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Abstract – Let k be a local non-Archimedean field. We prove that the group

of analytic automorphisms of the Drinfeld half-plane Ωd of dimension d−1 over
k coincides with PGLd(k). This is applied to prove the Rigidity Conjecture of
Mustafin which states that, if Γ1 and Γ2 are torsion free discrete subgroups of
PGLd(k), then the quotient spaces Γ1\Ωd and Γ2\Ωd are isomorphic if and only
if Γ1 and Γ2 are conjugate.

Le groupe des automorphismes du demi-plan de Drinfeld

Résumé – Soit k un corps local non archimédien. Nous prouvons que le
groupe des automorphismes analytiques du demi-plan de Drinfeld de dimension
d−1 sur k cöıncide avec PGLd(k). Cela est appliqué pour prouver la conjecture
de rigidité de Mustafin qui affirme que, si Γ1 and Γ2 sont des sous-groupes
discrets sans torsion de PGLd(k), alors les espaces quotients Γ1\Ωd et Γ2\Ωd

sont isomorphes si et seulement si les sous-groupes Γ1 and Γ2 sont conjugués.

Version française abrégée – Soient k un corps local non archimédien et d ≥ 2. Le demi-
plan de Drinfeld de dimension d−1 sur k est un espace k-analytique Ωd qui est le sous-ensemble
ouvert des points de l’espace projectif Pd−1 non contenus dans les hyperplans definis sur k.
L’espace Ωd est un analogue non archimédien du demi-plan de Poincaré. Il est lié étroitement
à l’immeuble de Bruhat-Tits Bd de SLd(k), et il est utilisé dans l’étude de l’uniformisation par
des sous-groupes discrets de PGLd(k) et des représentations de GLd(k) (voir [4], [5], [6]). Le
résultat principal de cette note est le suivant.

Théorème 1. – Pour tout corps non archimédien K sur k, on a

PGLd(k) ∼→AutK(Ωd⊗̂K) .

La démonstration est donnée dans le cadre de géométrie analytique de [1] et [2]. Nous
construisons une immersion PGLd(k)-équivariante Bd → Ωd⊗̂K qui est inverse à l’application
τ : Ωd⊗̂K → Ωd → Bd de [4] et, donc, nous permet à identifier Bd avec son image dans
Ωd⊗̂K. (Une telle immersion est construite dans [1], §5, pour touts les groupes reductifs
déployés.) Nous prouvons que Bd est l’ensemble des points maximaux de Ωd⊗̂K relativement
à l’ordre partiel suivant : x ≤ y si |f(x)| ≤ |f(y)| pour toute f ∈ O(Ωd⊗̂K). On en deduit
que tout automorphisme analytique ϕ de Ωd⊗̂K induit un automorphisme simplicial de Bd et
que ϕ ◦ τ = τ ◦ ϕ. Après, pour tout appartement Λ de Bd nous construisons une retraction
Ωd⊗̂K → Λ. Nous prouvons que cette retraction induite une retraction simpliciale τΛ : Bd → Λ
et que ϕ◦ τΛ = τϕ(Λ) ◦ϕ pour tout automorphisme simplicial ϕ de Bd. Cela reduit le théorème
1 à la verification du fait que toute fonction analytique bornée sur Ωd⊗̂K est constante.

Pour un sous-groupe discret Γ ⊂ PGLd(k), on désigne par XΓ l’éspace quotient Γ\Ωd et,
pour des sous-groupes Γ1, Γ2 ⊂ PGLd(k), on désigne par C(Γ1, Γ2) l’ensemble des g ∈ PGLd(k)
avec gΓ1g

−1 = Γ2.

Théorème 2. – Soient Γ1 and Γ2 des sous-groupes discrets sans torsion de PGLd(k).
Alors, pour tout corps non archimédien K sur k, il y a une bijection canonique

C(Γ1,Γ2)/Γ1
∼→IsomK(XΓ1⊗̂K, XΓ2⊗̂K) .
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Si Γ1 = Γ2 = {1}, c’est le théorème 1. Si Γ1 and Γ2 sont co-compacts dans PGLd(k) et
K = k, c’est la conjecture de rigidité de Mustafin qui affirme que XΓ1 et XΓ2 sont isomorphes
si et seulement si les sous-groupes Γ1 and Γ2 sont conjugués. Rappelons ([6], §4) que dans ce
cas XΓ1 et XΓ2 sont les espaces analytiques associés à des variétés projectives sur k et que
l’ensemble C(Γ1,Γ2) est fini. Dans le cadre de géométrie analytique de [1] et [2], le théorème 2
est une conséquence immédiate du théorème 1. En fait, des espaces analytiques sont localement
compacts et localement connexes par arc, l’espace Ωd⊗̂K est simplement connexe (et même
contractible) et, donc, Ωd⊗̂K est un revêtement universel des espaces XΓ1⊗̂K et XΓ2⊗̂K. La
demonstration du théorème 2 est, simplement, un rappel de quelques faits fondamentals sur la
factorisation des espaces analytiques par une action des groupes discretes, mis dans le cadre de
[1] et [2]. Ces faits ont une forme particulièrement simple et naturelle pour la classe des espaces
analytique bons ([2], §1), c’est-à-dire, tels que tout leur point a un voisinage affinoide. (Par
exemple, tout sous-ensemble ouvert de l’espace analytique associé à une variété algébrique est
bon.)

Introduction. – Let k be a local non-Archimedean field and d ≥ 2. The Drinfeld half-
plane over k of dimension d − 1 is a k-analytic space Ωd which is the open subset of the
projective space Pd−1 that consists of all points not lying in any hyperplane defined over k.
The space Ωd is a non-Archimedean analog of the Poincaré half-plane. It is closely related to
the Bruhat-Tits building Bd of SLd(k), and is used in the study of uniformization by discrete
subgroups of PGLd(K) and representations of GLd(k) (see [4], [5], [6]). The main result of
this note is the following

Theorem 1. – For any non-Archimidean field K over k, one has

PGLd(k) ∼→AutK(Ωd⊗̂K) .

The proof is given in the framework of the analytic geometry from [1] and [2]. We construct
a PGLd(k)-equivariant embedding Bd → Ωd⊗̂K which is inverse to the map τ : Ωd⊗̂K →
Ωd → Bd from [4] and, therefore, allows us to identify Bd with its image in Ωd⊗̂K. (Such an
embedding is constructed in [1], §5, for an arbitrary split reductive group.) We show that Bd

is the set of all maximal points of Ωd⊗̂K with respect to the following partial ordering: x ≤ y
if |f(x)| ≤ |f(y)| for all f ∈ O(Ωd⊗̂K). This is used to show that any analytic automorphism
ϕ of Ωd⊗̂K induces a simplicial automorphism of Bd and that ϕ ◦ τ = τ ◦ ϕ. Furthermore,
for each apartment Λ of Bd we construct a retraction map Ωd⊗̂K → Λ. We show that this
retraction induces a simplicial retraction τΛ : Bd → Λ and that ϕ ◦ τΛ = τϕ(λ) ◦ ϕ for any
simplicial automorphism ϕ of Bd. This reduces Theorem 1 to the verification of the fact that
any bounded analytic function on Ωd⊗̂K is constant.

For a discrete subgroup Γ ⊂ PGLd(k) let XΓ denote the quotient space Γ\Ωd, and for
subgroups Γ1, Γ2 ⊂ PGLd(k) let C(Γ1, Γ2) denote the set {g ∈ PGLd(k)

∣∣gΓ1g
−1 = Γ2}.

Theorem 2. – Let Γ1 and Γ2 be torsion free discrete subgroups of PGLd(k). Then for any
non-Archimedean field K over k there is a canonical bijection

C(Γ1,Γ2)/Γ1
∼→IsomK(XΓ1⊗̂K, XΓ2⊗̂K) .

If Γ1 = Γ2 = {1}, this is Theorem 1. If Γ1 and Γ2 are cocompact in PGLd(k) and K = k,
this is the Rigidity Conjecture of Mustafin that states that XΓ1 and XΓ2 are isomorphic if and
only if the subgroups Γ1 and Γ2 are conjugate in PGLd(k). Recall ([6], §4) that in this case
XΓ1 and XΓ2 are the analytifications of projective varieties over k and the set C(Γ1, Γ2)/Γ1 is
finite. In the framework of [1] and [2], Theorem 2 is an immediate consequence of Theorem 1.
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In fact, analytic spaces are locally compact and locally arcwise connected, the space Ωd⊗̂K is
simply connected (and even contractible) and, therefore, Ωd⊗̂K is a universal covering of the
spaces XΓ1⊗̂K and XΓ2⊗̂K. The proof of Theorem 2 is simply a recall of basic facts on the
factorisation of analytic spaces by an action of discrete groups. These facts have an especially
simple and natural form for the class of good analytic spaces ([2], §1), i.e., those ones in which
every point has an affinoid neighborhood. (For example, any open subset of the analytification
of an algebraic variety is good.)

Proof of Theorem 1. – For a k-analytic space X we set XK = X⊗̂K. We introduce a
partial ordering on the space XK as follows: x ≤ y if |f(x)| ≤ |f(y)| for all analytic functions
f ∈ O(XK). Notice that if x ≤ y then |f(x)| = |f(y)| for all f ∈ O(XK)∗.

1. Recall (see [1], §1.5) that the affine space Ad
K is the space of multiplicative seminorms on

the ring of polynomials RK := K[T0, . . . , Td−1] that extend the valuation on K. The following
simple fact describes fibres of the canonical morphism Ad

K\{0} → Pd−1
K .

The images of two points x, y ∈ Ad
K\{0} coincide in Pd−1

K if and only if there exists λ > 0
such that for all n ≥ 0 and all f ∈ Rn,K , where Rn,K is the space of homogeneous polynomials
in RK of degree n, one has |f(y)| = λn|f(x)|.

2. Let N be the space of norms on the k-vector space R1 = R1,k endowed with the weakest
topology with respect to which all real valued functions on N of the form N 7→ N(f), where
f ∈ R1, are continuous. The group R∗

+ acts on N , and it is known that the quotient space
Bd := N/R∗

+ is the Bruhat-Tits building of the group SLd(k) ([3], §10, p. 238). Let Ω̃d
K denote

the preimage of Ωd
K in Ad

K\{0}. Then the continuous GLd(k)-equivariant map τ̃ : Ω̃d
K → N

that takes a point of Ω̃d
K , which is a multiplicative seminorm on RK , to its restriction on

R1 (canonically embedded in RK) induces, by Step 1, a continuous GLd(k)-equivariant map
τ : Ωd

K → Bd.
Let now N ∈ N . Since the field k is locally compact, there is an orthogonal basis e0, . . . , ed−1

of R1, i.e., such that N(
∑d−1

i=0 aiei) = max |ai|N(ei). Let j̃(N) be the point of Ω̃d
K defined by

|(∑ν aνeν)(j̃(N))| = max |aν |N(e)ν . By Step 1, j̃ induces a GLd(k)-equivariant continuous
map j : Bd → Ωd

K with τ ◦ j = 1Bd . It follows Bd is homeomorphic to its image j(Bd), and the
set j(Bd) is closed in Ωd

K . In what follows we identify Bd with j(Bd) and consider τ : Ωd
K → Bd

as a retraction map.

3. (1) x ≤ τ(x) for all x ∈ Ωd
K ;

(2) if x, y ∈ Bd and x 6= y, then none of the inequalities x ≤ y and y ≤ x is true.

We fix an apartment Λ of Bd as follows. Let T0, . . . , Td−1 be a fixed basis of R1, and let Λ̃
be the set of norms on R1 of the form N(

∑d−1
i=0 aiTi) = max |ai|ri for (r0, . . . , rd−1) ∈ (R∗

+)d.
The apartment Λ is the image of Λ̃ in Bd.

(2) Since each pair of points of Bd is contained in an apartment and the group SLd(k) acts
transitively on the set of apartments, we may assume that x, y ∈ Λ. In this case we can find
among the functions t±1

i , where ti = Ti

T0
are the coordinate functions on Ad−1, such f and g

that |f(x)| < |f(y)| and |g(x)| > |g(y|.
(1) It suffices to verify that for x ∈ Bd the set τ−1(x) is an affinoid domain in Ωd

K and x is a
unique maximal point of τ−1(x). Since SLd(k) acts transitively on the set of chambers of Bd,
we may assume that x is contained in the chamber ∆ := {y ∈ Λ

∣∣1 ≥ |t1(y)| ≥ . . . ≥ |td−1(y)| ≥
q−1}, where q = |π−1| and π is a uniformizing element of k. Assume first that x is contained

in the interior
◦
∆ of ∆, i.e., 1 > |t1(x)| > . . . > |td−1(x)| > q−1. Then τ−1(x) is the closed

annulus A(x) := {y ∈ Ad−1
K

∣∣|ti(y)| = |ti(x)|, 1 ≤ i ≤ d−1}, and x is a unique maximal point of
A(x). Indeed, if i 6= j, then the equality |α||ti(x)| = |β||tj(x)| for α, β ∈ k∗ is impossible, and
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therefore for y ∈ A(x) one has |(∑d−1
i=1 aiti)(y)| = max |ai||ti(x)|, i.e., τ−1(x) = A(x). Each

analytic function f on A(x) has a unique representation in the form
∑

ν∈Zd−1 aνtν , where
aν ∈ K and |aν ||t(x)|ν → 0 for |ν| → ∞. The norm ||f || = max |aν ||t(x)|ν is multiplicative
on O(A(x)), and the point x corresponds to this norm. In the general case, we take linear
polynomials L1, . . . , Lm of the form

∑n
i=1 aiti +

∑d−1
i=n+1 π−1aiti, where 1 ≤ n ≤ d − 1 and,

for each 1 ≤ i ≤ d− 1, ai runs through representatives of the residue field of k in the ring of
integers. Then τ−1(x) = {y ∈ A(x)

∣∣|Lj(y)| = |Lj(x)|, 1 ≤ j ≤ m}. The latter is an affinoid
domain in A(x), and each analytic function on τ−1(x) can be approximated by a function of
the form f/L, where f ∈ O(A(x)) and L = Ln1

1 . . . Lnm
m (see [1], 2.2.2). It follows that x is a

unique maximal point of τ−1(x).

4. Let ϕ be a K-analytic automorphism of Ωd
K . Our purpose is to show ϕ is induced by

an element of GLd(k). First of all, we claim that ϕ induces a simplicial automorphism of the
building Bd and ϕ◦ τ = τ ◦ϕ. Indeed, from Step 3 it follows that ϕ induces a homeomorphism
of Bd in itself and ϕ ◦ τ = τ ◦ϕ. It follows that ϕ takes chamber interiors to chamber interiors
and, therefore, chambers to chambers. To verify the claim, it suffices to show that the maps
between the chamber interiors are affine. For this it suffices to show that for any f ∈ O(Ωd

K)∗
the function Bd → R : x 7→ logq |f(x)| is affine on each chamber interior. Since the group
SLd(k) acts transitively on the set of chambers, the latter fact should be verified only for

the chamber ∆ from Step 3. But any invertible analytic function on τ−1(
◦
∆) is of the form

atn1
1 . . . t

nd−1
d−1 (1 + h) with a ∈ K∗, ni ∈ Z and an analytic function h such that |h(y)| < 1 for

all y ∈ τ−1(
◦
∆).

5. Since the group SLd(k) acts transitively on the set of apartments, we may assume that
ϕ(Λ) = Λ for the apartment Λ from Step 3. Furthermore, since any simplicial automorphism
of Λ is induced by an element of the normalizer of the torus corresponding to Λ, we may
assume that ϕ

∣∣
Λ

= 1Λ. We have to show that in this case ϕ is induced by a diagonal matrix
whose non-zero entries are units of k. For this we introduce a retraction map τΛ : Ωd

K → Λ
which is the restriction of the retraction map (A1

K\{0})d−1 → Λ for which |(∑ aνtν)(τΛ(x))| =
max |aν ||t(x)|ν . We claim that τΛ ◦ ϕ = τΛ. Since ϕ ◦ τ = τ ◦ ϕ and τΛ ◦ τ = τΛ, it suffices to
verify the above equality only for the restrictions of the both maps to Bd.

5.1. The retraction map τΛ : Bd → Λ is simplicial.
Let ∆′ be a chamber of Bd, and let g = (ai,j)0≤i,j≤d−1 ∈ SLd(k) be such that g(∆) = ∆′.

Then for x ∈ ∆ one has |ti(g(x))| = |ai,ji
|·|tji

(x)|
|a0,j0 |·|tj0 (x)| , where t0 = 1 and ji is the minimal j with

|ai,j | = max
l
|ai,l|. The claim follows.

5.2. By Step 5.1, it suffices to verify that τΛ(ϕ(x)) = τΛ(x) only for zero-dimensional sim-
plices (vertices) of Bd. We claim that the above equality holds for any simplicial automorphism
ϕ of Bd with ϕ

∣∣
Λ

= 1Λ. To show this, it is convenient to use the interpretation of the vertices of
Bd as the similarity classes {M} of lattices M ⊂ R1. Namely, if a vertex x corresponds to the
class of a norm N ∈ N , then x = {M}, where M = {f ∈ R1

∣∣N(f) ≤ 1}. Let M ⊂ R1 be a lat-
tice. From the definition of τΛ it follows that τΛ({M}) = {L}, where the lattice L is generated
by πniTi, 0 ≤ i ≤ d−1, and ni are such that πniTi ∈ M\πM . Let L′ be a sublattice of M with
{L′} ∈ Λ. Then L′ is generated by πn′iTi, 0 ≤ i ≤ d−1, and since L′ ⊂ M one has n′i ≥ ni, i.e.,
L′ ⊂ L. In particular, if L′ 6= L, then [M : L] < [M : L′]. It follows that τΛ({M}) is the class
of the lattice L ⊂ M with {L} ∈ Λ for which [M : L] is minimal. Thus, to prove our claim, it
suffices to show that the function ({M}, {L}) 7→ min{[M : L]

∣∣M ∈ {M}, L ∈ {L} and L ⊂ M}
is invariant under all automorphisms of Bd. But this is clear because this function is invariant
under SLd(k) and any pair of points in Bd is contained in one apartment.

6. Since |ti(x)| = |ti(τΛ(x))| for all x ∈ (A1
K\{0})d−1, from Step 5 it follows that |ϕ∗ti(x)| =
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|ti(x)| for all x ∈ Ωd
K , and therefore the invertible analytic functions (ϕ∗ti)/ti on Ωd

K are
bounded. Theorem 1 now follows from the following lemma.

Lemma 3. – Any bounded analytic function on Ωd
K is constant.

Proof. The lemma follows by induction from the following statement applied to the projec-
tion (to the first d− 2 coordinates) Ωd

K → Ωd−1
K . Let X be a reduced K-analytic space, and Y

an open subset of X ×P1
K such that its complement is contained in a union of Zariski closed

subsets and the projection ϕ : Y → X is surjective. Then any analytic function f ∈ O(Y )
bounded on the fibres of ϕ is of the form ϕ∗g for some g ∈ O(X). Since the statement is
local with respect to the G-topology of X, we may assume that X = M(A) is K-affinoid. If
A = K, the statement is well known. We also remark that in this case the set Y contains the
closed annulus A(r, r′) := {y ∈ A1

K

∣∣r ≤ |t(y)| ≤ r′} for some 0 < r < r′. It follows that, in
the general case, for each point x ∈ X we can replace X by an affinoid neighborhood of x and
assume that Y contains the affinoid domain V = X × A(r, r) for some r > 0. The function
f
∣∣
V

has a unique representation in the form
∑∞

i=−∞ git
i, where gi ∈ A and ||gi||ri → 0 for

i → ±∞. Using the assumptions, we get f = g0.

Remarks. – (i) The reasoning from Step 3 shows that the retraction map τ : Ωd
K → Bd is

proper.
(ii) The simplicial retraction map τΛ : Bd → Λ sends the chambers that are not contained

in Λ to simplices of smaller dimension. Indeed, if dim(τΛ(∆′)) = d−1 (in the situation of Step
5.1), then for i 6= l one should have ji 6= jl. This easily implies that ∆′ = g(Λ) ⊂ Λ.

(iii) It follows from the proof that the retraction map τΛ : Bd → Λ is defined for every
apartment Λ of Bd and one has ϕ ◦ τΛ = τϕ(Λ) ◦ ϕ for any automorphism ϕ of Bd.

Proof of Theorem 2. – All the analytic spaces considered are assumed to be Hausdorff.
Recall that an action of a group Γ on a locally compact space X is said to be discrete if for
any compact subset V ⊂ X the set ΓV := {γ ∈ Γ

∣∣γ(V ) ∩ V 6= ∅} is finite. For such an action
the quotient space Γ\X is locally compact. Furthermore, the above action is said to be free
if Γx = {1} for all x ∈ X. For such an action the canonical map X → Γ\X is a topological
covering map.

Let a group Γ act discretely on a K-analytic space X. We say that the quotient space
Γ\X exists if one can endow the topological space Γ\X with a K-analytic space structure and
construct a morphism p : X → Γ\X such that, for any morphism ϕ from X to a K-analytic
space Y with ϕ ◦ γ = ϕ for all γ ∈ Γ, there exists a unique morphism ψ : Γ\X → Y with
ϕ = ψ ◦ p. We say that an affinoid domain V ⊂ X is Γ-marked if the set ΓV is a group and
γ(V ) = V for all γ ∈ ΓV . A morphism p : T → S is said to be an analytic covering if each
point of S has an open neighborhood U such that p−1(U) =

∐
i∈I Vi and all of the induced

maps Vi → U are isomorphisms.

Lemma 4. – Assume that either (1) the action of Γ on X is free, or (2) the space X is
separated and each point of X has a neighborhood of the form V1 ∪ . . . ∪ Vn, where Vi are
Γ-marked affinoid domains. Then the quotient space Γ\X exists. In the case (1), p : X → Γ\X
is an analytic covering.

Proof. – Let τ be (1) the family of all affinoid domains V ⊂ X with γ(V )∩V = ∅ for γ 6= 1,
and (2) the family of all Γ-marked affinoid domains. It follows from the assumptions that τ is
a net stable under the action of Γ, and therefore σ := {p(V )

∣∣V ∈ τ} is a net on Γ\X. Using
the fact that the subalgebra of invariants of a K-affinoid algebra under a finite automorphism
group is K-affinoid ([4], 6.3; [1], 2.1.14), one constructs in the evident way a K-affinoid atlas
with the net σ that gives rise to the required K-analytic space structure on Γ\X.

Corollary 5. If Γ acts discretely on a good separated K-analytic space X, then the quotient
space Γ\X exists, and Γ\X is a good separated K-analytic space.
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Proof. It suffices to show that each point x ∈ X has a Γ-marked affinoid neighborhood. Let
Σ be a compact neighborhood of x with ΓΣ = Γx. If U is an affinoid neighborhood of x with
U ⊂ Σ, then V = ∩γ∈Γx

γ(U) is a Γ-marked affinoid neighborhood of x with ΓV = Γx.

Let us return to our situation.

Lemma 6. – (i) The following properties of a subgroup Γ ⊂ PGLd(k) are equivalent:
(a) the action of Γ on Ωd

K is discrete (resp. discrete and free);
(b) the action of Γ on Bd is discrete (resp. discrete and free);
(c) Γ is discrete (resp. torsion free and discrete) in PGLd(k).

(ii) The following properties of a discrete subgroup Γ ⊂ PGLd(k) are equivalent:
(a) the K-analytic space Γ\Ωd

K is proper;
(b) the topological space Γ\Bd is compact;
(c) Γ is cocompact in PGLd(k).

Proof. – Everything easily follows from the facts that the retraction map τ : Ωd
K → Bd

is PGLd(k)-equivariant and proper, the fixed point set of any compact subgroup of PGLd(k)
on Bd is nonempty, and the vertices of Bd correspond bijectively to the right cosets of the
compact subgroup PGLd(k◦) ⊂ PGLd(k), where k◦ is the ring of integers of k.

Theorem 2 now follows in the evident way from Theorem 1, the fact ([1], §6.1) that the
space Ωd

K is simply connected (and even contractible) and the following

Lemma 7. – Let p : Y → X be an analytic covering. Then for any morphism ϕ : Y ′ → X
with simply connected Y ′ and for any pair of points y ∈ Y , y′ ∈ Y ′ with p(y) = ϕ(y′) there
exists a unique morphism ψ : Y ′ → Y with ϕ = p ◦ ψ and y = ψ(y′).

Proof. – Since analytic spaces are locally compact and locally arcwise connected, then such
ψ exists and is unique, at least, as a map of topological spaces. We may assume that ϕ is
represented by a strong morphism (see [2], §1) (Y ′,B′, σ′) → (X,A, τ), where the net τ is
such that for any V ∈ τ one has p−1(V ) =

∐
i∈I Wi and Wi

∼→V . The family σ of all affinoid
domains W ⊂ Y with p(W ) ⊂ V for some V ∈ τ is a net on Y , and for any W ′ ∈ σ′ there
exists W ∈ σ with ϕ(W ′) ⊂ W . Then p is defined by a strong morphism (Y,B, σ) → (X,A, τ),
and there is an evident strong morphism (Y ′,B′, σ′) → (Y,B, σ) that defines the required
morphism ψ.

Remark. – One can construct a PGLd(k)-equivariant homotopy between the identity map
on Ωd

K and the retraction map τ : Ωd
K → Bd ⊂ Ωd

K . It follows that, for any discrete subgroup
Γ ⊂ PGLd(k), Γ\Bd is a strong deformation retract of Γ\Ωd

K .
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