Then a base of topology on
Fspec(A) is formed by sets of the form D(f) N D(g1,1)U...D(gn,1) (which are also, by the way,
closed subsets). Indeed, this follows from the equalities D(f, g) = (D(f)ND(g,1))U(D(g)ND(f,1))
and D(f)ND(g) = D(fg). Since the canonical map Fspec(I) — Zspec([) is a bijection, we consider
the spectrum Fspec(/) with the induced partial ordering, i.e., Il <Tlq if p < q (i.e., g C p). Notice
the set of pairs (Ilp, 1) with Iy < Tlq is closed in Fspec(l) x Fspec(I).

3.1.4. Proposition. (i) Fspec(I) is a profinite space, and the image of I in it (under the
map e — 11, ) is dense;

(ii) the image of I in Zspec(I) (under the map e ~ p,) consists of the Zariski prime ideals
p C I such that Fspec(Ip) is open in Fspec([);

(iii) the correspondence E +— Sk = {Ilp € Fspec(/ )|E C Iy} gives rise to a bijection between
the set of ideals of I and the set of closed subsets S C Fspec(I) such that the infimum of any family
of elements of S belongs to S;

(iv) the subsets S C Fspec(I) that correspond to Zariski ideals are characterized by the stronger
property: if lly <Ilq € S, then Ily € S;

(v) the subsets S C Fspec(I) that correspond to finitely generated ideals are characterized by
the property that they are also open sets.
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3.1.5. Lemma. The canonical bijections in Lemma 1.4.4 are homeomorphisms.

Proof. The statement follows from the fact that, for the open subsets D(f) C Fspec(A) and
MNi—1 D(fi:9k), we can find ¢ € I such that the elements f and fj, gy for all 1 < k < n) come
from A; and, therefore, they are the preimages of the corresponding open subsets of Zspec(A;) and

Fspec(4;), respectively. n

Proof of Proposition 3.1.4. (i) The idempotent F;-algebra I is the union of its finite F-
subalgebras. It remains to notice that, if I is finite, the map A — Fspec(A) : e + II, from §1.3 is
a bijection, and one has {II.} = D(e) N D(f1,1) N...,D(fn,1) with p, = {f1,..., fu}.

(ii) First of all, if e € I, then Iy = I and, therefore, Fspec(Ip ) is open in Fspec(I). Con-
versely, suppose that, for a Zariski prime ideal p C I, Fspec(Ip) is open in Fspec(I). By Proposition
3.1.3, there exists an element e € I'\p with Iy = I.. This implies that e is the maximal element in
I\p and, therefore, p = p..

(iii) Since Sp = Zspec(I/E), the set Sg evidently possesses the required properties, and
Corollary 1.6.2(ii) implies that Eg, = E. Furthermore, for a subset S C Zspec([/), the inclusion
S C Sgg is trivial. Assume now that S possesses the above properties, and consider first the case
when I is finite. We have to verify that, if Iy & 5, then Eg ¢ Ilp. Suppose first that [Ty £ Ilq for
all Ilq € S. For every Ilg € S, take an idempotent eq € q\p. Then the idempotent e = HquS eq
lies in the intersection of all such q, but not in p. It follows that (e,0) € Es\Ilp. Suppose now that
Iy < Ilg for some Ilg € S. We may assume that Ilg is the unique minimal with that property.
Let e and f be the maximal idempotents in A\p and A\q, respectively. Since q C p, then f € p
and, therefore, the pair (e, f) does not lie in Ily. We claim that (e, f) lies in Es. Indeed, let ¢ be
an element of S. If llq < Tl, then Iy < Il¢. It follows that e, f ¢ v and, therefore, (e, f) € . If
g £ Iy, then Iy & Il since IIq is minimal with [Ty < TIIq. It follows that e, f € v and, therefore,
(e, f) € IIy.

Consider now the general case. We have to verify that every prime ideal Iy that contains Eg
belongs to S. Let {I;}rex be the filtered family of finite F;-subalgebras of I and, for k € K, let
Sk be the image of S under the canonical map Fspec(I) — Fspec(l), and set Ey, = Eg N (I X Ii).
By the previous case, one has S; = Sg, and, therefore, Hp N (I x I) € Sg. The assumption on
closeness of S implies that S = liénSk. It follows that IIy € S.

(iv) That the sets Sg corresponding to Zariski ideals possesses the required property is trivial.
Suppose that S is a subset with that property, and let E be the corresponding ideal of I, i.e., such
that S = Sg. We set a = ﬂnpesp and E' = E, = A(I)U (a x a). We claim that E = E’. Indeed,

54



by (iii), it suffices to verify that Sg = Sg/. By the construction, one has a = {f € I{(f, 0) e E
and, in particular, £’ C F, i.e., Sg C Sg/. Suppose that Il € Sg/\SE, i.e., aCpand E ¢ Ilp. It
follows that there exists a pair (e, f) € E\Hp. We may assume that e € p and f ¢ p. If [Iq € S,
then Ilpyq < IIp and, by the property of S, we get llpyq € S and, therefore, (e, f) € E C Ilpygq-
Since e € p, it follows that f € q for all lIg € S. This implies that f € a C p, which is a
contradiction.

(v) That the sets that correspond to finitely generated ideals are open is trivial. Suppose that
the set Sg of an ideal E C I x I is open. Since it is closed, it is compact and, therefore, it is a finite
union of open sets of the form (,_, D(fi, g;) with f;,g; € I. Let I’ be a finite F;-subalgebra of A
that contains all of the elements f;, g;, and let S’ be the image of S with respect to the canonical
morphism X — X’ = Fspec(I’). Then S’ is preserved by the infimum operation and, by (iii), one
has S’ = S/ for an ideal E’ of I'. Since S is the preimage of S’, it follows easily that the ideal E

is generated by E’, i.e., F is finitely generated. "

In §1.6 we constructed an injective homomorphism I — Homin¢(Zspec(]),{0,1}) that takes
e € I to the map ¢, : Zspec(I) — {0,1} defined by ¢.(p) =1, if e € p, and p.(p) =0, if e € p.
Since Fspec(I) = Zspec(I), we may consider any element of Homy,¢(Zspec(I),{0,1}) as a map
Fspec(I) — {0,1}.

3.1.6. Proposition. The image of I in Homy,(Zspec(I),{0,1}) consists of the elements ¢
for which the induced map Fspec(I) — {0, 1} is continuous.

Proof. First of all, let ¢ € Homipne(Zspec(l),{0,1}). Then there is a unique minimal element
p € Zspec(I) with p(p) = 1. If ¢p(q) = 0, then q ¢ p and, therefore, given an element e € g\p
one has ¢(q) = 0 for any q € D(e,1). This means that the set ¢~ (1) is always closed. If e € T,
then ¢ 1(1) = D(e) and, therefore, the map ¢, is continuous. Conversely, suppose that an ¢ is
continuous, i.e., the set p~1(1) is open. It follows that a nonempty open set U = D(e) N D(f1,1)N
... N D(fy,1) contains the prime ideal ITp for the above Zariski ideal p and lies in ¢~ *(1). We
claim that ¢ = .. Indeed, since p € D(e), it follows that e ¢ p and, therefore, p C p.. It follows
also that II. € U and, therefore, p(p.) = 1. Since p is the minimal element of Zspec(I) with the

latter property, we get p = p,. "

3.2. Irreducible components of the spectrum. Let A be an Fj-algebra and X =
Fspec(A). For a Zariski prime ideal p C A, we set Xy = {z € X|f(z) = 0 for all z € p},
A?p ={z € Xp‘f(w) # for f ¢ p}, and XP) = XTJ We also set AP) = A/Myp. By Corollary
3.1.2, one has X®) = Fspec(AP)) = m In particular, each set X®) lies in only one connected
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component of X. Furthermore, the map Iy — & (P) gives rise to a bijection between the set
of minimal prime ideals of A and the set of irreducible components of Fspec(A). If the set of
irreducible components of X is finite, X is a locally connected space and, in particular, all its

quasi-components are connected components.

3.2.1. Lemma. The set of irreducible components of X is finite if and only if the F1-algebra
A is weakly decomposable. Furthermore, in this case the idempotent Fy-algebra I, is finite.

Proof. If X®Pv) ... x®.) are all of the irreducible components of X then, for every prime
ideal TI, the irreducible closed subset Fspec(A/II) lies in some X®P:) and, therefore, II contains
the ideal Uy . Proposition 2.2.4 implies that n(A4) = N_, Ly, ie., A is weakly decomposable.
Conversely, suppose that A is weakly decomposable, i.e., n(4) = (_, Iy . Then every prime ideal
IT contains the above intersection, and Lemma 1.2.7(ii) implies that there exists a nonempty subset
J C {1,...,n} such that II D Ilg, where q = [J,c; p;. It follows that IT € X and, therefore, the
set of irreducible components of A" is finite. By Proposition 2.5.5, to verify the last statement we
may assume that A is reduced. In this case it is embedded in the finite direct product of integral

F-algebras [, A®:) whose idempotent F;-subalgebra is finite. .

3.2.2. Theorem. Let A — B be a homomorphism of F1-algebras that induces a map ¢ : Y =
Fspec(B) — X = Fspec(A). Then

(i) if the homomorphism A — B is injective, then for every irreducible component X®) of X
there exists an irreductble component Y@ of YV such that gp())q) = A?p ;

(ii) if the map ¢ has dense image and A is reduced, the homomorphism A — B is injective.

Proof. (i) The homomorphism from Ap to the localization of B with respect to A\p is
injective. We may therefore replace A by Ap and B by that localization and assume that p = ma.

Step 1. One hasmp N A =my.

Case 1: A and B are finitely generated over F1. We may assume that A and B are reduced. By
Propositions 2.4.11(i) and 2.4.9(iii), there is a minimal primary decomposition A(A) = (), Iy,
with IIp ’s lying in the set of minimal prime ideals of A. Lemma 1.2.7(ii) implies that every
minimal prime ideal of A coincides with Ily for some p =p; U...Up,;, . Since A(B) = ()Ilg, then
A(A) = N(IIg N (A x A)), where the intersections are taken over the finite set of Zariski prime
ideals of B. It follows that, for every 1 <i < n, p, lies in the image of Zspec(B). This implies that
each Zariski prime ideal p of the form p; U...Up, also lies in the image of Zspec(B). By Corollary
1.2.6, m 4 is of such form, and so there exists a Zariski prime ideal ¢ C B with m4 = qN A. This

implies that mp N A =my4.
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Case 2: A is finitely generated over F;. Let {B;}ics be the filtered family of finite generated
A-subalgebras of B. By the previous case, one has mp, N A =my4. Since mp = UZ.E[ mp,, we get
the required fact.

Case 3: A and B are arbitrary. Let {A;};c; be the filtered family of finite generated F-
subalgebras of A. By the previous case, one has mp N A; = my,. Since my = Uiel my,, we get
the required fact.

Step 2. The statement (i) is true. By Step 1, we have mp N A = my4. It follows that
Hmy N (A X A) = Ilym,. Let IIg be a minimal prime ideal of B which lies in Ily,,. By the
assumption, Iy, is a minimal prime ideal of A and, therefore, Ilg N (Ax A) =1l ,. In particular,
Y@ is an irreducible component of Y and p(Y@) c X™)_ Since g C Iy, it follows that the
homomorphism A* — k(q)* is injective, and we get the required equality p(Y(®) = xm),

(ii) It suffices to consider the case when A is a finitely generated F;-algebra. In this case, take
a minimal primary decomposition A(A) = (-, Iy with Iy lying in the set of minimal prime
ideals of A. Then A embeds in the direct product [];_; A/Tlp . Let F; be the ideal of B generated
by yp . Since the set of all points in X®:) that do not lie in other irreducible components of X’ is
nonempty and open, it follows that the image of the map Fspec(B/F;) — Fspec(A/ Hpi) is dense.
Thus, replacing A by A/ Ly and B by B /F;, we may assume that A is integral. Let F be the kernel
of the homomorphism A — B. Then the image of ) in X lies in the closed subset Fspec(A/E).
Since it is dense, we get Fspec(A/E) = Fspec(A). This immediately implies that £ = A(A), i.e.,

the homomorphism A — B is injective. "

3.3. Connected components of the spectrum. Recall that the connected component of
a point x of a topological space X is the maximal connected subset that contain the point x. The
connected components of points define a partition of X by closed subsets. The set of connected
components is denoted by my(X) and provided with the quotient topology induced by that of X.
Recall also that the quasi-component of x is the intersection of all open-closed subsets that contain
x. The quasi-component of x is a closed subset that contains the connected component of x but
does not coincide with it in general. If X is locally connected (i.e., every point has a fundamental

system of open connected neighborhoods), all quasi-components of X are connected open subsets.

3.3.1. Theorem. (i) The canonical map X = Fspec(A) — Fspec(I4) is surjective, its fibers
are connected, and it induces a homeomorphism 7o(X) = Fspec(I4);

(ii) given p, q € Zspec(A), the connected component of X P9 depends only on the connected
components of XP) and xX@;
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(iii) the bijection mo(X) = Zspec(I4), induced by the homeomorphism from (i), is an isomor-

phism of posets.

The partial ordering on the set 7o(X) is defined as follows: U < V if p < q for some p and q
with X®) ¢ ¢ and X c V. (By the statement (iii), it is a well defined partial ordering.) Notice

that the statement (i) implies that all quasi-components of X" are in fact connected components.

3.3.2. Lemma. (i) For any pair of Zariski prime ideals p,q C A, one has XPnx@ c ko).

(ii) if p C q, then XP) N XD = Fspec(A(p)/apq), where apq is the image of q in AP,

Proof. (i) It suffices to show that the ideal of A generated by Ily and q contains the ideal
Hpug. The latter consists of pairs (f,g) with either f,g € pUq, or fh = gh for some element
h & pUq. In the former case, the pair (f, g) lies in the ideal generated by Iy and Il and, in the
latter case, (f,g) lies in the intersection Iy N Ig.

(ii) Notice that, if a pair (f, g) € Ilq is such that fh = gh for an element h ¢ q, then (f, g) € Ily.
This implies that a prime ideal II lies in X® N XD if and only if it contains the ideal generated
by IIy and g. The required fact follows. "

3.3.3. Corollary. Given Zariski prime ideals p € q C A with X®) 0 x(@ =, one has
XPUY) N xQUY) £ () for any Zariski prime ideal v C A.

Proof. By Lemma 3.3.2(ii), the assumption implies that the Zariski ideal apq C AP gen-
erated by the image of q, is nontrivial, i.e., (f,1) ¢ Ip for all elements f € q. Suppose that
(f,1) € Tlpyye for some element f € qUrt. Since f & v, it follows that f € g. The inclusion
(f,1) € Tlpur means that there exists an element g ¢ p Ut with fg = g. This implies that
(f,1) € Iy, which is a contradiction. .

The strong connected component of a point x € X is the set of all points y € X for which there
exist irreducible components )1, ...,V,, n > 0, of X such that x € Y1, y € YV, and Y N Vi1 # 0
for all 1 <7 <n — 1. Such a strong connected component is connected and, therefore, it lies in a
connected component of X and, if a set XP) has nonempty intersection with a strong connected
component, it is entirely contained in that component. Notice that, if the set of irreducible com-
ponents of X is finite (i.e., A is weakly decomposable), then every strong connected component is
open and, in particular, it is a quasi-component. (The latter is not true in general, see Remark
3.2.10.)

We say that a Zariski prime ideal p of A is marked if it is of the form q; U...Uq,,, where every

q; is a Zariski prime ideal for which Ilg, is a minimal prime ideal of A.
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3.3.4. Corollary. Let p and q be Zariski prime (resp. and marked) ideals of A. If the sets
X®) and XD lie in one strong connected component, then there exist chains of Zariski prime
(resp. and marked) ideals py =p Cp; C...Cp,, and gy =qC qy C ... C q,, with p,, = q,,, and
such that XP) N xXWPir1) £ and x@) N x@iv) £ for all 0 <i < m — 1.

Proof. By the assumption, there exist irreducible components X .. . X®) such that
X®) N x®+1) £ for all 0 < i < n, where vg = p and v,,41 = q. We claim that the following
chains of Zariski prime ideals possess the required property: t¢ = p CtoUt;y C ... CtgU... U
thi1 and tyup1 = q C t,, Uty C ..o C to U ... Utygq. Indeed, by Lemma 3.3.2(ii), one has
X)) 0 x®i) c x4 and, therefore, Corollary 3.3.3 implies that X'(%9) 0 X (GUtit1) £ () and
X(Eir1) O x(©U%1) £ ¢ Applying Corollary 3.3.3 and the latter properties to the shorter sequence

toUty,...,ty Utya, we get the claim. n

3.3.5. Corollary. For any pair p,q € Zspec(A), the strong connected component of X¥PY9)
depends only on the strong connected components of X¥P) and X (@

Proof. Suppose that p and p’ lie in one strong component. By Corollary 3.3.4, there exist
chains p, = p C p; C ... C p,, and py = p’ C p}) C ... C p), with p,, = p/, and such that
XP) N xWPir) £ and P N Pis) # () for all 0 < i < m—1. Corollary 3.3.3implies that there
are similar chains ppUq=pUqCp,UqC...Cp,,Ugqand pjUg=p'UgCpijUqC...Cp,,Uq

and, therefore, XY(PYD and X (P"U% lie in one strong connected component. "

Proof of Theorem 3.3.1. If B = A/n(A), then Fspec(B) = Fspec(A4) and, by Proposition
2.2.5, I4 = Ig. We may therefore always replace A by A/n(A) and assume that A is reduced.

Particular case: A is finitely generated over F1. In this case A is decomposable. As was already
noticed, in this case all quasi-components of X are open connected subsets and, in particular, (i)
is true, and mo(X') is a finite discrete space. The validity of (iii) follows from Corollary 3.3.5 and,
therefore, mo(X) is a finite poset with the infimum operation. Furthermore, Corollary 1.6.2(ii)
implies that, for a nonzero idempotent e € [4, the ideal F, generated by the prime ideal 1I. is
nontrivial and, in particular, the map in (ii) is surjective. Notice that the preimage of II. with
respect to the canonical map Fspec(A) — Fspec(14) coincides with Fspec(A/F,).

We claim that the idempotent ¥1-algebra of A/F, coincides with {0,1}. Indeed, suppose that
the image of an element f € A in A/F, is an idempotent. This means that (f, f?) € F.. By Lemma
1.6.1(i), one has either fe = f2e, or fe € p,A. The later inclusion means that the image of f in
A/F, is zero. Assume therefore that fe ¢ p,A and fe = f?e. Then (fe)? = fe, i.e., fe € I4. Since
(fe)e = fe, then e < fe. If fe # e, then fe € p,, i.e., the image of f in A/F, is zero. If fe = e,
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then (f,1) € F, i.e., the image of f in A/F, is 1, and the claim follows.

By the above claim, replacing A by A/F, we may assume that I4 = {0,1} (and reduced),
and we have to show that the space Fspec(A) is connected. Suppose this is not true. Let U be
a maximal connected component, and let p be the maximal Zariski prime ideal with the property
XWP) c U (i.e., the minimal element of Zspec(A) with that property). Since U is a maximal element
of mo(X), it follows that p # m4. Lemma 3.3.2(ii) implies that, for every strictly bigger Zariski
prime ideal q D p, the Zariski ideal of A®) = A/ Iy generated by the image of q is trivial. This
means that there exists an element fgq € q\p whose image in AP is 1, ie., (fq,1) € Ilp. Let f be
the product of these elements fq. Then f ¢ p and f # 1. We claim that f is an idempotent (and
this will contradict the assumption). Indeed, since A(A) coincides with the intersection ﬂq I
taken over all Zariski prime ideals of A, it suffices to verify that (f, f?) € IIq for all q € Zspec(A).
First of all, (f,1) € Iy by the construction, i.e., there exists an element h ¢ p with fh = h. If
q C p, the latter equality implies that (f,1) € Ilg and, therefore, (f, 2 e Ig. Furthermore, if
q ¢ p, then f € (pUq)\p and, therefore, f € q. It follows that (f, f?) € IIq.

General case. By Lemma 3.1.5, one has X = @Fspec(Ai), where {4;}icr is the filtered
system of Fi-subalgebras finitely generated over F;. We set X; = Fspec(4;).

3.3.6. Lemma. Every open-closed subset U of X is the preimage of an open-closed subset U;
of X; for some i € I.

Proof. Let U be an open-closed subset of X', and set ¥V = X\U. Of course, we may assume
that both U and V are nonempty. Since both sets are open and quasi-compact, they are finite
unions of sets of the form (;_; D(ax,by). We can therefore find i € I such that all such elements
ar and by lie in A;. If U; and V; are the corresponding subsets of A;, then U and V are their
preimages in X, respectively. By the construction, U; and V; are open subsets. If U; N'V; # 0 then,
by Theorem 3.2.2, there is a point in X whose image in X; lies in the intersection. But this is
impossible since Y NV = 0. Thus, U; NV; = 0.

Furthermore, we notice that, if a Zariski prime ideal p C A; that lies in the image of the
composition map U — Zspec(A) — Zspec(A;), then Xi,p C U;. Indeed, suppose that q is a Zariski
prime ideal of A such that /{)p NU # () and whose image in Zspec(A;) is p. Since U is open-closed,
it follows that X c U/ and, in particular, IIq) € U. The latter ideal corresponds to the whole
group £(q)* (see Lemma 1.2.5) and, therefore, its image in X; corresponds to the whole group
k(p)*, i.e., it is the prime ideal I(py. It follows that IIp) € U;. Since U; is open, we get )Ez‘,p C U;.

For the same reason, if a Zariski prime ideal p C A; that lies in the image of the composition map
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V — Zspec(A) — Zspec(A;), then )Ei,p C V;. In particular, the images of U; and V; in Zspec(A4;)
do not intersect. Notice that the union of those images coincides with the image of Zspec(A) in
Zspec(A;).

Finally, since the Zariski spectrum Zspec(A4;) is finite, we can find j > i such that the image of
Zspec(A;) in Zspec(A;) coincides with that of Zspec(A). It follows that, for the preimages U; and
V; of U; and V; in &}, respectively, one has U; UV; = ;. This means that U; and V; are disjoint

open-closed subsets that cover &;. "

Let ¥ be the quasi-component of a point z € X'. For ¢ € I, let x; be the image of z in X}, and
let ¥; be its connected component (which coincides with its quasi-component). It is clear that, for
© < j, the image of X; in Xj lies in ;. We claim that X = 1(11121 Indeed, both are subsets of X,
the set on the left hand side lies in that on the right hand side and, to show that they coincide,
it suffices to verify that every open-closed subset U that contains Y also contains the set on the
right hand side. But this follows from Lemma 3.3.6 because such subset U is the preimage of an
open-closed subset U; of X; for some i € I. Since x; € X; NU;, we get X; C U;, and the claim

follows.

By the particular case, for every ¢ € I there is a unique nonzero idempotent e; € I4, such that
Y; is the preimage of the prime ideal II., of I4, with respect to the canonical map Fspec(A;) —
Fspec(ly4,) and, therefore, 3; = Fspec(A;/F,,), where F,, is the ideal of A generated by II,.
If j > i, the image of ¥; in A; lies in ¥;, and this implies that the image of II., with respect
to the canonical map Fspec(l4;) — Fspec(l4,) is the prime ideal II.,. In particular, e; is the
maximal idempotent in I4, with e; < ej and F, C F, N(A; x Ay). f B = h_H)lAz/Fe then, by
Lemma 3.1.5 and the previous claim, we get ¥ = Fspec(B). Since the idempotent algebra of each
quotient A;/F,, consists of 0 and 1, it follows that I = {0,1}. Furthermore, since each A;/F, is
a noetherian Fy-algebra, we can find j > ¢ such that the image of A;/F,, in A;/F,; is canonically
isomorpic to its image in B. If B; denote the latter, then B is the union of all such B;’s, and one
has ¥ = Fspec(B) = l(iLnFspec(Bi). We can now show that the set ¥ is connected (which implies
that ¥ is a connected component). Namely, let ¢ be a nonempty open-closed subset of ¥. By
Lemma 3.3.6, there exists ¢ € I such that U is the preimage of an open-closed subset of Fspec(B;).
But since Ip, = {0,1}, the latter space is connected and, therefore, U; = Fspec(B;). This implies
that & = X, and this gives the statement (i).

To prove the statement (ii), we consider a related description of the Fi-algebra B, which

follows from the construction. Namely, we consider the Zariski prime ideal p = (J,c;p., of Ia
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(recall that p, = {f € 14,
ideal Iy of I (ie., Ilp = {(e, f) € 14 X I4| either e, f € p, or e, f & p}), then A/Fy = B. Since

[ £ ei}). If Fy is the ideal of A generated by the corresponding prime

Fspec(B) = ¥ is connected, we get the statement (ii). The statements (iii) and (iv) easily follow

from the particular case. "

3.3.7. Remark. Let A be the quotient of Fy[T},T5,...] by the ideal generated by the pairs
(T;Ti41,T;+1) for i > 1, and let f; be the image of T; in A. The F;-algebra A has no zero divisors,
i.e., (0) is a Zariski prime ideal, and each nonzero Zariski prime ideal is of the form p,, = ;= | Af;
for n > 0. Then XPo) c xP) xW®.)n X Pnin) # () for n > 1, but all other pairwise distinct pairs
do not intersect. This means that X’ has two strong components X®o) U X®) U, .. and X@. On

the other hand, the space X is connected.

3.4. Disconnected sums of F;-algebras.

3.4.1. Definition. A map of F-algebras ¢ : A — B is said to be a quasi-homomorphism if

it takes 04 and 14 to Op and 1p, respectively, and possesses the following property: if ab # 0 in
A, then p(ab) = p(a)p(b).

3.4.2. Examples. (i) If A has no zero divisors, any such map is a homomorphism.

(ii) Let a C b be Zariski ideals of A. Then the map A — A that takes an element a € b to a
and all elements from b to zero gives rise to a quasi-homomorphism A/b — A/a.

(iii) Given an Fi-subalgebra I C I4 and an idempotent e € I, we set A = A/F,, where F, is
the ideal of A generated by the prime ideal II,, of I. By Lemma 1.6.1, one has A(®) = A, /p_A, (where
A, is the localization of A with respect to e). Given two nonzero idempotents e < f, the composition
of the quasi-homomorphism A./p,A. — A, (from (ii)) with the canonical homomorphism A, — Ay

gives rise to a quasi-homomorphism v, ¢ : Ale) 5 AW,

3.4.3. Definition. A disconnected sum datum (of Fi-algebras) is a tuple {I, A;, v} con-
sisting of an inf-poset I, a system of F,-algebras {Ai};c; and, for every pair ¢ < j in I, a quasi-
homomorphism v;; : A; — A;, which possesses the following properties:

(0) v4; is the identity map on A;;

(1) if i <j <k and a € A; are such that v;;(a) # 0, then v;,(v;;(a)) = vir(a);

(2) if i < j = inf(J) for a subset J C I and a € A; are such that v;;,(a) # 0 for all k& € J, then
vij(a) # 0.

Given a disconnected sum datum {f . Ai,vij}, let [ A; denote the subset of the direct product

[I;c; Ai consisting of the tuples (a;);c; with the following properties:
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(a) if i < j and a; # 0, then v;;(a;) = a;;

(b) given a subset J C I, if a; # 0 for all i € J, then Uing() # 0.

We set A = [[{A;. Fori € I and a € A;, let v;(a) be the element of [, ; A; with j’s
component v;;(a;), if ¢ < j, and 0, otherwise. The property (0) implies the i’th component of v;(a)

is equal @ and, in particular, the map v; : A; — A is injective. We also set e; = v;(1).

3.4.4. Proposition. In the above situation, the following is true:

(i) A is an Fy-subalgebra of [[,.; As;

(ii) vi(Ai) C A, A= ;e vi(Ai) and vi(A;) Nw;(Aj) = 0 for all i # j;

(iii) fori,j € I, one has €i€j = €sup(i,j), if sup(i, j) exists, and e;e; = 0, otherwise; in particular,
the correspondence i — e; identifies the set I = {0} U I with an F-subalgebra of 1,;

(iv) for i € I, the composition of v; with the canonical epimorphism A — A(¢) gives rise to
an isomorphism A; = A€,

(v) if i < j, the quasi-homomorphism v;; is compatible with ve, .. from Example 3.4.2(iii).

(vi) if the poset I is noetherian, then X = [[,.; Xi, where X = Fspec(A) and X; = Fspec(A;).

The quotient Fj-algebra A(°9) of A is defined here as in Example 3.4.2 (i.e., with respect to
the idempotent Fi-subalgebra I). The Fj-algebra A = [[7 A; will be said to be the disconnected

sum of A;’s with respect to v;;’s.

Proof. (i) Since the set A contains 0 and 1 of the direct product, it suffices to verify that, for
(@i);ci> (bi);ei € A, the tuple (a;b;),.; possesses the properties (a) and (b).

(a) Suppose that a;b; # 0. By the definition of a quasi-homomorphism, for every j > i one
has v;;(a;b;) = v;(a;)vij(a;). Since a; # 0 and b; # 0, the property (a) for the given tuples implies
that v;;(a;) = a; and v;5(a;) = a; and, therefore, v;;(a;b;) = a;b;.

(b) Suppose that, for a subset J C I, one has a;b; # 0 for all i € J, and set j = inf(J). It
follows that a; # 0 and b; # 0 for all ¢ € J and, therefore, a; # 0 and b; # 0, i.e., a;b; # 0.

Notice that we did not use the properties (0)-(2) so far.

(ii) First of all, we verify the first inclusion, i.e., validity of (a) and (b) for every element v;(a)
with a € A;.

(a) Suppose that j < k and v;(a); # 0. It follows that i < j and v;j(a) = v;(a); # 0. By the
property (1), we get vji(vij(a)) = vik(a) = vi(a)g.

(b) Suppose that, for a subset J C I, one has v;(a); # 0 for all k € J, and set j = inf(.J).
Then ¢ < k and v;(a)r = vip(a) # 0 for all k € J. It follows that ¢ < j and v;(a); = v;5(a) # 0, by
the property (2).
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Furthermore, for a nonzero tuple (a;);cj € A, let J be the subset of all i € I with a; # 0, and
set j = inf(J). The property (b) implies that j € J and, by the properties (0) and (a), we get
(ai)ier = vilay), Le, A= U;ervi(4i)

The last statement in (ii) directly follows from the definition of v;’s.

The statement (iii) is trivial.

(iv) If the images of elements a,b € A; coincide in A(¢), then (v4(a),v;(b)) € F.,, i.e., either
vi(a)e; = vi(b)es, or vi(a)es, vi(b)e; € p,, A. In the former case, the equality of i’th components of
both sides implies that a = b. As for the latter case, we recall that p,, is the Zariski prime ideal of I
whose nonzero elements are e;’s with j £ 4. This implies that, if v;(a)e; € p; A, then v;(a)e; = ae;
for some a@ € A and j £ . The i-th component of the left hand side is a, but that of the right
hand side is 0. Thus, in the second case, one has a = b = 0 and, therefore, the map A; — A
is injective. That it is surjective follows from the facts that (o, ae;) € Fe, and ae; € v;(A;) for all
elements o € A, and that it is a homomorphism follows from the definition of the multiplication.

The statement (v) follows from (iv) and the facts that, for i < j, the multiplication by e; takes
vi(A;) to vj(A;) and coincides with v;; on A; = v;(A;).

(vi) It suffices to verify that every Zariski prime ideal p C A is the Zariski preimage of a Zariski
prime ideal of some A;. Since I is noetherian, there is a unique maximal element i € I with e; & p.
We claim that p is the Zariski preimage of a Zariski prime ideal of A;. Indeed, it suffices to verify
that, if a € p and (a,b) € F,,, then b € p. Suppose first that ae; = be;. Then be; € p and, since
e; ¢ p, it follows that b € p. Suppose now that ae;, be; € p., A. Since p,, C p, it follows that be; € p
and, therefore, b € p. .

Suppose we are given disconnected sum data {I, A;, v;j} and {I', Ay, vy}, an inf-map I—
I' i — i and, for every ¢ € I, a homomorphism f; : Ay — A;. Then there is an induced

homomorphism of Fy-algebras [[; o7 A — [[;c7 Ai @ (as)irer = (filas))ier-

3.4.5. Lemma. The above homomorphism gives rise to a homomorphism of Fi-algebras
[ 115 Ay — 115 A; if and only if the following holds:
(1) if J is a subset of I and k = inf(J), then Zker(fi) C U, Zker(f; o vpri);

(2) for every i < j in I, the following diagram is commutative outside Zker(f;):

A 4,
1 . 14

Ay = Ay
Proof. Direct implication. (1) For an element a € Zker( fx), the k-th coordinate of the element
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f(vgr(a)) is zero. The property (b) from the construction of A implies that its i-th coordinate is
zero for some ¢ € J. Since the latter is equal to f;(vkiv(a)), it follows that a € Zker(f; o vgsir).

(2) Suppose that f;(a) # 0 for an element a € A;. Then a # 0, and so the j'-th coordinate of
the element v,/ (a) is equal to vy j/(a). It follows that the j-th coordinate of the element f(vi/(a))
is equal to f;(vij:(a)). But f(vi(a)) € [[7 Ai, and the property (a) from the construction of A

implies that the same j-th coordinate is equal to v;;(fi(a)).

Converse implication. Let o’ = (a;r); ¢ be an element of A" = [[}, Ay. It suffices to show
that a = (a;),c, defined by a; = f;(a;), is an element of A = 17 Ai. For this we have to verify
the properties (a) and (b) from the construction of A.

(a) Let @ < j, and suppose that a; = fi(a;) # 0. Then a; # 0 and, by the property (a)
for a’, we have a; = vy j(ay). Since a; ¢ Zker(f;), the property (2) implies that a; = f;(a;/) =
vij(filair) = vij(a;).

(b) Let k = inf(J), and suppose that a; = fi(a;) # 0 for all ¢ € J. Then a;; # 0 for all i € J.
By the property (b) for a’, we have aps # 0 and, by the property (a), we have a;; = vy (ag). The
assumption and the property (1) imply that ay = fx(ag) # 0. .

A morphism of disconnected sum data f : {I', Air, vy} — {I, Ai,vi;} consists of an inf-map
I — I':i+w 4" and, for every i € I, a homomorphism f; : A}, — A; so that the conditions (1)
and (2) of Lemma 3.4.5 are satisfied. Lemma 3.4.5 implies that disconnected sum data form a
category with respect to the above morphisms (it is denoted by Dsd), and that the correspondence
{I,A;,vi;} = A=]]% A; defines a functor Dsd — F;-Alg.

Let now (A, I) be a pair consisting of an F;-algebra A and an idempotent F;-subalgebra I C A
such that the poset I is an inf-poset. It is easy to see that the system of quasi-homomorphisms
Vey + A — AU for e < f in I from Example 3.4.2(iii) possesses the properties (0)-(2) of

Definition 3.4.3, i.e., {f, Ale) Ve,f} is a disconnected sum datum.

3.4.6. Proposition. In the above situation, suppose that the idempotent Fi-algebra I
is almost finite. Then the canonical homomorphism A — [] el A©) induces an isomorphism of
Fi-algebras A = []% A®©).

Proof. Let p. denote the canonical homomorphism A — A(). The Zariski kernel of f
coincides with p,A. If a & p A, then pc(a) = pe(ae) and, therefore, ve f(pe(a)) = pyr(a) for all
e < fin I. Given a subset of J C I, suppose that p.(a) # 0 for all e € J. Then a ¢ p,A for all
e € I. By Lemma 1.6.3, one has P; = Ueey Pe, where f = inf(J). It follows that, if uys(a) = 0,

then a € p;A and, therefore, a € p A for some e € J, which is impossible. Thus, the image of
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A in the direct product lies in the disconnected sum. Injectivity of the homomorphism considered
follows from Lemma 1.6.2(ii). Finally, let (ae).c; be an element from the disconnected sum. By
the property (2), there exists a unique minimal e € I with a. # 0. Let a be a preimage of a. in A.

It is easy to see that the tuple considered is the image of the element ae. "

Let F1-Alg,fiq denote the category of pairs (A, I) consisting of an F;-algebra A and an almost
finite idempotent Fi-subalgebra I C A. Let also Dsdneet denote the full subcategory of Dsd
consisting of the disconnected sum data {I, A;, v;;j } with noetherian inf-poset I. Lemma 1.6.5 and

Proposition 3.4.6 imply the following fact.

3.4.7. Corollary. (i) The correspondence {I, A;,vi;} = (A,I) with A = [[7 A; and I =
{0} U I gives rise to an equivalence of categories Dsd, et 5 Fi-Algafia;

(ii) the above functor induces an equivalence between the full subcategory of Dsd, et consisting
of {I, A;,v;;} such that all of the spectra Fspec(A;) are connected and the category of F-algebras
A with almost finite idempotent Fi-subalgebra I 4;

(iii) the above functor induces an equivalence between the full subcategory of Dsd et consisting

of {I, A;,v;;} with finite I and local artinian A;’s and the category of artinian F-algebras. n

Let {f ,A;,v;;} be a disconnected sum datum, and suppose we are given homomorphisms of
Fi-algebras «; : B — A; with the following properties:

(1) if i < j and b € B; are such that o;(b) # 0, then v;;(c; (b)) = o (b);

(2) given a subset J C I and b € B such that o;(b) # 0 for all i € J, then auyin(s)(b) # 0.

3.4.8. Proposition. In the above situation, the following is true:

(i) there is a unique structure of a B-algebra on A = [[} A;, which is compatible with those
on A;’s;

(ii) if the set I is finite and all A; are finite (resp. finitely generated) B-algebras, then so is A.

Proof. (i) The properties (1)-(2) imply that, for every element b € B, the tuple («;(b)) belongs
to A, and it is easy to see that the map B — A : b — («a;(b)) is a homomorphism which defines the
required structure of a B-algebra on A.

(ii) It is enough to notice that the images of elements of A;’s that generate them as a B-module

(resp. B-algebra) generate A also as a B-module (resp. B-algebra). .

3.4.9. Remark. It is not true in general that, for a disconnected sum datum {f VA, Vi)
with Zariski artinian idempotent Fj-algebra I = {0} U I and local artinian Fj-algebras A;, the
disconnected sum A = [[7 A; is Zariski artinian. Indeed, let I be the poset {—o0,...,—2,—1}.
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The corresponding idempotent Fi-algebra I = {0,e_oc = 1,...,e_2,e_1} with e_je_; = e_ 1in(i5)
is Zariski artinian. For n > 1, let A_,, be the quotient of F1[T] by the Zariski ideal generated by
T™ (which is a local artinian Fy-algebra) and, for m > n, let v_,, _,, be the canonical surjective
homomorphism A_,, =+ A_,,. We also set A_., = F; and, for n > 1, denote by v_, _,, the canon-
ical homomorphism A_,, — A_,. Then {f ,Aj, v} is a disconnected sum datum. Furthermore,
for n > 1, let a,, be the Zariski ideal of A = [[% with elements of the form v_,, (t*) with m > k > n
(t is the image of T in A_,,). Then the descending chain of Zariski ideals a; D as D ... does not

stabilize.

3.5. Disconnected sums of A-modules. Let A be an F-algebra.

3.5.1. Definition. A map of A-modules ¢ : M — N is said to be a quasi-homomorphism if

it takes Op; to On and possesses the following property: if am # 0 for a € A and m € M, then
p(am) = ap(m).
For example, let P C @ be Zariski A-submodules of M. Then the map M — M that takes

an element m ¢ @ to m and all elements from ) to zero gives rise to a quasi-homomorphism

M/Q — M/P.

3.5.2. Definition. A disconnected sum datum (of A-modules) is a tuple {I, M;,v;;} con-
sisting of an inf-poset I, a system of A-modules {M;};c; and, for every pair i < j in I, a quasi-

homomorphism v;; : M; — M;, which possesses the properties (0)-(2) of Definition 3.4.3.

Given a disconnected sum datum of A-modules {I, M;,v;;}, let [[7 M; denote the subset of
[L;c; M; consisting of the tuples (m;);c; possessing the properties (a) and (b) from the construction
of the disconnected sum of Fj-algebras. For i € I and m € M;, let also v;(m) be the element of
[1,c; M; with j’s component v;;(m), if i < j, and 0, otherwise. It is easy to see that M =[] M; is
an A-submodule of [, ; M;, and one has v;(M;) C M, M = J,c;vi(M;), and v;(M;) Nv;(M;) =0
for all ¢ # j.

3.5.3. Examples. (i) Suppose that A = [[7 A; for a disconnected sum datum of F;-algebras
{I JAj vt Ifd < jin I, the quasi-homomorphisms v;; induces a quasi-homomorphism v;; :
M; = M®s A — M; = M ®a Aj. Then the tuple {f, M;,v;;} is a disconnected sum datum
of A-modules, and there is a canonical isomorphism M = [[¥ M;. Indeed, verification of the
property (1) of Definition 3.4.3 is trivial. Furthermore, by Proposition 3.4.4, one can identify
the set I = I U {0} with an idempotent Fj-subalgebra of A and, by Lemma 1.6.1(i), if i € T

corresponds to an idempotent e, one has M; = M(®) = M, /p_M., where M, is the localization of
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M with respect to e. Suppose that e < f = inf{g,},cs for a subset J C I and that the image of

an element m € M, in M) is zero, i.e., m € pyMy. Since pp = |J it follows that there

jesPg;
exists j € J with m € p, M,,. This implies the property (2) of Definition 3.4.3, i.e., {I, M;,v;;}
is a disconnected sum datum. That the image of the map M — [],.; M; coincides with J[7 M; is
trivial. That this map is injective follows from Lemma 1.6.1(ii).

(ii) Suppose that an A-module M is a direct sum of a family of Zariski A-submodules {M;},.;.
We provide I with the structure of an inf-poset (e.g., by providing it with the structure of a well
ordered set). For i < j in I, let v;j be the zero homomorphism M; — M;. Then {I, M;, v} is a

disconnected sum datum of A-modules, and one has M = [[5 M;.

84. Affine schemes over F;

4.1. Affine schemes and weak open affine subschemes. The category of affine schemes
over Fy is, by definition, the category Aschg, anti-equivalent to the category of Fi-algebras. We
refer to an affine scheme X = Fspec(A) by the letter X. We also set Iy = I4. We call X decom-
posable, weakly decomposable, reduced, integral, quasi-integral, irreducible, idempotent, noetherian,
Zariski noetherian, artinian, or finitely presented over an F1-field K if the Fi-algebra A possesses

the corresponding property.

4.1.1. Definition. An open subset U of an affine scheme X = Fspec(A) is said to be a weak
open affine subscheme if there is a homomorphism of Fi-algebras A — Ay such that

(1) the image of Fspec(Ay) in X lies in U,

(2) any homomorphism of F;-algebras A — B such that the image of Fspec(B) in X lies in U

goes through a unique homomorphism A;; — B.
For a subset U C X, we set Z(Z) = {p € Zspec(A)‘i’p NU # 0}.

4.1.2. Lemma. Let U be a weak open affine subscheme of X. Then

(i) the homomorphism A — Ay is unique up to a unique isomorphism;

(i) the map Fspec(Ay) — U is bijective, and k(x) = k(y) for every point x € U, where y is
its preimage in Fspec(Ay);

(iii) the map Zspec(Ay) — Zspec(A) is injective, and its image coincides with Z(U);

(iv) A?p C U for every p € Z(U), and inf(J) € Z(U) for every subset J C Z(U);

(v) for any weak open affine subscheme V C X, the intersection U NV is a weak open affine

subscheme with respect to the homomorphism A — Ay @4 Ay;

68



(vi) if the map Fspec(Ay) — U is a homeomorphism, then for any weak open affine subscheme
V of Fspec(Ay) its image in X is a weak open affine subscheme;

(vii) for any morphism of affine schemes ¢ : Y = M(B) — X, o~} (U) is a weak open affine
subscheme of Y with respect to the homomorphism B — B ® 4 Ay.

Proof. The statements (i) and (v)-(vii) are trivial.

(ii) By the property (2), the homomorphism A — k(x) goes through a unique homomorphism
Ay — k(z), and so x is the image of a unique point y € Fspec(A4y), and x(z) = k(y).

(iii) and (iv). That the image of Zspec(Ay) coincides with Z(U) follows from (ii). We claim
that Avfp C U for every p € Z(U). Indeed, from (vii) it follows that Xp NU is a weak open affine
subscheme of Xp = Fspec(k(p)). We may therefore assume that A is an F;-field. Let G be the
kernel of the homomorphism A* — Aj;. Then the set U consists of the points that correspond
to the subgroups of A* which contain G. It follows that the set U is closed. Since Fspec(A) is
irreducible, this implies that G = {1}, and the claim follows. The remaining statements easily

follow. n

4.1.3. Lemma. (i) For an element f € A, the set D(f) = {x € X|f(z) # 0} is a weak
open affine subscheme (called a principal open subset), and it corresponds to the homomorphism
A— Af,'

(ii) there is a bijection between the set of nonempty principal open subsets of X and the set

of Zariski prime ideals p C A with the property that Ap = Ay for some f € A.

4.1.4. Remark. (i) For a principal open subset the map from Lemma 4.1.2(ii) is a homeo-
morphism.

(ii) The map in the statement (ii) takes an element f € A to the maximal Zariski ideal that
does not contain any positive powers of f.

(iii) If the Zariski spectrum Zspec(A) is finite (e.g., A is finitely generated over an Fi-field),

then image of the map in (ii) coincides with Zspec(A).

Proof. The statement (i) is trivial.

(ii) Let p be the maximal Zariski ideal of A that does not contain any positive powers of an
element f € A. (It is a Zariski prime ideal of A.) For any element g € A\p, the Zariski ideal
generated by p and g contains a power of f, i.e., gh = f" for some h € A and n > 1. It follows

h

that % = 4w, l.e,, Ap = Ay. Since Fspec(Ap) = D(f), the map considered is bijective. .

4.1.5. Lemma. Suppose that A is an idempotent F1-algebra. Then
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(i) for any finitely generated ideal E of A, the set U = {x € X|e(z) = f(z) for all (e, f) € E}
is a weak open affine subscheme, and it corresponds to the homomorphism A — A/E;

(ii) every weak open affine subscheme of X is of the form (i).

Proof. (i) By the assumption, the set I/ is a finite intersection of sets of the form X'(e, f) =
{z € X|e(z) = f(x)}. Since X(e, f) = (D(e,0) N D(f,0)) U (D(e,1) N D(f,1)) is an open set, U is
open in X. Furthermore, suppose we are given a homomorphism ¢ : A — B to an Fi-algebra B
such that the image of ) = Fspec(B) in X lies in Y. Then, given a pair of idempotents (e, f) € F,
one has ¢(e)(y) = ¢(f)(y) for all y € Y. It follows that ¢(e) = ¢(f). Thus, the homomorphism ¢
goes through a unique homomorphism A/FE — B.

(ii) The set U is open and, by Lemma 4.1.2(ii), it is compact and, therefore, it is also closed.
Since U is preserved by the infimum operation, Proposition 3.1.4(iii) implies that it is of the form
Fspec(A/E) for some ideal F of A. The statement (v) of the same proposition then implies that
the ideal F is finitely generated, i.e., U is of the form (i). .

Lemma 4.1.5 implies that, for an arbitrary Fi-algebra A and a finitely generated ideal E
of the idempotent subalgebra I4 of A the set X(E) = {z € X|e(z) = f(z) for all (e, f) € E}
is a weak open affine subscheme (called an idempotent open subset), and it corresponds to the
homomorphism A — A(E) = A/F, where F' is the ideal of A generated by E. Notice that the map
Fspec(A(FE)) — X(F) is a homeomorphism.

4.2. Elementary open subsets and elementary families.

4.2.1. Definition. An open subset of X = Fspec(A), which is an idempotent open subset of
a principal open subset D(f) associated to a finitely generated Zariski ideal a C I4,, is said to be

elementary.

Lemma 4.1.2(v) implies that every elementary open subset of X' is a weak open affine sub-
scheme, and Theorem 3.3.1 implies that, if X is connected, then any elementary open subset that
has a nonempty intersection with X}, coincides with X. If X is idempotent, elementary open
subsets are also closed subsets, and they form a basis of topology of X. Notice also that, given a
morphism of affine schemes ¢ : ) = M(B) — X, the preimage of an elementary open subset of X

is an elementary open subset of ).

4.2.2. Proposition. Let U be a nonempty elementary open subset of X, and let D(f) and
a be the corresponding principal open subset of X' and Zariski ideal of Ay from Definition 4.2.1.
Then
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(i) D(f) is a unique minimal principal open subset that contains U, a = {e € L4, ‘e € pAy for
allpe Z(U)}, and Z(U) = {p € Zspec(A)‘f ¢ p and p D a} (we set Dy = D(f), p™) = pPu) and
ay = a);

(ii)) if U NV # O for an elementary open subset V of X, then U NV is an elementary open
subset, pU™) = sup(p™),p™M)) and ayny = aylp,., Naylp, ., ;

(iii) if V is an elementary open subset of U, then it is an elementary open subset of X’;

(iv) if U is closed in X, then it is the preimage of an elementary open subset of Fspec(I4).

Proof. (i) We claim that Uy = D(f)m. Indeed, if the sets considered do not coincide, they
are disjoint. This implies that some idempotent from a does not vanish at D(f)n and, therefore,
it does not vanish at all points of D(f), which contradicts nonemptyness of Y. It follows that the
preimage of my, in 4 (i.e., pPUN) coincides with the preimage of my,, in A, and the minimality
property of D(f) follows. Furthermore, let e € I4,. If e € a, it is clear that e € p for all
p € Z(U). Conversely, if e € p for all p € Z(U), then e’u = 0, i.e., e lies in the Zariski kernel of
the homomorphism Ay — Ay, which coincides with the Zariski ideal of Ay generated by a. The
inclusion e € a then follows from Corollary 1.6.2(iii). Finally, suppose a Zariski prime ideal p C Ay
contains a. Then 6‘22 =0foralleca,ie,pecZlU).

(ii) Suppose that V is an idempotent open subset of a principal open subset D(g) associated
to a finitely generated Zariski ideal b C I4,, and let ¢ be the Zariski ideal of 4,  generated by
the images of a and b. Then U NV = {z € X‘(fg)(x) # 0 and e(z) = 0 for all e € ¢} and, in
particular, &/ NV is an elementary open subset. Since the latter set is nonempty, it follows that
it contains the set D(fg)m. This implies the required equalities. It remains to notice that, since
UNY is a weak open affine subscheme, it is quasicompact, and this easily implies that the Zariski
ideal ayy of Ip,,., is finitely generated.

The statement (iii) follows from (i).

(iv) That U is the preimage of an open-closed subset U’ of Fspec(I4) follows from Theorem
3.3.1(i). It is also clear that U’ is the image of U in Fspec(I4). Let v be the maximal Zariski ideal
of I4 that does not contain any powers of f, i.e., t = p™ N I4, and let q be the maximal Zariski
ideal q of A with N4 = t. Then p™) and q are the maximal Zariski prime ideals p of A for which
é\?p has a nonempty intersection with ¢ and the preimage of U’, respectively. Since both coincide,
it follows that p) = q. Furthermore, since vy = I € U’, Proposition 3.1.3 implies that v = p,
for some element e € I4\t. It follows that the principal open subset D(e) of X' coincides with D(f).
Finally, the canonical homomorphism of idempotent Fi-algebras I4 — Ia, = I, is surjective and

its kernel is the ideal generated by the pair (e, 1). Let ey, ..., e, be elements of 4 whose images in
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I, generate the Zariski ideal a. Then U’ = {x € Fspec(I4)|e(z) =1 and e1(z) = ... = e, (x) = 0}

and, therefore, U’ is an elementary open subset of Fspec(I4). The required statement follows. =

We will denote the principal open subset D(f) and the Zariski ideal a of an elementary open
subset U by Dy and ay, respectively. Given elementary open subsets U and V, we write Y <V if
Dy D Dy.

4.2.3. Definition. An elementary family is a finite family S of pairwise disjoint open subsets
of X such that the above partial ordering makes S an inf-poset with the following property: if

W =inf(U,V) in S, then for every idempotent e € ayy one has either e{u =0, or e‘v =0.

4.2.4. Example. Let I be a finite F1-subalgebra of Iy = I 4. Then the family of fibers of the
canonical map X — Fspec([) is an elementary family with S isomorphic to the poset I. Indeed, the
preimage of the prime ideal II, for e € I is the elementary set V(¢) defined by the equalities e(z) = 1
and f(z) =0 for f € p, = {f € I|f £ e}, i.e., Dyy = D(e) and aye) = p,Ac = my,. One has
V() < V&) if and only if D(e) D D(f), ie., e < f. If g = inf(e, f), then V@) = inf(V(e), V)
and, since p, = p, U py, for every e € ay(,) one has either e‘v(e) =0, or e}v(f) = (0. We say that
the elementary family S is associated to I. Notice that, if the whole idempotent F1-subalgebra Iy

is finite, the elementary family associated to it is the family of connected components of X.

4.2.5. Proposition. Let S be an elementary family of open subsets of X, and let W =
inf(U,V) in S. Then

(1) for every pair p € Z(U) and q € Z(V), one has inf(p, q) € Z(W);

(i) if U £V, then Dy NV = ;

(iii) for any elementary family T on X, the family of nonempty intersections U NV withU € S
and V € T is an elementary family;

(iv) for any morphism ¢ : )Y = M(B) — X, the family of nonempty open subsets U’ C Y of
the form ¢~Y(U) with U € S is an elementary family of open subsets of ;

(v) if sets from S cover the whole space X, then S is associated to a finite idempotent F-
subalgebra of A.

Proof. (i) If e € ayy, then either e‘Du € ay, or e|DV € ay and, therefore, either e|Du € pAp,,
or e‘DV € qAp,,. It follows that e € (pUq)Ap,,, and Proposition 4.2.2(i) implies the required fact.

(ii) Assume that the statement is not true. If Dy = D(f) and Dy = D(g) for some f,g € A,
then Dy NV C D(fg) # (0. Since every idempotent from ay equals to zero at Dy NV, it follows
that it equals to zero at D(fg)m, i-e., D(fg)m C V. Recall that for every e € ay, one has either
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e‘u =0, or e‘v = 0. In the latter case it follows that e equals to zero at D(fg)m and, therefore, it

equals to zero at D(f)m C U. This implies that D(f)m C U N, which is impossible.

(iii) Let R denote the family considered. Suppose that U; NV # @ and Us N Vs # () for some
U, Uy € S and Vi,V € T, and set W, = inf(Uy,Us) and Wy = inf(V1, V). Since p@imVi) ¢
T(U;) NZ(V;) for i = 1,2, the statement (i) implies that inf(p@ V1) p0V2)) € (W) N Z(W,).
It follows that the intersection W; N W, is nonempty and coincides with inf(Uy N Vi, Uz N Vs) in
R. Furthermore, Proposition 4.2.2(ii) implies that, for every e € ayy,qw,, one has e = e1 f1 = ea fa,
where ¢e; € IDwi and f; € IDWmWZ' By Definition 4.2.3, one has either e; ’ul =0or e ’1/12 =0, and
either 62‘v1 =0or ey ‘W = 0. This implies that either 6|umv1 =0, or e‘%m}? = 0 and, therefore,
R is an elementary family.

(iv) Let U’ and V' be sets from the from the family 7" considered. It is easy to see that U’ <V’
if and only if 4 < V), and so the partial ordering on 7' is induced by that on S. To show that it
admits the infimum operation, we have to verify that the preimage W of W = inf(U,V) in Y is
nonempty. For this we notice that, if p’ € Z(U') and q' € Z(V'), then for their images in Zspec(A)
one has p € Z(U) and q € Z(V), and (i) implies that v = inf(p,q) = pUq € Z(W). Since t is
the image of the Zariski prime ideal v/ = inf(p’,q’), it follows that v € Z(W') and, in particular,
W' # (). The required property of ay, from Definition 4.2.3 easily follows.

(v) Notice that every set U € S is closed. Proposition 4.2.2(iv) implies that ¢/ is the preimage
of an elementary open subset of Fspec(l4), i.e., U = {x € X‘e(x) =1and f(z) =0 for all f € a},
where e = ¢y € I4 and a is a finitely generated Zariski ideal of I4. We claim that I = {0}U{ey|U €
S} is an Fq-subalgebra of 4. Indeed, let U,V € S. Then D(ey) N D(ey) = D(eyey). The latter is
nonempty if and only if f = eyeyp # 0. To show that f € I, we may assume that f # 0, ey, ey and,
in particular, Y £ V and V £ Y. Since DyyNY = () and DyNU = 0, it follows that IT; ¢ YUV and, in
particular, f‘u =0 and f!v =0. Let W € S contain II;. Assume that &/ £ W. Since Dy "W # 0,
it follows that W < U and, therefore, f‘w = 0, which contradicts the inclusion II; € W. Thus,
U < W. For the same reason, one has V < W and, therefore, W C D(ey) N D(ey) = D(f). It
follows that eyy = f and, in particular, f € I. It remains to notice that every & € S coincides with
the open set {z € Du|ev(x) =0 for all V < U in S}, i.e., with the fiber of the map & — Fspec(])

over Il,,. "

4.2.6. Proposition. Every open covering of X by elementary open subsets admits a refine-

ment which is an elementary family associated to a finite idempotent F1-subalgebra of A.

Proof. Let U = {U;};cr be such a covering. The covering U has a refinement which is the
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preimage of an elementary family of open subsets of Fspec(l4). Indeed, since X' is quasicompact,
we may assume that U is finite, i.e., I = {1,...,n}, and we may assume that Xy, C U;. Then U
is defined by equalities ey (x) = ... = ex(x) = 0 with ey,...,ex € I4. The claim is trivial if n = 1
or k = 0. Suppose that n > 1 and k£ > 1 and that the claim is true for all coverings in which
one of these numbers is strictly smaller. Then X = X’ [[ X", where X’ = {x € X|e1(x) = 0} and
X" = {x € X|e1(z) = 1}. For the covering UNX" = {U;N X"} 1<i<p, of X, the set Uy N X is defined
by the equalities es(z) = ... = e,(z) = 0, and one has X" C |J;_,U;. Since the homomorphism
In — Iy = 1Ia/elg and 14 — Ixv = (I14). are surjective, the claim follows from the induction
hypothesis applies to X’ and X".

The previous claim reduces the situation to the case when A is an idempotent Fi-algebra. In
this case, we notice that each of the elementary open subset U; is defined by a finite number of
elements from A. Let A’ be the Fi-subalgebra of A generated by all such idempotents. Then A’
is finite, and the covering U is the preimage of a family U’ of X’ = Fspec(A’) by elementary open
subsets of X’. Since the map X — X’ is surjective, it follows that U’ is a covering of X’. The
covering of X’ by its points is an elementary family which is a refinement of &’. This implies the

required fact. "

4.3. Open affine subschemes. Let X = Fspec(A) be an affine schemes over F;.

4.3.1. Definition. An open affine subscheme of X is an open subset which admits a covering

by an elementary family of open subsets.

The following statement easily follow from the properties of elementary families established in

the previous subsection.

4.3.2. Proposition. Let U be an open affine subscheme of X. Then

(i) for any open affine subscheme V, the intersection U NV is an open affine subscheme;

(i) for any morphism ¢ : Y — X, the preimage = !(U) is an open affine subscheme of );

(iii) there exists a finitely generated Fi-subalgebra A’ of A such that U is the preimage of an
open affine subscheme of Fspec(A’);

(iv) if U is closed in X, it is the preimage of an open affine subscheme of Fspec(14). =

4.3.3. Example. Every idempotent open subset U of X is an open affine subscheme. Indeed,
by Lemma 4.1.5 one has U = Fspec(A/E), where E is a finitely generated ideal of the idempotent
F;-subalgebra 4. This reduces the situation to the case when A is an idempotent Fi-algebra.

Furthermore, we can find a finite F;-subalgebra A’ of A such that F is a generated by an ideal E’
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of A’. This reduces the situation to the case when A is a finite idempotent Fi-algebra. In this case

the claim follows from Proposition 3.1.4(iii).

4.3.4. Theorem. Every open affine subscheme U of X is a weak open affine subscheme.

Proof. (i) Let S be an elementary family of open subsets that cover Y. If V < W in S, then
the map Ap,, — Ap,,, that takes all elements from ay Ap,, to zero and every element a ¢ ayAp,, to
a! D gives rise to a quasi-homomorphism vyyy @ Ay — Ay We claim that the triple {S, Ay, vy}
is a disconnected sum datum. Indeed, validity of the properties (0) and (1) of Definition 3.4.3 is
trivial. Suppose we are given elementary open subsets ) < Z = inf(V, W) in S and an element
a € Ay with vyy(a) # 0 and vyw(a) # 0. We have to verify that vyz(a) # 0. For this we may
assume that a is an element in Ap, \ayAp,,. The assumption mean that a‘v # () and a‘w #0. If
vyz(a) = 0, then a‘DZ = eb for some e € az and b € Ap_. By Definition 4.2.3, this implies that
either e‘v =0, or 6|W = 0, which contradicts the assumption.

As above, one verifies that the image of the canonical homomorphism A — [],,.q Ay lies
in ]_[g Ay. We claim that U is an open affine subscheme with Ay = ]_[g Ay. Indeed, it is clear
that the canonical homomorphism A — A induces a homeomorphism Fspec(4y) = U. Let
¢ X' = Fspec(A’) — X be a morphism of affine schemes whose image lies in . It follows from
Proposition 4.2.3(iii) and (iv) that the family S’ of non-empty open subsets V' of the form ¢=1(V)
with ¥V € S is an elementary family which is associated to a finite idempotent Fi-subalgebra I’.
In particular, there is an isomorphism of Fi-algebras A" = []%, A{,. By the construction, the
morphism ¢ gives rise to a morphism of disconnected sum data {S, Ay, vyw} — {5, A}, vy}
which induces the required homomorphism A, — A'.

The statement (ii) easily follows from Proposition 4.2.2(iii) and Definition 4.2.3. .

4.3.5. Corollary. In the situation of Theorem 4.3.4, if V is an open affine subscheme of U,

then it is an open affine subscheme of X. "

4.3.6. Theorem. Suppose that X is weakly decomposable. Then the following properties of
an open subset U C X are equivalent:

(a) U is an open affine subscheme;

(b) U is a weak open affine subscheme;

(c) for every pair p,q € Z(U), one has inf(p,q) € Z(U) and Xp cu.

Proof. The implications (a)==(b) and (b)==(c) follow from Theorem 4.3.4 and Lemma
4.1.2(iv), respectively, and so it remains to verify the implication (¢)=(a). Notice that there is a

unique maximal Zariski prime ideal p with ?E'p C U, and Proposition 3.1.3 implies that Ap = Ay
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for some f & p.

Step 1. If X is irreducible, U is a principal open subset. Indeed, by the above remark it suffices
to verify that U = Fspec(Ap), i.e., if q is a Zariski prime ideal with p < q (i.e., ¢ C p), then QEq cu.
Irreducibility of X implies that, for every Zariski prime ideal ¢ C A, one has X = Xq. Thus, if
q C p, then Xp C Xq and, therefore, xX®P c x@ Since Xp C U and the set U is open, it follows
that the intersection /'?q N U is nonempty and, therefore, /'f’q cu.

Step 2. U contains the minimal connected component of D(f). Indeed, replacing X by D(f),
we may assume that Xy, C U. Let V be the minimal connected component of X. By Corollary
3.3.4, for any q € Z(V) there exists a chain of Zariski prime ideals py =m <p; < ... <p, =q
such that X®:) 0 xPis) # () forall 0 <i<n-—1. We have xWPo) . Suppose that x®) cu
for some 0 < i < n — 1. By Lemma 3.3.2(ii), one has X®:) 0 xWPi+1) = Fspec(APi+1) /a), where a
is the image of p, in AWit1) | Since the Zariski ideal a is nontrivial, it is contained in the maximal
Zariski ideal of A®Pi+1) and, therefore, the above intersection contains (X®i+1)),. Tt follows that
the latter lies in U and, therefore, x®Pi) cy.

Step 3. U is an open affine subscheme. By Step 2, the claim is true if I/ is connected. Suppose
that U is not connected and that the claim is true for open subsets with the property (c¢) and the
number of connected components strictly less than that of &/. By Step 3, we may replace X by
D(f) and assume that the minimal connected component V of X lies in . Let W be a connected
component of U different from V. Then there exists a nontrivial idempotent e € I 4 which equals
to one at W, and X is a disjoint union of the idempotent open subsets X’ = {z € X|e(z) = 0}
and X = {z € X|e(x) = 1}. The intersections 4’ = U N X’ and U” = U N X" are unions of
connected components of I/ and, by induction, they are open affine subschemes of X. In particular,
the connected components of U are elementary open subsets of X', and there is a partial ordering
of the set mo(U) of all of them. Finally, let YW; and W, be connected components of U/ different
from V. If there exists a nontrivial idempotent e € I4 which is equal to zero at both W; and W,
then applying the induction hypothesis to the idempotent open subset {z € X ‘e(w) = 0}, we get
the required property of Definition 4.2.3 for the infimum of W; and W,. Assume therefore that
each nontrivial idempotent from I4 equals to one at least at one of them. We then claim that
V = inf(W1, Ws). Indeed, if W < W; and Wy < W, for some W different from V, then there exists
a nontrivial idempotent equal to zero at W and, therefore, at noth W; and W, which contradicts the
assumption. Thus, V = inf(W;, Wh). It remains to notice that V is the only connected component
of X at which all nontrivial idempotents equal to one. Together with the above assumption this

implies that each of those idempotents equal to zero at W; or at Wh. "
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4.3.7. Proposition. Let X be a subset of an open scheme X, and suppose that there exists
a covering {U; };cr by open affine subschemes such that, for every i € I, ¥ NU; is a strongly closed
subset of U;. Then X is a strongly closed subset of X .

Proof. By Proposition 4.2.6, we may replace the covering by a refinement and assume that
the covering is finite and all I/;’s are pairwise disjoint elementary open subsets. In this case they
are idempotent open subsets, and so every strongly closed subset of each U; is a strongly closed

subset of X'. This implies the required fact. "

4.4. Properties of open affine subschemes. Let X = Fspec(A) be an affine scheme over

F4, and let U be an open affine subscheme of X

4.4.1. Proposition. If A is an integral domain (resp. reduced), then so is Ay.

Proof. If A is integral, then I/ is a principal open subset and, therefore, Ay is also integral.
Suppose that A is reduced. Since Ay, is a disconnected sum coproduct taken over elementary open
subsets from an elementary family that covers U, in order to show that Ay is reduced, we may
assume that U/ is an elementary open subset. Replacing X by a principal open subset, we may
assume that Ay is the quotient of A by a finitely generated Zariski ideal of I4. It suffices to show
that, if an Fj-algebra A is reduced, then for any idempotent e € A, the quotient A/Ae has no
nilpotent elements. Suppose that the image of an element f € A in A/Ae is nilpotent, i.e., f* = ea
for f,a € Aandn > 1. Then f*"*" = eaf’ = (fe)"** for all i > 0. This means that (f, fe) € zn(A).
Since A is reduced, it follows that f = fe, i.e., the image of f in A/Ae is zero. .

4.4.2. Proposition. Let ¢ : Y = Fspec(B) — X be a morphism which is a homeomorphism
between the underlying topological spaces. Then the correspondence U + ¢~ (U) gives rise to a
bijection between the families of open affine subschemes of X and of ).

Proof. Corollary 3.1.2(ii) the map Zspec(B) — Zspec(A) induced by the morphism ¢ is an
isomorphism of posets. This implies that the correspondence considered gives rise to an injective of
the family of principal open subsets of X to that of Y. If q is a Zariski prime ideal of B such that
Bgq = B, for some g € B\q, then the set Fspec(Byq) is open in ). It follows that, if p is the image of
q in Zspec(A) then Fspec(Ap) which is the image of Fspec(Bgq) is open in X', and Proposition 3.1.3
implies that Ay = Ay for some f € A\p, i.e., the above injective map is a bijection. Furthermore,
the morphism ¢ induces a homemorphism 7o()) = 7o(X) and, by Theorem 3.3.1, it induces a
homeomorphism Fspec(Ig) — Fspec(I4). Proposition 3.1.4 then implies that ¢ induces a bijection

between finitely generated Zariski ideals of 14 and Ig. This implies that the same is true for the
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principal open subsets of both affine schemes. Thus, ¢ induces a bijection between elementary open

subsets of both affine schemes. This easily implies the required fact. .

4.4.3. Proposition. The following properties of an open affine subscheme U C X are
equivalent:

(a) the homomorphism A — Ay is surjective;

(b) U is an idempotent open subset of X'.

Proof. The implication (b)==(a) is trivial. Suppose (a) is true. Then the open affine
subscheme U is a closed subset and, by Proposition 4.3.2(iv) it is the preimage of an open affine

subscheme of Fspec(l4). This implies that U is an idempotent open subset. n

For an open affine subscheme & C X' = Fspec(4), let A, denote the localization of A with
respect to the monoid of elements of A that do not vanish at any point of . It is clear that the

canonical homomorphism A — Ay goes through a homomorphism Agy — Ay.

4.4.4. Corollary. The following properties of an open affine subschemeUd C X are equivalent:

(a) the homomorphism Ay — Ay is surjective;

(b) U is an idempotent open subset of a principal open subset of X .

Proof. The implication (b)==(a) is trivial. Suppose (a) is true, and let D(f) be the minimal
principal open subset of X' that contains U. Replacing X by D(f), we may assume that U contains
the minimal connected component of X and, in particular, X, C U. The latter implies that an
element of A that does not vanish at any point of I/ is invertible, i.e., A = Ay Corollary 4.4.3

now implies that I/ is an idempotent open subset of X. "

Notice that, if X is irreducible, every open affine subscheme is a principal open subset. There

is a broader class of affine schemes which possess the latter property.

4.4.5. Definition. An affine scheme X = Spec(A4) (or the Fj-algebra A) is said to be
quasi-irreducible if, for every Zariski prime ideal p C A such that Fspec(A4/Ilp) is an irreducible

component of X', A/p is an integral domain (and, in particular, A/p = A/Ilp).

For example, if A is the quotient of an integral Fi-algebra by a Zariski ideal, then X is quasi-
irreducible. Notice that, if X' is quasi-irreducible, then the quotient A/p is an integral domain for

all Zariski prime ideals p C A.

4.4.6. Proposition. Suppose that X is quasi-irreducible. Then

(i) every open affine subscheme of X is a connected principal open subset;
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(ii) if B is a finitely generated A-algebra such that the homomorphism A — B is injective,
then Ap = Ay for p = mpN A and some f € A\p and the image of Zspec(B) in Zspec(A) coincides
with Zspec(Ap);

(iii) if, in addition to (ii), Y = Fspec(B) is also quasi-irreducible, then the image of ) in X
coincides with D(f).

Proof. (i) It suffices to show that every nonempty principal open subset D(f) is connected.
Let p be the maximal Zariski prime ideal that does not contain any powers of f. Then D(f) X W)
is nonempty and connected. Let 2 be a point from D(f) over a Zariski prime ideal q. Then ¢
does not contain any powers of f and, therefore, ¢ C p. Since A/q is an integral domain, then
XP c x@ and D(f) N X@ is connected and, therefore, the point z lies in the same connected
component as D(f) N X®). Thus, D(f) is connected.

(ii)) If p = mp N A, all elements from A\p are invertible in B. Since A/p is an integral domain
and the homomorphism A — B is injective, the induced homomorphisms of groups A* — k(p)* —
B* are injective. It follows that the quotient group x(p)*/A* is finitely generated. If fy,..., f, are
elements from A/\p whose images generate the group (p)*/A*, then Ap = Ay for f = f1-...- f,
and, in particular, D(f) = Fspec(Ap). We claim that, for every Zariski prime ideal of A that lies
in p, there exists a Zariski prime ¢ C B with ¢ A = p. Indeed, we can replace A by A/p and B
by B/pB and assume that A is an integral domain and p = 0. If K is the fraction F;-field of A,
B embeds in the finitely generated K-algebra B ® 4 K. The latter has finitely many Zariski prime
ideals. If qq,...,q,, are their preimages in B, the intersection (;_, q; is the Zariski nilradical of B.
It follows that (), (q N A) = 0 and, therefore, q; N A = 0 for some 1 <7 < n.

(iii) By (ii), it suffices to verify that, if ¢ A = p for Zariski prime ideals p C A and q C B,
then the image of Yq = Fspec(r(q)*) in X = Fspec(k(p)*) coincides with é‘?p. Since the quotients
A/p and B/q are integral domains and the homomorphism A/p — B/q is injective, the induced

*

homomorphism of groups x(p)* — k(q)* is injective. This implies the required fact. ]

Let M be an A-module. For an open affine subscheme U C X, we set My = M ®4 Ay and,

for a covering of X’ by open affine subschemes 4l = {U; };c1, we set

ML( = Ker(H Mui j) H Muimuj) .
icl ijel
Finally, let (M) denote the filtered inductive limit lim My taken over all coverings 4 of X' by open
—

affine subschemes.
4.4.7. Proposition. For any A-module M and any open covering 4 of X by open affine
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subschemes, the canonical homomorphism M — My is injective and, therefore, the canonical
homomorphism M — (M) is injective.

Proof. By Proposition 4.2.6, we may assume that i is an elementary family associated to a
finite idempotent Fi-subalgebra I of A. In this case, the sets from 4l are pairwise disjoint, and they
correspond to elements of I. For e € I, one has M(¢) = M/F,, where F, is the I-submodule of M
generated by the prime ideal II.. The required injectivity of the homomorphism M — [].c; M ()

follows from Lemma 1.6.1. "

4.4.8. Proposition. Let B be a commutative ring with unity. Given a homomorphism of
Fi-algebras A — B’, the following is true:

(i) the preimage of any open affine subscheme U of X = Fspec(A) with respect to the induced
map ¢ : Y = Spec(B) — X is an open affine subscheme of );

(ii) if ¢())) C U, then the homomorphism A — B’ goes through a unique homomorphism
Ay — B’; in particular, the image of the map Fspec(B') — X also lies in U.

Proof. Both statements are trivial if I/ is a principal or idempotent open subset, and so they
are true for elementary open subsets. In the general case, let S be an elementary family of open
subsets that cover U. Then for each V € § its preimage is an open affine subscheme of Y. Let T
denote the subset of V € S with ¢~ 1(V) # 0. Then the disjoint union W = [[,,c ¢~ ' (V), which is
the preimage of U, is an open affine subscheme of ), i.e., (i) is true. Suppose that ¢(Y) C Y. Then
W = Y and, therefore, B = [],,cs By-1(v). Every homomorphism A — B — (B,-1()) goes
through a unique homomorphism Ay — (B,-1(y))". They induce a homomorphism [],,c 4 Ay —
B = []yer(By-1(vy)- The required homomorphism Ay — B" is the composition of the latter
with the canonical embedding Ay = [[g Ay = []ycq Av. =

4.4.9. Corollary. In the situation of Proposition 4.4.8, the homomorphism A — B" extends
in a canonical way to a homomorphism (A) — B'.

Proof. Let 4 = {U; };cs be a covering of X by open affine subschemes. By Proposition 4.4.8, it
gives rise to a covering of ) by open affine subschemes U = {V; };c; with U; = =1 (U;). It follows
also that the homomorphism A — B’ extends in a canonical way to compatible homomorphisms
Ay, = By, and Ay,nu; — By, - Since B = Ker(IT;e; By, = [Li jer Byiry, ), it follows that the

homomorphism A — B" extends in a canonical way to a homomorphism Ag — B'. .

4.5. Open and closed immersions and finite morphisms. Let ¢ : J = Fspec(B) —

X = Fspec(A) be a morphism of affine schemes over Fj.
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4.5.1. Definition. ¢ is said to be an open immersion if it induces an isomorphism between

Y and an open affine subscheme of X.

4.5.2. Proposition. The following properties of ¢ are equivalent:

(a) ¢ is an open immersion;

(b) there is a covering of X by open affine subschemes {X;} such that all of the induced
morphisms ¢~ (X;) — X; are open immersions;

(c) @ is injective (as a map), and there is a covering of ) by open affine subschemes {);} such
that all of the induced morphisms ); — X are open immersions.

Proof. The implication (a)==(b)==(c) are trivial.

(c)==(a). Let U; be the open affine subscheme of X which is the image of ;. It is covered
by elementary open subsets of X'. It follows that we can replace the covering {);} by a refinement
that consists of elementary open subsets and assume that all U;’s are elementary open subsets of
X. Furthermore, by Proposition 4.2.6, we may assume that {);} is an elementary family of open
subsets of ). We then claim that {U;} is an elementary family of open subsets of X. Indeed, the
assumptions on ¢ imply that the map Zspec(B) — Zspec(A). It follows that p@) < p@i) if and
only if p) < pOs) and, therefore, the partial orderings on the families {2/;} and {);} coincide.
Suppose that U; = inf(U;,U),) and e € ay,. Then e vanishes at }; and, therefore, it vanishes either
at V;, or at V. It follows that e vanishes at U, or at Uy, and we get the claim. The claim implies

that U = |J, U; is an open affine subscheme of X and Y 5 U. "

We will denote by Asch‘ff1 the category in which the family of objects coincide with that of

Aschg, and morphisms are open immersions.

4.5.3. Definition. ¢ is said to be a closed (resp. Zariski closed) immersion if the homomor-

phism A — B is surjective (resp. and its kernel coincides with Zariski kernel).

For example, Proposition 4.4.3 implies that, for an open affine subscheme &/ C X', the canonical
morphism U4 — X is a closed (resp. Zariski closed) immersion if and only if ¢/ is an idempotent

open subset (resp. which is defined by the equations e; = ... =e¢, =0 for e1,...,e, € I4).

4.5.4. Proposition. Given a covering of X by open affine subschemes {X;}, the following
properties of ¢ are equivalent:

(a) ¢ is a closed immersion;

(b) all of the induced morphisms ¢~ (X;) — X; are closed immersions.

Proof. The implication (a)==(b) is trivial. Suppose that (b) is true. By Proposition 4.2.6,
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we may assume that {X;} is an elementary family associated to a finite idempotent F;-subalgebra
I of A and, in particular, the set of indices is I. Let I’ be the image of I in B. The surjection
I — I’ induces a map of posets I’ — I : i’ — i (see §3.4). By the assumption, for every i’ € I’ the
homomorphism A; — By is surjective, where A; = Ay, and By = B,-1(x,). Since A = H? A; and

B =15 By, it follows that the homomorphism A — B is surjective. "

Notice that the implication (b)==(a) in Proposition 4.5.4 does not hold in general for Zariski

closed immersions.

4.5.5. Definition. (i) ¢ is said to be finite if B is a finite A-module;

(ii) ¢ is said to be of finite type if B is a finitely generated A-algebra.

For example, any closed immersion is a finite morphism, and any finite morphism is of finite

type.

4.5.6. Proposition. Given a covering of X by open affine subschemes {X;}, the following
properties of ¢ are equivalent:

(a) ¢ is a finite morphism (resp. of finite type);

(b) all of the induced morphisms ¢~*(X;) — X; are finite morphisms (resp. of finite type).

Proof. The implication (a)==-(b) is trivial. Suppose that (b) is true. As above, we may
assume that {X;} is an elementary family associated to a finite idempotent F;-subalgebra I of 14.
In the notation from the proof of Proposition 4.5.4, the assumption implies that, for every i’ € I,
By is a finite A;-module (resp. a finitely generated A-algebra). Since the images of generators of

all B;’s in B generate the A-module (resp. the A-algebra) B, the required fact follows. "

4.6. Piecewise affine schemes. Let X' = Fspec(A) and ) = Fspec(B) be affine schemes.

For a covering U = {V; };cr of Y by open affine subschemes, we set

Homey (Y, X) = Ker(] [ Hom(V;, &) 3 [ Hom(V; nV;, X)) .
i€l i,jel

One has Homgj(Y, X') = Hom(A, Bgys). Furthermore, we set
» o
Hom? (Y, X) = thHom;B(y,X) ,

where the inductive limit is taken over coverings U of ) by open affine subschemes. (By Proposition
4.4.7, all transition maps in this inductive limit are injective.) Recall that every covering has a

finite refinement consisting of pairwise disjoint open affine subschemes. For such U = {V,;};c;, an
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element of Homgy (), &) is just a a system of morphisms of affine schemes V; — &. Of course, if
is connected, then Hom (Y, X) = Hom” (), X).

Elements of Hom” (), X') are said to be p-morphisms from ) to X. A p-morphism from )
to X represented by a system of compatible morphisms ¢; : V; — X defines a continuous map
¢ :Y — X and, for every point y € ), there is a well defined embedding of F;-fields x(z) — x(y),
where x = p(y). Furthermore, given a second p-morphism 1 : Z = Fspec(C') — ) represented by
a system of compatible morphisms v; : W; — ), there is a well defined composition p-morphism
which is represented by the system of compatible morphisms ¢~ '(V;) N W; w# vV, & x. This
means that there is a well defined category Asch%l whose family of objects coincides with that of
Aschg,, and in which the set of morphisms from ) to X is the set of p-morphisms of affine schemes
Hom?”(Y, X). The canonical functor Aschg, — Aschy is faithful and even fully faithful on the
full subcategory of connected affine schemes, but not fully faithful on the whole category. For
example, if I and J are finite idempotent Fi-algebras with the same number of elements, then the
affine schemes Fspec(I) and Fspec(J) are isomorphic in Aschf, = although they are not necessarily

isomorphic in Aschy, .

4.6.1. Proposition. The category A:;chz’l’?1 admits finite coproducts and fiber products.

Proof. Let {X; = Fspec(A;)} be a finite family of affine schemes over F;. Take an arbitrary
idempotent Fi-algebra I whose poset of nonzero elements I can be identified with the set of indices
of that family. For i < j in I, let v;; be the homomorphism A; — A; defined by v;;(a) = 1, if
a € Af, and v;;(a) = 0, otherwise. Then the tuple {I, A;,v;;} is a disconnected sum datum and,
for A =[]} Ai, the affine scheme X = Fspec(A) is the coproduct of the family {A;} in Aschf, .

Furthermore, suppose we are given p-morphisms ) — X and X’ — X. By Proposition 4.2.6,
we may assume that these p-morphisms are defined by systems of morphisms V; — X and Z/{]‘ - X
for coverings {V;} of J and {U}} of &’ by pairwise disjoint elementary open subsets. They define
systems of morphisms from V{j =V, Xy Z/IJ’. to Y and X’. We claim that the coproduct )’ of the
affine schemes V{j is a fiber product of the p-morphisms we started from. Indeed, let f : T — ) and
g: T — X' be p-morphisms that induce the same p-morphism 7 — X. Suppose first that f and g
are morphisms. Then W;; = f~1(V;) N g~} (U!) are pairwise disjoint open affine subschemes of T°
that form its covering. Since the morphisms W;; — V; and W;; — Z/{j/» induce the same morphism
Wi; — X, they give rise a canonical morphism W;; — V;; C )’. All these morphisms define a

p-morphism 7 — ). In the general case, we can find a covering {7} of 7 by pairwise disjoint

open affine subschemes such that the restrictions of f and g to every 7Ti are morphisms. By the
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previous case, there are p-morphisms 7, — ) which induce the required p-morphism 7 — )'. =

For an affine scheme X = Fspec(A), the category of p-morphisms ) — X in which morphisms
are p-morphisms commuting with those to X will be denoted by Asch’;.

Let now X = Fspec(A) be an affine scheme. For A-modules M and N, we set
Hom/, (M, N) = l'LnHomA(M, Np)

where the limit is taken over coverings il by open affine subschemes. If M is a finite A-module,
then the latter limit coincides with Homa (M, (N)). If X is connected, then Hom’ (M,N) =
Homy (M, N). Elements of Hom’ (M, N) are said to be p-homomorphisms. Notice that a p-
homomorphism from M to N is just a family of homomorphisms of Ay, -modules My, — Ny, for
a finite covering of X' by pairwise disjoint open affine subschemes {U; };cs. It follows that one can
compose p-homomorphisms and, therefore, there is a well defined category A-Mod? whose family
of objects coincides with that of A-Mod and in which the set of morphisms from M to N is the set
of p-homomorphisms Hom? (M, N).

If all of the A-modules in the above definitions are in fact A-algebras and all homomorphisms
between them commute with multiplication, we get a category A-Alg?. The correspondence B —

Fspec(B) gives rise to a contravariant fully faithful functor A-Alg? — Asch?,.

4.6.2. Definition. A p-morphism ¢ : Y — X is said to be a p-open immersion if it is injective
(as a map) and there is a covering of ) by open affine subschemes {J;} such that ¢ induces open

immersions of affine schemes ); — X.

It follows easily from the definition that, given a p-open immersion ¢ : Y — X, any p-morphism
Y Z — X with ¢¥(2) C ¢(Y) goes through a unique p-morphism Z — ). In particular, the set
©(Y) defines the morphism ¢ uniquely up to a unique isomorphism in Asch%l. Such a subset of

X is said to be an open p-affine subscheme.

4.6.3. Lemma. Let X = Fspec(A) be an affine scheme over F1. Then

(i) a subset of X is an open p-affine subscheme if and only if it is a disjoint union of elementary
open subsets;

(ii) the class of open p-affine subschemes of X is preserved under finite intersection;

(iii) given a p-morphism ¢ : Y — X, the preimage of an open p-affine subscheme of X is a
open p-affine subscheme of ).

Proof. (i) Suppose that a p-open immersion ¢ : J) — X is represented by a compatible system

of morphisms V; — X for elementary open subsets V; C X. By Proposition 4.2.6, we may assume
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that {V;} is a finite system of pairwise disjoint elementary open subsets of ). This implies that
©(Y) is a disjoint union of elementary open subsets of X. The converse implication follows from
Proposition 4.6.1.

The statements (ii) and (iii) follow from (i). .

Notice that, by Proposition 4.5.2, any morphism of affine schemes which is a p-open immersion
is an open immersion and, in particular, the functor Aschg, — Asch’};1 is conservative (i.e., any
morphism in the first category, which becomes an isomorphism in the second one, is an isomor-
phism). Furthermore, two affine schemes X and ) are isomorphic in .Asch%1 if and only if there
exist finite coverings {U; }1<i<n of X and {V;}i1<i<, by pairwise disjoint open affine subschemes
such that each U; is isomorphic to V; in Aschg,. It is also easy to see that the class of p-open
immersions is preserved by compositions, and so there is a category Asch%‘f the category whose

objects are affine schemes and morphisms are p-open immersions.

4.6.4. Definition. A p-morphism of affine schemes ¢ : Y — X is said to be a p-closed (resp.
Zariski p-closed) immersion if it is an injective map and there exists a covering {U; };e; of X by
open affine subschemes such that, for every i € I, o~1(i;) is a finite disjoint union of its open affine
subschemes {V;;} ey, and, for every j € J;, V;; — U; is a closed (resp. Zariski closed) immersion

of affine schemes.

Notice that, since the intersection of nonempty subsets of the form V(a) in X is nonempty,
it follows that, for a Zariski closed immersion as in Definition 4.6.4, all =1 (U;) — U; are Zariski

closed immersions of affine schemes.

4.6.5. Lemma. A morphism of affine schemes ¢ : ) — X is a p-closed immersion if and only
if it is a closed immersion.

Proof. The converse implication is trivial. Suppose that ¢ is a p-closed immersion. By
Proposition 4.5.4, we may assume that ) = Fspec(B) is a disjoint union of open affine subschemes
{Vi}ier such that each V; — X = Fspec(A) is a closed immersion of affine schemes. Furthermore,
by Proposition 4.2.6, we may assume that the above covering of ) is an elementary family associated
to a finite idempotent Fi-subalgebra of B. Then B is a disconnected sum [[% By,. Since all of the

homomorphisms A — By, are surjective, it follows that the homomorphism A — B is surjective. =

4.6.6. Definition. A p-morphism of affine schemes ¢ : Y — X is said to be p-finite (resp. of
p-finite type) if there exists a covering {U; };,c; of X by open affine subschemes such that, for every

i € I, o1 (U;) is a (finite) disjoint union of its open affine subschemes {V;;};cs, and, for every
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J € Ji, Vij = U; is a morphism of affine schemes which is finite (resp. of finite type).

4.6.7. Lemma. A morphism of affine schemes ¢ : Y — X' is p-finite (resp. of p-finite type) if
and only if it is a finite morphism (resp. of finite type).

Proof. The converse implication is trivial. Suppose that the morphism ¢ is p-finite (resp. of
p-finite type). By Proposition 4.5.6, we may assume that )} = Fspec(B) is a finite disjoint union
of open affine subschemes {V;} such that all of the morphism V; — X are finite (resp. of finite
type). Furthermore, by Proposition 4.2.6, we can find a refinement {JV,} of the above covering
which is an elementary family associated to a finite idempotent F;-subalgebra of A. Since every
Wj lies in some V; and is an open-closed subset of V;, it follows that the canonical homomorphism
Ay, — A, is surjective. This reduces the situation to the case that {V;} is an elementary family
associated to a finite idempotent Fi-subalgebra of A. In this case, the required property of the

homomorphism A — B follows from Proposition 3.4.8. .

4.6.8. Lemma. Given a covering of ) by open p-affine subschemes {V;};cy, the following

sequence of maps of sets is exact

Hom? (Y, X) — [ [ Hom?(¥;, &) = [ Hom?(V; N Y, X) . .
el i,j€l

§5. Schemes over F;

5.1. The category of schemes Schg,. Let X be a topological space, and let 7 be a
collection of subsets. (All subsets are provided with the induced topology.) Recall (see [Berl, §1.1])
that 7 is said to be a quasinet on X if, for each point z € X, there exist Vi,...,V,, € 7 such that
zeVin...NV, and the set V3 U...UV, is a neighborhood of z. If 7 is a quasinet, then a subset
U is open in X if and only if for each V' € 7 the intersection Y NV is open in V (see [Berl, Lemma
1.1.1(i)]). The collection 7 is said to be a net if it is quasinet and, for every pair U,V € T, T‘Umv
is a quasinet on U N V. Notice that, if all sets from 7 are open, then the property to be a quasinet
means that 7 is an open covering, and the property to be a net means that 7 is a base of a topology
(which is weaker than or coincides with the topology on X). In what follows we consider a quasinet
(or net) 7 as a category (its objects are sets from 7 and morphisms are inclusion maps), and we
denote by T the canonical functor 7 — T op to the category of topological spaces T op.

Let 7% denote the forgetful functor Asch’ﬁ?j — T op that takes an affine scheme to the under-
lying topological space.
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5.1.1. Definition. A scheme over F; is a triple (X, A, 7), where X is a topological space, T
is a net of open subsets of X', and A is a p-affine atlas on X with the net T, i.e., a pair consisting

of a functor A: 1 — Asch%ﬁi and an isomorphism of functors 7%o A = T.

Let (X, A,7) be a K-analytic space. The functor A takes each U € 7 to an affine scheme
Fspec(4y), and the isomorphism of functors provides a homeomorphism Fspec(4;) — U. We

consider such U as an object of the category Aschi. .
1

5.1.2. Definition. A strong morphism ¢ : (X, A,7) — (X', A’,7') is a pair consisting of a
continuous map ¢ : X — X’ such that for every U € 7 there exists U’ € 7/ with o(U) C U’, and a
compatible system of p-morphisms of affines schemes @/ : U — U with @y = gp‘u (as maps)

for all pairs i € 7 and U’ € 7" with p(U) C U'.

5.1.3. Lemma. For any pair of strong morphisms ¢ : (X, A,7) — (X', A',7") and ¢ :
(X' A7) — (X", A", 7"), there is a unique morphism x : (X, A, 1) — (X", A", 7") such that,
for every tripleUd € 7, U" € 7" and U" € 7" with p(U) C U" and YU") C U", one has xy =
Yur jur © Pujur -

Proof. Let x be the composition map 1y : X — X”. We have to construct, for every pair
UecrtandU"” € 7" with x(U) CU", a p-morphism of affine schemes x4 : U — U". For this we
take U’ € 7/ and V" € 7" with o(U) C U" and P»(U’) C V". Then x(U) C U NV". Since 7"’ is a net

and U is quasi-compact, one has x(U) C Wy U...UW,, for some Wy,.... W, € 7" Then

ul/mv// .
U = ¢;,1/V,, (W) and U; = go&}u, (U!) are open p-affine subschemes of U’ and U, respectively. The

morphisms /4 and 9y yr induce p-morphisms of affine schemes U; — U] and U] — W; and,
therefore, the composition p-morphisms U; — W; — U". Since they are compatible on intersections,

they give rise to the required p-morphism x4 .

Lemma 5.1.3 implies that the family of schemes with strong morphisms between them forms
a category which is denoted by :S’ELFI.

Definition 5.1.4. (i) A strong morphism ¢ : (X, A,7) — (X', A’,7') is said to be a quasi-
isomorphism ¢ induces a homeomorphism of topological spaces X = X’ and, for every pair U € T
and U’ € 7" with o(U) CU', @y is a p-open immersion of affine schemes.

(ii) The category Schg, of schemes over Fy is the category of fractions of g&ﬁpl with respect

to the system of quasi-isomorphisms.
We are going to describe morphisms in the category Schy,.
5.1.5. Lemma. Let (X, A, 7) be a scheme over F;. then
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(i) if W is an open p-affine subscheme in some U € T, it is an open p-affine subscheme in any
V € 7 that contains W;

(ii) the family T consisting of all W as above is a net on X, and there exists a unique (up to a
canonical isomorphism) p-affine atlas A on X with the net T which extends A.

Proof. (i) Since 7 is a net and W is quasi-compact, one has W C U; U ... U U, for some
Uu,...,.U, € T‘um). Furthermore, since W and U; are open p-affine subschemes of U/, then W, =
W NU; is an open p-affine subscheme of W and U;. It follows that each W; is an open p-affine
subscheme of V and, therefore, the p-open immersions W; — V give rise to a p-open immersion
W — V.

(ii) For U,V € 7, take U', V' € 7 with Y C U’ and V C V'. Every point = € U NV lies in some
Wer Since U N and VNW are open p-affine subschemes of W, it follows that NV NW

uny'”
is an open p-affine subscheme of W and, therefore, 7 is a net. Furthermore, for each U € 7T we

fix U’ € 7 and provide U is the structure of an affine scheme for which the canonical embedding
U — U’ is a p-open immersion. The reasoning from the proof of Lemma 5.1.3 that, for any pair
U C Vin 7, there is a canonical p-open immersion of affine schemes &/ — V, and the required fact

follows. n

Notice that the canonical strong morphism (X, A,7) — (X, A,7) is a quasi-isomorphism, and
that any strong morphism (X, A,7) — (X’, A’,7') extends in a unique way to a strong morphism
(X, A7) = (X' ,Z/,?’ ). Lemma 5.1.5 easily implies that the system of quasi-isomorphisms in
321/11:1 admits calculus of right fractions.

Let now (X, A, 7) be a scheme over Fy. If o is a net on X, we write 0 < 7 if ¢ C 7. The the
affine atlas A defines an affine atlas A, with the net o, and there is a canonical quasi-isomorphism
(X,A,,0) = (X, A, 7). The system of nets o < 7 is filtered and, for any scheme (X', A", 7’) over

F,, one has

Hom((X, A, 1), (X", A", 7)) = lim Hom o~ (X, 45, 0), (X, AT .

o<T

For example, let X = Fspec(A) be an affine scheme over F;. Then {X} is a net on X and the
identity correspondence X — X is an affine atlas. In this way we get a scheme over F; denoted
by & and a functor Aschg, — Schg,. The following statement follows straightforwardly from the

above description of morphisms in the category of schemes.

5.1.6. Lemma. In the above situation, for any scheme (), B,o) morphisms (), B,o) — X
can be identified with compatible families of p-morphisms of affine schemes )V — X with V € o¢. In

particular, the above functor gives rise to a fully faithful functor .Asch]f?1 — Schy,. "
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The set of morphisms from (), B,o) to X to Fspec(F1[T]) (the affine line over F1) is de-
noted by O(Y). It is an Fj-algebra, and Lemma 5.1.6 means that there is a canonical bijection

Hom((Y, B,o), X) = Hom(A, O(Y)).

5.1.7. Lemma. A strong morphism ¢ : (X, A,7) — (X', A’,7") becomes an isomorphism in
the category Schy, if and only if it is a quasi-isomorphism.

Proof. The converse implication is trivial. Suppose that ¢ is an isomorphism in Schg,. It
is clear that ¢ is a homeomorphism. The assumption implies that one can find nets ¢ < 7 and
o' < 7" and strong morphisms ¢ : (X", A.,,0’) = (X, A,7) and ¢’ : (X, A,,0) = (X', A, 0’) such
that the following diagram is commutative

(X, A7) 5 (XL AL
T Ny 1

’

(X, A,,0) 5 (X, A, 0

where the vertical arrows are the canonical quasi-isomorphisms. Let & € 0. We can find U’ € ¢/,
Verand V' e 7’ with o' (U) c U, p(U') C Vand p(V) C V. Since U is an open p-affine subscheme
of V, its preimage U = w;,,l/v(U ) is an open p-affine subscheme of U’. The commutativity of the
lower triangle implies that the composition of the p-morphisms ¢}, ur U —U" and Py - U" —
U is the identity p-morphism on U. The commutativity of the higher triangle implies that the
composition of the morphisms s 4 : U" — U and @0 : U — U" is the identity p-morphism on

U". Thus, U = U". The required fact follows. .

In what follows, we do not make difference between a scheme (X, A, 7) and the schemes iso-
morphic to it, and denote it simply by X. We call any net 7 that defines the scheme structure on

X a net of definition.

5.2. Open subschemes and the schematic and Zariski topologies. Let X be a scheme

over F1. We fix a triple (X, A, 7) that represents it.

5.2.1. Definition. An open subset ) C X is said to be an open subscheme if, for every point
x € ), there exists U € T with x € U C ). (Notice that this property does not depend on the

choice of 7.)

If Y is an open subscheme, then the restriction of the affine atlas A to the net ﬂy defines a
scheme (y,Z,ﬂy). (If 0 < 7, then E‘y < ﬂy.) The scheme (y,Z,ﬂy), which will be denoted by
Y, possesses the following property: any morphism of schemes ¢ : X' — X with o(X’) C Y goes

through a unique morphism X’ — )). Notice that the intersection of two open subschemes is an
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open subscheme, and the preimage of an open subscheme with respect to a morphism of schemes

is an open subscheme.

5.2.2. Definition. An open p-affine subscheme of X is an open subscheme U isomorphic to

an affine scheme over F;. If If is connected, it will be called an open affine subscheme.

5.2.3. Proposition. (i) A subset is an open p-affine subscheme if and only if it is a finite
disjoint union of sets from T;

(ii) the family T of open p-affine subschemes is a net on X, and there is a unique (up to a
canonical isomorphism) p-affine atlas A on X with the net 7 that extends A;

(iii) the strong morphism ¢ : (X, A, 7) — (X, A\, T) is a quasi-isomorphism.

Proof. (i) The direct implication follows from Proposition 4.2.6, and the converse one follows
from the fact that the category Asch? admits finite coproducts.

(ii) That 7 is a net is trivial. We fix an affine scheme structure on every W € 7, and our
purpose is to construct, for every pair W C W’ in 7 a canonical p-open immersion W — W'. Let
{U;} and {U}.} be finite coverings of YW and W' by sets from 7. Since each U; is quasi-compact, it
is covered by a finite number of sets from some Tuu; - Replacing all U;’s by them, we may assume
that each U; lies in some U, and, in particular, every U; is an open p-affine subscheme of some
U;.. It follows that there are canonical p-open immersions of affine schemes U; — W'. It is easy to
see that they are compatible on intersections and, therefore, they give rise to a p-open immersion
W =W

The statement (iii) is trivial. .

5.2.4. Proposition. Let ¢ : Y — X be a morphism of schemes over F1. Then for every
connected open affine subscheme V C )Y there exists an open p-affine subscheme U C X with
©(V) CU. If every point of X lies in a connected open affine subscheme, then such U can be found
to be connected.

Proof. Take a point y € Vi, and an open p-affine subscheme U of X’ that contains the point
o(y). We claim that ©(V) C U. Indeed, the intersection V N o~ 1(U) is covered by open affine
subschemes of V. Since V is connected, every open affine subscheme of V that contains a point

from Vi, coincides with V. This implies that VN~ U) =V, ie., (V) C U. .

We say that X is locally connected if, for each point x € X, every open subscheme of X’ which is
a neighborhood of x contains a connected open affine subscheme which is also a neighborhood of z.
For example, if every point of X has an open p-affine neighborhood with finitely many irreducible

components, then X is locally connected. If X is locally connected, then the family 7. of connected
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open affine subschemes is a net on X and the p-affine atlas on X induces an affine atlas with the
net 7., i.e., a functor 7. — Aschg’ .
The schematic topology on a scheme X is the topology in which open sets are open subschemes.

This topology is weaker than the canonical topology on X', and it is denoted by Xscp,.

5.2.5. Lemma. Any representable presheaf is a sheaf on Xg.p,.
Proof. Let {X;};cr be a covering of X by open subschemes. We have to verify that, for every

scheme ), the following sequence of maps is exact

Hom(X,Y) — [ [ Hom(X;,¥) = [ Hom(&; N &;, V) .
i i,j

It

Let ; : X; — Y be a family of morphisms such that, for every pair i,j € I, ¢; Yax
il

‘Xm;\fj =%

obviously defines a continuous map ¢ : X — ). Every point x € X lies in some &; and, therefore,
we can find an open p-affine subscheme U C X; which contains x and whose image in ) lies in an
open p-affine subscheme U’ of )). The morphism ¢ defines a p-morphism of affine schemes U — V

which does not depend on the choice of ¢, by the assumption. The statement follows. "

If we apply Lemma 5.2.1 to the presheaf representable by Fspec(F1[T]), we get the structural
sheaf Ox on Xscp, which is a sheaf of Fi-algebras. Its value on X is the Fy-algebra O(X) introduced
in the previous subsection. If X = Fspec(A) is an affine scheme, then O(X) = (A). Notice that
every morphism of schemes ¢ : Y — & gives rise to a homomorphism of sheaves of F;-algebras

Ox — ¢.Oy in the schematic topology of X.
5.2.6. Corollary. If X = Fspec(A) is affine, then Hom(), X) = Hom(A4, O())). ]

For a triple (X, A, 7) that represents X, let Qcoh(X, A, 7) (resp. Qcoh,(X,A, 7)) denote
the following category. Its objects M are pairs consisting of a map that takes each 4 € 7 to
an Ay-module (resp. Ay-algebra) My and a system of p-isomorphisms of Ay-modules in Ay-
Mod? (resp. Ay-algebras in Ay-Alg?) vy v @ My ®a, Ay = My for all pairs Y D V in 7 such
that, for every triple ¥ > V D W in 7, one has yy/w o (Vv ®4, Av) = Yw. Morphisms
between such objects are defined in the evident way. If 0 < 7, there is an evident faithful functor
Qcoh(X, A, 7) = Qcoh(X, A,,0) (resp. Qcoh, (X, A,7) — Qcoh,(X,A,,0)). Of course, if all sets
from 7 are connected (which is possible, for example, if X is locally connected), the latter is an

equivalence of categories.

5.2.7. Definition. The category of quasi-coherent Ox-modules Qcoh(X) (resp. Ox-algebras
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Qcoh, (X)) is the inductive limit of categories

lim Qeoh(X, Ay, o) (resp. lim Qcoh, (X, Ay, 0)) .
o=<T o<T

The object of Qcoh(X) (resp. Qcoh, (X)) that corresponds to the above object M will be
denoted by M. Tt can be viewed as a sheaf of Oy-modules (resp. Oy-algebras), i.e., there is a
faithful functor from Qcoh(X) (resp. Qcoh,(X)) to that of sheaves of Oy-modules (resp. Ox-
algebras). This functor is fully faithful only if every point of X admits a connected open affine
neighborhood. Of course, any quasi-coherent Oy-algebra can be viewed as a quasi-coherent O x-
module, i.e., there is a faithful functor Qcoh,(X) — Qcoh(X). Notice that both categories admit
direct sums and tensor product (defined in the evident way) which commute with the latter functor.

For example, suppose that X = Fspec(A) is affine. Then Qcoh(X,{X'}, A) is just the category
of A-modules A-Mod. For an A-module, one has I'(X', M) = (M). An arbitrary object of Qcoh(X)
can be represented as a system of A;,-modules M; for a finite covering of X' by pairwise disjoint
open affine subschemes {U;}icr, and there is a fully faithful functor A-Mod” — Qcoh(X’). The
similar description holds for the category Qcoh,(X'). Of course, if X' is connected, then there are
equivalences of categories A-Mod = Qcoh(X) and A-Alg = Qcoh, (X).

A quasi-coherent O y-module is said to be of finite type (resp. coherent; resp. locally free) if it
comes from M as above such that, for every U € 7, the Ay-module My, is finitely generated (resp.
finitely presented; resp. free). (Notice that, if X is affine, any locally free Ox-module of constant
rank is free.) Locally free Oy-modules of rank one are said to be invertible. The isomorphism
classes of invertible Oxy-modules form an abelian group with respect to tensor product. This
group is canonically isomorphic to the first Cech cohomology group (in the schematic topology)
HY(X,0%).

Recall that, for an ideal E of an Fi-algebra A, we set V(E) = {z € Fspec(A4)|f(z) = g(=)
for all (f,g) € E}. It is a closed subset of Fspec(A), and it coincides with Fspec(A/E). If E is
associated to a Zariski ideal a C A, the set V(F) is denoted by V'(a). Notice that the intersection

of any family of nonempty Zariski closed subsets is nonempty (since it contains V(m_y)).

5.2.8. Definition. (i) A subset ¥ C X is said to be strongly closed if every point of X’ has
an p-affine neighborhood U such that the intersection ¥ NY is of the form V(E;)U...UV(E,) for
ideals Eq,..., E, of Ay.

(ii) A strongly closed subset ¥ C X is said to be schematically closed if U can be found in such

a way that the sets V(E;) from (i) are in addition pairwise disjoint.
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(iii) A subset ¥ C X is said to be Zariski closed if every point of X’ has an p-affine neighborhood
U such that the intersection ¥ NY is of the form V'(a) for a Zariski ideal a C Az;. The complement

of a Zariski closed subset is said to be Zariski open.

Foe example, the closure @ of any point x € X is a schematically closed subset (see Corollary
3.1.2(i)). In particular, all irreducible components of X’ are schematically closed. Notice that the
intersection of a finite family of strongly (resp. schematically) closed subsets is strongly (resp.
schematically) closed. We also notice that a schematically closed subset is not necessarily closed in

the schematic topology.

5.2.9. Proposition. (i) If ¥ is strongly (resp. schematically) closed, then the intersection
Y. NU with every open p-affine subset of X is of the form V(E1)U...UV(E,,) as in (i) (resp. (ii));

(ii) every Zariski open set is an open subscheme.

Proof. We may assume that X = Fspec(A) is affine.

(i) The assumption implies that there exists a covering {U; };c; by open affine subschemes such
that, for every ¢ € I, ¥ NU; is strongly (resp. schematically) closed subset of U;. By Proposition
4.2.6, we may replace the covering by a refinement and assume that the covering is finite and all
U;’s are pairwise disjoint elementary open subsets. In this case they are idempotent open subsets,
and so every strongly closed subset of each U; is a strongly closed subset of X'. This easily implies
the required fact.

(ii) We may in addition assume that a Zariski open subset U is the complement of the set V' (a)
for some Zariski ideal a C A. If © € U, then there exists an element f € a with f(x) # 0 and,
therefore, D(f) C U. It follows that U is a union of principal open subsets of X and, therefore, it

is an open subscheme. "

In general the union of an infinite number of Zariski open subsets is not necessarily a Zariski
open subset (see Remark 5.2.12(i)). This means that the family of Zariski open subsets does not
form a usual topology. It forms a Grothendieck topology denoted by Xz,,-. By the above remark,
there is a morphism of sites Xs., — Xz, If every point of X has a connected affine neighborhood
(e.g., if X is locally connected), then the family of Zariski open subsets forms a usual topology.
Indeed, if U is an open affine neighborhood of a point x € X', then U is the minimal (connected)
affine neighborhood of any point y € Uy,. It follows that every Zariski closed subset of U is of the
form V' (a) and, therefore, the intersection of any families of them is of the same form. In general
the Zariski topology is weaker than the schematic topology (see Remark 5.2.12(ii)).

We now consider a process of gluing schemes over Fi.
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5.2.10. Definition. A morphism of schemes ¢ : Y — X is said to be an open (resp. Zariski
open) immersion if it induces an isomorphism of ) with an open (resp. Zariski open) subscheme

of X.

Let {X;};er be a family of schemes over F;, and suppose that, for each pair i,j € I, we are
given an open subscheme &;; C &; and an isomorphism of schemes v;; : &j; = Xj; so that &;; = A,
v (Xij N Xik) = Xji N X, and vy, = v o vy on Xy N Xy, We are looking for a scheme X' with a
family of morphisms p; : X; — X such that:

(1) p; is an open immersion;

(2)

(3) pi(Xij) = pi(X) N gy (X5);

(4)

If such X exists we say that it is obtained by gluing X;’s along X;;’s.

{pi(X;) }ier is a covering of X

My = [ O V5 on Xz]

5.2.11. Lemma. A scheme X obtained by gluing of X; along X;; exists and is unique (up to
a canonical isomorphism).

Proof. Let X be the disjoint union ][, &;. The system {v;;} defines an equivalence relation
R on X. We denote by X the quotient space X/R and by pu; the induced maps X; — X. Then the
equivalence relation R is open (see [Bou|, Ch. I, §9, n° 6), and therefore all p;(&X;) are open in X,
and each p; induces a homeomorphism X; — wi(&X;). Furthermore, let 7 denote the collection of
all open subsets & C X for which there exists i € I such that U C p;(&;) and p; ' (i) is an open
p-affine subscheme of X;. It is easy to see that 7 is a net on X', and there is an evident p-affine
atlas A with the net 7. In this way we get a scheme (X, A, 7) that possesses the properties (1)-(4).

That X is unique up to a canonical isomorphism is trivial. "

5.2.12. Remark. (i) Let A be the idempotent Fi-algebra from Remark 3.4.8, i.e., A =
{0,600y e 2,61} With e_je_j = e_in(;,5)- Every Zariski ideal of A is prime, and it is either
p, =enA ={0,e_p,...,e_1} for 1 < n < oo, or m = A\{1}. Every open neighborhood of the
point Iy, contains almost all points Iy , and the topology on the open subset Fspec(A)\{Ilm} is
discrete. For n > 1, the set Uy, = {Ilp. |i <nandiis even} is Zariski open, but the union (J,-, U
consists of the points Iy with even ¢ and, therefore, it is not Zariski open.

(ii) Let A = Fy[T1,T», T3]/ E, where E is the ideal generated by the pair (T1T%, T3 ), and let ¢;
be the image of T; in A. The affine scheme X = Fspec(A) is a union of two irreducible components
Xy and X defined by the equations t3 = 0 and t; = ts, respectively, whose intersection is the “line”

defined by the equations t; = to = 0. Let Uy = Dy, (t1) and Uy = Dy, (t1t3). Then U = Uy [[Ua
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is an open affine subscheme of X. The complement > = X\l is a union of two “lines” defined by
the equations t; = to and t3 = 0 (£1) and t; = to = 0 (L2), which intersect at the point x with
ti(x) = ta(x) = t3(x) = 0. We claim the ¥ is not Zariski closed in X. Indeed, assume that ¥ is
Zariski closed, and let B = A/b, where b is the Zariski ideal of A generated by the element ts.
Then B is isomorphic to the quotient of F1[Ty,T»] by the ideal generated by the pair (11T, T%).
The affine scheme ) = Fspec(B) is a union of the above line £; and the line L3 defined by the
equation to = 0. The assumption on X implies that the line £; = XN Y is Zariski closed in ). This

is impossible because any element of B, which vanishes at a point from £;\{z}, is zero.

5.3. Fiber products and classes of morphisms of schemes.

5.3.1. Proposition. The category Schg, admits coproducts and finite fiber products.

Proof. Given a family of schemes {(X;, A;, 7;) }ier, let & be the disjoint union [, ., &j, 7 is
the net on X with T‘ x, = Ti for all 7 € I, and A be the p-affine atlas with the net 7 whose restriction
on each 7; is A;. Then the triple (X, A, 7) is a scheme over Fy, and it is the coproduct of the above
family.

Let now ¢ : Y — X and f : X’ — X be morphisms of schemes over F;. Suppose first that the
scheme & is affine. If the other two schemes are also affine and ¢ and f are morphisms in Aschyg,,
Corollary 5.2.6 implies that their fiber product in Aschy, is also a fiber product in Schy,. If ¢ and
f are p-morphisms of affine schemes, the reasoning from the proof of Proposition 4.6.1 shows that
the fiber product in .Asch’l;1 is also a fiber product in Schy,. Moreover, in this case, if Z C Y and
X' C X' are open subschemes, then the preimage of Z x X’ with respect to the canonical map
Vxy X =Y x X is a fiber product Z x y X”. Furthermore, if ) and X’ are arbitrary, we take
coverings {);} of Y and {X]} of X’ by open p-affine subschemes. Then a fiber product Y xx A"’
is the scheme )’ obtained by gluing all V; xx &} along (Vi NY;) xx (X, N A/). Finally, suppose
that X is an arbitrary scheme over F;. If the morphisms ¢ and f go through a morphisms to an
open p-affine subscheme U, then Y x y X’ = Y x;y X’. In the general case, we take a covering {U; }
of X by open p-affine subschemes. Then the scheme ) obtained by gluing all ¢~ (U;) x x f~1(U;)
along o~ (U NU;) xx f~HU; NU;) is a fiber product of Y and X’ over X. .

5.3.2. Definition. A morphism of schemes over F1, ¢ : Y — X, is said to be a finite
morphism (resp. a closed immersion; resp. a Zariski closed immersion) if there exists a covering
of X by open p-affine subschemes {U;};c; such that, for every i € I, =1 (U;) — U; is a p-finite

morphism (resp. p-closed immersion; resp. a Zariski p-closed immersion) of affine schemes.
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Notice that, if both schemes X and ) are affine, this definition is consistent with those in §4.6.

5.3.3. Proposition. Let ¢ : Y — X be a finite morphism (resp. a closed immersion)
of schemes over Fy. Then for any open p-affine subscheme U C X, =1 (U) is an open p-affine
subscheme of ) and, in particular, p~*(U) — U is a p-finite morphism (resp. a p-closed immersion)
of affine schemes.

Proof. Suppose that the morphism ¢ is p-finite. It follows from Definition 5.3.2 that we
can find a covering {U;} of U by open affine subschemes such that, for every i € I, o= 1(U;) is
an open p-affine subscheme and there is a covering {V;;},c, of it by pairwise disjoint open affine
subschemes such that all of the induced morphisms V;; — U; are finite morphisms of affine schemes.
By Proposition 4.2.6, we may assume that all of U/;’s are pairwise disjoint. In this case all V;; are
pairwise disjoint open p-affine subschemes of X and, therefore, there union, which coincides with

o~ 1(U), is an open p-affine subscheme. =

5.3.4. Corollary. The classes of finite morphisms and of closed and Zariski closed immersions

are preserved by composition and any base change. "

Notice that the image of a close (resp. Zariski closed) immersion ¢ : Y — & is a schematically

(resp. Zariski) closed subset of X.

5.3.5. Proposition. Given a schematically (resp. Zariski) closed subset )) C X, there exists a
closed (resp. Zariski closed) immersion ¢ : Y — X such that )’ is reduced (resp. Zariski reduced),
¢ induces a homeomorphism )’ = ), and any morphism 1) : Z — X from a reduced (resp. Zariski
reduced) scheme Z with ¥(Z) C Y goes through a unique morphism Z — )'.

Proof. By the definition, the family 7 of open affine subschemes & C X such that YN/ is of the
form V(E1)[]...[[V(E,) for ideals Ey, ... E, (resp. V(a) for a Zariski ideal a) of Ay is a net on
X. Then the family of intersections V = UNY with U € Tisanet on ). Given V with U as above, let
V' be the reduced (resp. Zariski reduced) affine scheme Fspec(Ay /r(E1)) ] ... 1] Fspec(Ay/r(E,))
(resp. Fspec(A/zr(a))). Then the canonical morphism V' — U is a closed (resp. Zariski closed)
immersion which possesses the property from the formulation with ¢/ and V instead of A and ),
respectively. It follows easily the family of V’s defines the structure of a reduced (resp. Zariski

reduced) scheme on ) with the required property. "

Proposition 5.3.5 implies that we can associate with each scheme X over F its reduction X
(resp. Zariski reduction X*°). Of course, there is a canonical closed immersion X* — X, In what

follows, if we mention a schematically closed subset ) of X', we consider it by default as a reduced
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scheme.

A scheme X is said to be integral if the Fi-algebra Ay of every open p-affine subscheme U
is an integral domain or, equivalently, if X is irreducible and reduced. A scheme X is said to
be normal if it is integral and the Fi-algebra A, of every open affine subscheme U is integrally
closed in its fraction Fi-field. For every integral scheme X one can construct in the evident way
its normalization X™°", i.e., a morphism ¢ : X" — X from a normal scheme such that, for every
open affine subscheme U C X, p~1(U) is an affine scheme which is the spectrum of the integral
closure of Az, in its fraction Fi-field.

The F-field of rational functions on an irreducible scheme X is the F;-field x(z) of the generic
point x of X. It is denoted by x(X) and, if X is defined over an Fi-field K, it is also denoted by
K(X). If X is integral, then x(X) is the fraction F-field of the F;-algebra Ay of any nonempty
open affine subscheme U of X.

A scheme X is said to be Zariski integral if each open p-affine subscheme U is connected and

its the F-algebra A;; has no zero divisors.

5.3.6. Proposition. FEvery Zariski closed immersion ¢ : Y — X from a Zariski integral
scheme ) to a scheme X has a canonical section ¢ : X — Y (i.e., Yo =1y).

Proof. For every open p-affine subscheme U = Fspec(A), one has ¢~ 1(U) = Fspec(A4/p),
where p is a Zariski prime ideal of A. The canonical homomorphism A/p — A defines a section
U — oY U) of ¢ restricted to ¢~ 1(U). All these sections are compatible on intersections and

induce the required morphism. .

5.3.7. Definition. (i) A morphism of schemes over Fy, ¢ : Y — X, is said to be an immersion
if it is a composition of a closed immersion 7 : ) — X’ with an open immersion j : X’ — X.

(ii) A subscheme of X is the isomorphism class of an immersion ) — X.

Notice that an immersion ¢ : ) — X is a closed immersion if and only if its image p(X) is a
closed subset of X', and that immersions are preserved by composition and any base change.

An example of an immersion is the diagonal morphism A@ : Y — Y Xy Y for an arbitrary
morphism ¢ : Y — X. Indeed, each point from the image of A, has an open p-affine neighborhood
of the form V Xy V for open p-affine subschemes & C X and V C Y with ¢(V) C U, and the base
change of A, with respect to the canonical open immersion V xyy V — Y xx Y is the diagonal
morphism V — V Xy V, which is a p-closed immersion of affine schemes. Thus, if W is the union

of such subschemes V x;; V, then the morphism A, goes through a closed immersion ) — W.
5.3.8. Definition. Let ¢ : Y — X be a morphism of schemes over F;.
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(i) ¢ is said to be quasi-compact if, for any open quasi-compact subscheme U C X, the open
subscheme =1 () is quasi-compact.

(ii) ¢ is said to be of finite type if there exist a covering of X by open p-affine subschemes
{U;}ier and, for every i € I, a finite covering of ¢! (U;) by open p-affine subschemes {V;;};c,

such that all of the induced p-morphisms V;; — U; are morphisms of affine schemes of finite type.

For example, the diagonal morphism A, : YV — Y xx ) as above is quasi-compact if and only
if, for any pair V', V" of open p-affine subschemes of Y with ¢()V’) and ¢(V”) lying in an open
p-affine subscheme of X', the intersection V' N'V" is quasi-compact.

It is clear that any morphism of finite type is quasi-compact. By Lemma 4.6.7, Definition
5.3.8(ii) is consistent with that for morphisms of affine schemes. It is easy to see that the classes of
quasi-compact morphisms and of morphisms of finite type are preserved by composition and any

base change.

5.3.9. Definition. Let ¢ : Y — X be a morphism of schemes over F;.

(i) ¢ is said to be quasi-separated (resp. separated) if the diagonal morphism Ay, : Y — YV xx Y
is quasi-compact (resp. a closed immersion).

(i) ¢ is said to be closed if it takes closed sets to closed sets. It is said to be universally closed
if any base change of ¢ is closed.

(iii) ¢ is said to be proper if it is of finite type, separated and universally closed.

It is also easy to see that the above classes of morphisms are preserved by composition and
any base change. By the remark above, a morphism ¢ : Y — X is separated if and only if the

image A, ()) of the diagonal morphism is closed in Y xx V.

5.3.10. Proposition. Let X be a quasi-separated scheme over F1. Then for any strongly
closed subset Y. of a quasi-compact open subscheme U, the set ¥ U (X\U) is strongly closed in X .

Proof. It suffices to verify that the intersection VN (XU (X\U)) = (ENV)U (V\U) with every
open p-affine subscheme V of X is strongly closed in V. The quasi-separatedness assumption implies
that the open subscheme U NV of V is quasi-compact. We can therefore replace X by )V and assume
that X = Fspec(A) is affine. In this case, U is a finite union (J;_; ; of elementary open subsets of
X. Since T U (X\U) =N, (Z; U (X\U;)), where T; = £ NUY;, the situation is reduced to the case
when U is an elementary open subset, i.e., U = {z € X!f(:c) #0, e1(z) = ... = ey(x) = 0} for
some f € Aand ey,...,e, € [4, and Ay is the quotient of Ay by the Zariski ideal of Ay generated
by the idempotents eq,...,e,. We may also assume that ¥ = V(F) for an ideal E of Ay. One

has e; = f,’il for some ¢1,...,9n € A and m > 0, and we have U = {x € X}f(:):) #0, g1(z) #
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(@), ... gn(x) # f™(x)}. If Ep and E; for 1 <i < n are the ideals of A generated by the pairs
(f,0) and (g;, f™), respectively, then X\U = (J;_, V(E;). Finally, each element of E is of the form
(f%, f%) for some a,b € A and k > 0. Let F be the ideal of A generated by the pairs (a,b). Then
Y. =V(F)NU and, therefore, ¥ U (X¥\U) = V(F) U (X\U). The required fact follows. ]

5.3.11. Corollary. Every closed subset of a quasi-separated scheme over ¥ is the intersection

of a filtered family of strongly closed subsets. .

5.4. Valuative criterions of separateness and properness.

5.4.1. Theorem. A morphism of schemes over F1, ¢ : YV — X, is separated if and only if
it is quasi-separated and, for any morphism v : Fspec(K°) — X from the spectrum of a valuation

Fi-algebra K°, the following map is injective
Hom y (Fspec(K°),Y) — Homy (Fspec(K),)) .

We introduce a partial ordering on points of a scheme X over F; as follows. Given x,y € X,
we write y < x or x = y, and say that y is a specialization of x or that x is a generization
of y if y € {2} and the following condition is satisfied. Let U = Fspec(A) be an open p-affine
neighborhood of y. Then = € U and {z} NU = Fspec(A®), where A®) = A/II,. Let q be the
Zariski prime ideal of A®) that corresponds to the point y. The condition is that v is the image of
the point = under the morphism Fspec(A(®)) — Fspec(A®) /q) induced by the canonical injective
homomorphism A®) /q < A®) . This means that the prime ideal of A®*) that corresponds to the
point y coincides with the prime ideal TIg of A®@) that corresponds to q. In particular, if z = y,
there is a canonical injective embedding of F-fields x(y) < k(z). For example, if X = Fspec(K°)
is the spectrum of a valuation Fi-algebra K°, then x > y, where z and y are the generic points of
Fspec(K) and Fspec([? ), respectively. We also notice that the above partial ordering is compatible
with morphisms of schemes. Furthermore, suppose X = Fspec(A) is affine, and let p be a Zariski
prime ideal of A. Then for every point y € XP), there exists a point = € )Ep with x > y. Indeed,
let ¥ = X®) and q the Zariski prime ideal of A®P) = A/My with y € )7q. Then the induced
homomorphism of Fi-fields x(q) — k(p) is injective. The point y corresponds to a subgroup

*

H C k(q)*. If G is an arbitrary subgroup of x(p)* whose intersection with x(q)* coincides with H

(e.g., H itself), then for the corresponding point = € /f’p one has x = y.

5.4.2. Lemma. Given points z,y € X with x > y and an F;-field, for any any morphism
Fspec(K) — X that takes the generic point of Fspec(K) to x there exist a valuation F1-subalgebra

K° of K and a morphism Fspec(K°) — X that takes the generic point of Fspec(K) to y.
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Proof. First of all, we may assume that X = Fspec(A) is affine. Furthermore, replacing A by
A/11,, we may assume that A is an integral domain and z is the generic point of X'. By Proposition
2.7.2, there exists a valuation Fi-subalgebra K° of K with K°° N A = p,. The homomorphism

A — K° induces a morphism Fspec(K°) — X that possesses the required property. "

5.4.3. Lemma. The following properties of a quasi-compact morphism ¢ : Y — X are

equivalent:

(a) ¢ takes strongly closed sets to strongly closed sets;

(b) for every point y € Y, one has p({y}) = {¢(¥)};

(c) for every point y € Y and a specialization ' of the point x = ¢(y), there exists a special-
ization y' of y such that ¢(y') = y.

Proof. The implication (a)==-(b) is trivial.

(b)=(c). Replacing X by by an open p-affine neighborhood of the point =’ and ) by the
preimage of that neighborhood in ), we may assume that X = Fspec(A) is affine. We can also
replace X' by Fspec(A/II,) and ) by the preimage of the later in ), and so we may assume that
X is integral and z is its generic point. One has II,» = llp, where p = p,,. Furthermore, let y"
be a point from {y} with ¢(y”) = 2’. Replacing ) by an open p-affine neighborhood of 3", we
may assume that ¢ is a morphism of affine schemes ) = Fspec(B) — X = Fspec(A). We can also
replace ) by Fspec(B/Il,), and so we may assume that ) is integral and y is its generic point.
Since the canonical homomorphism k(z) — x(y) is injective, the homomorphism A — B is also
injective. If g = p,, then N A = p, and so the point " of J that corresponds to the prime ideal
Mg is a specialization of the point y and one has p(y’) = 2'.

(c)=(a). Let ¥ be a strongly closed subset of J. We may assume that X = Fspec(A) is
affine and reduced. Since ¢ is quasi-compact, ) is a finite union of open p-affine subschemes ); =
Fspec(B;), 1 < i < m, such that each of the morphisms }; — & is induced by a homomorphism of
Fi-algebras A — B; and XN)Y; = U?Zl Yi;, where YV;; = Fspec(B; /F;;) for ideals F;; of B;. Let E;;
denote the kernel of the induced homomorphism A — B;/F;;. Then ¢(Y;;) C X;; = Fspec(A/E;;).
We claim that o(X) = U, ; X35 (and, in particular, ¢(X) is strongly closed in X'). Indeed, let 2" be
a point from the set on the right hand side, i.e., 2’ € A;j for some 1 <i<mand 1 <j <n,; Let
p be a Zariski ideal of A/FE;; such that Xi(]p) is an irreducible component of X;; that contains the
point z’. Then there exists a generization x of 2’ in )EZ(JP) By Theorem 3.2.2(i), we can find an
irreducible component yi(ﬂ) of V;; with @(yij,q) = Xz‘j,p- Let y be a point in J}i%q with ¢(y) = «.
By the assumption (c), there exists a specialization 3’ of y in ) with ¢(y’) = 2’. Since y € X, then
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v € {y} C ¥ and, therefore, 2’ € (X). .

Proof of Theorem 5.4.1. Suppose first that ¢ is separated. Then it is evidently quasi-
separated. Any pair of morphisms xi,x2 : Fspec(K°) — Y over X gives rise to a morphism
X : Fspec(K°) — YxxY. If # and y are the images of the generic points of Fspec(K) and Fspec(K),
then = > y. Assume that the restrictions of x1, x2 to Fspec(K) coincide, then x(z) € A,()). Since
the latter set is closed, it follows that y € A,(Y) and, therefore, x1 = x2. Conversely, suppose
that the morphism ¢ is quasi-separated and the map considered is injective. To show that A,(Y)
is closed in Y xx )V, we apply the criterion of Lemma 5.4.3. It suffices to verify that, for every
point y € Y, each specialization 2’ of z = A,(y) in Y xx Y lies in A,()). By Lemma 5.4.2, there
exists a morphism x : Fspec(K°) — Y X x Y from the spectrum of a valuation F;-algebra K° such
that the images of the generic points of Fspec(K) and Fspec(K) are z and 2/, respectively. We get
two morphisms x1, x2 : Fspec(K°) — ) which are compositions of the above morphism with the

canonical projections Y xx Y — Y. Since z € A,(Y), the restrictions of x; and x2 to Fspec(K)

coincide, the assumption implies that x1 = x2 and, in particular, 2’ € A, (Y). .

5.4.4. Theorem. A separated morphism of finite type ¢ : Y — X is proper if and only if, for
any morphism 1) : Fspec(K°) — X from the spectrum of a valuation Fi-algebra K°, the following
map is bijective

Homy (Fspec(K°),)) — Homy (Fspec(K),)) .

5.4.5. Lemma. Let ¢ : Y — X be a quasi-compact morphism, and assume that the scheme
Y is quasi-separated. Then  is closed if and only if it possesses the equivalent properties of Lemma
5.4.3.

Proof. If ¢ is closed, it possesses the property (b) of Lemma 5.4.3. Conversely, suppose ¢
possesses the property (a), i.e., it takes strongly closed sets to strongly closed sets. To prove the
required fact, we may assume that X' is affine. In this case ) is quasi-compact, i.e., ) is a finite
union of open p-affine subschemes ); = Fspec(B;), 1 < i < m, such that each of the morphisms
w; : Vi — X is induced by a homomorphism of Fi-algebras A — B;. Let X be a closed subset
of Y. We have to show that every point x € X\¢(X) has an open neighborhood that does not
intersect p(X). Every point y € ¢; !(x) has an open neighborhood V, of the form ﬂle D(aj,b;)
for some aj,b; € B; and k > 1. The set E; = V;\V, is strongly closed in }; and contains the set
¥ NY;. Since the set ;! (x)Fspec(B; ®4 k(z) is quasi-compact, we can cover it by a finite number
of sets of the above form V,. If ¥} is the finite intersection of the corresponding strongly closed

sets 3, then, by Proposition 5.3.10, the set ¥; = 37 U (Y\)}) is strongly closed in . Thus, we get
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a strongly closed set ¥/ = ()", ¥; that contains ¥ and has empty intersection with ¢ ~!(x). The
assumption on ¢ implies that ¢(3') is a strongly closed subset of X. Since it contains ¢(X) and

does not contain the point z, the required fact follows. "

5.4.6. Corollary. Finite morphisms are proper.

Proof. By Definitions 5.3.2 and 4.6.6, it suffices to consider the case of a finite morphism of
affine schemes ¢ : Y = Fspec(B) - X = Fspec(A) and, by Lemma 5.4.5, it suffices to show that
the image ¢()) is strongly closed in X'. We can replace A by A/E, where E is the kernel of the
homomorphism A — B, and so we may assume that the latter homomorphism is injective. In this

case Proposition 2.6.5(ii) implies that ¢()) = X. .

Proof of Theorem 5.4.4. Suppose fist that ¢ is proper. Then the map considered is injective,
by Theorem 5.4.1. To establish its bijectivity, we can replace X by Fspec(K°) and ) by the base
change ) x x Fspec(K°) with respect to the morphism 1, and we have to show that any morphism
o : Fspec(K) — Y over X = Fspec(K°) extends to a morphism X — ). Let z and 2’ be the
generic points of Fspec(K) and Fspec([?), respectively, and set y = o(z). By Lemma 5.4.3, there
exists a specialization y’ of y with ¢(y') = z’. Let V = Fspec(B) be an open p-affine neighborhood
of the point /. Then {y} NU = Fspec(BW), where B = B/II,. The morphism ¢ induces
a homomorphism K° — B. Since ¢(y) = z, the composition of the latter with the canonical
surjection B — B®) is an injective homomorphism « : K° — B®) . The latter identifies K with
the fraction F;-field of B because the morphism o is a section of the restriction of ¢ to Fspec(K).
Let q be the Zariski prime ideal B that corresponds to the point 3. Since p(y') = 2/, it follows
that a~!(q) = K°° and, since K° is valuation F;-algebra, it follows that « is an isomorphism. The
inverse isomorphism B*) 5 K° provides the required extension of the morphism o.

Conversely, suppose that the map considered is bijective. Since both of these properties are
preserved under any base change, it suffices to verify that ¢ is closed. Let y be a point from ),
and let 2’ be a specialization of the point z = ¢(y). The morphism ¢ defines an embedding of
F,-fields k(z) < k(y). By Lemma 5.4.2, there exists a valuation F;-subalgebra (y)° of x(y) such
that the morphism Fspec(k(y)) — X extends to a morphism Fspec(k(y)°) — X which takes the
generic point of Fspec(f;(\y/)) to z’. By the bijectivity, the latter morphism comes from a morphism
Fspec(k(y)°) — Y which extends the canonical morphism Fspec(k(y)) — Y. The image y’ of the
generic point of Fspec(@) in Y is a specialization of the point y and, by the construction, one

has ¢(y’') = 2/. Lemma 5.4.5 implies that the morphism ¢ is closed. .

5.5. The projective spectrum Proj(A).
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5.5.1. Definition. (i) A graded F;-algebra is an Fy-algebra A provided with a Z -gradation,
i.e., a direct sum representation by Zariski F;-submodules A = ®;>0A; such that A; - A; C A;;
for all 7,5 < 0.

(ii) A graded module over a graded Fi-algebra A is an A-module M provided with a Z-gradation,
i.e., a direct sum representation by Zariski Fi-submodules M = @;cz M, such that A; - M; C M, ;
for all 4,5 € Z.

(iii) For M as above and n € Z, we denote by M (n) the graded A-module with M (n); = M; 1,
for all ¢ € Z.

For a graded Fi-algebra A, any Zariski ideal a is homogeneous in the sense that a = @, >0a,,
where a,, = an A,, and, therefore, the quotient A/a is a graded Fi-algebra, and the canonical
homomorphism A — A/a is a homomorphism of graded F;-algebras. The localization S~1A of A
with respect to any submonoid S is also a graded Fy-algebra. In particular, the F;-field x(p) of any
Zariski prime ideal p is graded, and the canonical homomorphism A — k(p) is a homomorphism of

graded F;-algebras.

5.5.2. Definition. A pair (a,b) € A x A is said to be homogeneous if a,b € A,, for some

n > 0. An ideal E of A is said to be homogeneous if it consists of homogeneous pairs.

For a homogeneous ideal E, the quotient A/F is a graded F;-algebra, and the homomorphism
A — A/F is a homomorphism of graded F;-algebras.

Let A be a graded F;-algebra, A, the Zariski ideal ®,>1A4,,, and X the set of all homogeneous
prime ideals II of A with af;  A,. We provide & with the topology whose basis consists of sets of
the form (_; D (a;, b;) where, for a homogeneous pair (a,b) € Ax A, Dy (a,b) = {Il € X|(a,b) ¢
IT}. We notice that X is covered by open sets of the form D, (f) = D (f,0) for f € A;. Notice
also that Dy (fg) = D+ (f)ND4y(g) for all f,g € A;. For f € Ay, the localization Ay is provided
with the evident Z-gradation. Let A(y) denote the Fi-subalgebra of Ay consisting of elements of
degree zero. Notice that, if f € Ag and g € A, there are canonical isomorphisms (Ay)) 4 = Ag)

f€
and (A(g))% — A(fg).

5.5.3. Lemma. There is a system of compatible homeomorphisms D, (f) = Fspec(Af)).

Proof. We may assume that f # 0, and let k = deg(f). If I € Dy(f), then Iy =
{(+ %) € Ay x A(f)‘(af",bfm) € II} is a prime ideal of D, (f). Conversely, if IT is a prime
ideal of A(y), we define a homogeneous prime ideal ) of A as follows. First of all, agy) = {a €
A‘?—: € ay for some m,n > 1} (it is a Zariski prime ideal of A). If (a,b) is a homogeneous pair

with both a and b outside ap s, then (a,b) € I if (?—Z, “I;:b) € I1, where m = deg(a) = deg(b).
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(It is a symmetric equivalence relation since the latter inclusion implies that (}’—Z . J‘?—Z, bkf_% : ;Ti) =

(“};::b : “1;::1 , ]?% . “?::1) € II and, therefore, (;—fn, b}}_,i“) €1, ie., (b,a) € IN).) Tt is easy to see

that II(/) is really a homogeneous prime ideal and that the both maps are inverse one to another

and continuous. n

The family of open subsets 7 = {D_.(f)}rca, is anet on X, and Lemma 5.5.3 implies that the
correspondence Dy (f) — Fspec(A(y)) defines a functor A : 7 — Aschg and an isomorphism of
functors 7%o A = T, i.e., an affine atlas A with the net 7. Since 7 is preserved by intersection, we
get a scheme which is called the projective spectrum of A and denoted by Proj(A). Notice that this
scheme is separated since, for any pair f,g € A4, the canonical homomorphism Ay ®@ Ayy — Ay
is surjective. If the Zariski ideal A is generated by elements from A; (or equivalently A is generated
by A; as an Ag-algebra), then X = (J,c 4, D+(f).

Furthermore, given a graded A-module M, the localization M; with respect to an element
f € Ais also provided with the evident Z-gradation. Then the set My of elements of degree zero
is an A(p)-module, and so it defines a quasi-coherent sheaf of modules ]\ff(;) on the affine scheme
D, (f) = Fspec(A¢py). If f € Ag and g € A, there are canonical isomorphisms (M(f))% = M(zg)
and (M(g))g-% = M(t4)- This means that the restrictions of the sheaves ]\/4\(;) on D+(j‘{) and ]\?(;)
on D, (g) are canonically isomorphic on the intersection Dy (fg), and there is a well defined quasi-
coherent Oy-module M on X whose restriction to each D, (f) coincides with 2\7(;). The above
isomorphisms also give rise to a canonical injective map M s — I'(X, M ) which is a bijection if X
is connected.

For example, one has A = Oy. For n € Z, the Ox-module /T(\ﬁ) is denoted by Ox(n).
Notice that, if f € Ag, the multiplication by f" gives rise to an isomorphism of A(s)-modules
Acp = A(n)(syand, therefore, it defines an isomorphism (’)X(n)|D+(f) = OX|D+(f)‘ In particular,
if the Zariski ideal A, is generated by A;, the Ox-module Ox(n) is invertible.

For example, for an Fi-algebra S and n > 0, the Fy-algebra S[Ty,T1,...,T,] is provided with
the evident gradation. The projective spectrum Proj(S[Ty, T4, ...,T,]) is said to be the projective
space over S and denoted by P%. If A is a graded S-algebra such that the Zariski ideal A, is
generated by a finite set of elements of A; over S, then there is a surjective homomorphism of
graded S-algebras S[Ty,T1,...,T,] — A, m > 0, which gives rise to a closed immersion X' =
Proj(A) — P%, and all of the Oy-modules Oy (m) are invertible. In this case, for all m,n € Z
there are also canonical isomorphisms Oy (m)®o, Ox(n) = Ox(m+n) and ]\m) X M(n), where

M is a graded A-module and M(n) = M@ox Ox(n).
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§6. The category of schemes Sch

In this section we introduce a category Sch whose family of objects is a disjoint union of those
of the categories Schz of schemes over Z (i.e., classical schemes) and Schg, of schemes over F;.
The category Sch in fact contains Schz and Schy, as full subcategories. If X and ) are schemes
over F; and Z, respectively, then the set Hom(X',)) of morphisms in Sch is always empty, but
the set Hom(), X') is not necessarily empty, e.g., Fspec(F1) is the final object of Sch. The main
feature of the category Sch is that it admits fiber products.

6.1. Definition of the category Sch. The family of objects of the category of schemes Sch
is defined as the disjoint union of the families of objects of the category Schyz of schemes over Z
and that of the category Sch%1 of schemes over F;. The sets of morphisms between two objects
of Schz or of Sch’l;1 are defined as the corresponding sets in their categories. Furthermore, let X
and ) be schemes over F; and Z, respectively. We set Hom(X',)) = (). A morphism from ) to X
is a pair consisting of a continuous map ¢ : Y — X and a homomorphism v, : Ox — (¢+Oy) of
sheaves of F-algebras (in the schematic topology of X’) with the following property: for every point
y € ), there exist an open affine neighborhood V of y and an open p-affine neighborhood U of ¢(y)
such that ¢(V) C U and the map ¢ : V — U coincides with that induced by the homomorphism of
Fi-algebras Ay — B,, (which is in its turn induced by v,,).

It follows from the definition that the above property holds for every pair consisting of an open
affine subscheme V C ) and an open p-affine subscheme U C X with (V) C U. It follows also
that for any pair of morphisms ¢ : )/ — Y and y : X — X’ there is a well defined composition

morphism x¢) : Y — X’. Thus, Sch is really a category.

6.1.1. Lemma. The correspondence V' — Hom()', X) is a sheaf on ).

Proof. Let {);}icr be a covering of J by open subschemes, and suppose we are given a
compatible system of morphisms ¢; : V; — X. It is clear that they induce a continuous map
p:)Y — X. Let V be an open affine subscheme of ) and U/ an open p-affine subscheme of X,
and suppose ¢(V) C U. For every i € I, we take a covering {V;;};cs, of VN Y; by open affine
subschemes. Then we get a compatible system of homomorphisms of F1-algebras Ay, — Bi,ij. Since
By = Ker(]] By, =y By,.Avy, ), that system is induced by a unique homomorphism Ay, — B;,.
In this way we get a homomorphism of sheaves of Fi-algebras v, : Ox — (p.Oy). That it
satisfies the required property is trivial. It follows that the morphisms ;’s are induced by a unique

morphism ¢ : Y — X. .
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6.1.2. Lemma. If X = Fspec(A) is affine, then Hom(Y, X') = Hom(A, O(Y)).

Proof. Lemma 6.1.1 reduces the situation to the case when ) = Spec(B) is also affine.
By Proposition 4.4.8, any homomorphism of Fi-algebras A — B’ extends in a unique way to a
compatible system of homomorphisms Ay, — B, for all pairs of open affine subschemes &/ C & and
VY C Y with ¢(V) C U. We have to extend the homomorphisms Ay — B;, to similar pairs in which
U is an open p-affine subscheme. For this we take a covering {U;};cr of U by pairwise disjoint open
affine subschemes. By Proposition 4.4.8, each V; = ¢~ 1(U;) is an open affine subscheme of )), and

they form a finite covering of V. One therefore has By, = [],.; By,. This gives a homomorphism

iel
of Fi-algebras Ay — [[;c; Ay, — B* which induces a continuous map V — U that coincides with

the map go!v. .

6.1.3. Proposition. The category Sch admits fiber products.

Proof. First of all, it is trivial that the canonical fully faithful functor Schz — Sch commutes
with fiber products. Furthermore, Lemma 6.1.2 implies that the canonical functor Aschg, — Sch
commutes with fiber products. One deduces from this using the reasoning from the proof of
Proposition 5.3.1 that the canonical fully faithful functor Schgy, — Sch commutes with fiber
products. Finally, suppose we are given a morphism ¢ : )Y — X from a scheme ) over Z and a
morphism f : X’ — X of schemes over F;. Construction of the fiber product )’ =) x x X’ is done

in several steps.

Step 1. Suppose that f is a morphism of affine schemes X’ = Fspec(A’) — X = Fspec(A)
and ¢ is a morphism ) = Spec(B) — X. The latter is defined by a homomorphism of F;-algebras
p* : A — B and enables one to view the Fi-algebra C° of every B-algebra C' as an A-algebra.
It is easy to see that the quotient B,[A’] of the B-algebra of polynomials B[T/|acas by the ideal
generated by the elements Ty oy —T,r T,y With ay,ay € A" and T+ () — 0 (a) with a € A represents
the covariant functor C' — Homu(A’,C"). Lemma 6.1.2 implies that Fspec(B,[A']) is a fiber
product Y x x X’ in Sch.

Step 2. Suppose that ¢ is the same as in Step 1, but f is a p-morphism of affine schemes as
in Step 1. It is defined by morphisms f; : ! — X for a finite covering {U!}icr of X’ by pairwise
disjoint open affine subschemes. We claim that the affine scheme )’ which is a finite disjoint union
V' of the affine schemes Y; = Y X x U; is a fiber product Y x x X' in Sch. Indeed, given morphisms
g:Z—Yand ¢ : Z — X' with ¢g = fi, we set Z; = ¢~ (U]). By Step 2, there are canonical
morphisms Z; — ); which induce a canonical morphism Z — )’ whose composition with the

projections to ) and X’ coincide with g and 1, respectively. The claim follows.
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Notice that in this case, given open subschemes V C ) and U’ C X, the preimage of V x U’ in
Y xx X' is a fiber product V x y U.

Step 3. A fiber product Y xx X' exists if X is affine. Indeed, take coverings {V;} of )V and
{U;.} of X’ by open affine and p-affine subschemes, respectively. Lemma 6.1.1 easily implies that
the scheme )’ obtained by gluing all V; xx U, along (V; N V;) xx (U, NU]) is a fiber product
Y xay X

Step 4. A fiber product Y x x X' exists in the general case. Indeed, if the morphisms ¢ and f
go through a morphisms to an open p-affine subscheme U, then ) x y X’ = Y X X’. In the general
case, we take a covering {U;} of X by open p-affine subschemes. Then the scheme )’ obtained by
gluing all =1 (U;) xx f~1(U;) along o~ (U; NU;) xx f71(U; NU;) is a fiber product of Y and X’

over X. n

Given morphisms f : X’ — X of schemes over F; and ¢ : ) — X from a scheme ) over Z, if
X = Fspec(A) and Y = Spec(B) are affine, the fiber product X’ x » ) will be denoted by X’ ® 4 B.
For example, given a scheme X over F1, any morphism Y — X from a scheme over Z goes through

a unique morphism Y = X ®p, Z.

6.2. Lifting of quasi-coherent Oy-modules. Let ¢ : Y — X be a morphism from a
scheme over Z to a scheme over F;. For an Oy-module G, the direct image ¢.G considered as a
sheaf of Oy-modules (in the schematic topology of X’) will be denoted by (¢.G)". Given a sheaf of
Ox-module F, consider the covariant functor on the category of Oy-modules that takes G to the

set of homomorphisms of sheaves of O y-modules F — (¢.G) .

6.2.1. Proposition. Suppose that F is a quasi-coherent O y-module. Then

(i) the above functor is representable by a quasi-coherent Oy-module denoted by ¢*F;

(ii) if F is of finite type or coherent, then so is ¢*F;

(iii) the correspondence F — ¢*F is a functor which commutes with direct sums and tensor
products;

(iv) if F is a quasi-coherent Oy-algebra, then ¢*F is a quasi-coherent Oy-algebra, and it
represents the covariant functor that takes an Oy-algebra G to the set of homomorphism of O x-

algebras F — (¢.G)".

6.2.2. Lemma. If X = Fspec(A4) is affine and F = Ox (M) for an A-module M, then
Homo, (F, (¢+G)") = Homa(M,G(Y)).

Proof. That the map considered is injective is easy. Suppose we are given a homomorphism
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of A-modules M — G(¥). It induces a system of compatible homomorphisms of Ay-modules
M ®4 Ay — G(e~1(U)) for open affine subschemes U C X. Given a covering of U by open
affine subschemes Y = {U; };cs, one has G~ (U)) = Ker(IT;c; G(Us) = Hi’je,g(gfl(ui NU;)))
and, therefore, a homomorphism Mg — G(¢~'(U)). In their turn the latter induce a system
of compatible homomorphisms F(U) = (M) — G(¢~1(U)) and, therefore, a homomorphism of

sheaves of Oy-modules F — (¢.G) which gives rise to the homomorphism we started from. =

Notice that if, in the situation of Lemma 6.2.2, M is in fact an A-algebra, the same is true for

the sets of homomorphisms of Fi-algebras instead of homomorphisms of modules.

6.2.3. Lemma. Suppose that both X = Fspec(A) and ) = Spec(B) are affine. Then

(i) for any A-module M, the covariant functor N — Hom (M, N") on the category of B-
modules is representable by a B-module denoted by B ® 4 M;

(ii) the correspondence M — B ® 4 M is a functor that commutes with direct sums and tensor
products;

(iii) if M is an A-algebra, then B ® 4 M is a B-algebra that represents the covariant functor
that takes a B-algebra N to the set of homomorphisms of A-algebras M — N'.

Proof. Let f denote the homomorphism A — B that induces ¢. The functor considered is
representable by the quotient of the free B-module ®,,cp BT, by the B-submodule generated by
the elements T,,,, — f(a)T;, with m € M and a € A, i.e., the statement (i) is true. Notice that, if
M is a quotient of a free A-module AU) by an A-submodule E C M x M, then B®4 M is also the
quotient of the free B-module @,¢;BT; by the B-submodule generated by the elements a'T; — a7}
with (a't;,a"’t;) € E, where t; is the image of the canonical i-th generator of AW In particular,
if M is finite or finitely presented, then so is B ®4 M. The statements (ii) and (iii) easily follow

from (i). .

Proof of Proposition 6.2.1. The situation is easily reduced to the case when both X =
Fspec(A) and ) = Spec(B) are affine.

Step 1. For any open affine subscheme U C X, one has (B®a M),-1 @) = Bo—1u) @4, Muy.
Indeed, this is trivial if I/ is a principal open subset or defined by vanishing a finite number of
idempotents and, therefore, this is true if I/ is an elementary open subset. If U is arbitrary, we
take an elementary family {U;};c; that covers Y. Then By,-14y — [;c7 Bo-1uy) and, therefore,
(B®a M), 5 [Lici Bo-r;) ®ay, My,. For the same reason, the right hand side coincides
with B,-1) ®4,, My, and the claim follows.

Step 2. The functor M +— Oy(B ®4 M) is extended to a functor Qcoh(X) — Qcoh())
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that takes F to a quasi-coherent Oy-module ¢*F. Recall that, for A-modules M and P, one
has Homp, (Ox(M),Ox(P)) = liLnHomA(M, Py(), where the inductive limit is taken over finite
coverings i1 of X by open affine subschemes. Step 1 and acyclicity of quasi-coherent modules
on affine schemes over Z imply that the canonical homomorphism P — (B ®4 P) extends in a
canonical way to a homomorphism Py — (B ®4 P). This gives the required extension of the
functor considered to the essential image of the category of A-modules in Qcoh(X'). Suppose now
that Ox (M) is an arbitrary object of the category Qcoh(X’). We may assume that there is a finite
covering of X' by pairwise disjoint open affine subschemes {U;};c; such that Oy (M) is associated
with a system of A;,-modules Mp,,. By the previous case, each My, gives rise to a quasi-coherent
O -1 (u;y-module on ¢~ (%), and all of them define the required quasi-coherent Oy-module.

Step 3. The coherent Oy -module ©* F possesses all of the required properties. Indeed, it suffices
to verify the claim in the case F = Ox (M) for an A-module M. In this case Home, (F, (¢<G)") =
Hom 4 (M,G(Y)"), by Lemma 6.2.2. By Lemma 6.2.3, the latter coincides with Hom g (B® 4 M, G(Y))
and, by quasi-coherence, with Home,, (Oy(B ®4 M),G), i.e., the property (i) holds. The other

properties follow from Lemma 6.2.3. "

6.3. The image of the map )Y — X. Recall that an abelian group is said to be locally
cyclic if every subgroup of it generated by a finite number of elements is cyclic. For example, the
torsion subgroup of the multiplicative group £* of any field k is locally cyclic. It follows that, given
a morphism ¢ : Y — X from a scheme over Z to a scheme over Fy, the torsion subgroup of x(x)*

of every point z from the image of ¢ is locally cyclic.

6.3.1. Proposition. Let X be a scheme over F1, and let k be a field of characteristic zero
(resp. p > 0). Then the image of the map X ®g, k — X is the set of points x € X with the
property that the torsion subgroup of k(x)* is locally cyclic (resp. and has no elements of order p).

Proof. Let z be a point of X with that property, and set K = x(x). We notice that it
suffices to show that there exists an embedding K* < k'* for an extension &’ of k. Indeed, such
an embedding gives rise to a morphism Spec(k’) — X whose image is the point x and which goes
through a morphism Spec(k’) — X ®p, k. If 2’ is the image of the latter morphism, then the
induced homomorphism K* — k(z’)* is injective. The required fact is a version of a result of Cohn
[Cohn], and here is an easy proof of it.

We may assume that K is infinite, and we can increase the field k and assume that it is
algebraically closed and its cardinality is greater than that of K. Then there is an emdedding
K*

tors

— k*. Let S be the set of pairs (G, «), where G of a subgroup of K* that contains K

tors
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and « is an embedding G < k*. We provide S with a partial ordering as follows: (G,«a) < (G’,d/)
if G C G’ and o | o = @. The poset S satisfies the condition of Zorn’s Lemma and, therefore, it
contains a maximal element (G, «). It suffices to show that G = K*. Suppose this is not true. We
then can find an element A € K*\G. If \* € G for all n > 1, then we take an arbitrary element
x € k* transcendental over the subfield of k generated by a(G). (It exists since the cardinality
of k is greater than that of K.) If G’ is the subgroup of K* generated by G and A and «' is the
homomorphism G’ — k* that coincides with o on G and takes A to x, then the pair (G, /) is an
element of S strictly bigger that (G, a), which is a contradiction. Suppose now that A\ € G for
some n > 1. We may assume that n is minimal with this property and, therefore, each element
of the subgroup G’ of K* generated by G and )\ has a unique representation in the form A\'g with
0<i<n-—1and g€ G. Let z be an element of k with 2" = «(A\"). If @’ is the homomorphism
of G’ — k* that coincides with o on G and takes A to z, then the pair (G',a’) is an element of S

strictly bigger that (G, «), which is a contradiction. .

Suppose now we are given an Fi-field K, a commutative ring with unity k, and a ho-
momorphism of Fj-algebras K — k', i.e., a morphism Spec(k) — Fspec(K). Then for any
K-algebra A there are an induced morphism Spec(k @ A) — Fspec(A) and an induced map
Spec(k ®x A) — Zspec(A).

6.3.2. Lemma. The following properties of a Zariski ideal p C A are equivalent:

(a) p lies in the image of the map Spec(k ® g A) — Zspec(A);

(b) k@K K(p) # 0;

(c) the stabilizer of every element f € A\p in K* lies in Ker(K* — k*).

Proof. We set B = k ®x A. A Zariski ideal p C A lies in the image of Spec(B) if and only
if there exists an ideal ¢ C B with p = Zker(A — (B/q)"), The latter is equivalent to the property
B ®4 k(p) # 0. Since B®4 k(p) = k @k k(p), the equivalence (a)<=(b) follows. The equivalence

(b)<=(c) is trivial. .
6.3.3. Corollary. The following properties of a K-algebra A are equivalent:

(a) the map Spec(k @ x A) — Zspec(A) is surjective;

(b) the stabilizer of every non-nilpotent element f € A in K* is contained in Ker(K* — k*). =

6.4. Schemes over k with a topologized prelogarithmic K-structure. Suppose now we
are given an Fy-algebra K, a commutative ring with unity k, and a homomorphism of F;-algebras

o : K — k', i.e., a morphism Spec(k) — Fspec(K). For a scheme X over K, we set X(%) = X @k k,
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and denote by 7 the morphism X(® — X

6.4.1. Definition. (i) A scheme X over K is said to be a-nontrivial if every point of X has
an open p-affine neighborhood ¢ for which the map U(®) — Zspec(Ay) is surjective.
(ii) The full subcategory of Schy of schemes over K consisting of locally connected a-nontrivial

schemes is denoted by Sch[;].

For example, if K is an F-field, Corollary 6.3.3 implies that an affine scheme X = Fspec(A)
over K is k/K-nontrivial if and only if the stabilizer of every non-nilpotent element f € A in K*

is contained in Ker(K™* — k*).

6.4.2. Lemma. Suppose that X is a-nontrivial. If 7=1(U) C 7=1(V) for open subschemes of
X, then U C V. In particular, if m=*(U) = 7= 1(V), then U = V.

Proof. The situation is easily reduced to the case when X = Fspec(A) is affine. Since the map
X @k k — Zspec(A) is surjective, it follows that the images of the sets 7= (i) and 7~1(V) coincide
with the sets of Zariski prime ideals p C A with Y N X®) £ and VN XP) £ @, respectively. It
remains to notice that, if VN X®) #£ ¢, then X®) c V. .

6.4.3. Definition. (i) A scheme over k with a topologized prelogarithmic K -structure is
a quadruple (), 0, A,v) consisting of a scheme ) over k, a topology o on ) formed by open
subschemes, a o-sheaf of K-algebras A, and a homomorphism of o-sheaves of K-algebras v : A —
Oy ‘0 which is compatible with the homomorphism «.

(ii) A morphism (¥,0, A,v) — ()',0', A’,V') is a pair consisting of a morphism of schemes
over k, ¢ : Y — ', which is o-continuous (i.e., ¢ ~1()’) is o-open for all o’-open subschemes
V' C V') and a homomorphism of o-sheaves of K-algebras A" — ¢..A which is compatible with the
homomorphism Oy — ¢, Oy.

(iii) The category of schemes over k with a topologized prelogarithmic K-structure is denoted

by S chf‘] .

If (V,0,A,v) is an object of Schgf], every o-open subscheme V C ) gives rise to an object of
pA

tuple.) A morphism ()',o', A",V) — (V,0,A,v) in Schf] is said to be an open immersion if

SchLa] , namely, (V,o

- V‘V). (In the formulation of Theorem 6.4.4(ii), V denotes the latter

it gives rise to an isomorphism of the first tuple with the object of Schgga] induced by a o-open

subscheme of ).
6.4.4. Theorem (i) The correspondence X s X(®) gives rise to a fully faithful functor
Schled = Senl*)
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(ii) an object (Y, o0, A,v) of SchLa] lies in the essential image of the above functor if and only
if the o-topology admits a base b, with the following properties:

(1) for every V € b,, A(V) is a K-algebra with connected and locally connected spectrum,
and the canonical morphism V — Spec(A(V)] ® k) is an isomorphism in Schl;

(2) for every pair V C W in b,, the canonical homomorphism AOV) — A(V) induces an
open immersion of affine schemes Fspec(A(V)) — Fspec(A(W)) which is compatible with the open
immersion ¥V — W.

Proof. (i) Let X be locally connected a-nontrivial scheme over K. The scheme X(®) is
provided with the topology ¢ whose open sets are the preimages of open subschemes of X with
respect to the map 7 : X(® — X. If m, denotes the map from X(®, provided with the o-

topology, to X', provided with the schematic topology, the homomorphism Ox — 7.0, induces

a homomorphism v : 7;0x — O,

(@) |a. The tuple (X(®) o, m:Ox,v) is an object of the category
Schgca]. That the correspondence X — (X(®) g, 7 Ox,v) is a faithful functor is easy. To show that

it is fully faithful (and to prove (ii)), we need the following simple fact.

6.4.5. Lemma. One has Oy = ToxTaOx.

Proof. Since X is locally connected, it suffices to verify that, for a connected open affine
subscheme U of X, one has (7:Ox)(U™) = Ay. The o-open affine subscheme U = 771 (U)
contains a point x with 7(z) € Um. Since U is the minimal open subscheme of X' that contains
a point from Um, Lemma 6.4.2 implies that ¢(® is the minimal o-open subscheme of X(®) that
contains the point z and, therefore, any o-open covering {V;}ics of U@ one has U™ c V; for

some i € I. The required fact follows. "

Let ¢ : (X 0,70, v) = (X' o' 7Oy, V') be a morphism in Schf‘}. Given a con-
nected open affine subscheme U/ C X, take a point z € U(®) with p(x) € Uy, and a connected open
affine subscheme U’ C X' with p(z) € U'®). We claim that o(U®)) C U'(®). Indeed, since the
map ¢ is o-continuous, = (U"?)) = 771(V) for some open subscheme V C X’ and, since U is the
minimal open subscheme of X that contains the point 7(z), it follows that &/ C V and, therefore,
U c o1 (U').

Furthermore, suppose we are given connected open affine subschemes 4/ C X and U’ C X’
with pU(™) C U™, By Lemma 6.4.5, one has (7:0x)(U)) = Ay and (77,0x/) = A}, and,
therefore, the homomorphism 77Oy — ¢.(7:Ox) induces a homomorphism Ay — Ay which is
compatible with the homomorphism Aj, @ xk — Ay® k. In this way we get a system of compatible

homomorphisms of K-algebras A;;x — Ay for all pairs of connected open affine subschemes U C X
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and U’ C X' with p(U(®) c U'(®). This system defines a morphism X — X’ of schemes over K
which gives rise to the morphism .

(ii) If X is a locally connected a-nontrivial scheme over K, the corresponding object of Schgfd
is the quadruple (X (@) g, m5Ox,v), described in the proof of (i). The preimages of the connected
open affine subschemes of X form a base b, of the topology o. That b, possesses the properties
(1) and (2) follows from Lemma 6.4.5.

Suppose now that (Y, 0, A,v) is an object of SchLO‘] with a base b, of o that possesses those
properties. For V € b,, let Xy be the affine scheme Fspec(.A(V)). The property (1) implies that
there is a canonical isomorphism V = Xéa). The property (2) implies that, for every pair V C W,
the canonical morphism Xy, — &)y is an open immersion that induces the open immersion V — W.
For a pair V, W € b,, let X} )y denote the open subscheme of Xy, which is the union of the images
of Ay;, where U runs through all sets from b, for which nga) C Y NW. Notice that, since b, is
a base of the topology o, such sets XL({O‘) cover the intersection ¥V N W, and that there is a well
defined isomorphism vy yy @ Xy —+ Xy p. The system {vy 1y} satisfies the conditions of Lemma
5.2.10 and, therefore, we can glue all X)’s along &) )y’s. In this way we get a locally connected

a-nontrivial scheme X over K with ) = x(@), n

6.5. Schemes over k with a prelogarithmic K-structure. In this subsection a : K — k

is a homomorphism as in §6.4.

6.5.1. Definition. (i) An a-nontrivial separated scheme X over K is said to be a-special if it
admits a net of connected open affine subschemes ¢ such that every U € o possesses the following
properties:

(1) U is reduced and the set of its irreducible components is finite;

(2) the intersection Uys of the sets Wi, where W runs through all irreducible components
of U, is nonempty;

(3) for each Zariski prime ideal p C Ay, the k-algebra k @ x x(p) is integral.

(ii) The full subcategory of Schi consisting of a-special schemes is denoted by Schg?).

The properties (1) and (2) do not depend on the homomorphism «. Notice that, since the
canonical homomorphism Ay /Iy — #(p) is injective, the property (3) implies that the k-algebra
k®x Au/ Iy is integral and, in particular, there is a one-to-one correspondence between the set of
irreducible components of ¢ and that of 4(®). Here is a simple sufficient condition for validity of

the property (3).
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6.5.2. Lemma. Suppose that K is an F1-field and k is an integral domain. If a ¢-nontrivial
K-algebra A is such that, for every Zariski prime ideal p C A, the group Coker(K* — r(p)*) has
no torsion, then the affine scheme X = Fspec(A) possesses the property (3).

Notice that if the condition of Lemma 6.5.2 is satisfied by those p for which X ) is an irreducible

component of X', then it is satisfied by all p’s.

Proof. Since A is a-nontrivial, we may replace A by A/Ker(K* — A*) and assume that the
homomorphism K — A* is injective. Furthermore, to verify the required property for a Zariski
prime ideal p C A, we may replace A by A/Ilp and assume that A is an integral domain and
p = 0. If F is the fraction F;-field of A, the homomorphism k ® x A — k @k F is injective and,
therefore, it suffices to verify the required fact for F' instead of A. Finally, if F' = li_II}lFi, then
kg F = h_r}nk ®xk F;. We may therefore assume that the group F*/K* is finitely generated. If
fi,..., fn are elements of F* whose images form a basis of the free group F*/K*, then k @ F =

Elfiy---s fn, ]%1, e f%] The latter is an integral domain because k is an integral domain. .

6.5.3. Definition. (i) A scheme over k with a prelogarithmic K -structure is a triple (Y, A, v)
consisting of a scheme ) over k, a sheaf of K-algebras A, and a homomorphism of K-algebras
v: A — Oy which is compatible with the homomorphism «.

(ii) A morphism (¥, A,v) — (Y, A’, V') is a pair consisting of a morphism of schemes over k,
¢ :Y — Y, and a homomorphism of sheaves of K-algebras A" — . A which is compatible with
the homomorphism Oy — ¢,Oy.

(iii) The category of schemes over k with a prelogarithmic K-structure is denoted by Sch,(f).

If (V,A,v) is an object of Schgl), every open subscheme V C ) gives rise to an object
of Schgl), namely, (V,.A‘v, V‘v)‘ (In the formulation of Theorem 6.5.4(ii), V denotes the latter
triple.) A morphism (), A",v") — (Y, A,v) in Schéo‘) is said to be an open immersion if it gives
rise to an isomorphism of the first triple with the object of Sch,(f) induced by an open subscheme

of V.

6.5.4. Theorem. (i) The correspondence X — X gives rise to a fully faithful functor
Schg?) — Sch,(f) ;

ii) an object (), A,v) of Sch!® lies in the essential image of the above functor if and only if
k
the following holds:
1) the family of open sets V, for which the K-algebra A(V) is a-special and the canonical
( y g

morphism V — Spec(k @k A(V)) is an isomorphism in Sch,(ga), forms a net;
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(2) for every pair V C W of sets from (1), the canonical homomorphism A(W) — A(V)
induces an open immersion of affine schemes Fspec(A(V)) — Fspec(A(W)) which is compatible
with the open immersion YV — W.

6.5.5. Lemma. Let X = Fspec(A) be a connected a-special affine scheme over K. Then for
any open subscheme V C X(®) that contains a point from 7= (X)), one has A = (7*Ox)(V).

Proof. The sheaf 7*Oy is associated with the separated presheaf P = 710y whose value
at an open subset V C X(® is the inductive limit li_n}(’)(Z/{) taken over all open subschemes U of
X that contain the image p(V). Thus, we have to verify that, given a finite covering of V with
Va1 (Xy) # 0 by open subsets {V,}, one has A = L = Ker([], P(Vy) =3 [1.,PV.NV,)).

Let {X;}icr be the set of irreducible components of X. For an open subscheme U C X, we set
Uy ={iel |Z/1¢ # 0}, where U; = U N X;. Since every open affine subscheme of X; is a principal
open subset, it follows that if, for open subschemes U’ C U” C X one has I(U") = I(U"), then
the canonical homomorphism OU"”) — O(U'’) is injective. This also implies that for every open
subscheme U C X there is a canonical injective homomorphism OU) < [[;c;q Fi, where Fj is
the fraction Fy-field of A; (with X; = Fspec(4,)).

Furthermore, for an open subset V C X(® we set I(V) = (I(U), where the intersection
is taken over open subschemes of U that contain the set 7(V). If such U is sufficiently small,
then I(V) = I(U). It follows from the previous paragraph that, for any V), there is a canonical
injective homomorphism P(V) < [[,c ) £5. Notice that, if V contains a point from 7 X)),
then I(V) =1 and A = P(V).

We now turn back to the covering of V with VN7~ (X)) # 0 by open subsets {V,,}. Let (f.),
be an element in the above kernel L. For every p, there is a canonical injective homomorphism
PV, — Hiel(vu) F;. If i € I(V,)I(Vyu), then the images of the elements f, and g, under the
canonical homomorphisms P(V,,) — F; and P(V,) — F; are equal. This means that there is an
injective homomorphism L < [],.; F;. But by the assumption, there exists V, which contains
a point from 7~ 1(Xy) and, therefore, I(V,) = I and P(V,) = A, i.e., there exists f € A with

f’v = f,. The above remark implies that f‘v = f, for all p. "

Proof of Theorem 6.5.4. (i) The functor considered takes an a-special scheme X to the
triple (X (@) 71*O, v), where 7 is the morphism X (@) » X and v is the canonical homomorphism
m™0x — Oyw. Let @ : (X(O‘),W*(’)X,y) — (X’(O‘),W’*(’)X/,V’) be a morphism in Sch,(f). For
an a-special open connected affine subscheme U C X, we take a point € U™ whose image

in U lies in Uy;, and an a-special open connected affine subscheme U’ of X'. We claim that
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cp‘u(a) = @ for a morphism ¢ : U — U’ C X'. Indeed, let V = U N~ (U (®). By Lemma
6.5.5, one has Ay = (m*Ox)(V) and A4, = (7O )(U'™)), and so the homomorphism of sheaves
7*Ox1 — . (7*Ox) gives rise to a homomorphism of K-algebras Al, = (7" Ox/)(U'(¥)) — Ay =
(m*Ox)(V). The latter gives rise to a morphism of schemes ¢ : U — U’ C X’ such that the
restriction of (@ : Y@ — (@) c X(®) to the dense open subscheme V coincides with the
morphism V — U(® < X(® induced by ¢. Since the scheme X’(®) is separated and U(®) is
reduced, we get gp‘um = (),

In this way we get a system of compatible morphisms 1, : Y — X’ for all a-special open affine
subschemes U of X'. This system defines a morphism v : X — X’ of schemes over K which induces
the morphism .

(ii) That the image of an a-special scheme X in Sch(®) possesses the required properties
follows from Definition 6.5.1 and Lemma 6.5.5.Given an object of the category Sch(® with those
properties, a construction of the required a-special scheme over K is done in the same way as in

the proof of Theorem 6.4.4(ii). .

6.6. Classes of morphisms between schemes over Schy,. The existence of fiber products
in the category Sch enables one to extend various classes of morphisms from the category Schz
to the whole category Sch. Namely, let P be a property of morphisms of schemes over Z which is

local with respect to the target.

6.6.1. Definition. A morphism ¢ : X’ — X of schemes over F; is said to have the property
P if, for any morphism ¢ : Y — X from a scheme over Z, the induced morphism ) xy X’ — ) of

schemes over Z has the property P.

86. The category of schemes Sch

In this section we introduce a category Sch whose family of objects is a disjoint union of those
of the categories Schz of schemes over Z (i.e., classical schemes) and Schg, of schemes over F;.
The category Sch in fact contains Schz and Schy, as full subcategories. If X and ) are schemes
over Fy and Z, respectively, then the set Hom(X',)) of morphisms in Sch is always empty, but
the set Hom(), X) is not necessarily empty, e.g., Fspec(F;) is the final object of Sch. The main
feature of the category Sch is that it admits fiber products.

6.1. Definition of the category Sch. The family of objects of the category of schemes Sch

is defined as the disjoint union of the families of objects of the category Schz of schemes over Z
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and that of the category Schy, —of schemes over F;. The sets of morphisms between two objects
of Schz or of Sch%1 are defined as the corresponding sets in their categories. Furthermore, let X
and ) be schemes over F; and Z, respectively. We set Hom(X',)) = (). A morphism from ) to X
is a pair consisting of a continuous map ¢ : J — & and a homomorphism v, : Ox — (p.Oy)" of
sheaves of F-algebras (in the schematic topology of X') with the following property: for every point
y € Y, there exist an open affine neighborhood V of y and an open p-affine neighborhood U of ¢(y)
such that ¢(V) C U and the map ¢ : V — U coincides with that induced by the homomorphism of
Fi-algebras Ay — B,, (which is in its turn induced by v,,).

It follows from the definition that the above property holds for every pair consisting of an open
affine subscheme V C ) and an open p-affine subscheme Y C X with ¢(V) C U. It follows also
that for any pair of morphisms ¢ : J — Y and x : X — X’ there is a well defined composition

morphism ypv : Y — X’. Thus, Sch is really a category.

6.1.1. Lemma. The correspondence V' — Hom()', X) is a sheaf on ).

Proof. Let {);}icr be a covering of ) by open subschemes, and suppose we are given a
compatible system of morphisms ¢; : V; — X. It is clear that they induce a continuous map
p:)Y — X. Let V be an open affine subscheme of ) and I/ an open p-affine subscheme of X,
and suppose ¢(V) C U. For every i € I, we take a covering {V;;}jes, of VN ), by open affine
subschemes. Then we get a compatible system of homomorphisms of F;-algebras Ay, — Bi,z_j. Since
By 5 Ker(]] By, =y By,,Avy, ), that system is induced by a unique homomorphism Ay, — B;,.
In this way we get a homomorphism of sheaves of Fj-algebras v, : Ox — (¢.Oy). That it
satisfies the required property is trivial. It follows that the morphisms ¢;’s are induced by a unique
morphism ¢ : Y — X. "

6.1.2. Lemma. If X = Fspec(A) is affine, then Hom(), X') = Hom(A4, O(Y)").

Proof. Lemma 6.1.1 reduces the situation to the case when ) = Spec(B) is also affine.
By Proposition 4.4.8, any homomorphism of F;j-algebras A — B’ extends in a unique way to a
compatible system of homomorphisms Ay, — B,, for all pairs of open affine subschemes &/ C X and
VY C Y with ¢(V) C U. We have to extend the homomorphisms Ay, — B;, to similar pairs in which
U is an open p-affine subscheme. For this we take a covering {U; };c; of U by pairwise disjoint open
affine subschemes. By Proposition 4.4.8, each V; = ¢~1(U;) is an open affine subscheme of ), and

they form a finite covering of V. One therefore has By, = [],.; By,. This gives a homomorphism

i€l
of Fi-algebras Ay — [[;c; Ay, — B~ which induces a continuous map V' — U that coincides with

the map ¢|,,. .
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6.1.3. Proposition. The category Sch admits fiber products.

Proof. First of all, it is trivial that the canonical fully faithful functor Schz — Sch commutes
with fiber products. Furthermore, Lemma 6.1.2 implies that the canonical functor Aschg, — Sch
commutes with fiber products. One deduces from this using the reasoning from the proof of
Proposition 5.3.1 that the canonical fully faithful functor Schgy, — Sch commutes with fiber
products. Finally, suppose we are given a morphism ¢ : Y — X from a scheme ) over Z and a
morphism f : X’ — X of schemes over F;. Construction of the fiber product )’ = ) x x X’ is done
in several steps.

Step 1. Suppose that f is a morphism of affine schemes X’ = Fspec(A’) — X = Fspec(A)
and ¢ is a morphism ) = Spec(B) — X. The latter is defined by a homomorphism of F;-algebras
@* : A — B’ and enables one to view the Fp-algebra C" of every B-algebra C as an A-algebra.
It is easy to see that the quotient B,[A’] of the B-algebra of polynomials B[Tq|qcas by the ideal
generated by the elements Ty, o; — T,/ T,y with af, a5 € A" and T+ () — *(a) with a € A represents
the covariant functor C' — Homu(A’,C"). Lemma 6.1.2 implies that Fspec(B,[A']) is a fiber
product Y x x X’ in Sch.

Step 2. Suppose that ¢ is the same as in Step 1, but f is a p-morphism of affine schemes as
in Step 1. It is defined by morphisms f; : U/ — X for a finite covering {U!};,c; of X’ by pairwise
disjoint open affine subschemes. We claim that the affine scheme )’ which is a finite disjoint union
V' of the affine schemes Y; = Y X x U; is a fiber product Y x x X' in Sch. Indeed, given morphisms
g: Z—=Yand ¢ : Z — X' with pg = fi), we set Z; = =1 (U!). By Step 2, there are canonical
morphisms Z; — ); which induce a canonical morphism Z — )’ whose composition with the
projections to Y and X’ coincide with g and v, respectively. The claim follows.

Notice that in this case, given open subschemes V C ) and U’ C X, the preimage of V x U’ in
Y xx X' is a fiber product V xy U.

Step 3. A fiber product Y xx X' exists if X is affine. Indeed, take coverings {V;} of )V and
{U;.} of X" by open affine and p-affine subschemes, respectively. Lemma 6.1.1 easily implies that
the scheme )’ obtained by gluing all V; xx U, along (V; NV;) xx (U, NU]) is a fiber product
Y xa X

Step 4. A fiber product Y x x X' exists in the general case. Indeed, if the morphisms ¢ and f
go through a morphisms to an open p-affine subscheme U, then ) x y X’ = Y Xy X’. In the general
case, we take a covering {U;} of X by open p-affine subschemes. Then the scheme )’ obtained by
gluing all =1 (U;) xx f~HU;) along o1 (U; NU;) X f~H(U; NU;) is a fiber product of Y and X’

over X. -
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Given morphisms f : X’ — X of schemes over F; and ¢ : ) — X from a scheme ) over Z, if
X = Fspec(A) and Y = Spec(B) are affine, the fiber product X’ x x ) will be denoted by X’ ® 4 B.
For example, given a scheme X over F, any morphism Y — X from a scheme over Z goes through

a unique morphism Y — X ®p, Z.

6.2. Lifting of quasi-coherent Oy-modules. Let ¢ : Y — X be a morphism from a
scheme over Z to a scheme over F;. For an Oy-module G, the direct image ¢.G considered as a
sheaf of Oy-modules (in the schematic topology of X') will be denoted by (¢.G). Given a sheaf of
Ox-module F, consider the covariant functor on the category of Oy-modules that takes G to the

set of homomorphisms of sheaves of Oy-modules F — (¢.G) .

6.2.1. Proposition. Suppose that F is a quasi-coherent O y-module. Then

(i) the above functor is representable by a quasi-coherent Oy-module denoted by ¢*F;

(ii) if F is of finite type or coherent, then so is p*F;

(iii) the correspondence F — @*F is a functor which commutes with direct sums and tensor
products;

(iv) if F is a quasi-coherent Ox-algebra, then ¢*F is a quasi-coherent Oy-algebra, and it
represents the covariant functor that takes an Oy-algebra G to the set of homomorphism of O x-

algebras F — (p.G)".

6.2.2. Lemma. If X = Fspec(A) is affine and F = Ox(M) for an A-module M, then
Homo, (F, (9G)") = Homu(M,G(Y)).

Proof. That the map considered is injective is easy. Suppose we are given a homomorphism
of A-modules M — G(¥). It induces a system of compatible homomorphisms of A;-modules
M ®4 Ay — G(e=1(U)) for open affine subschemes U C X. Given a covering of U by open
affine subschemes Y = {U; };cs, one has G~ (U)) = Ker(IT,c; G(Us) = Hi7j€,g(¢*1(ui NU;)))
and, therefore, a homomorphism Mg — G(¢~'(U)). In their turn the latter induce a system
of compatible homomorphisms F(U) = (M) — G(¢~1(U)) and, therefore, a homomorphism of

sheaves of Oy-modules F — (¢.G) which gives rise to the homomorphism we started from. .

Notice that if, in the situation of Lemma 6.2.2, M is in fact an A-algebra, the same is true for

the sets of homomorphisms of Fi-algebras instead of homomorphisms of modules.

6.2.3. Lemma. Suppose that both X = Fspec(A) and ) = Spec(B) are affine. Then
(i) for any A-module M, the covariant functor N — Homa (M, N") on the category of B-
modules is representable by a B-module denoted by B ® 4 M ;
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(ii) the correspondence M — B ® 4 M is a functor that commutes with direct sums and tensor
products;

(iii) if M is an A-algebra, then B ® 4 M is a B-algebra that represents the covariant functor
that takes a B-algebra N to the set of homomorphisms of A-algebras M — N'.

Proof. Let f denote the homomorphism A — B’ that induces . The functor considered is
representable by the quotient of the free B-module ®,,cr BT, by the B-submodule generated by
the elements Ty, — f(a)T,, with m € M and a € A, i.e., the statement (i) is true. Notice that, if
M is a quotient of a free A-module AY) by an A-submodule E C M x M, then B® 4 M is also the
quotient of the free B-module @;c;BT; by the B-submodule generated by the elements a'T; — a7}
with (a't;,a”t;) € E, where t; is the image of the canonical i-th generator of A). In particular,
if M is finite or finitely presented, then so is B ®4 M. The statements (ii) and (iii) easily follow

from (i). .

Proof of Proposition 6.2.1. The situation is easily reduced to the case when both X =
Fspec(A) and Y = Spec(B) are affine.

Step 1. For any open affine subscheme U C X, one has (B®4 M) -1 ) = By ®a, My.
Indeed, this is trivial if U/ is a principal open subset or defined by vanishing a finite number of
idempotents and, therefore, this is true if I/ is an elementary open subset. If U/ is arbitrary, we
take an elementary family {U/;},.; that covers . Then B,-1y) = [I;ci Bo—1w,) and, therefore,
(B®a M)y-100) = TLici Bo—1uy) ® Ay, My;. For the same reason, the right hand side coincides
with B, -1 ®4, My, and the claim follows.

Step 2. The functor M — Oy (B @4 M) is extended to a functor Qcoh(X) — Qcoh())
that takes F to a quasi-coherent Oy-module ¢*F. Recall that, for A-modules M and P, one
has Homoe, (Ox(M),Ox(P)) = li_n}HomA(M, Py(), where the inductive limit is taken over finite
coverings i of X by open affine subschemes. Step 1 and acyclicity of quasi-coherent modules
on affine schemes over Z imply that the canonical homomorphism P — (B ®4 P) extends in a
canonical way to a homomorphism Py — (B ®4 P). This gives the required extension of the
functor considered to the essential image of the category of A-modules in Qcoh(X'). Suppose now
that Oy (M) is an arbitrary object of the category Qcoh(X'). We may assume that there is a finite
covering of X by pairwise disjoint open affine subschemes {U;};c; such that Ox (M) is associated
with a system of Ay,-modules My,,. By the previous case, each My, gives rise to a quasi-coherent

O -1 u;)-module on o 1(U;), and all of them define the required quasi-coherent Oy-module.

Step 3. The coherent Oy -module ©* F possesses all of the required properties. Indeed, it suffices
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to verify the claim in the case F = Ox (M) for an A-module M. In this case Home, (F, (¢<G)") =
Hom (M, G(Y)"), by Lemma 6.2.2. By Lemma 6.2.3, the latter coincides with Hompg(B® a4 M, G(Y))
and, by quasi-coherence, with Home,, (Oy(B ®4 M),G), i.e., the property (i) holds. The other

properties follow from Lemma 6.2.3. "

6.3. The image of the map )Y — X. Recall that an abelian group is said to be locally
cyclic if every subgroup of it generated by a finite number of elements is cyclic. For example, the
torsion subgroup of the multiplicative group £* of any field k is locally cyclic. It follows that, given
a morphism ¢ : Y — X from a scheme over Z to a scheme over Fy, the torsion subgroup of x(x)*

of every point = from the image of ¢ is locally cyclic.

6.3.1. Proposition. Let X be a scheme over F1, and let k be a field of characteristic zero
(resp. p > 0). Then the image of the map X ®g, k — X is the set of points x € X with the
property that the torsion subgroup of k(x)* is locally cyclic (resp. and has no elements of order p).

Proof. Let z be a point of X with that property, and set K = x(x). We notice that it
suffices to show that there exists an embedding K* < k’* for an extension &’ of k. Indeed, such
an embedding gives rise to a morphism Spec(k’) — X whose image is the point x and which goes
through a morphism Spec(k’) — X ®p, k. If 2’ is the image of the latter morphism, then the
induced homomorphism K* — k(z’)* is injective. The required fact is a version of a result of Cohn
[Cohn], and here is an easy proof of it.

We may assume that K is infinite, and we can increase the field k and assume that it is
algebraically closed and its cardinality is greater than that of K. Then there is an emdedding
K*

tors

— k*. Let S be the set of pairs (G, a), where G of a subgroup of K* that contains K7,
and « is an embedding G — k*. We provide S with a partial ordering as follows: (G,a) < (G’,a)
if G ¢ G’ and o | o = & The poset S satisfies the condition of Zorn’s Lemma and, therefore, it
contains a maximal element (G, «). It suffices to show that G = K*. Suppose this is not true. We
then can find an element A € K*\G. If A\ ¢ G for all n > 1, then we take an arbitrary element
x € k* transcendental over the subfield of k generated by «(G). (It exists since the cardinality
of k is greater than that of K.) If G’ is the subgroup of K* generated by G and A and o' is the
homomorphism G’ — k* that coincides with o on G and takes A to z, then the pair (G’, ) is an
element of S strictly bigger that (G, a), which is a contradiction. Suppose now that A\ € G for
some n > 1. We may assume that n is minimal with this property and, therefore, each element

of the subgroup G’ of K* generated by G and ) has a unique representation in the form \'g with

0<i<n-—1andge€G. Let x be an element of k with 2" = a(A\"). If ¢ is the homomorphism
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of G’ — k* that coincides with o on G and takes A to z, then the pair (G',’) is an element of S

strictly bigger that (G, «), which is a contradiction. .

Suppose now we are given an Fi-field K, a commutative ring with unity k, and a ho-
momorphism of Fj-algebras K — k', i.e., a morphism Spec(k) — Fspec(K). Then for any
K-algebra A there are an induced morphism Spec(k ® A) — Fspec(A) and an induced map
Spec(k ® x A) — Zspec(A).

6.3.2. Lemma. The following properties of a Zariski ideal p C A are equivalent:

(a) p lies in the image of the map Spec(k @ g A) — Zspec(A);

(b) k @k K(p) # 0;

(c) the stabilizer of every element f € A\p in K* lies in Ker(K* — k*).

Proof. We set B = k @ A. A Zariski ideal p C A lies in the image of Spec(B) if and only
if there exists an ideal q C B with p = Zker(A — (B/q)’), The latter is equivalent to the property
B ®4 k(p) #0. Since B®y k(p) = k @k k(p), the equivalence (a)<=>(b) follows. The equivalence

(b)<=>(c) is trivial. .

6.3.3. Corollary. The following properties of a K-algebra A are equivalent:
(a) the map Spec(k @ x A) — Zspec(A) is surjective;

(b) the stabilizer of every non-nilpotent element f € A in K* is contained in Ker(K* — k*). =

6.4. Schemes over k with a topologized prelogarithmic K-structure. Suppose now we
are given an Fy-algebra K, a commutative ring with unity &k, and a homomorphism of F;-algebras
a: K — k', i.e., a morphism Spec(k) — Fspec(K). For a scheme X over K, we set X(%) = X @ k,
and denote by 7 the morphism X(® — X

6.4.1. Definition. (i) A scheme X over K is said to be a-nontrivial if every point of X has
an open p-affine neighborhood ¢ for which the map U(®) — Zspec(Ay) is surjective.
(ii) The full subcategory of Schy of schemes over K consisting of locally connected a-nontrivial

schemes is denoted by SCh[;].

For example, if K is an F-field, Corollary 6.3.3 implies that an affine scheme X = Fspec(A)
over K is k/K-nontrivial if and only if the stabilizer of every non-nilpotent element f € A in K*

is contained in Ker(K™* — k*).

6.4.2. Lemma. Suppose that X is a-nontrivial. If 7= (U) C 7=1(V) for open subschemes of
X, then U C V. In particular, if 71 (U) = 7= 1(V), then U = V.
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Proof. The situation is easily reduced to the case when X = Fspec(A) is affine. Since the map
X ®x k — Zspec(A) is surjective, it follows that the images of the sets 7! (i) and 7~(V) coincide
with the sets of Zariski prime ideals p € A with 4 N X®) £ ¢ and VN XP) £ @, respectively. It
remains to notice that, if VN X®) #£ (), then X®) c V. .

6.4.3. Definition. (i) A scheme over k with a topologized prelogarithmic K-structure is
a quadruple (Y,o, A,v) consisting of a scheme ) over k, a topology o on ) formed by open
subschemes, a o-sheaf of K-algebras A, and a homomorphism of o-sheaves of K-algebras v : A —
Oy ‘0 which is compatible with the homomorphism «.

(ii) A morphism (Y, 0, A,v) — ()',0', A’,V') is a pair consisting of a morphism of schemes
over k, ¢ : Y — Y, which is o-continuous (i.e., ¢~1()’) is o-open for all ¢’-open subschemes
V' C V') and a homomorphism of o-sheaves of K-algebras A" — ¢..A which is compatible with the
homomorphism Oy — ¢, Oy.

(iii) The category of schemes over k with a topologized prelogarithmic K-structure is denoted

by Schl®l,

If (V,0,A,v) is an object of SchLa], every o-open subscheme V C ) gives rise to an object of

Schgf] , namely, (V,o

.y A‘v’ I/‘V). (In the formulation of Theorem 6.4.4(ii), V denotes the latter
tuple.) A morphism ()',0’, A",v') — (V,0,A,v) in Schf] is said to be an open immersion if
it gives rise to an isomorphism of the first tuple with the object of Schf] induced by a o-open

subscheme of ).

6.4.4. Theorem (i) The correspondence X + X(®) gives rise to a fully faithful functor
[a] [a] |
Schy' — Schy,” ;

(ii) an object (), 0, A,v) of SchLa] lies in the essential image of the above functor if and only
if the o-topology admits a base b, with the following properties:
(1) for every V € b,, A(V) is a K-algebra with connected and locally connected spectrum,
and the canonical morphism V — Spec(A(V)] @ k) is an isomorphism in SchLa];
(2) for every pair ¥V C W in b,, the canonical homomorphism A(W) — A(V) induces an
open immersion of affine schemes Fspec(A(V)) — Fspec(A(W)) which is compatible with the open
immersion V — W.

Proof. (i) Let & be locally connected a-nontrivial scheme over K. The scheme X(®) is

provided with the topology o whose open sets are the preimages of open subschemes of X with
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respect to the map 7 : X(® — X. If m, denotes the map from X(®, provided with the o-

topology, to X', provided with the schematic topology, the homomorphism Ox — 7.0, induces

a homomorphism v : 7;0x — O,

(@) |J. The tuple (X(®), o, m:Ox,v) is an object of the category
Schgca]. That the correspondence X — (X(®) g, 7 Ox,v) is a faithful functor is easy. To show that

it is fully faithful (and to prove (ii)), we need the following simple fact.

6.4.5. Lemma. One has Oy — TosTaOx.

Proof. Since X is locally connected, it suffices to verify that, for a connected open affine
subscheme U of X, one has (7:O0x)(U™) = Ay. The o-open affine subscheme U = 771 (U)
contains a point x with 7(z) € Up. Since U is the minimal open subscheme of X' that contains
a point from U, Lemma 6.4.2 implies that ¢/(® is the minimal o-open subscheme of X(®) that
contains the point z and, therefore, any o-open covering {V;}ics of U one has U™ c V; for

some i € I. The required fact follows. "

Let ¢ : (X, 0,7 Ox,v) — (X' o', 7Oy, 1) be a morphism in Schgf}. Given a con-
nected open affine subscheme U C X, take a point = € U(®) with p(x) € Uy and a connected open
affine subscheme U’ C X’ with ¢(z) € U™, We claim that pU®)) C U'(®). Indeed, since the
map ¢ is o-continuous, o~ (U'(?)) = 771(V) for some open subscheme V C X and, since U is the
minimal open subscheme of X that contains the point 7(z), it follows that &/ C V and, therefore,
U@ c o= (U').

Furthermore, suppose we are given connected open affine subschemes 4 C X and U’ C X’
with pU(™) C U, By Lemma 6.4.5, one has (7:0x)(U)) = Ay and (77,0x/) = A}, and,
therefore, the homomorphism 77Oy — . (7:Ox) induces a homomorphism Ay — Ay which is
compatible with the homomorphism A}, @ xkk — Ay®kk. In this way we get a system of compatible
homomorphisms of K-algebras A;;x — Ay for all pairs of connected open affine subschemes U C X
and U' C X with oU(®)) c U'(®). This system defines a morphism X — X’ of schemes over K
which gives rise to the morphism .

(ii) If X is a locally connected a-nontrivial scheme over K, the corresponding object of Schgf}
is the quadruple (X(®), o, 7*Ox,v), described in the proof of (i). The preimages of the connected
open affine subschemes of X’ form a base b, of the topology o. That b, possesses the properties
(1) and (2) follows from Lemma 6.4.5.

Suppose now that (Y, o0,.4,v) is an object of SChLO‘}

with a base b, of o that possesses those
properties. For V € b,, let X be the affine scheme Fspec(.A(V)). The property (1) implies that

there is a canonical isomorphism V = Xéa) . The property (2) implies that, for every pair V C W,
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the canonical morphism Xy}, — X)y is an open immersion that induces the open immersion ¥V — W.
For a pair V, W € b,, let X} )y denote the open subscheme of Xy which is the union of the images
of Ay, where U runs through all sets from b, for which X&a) C YN W. Notice that, since b, is
a base of the topology o, such sets XZ/(,O‘) cover the intersection ¥V N W, and that there is a well
defined isomorphism vy yy @ Xy — Xy p. The system {vyyy} satisfies the conditions of Lemma
5.2.10 and, therefore, we can glue all X)’s along &) )y’s. In this way we get a locally connected

a-nontrivial scheme X over K with ) = x(), "

6.5. Schemes over k with a prelogarithmic K-structure. In this subsection o : K — k'

is a homomorphism as in §6.4.

6.5.1. Definition. (i) An a-nontrivial separated scheme X over K is said to be a-special if it
admits a net of connected open affine subschemes o such that every U € o possesses the following
properties:

(1) U is reduced and the set of its irreducible components is finite;

(2) the intersection Uy; of the sets Wyy,, where W runs through all irreducible components
of U, is nonempty;

(3) for each Zariski prime ideal p C Ay, the k-algebra k ® x k(p) is integral.

(ii) The full subcategory of Schy consisting of a-special schemes is denoted by Sch(I?).

The properties (1) and (2) do not depend on the homomorphism «. Notice that, since the
canonical homomorphism A /Ty — k(p) is injective, the property (3) implies that the k-algebra
kg Ay/ Iy is integral and, in particular, there is a one-to-one correspondence between the set of
irreducible components of & and that of 24(®). Here is a simple sufficient condition for validity of

the property (3).

6.5.2. Lemma. Suppose that K is an F1-field and k is an integral domain. If a ¢-nontrivial
K-algebra A is such that, for every Zariski prime ideal p C A, the group Coker(K* — k(p)*) has
no torsion, then the affine scheme X = Fspec(A) possesses the property (3).

Notice that if the condition of Lemma 6.5.2 is satisfied by those p for which XP) is an irreducible

component of X', then it is satisfied by all p’s.

Proof. Since A is a-nontrivial, we may replace A by A/Ker(K* — A*) and assume that the
homomorphism K — A* is injective. Furthermore, to verify the required property for a Zariski
prime ideal p C A, we may replace A by A/Ilp and assume that A is an integral domain and
p = 0. If F is the fraction Fi-field of A, the homomorphism k ® x A — k ®k F is injective and,
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therefore, it suffices to verify the required fact for F' instead of A. Finally, if F' = lim F;, then
H
k®g F =limk @k F;. We may therefore assume that the group F*/K* is finitely generated. If
—
fi,--, fn are elements of F* whose images form a basis of the free group F*/K*, then k @ F =

Elfiy-- s fn, Tll’ ceey f%] The latter is an integral domain because k is an integral domain. "

6.5.3. Definition. (i) A scheme over k with a prelogarithmic K -structure is a triple (Y, A, v)
consisting of a scheme Y over k, a sheaf of K-algebras A, and a homomorphism of K-algebras
v : A — Oy which is compatible with the homomorphism «.

(ii) A morphism (), A,v) — (), A’,V) is a pair consisting of a morphism of schemes over £k,
¢ :Y — )Y, and a homomorphism of sheaves of K-algebras A" — ,A which is compatible with
the homomorphism Oy — ¢,.Oy.

. . . . (@)
(iii) The category of schemes over k with a prelogarithmic K-structure is denoted by Schka .

If (¥, A,v) is an object of Schgl), every open subscheme V C ) gives rise to an object
of Schéa), namely, (V,A’V, I/‘V). (In the formulation of Theorem 6.5.4(ii), V denotes the latter
triple.) A morphism (), A",v") — (Y, A,v) in Sch,(:“) is said to be an open immersion if it gives
rise to an isomorphism of the first triple with the object of Sch,(f‘) induced by an open subscheme

of V.

6.5.4. Theorem. (i) The correspondence X + X(®) gives rise to a fully faithful functor
Schl®) — Sch™

(ii) an object (Y, A,v) of Sch,(f) lies in the essential image of the above functor if and only if
the following holds:

(1) the family of open sets V, for which the K-algebra A(V) is a-special and the canonical
morphism V — Spec(k @k A(V)) is an isomorphism in Sch,(ga), forms a net;

(2) for every pair V C W of sets from (1), the canonical homomorphism A(W) — A(V)
induces an open immersion of affine schemes Fspec(A(V)) — Fspec(A(W)) which is compatible
with the open immersion YV — W.

6.5.5. Lemma. Let X = Fspec(A) be a connected a-special affine scheme over K. Then for
any open subscheme V C X that contains a point from 7~ (Xy;), one has A 5 (7*Ox) (V).

Proof. The sheaf 7*Oy is associated with the separated presheaf P = 7~10x whose value
at an open subset V C X(® is the inductive limit li_r{l(’)(Z/{) taken over all open subschemes U/ of
X that contain the image p(V). Thus, we have to verify that, given a finite covering of V with
VNr~1(Xy) # 0 by open subsets {V,}, one has A = L = Ker([[, P(Vy.) =3 [1.,PV.NV,)).
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Let {X;}ics be the set of irreducible components of X'. For an open subscheme U C X, we set
IU)={iel |Z/l¢ # 0}, where U; = U N X;. Since every open affine subscheme of X; is a principal
open subset, it follows that if, for open subschemes U’ C U” C X one has I(U") = I(U"), then
the canonical homomorphism O(U") — O(U’) is injective. This also implies that for every open
subscheme U C X there is a canonical injective homomorphism OU) < [];c ) Fi, where Fj is
the fraction Fy-field of A; (with X; = Fspec(4,)).

Furthermore, for an open subset V C X(®) we set I(V) = (I(U), where the intersection
is taken over open subschemes of U that contain the set 7(V). If such U is sufficiently small,
then I(V) = I(U). Tt follows from the previous paragraph that, for any V), there is a canonical
injective homomorphism P(V) < [[;c7) Fi. Notice that, if V contains a point from 7Y Xy),
then I(V) =1 and A = P(V).

We now turn back to the covering of V with VNa—1(Xas) # 0 by open subsets {V,,}. Let (f.),
be an element in the above kernel L. For every u, there is a canonical injective homomorphism
PWyu) = Tlierw,) Fi- Ii € I(Vu)I(Vou), then the images of the elements f, and g, under the
canonical homomorphisms P(V,,) — F; and P(V,) — F; are equal. This means that there is an
injective homomorphism L < [],.; F;. But by the assumption, there exists V, which contains
a point from 7! (Xys) and, therefore, I(V,) = I and P(V,) = A, i.e., there exists f € A with

f’v = f,. The above remark implies that f‘v = f, for all p. .

Proof of Theorem 6.5.4. (i) The functor considered takes an a-special scheme X to the
triple (X(a), 7*QOx,v), where 7 is the morphism X(®) — X and v is the canonical homomorphism
1*0x — Oy. Let ¢ 1 (X 150y, v) = (X' 7*Ox:, ') be a morphism in Schéa). For
an a-special open connected affine subscheme U C X, we take a point z € U® whose image
in U lies in Ups, and an a-special open connected affine subscheme U’ of X'. We claim that
‘P‘wa) = @ for a morphism ¢ : U — U’ C X'. Indeed, let V = U N~ (U (™). By Lemma
6.5.5, one has Ay = (7*Ox)(V) and A}, = (7"*Ox/)(U'(®)), and so the homomorphism of sheaves
7*Oxr — 0. (1*Ox) gives rise to a homomorphism of K-algebras A, = (7" O/ )(U"®)) — Ay =
(m*Ox)(V). The latter gives rise to a morphism of schemes ¢ : U — U’ C X’ such that the
restriction of (@ : Y@ — (@) c X(®) to the dense open subscheme V coincides with the
morphism V — U@ < X’(®) induced by ¢. Since the scheme X’(®) is separated and U is
reduced, we get go‘u(a) = (),

In this way we get a system of compatible morphisms 1/, : Y — X’ for all a-special open affine

subschemes U of X'. This system defines a morphism v : X — X’ of schemes over K which induces
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the morphism .

(ii) That the image of an a-special scheme X in Sch(® possesses the required properties
follows from Definition 6.5.1 and Lemma 6.5.5.Given an object of the category Sch(® with those
properties, a construction of the required a-special scheme over K is done in the same way as in

the proof of Theorem 6.4.4(ii). .

6.6. Classes of morphisms between schemes over Schg,. The existence of fiber products
in the category Sch enables one to extend various classes of morphisms from the category Schyz
to the whole category Sch. Namely, let P be a property of morphisms of schemes over Z which is

local with respect to the target.

6.6.1. Definition. A morphism ¢ : X’ — X of schemes over F; is said to have the property
P if, for any morphism ¢ : ) — X from a scheme over Z, the induced morphism ) xy X’ — ) of

schemes over Z has the property P.

§7. Schemes of finite type over a valuation F;-algebra

7.1. Flat and strict schemes of finite type over K°. Let K° be a valuation Fi-algebra
with fraction F;-field K. For a scheme X over K° and a Zariski prime ideal v C K°, we set X{r) =
X @0 K, X(t) = X @Ko (r) and X®) = X @xo K°/r. Notice that X(r) = (X)) ® = (X)) ).
If vt = 0, one has K¢ = K, and the scheme &), = X ® xo K over K is said to be the generic fiber of
X. If vt = K°°, one has K°/v = IN(, and the scheme X, = X ®xo K over K is said to be the closed
(or special) fiber of X. There is a canonical closed immersion Xs — X" and, if there exists a nonzero
element a € K° with K = K (e.g., the valuation on K is of finite rank), the canonical injective
map X, — X is an open immersion. Of course, if the valuation on K is trivial, both morphisms

Xs — X and &), — X are isomorphisms.

7.1.1. Definition. (i) A K°-module M is said to be flat if it possesses the following properties:
(1) if am = pm for o, 5 € K° and m € M, then either & = 3 or m = 0;
(2) if am = an for a € K° and m,n € A, then either & = 0 or m = n.
(ii) A scheme X over K° is said to be flat over K° if it is covered by a family of open p-affine
subschemes U for which Ay, is a flat K°-module.
(iii) A scheme X over K° is said to be strict over K° if it is flat over K° and the U’s from (i)

possess the following additional properties:
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(3) my,, NK° = K°°;
(4) if V is a principal open subset of ¢/ with m 4, N K° = K°°, then 14, N K°°Ay = 0.

Of course, if the valuation on K is trivial, every scheme over K° = K is strict. If X is flat over
K° then, for every Zariski prime ideal v C K°, X(¢) and X (®) flat over Kg and K°/t, respectively.
If X = Fspec(A) is strict over K°, we say that A is a strict K °-algebra.

Let M be a flat K°-module. Then the canonical homomorphism M — M Qg K is injective.
The latter is a free K-vector space which is a direct sum of free K-vector spaces of dimension
one. This defines a decomposition of M in a direct sum of Zariski K°-submodules. Let P be such
a Zariski K°-submodule. It is a subset of M that contains zero and has the property that, for
every pair of nonzero elements m,n € P, there exist nonzero «, § € K° with am = fn. Since K°
is a valuation Fi-algebra, the latter is equivalent to the property that, for every pair of nonzero
elements m,n € P there exists a nonzero element @ € K° with either am = n or m = an. By
the way, the above decomposition defines a K°-submodule E on M such that (m,n) € E if either
m,n = 0, or m,n € P\{0} for P as above. The quotient M = M/E is an Fi-module, and its
nonzero elements correspond to the above K°-modules P. If M is a K°-algebra, then M is an

F;-algebra.

7.1.2. Proposition. Every flat reduced quasi-irreducible finitely generated K°-algebra A is

a free K¢-module, where vt = my N K°.

Proof. We can replace K° by K¢ and assume that my N K° = K°°. It suffices to show that
every K°-module P from the decomposition of A as above is free of rank one. For this it suffices
to show that P # K°°P. Indeed, if this is so, then the above property implies that every element
from P\K°°P is a generator of P.

Consider first the case when the K°-algebra A is integral, and take a surjective homomorphism
Ke[Ty,...,T,] — A:T; — f;. Notice that if a nonzero element af* = af{"* ...  fi» with a € K°
and p € Z7 belongs to P, then f# € P. Thus, the equality P = K°°P implies that there exist
sequences uM, u . € Z% and aq, g, ... € K°°\{0} such that f“m = aif“(iﬂ) foralli > 1. We
prove by induction on n that existence of such sequences is impossible. This is of course impossible
if n = 0, and so we assume that n > 1 and that this is impossible for strictly smaller values of n. We
may assume that ugl), cee /h(%) > 1and ,ugrllzrl =...= u,(ll) = 0. Since my4NA = K°°, it follows that
m > 1. We may also assume that among sequences with such properties the number Z:f:l /1,,(:) is

minimal. We then claim that there exists | > 2 such that ugt) =0 for allt > [. Indeed, if there exist

an infinite sequence [y = 1 <l < ... with ,uglj ) > 1for all j > 1, then we can replace our sequences
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with the subsequences with numbers [y, [o, ... and assume that ,ugj ) > 1for all j > 1. Since A is an
integral domain, we can divide all of the elements f“m by f1 and get sequences with the smaller
sum 271:;1 ,u,gl). The claim follows. Thus, we can replace our sequences with the subsequences
with numbers [,1 + 1,..., and we get elements f”m as above which lie in the K°-subalgebra of A
generated by fs, ..., f,. By induction, existence of such sequences is impossible.

In the general case, let py,...,p, denote the intersections with A of the Zariski prime ideals
of the finitely generated K-algebra A ®xo K. Then p, N K° =0 for all 1 < i < n and, since A is
reduced, one has (;_, p; = 0. We claim that PNp; =0 for some 1 <i < n. Indeed, assume that,
for every 1 <14 < n, the intersection P N p, contains a nonzero element f;. Let m be the maximal
number such that some of the elements f;’s lies in the intersection of m of the Zariski prime ideals
p;’s. One clearly has 1 <m < n —1. We may assume that f; € i~ p;. By the property of P, we
can find a nonzero element a € K° with either f; = af,, 41, or fie1 = af1. In both cases, either f;
or fm+1 lies in the intersection ﬂf:{l p;, which contradicts the minimality of m. The claim implies
that the canonical surjective homomorphism A — A/p, is injective on P. Since the latter quotient

satisfies the same assumption as A and is integral, we get P # K°° P, by the previous case. "

7.1.3. Proposition. Let X’ be a strict scheme of finite type over K°. Then

(i) the correspondence U — Us = U N X, induces a bijection between the set of strict open
subschemes of X and that of open subschemes of Xj;

(i) the correspondence Y ~ Y (the closure of V) induces a bijection between the sets of
irreducible components of &, and of X;

(iii) if Y is a Zariski closed subset of Ay, then Y is Zariski closed in X and is a strict scheme
of finite type over K°;

(iv) mo(X,;) = mo(X) and, if X is affine, then mo(Xs) = mo(X).

An open subscheme U C X is said to be strict if it is strict as a scheme over K°. Notice that
the intersection of two strict open subschemes is not necessarily a strict open subscheme. Indeed,
let X = Fspec(A), where A is the quotient of K°[T7, T5] by the ideal generated by the pair (7175, a)
with @ € K°°\{0}. If ¢; is the image of T; in A, then the principal open subschemes D(¢;) and
D(ty) are strict open subschemes of X', but their intersection coincides with D(a) and, therefore,

it is not strict over K°.

Proof. To prove the statement, it suffices to consider the case when X = Fspec(A) is affine
with a strict finitely generated K°-algebra A. In this case, one has X; = Fspec(ﬁ) with 4 =
A@go K = AJ(K°°) and X, = Fspec(A) with A = A ®o K.
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(i) Let first & be a nonempty strict principal open subset of X, i.e., Y = D(f) for f € A with
my, N K° = K°°. Nonemptyness of U and the latter equality imply that f ¢ zr((K°°)). This
means that the image fof fin A is not nilpotent and, in particular, U; = D(f) # (). Suppose that
Us C Vs for a strict principal open subset ¥V = D(g) with g € A. Then f~’m+” = §Ef~” for some
h € Aand m,n > 0. It follows that f™*" = ghf™ and, therefore, { C V. Thus, the correspondence
considered induces a bijection between the set of strict principal open subsets of X and that of
principal open subsets of X.

Furthermore, let I and V be nonempty strict elementary open subsets of X', which are defined
by principal open subsets Dy = D(f) and Dy = D(g) and finitely generated Zariski ideals a;y C 4,
and ay C I, (see §4.2). Suppose that U, C V,. Then D(f) C D(g) and, by the previous case, one
has Dy C Dy. The assumption on strictness of i and V implies that the canonical homomorphisms
Ay — ﬁf~ and A, — gg induce isomorphisms of the corresponding idempotent Fi-algebras. Since
the image of ay, in the idempotent F;-subalgebra of A? lies in ayy_, it follows that the image of ay
in I4, lies in ay and, therefore, Y C V. Thus, the correspondence considered induces a bijection
between the set of strict elementary open subsets of X and that of elementary open subsets of X.

Finally, let ¢/ and V be nonempty open subschemes of X with Us; C Vs, and let {U;};c; and
{V;}jes be coverings of U and V by elementary open subsets. Then for every i € I the elementary
open subset U ; is covered by the elementary open subsets Us; NV, j = (U; NV;)s for j € J. This
implies that U, ; C V,; for some j € J. By the previous case, we get U; C V;. It follows that
ucy.

(ii) First of all, we notice that the image of Zspec(A) in Zspec(A) is the set of Zariski prime
ideals p C A with p N K° = 0. If p corresponds to a Zariski prime ideal q C A, then q = pK,
p=aqnA Ilg={(af,ag)|a € K and (f,g) € Mp} and Iy = IIg N (A x A). It follows that the
closure of X,gq) in X coincides with X®). Let ) be an irreducible component of Xy ie, Y = Xygq),
where q is a Zariski prime ideal of A for which Ilg is a minimal prime ideal of A. If p = q N A4,
the above remark easily implies that Ilp is a minimal prime ideal of A and X P =Y, ie, Vis
an irreducible component of X'. Furthermore, let q,,...,q,, be Zariski prime ideals of A such that
g, N...NIlg, =n(A). ThenIlp N...NIp =n(A) for p; = q;NA. Lemma 1.2.7(ii) implies that
each prime ideal II of A contains a prime ideal of the form Iy for p =p, U...Up, . If g =pK,
the above remark implies that the point of X that corresponds to the prime ideal II lies in the
closure of X,gq) (since it coincides with X®)). Thus, the closure of X, in X coincides with X', and
the required fact follows.

(iii) We may assume that & is connected. By (iii), &}, is also connected, and so any Zariski
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closed subset ) of X, is of the form Fspec(A/b) for a Zariski ideal b € A. We claim that
Y = Fspec(A/a) for the Zariski ideal a = bN A. Indeed, since b = aK, one has A/a®x. K = A/a,
and the claim follows from the statement (ii) applied to the strict scheme Fspec(A/a) of finite type
over K°.

(iv) It suffices to show that the canonical homomorphisms of idempotent Fi-algebras I4 — I T
and I4 — I 4 are bijections. Bijectivity of the former follows from the property (3) of Definition
7.1.1. Injectivity of the latter is trivial. Let £ be a nonzero idempotent in A4, where f € A and
a € K°. Then (af)? = af, ie., af is an idempotent in A. The same property (3) implies that a

is invertible in K° and, therefore, 5 €la. .

7.1.4. Proposition. Let K'°/K° be an extension of valuation F1-algebras, and let X and )
be nonempty strict schemes over K° and K'°, respectively. Then

(i) the fiber product X X o Y is a nonempty strict scheme over K'°;

(ii) every strict open subscheme of X X g0 Y is covered by open subschemes of the form U X go V
for strict open subschemesUd C X and V C ).

Proof. (i) It suffices to consider the case when X = Fspec(A) and )Y = Fspec(B) are affine
with strict K° and K’°-algebras A and B, respectively. In this case validity of the properties (1)
and (2) of Definition 7.1.1 for C = A ® o B follows from Corollary 2.7.7. To verify the property

(3), it suffices to show that in our situation one has I N K'°°C = 0.

7.1.5. Lemma. In the above situation, one has I4 ®p, Ip o

Proof. The homomorphism is injective. Indeed, suppose that f1 ® g1 = f1 ® g2 in C for some
nonzero fi, fo € I and ¢1,92 € Ip. By Corollary 2.7.7(ii), we may assume that there exists an
element o € K° with f; = afs and ag; = g2. Since f; and f, are nonzero idempotents, we get
a?fy = afy. The property (1) implies that a? = a and, therefore, a = 1.

The homomorphism is surjective. Let e be a nonzero idempotent in C. Then e = f ® g for
some f € A and g € B. By the equality e? = e and Corollary 2.7.7(ii), we may assume that there
exists an element a € K° with f2 = af and ag? = g. Then (ag)? = ag, i.e., the element ag is
a nonzero idempotent in B. If a € K°°, then ag € Ig N K°°B, which is impossible. Thus, « is
invertible in K°. Replacing f by a~!f and g by ag, we may assume that f and g are idempotents,

ie,e€ls®r, Ip. n

Suppose that e is a nonzero idempotent in Ic N K'°°C. By Lemma 7.1.5, one has e = f ® ¢
for f €14 and g € Ig. Thus, f ® g = a(f ® g) for some o € K°°. Corollary 2.7.7(ii) implies that
there exists an element § € K° with either f = af8f and 8g = g, or 8f = af and g = Bg. The
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property (3) then implies that § and « are invertible in K°, which is a contradiction.

(ii) It suffices to consider the case when X = Fspec(A) and Y = Fspec(B) are affine with
strict K°-algebras A and B. Let W be a strict elementary open subset of X ®go Y, i.e., W =
{z € D(h)|ei(z) = 0 for 1 < i < n}, where h € A®go B and ey, ..., e, are idempotents in
(A®Ko B)p. One has h = f® g for f € A and g € B. It follows that D(h) = D(f) x D(g). We
may therefore replace X and ) by D(f) and D(g), respectively, and assume that W is defined only
by the equalities e; = 0. It suffices to consider the case n = 1. If e is a nonzero idempotent in
A ®go B, Lemma 7.1.5 implies that e = f ® g for f € I4 and g € Ig. We get W =U x V for
U={zeX|f(x)=0}and V= {y € Y|g(x) = 0}. .

7.1.6. Proposition. Let X and Y be strict schemes of finite type over K°. If both schemes X
and ) are Zariski reduced (resp. reduced; resp. connected; resp. irreducible; resp. quasi-integral;

resp. integral), then so is the direct product X X o Y.

Proof. We may assume that X = Fspec(A) and ) = Fspec(B) are affine with Zariski reduced
strict finitely generated K°-algebras A and B. Since the homomorphisms A — A = A Qko K,
B - B=B®go K and AQg. B — AR B are injective, the situation is reduced to the case when
the valuation on K is trivial, i.e., K° = K. In this case, a ® b = ¢ ® d for some nonzero a,c € A
and b,d € B, then ¢ = Aa and b = Ad for a unique nonzero element A € K. This immediately
implies that A ® ¢ B is Zariski reduced, and reduces the case of quasi-integral X and ) to that of
integral ones. Suppose that A and B are integral, and assume that (a ® b)(c®d) = (a®b)(d @ d’)
for nonzero elements of A @ B. Then ac ® bd = ac’ ® bd’ and, therefore, ac’ = Aac and bd = \bd’
for some A € K*. Since A and B are integral, it follows that ¢/ = Ac¢ and d = A\d’ and, therefore,
c®d=c ®d,ie, ARk B is integral. Suppose now that A and B are reduced, and assume that,
for some nonzero elements a ® b,c @ d € A @ B, there exists n > 1 such that ' @ b’ = ¢! @ d’ for
all i > n. Then ¢ = \;a; and b* = \;d* for some \; € K*. We claim that ¢ = Aa and b = \d for
A = Ans1A; L. Indeed, since A and B are reduced, it suffices to verify that the pairs (\a,c) and
(b, Ad) lie in the intersection of all of the prime ideals Iy and Ilg, respectively, for Zariski prime
ideals p C A and q C B. If a € p, then each of the equalities ¢! = )\;a; implies that ¢ € p and,
therefore, (Aa,c) € Ilp. If a ¢ p, the same equalities imply that ¢ ¢ p and, moreover, the equalities
for i = n and n + 1 imply that the images of the elements Aa and c in the quotient A/Ilp are
equal, i.e., (Aa,c) € . Tt follows that ¢ = Aa. The same reasoning shows that (b, \d) € Ilg for
all Zariski prime ideals q¢ C B and, therefore, b = Ad. The claim implies that A ® ¢ B is reduced.
Furthermore, assume that X and ) are irreducible. Replacing A by A/n(A) and B by B/n(B),
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we may assume that X and ) are reduced and, therefore, integral. Then X X g ) is also integral
and, in particular, irreducible. Finally, if X and ) are connected, then connectedness of X x g Y

follows by induction from the cases of irreducible and of nonempty X and ). .

7.1.7. Remarks. (i) The statement of Proposition 7.1.2 is not true in general if A is not
reduced. Indeed, let K be an Fi-field with non-discrete valuation of rank one. Take a nonzero
element o € K°°, and consider the K°-algebra A = K°[T1,T5]/E, where E is the ideal defined
by the pairs (T%,0) and (T, T1T3). If f and g are the images of T} and 75, then g> = 0 and
g = afg. It follows that A is a quasi-integral K°-algebra and, for the K°-module P from the
proof of Proposition 7.1.2 that contains the element g, one has P = K°°P, i.e., A is not a free
K°-module.

(ii) Suppose that X’ is an irreducible scheme flat over K°. If I is an open affine subscheme
of X, then the intersection Ay N K° is a Zariski prime ideal v of K°, and U is a strict scheme
over K¢. Suppose in addition that there exists an open affine subscheme U strict over K°. In this
case, if the valuation on K is of rank at most one, then X is strict over K°. But if the valuation
is of higher rank, X is not necessarily strict over K°. Indeed, suppose that there exist nonzero
elements a,b € K°° such that |a| < [b"| for all n > 1. We set U = Fspec(A), where A = K°[T+1],
and V = Fspec(B), where B is the quotient of K°[T},T5,S] by the ideal generated by the pairs
(T1Ty,a) and (Sb,1). Notice that there is a canonical isomorphism A, = By, : T + t1, where t; is
the image of T; in B. Then U is strict over K°, but the irreducible scheme X obtained by gluing
of U and V along Dy(b) = Dy (1) is not strict over K°.

7.2. Integral flat schemes of finite type over K°. Let X be an integral flat scheme of
finite type over K°. Then the intersection of all nonempty open subschemes of X’ is a nonempty
connected open affine subscheme of &) denoted by /'?,7, and A x, is a finitely generated K-field
denoted by K(X) and called the field of rational functions on X. The complement Xn\/?n is a
maximal proper Zariski closed subset of A,. We say that the generic fiber &, is geometrically
irreducible (resp. reduced) if, for any homomorphism K — k' to the Fi-field of a (usual) field &,
the k-scheme X, ®g k is irreducible (resp. reduced).

7.2.1. Proposition. In the above situation, X, is geometrically irreducible (resp. reduced) if
and only if K is algebraically closed in K(X) (i.e., the quotient group K(X)*/K* has no torsion).
Proof. We may assume that the valuation on K is trivial, i.e., K° = K and &, = X. We
set L = K(X), and suppose first that the group L*/K* has no torsion. To show that X ® k is
integral, we may assume that X = Fspec(A) is affine. Since A is integral, one has k@ A C k®g L,
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and so it suffices to show that the k-algebra k ® i L is integral. But L is isomorphic to the K-field
K'[Ty,...,T,, Ty, ..., T and, therefore, k @k L = K[Ty,...,Tn, Ty Y, ..., T;7']. Conversely,
suppose that the group L*/K* has torsion. To show that X" is not geometrically irreducible (resp.
reduced), it suffices to find such a homomorphism K — k that the preimage of X in X @k k is
nonempty and non-connected (resp. not reduced). We may therefore replace X' by X and assume
that X = Fspec(L). By the assumption, the quotient group L*/K* has a direct factor isomorphic
to a cyclic group of order n > 1. Let L’ be the K-subfield of L for which the group L'*/K* coincides
with that factor. Furthermore, let k be an arbitrary field of characteristic prime to n that contains
all n-th roots of unity (resp. of characteristic that divides n), and let K — k" be the homomorphism
which is the composition K — F; — k. Then k ®x L’ embeds in k ® ¢ L and is isomorphic to the

group ring of the cyclic group of order n over k. This group ring is a direct product of n copies of

k (resp. contains nilpotent elements). .

We say that X has good reduction if it is strict over K° and its closed fiber X; is an integral
scheme. For example, if )} is an integral scheme over K ; then the scheme Y ® K° has good
reduction. Integral schemes of this form are said to be constant. We claim that each scheme with
good reduction is constant. Indeed, it suffices to verify that the morphism X — X; ® 7 K° induced
by the morphism X — X from Proposition 5.3.6 is an isomorphism. Notice that, if X has good
reduction, then K (X;) @z K 5 K(X). Notice also that the property to have good reduction is
preserved under any extension of valuation Fi-algebras K'°/K°.

More generally, suppose that & is strict and X is irreducible. Then the reduction &7 of X
(which is by the way coincide with the Zariski reduction X?") is an integral scheme over K and so,
by Proposition 5.3.6, the canonical closed immersion XT — & has a section X — X. The following

statement implies that the induced morphism X — X} ® =K ° is finite and surjective.

7.2.2. Proposition. Let A be a strict integral K°-algebra such that the Zariski radical of
(K°°) is a Zariski prime ideal p. Then

(i) the homomorphism A/p ®z K° — A is injective;

(i) if B is the image of the homomorphism from (i), then B/K°°B = A/p;

(iii) there exists n > 1 such that f™ € K°°B for all elements f € A\B and, in particular, A is
a finite B-algebra.

Proof. (i) Suppose that af = (g for some nonzero o, € K° and f,g € A/p and that
la| < [B]. Then B(3f) = Bg. Since A is integral, it follows that §f = g. This implies that

% € (K°)* and, therefore, f ® a = g ® 8. The statement (ii) is trivial.
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(iii) Suppose that A is generated by elements g1,...,g, over B. Since A\B C p, we may
assume that ¢1,...,¢g, € p\{0}. By the assumption, for every 1 < i < n there exists k; > 1 with
gri e (K°°), ie., gF = a;f; H?:1 gé” for some «; € K°°, f; € A/p, l;; > 0. We prove by induction
on n that the above equalities imply that some powers of each g; belong to K°°B. Indeed, since
A is an integral domain, it follows that k; > l;;. We can therefore divide both sides of the above
expression by g;” , and so we may assume that [;; = 0. Suppose that l;, # 0 for some 1 <i <n-—1.

We then have

lin

n—1 n—1
kik‘n _ k’n k’n lijkn lnj
9i =a;" f; ng : anangj
Jj=1 Jj=1

The powers of g; on the left and right hand sides are k;k,, and l,,;;,,, respectively. Since «; € K°°,
it follows that the latter number is strictly less than the former one. We can therefore divide both
sides by the smaller power of g; and get an expression for g;’s with 1 < i < n — 1 as above with
lin = 0. By the induction hypothesis, we get inclusions gf € K°B for 1 <i<mn-—1. Since

—1 oy . . i
gﬁ“ = anfn H?:1 g;", we also get an inclusion gfbl kg (0B, "

For every integral flat scheme X over K° one can construct in the evident way the integral
closure of X in its generic fiber X,, i.e., a morphism X’ — X from an integral scheme such that,
for every open affine subscheme U C X, ¢~1(U) is an affine scheme which is the spectrum of the
integral closure of Ay in Ay ® ko K. Notice that the integral closure of an integral flat scheme X

of finite type over K° is not necessarily a scheme of finite type over K° (see Remark 2.7.9).

7.2.3. Corollary. Given an integral strict scheme X of finite type over K° with irreducible
closed fiber X, there exist elements 71,...,v, € |K*| and integers ly,...,l,, > 2 such that, for

any extension of valuation Fi-fields K'/K with v; € |K'*|% for all 1 < i < n, the integral closure

of X ®ko K'° in its generic fiber is an integral strict scheme of finite type over K'° with good
reduction.

Proof. We may assume that X = Fspec(A) is affine, and let p = zr((/K°°)). Proposition 7.2.2
implies that A is generated by elements ¢1,...,¢9, € p with gi = q; f; for some [; > 2, a; € K°°
and f; € A/p. We claim that the required property is achieved for the elements v; = |a;| and the
numbers ;. Indeed, let K'° be a valuation K°-algebra with ~; € |K’*| for all 1 < ¢ < n. The
Zariski radical of the Zariski ideal (K'°°) of A’ = A ® go K'° is a Zariski prime ideal p’ generated
i = ~;. Then B; = % € (K'°)*

an
@;

by the elements gi,...,g,. Take elements o) € K'°° with |o/

Li -
and (%) = Bifi € A/p @z K'. Thus, the A’-subalgebra A” of A ®ko K’ generated by the
elements Z; lies in the integral closure A"’ of A" in A®po K', and the Zariski ideal (K'°°) of A" is

’
(3
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prime, i.e., X" = Fspec(A”) has good reduction. It remains to notice that A" is generated by the
integral closure of A” (embedded in A”) in its fraction Fi-field. The latter is a finite A”-algebra,

by Proposition 2.6.7. It follows A"’ is finitely generated over K'°. n

Let again X be an integral flat scheme of finite type over K°. Since X is quasicompact,
Proposition 4.4.6 implies that the image of the canonical map X — Fspec(K°) is a principal open
subset D(«) of Fspec(K°). Given a Zariski prime ideal v+ C K° with o ¢ ¢, X(t) is a nonempty
quasi-irreducible flat scheme of finite type over x(t). It follows that, for every irreducible component
Y of X (t) the intersection of all of the open affine subschemes of X'(t) that contain the generic point
of Y is the spectrum of a local artinian Fi-algebra which is a finite dimensional vector space of the
field of rational functions k(t)()) of Y. Its dimension is said to be the multiplicity of Y in X (t).
Furthermore, let X sy denote the intersection of all open subschemes of X" that contain the generic
point of Y. Proposition 7.1.3(i) implies that /\u,’/y is a connected open affine subscheme of Xy). Its
K°-algebra A/\?/y is denoted by KO(/\V,’/y). Notice that Ko(é\v.’/y) is a finitely generated Kg-algebra,
and its fraction field is K(X'). If v = K°° and ) is the only irreducible component of X (i.e., ) is
the reduction of X), then 2?/3; is denoted by X, and Ko(é‘z'/y) is denoted by K°(X).

7.2.5. Corollary. In the above situation, the following is true:

(i) K°(X /y) is a finite free LS,-module, where LS, is the unramified valuation Kg-subalgebra
of KO()?/);) generated by k(t)());

(ii) the multiplicity of Y in X (t) is equal to the degree of the finite extension K (X')/Ly which,
in its turn, is equal to the order of the cokernel of the canonical injective homomorphism of groups
R(E) (D) k()" — K(X)* /K"

(iii) if X is normal, then KO(??/J;) is a valuation Kg-subalgebra of K(X'), Ly is the maximal
unramified subextension of K (X) (provided with the induced valuation) over K and if, in addition,
the group |K*| is divisible then K°(Xy) = LS,;

(iv) the dimensions of all irreducible components ) of X (t) over K are equal to the dimension
of X,, over K and, if X, is geometrically irreducible, then so are all J’s.

Proof. We may assume that X = Fspec(A) is affine and v = K°°. Every Zariski prime ideal
of A can be identified with a Zariski prime ideal p of A that contains K°°. Since A is an integral
domain, it follows that A/p is integral and, therefore, A/ Iy = A/p. This remark applied to the
Zariski prime ideal p that corresponds to Y implies that ) is Zariski closed in X, the localization Ay
coincides with K 0(22 /y), and the quotient of the latter by the maximal Zariski ideal coincides with
k(p). Since A/Tly = A/p, it follows that x(p) = K(Y). Finally, since Y is an irreducible component
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of Xs = Fspec(A/(K°°)), the Zariski ideal of Ap/(K°°) generated by the image of p is a unique
minimal Zariski prime ideal. This implies that it is Zariski nilpotent, and so the finitely generated
K°-algebra K°(X /y) satisfies the assumptions of Corollary 7.2.4, and all of the statements (i)-(iv)

easily follow from that lemma. "

Let ®(Y/X) denote the cokernel of the injective homomorphism from (ii). It is a finite group
of order equal to the multiplicity of } in &'(v).

7.2.5. Corollary. In the situation of Corollary 7.2.4, suppose that s is a Zariski prime ideal
of K° lying in v and Z is an irreducible component of X (s) whose closure Z in X contains ). Then

there is an exact sequence of finite groups
1= 0Y/Z) = d(Y/X)— ®(Z/X) =1

In particular, the multiplicity of Z in X(s) divides the multiplicity of ) in X (t).
Proof. We may assume that X = Fspec(A) is affine, and let p and q be the Zariski prime
ideals of A that correspond to Y and Z, respectively. Then q C p, and there is a commutative

diagram with exact rows

L = &) /ev) = K@)/E* = /X)) — 1

|

1 = k(@)(2)/kq)* — KX)*/K* — oZ/X) — 1

The cokernel of the first vertical arrow is the group ®()/Z). Since the second vertical arrow is an

isomorphism, the required exact sequence is obtained by the five-lemma. "

Recall that the normalization of an integral scheme X of finite type over K° is not necessarily

a scheme of finite type over K° (see Remark 2.7.9).

7.2.6. Corollary. Given an integral flat scheme X of finite type over K°, there exist elements
Yy, € |K*| and integersly, . ..,l, > 2 such that, for any extension of valuation F1-fields K' /| K
with v; € |[K'*|% for all 1 < i < n, the normalization X' of X ® o K'° is an integral flat scheme of
finite type over K'° such that the multiplicities of the irreducible components of all of the fibers of
the canonical morphism X' — Fspec(K'°) are equal to one.

Proof. We may assume that X' = Fspec(A) is affine and m4 N K° = K°° and, by Corollary
7.2.5, it suffices to show that one can find the above data for every irreducible component ) of X
so that the multiplicity of the preimage )’ of ) in X! is one. For this we can replace A by the
localization Ap, where p is the Zariski prime ideal of A that corresponds to ), and so we may assume

that A = KO(?E/J;). By Proposition 7.2.1, A is a finite L)-module, where L9 is the unramified
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valuation K°-subalgebra of A generated by x(my) and, in particular, the K-field L = K(X) is
a finite extension of L. It follows that L -algebra A is generated by elements gi,...,9, € my
with f; = gﬁi € L for some [q,...,l,, > 2. We claim that the required property is achieved for the
elements v; = |fi| € |L*| = |K*| and the numbers l;. Indeed, let K’ be a valuation K °-algebra with
vi € |K"™| for all 1 < i < n. The tensor product L° ®ko. K'° is a valuation K’°-subalgebra of the
K'-field L' = L®k K’, and the tensor product LY = L4 @ ko K'° is an unramified K’°-subalgebra
of the K'-field L'y = Ly ®x K'. Take elements o; € K’ with |o;|' = |f;|. Then (g—)l = (L))"

i

This means that the element 2= € L' is integral over Ly. Thus, the L3-subalgebra of L’ generated

by all of the elements 4t is an unramified valuation K’°-subalgebra of L’. This implies the claim. =

(673

7.3. Algebraic groups over K°. In this subsection we consider schemes over K° and, for
brevity, the fiber product over K° of such schemes is denoted as a direct product.

An algebraic group over K° is a group object in the category of flat schemes of finite type over
K°. Such a scheme G is defined by the multiplication morphism m = mg : G X G — G, the unity
morphism e = eg : Fspec(K°) — G, and the inversion morphism ¢+ = 1g : G — G that satisfy the
well known conditions. It follows that G is a group object in the category of all schemes over K°
and, in particular, for every scheme X over K° the set of morphisms Homgo (X, G) is provided
with the structure of a group. It follows also that G, and G, are algebraic groups over K and K ,

respectively.

7.3.1. Examples. (i) Suppose we are given a finite group G and a map r : G — Zspec(K°) :
o — t, such that vy = K, t, = t,-1, ts Nt C tyr and K{’o = K, with o, € K° for
all 0,7 € G. (Such a map will be said to be special.) We associate with these data an algebraic
group G = G'. over K° as follows: G is the disjoint union [[ . G(?) with G(7) = Fspec(Kg ). The
multiplication morphism m : GxG =] (0,7)EGXG G(>™) — G is induced by the canonical morphisms
gl = Fspec(K¢ ¢ ) — Gglor) = Fspec(Kg ). The unity morphism e is the identity morphism
Fspec(K°) = G, and the inversion morphism ¢ are the identity morphisms G(©) = G ). An
algebraic group over K° isomorphic to a group G%-. of the above form is said to be a discrete finite
algebraic group over K°. As a scheme such G%. is affine (with non uniquely defined K°-algebra).

(ii) More generally, suppose that the above finite group G acts on the right by automorphisms
on an algebraic group H over K°. Then one can construct an algebraic group G called the semidirect
product of G. and H. Namely, it is the disjoint union [[ .. G(?) with G(?) = H @k K¢ . The
multiplication morphism m : G x G = H(a,r)erG Gl 5 G with glo) = (H xH) Rko K¢ e,

is induced by the multiplication morphism on A and the canonical morphisms Fspec(K¢ . ) —
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Fspec(K¢ ). The unity morphism eg coincides the morphism e : Fspec(K°) — G = H, and
the restriction of the inversion morphism ig to G (@) is the morphism G (@) 5 ¢ (@™") that corresponds
to the composition morphism H U—_>1 H B,

(iii) Any finitely generated Fi-field M defines an affine algebraic group Dy, (M) = Fspec(M)
over F; as follows: the multiplication morphism corresponds to the homomorphism M — M®@g, M :
f— f® f, the identity morphism corresponds to the homomorphism M — F; : f+— 1for f € M*,
and the inversion morphism corresponds to the homomorphism M — M : f — f=! for f € M*.
Notice that Dy, (M) represents the contravariant functor that takes a scheme X" over F; to the group
Hom(M*,O(X)*). The algebraic group Dgo(M) = Dg, (M) @, K° is said to be a diagonalizable
group (of finite type) over K°. The correspondence M +— Do (M) gives rise to an anti-equivalence
between the category of finitely generated Fi-fields or the equivalent category of finitely generated
abelian groups and the category of diagonalizable groups over K° and, therefore, one can view the
latter as an abelian category. For example, a homomorphism Dgo (M) — Dgo(N) is surjective if
the corresponding homomorphism of groups N* — M* is injective, and its kernel is Dgo (L) with
L* = Coker(N* — M*). If M* has no torsion, Do (M) is said to be a torus over K° and, if M*
is an infinite cyclic group, this torus is denoted by Gy, go. If M* is finite, Do (M) is said to be a

connected finite algebraic group over K°.

A left action of an algebraic group G on a scheme X over K is a morphism py: G x X — X
which possesses the usual properties. For example, G acts on itself. An open subscheme U C X is
G-invariant if u(G xU) C U. We say that X is a left torsor for G if the morphism (p,p2) : G X X —
X x X is an isomorphism (where p; denotes the projection to the i-th multiplier). In the same way
one defines right actions and right torsors. By default, the actions and torsors considered are left.
Notice that, if X is a torsor for G, then any G-invariant open subscheme of X coincides with X.

We say that a torsor X is split if the set X'(K°) = Hompgo(Fspec(K°), X) is nonempty. It
is easy to see that X is a split torsor for G if and only if there is a G-equivariant isomorphism of
schemes G = X. Notice also that, if X is a torsor for G, the algebraic group G is unique up to a

unique isomorphism.

7.3.2. Proposition. The following properties of a strict scheme X of finite type over K° are
equivalent:

(a) X is a torsor for a diagonalizable group Do (M);

(b) X = Fspec(L®) for an unramified valuation K°-algebra L°.

Furthermore, in this case there is a canonical isomorphism M = L/K* = L/K*.
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Proof. (b)=-(a) and the latter property. Since X is of finite type over K°, the F-field L/K*
is finitely generated over F1. We set M = L/K* and denote by A the K°-algebra K° ®p, M of
the diagonalizable group Dxo(M). If f denote the image of an element f € L in M, then the
homomorphism L° — L° ®go A = L° ®p, M : f — f® f defines an action p: Do (M) x X — X
of Dgo(M) on X. We claim that X is a torsor for Dgo(M). Indeed, the morphism (u,p2) :
Dgo(M) x X — X x X corresponds to the homomorphism L° ® go L° — L° o A = L° Qp, M :
f®g— fg®g. That this homomorphism is injective is trivial. Let f ® m be a nonzero element
of L° @ m. Since L*/K* 5 L*/K*, we can find an element g € (L°)* with § = m. Then f ® m is
the image of the element fg~! ® g € L° ® o L°, and the claim follows.

(a)=(b). Proposition 7.1.6 implies that, if the number of irreducible components of X is n,
then the numbers of irreducible components of Do (M) x X and of X x X are n and n?, respectively.
Since both schemes are isomorphic, it follows that n = 1, i.e., X is irreducible. Applying this to the
torsor X for D (M ), we get that X is also irreducible. Furhermore, Proposition 7.1.4(iii) implies
that Dgo (M) x X is the minimal open subscheme of Do (M) x X and, therefore, u(Dgo (M) xX) C
X, i.e., X is invariant under the action of Dgo(M). Tt follows that X = X and, in particular,
X = Fspec(A) is affine. The action morphism g corresponds to a homomorphism A — A ®@p, M :
f = f®86,(f) such that 8(f) # 0 for any nonzero f. The morphism (u,p2) corresponds to a
homomorphism A ®ge A - A®p, M : f®g— fg®0,(f). Since the former is an isomorphism,
then so is the latter. Suppose that fh = gh for f,g,h € A and h # 0. Then the above isomorphism
takes the elements f ® h and g ® h to the same element of A @, M. This implies that f = g, i.e.,
A and G are integral. Applying this to the torsor Xy for Dz (M), we get that X is also integral

and, by Corollary 7.2.4, A is an unramified valuation K°-algebra. "

7.3.3. Corollary. In the situation of Proposition 7.3.2, the torsor X is split if and only if the
canonical surjection L* — M* = Z*/I?* is split over the torsion subgroup of M*. In particular, it
is always split if the group M™* has no torsion.

Proof. By the definition, X is split if there exists a section L° — K° of the canonical
embedding of valuation Fi-algebras K* < L°. This is evidently equivalent to existence of a
section of the canonical homomorphism of groups L* - M* = L* / K*. Suppose that the latter
surjection is split over the torsion subgroup M . of M*. Since M* /M . is a free abelian group of

finite rank, we can find a splitting M* = M

o s X G. Since the surjection considered has a section

over the free abelian group G, it follows that it has a section over the whole group M. .

7.3.4. Corollary. In the situation of Proposition 7.3.2, the following are equivalent:
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(a) X is split for Do (M);
(b) Xs is split for D(M);
(c) &, is split for D (M). .

7.3.5. Theorem. Let G be an algebraic group K°. Then

(i) the connected component of the unity of G is a diagonalizable group Dgo(M);

(ii) the set of connected components my(G) has a canonical structure of a finite group G, and
it is provided with a special map r : G — Zspec(K°);

(iii) the connected component G of G that corresponds to an element o € G is a left and
right torsor for DKE” (M), and its image in Fspec(K°) coincides with Fspec(K7y );

(iv) there is a canonical surjective homomorphism of algebraic groups G — G'..

Proof. Step 1. If G is connected and G is irreducible, then G = é Indeed, Propositions
7.1.3(i) and 7.1.4(ii) imply that G x G is the minimal open subscheme W of G x G with W, # () and,
therefore, m(C; X é) C G. For the similar reason, one has z(?) C G. This implies that G is an open
affine subgroup of G. Let now g be a point of G, and let ¢’ denote its image under the morphism
(1g,2) : G — G xG. Then the point m(g’) lies in the image of the morphism e : Fspec(K°) — G and,
in particular, ¢’ € m—l(é). By Proposition 7.1.4(ii), the point g’ has an open affine neighborhood
in m—l(é) of the form U/ x V, where U and V are open affine subschemes of G. Since both ¢/ and V
contain G and, in particular, the image of the morphism e, it follows that m(U x V) DU UV and,
therefore, Y =V = é Thus, g € <j, ie., G= é

Step 2. If G is connected and G, is irreducible, then G is integral. Indeed, since the scheme G
is flat over K°, it suffices to show that G, is integral. We may therefore assume that the valuation
on K is trivial. Step 1 implies that G is affine, i.e., G = Fspec(A), and G = é, i.e., G has no
nontrivial open affine subschemes. It follow that all elements of A outside zn(A) are invertible and,
therefore, A is quasi-integral. Consider the homomorphism p: A — A ® ¢ A that corresponds to
the multiplication morphism m : G x G — G, and the homomorphism ¢ : A — K that corresponds
to the unity morphism e : Fspec(K) — G. Let a be an element of zn(A), and let p(a) = b®ec. Since
a is nilpotent, at least one of the elements b or ¢ should be nilpotent. Suppose it is b. Then €(b) = 0.
Since the composition of the homomorphism g with the homomorphism A®x A — A : zQy — ze(y)
is the identity on A, we get a = 0, i.e., zn(A) = 0. The claim follows.

Step 3. If G is connected and G is irreducible, then G is isomorphic to a diagonalizable group.
By Step 2, G = Fspec(K°(G)) and the K°-algebra K°(G) is integral. Applying the same fact to

the algebraic group G, over K , we get that G is also integral. Corollary 7.2.4 then implies that
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K°(G) is an unramified valuation K°-algebra. Let M be the finitely generated Fi-field K°(G)/K*.
By Proposition 7.3.2, G is a torsor for the diagonalizable group Dg.(M). Since G is also a torsor
for itself, the claim follows.

Step 4. If G is connected, Gy is irreducible. Indeed, by Proposition 7.1.3(iv), G is connected.
Since G5 is an algebraic group over K , this reduces the situation to the case when the valuation
on K is trivial. Let X be an irreducible component of G that contains the image of the morphism
e : Fspec(K) — G. Since the scheme X x X is also irreducible. This implies that the image m(X x X)
lies in an irreducible component of G. But that image contains X and, therefore, m(X x X) = X.
Since X x X is reduced, it follows that the morphism m gives rise to a morphism m : X x X — X.
For the same reason, the isomorphism 2 gives rise to an isomorphism 2 : X = X. Thus, X is an
irreducible algebraic group. By Step 3, A is a diagonalizable group and, in particular, X" is the
spectrum of a K-field. Suppose that G # X. Since G is connected, we can find an irreducible
component ) of G which has nonempty intersection with X and does not coincide with X. As
above, the scheme X x ) is irreducible and its image under the morphism m contains ). It follows
that m(X x ) = Y and, therefore, m(X x (¥ NY)) € X NY. The latter is possible only if
X NY = X which contradicts the assumption G # X.

Thus, if G is connected, it is isomorphic to a diagonalizable group, and (i) is true.

Step 5. Consider now the general case. Let G denote the set 7my(G) of connected components of
G. For an element o € G, let G(?) denote the corresponding connected component. For every pair
of elements 0,7 € G, the direct product G(?) x G(7) is connected and, therefore, its image under
the morphism m lies in some G(*). We define a binary operation on G by o1 = p. It is easy to
see that this operation provides G with the structure of a group, the unity element of which is the
connected component G that contains the image of the morphism e. The morphism m induces
morphisms G x g(1) — Go7) and isomorphisms ¢ : gl — g<0’1> for all o,7 € G. In particular,
G is a connected irreducible algebraic group, and it acts on each G() from the left and the right.
By the previous steps, G(!) is a diagonalizable group Dgo(M). The isomorphisms (m,1g) and
(1g,m):GxgG 5 G x G give rise to isomorphisms of connected schemes G x g1 5 glor) « g(7)
and G x (M) = G(@) x Go7) for all 0,7 € G and, in particular, to isomorphisms D go (M) X gl 5
G x G and G(@) x Do (M) 2 G0 x g9 This means that each connected component gl
is a left and right torsor for Dgo(M). Furthermore, Proposition 4.4.6 implies that the image of
the canonical map G(?) — Fspec(K°) is a principal open subset D(a,) for some a, € K°, and this
subset coincides with Fspec(K¢ ), where t, is the maximal Zariski prime ideal of K° that does not

contain the element o, . One evidently has t; = K°, and the isomorphisms G(?) xG(7) 5 G(@) x g(e7)
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easily imply that t, = t,-1 and v, Nv; C tyr, i.e., the map r : G — Zspec(K°) that takes o to t,

is special. Validity of the statements (ii)-(iv) easily follows. ]

7.4. Separated integral flat schemes of finite type over K°. For a finitely generated
K-field L that contains K, the quotient L = L/K* is a finitely generated F;-field, and so it defines
a diagonalizable group Dxo(L). The correspondence L + Do (L) is a contravariant functor. If X
is an integral flat scheme of finite type over K°, the diagonalizable group Dgo(K (X)) is denoted
by D(X). By Proposition 7.2.1, D(X) is a torus if and only if X, is geometrically irreducible.
In this case D(X) will be denoted by 7(X). Notice that D(X), = D(&,) = Dr(K(X)) and
D(X)s = D(K(X)).

7.4.1. Definition. A flat scheme X of finite type over K° is said to be a generic torsor for
an algebraic group G over K° if there is a G,-invariant dense open subscheme ¢/ C &, which is a

torsor for G,,.

7.4.2. Theorem. Let X be a separated integral flat scheme of finite type over K. Then

(i) there is a canonical action p: D(X) x X — X which makes X a generic torsor for D(X);

(ii) any action of a diagonalizable group Dgo(M) on X is induced by a unique homomorphism
Dgo(M) — D(X) and the canonical action of D(X) on X;

(iii) each irreducible component Y of X, is D(X)s-invariant, the induced homomorphism

D(X)s — D(Y) is surjective, and its kernel is finite of order equal to the multiplicity of ).

Suppose a diagonalizable group Dgo (M) acts on a connected flat affine scheme X = Fspec(A)
over K°. Then the scheme Do (M) x X is also connected, and so the action p of Dgo(M) on X
defines a homomorphism of K°-algebras u* : A - A®p, M. It is easy to see that the properties for
the group action are equivalent to the fact that p*(a) = a®6,(a) for all a € A, where gu A M
is a quasi-homomorphism of Fj-algebras (see §3.4.1) with the property that gu(oz) = 1 for all
a € K°\{0}. It follows that gﬂ induces a quasi-homomorphism 6, : A — M.

7.4.3. Lemma. The correspondence pu — 0, gives rise to a bijection between the set of
actions of Do (M) on X and the set of quasi-homomorphisms A — M.

Proof. Given a quasi-homomorphism 6 : A — M with the above property, the map A —
A®p, M : a — a® 6(a) is a homomorphism of K°-algebras that corresponds to an action of

Dgo(M) on X. ]
7.4.4. Lemma. In the above situation, suppose that X is integral. Then
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(i) all open subschemes of X are Do (M )-invariant;

(ii) X is a generic torsor for Dgo (M) if and only if §,, is injective;

(iii) X is a torsor for Do (M) if and only if 6, is bijective.

Proof. (i) It suffices to verify the statement for open affine subschemes. Recall that any
such nonempty subscheme is a principal open subset D(f) for some f € A\{0}. Let y be a point
of Dgo(M) x D(f) whose projections are points g € Dgo(M) and x € D(f). Then f(u(y)) =
0,.(f)(y) = f(x)8,.(f)(g). Since x € D(f), one has f(x) # 0 and, since M is an F;-field and 6,,(f)
is its nonzero element, one has 6,(f)(g) # 0. Thus, f(u(y)) # 0, i.e., u(y) € D(f).

(ii) and (iii). The morphism (p,p2) : Dio (M) XX — X x X corresponds to the homomorphism
Y: AQge A= A®p, M :a®b— ab® 0,(a). By Theorem 3.2.2(ii), the former has dense image
(resp. is an isomorphism) if and only if the latter is injective (resp. bijective). Suppose first that
is injective and that 6,(a) = 6,(b) for a,b € A. If b = 0, then ¥(a ® 1) = 0 and, therefore, a = 0. If
a,b # 0, then 1(a ®b) = 1(b® a). The injectivity assumption implies that a @ b = b® a. It follows
that there exists a € K°\{0} with either a = ab, or b = aa. If 9 is also surjective, then for every
element m € M there exists an element a @ b € A @ o A with )(a ®b) =1 ® m. This implies that
6,.(a) = m. Conversely, suppose that 6, possesses the above property. If 1)(a ®b) = ab®6,(a) = 0,
then either 6,(a) = 0 and, therefore, a = 0, or ab = 0 and, therefore, a = 0 or b = 0. If
PY(a®b) = V) for a,b,a’,V’ # 0, then 6,(a) = 0,(a’) and ab = a’b’. The property implies
that there exists a € K°\{0} with either a = aad’, or ' = aa. In the former (resp. latter) case, we
have aa’b = a'b’ (resp. aab’ = ab) and, therefore, b = ab (resp. b = ab’). In both cases, we get
a®b=a ®V. Finally, suppose that 6, is bijective. Given a nonzero element a ® m € A ®g, M,
take an element b € A* with 6,,(b) = m. Then ¢(b® ab~') = a ® m, i.e., the homomorphism 1) is

surjective. "

Proof of Theorem 7.4.2. (i) Given a strict open affine subscheme U C X, the injective
homomorphism Ay — Ay ®r, K(X) : a — a ® @ gives rise to an action p : D(X) x U — U of
the diagonalizable group D(X) = Dy (K (X)) on U. These actions are compatible on intersections
and, therefore, they give rise to a canonical action p : D(X) x X — X of D(X) on X. The minimal
open subscheme 2&7 is clearly a torsor for D(X,) = D(X),, and, therefore, X" is a generic torsor for
D(X).

(ii) Suppose we are given an action v : Do (M) x X — X of a diagonalizable group Do (M)
on X. We claim that the minimal open subscheme é’f’n of X, is D (M)-invariant. Indeed, the K-

algebra K(X) ®p, M of the affine scheme Dy (M) x 2?,7 is a K-field and, therefore, any nonempty
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open subscheme of Dy (M) x X, coincides with it. Since the intersection v~ 1(&,) N (Dg (M) x X))
is nonempty, it follows that v(Dg (M) x /'?n) C /'?77, ie., 2?,] is Dy (M)-invariant. The action of
Dy (M) on X defines (and is defined by) a homomorphism K(X) = K(X)/K* — M, and so it
is induced by that homomorphism and the canonical action of D(X) on /'\vf'n. Thus, we have two

morphisms y and v : Dgo (M) x X — X that coincide on the dense subset D (M) x X,. Since X

is separated, it follows that u = v.

(iii) That all irreducible components of X are D(X) is trivial. The homomorphism of diago-
nalizable groups D(X), — D()) corresponds to the homomorphism K (Y)*/K* — K (X)*/K* and,
by Corollary 7.2.4(ii), the cokernel of the latter homomorphism has order equal to the multiplicity
of V. n

A strict scheme X of finite type over K° is said to be a homogeneous (resp. generically
homogeneous) space for G if the morphism (u,p2) : G x X — X x X is surjective (resp. has dense

image).

7.4.5. Corollary. If X is a generically homogeneous space for a diagonalizable group

Do (M), then X, is a homogeneous space for Dy (M).

Proof. It suffices to consider the case when the valuation on K is trivial. The assumption
implies that the morphism (p, p2) : D (M) x X — X x X has dense image. Since A is an K-field,
it follows that Ay ®x Ay is also a K-field, and Corollary 1.2.6 implies that the above morphism

is surjective, i.e., X' is a homogeneous space for Dy (M). .

Let ¢ : Y — X be a morphism between separated flat integral schemes of finite type over K°,
and denote by Z the Zariski closure of the set ¢(Y) in X. Since Z,, is the Zariski closure of ¢(})))
in X,,, Proposition 7.1.3(iv) implies that Z is also a strict separated integral scheme of finite type
over K°. Then ¢ is a composition of the Zariski dominant morphism 1 : J — Z and the Zariski
closed immersion x : Z — X. Since 1/1(5),7) C Zvn, there are induced homomorphisms of K-fields
K(Z) — K(Y) and of diagonalizable groups 3, : D()) — D(Z). Furthermore, x identifies Z with
an irreducible Zariski closed subset of X. If I/ is a nonempty open affine subscheme of X', then
ZNU =UWP for a Zariski prime ideal p C Ay, and K(Z) is identified with the K-field x(p). The
canonical homomorphism Ay /p < Ay induces an embedding of K-fields K(Z) = k(p) — K(X),

and the latter gives rise to a surjective homomorphism of diagonizable groups 2, : D(X) — D(Z).
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7.4.6. Corollary. In the above situation, the following diagram is commutative

m

D) x x B x
llx TX TX

Dz x 2 5B 2z
Toy T Ty

DY) x Yy 5% oy

Proof. It suffices to consider two cases: (1) ¢ is Zariski dominant, and (2) ¢ is a Zariski closed
immersion.

(1) If Y € X and V C Y are strict open affine subschemes with ¢(V) C U, then the homo-
morphism Ay — By is compatible with the homomorphism K(X) — K()) and, therefore, the
homomorphisms 60, : Ay — W and 6, : By — W are compatible. This implies the required
fact.

(2) Let U be a strict open affine subscheme of X. Then V = o~ '(U) coincides with UP) =

Fspec(Ay /p) for a Zariski prime ideal p C Ay. The canonical injective homomorphisms Ay, /p — Ay

and xk(p) — K(X) are compatible, and this implies the required fact. .

7.5. Connection with toric schemes. Let k be a (usual) valuation field. The ring k° =
{a € k||a| < 1}, called the ring of integers of k, has a unique maximal ideal k°° = {a € k||a| < 1}.
The quotient k= k°/k°° is called the residue field of k. Notice that k° = k° and k°° = k°°. On
the other hand, k' is the F-field whose group of invertible elements is (k°)*, and so the canonical
homomorphism of Fy-fields k& — k gives rise to an isomorphism k' /k' =5 k', where k! is the group
{a € k°|la — 1] < 1}. Notice also that the canonical map Spec(k®) — Fspec(k®) : t — ¢ is a

bijection.

7.5.1. Definition. (i) A toric scheme over k° is a separated integral scheme ) flat and of
finite type over k° provided with an action of a split k°-torus 7 = 7 ()) such that
(1) Y, has an open dense orbit which is a torsor for 7y;
(2) Y is covered by T-invariant open affine subschemes.

(ii) A closed toric subscheme is a nonempty irreducible T-invariant closed subset flat over k°.

If the valuation on k is trivial, the condition (2) is automatically satisfied if ) is normal, by
a theorem of Sumihiro [Sum|. In this case, toric schemes are called toric varieties, and a closed
toric subscheme is just the closure of an orbit of the torus. In the general case, every closed toric
subscheme Z of ) is a toric scheme over k° for the torus 7 (Z) which is the quotient of 7 by the

stabilizer of all points of Z.
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Let Y = Spec(B) be an affine toric scheme over k° for a torus 7 with the character group M,
and let M be the corresponding F-field {0} U M. (In such a situation we will write 7 = Dyo (M).)
The action pp: 7 x Y — Y of T on ) defines a decomposition B = @, ¢y By, where B, are
k°-submodules of B with B,/ - By» C Bys,». Namely, one has B, = {f € B{pu*(f) = f @ x}. We
set S = {x ¢ M|BX # 0}, S = {0} U S, and denote by t the set of all elements of k° which are

non-invertible in B. Then vt is a prime ideal of k° and all B,’s are kg-modules.

7.5.2. Proposition. In the above situation, the following is true:

(i) S is a finitely generated Fi-algebra with fraction Fi-field M;

(i) for every x € S, B, is a free kg-module of rank one;

(iii) A = U, 5By is a strict finitely generated (kg) -subalgebra of B", and A ®j- k° 5 B;

(iv) if A is integrally closed and A = A/ (k°°) is reduced, then B is integrally closed;

(v) there is a canonical bijection between the set of closed toric subschemes and the Zariski
spectrum Zspec(S);

(vi) all closed toric subschemes of Y are faithfully flat over kg.

Proof. Take a surjective homomorphism C' = k°[Ty,...,T,] = B :T; — g;. If g; = 31" 1 Gyt
we replace the above homomorphism by a similar homomorphism in which instead of the variable T;
there are variables Tj; that go to the elements g; ,,. In this way we get a surjective homomorphism
C — B as above with g; € B,, for all 1 <7 < n which induces a surjective homomorphism of k*°-
algebras C° — A. In particular, A is a finitely generated k°-subalgebra of B* and A ®j0 k° = B.
It follows also that S is a finitely generated Fi-subalgebra of M. Since ), has a dense orbit which
is a torsor for 7Ty, the fraction F;-field of S is M, i.e., (i) is true. Furthermore, since my Nk° =1,
Proposition 7.1.2 implies that, for each x € S, A, is a free (ky)-module of rank one and, therefore,
B, is a free kg-module of rank one, i.e., (ii) and (iii) are true. Finally, let Z be a closed toric
subscheme of ). It is the closure of a unique dense orbit of 7;, in the toric variety ). It follows
that the set p = {0} U {x € S’}f(z) =0 for all z € Z and f € B,} is a Zariski prime ideal of S.
This implies (v). Since Z = Spec(B/q), where q = @©,ep\ 0} By, and there is an isomorphism of
kg-modules B/q = @ycs\pBy, (vi) is true.

It remains to verify the statement (iv). The converse implication is trivial. Suppose that A is
integrally closed. If the valuation on K is trivial, this implies that the semigroup S is saturated
in the group M, and the statement is well known. In the general case, we apply the previous one
to A’ = A®po k" and B’ = B ®go k. Since B’ = A’ @ k, it follows that every element of the

fraction field of B integral over B is of the form A~!f for some A € kg and an element f which is
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a generator of the free kg-module B, = A, for some x € S. T+ g, 1 X" ' +...+go=01is an
equation on integral dependence of A\~!f over B, we may consider only homogeneous summands
iy, of gi with x™ = x;x" "1, and we get an equality ™ + Agn—1., " '+ ...+ Ao, = 0 in
B,~. The latter is a free kg-module of rank. Since Ais reduced, it follows that the element f" is a
generator of By». The equality now implies that A is invertible in kg, i.e., the element considered

lies in B. .
Let ) be a toric scheme over k° for a torus 7 = Dyo (M).

7.5.3. Corollary. The correspondence Z — Z (the closure of Z in Y) gives rise to a bijection

between the set of T,-orbits in Y, and the set of closed toric subschemes of Y. n

7.5.4. Corollary. Let Z be a T -invariant irreducible closed subset of ), and let v be the
prime ideal of k° which is the image of the generic point of Z. Then

(i) Z is a toric scheme over the quotient (valuation) ring k°/v;

(ii) if Y is faithfully flat over k°, then so is Z over k°/t.

Proof. We may assume that ) = Spec(B) is affine. By Proposition 7.5.2, one has B =
A R k°, where A is an integral finitely generated k°-algebra and, therefore, Y = X ®j-- k° for
X = Fspec(A). We set X' = X @0 (k) and V' =Y ®po kg. Then the generic point of Z lies in
the closed fiber V! of ). Since Y’ = X’ ®(k%)- kg, it follows that each irreducible component W of
V. is a toric variety over £(t), the fraction field of £°/t. More precisely, W is D, (M )-invariant
and the canonical homomorphism D, ) (M) — T(W) = D,x)(M’) is an isogeny. It follows that
the closure W of W in Y ®e k°/t is a toric scheme over k°/t for the torus T(W) = Djo e(M’).
Since Z, = Z ®po k(v) is irreducible, it lies in such an irreducible component W and, therefore, it
is the closure of a 7 (W)-orbit. Corollary 7.5.3 implies that Z, which coincides with the closure of
the latter in W, is a closed toric subscheme in V. Furthermore, suppose ) is faithfully flat over
k°. By Proposition 7.5.2(vi), to show that Z is faithfully flat over k°/t, it suffices to verify this
property for W, i.e., we may assume that Z, = W. For this we notice that W is the preimage
of an irreducible component V of X!. By Proposition 7.2.1(i), V is Zariski closed in X”, i.e.,
V = Fspec(A’/p’) for a Zariski prime ideal p’ C A’. If p is the preimage of p’ in A, then the closure
V of V in X coincides with Fspec(A4/p). Since p N k° = t, Corollary 2.8.2 implies that A/p is a
free k°/t-module and, therefore, C' = A/p Q- k° is a free k°/t-module. Since Z = Spec(C), the

required fact follows. "

Let Y and )’ be toric schemes over k° for tori 7 and T, respectively. Let ¢ : J) — ) be

a morphism of schemes over k°. We say that ¢ is a toric morphism if the image of y,’] lies in a
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Ty-orbit in ), and, if Z is its closure in ), there is a homomorphism of tori 7/ — 7 (Z) which
is compatible with the induced morphism )’ — Z. It is easy to see that one can compose toric

morphism, and so we get a category of toric schemes over k°.

7.5.5. Theorem. The correspondence X — X ®y-- k° gives rise to an equivalence between
the category of separated integral schemes of finite type over k'° with geometrically irreducible
generic fiber and the category of toric schemes over k°.

Proof. The functor considered is fully faithful. Let X and X’ be separated integral schemes
of finite type over k'° with geometrically irreducible generic fibers, and let ¢ be a toric morphism
V =X Qpo k° = Y = X Qo k°. Suppose T(X) = Dyo(M) and T(X') = Dy.o(M’). Then
T(Y) = Dyo(M) and T(Y') = Dyo(M").

Consider first the case when  is Zariski dominant, i.e., ¢,(Y;) C V. Since both groups
Hom(7(X’), T(X)) and Hom(7()’),T())) are canonically isomorphic to the group Hom(M, M’),
they are canonically isomorphic. In particular, the homomorphism of tori 7()’') — T(Y) that
corresponds to the morphism ¢ comes from a homomorphism of tori 7(X’) — T(X) which is
induced by a homomorphism f: M — M’.

If X = Fspec(A) and X’ = Fspec(A) are affine, then V = Spec(B) and )’ = Spec(B’) for
B = A®po k° and B’ = A’ k- k°. Compatibility of ¢ with the homomorphism of tori implies
that f(S) c 8" = {x' € M"B;{, # 0} and ¢*(By) C B}, for all x € S. Thus, the morphism
¢ is induced by a homomorphism of k°-algebras A — A’| i.e., by a Zariski dominant morphism
X’ — X of schemes over k°.

If X and X’ are arbitrary, the morphism ¢ is defined by a compatible system of morphisms
of affine toric varieties yy/y : V' — V for all pairs of invariant open affine subschemes V C Y
and V' C V' with ¢(V') C V. By Proposition 7.5.2, one has V = U ®- k and V' = U’ Q- k for
open affine subschemes U C X and U’ C X’ and, by the previous case, the morphism of affine toric
varieties is induced by a unique morphism of affine schemes v/ s : U' — U. 1t is easy to see that
the morphisms )y, are compatible, and so they define a morphism ¢ : &” — & which induces
the morphism .

To prove the required statement in the general case, we need the following fact.

7.5.6. Lemma. For any separated integral scheme X of finite type over k'°, the correspon-
dence Z — Z ®y,- k° gives rise to a bijection between the set of irreducible Zariski closed subsets
Z C X, and the set of closed toric subschemes of Y = X @0 k°.

Proof. First of all, Proposition 7.1.3(iii) implies that the closure Z of Z is Zariski closed in ),
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and so it is an integral closed subscheme of . It follows that Z®y-- k° is a closed toric subscheme of
Y. On the other hand, let W be a closed toric subscheme of ). To verify the required fact, we may
assume that X = Fspec(A) is affine. By Proposition 7.5.2(v) (and in its notation), YW corresponds
to a Zariski prime ideal of S. Since A/k* = S, where A = A®y-o k', we get Zspec(S) = Zspec(A),

and the required fact follows. "

Consider now the general case. Let W be the closure in ) of the 7,-orbit in ), that contains
©n(Yy). By Lemma 7.5.6, we have W = Z ®p-o k°, where Z is a Zariski closed subset of X. By
the previous case, the morphism )’ — W is induced by a morphism X’ — Z. It follows that ¢ is

induced by a morphism X’ — X.
The functor considered is essentially surjective. To prove this, we need the following fact.

7.5.7. Lemma. For any separated integral scheme X of finite type over k'° with geometrically
irreducible fiber, the correspondence U — U R0 k° gives rise to a bijection between the set of
open (resp. open affine) subschemes of X and the set of T ())-invariant open (resp. open affine)
subschemes of Y = X ®p-0 k°.

Proof. Step 1. We may assume that X = Fspec(A) is affine and strict over k°, and set
T = T(). It suffices to show that any T -invariant open subscheme V C Y = Spec(B), where
B = ARy k°, is of the form U @y k° for an open subscheme U C X. Indeed, suppose this is true,
and let V be a T-invariant open affine subscheme of ). By Proposition 7.5.2, one has V = U’ ®@j-0 k°
for an affine scheme U’ of finite type over k°. The fully faithfulness already established implies that
U is isomorphic to U/, i.e., U is in fact an open affine subscheme of X.

Step 2. Let t be the prime ideal of k° that consists of the elements which are non-invertible
in By. We claim that ki = kg, for some nonzero element o € k°. Indeed, since By is an integral
finitely generated k°-algebra, it is a free kg-module, by Proposition 7.5.2. This implies that the
image of the canonical map V — Spec(k°) coincides with Spec(kg). On the other hand, since B is
a flat finitely generated k°-algebra, it is finitely presented over k°, by a result of Raynaud-Gruson
[RG, Corollary 3.4.7]. This implies that the morphism ) — Spec(k®) is an open map, by [EGAIV,
Theorem 2.4.6]. Thus, Spec(kg) is an open subset of Spec(k®). Since it is quasi-compact, it is a
finite union of principal open subsets D(a;) U...U D(ay,). If max{|a1],...,|an|} = |ail, it follows
that Spec(ky) = D(a;) and, therefore, k¢ = kg,.. The claim follows. We can therefore replace ) by
the principal open subset Dy () and assume that V is also faithfully flat over £°.

Step 3. The map V — Vs from the set of T-invariant open subschemes of Y, which are

faithfully flat over k°, to that of Ts-invariant open subschemes of Vs is injective. Indeed, it suffices

151



to verify that, if for T-invariant open affine subscheme V', V" C ) one has V' C V" and V. = V!,
then V' = V". Suppose that V' # V", and set Z’ = V"\V'. Let t be a prime ideal of k° from the
image of Z’. The affine scheme Z{ = Z’ @0 k(v) is of finite type over the field x(t), the torus T¢
acts on it, and all its irreducible components are invariant under 7{. Let Z be the closure in Y
of an irreducible component of Z. Then Z is a nonempty 7-invariant irreducible closed subset of
Y, and Corollary 7.5.4(ii) implies that Z is faithfully flat over £°/v. It follows that Z5 # () which
contradicts the equality V' = V".

Step 4. The statement of the lemma is true. Indeed, let V be a T-invariant open affine
subscheme of ). By Step 2, we may assume that it is faithfully flat over k°. Each T;-orbit in Y
either lies in Vs, or does not intersect V. If P and @ are two 7,-orbits in Y, we write P < @ if
P C Q. Let P be a minimal 7;-orbit in ), which lies in V. Since P is a T,-invariant closed subset
of Y and a toric variety, there exist y € S and f € B, with fv# 0 such that P is the principal open
subset Dﬁ(f). (Here we use notations from the proof of Proposition 7.5.2.) Since Vs is open in Vs,
then for every Ts-orbit @ with P < @ one has @ C Vs. It follows that Dy, (f) C Vs. This implies
that V, = U, Dys(ﬁ) for some f; € B,,, xi € S. Each f; can be considered as an element of

A,,, and so we can consider the open subscheme U = |J;_, Dx(f;). Since the closed fibers of the

open subschemes Vs and U ®j-o k° coincide, Step 3 implies that they coincide. "

7.5.8. Corollary. In the situation of Lemma 7.5.7, the correspondence Z — Z ®y-o k° gives
rise to a bijection between the family of Zariski closed (resp. closed affine) subsets of X and the
family of T (Y)-invariant closed (resp. closed affine) subsets of Y = X ®j-o k°.

Proof. Let W be a T())-invariant closed subset of ). Then V = Y\W is a T ())-invariant
open subscheme of ). By Lemma 7.5.7, one has V = U ®j-- k° for an open subscheme U of X. Since
any open subscheme of the integral scheme X is Zariski open, it follows that the set Z = X\U is
Zariski closed, and we get W = Z ®y-0 k°. If W is affine then, by Proposirion 7.5.2, W = Z' @y k°
for an affine scheme of finite type over k°. The fully faithfulness of the functor from Theorem 7.5.5

implies that Z is isomorphic to Z’ and, therefore, Z is affine. "

Let Y be a toric scheme over k°. By Proposition 7.1.3, for every 7-invariant open affine
subscheme V of ) one has V = U ®j-- k° for an affine scheme U of finite type over k°. If for such
subschemes one has V' C V”, Lemma 7.5.7 implies that, for the corresponding affine schemes over
k°, U’ is an open affine subscheme of U”. Thus, we can glue all such affine scheme U along the
intersections, and we get an integral scheme X of finite type over k° with Y = X ®p-- k°. Finally,

since ) is separated, for any pair of 7-invariant open affine subschemes with nonempty intersection
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V', V" C ), the canonical homomorphism of k°-algebras By ®jo By — Byrnyr is surjective. This
easily implies that the corresponding homomorphism of k°-algebras Ay Qpo Ay — Ay is

surjective and, therefore, X is separated. "

7.5.9. Corollary. Let Y be a faithfully flat toric scheme over k° for a torus 7. Then
every irreducible component Z of the closed fiber Y, is a toric variety over k and the canonical
homomorphism of tori Ty — T (Z2) is an isogeny with kernel of order equal to the multiplicity of Z
n Y. n

7.5.10. Corollary. Given a toric scheme ) over k°, there exists a finite separable extension
k' of k such that the valuation on k has a unique extension to k' and the normalization )’ of
Y Qo k'° is a toric scheme over k'° such that the multiplicities of the irreducible components of all
of the fibers of the canonical morphism Y’ — Spec(k’®) are equal to one.

Proof. By Theorem 7.5.5, one has J = X ®jo k° for a separated strict integral scheme
X of finite type over k° with geometrically irreducible generic fiber. Let ~1,...,7, € |k*| and
li,...,1l, > 2 be as in Corollary 7.2.6 for X. We claim that there exists a finite separable extension

k' of k such that the integral closure of k° in k' is a valuation ring and v; € |k"™|% for all1 < i < n.

Indeed, it suffices to consider the case when n =1 and l; = p is a prime number. We may assume
that y =7, < 1 and v ¢ |k*|P. Take an element o € k°° with |a| = 7, and consider an extension k&’
of k of degree p that contains a root 3 of the separable polynomial T? 4+ o?T + «. The valuation
on k admits an extension to k', and let k’° be its ring of integers. Then g € k'° and || = ]a]%. It
follows that the extension of the valuation to &k’ is unique and, therefore, k’° is the integral closure
of k° in K/, i.e., the claim is true. By Corollary 7.2.6, the normalization X’ of X ®- (k’°) is a
scheme of finite type over (k’°)" with reduced fibers of the canonical morphism X’ — Fspec((k’°)").
Notice that all of the irreducible components of the fibers are toric varieties. It follows that the
toric scheme )" = X’ ® (0. k'® over k'® has the required property, and Proposition 7.5.2(iv) implies

that ) is normal. Since )’ lies in the normalization of ) ®ge k’°, it coincides with it. "

7.6. The case of trivial valuation on K and normal X. The theory of toric varieties
describes normal toric varieties over a field k£ in terms of fans, and so Theorem 7.5.5 implies
that separated geometrically irreducible normal schemes of finite type over the F-field k" can be
described in the same terms. In this subsection we give a direct description of the category of
separated irreducible (not necessarily geometrically irreducible) normal schemes over an arbitrary

Fi-field K in terms of fans.
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For an Fi-field L, let V1 denote the set of all real valuations on L. We denote points of
V1 by the letters x, y and so on and, for x € V, the image of f € L under the corresponding
homomorphism L — R is denoted by f(z). The set V, is provided with the weakest topology with
respect to which all functions V, — R, of the form = — f(z) with f € L* are continuous. Notice
that V1, is a vector space over R with respect to the group structure defined by multiplication and
the action RxVy — Vi : (r,x) — 2" defined as follows: f(z") = f(x)" for all f € L. Furthermore,
for a subset F C L, let VL{F} denote the the subset {x € V|f(z) < 1 for all f € F} provided
with the induced topology.

Notice that, if M is an F;-field that contains L, then the canonical map V,; — Vi is
surjective. Indeed, the spaces V and V), coincide with the sets of homomorphisms of abelian
groups Hom(L*, R ) and Hom(M*, R ), respectively, and the required surjectivity follows from
the fact the abelian group R} is injective. Notice also that, given homomorphisms of F-fields

L — M and L — N, there is a canonical homeomorphism Vg, N 5V Xv, VN.

7.6.1. Proposition. Let L/K be an extension of Fi-field. Then for any K-subalgebra
A C L, the integral closure of of A in L coincides with the set of f € L such that f(x) <1 for all
S VL{A}

7.6.2. Lemma. Given a Zariski prime ideal p C A, there exists a point x € V{A} with
p={feAlf(x) <1}.

Proof. By Proposition 2.7.2, we may assume that A is a valuation Fi-algebrain L and p = my.
Furthermore, let K’ is the Fi-field K*A* U {0}. Then the homomorphism K — Ry : f — |f]
extends in a unique way to a homomorphism K’ — R, : f — |f| that takes all elements of A*
to 1. Thus, we can replace K by K’, and we may assume that A* = K*. If now {f;};cs is a
system of nonzero elements in my whose images in L*/K* form a basis of the Q-vector space
L*/K* ®z Q, then any system of numbers {r; };c; with 0 < r; < 1 defines a unique homomorphism
L - Ry : f+— f(x) that extends the real valuation K — Ry : f — |f| and takes each f; to r;.

The point « € V[, possesses the required properties. "

Proof of Proposition 7.6.1. That the integral closure is contained in that set is trivial. Let
f be an element of L which is not integral over A. As in the proof of Corollary 2.7.4, one shows that
the Zariski ideal b of C' = A[f~!] generated by m4 and f~! is nontrivial. It follows that b C m¢,
and Lemma 7.6.2 implies that there exists 2 € V,{C} such that m¢ = {g € C|g(x) < 1}. Since
f~! € mg, it follows that f(x) > 1. n

For a finitely generated K-field L, we denote by Vi, /i the R-vector subspace Vo {K'} of V,
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where K’ is the image of K in L. Notice that any system of n elements of L* whose images form
a basis of the Q-vector space L*/K"™ ®z Q defines a homeomorphism between V,/x and the R-
vector space (R7)™. A convex polyhedral cone in V,  is said to be rational if it is defined by a
finite number of inequalities of the form f(z) <1 with f € L*. Thus, the set V{A} of any finitely
generated K-subalgebra A C L with a rational convex polyhedral cone in V,x and, conversely,
any rational convex polyhedral cone in Vi, has such a form. Furthermore, if the fraction F-field
of A coincides with L, then the V{A} is strongly convex, i.e., VL, {A} NV {A}~! = {1}. (Notice
that V {A}™' = V{A’}, where A’ = {0} U (A)~!.) The following facts easily follow from the

properties of rational convex polyhedral cones (see [Ful, section 1.2]).

7.6.3. Proposition. (i) The correspondences
A oW =V {A} and o— AV ={fe L|f(z) <1 forall z€o}

are inverse bijections between the set of integrally closed finitely generated K -subalgebras of L with
the fraction Fi-field L and the set of rational strongly convex polyhedral cones in Vi ;

(ii) oB) is a face of oA if and only if B = Ay for some f € A;

(iii) if o N 7 is a face of both ¢ and 7, then AT = A(@) . A(7), .

7.6.4. Proposition. Let A be an integrally closed finitely generated K-algebra with F-
fraction field L. Then

(i) the correspondences

T, ={f € A|f(x) <1 for some point x €T} and
pTp={r€ oW f(x) =1 forall f € A\p}

are inverse bijections between the set of faces of oY) and the set of Zariski prime ideals of A;

(i) given a Zariski prime ideal p C A, the kernel of the canonical surjection Vp, /i — V) x
is the vector subspace of Vi generated by the face Ty, and the image of the cone o) coincides

with the cone oA/P) in Vn(]J)/K- n
Let K be an Fi-field.

7.6.5. Definition. (i) A K-fan is a pair (L,A), consisting of a finitely generated K-field
L and a finite family A of rational strongly convex polyhedral cones in Vi, with the following
properties:
(1) each face of a cone in A is also a cone in A;

(2) the intersection of two cones in A is a face of both of them.

155



(ii) For a K-fan (L, A), the union of all of the cones from A in V  is denoted by |A|.

We are going to associate to every separated irreducible normal scheme X of finite type over
K a K-fan A(X) as follows. Let L be the field K(X') of rational functions on X. For an open
affine subscheme U of X, let oy, denote the rational strongly convex polyhedral cone o(4) (i.e.,
oy ={x € Vi k|f(z) <1for all f € Ay}). Furthermore, if V is an open affine subscheme of X
lying in U, then V is a principal open subset of U, i.e., Ay, = (Ay)y for some f € Ay. This implies
that oy = {z € Uu’f(l‘) = 1} and, therefore, oy is a face of oyy. Proposition 7.6.3 implies that the
correspondence V — oy gives rise to an isomorphism between the poset of open affine subschemes
of U and the poset of faces of o;. Finally, given U and V are open affine subschemes of X, one
has oyny = oy Noy. Indeed, let x be a point from the right hand side. Since the homomorphism
Ay ®K Ay — Ayny is surjective, it follows that every element h € Aynqy is of the form fg with
f € Ay and g € Ay. We get h(x) = f(z)g(z) < 1, i.e., x € oyny. Thus, the set of the rational
strongly convex polyhedral cones A(X) = {0y} is a fan in V.

Let YV be an irreducible Zariski closed subset of X. If I/ is an open affine subscheme of X' that
contains Y, then Y NU = Fspec(Ay /p) for a Zariski prime ideal p C Ay. By Proposition 7.6.4, one
associates to p a face 7y of oy, namely, p = {z € O'u‘f(ﬂ?) =1 for all f € Ay/\p}. It is easy to see

that the cone 7p does not depend on the choice of U; it is therefore denoted by Ty.

7.6.6. Lemma. In the above situation, the following is true:

(i) the correspondence ) — Ty is a bijection between the set of irreducible Zariski closed
subsets of X and the set of cones in A;

(ii) A(Y) consists of the images of the cones 0 € A(X) with 7y C o under the surjection
Vi/k = Vk@)/k (induced by the canonical embedding K(Y) — L).

Proof. The statement (i) straightforwardly follows from Proposition 7.6.4(i).

(ii) Suppose ¢ is a cone in A(X) that contains 7y, and let & be an open affine subscheme of X
with 0 = gyy. Then Y NU = Fspec(Ay /p) for a Zariski prime ideal p C Ay;. By Proposition 7.6.4,
the cone oyry in A()) is the image of o under the considered surjection. Furthermore, let oy, be
a cone in A()) that corresponds to an open affine subscheme V C Y. By Proposition 5.2.4, we can
find an open affine subset &/ C X with V C Y NU. It follows that oy is a face of oyry. It remains
to use the simple fact that, for any fan A in a vector space V and any cone 7 in A, the images of
all cones from A that contain 7 under the canonical map V' — V/V (1), where V(7) is the vector

subspace generated by 7, form a fan in V/V (7). .
For a K-fan (L,A) and a cone 7 € A, we denote by K(7) = K (7) the K-subfield of L
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that consists of zero and the elements f € L with f(x) = 1 for all z € 7. (For example, if 7 is
the minimal cone in A, then K (7) = L.) Notice that the kernel of the canonical surjective map
Vi/k — Vik()/K is the vector subspaces generated by 7. We denote by Sftvar(T) = SftvarA(T) the
set of the cones ¢ € A that contain 7, and by Star(r) = Stara(7) the set of the images of the
cones from %(T) in Vg (7 under the latter surjective map. Notice that the canonical map
gg/ar(r) — Star(7) is a bijection. We already mentioned (and used in the proof of Lemma 7.6.6)
the fact that the pair (K(7),Star(7)) is a K-fan. For example, in the situation of Lemma 7.6.6,
one has (K(7y), Star(y)) = (K(Y), A(Y)).

7.6.7. Definition. (i) A dominant morphism of K-fans ¢, : (L', A’) — (L,A) is a homo-
morphism of K-fields o : L — L’ such that, for every ¢’ € A’ there exists 0 € A with v,(0’) C o,
where v, is the induced surjective map Vi, g — Vi k.

(ii) A morphism of K-fans ¢ : (L', A’) — (L, A) is a pair (7, p,) consisting of a cone 7 € A
and a dominant morphism ¢, : (L', A’) — (K (1), Star()).

Dominant morphisms are precisely morphisms in which 7 is the minimal cone in A (i.e., the
origin of Vi k). It is clear that one can compose dominant morphisms, and so K-fans with
dominant morphisms as morphisms form a category which is denoted by K-Fansi®™. We are now
going to explain how to compose arbitrary morphisms.

Let first ¢, : (L', A") — (L, A) be a dominant morphism. For 7/ € A’ let 7 be the minimal
cone in A with v,(7") C 7. Then the restriction of « to the K-field K(7) induces a homomorphism
a(r) + K(t) — K(1'). We claim that the latter gives rise to a dominant morphism @q () :
(K(7'),Star(7")) — (K(7),Star(7)). Indeed, let a cone ¢’ € Star(7’) be the image of a cone
v € A" with 7/ C 4/. We can find a cone v € A with v,(7’) C ~. Since 7 is the minimal cone
that contains v, (7") and v, (7) C v, it follows that 7 C 7. If ¢ is the image of v in Star(7), we get
va(T/)(a’) C 0, i.e., Pa(r) is really a dominant morphism of K-fans.

Suppose now we are given two morphisms ¢ = (7/,¢n) @ (L',A") — (L',A’) and ¢ =
(Ty0a) + (L',A") — (L,A), ie., two dominant morphisms ¢, : (L”, A") — (K(7'),Star(7"))
and ¢, : (L',A") — (K(7),Star(7)). By the above claim, if ¢ is the minimal cone in Star(r)
with v, (7") C o, then the restriction of a to K (o) gives rise to a dominant morphism g, :
(K(1'),Star(1")) — (Kg(r)(0),Stargsar(r)(0)). If now ~ is the cone in Star(r) whose image in
Star(7) is o, then Kg(;y(0) = K(v) and Stargg(-) () = Star(y). Thus, the latter morphism is in
fact a dominant morphism @, () : (K(7'), Star(7")) — (K (v), Star(v)), and so the composition of

dominant morphisms @u (1) © Yar = Paroa(r) is well defined. We define the composition ¢ o ¢’ as
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the pair (7, @aroa())- The category of K-fans is denoted by K-Fans.

7.6.8. Theorem. The correspondence X +— (K(X),A(X)) gives rise to an equivalence
between the category of separated irreducible normal schemes of finite type over K (resp. with

Zariski dominant morphisms as morphisms) and the category K-Fans (resp. K-Fansi®™).

Proof. Step 1. The correspondence X — A(X) is a functor. Indeed, let first ¢ : X' — X
be a Zariski dominant morphism of between schemes considered. The assumption on ¢ implies
that o(X’) C X and, in particular, ¢ induces a homomorphism of K-fields o : K(X) — K(X')'.
Furthermore, by Proposition 5.2.4, for every open affine subscheme Y’ C X’ one can find an open
affine subscheme U C X with ¢(U") C U and, therefore, v,(0y+) C 0y. This means that ¢ induces
a dominant morphism of K-fans (K(X'), A(X’)) — (K(X),A(X)). Suppose now that ¢ : X' — X
is an arbitrary morphism, and let ) be the Zariski closure of p(X’) in X'. By the previous case,
the induced Zariski dominant morphism ¢ : X’ — ) gives rise to a dominant morphism of K-fans
Yo (K(X),AX)) = (K(Y),A(Y)). Since (K(Y),A(Y)) = (K(1y), Star(ty)), the morphism the
morphism ¢ gives rise to a morphism (K(X’),A(X")) — (K(X,A(X)) represented by the pair
(Ty; $a)-

Step 2. The functor X — (K (X), A(X)) is fully faithful. Indeed, that the functor is faithful fol-
lows from separatedness of the schemes considered. Let first ¢, : (K(X7), A(X")) = (K(X),A(X))
be a dominant morphism of K-fans, i.e., a homomorphism of K-fields a : K(X) — K(X’) with the
property of Definition 7.5.3(iii). It follows that, for every open affine subscheme U’ C X', there
exists an open affine subscheme & C X’ with v, (o) C oy. The latter inclusion and Corollary 2.7.7
imply that a(Ay) C Ay, i.e., o induces a homomorphism of K-algebras Ay, — Ay and, therefore,
a Zariski dominant morphism of affine schemes U’ — U. All theses morphisms are compatible
on intersections and define a Zariski dominant morphism of schemes ¢ : X’ — X which give rise
to the homomorphism «. Suppose now that ¢ = (7,¢4) : (K(X'),A(X")) = (K(X),A(X)) is
an arbitrary morphism of K-fans. By Lemma 7.5.2(i), one has 7 = 7y for an irreducible Zariski
closed subset ) C X, and so ¢, is a dominant morphism (K (X’), A(X’)) — (K()),A(Y)). By the
previous case, the latter is induced by a morphism of schemes X’ — ) which, in its turn, induces
a morphism X’ — X that gives rise to the morphism of K-fans .

Step 3. The functor X — A(X) is essentially surjective. Indeed, let (L, A) be a K-fan. By
Proposition 7.6.3, for every o € A, A = {f € L|f(z) <1 for all € o} is a normal finitely
generated K-algebra with the fraction Fi-field L. We set X(?) = Fspec(A(®)). If 7 is a face of o,
then by the same Proposition 7.6.3(ii) one has A(™) = (A("))g for some g € A and, therefore,
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X(™) is an open affine subscheme of X(°). Let X be the scheme which is obtained by gluing
X (@) along X(°77) for o,7 € A. It is clear that X is an irreducible normal scheme of finite type
over K. Proposition 7.6.3(iii) implies that, for every air o,7 € A, the canonical homomorphism
A @ AT 5 AOT) s surjective and, therefore, X is separated. We claim that A(X) = A.
Indeed, it suffices to verify that every open affine subscheme ¢ C X is of the form X(?) for some
o € A. By the separatedness of X, all of the intersections & N X(?) are open affine subschemes of
X and, since U is covered by them, one has U C X7 for some o € A, i.e., U is an open affine
subscheme of X(?). Tt follows that U is a principal open subset of X(?) and, therefore, Y = X(7)

for some face 7 of o. "
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