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0.1. Previous work on vanishing cycles for formal schemes. Let k be a non-
Archimedean field with nontrivial discrete valuation, k° its ring of integers, k°° the
maximal ideal of k°, and k = k°/k°° the residue field of k. A formal scheme X over
k° is said to be special if it is a locally finite union of open affine subschemes of

the for

m Spf(A) with A isomorphic to a quotient of k°{T4,...,Tn}[[S1,- .-

> Sn]l-

If all of these open affine subschemes can be found with n = 0, such X is said to
be of locally finite type (or of finite type if in addition X is quasicompact). Each
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special formal scheme X over k° has a generic fiber X,, which is a paracompact
strictly k-analytic space, and a closed fiber X, which is a scheme of locally finite
type over k. The class of formal schemes of locally finite type is preserved under
formal completion X,y of X along an open subscheme Y C X, and the class of
special formal schemes is preserved under formal completion of X along an arbitrary
subscheme of Xj. For example if J is a scheme of finite type over k°, then the
formal completion y (resp. y/ z) of Y along its closed fiber Y5 = Y ®o k (resp.
along an arbitrary subscheme Z C )) is a formal scheme of finite type (resp. a
quasicompact special formal scheme) over k°. All of the special formal schemes
considered in this paper are assumed to be quasicompact.

In [Ber96b] and [Berl5, §3.1], we constructed, for every special formal scheme
X over k°, a vanishing cycles functor ¥, : X, — X5(G) from the category of étale
sheaves on X, to the category of étale sheaves on X5 = X ®@; k* provided with a
continuous discrete action of G = Gal(k®/k) compatible with the action of G on
X5, where k2 is a fixed algebraic closure of k. In particular, if A is an étale abelian
sheaf on the spectrum of k, then for the locally constant sheaf A%n induced by A
there is an associated complex R¥,(Ay ) of sheaves on X5. The construction is

functorial and, therefore, any morphism of special formal schemes ¢ : ) — X gives
rise to a morphism

On(, A) : (R (Ax, ) = RUy(Ag ) -

The corresponding homomorphism between ¢-th cohomology sheaves is denoted by
07 (», A). Among other things, we proved the following results. Suppose A is finite

of order not divisible by char(%). Then
(i) the sheaves Rq\I/n(Axn) are constructible;
(i) one has H(¥z, A) = R (X5, R¥, (A, )), where X5 = X, @¢k;
(iii) given X, 9 and A, as above, there exists an ideal of definition J of 2) such
that, for any pair of morphisms ¢, : 2 — X congruent modulo J and
any g, one has 07 (p,A) = 61(¢, A);
(iv) given a scheme ) of finite type over a Henselian discrete valuation ring

with completion k° and a subscheme Z C ), there is a canonical iso-
morphism R¥,(Ay,)|z—RY, (A y/z)n), where RV, (Ay, ) is the vanishing

cycles complex of the scheme ) and Z = Z ®z k.

==

0.2. The purpose of the paper. Although the above functor ¥, gives rise to
vanishing cycles complexes for arbitrary A’s, e.g., Z, those complexes do not pos-
sess good properties, and the reason is that such properties are not satisfied by
the integral étale cohomology groups of algebraic varieties and non-Archimedean
analytic spaces.

On the other hand, if J is a scheme of finite type over the ring Oc¢ ¢ of functions
analytic in a neighborhood of zero in the complex plane C, one can define vanishing
cycles complexes R‘l/n(Ay;L) on the analytification Y" of Y, = Y ®o¢,, C for arbi-
trary locally constant sheaves A on an open punctured disc D* with center at zero
in the complex plane C. By [SGA7, Exp. XIV], if A is finite, there is a canonical
isomorphism R\I/n(Ayn)h:ﬂ%\I/n(Ay;;)7 and the above property (iv) implies that,
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for any subscheme Z C ), there is a canonical m (C*)-equivariant isomorphism

R\I/n (ij;)

SRU,(A

- )h
Zh ¥,z :

A natural question (mentioned, for example, by Kontsevich and Soibelman in
[KS11, 7.1, 7.4]) is as follows. Can one extend the construction of the vanishing
cycles complexes for special formal schemes over the completion @C,O of Oc, and
for arbitrary locally constant sheaves A on D* so that, in the case of the formal
scheme j/z, one gets the complex R‘I’n(Ay;;)‘Zh?

The purpose of this paper is to give a positive answer to this question and to
derive a construction of integral “étale” cohomology groups for a class of non-
Archimedean analytic spaces over the fraction field of (5@0, which includes the
analytifications of proper schemes over that field.

We in fact construct vanishing cycles complexes also for special formal schemes
over the completion @R,O of the ring of convergent power series with real coefficients
Or,o. In this case they consist of sheaves provided with an action of the semidirect
product 71 (C*) x{(c), where ¢ is the complex conjugation on C. For this we introduce
the category R-An of so called R-analytic spaces (see §0.3).

Furthermore, in the classical situation of [SGA7, Exp. XIV] (resp. in the sit-
uation of §0.1) the construction of the vanishing cycles complexes depends on the
choice of a universal covering of a punctured open disc (resp. an algebraic closure
of the field k) and, in fact, the object obtained is a functor from the corresponding
groupoids. Our ground field here is a non-Archimedean field K non-canonically
isomorphic to the fraction field of either (/9\(@’0, or @]R,O~ For such K, we introduce
a groupoid which plays the role of the above ones and allows us to work with an
analog of the category of étale locally constant sheaves on a punctured open disc
(see §0.4). Moreover, the use of this groupoid is a convenient way to encode depen-
dence of the comparison between “étale” and de Rham cohomology groups on the
choice of a generator of the maximal ideal K°° of K° (see §0.8).

0.3. R-analytic spaces. In the book [Ber90] we introduced an approach to non-
Archimedean analytic geometry which is a natural generalization of the definition
of a complex analytic space, and noticed that one can apply that approach to
the field of real numbers R and get a new object, an R-analytic space, which
is different from the usual notion of a real analytic space (see [GMT86]). For
example, the R-analytic affine line R can be identified with the closed upper half-
plane H = {z € C|Im(2) > 0} whereas the classical real analytic affine line is the
field R naturally embedded R. By the way, we denote the complex analytic affine
line by C in order to distinguish it from the field C in spite of the fact that the
canonical map C — C is a bijection.

Although R-analytic spaces are closely related to complex analytic ones (called
here C-analytic spaces) and can be described in terms of the latter, they have
an independent interest. For example, they include non-orientable manifolds, like
Moebius strips and Klein bottles, and we show that there is an equivalence between
the category of smooth R-analytic spaces of dimension one and the category of so
called Klein surfaces. In was in fact Klein who introduced in his 1882 book some
kind of an analytic structure, called dianalytic, in order to endow with it non-
orientable surfaces (see [AGT71] for the history of this subject).
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R-analytic spaces have some features of non-Archimedean ones. For example,
the topology of the underlying topological spaces is not strong enough to describe
expected properties of their cohomology, and there is a stronger étale topology. It is
used to introduce étale universal coverings, étale fundamental groups, étale sheaves,
and étale cohomology groups. Furthermore, there is the ground field extension
functor R-An — C-An : X — X¢g. For such X, the C-analytic space X¢ is
endowed with an involutive automorphism ¢, called the complex conjugation, so
that X is the quotient of X¢ by the cyclic group {(c) (the automorphism and the
quotient are considered in the category of locally R-ringed spaces).

We consider in fact C-analytic and R-analytic spaces simulteneously. For this,
beginning with §2 we use the bold letter F for an Archimedean field, i.e., R or C,
and denote the corresponding F-analytic affine space of dimension n > 0 by F”, or
just F if n = 1. We fix a coordinate function z on the affine line F. The category
of F-analytic spaces is denoted by F-An. In order to make exposition uniform, we
use the notation X¢ even for C-analytic spaces X bearing in mind that in this case
Xc = X. We also denote by K the fraction field of the discrete valuation ring O q.
For the sake of uniformity, we use the notation ¢ for the fraction field of O¢ g
even if F = C and, as a result, K¢ = K.

0.4. The field K and associated groupoids. Beginning with §4, the capital
letter K is used for a non-Archimedean field with nontrivial discrete valuation and
such that F C K° and F=K. Each generator @ of the maximal ideal K°° of K°
induces a homomorphism O — K° that takes the coordinate function z on F to

w. It gives rise to an isomorphism (/Q\F_,o’—TK ¢ and an embedding K — K whose
image is dense in K. The valuation on K induces a valuation on K, which does not
depend on the element w. We also set K¢ = K ®p C. Of course, if F = C, then
Kc =K. If F =R, K¢ is a quadratic extension of K, but in fact it is a notation
for the pair (K, K¢) since the constructions related to K¢ depend on the original
field K. For example, we denote by ¢ the automorphism « — @ of K¢ over K that
induces the complex conjugation on C.

Let TI(K¢) be the groupoid whose objects are generators of the maximal ideal
K& of K& and morphisms are defined as follows. For w, @’ € II(K¢), a morphism
¢ :w — w' is a transformation of K¢ associated to an element 8 € K@, and it is
either a -morphism of first type, i.e., of the form o — a + f with exp(f) = =, or
in the case F = R also a 8-morphism of second type, i.e., of the form a — a + 8
with exp(8) = % It is easy to see that one can compose morphisms, and so
II(K¢) is really a groupoid. Although in most constructions of the paper we work
with the groupoid II(K¢), in some of them we have to use the full subcategory
II(K) of II(K¢) whose objects are generators of the maximal ideal K°° of K°. We
also use the non-full subcategory m(K) of II(K) with the same set of objects and
the sets Hom,(x(w, @’) consisting of the S-morphisms of first type with g € K°.
Of course, if F = C, all three categories coincide, and the group Homyy g (w, @)
is canonically isomorphic to Z(1) = 2miZ. Its generator, i.e., the 27i-morphism
of first type is denoted by ¢(®). If F = R, then Hom(k)(w,w’) is always a one
element set which corresponds to the unique element 8 € K° with exp(f8) = .
The 2mi-morphism of first type @ — w in II(K) is also denoted by (), and
the O-morphism of second type in Hompy (@, @) is denoted by ¢(®) . For for any

morphism ¢ : @ — @’ in 7(K) one has poo(® = (=) o and poc®) = (#) o,
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Since for given @ and @’ such a morphism ¢ is unique, it gives rise to a canonical
isomorphism Homyy(g)(w, w)—Hompx) (@', @’). In particular, all of the groups
Hompyx (o, @) are canonically isomorphic to the semi-direct product Z(1) x (c)
with ¢ acting as inversion on the invariant subgroup.

There is a faithful functor from II(K¢) to the following étale fundamental grou-
poid G(Kc¢) of the field K. Given a generator w of K& and an integer n > 1,
we set K(®)" = Kg[T]/(T"™ — w). Tt is a Galois extension of K generated over
K¢ by the image of T', which is denoted by w,. For every integer m > 1, there is
a canonical embedding K ()" — K(@)mn that takes w, to @!,. The inductive
limit K (®) of the fields K(®)" taken over those embeddings is an algebraic closure
of K. The objects of G(K¢) are the fields K(¥) for generators w of K&, and
the set of morphisms Homg (k) (K (=) K (w,)) is the profinite set of isomorphisms
of fields K™K over K. We also denote by G(K) the full subcategory of
G(K¢) whose family of objects are the fields K(®) for generators w of K°. For
example, if F = C, Homg(K)(K(w), K(®)) is the Galois group Gal(K(®)/K), which

~

is canonically isomorphic to Z(1) = lim y,, and, if F = R, Homg ) (K™, K(™)) is

n

the Galois group Gal(K () /K), which is canonically isomorphic to the semi-direct
product 2(1) x (c). The functor II(K¢c) — G(K¢) takes w € II(K¢) to the field
K@) and it takes a S-morphism of first (resp. second) type ¢ : w — w’ to
the isomorphism ¢z : K(®SK®) over K with ¢ (w,) = exp(%)w,’Z and which
acts trivially (resp. as the complex conjugation) on K¢. It gives rise to a functor
I(K) —» G(K).

One can make similar constructions for the field £ and get full subcategories
II(Kc) C II(Ke) and G(K¢) C H(I/C\c) whose objects are generators of the maximal

~ ~

ideal £ of Kg&. One has also full subcategories 7(K) C 7(K), II(K) C II(K) and
G(K) C G(K) whose objects are generators of the maximal ideal K°° of K°. The
category II(K) is a subgroupoid of G(K).

If P is a groupoid, a P-space is a contravariant functor P — X ) from P to the
category of topological (or analytic) spaces. A P-sheaf F on a P-space X is a family
of sheaves F(P) on X (P) satisfying natural properties of compatibility with respect
to morphisms in P (see §4.3). In §4.4 we show that the category of P-sheaves
on X is a topos. The derived category of abelian P-sheaves on X is denoted by
D(X(P)). If X is a trivial P-space, i.e., the corresponding functor takes all objects
to the same space X and all morphisms to the identity map, a P-sheaf is just a
covariant functor from P to the category of sheaves on X. If it is a one point space,
the abelian P-sheaves on it are called P-modules and their category is denoted by
P-Mod. The map from X to a one point space defines a functor A — Ay from the
category of P-modules to that of abelian P-sheaves on X.

There is an equivalence between the category of étale abelian sheaves on the
spectrum of K and the category of discrete G(K¢)-modules. Namely, if A is an
étale sheaf, the correspondence @ — A(K (™)) is a discrete G(K¢)-module. For this
reason one can work with discrete G(K¢)-modules instead of étale abelian sheaves
on the spectrum of K.

There is a parallel geometric construction. Namely, let D* be the projective
system of punctured open discs with center at zero in F. In Example 4.2.1(i), we
construct a II(Kg)-space D* that takes each w € II(K¢) to an étale universal
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covering D*(®) of D*. Then the correspondence @ ~— L(D*(®)) gives rise to an
equivalence between the category of étale abelian locally constant sheaves on D* and
the category of II(K¢)-modules II(¢)-Mod. For this reason, II(K¢)-Mod plays
the role of the category of étale abelian locally constant sheaves on a punctured
open disc (non-existent for the field K).

0.5. Complex analytic vanishing cycles for formal schemes. For a special
formal scheme X over K°, we consider the complex analytification xg of X5 =
X, ®F C as a [I(K¢)-space on which morphisms of first type act trivially and those
of second type act through the complex conjugation on C.

The main purpose of this paper is to construct, for every (quasicompact) special
formal scheme X over K°, an exact functor

DY(II(Kg)-Mod) — DY(X2(I(Kc))) : A" — RUJ(AY ) .

(The notation R\I!ﬁ(A'x ) for the resulting complex is suggestive.) We prove that
n

the complexes R\I!Z(A'x ) possess the following properties:
n

(i) they are functorial in X, i.e., every morphism of special formal schemes
@ Y — X gives rise to a morphism of complexes

O (0, )+ 5" (R (A ) = R‘I’Z(A@n)

which, in its turn, induces homomorphisms 927‘1(30, A’) between g-th coho-
mology sheaves;
(ii) there is a canonical isomorphism
Rm,’;(Axn):ng(zx”) ®% Ayn s
(ili) the sheaves RIW¥!(Zy ) are (algebraically) constructible in the sense of
n

[Ver76, §2], and the action of II(K¢) on them is quasi-unipotent;

(iv) if a morphism ¢ : ) — X is formally smooth, then 92(907 A’) is an isomor-
phism;

(v) given X with rig-smooth generic fiber, there exists n > 1 such that, for
every ) of finite type over K°, every pair of morphisms p,v : Q) — X
congruent modulo (K°°)", every II(K¢)-module A which is either finite or
has no Z-torsion, and every g, one has 97};7‘1(@, A) = 9;;"1(1/}7 A);

(vi) given X and 2 both with rig-smooth generic fibers, there exists an ideal
of definition J of ) such that, for every pair of morphisms @, : Q) — X
congruent modulo J, every II(K¢)-module A as in (v), and every ¢, one
has 6119(p, A) = 09, A);

(vii) given a complex of discrete Z/nZ|G(K¢)]-modules A" with finite cohomol-
ogy modules, there is a canonical isomorphism

(R, (A )" SRUMAY ),

where R\IIW(A'% ) is the vanishing cycles complex on Xz from §0.1;

(viii) given a morphism of germs of F-analytic spaces (B,b) — (F,0), a scheme
Y of finite type over Opy, a subscheme Z C Vs =Y ®og, F, and A" €
D(H(I/C\C)-Mod), there is a canonical isomorphism

R i) 2 SR )
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Here is an explanation of the objects on both sides of the isomorphism in (viii).
First of all, the formal completion ),z of J along the subscheme Z is a special

formal scheme over K°, and the right hand side in (viii) is the value at A" of the
above exact functor R\I/f]’ associated to it.

Furthermore, the scheme ) defines an F-analytic space Y over an open neigh-
borhood of b in B. If the neighborhood is small enough, there is an induced mor-
phism Y* — F. The same construction applied to the schemes ), and Yy =
Y ®0, K gives the F-analytification J{f of Vs and a space y]; which can be
identified with the preimage of F* under the above morphism. The complex of
II(K)-modules A" defines a complex of IT(K)-modules which is considered as a com-
plex of locally constant sheaves on F* whose pullback on J)f; is denoted by A'y#.

The complex R\IIU(A'),#) on the left hand side in (viii) is the value at A'y# of the
derived functor of the F-analytic vanishing cycles functor ¥, from [SGA7, Exp.
XIV] (its definition, extended to the case F = R, is recalled in §2.3).

The continuity properties (v) and (vi) are stronger than corresponding results
from [Ber96b] and [Berl5] (mentioned in §0.1(iii)), but the assumptions on rig-
smoothness are probably superfluous. In any case, if X = )A)/ z as in (viii), then X,
is rig-smooth if and only if there exists an open neighborhood V of Z" in )" such
that the induced morphism V — T is smooth outside the preimage of zero.

Remark 0.5.1. Let F be the field C (resp. R). Recall that an F-valued function
in a neighborhood of zero in R™ is said to be smooth if it is infinitely differen-
tiable. Such a function defines a Taylor series expansion T(f) which is an element
of F[[T1,...,T,]]- Recall also that, by Borel’s Lemma ([GG73, Ch. IV, §2]), each
element of the latter ring is the Taylor series expansion of some smooth F-valued
function in an open neighborhood of zero in R™. Suppose now that such a function
f is equal to zero at zero. Then T(f) lies in the maximal ideal of the above ring
and, therefore, it defines a morphism of formal schemes X = Spf(F|[[T1,...,T,]]) —
Spf((/’)\]p’o). Since Xz is a one point space, 1/}} = Rq\IIZ(an) are just finitely gen-
erated abelian groups provided with a quasi-unipotent action of the infinite cyclic
group 2miZ (resp. the semi-direct product 27iZ x (c)). The groups 1/1} are functorial
in f, i.e., each morphism (resp. isomorphism) of smooth germs (R™,0) — (R",0)
defines homomorphisms (resp. isomorphisms) 1/}? — 1, where g is the lift of f to
(R™,0). The continuity property (vi) implies that, given f on (R™,0) and g on
(R™,0), there exists k > 1 such that, for any pair of morphisms (R™,0) — (R",0)
that have the same k-jets and take f to g, the corresponding homomorphisms
d)? — 1 coincide. Notice that if, after an automorphism of (R",0), the Taylor
series T(f) coincides with that of a function analytic in an open neighborhood of
zero in ", then w;% are isomorphic to the vanishing cycles cohomology groups of
that analytic function. But there exist f’s without this property (see [Sh76]). It
would be interesting to know the geometric meaning of the groups 1/}? for arbitrary
smooth complex or real valued functions f.

0.6. Ingredients of the construction. The main ingredients used in the con-
struction of the vanishing cycles complexes and establishing their properties are
Michael Temkin’s work on functorial desingularization of quasi-excellent schemes
in characteristic zero ([Tem08], [Tem18]), the work of Kazuya Kato and his collabo-
rators on log geometry ([Kato89], [KN99], [Nak98]), and author’s work on vanishing
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cycles for formal schemes ([Ber93|, [Ber96b], [Berl5]) and on the structure of poly-
stable formal schemes ([Ber99]).

Namely, a scheme ) of locally finite type over a discrete valuation Henselian
ring R (such as K° or K° = Opy) is said to be distinguished if locally in the
étale topology it is isomorphic to an affine scheme of the form Spec(A) for A =
R[Ty,..., )/ (I - ... Tem —w), where 1 <m < m, e; > 1forall<i<m,
and w is a generator of the maximal ideal of R. We always consider such ) as a
log scheme provided with the canonical log structure (which is, for the above affine
scheme, is generated by the coordinate functions T4, ..., Ty,).

A special formal scheme X over K° is said to be distinguished if locally in the
étale topology it is isomorphic to an affine formal scheme of the form JA)/ =z, where
Y is a distinguished scheme over K° and Z is the union of some of the irreducible
components of Vs = )Y Qo K. The log structure on the scheme ) induces a
log structure on the formal completion JA)/ z. Using results from [Ber99], we show
that the latter log structure coincides with the canonical one, i.e., the value of the
monoid sheaf on 4l étale over X is the multiplicative submonoid of O(4l) consisting
of the functions invertible on the generic fiber {,,. In particular, this log structure
on X as well as that induced on the complex analytification %? of the closed fiber
X, is functorial in X.

Furthermore, Temkin’s results from [Tem08] and [Tem18] imply that each special
formal scheme X over K° admits a proper hypercovering a : 9, — X by distin-
guished formal schemes 2),,, n > 0. Each C-analytic space Y,, = Q‘jﬁ’g provided
with the log structure induced from %),, defines, by the construction of Kato and
Nakayama from [KN99], a topological space Y,1°2. By the above, the latter form an
augmented simplicial topological space a!°® : Y.log = (Y,l8),,>0 — %g We define
the vanishing cycles complexes R\IIZ(an) on .’fg in terms of this augmented sim-
plicial topological space, and show that their cohomology sheaves Rq\I/Z(an) are
(algebraically) constructible in the sense of [Ver76].

Finally, in order to establish properties of those complexes and, in particular, to
verify that they do not depend on the choice of the proper hypercovering, we use
results from [KN99] and [Nak99] to show that the same construction for the groups
Z/nZ gives the analytification of the vanishing cycles complexes R\Ifn((Z/nZ)%n)

introduced in [Ber96b] and [Berl5].

0.7. Integral “étale” cohomology of restricted analytic spaces. For a qua-
sicompact special formal scheme flat over K° and a II(K¢)-module A, we set

H(%g,A) = RIC(XE, RV Ay ) -

This definition imitates the property (ii) from §0.1 and, if A comes from a finite
discrete G(K¢)-module, gives the usual étale cohomology groups of the analytic
space X5 with coeflicients in A. We believe that the groups on the left hand side
depend only on the K-analytic space X,, for arbitrary A’s, but can deduce from
results of the previous subsection only the following fact. For any admissible
proper morphism X' — X (i.e., a proper morphism with X; =X,), the induced
maps HY (X5, A) - H ‘1(%;—], A) are isomorphisms. This leads us to introduction of

the category K -An of restricted K -analytic spaces, which is the localization of the



10 VLADIMIR G. BERKOVICH

category quasicompact special formal schemes flat over K ° with respect to admis-
sible proper morphisms. Its objects are denoted by X Y and so on. There is an
evident faithful (but not fully faithful) functor K- An — K-An : X — X so that
the generic fiber functor X — X, goes through it. Raynaud theory implies that this

functor gives rise to an equivalence between the full subcategory of K -An formed
by formal schemes flat and of finite type over K° and the category of compact
strictly K-analytic spaces.

We fix for every restricted K-analytic space X a formal model X and, for a

II(Kc)-module A, we set HI(X,A) = Hq(% ,A). For w € I(K¢), the w-
component of the latter is denoted by H q(X (®)A). If A has no Z-torsion, one
has H1(X,A) = Hq(X Z) ®z A. We prove that
(i) the II(Kc)-modules Hq(X A) are well defined, and the correspondence
X »—LH‘J(X7 A) is functorial in X;

(i) H q()A( ,Z) are quasi-unipotent II(K¢)-modules and finitely generated over
Z;
(iii) for every prime [, there are canonical II( K¢ )-equivariant isomorphisms

HY(X,Z) 9z ZiSH (X, Zy) = lim H (X, Z/1"Z)
—

where HY(X ¢, Z/I"Z) are the II(K¢)-modules @ H’I(Xé?), Z/1"Z) and

the latter are étale cohomology groups of X (@) = X®x K (®) from [Ber93];
(iv) there are canonical II( K ¢)-equivariant homomorphisms

H(|X|,2) - H(X,Z)
compatible with the canonical homomorphisms
HY(X|,2/nZ) - HY (X4, Z/nZ) |
where the groups on the left hand side are the cohomology groups of the
underlying topological II(K¢)-space | X| of X;

(v) in the situation of (viii) from §0.5, if  is separated, then for X represented
by Y,z there are canonical II(K)-equivariant isomorphisms

HY(Y" (2", Z)SHY(X, Z)
where HY(Y"(2")z, Z) = lim HY(V;;, Z) with the inductive limit taken over
—
open neighborhoods V of Z" in " and Vi is the preimage of C* in V;
(vi) in the situation of (viii) from §0.5, if V is separated and J = )/, then every
morphism X — Y*" from a compact strictly K-analytic space X gives rise

to canonical II(K¢)-equivariant homomorphisms H4(Y", Z) — HY(X,Z),
which are also functorial in X and Y.

The property (iii), applied to X = Y*" for a proper scheme ) over K, gives rise
to a II(K¢)-equivariant isomorphism
HI(Y™ Z) @z Zi~H (Y, Zy) ,
where the right hand side is the II(Kg)-module @ + H?(Y(®) Z;) and the latter
is the l-adic étale cohomology group of the scheme V(@) =Y @ K (@),
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In (v), if Y comes from a separated scheme )’ of finite type over F, i.e., Y =
V'®@rpK°and Z C ), =), then Hq()A(, Z) is just the cohomology group H4(Z%, Z)
at which morphisms of first type in II(K¢) act trivially, and those of second type
act through complex conjugation on Z}.

In (vi), Y*" is the K-analytic space associated (in [Berl5, §3.2]) to the scheme
Y ®og., ((5375) @Ko K), and Y = Y xp. C. The group HY(Yh,Z) is in fact an
inductive limit of the corresponding cohomology groups taken over open neighbor-
hoods of the point b in B (see §2). If the above )Y is proper over K, the property
(v) implies that there is a canonical isomorphism H9 (Y%, Z)=H9(Ya", Z).

We conjecture that the above II(K¢)-modules H(X,Z) are provided with a
mixed Hodge structure which is functorial in X and such that, if X = Y2 for a
proper scheme ) over K as in the previous paragraph, it coincides with the limit
mixed Hodge structure on the groups H?(Y", Z).

0.8. Comparison with de Rham cohomology. A restricted K-analytic space
X is said to be rig-smooth, if the K-analytic space X is rig-smooth. For such X
its distinguished formal models form a cofinal family in that of all formal mod—
els, and the de Rham cohomology groups H gR()? /K°) are defined as the hyper-
cohomology of the complex Wy /Ko of logarithmic differential forms over K° of

a fixed distinguished formal model X of X. Notice that, if X is compact and,
in particular, X is of finite type over K°, then there are canonical isomorphisms
HgR()?/KO) Qro K=Hip(X/K), where the latter are the usual de Rham coho-
mology groups of X, i.e., the hypercohomology groups of the de Rham complex
of differential forms Q K considered in the G-topology of X. We show that the

groups HgR()A( /K°) do not depend on the choice of a distinguished formal model
up to a canonical isomorphism, and they are provided with the Gauss-Manin con-
nection V : HgR(J?/KO) — HgR()A(/K") Qe wio. We are going to describe a
comparison result from §11 that relates the groups H%(X,F) and HgR()?/KO) in
a form which reminds Fontaine’s p-adic Hodge theory.

First of all, if W is a P-ring for a groupoid P (i.e., a covariant functor from P to
the category of rings), then a W-module is a left P-module D such that, for every
P € P, D) is a module over the ring W) with the property that, for every
morphism ¢ : P — P’ in P, one has ¢p(az) = ow(a)ep(z) for all @ € W) and
xz € D) If all D) coincide, D is said to be single.

For example, the field K¢ can be considered as a single II(K¢)-field. Namely,
one associates to each w € II(K¢) the field K¢ and to each morphism w — w’
in II(K¢) of first (resp. second) type the automorphism of K¢ that takes f(w)
for f =35, anT™ € C((T)) to f(w') (resp. f(@'), where f = > s @nT™).
This induces the structure of a single II(K¢)-ring on K. If F = R and D is
a K&-module, a K&-semilinear automorphism of D is a II(KX¢)-automorphism ¢
such that (%) (az) = @@ (z) for all w € M(K¢g), o € K& and z € D®). As
above, the field K and the ring K° can be considered as a single m(K)-field and a
single 7(K)-ring, respectively.

Furthermore, let W(K) be the algebra of F-linear endomorphisms K generated
by multiplications by elements of K and derivations % for generators w of the
maximal ideal K°°. If w is fixed, each element of W (K') has a unique representation
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in the form gn%—i—gn_l%—i—. ..+go withn > 0 and g; € K. The algebra W (K)
can be considered as a single 7(K)-ring. Namely, one associated to each w € 7(K)
the algebra W(K) and to each morphism w — @’ in 7(K) the automorphism of
W (K) that acts on K as above and takes % to %. Notice that K is a left W(K)-
module. The algebra W(K¢) can be considered as a single II( K¢)-ring such that
a morphism ¢ : w — @’ in II(K¢) acts on K¢ as in the previous paragraph and

9 9
takes 75 10 557-

Finally, for a generator w of K°°, let §, denote the derivation wa% on K
which preserves K° and all of its ideals. Let W(K°) be the K°-subalgebra of
W(K) generated by the derivations 0. By the way, the Gauss-Manin connection
on the groups HgR()A(/KO) gives rise to an action of the ring W(K°) on them.
(The action of §5 is the composition of the connection V with the isomorphism
wko=K° : dlog(w) + 1.) The m(K)-ring structure on W (K) induces a 7(K)-
structure on W(K°), and K° is a single W (K °)-module. In the same way, W(Kg)
is a single II(K¢)-ring, and K is a single W (K& )-module.

For a W(KQ)- (resp. W(K°)-) module D, a real number A and an element
w € I(K¢) (resp. ©(K)), we set Dg\w) = {z € D6 — \)"(z) = 0 for some
n > 1}. If X is fixed, the correspondence w + D) is a II(K¢)- (resp. 7(K)-)
submodule of D denoted by D). For a subset I C R, we set Dy = ®)cr D). We
also denote by D the II(K¢)- (resp. 7(K)-) module D/(K°°- D). A distinguished
W(Kg)-module (resp. W (K°)-module for F = R) is a W(Kg)- (resp. W(K°)-)
module D, which in the case F = R is provided with a Kg-semilinear (resp. K°-
linear) automorphism of order two ¥ and which possesses the following properties:

(1) D is free of finite rank over K¢ (resp. K°);

(2) the map D — D induces an isomorphism of II( K¢)- (resp. 7(K)-) modules
Dqnijo,1y—D;

(3) for w € TI(Kg) (resp. 7(K)), the actions of ¢(®) and §, on D) are
related by the equality o(®) = exp(—2midy) (resp. ¥(®) commutes with
cos(2md) and anti-commutes with sin(27d,)).

Let W(K&)-Dist (resp. W (K°)-Dist) be the category of distinguished W (Kg)-
(resp. W(K°)-) modules. Let also FII(K¢)-Qun (resp. FII(K)-Qun) denote the
category of II(K¢)- (resp. II(K)-) modules in the category of finitely dimensional
F-vector spaces V such that, for each @, the action of ¢(®) on V is quasi-unipotent.
We show that the functor

W(K&)-Dist — FII(K¢)-Qun : D — D=

is an equivalence of categories, where D=1 is the II(K¢)-submodule @ — {z €
ﬁ‘ﬁ(w)(x) =1} if F =R, and l~), if F = C. If V € FII(K¢)-Qun, one can provide
the tensor product V ®g K& with a distinguished W (K &)-module structure so that
the correspondence V — V ®@p K¢ is a functor inverse to the above one.

The comparison result we are talking about states that, for a separated rig-
smooth restricted K-analytic space X , the groups HgR()A(C /K&) are provided with
the structure of a single distinguished W (Kg&)-module which extends the action
induced by the Gauss-Manin connection, and there are canonical isomorphisms of
distinguished W (K &)-modules

HY(X,C) ®c K&=H, (Xo/Kg) .
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It follows that there are induced isomorphisms of II(K¢)-modules

HY(X,C)5 iy (Xo/K&)qnn.) -
The above isomorphisms take place also for F = R, but in this case one can in fact
relate the groups Hq()?, R) and HgR(X'/KO).

Suppose that F = R, and let us consider W(KQ) as a II(K)-module. (Recall
that W(K°) is a m(K)-module.) We show that the functor

W(Kg)-Dist — W (K°)-Dist : D+ D=
is an equivalence of categories. An inverse functor takes E € W/(K°)-Dist to

E ®ko K&, which is provided with a distinguished W (K& )-module structure, and
therefore there is an equivalence of categories

RII(K)-Qun=W (K°)-Dist .

The above comparison result implies that the groups HgR()A( /K?°) are provided
with the structure of a distinguished W (K °)-module, and there are canonical iso-
morphisms of distinguished W (K& )-modules

HY(X,R) @r K&SHI, (X /K°) @50 K¢ |
which induce isomorphisms of distinguished W (K°)-modules
(HY(X,R) @r K&)' HI (X/K°)
and of quasi-unipotent II(K)-modules

H9(X, R)3H§R(X/K°)g?l[o,1) ® ngR(X/KO)g?[_()%l) :

In both cases (when F is either C, or R), the action of ¢ on HgR()A(/KO) is in-
duced by the derivation d on K& and an operator —ﬁLog(U(w)) on H1(X(®) C)
with Log(c(®)), defined in §4.5. If F = R, the automorphism 9(*) on HgR()A(/KO)
is induced by the complex conjugation on K¢ in Hq()?(w), R) ®r K&. Further-
more, in both cases the action of o(®) on Hq()?(w), F) is induced by the operator

exp(—27idy) = co8(2mdw ) —isin(27d, ) on HgR()?/KO)gm)[o,l) ®rC. If F = R, the

action of ¢(®) on HY ()?(w), R) is induced by the complex conjugation on the right
hand side, i.e., it is the identity (resp. minus identity) on the first (resp. second)
summand.

In §11, we also describe the above de Rham cohomology groups and the iso-
morphism when X comes from a geometric object as in the situation of (viii) from
§0.5.

0.9. Plan of the paper. In §1, we introduce R-analytic spaces and establish their
basic properties necessary for the paper.

Our purpose in §2 is to recall the construction of and various facts about the
nearby and vanishing cycles functors from [SGA7, Exp. XIV] and to extend them
to R-analytic spaces. As was mentioned at the end of §0.3, for this and for further
exposition, we use the bold letter F for either R, or C. We recall the framework of
pro-F-analytic spaces and their cohomology which is convenient for dealing with the
analytifications X" of schemes X finitely presented over a Stein germ. In the situ-
ations we consider, pro-F-analytic spaces play the role of non-Archimedean objects
associated to formal completions of the corresponding schemes. For example, in the



14 VLADIMIR G. BERKOVICH

situation of the property §0.5(viii) we give a characterization of rig-smoothness of
the generic fiber of the formal scheme JA) /2 in terms of a certain pro-F-analytic space
Y"(2h),. In §2.4, we prove a comparison theorem (Theorem 2.4.1) for the class
of schemes from the same property §0.5(viii), which is more general than that in
loc. cit.. In §2.5, we recall some notions of log geometry and especially a beautiful
construction of Kato and Nakayama from [KN99] that associates to every fine log
complex analytic space (X, Mx) a topological space X'°® and a proper surjective
map 7 : X'°¢ — X. Their results easily imply a description of the vanishing cycles
complex R¥, (A ) of a vertical log smooth F-analytic space X over the log open

disc (D, Mp) with Mp = Op N O%. in terms of the space Xéog associated to the
log structure on Xz = (X;)c¢ induced from X (Theorem 2.5.2).

In §3, k is an arbitrary non-Archimedean field with non-trivial discrete valuation.
We introduce distinguished schemes and special formal schemes over k°, and deduce
from Temkin’s result [Tem18] that, if char(k) = 0, every reduced special formal
scheme X flat over k° admits a blow-up ) — X which induces an isomorphism over
the rig-smooth locus of X,, and such that ) is distinguished. This implies that every
special formal scheme X admits a distinguished proper hypercovering a : 2), — X
(i.e., such that each 9),, is distinguished and the morphism 2),, — X is proper).
Furthermore, let X be the formal scheme )Ai/ z with ) a distinguished scheme over
k° and Z the union of some of the irreducible components of ). Using results
from [Ber99], we prove that the log structure on X generated by the canonical log
structure on ) coincides with the canonical log structure on X whose value on 4
étale over X is O(4) N O(4Uy)*.

In §4.1, we introduce various groupoids related to the field K from §0.4. They
include the groupoids 7(K) and II(K), already mentioned in §0.5, as well as
groupoids 7(K7) and II(K7Y) related to the log scheme ptyo = Spec(k7), where
K2 = K°/(K°°)", r > 1, with the log structure induced by the canonical one on
Spec(K°). In §4.2, we consider examples of P-spaces for those groupoids and, in
§4.3, we introduce the notion of a P-sheaf and a P-cosheaf on a P-space and con-
sider important examples of those objects. In addition to the II(K)-ring W(Kg)
and the II(K)-ring W (Kg), mentioned in §0.8, we introduce a related II(K})-ring
W(K%T) In §4.4, we show that the category of P-sheaves on a P-space X is equiva-
lent to the category of sheaves on an explicitely constructed site X (P)¢;. Finally, in
§4.5, we introduce distinguished modules over W(Kg), W(Kg) and W(Kg ,.), and
construct an equivalence of each of their categories with a corresponding category
of quasi-unipotent modules of finite dimension over C similar to that mentioned in
§0.8.

In §5.1, we introduce distinguished log F-analytic spaces over the analytifica-
tion ptre = = pth ke of the log scheme pt Ko mentioned in the previous paragraph.
They include log spaces obtained from dlstlngmshed special formal schemes over
K° and from distinguished log F-analytic spaces over (D, Mp) from §2.5. For a
distinguished log F-analytic space X over ptg., we describe the II(K7)-sheaves
that appear in Theorem 2.5.2 in terms of the log structure on X, and use it for a
description of vanishing cycles sheaves in the situation of §0.5(viii) for a class of
schemes V.

Our purpose in §6 is to prove that, for a log formal scheme X over K° from a
certain class that includes distinguished ones, the analytification (RY, (Z/nZ) %,,)h
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of the vanishing cycles complex, introduced in [Ber96b], has the same description
in terms of the topological space (X2)°¢ as in Theorem 2.5.2 (Theorem 6.1.1). For
this we use, among other things, the log étale cohomology developed by Kazuya
Kato and his collaborators.

In §7, we introduce the complex R\IIZ(an) for an arbitrary special formal

scheme X over K° in terms of the simplicial topological space (Qj’lﬁlog associ-
ated to a distinguished proper hypercovering a : ), — X. We prove the property
§0.5(iii) and use it together with the main result of §6 to show that the construction
does not depend on the choice of the hypercovering and is functorial in X. We then
extend the construction to an exact functor R\I/f,’ on arbitrary complexes A" taking
the property §0.5(ii) as a definition, and prove the comparison property §0.5(vii). In
§7.2 we prove the property §0.5(iv) and, in §7.3, we prove the comparison property
§0.5(viii).

In §8, we prove the continuity properties §0.5(v) and (vi).

In §9, we introduce the category of restricted K-analytic spaces K —.Zl?z, define

the groups H q()A( ,Z) for such a space X, and prove all of their properties listed in
§0.7.

In §10, we study a purely F-analytic object, the complex w /Ko of log differential
forms on a distinguished log F-analytic space X over the log space ptxs.. We con-
struct a complex of W(K¢ ,)-sheaves L'y and a quasi-isomorphism Ly  —wy_, Ke, -
This implies, for example, that the de Rham cohomology groups His (Xc/ Kg,)
have the structure of a W (K¢, ,)-module. We also construct a quasi-isomorphism of
Ly with a complex closely related to that from the construction of the vanishing
cycles complex in §7.1. Our construction is a refinement of that from Steenbrink’s
paper [Ste76, §2], but it is done in the framework of log geometry of Kato-Nakayama
[KN99].

In §11, we prove the comparison results formulated in §0.8.

We remark that the terms “nearby” and “vanishing cycles”, introduced in [Ber94]
and used in this paper (as well as in [Ber96b] and [Ber15]) for the functors © and ¥,,,
are not standard ones used in literature. Nevertheless, all of these functors have the
same meaning as the corresponding functors with the same notations from [SGA7],
and we recall their definition.

1. R-ANALYTIC SPACES

1.1. Affine space over R. For n > 0 the n-dimensional affine space over R,
denoted by R", is the set of multiplicative seminorms on the ring of polynomials
A = R[Ty,...,T,] that extend the Archimedean absolute value | | on R. It is
provided with the weakest topology with respect to which all functions R — R
of the form = — |f|, with f € A are continuous, where | |, is the seminorm
on A that corresponds to a point x € A%. The Gelfand-Mazur theorem implies
that the kernel Ker(| |,) of the latter seminorm is a maximal ideal of A and the
quotient H(z) = A/Ker(] |,) is either R or C. This identifies R” with the maximal
spectrum Max(A) of A. It follows also that the canonical map p : C" — R™ which
takes a point @ € C" to the seminorm f — |f(a)|s is surjective, and it induces a
homeomorphism between the quotient of C™ by the complex conjugation and the
affine space R"”.
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The above map identifies R™ with the set of real points of R"”, i.e., points x with
H(z) = R. Each real point has one preimage in C™. Points from the complement
R™\R™ are said to be complex ones. A complex point x has two preimages x’, X in
C™ with x”” = X’ and, for the corresponding isomorphisms xx : H(z)=H(x') = C
and xx : H(x)=H(x"”) = C, one has xx-(a) = xx (a) for all a € H(z). Moreover,
the map p: C* — R" is a local homeomorphism at the points x’ and x”.

The topological space R™ is provided with a sheaf of local R-algebras Or- as
follows. For an open subset U C R™, the R-algebra O(U) consists of the functions
f : U — C which are local limits of rational functions with real coefficients, i.e., such
that every point 2 € U has an open neighborhood U’ in U with the property that, for
every ¢ > 0, there exist polynomials P, @ € A with Q(z") # 0 and |f(a’)— ggﬁ:; | <e
for all 2/ € U’. Since the space R™ coincides with the maximal spectrum of A,
analytic functions are local limits of polynomials with real coefficients and, for
every point € R", the completion of A with respect to powers of the corresponding
maximal ideal coincides with the completion 6]1@%,1 of the local ring Ogn .

The definition in fact implies the following. Let ¢ denote the following involution
of the locally ringed space (C™,Ocn). It takes a point z = (z1,...,2,) to the
point Z = (Z1,...,2,) and an analytic function f on an open subset & C C" to
the analytic function f¢ on the image c(U), where f¢(z) = f(Z) . Then there is
a canonical isomorphism of sheaves Orn—(p,Ocn )=, It follows that, if a point
x € R" is real, the local ring O~ ,, is the R-algebra of power series with coefficients
in R which are convergent in a neighborhood of z in R”. If a point z is complex and
x € p~1(z), then p is a local isomorphism at x, and it gives rise to an isomorphism
Ogrn »—Ocn x. Notice that the sheaf Ogn is coherent, and any subsheaf of ideals
in it is locally of finite type.

Remarks 1.1.1. (i) The affine space R™ can be identified with a closed subset of
C™ = C", which is a disjoint union [];}_, W} of the locally closed subsets

Wk = {(zla . '7Zn)|zla ces %k € R7 Im(zk-‘rl) > 0} .

Under this identification, Wy is the open subset {(z1,...,2,) € C"|[Im(z1) > 0}
and W, is the closed subset R™ C C™. The sheaf Og~ is identified with a subsheaf
of the restriction of O¢n to R™ such that, for an open subset U C R™, O(U) consists
of the complex analytic functions in an open neighborhood of U in C™ that take
real values at points from the intersection U N R™.

(i) In the particular case n = 1, the affine line R is identified with the closed

upper half-plane H = {z € C’Im(z) > 0} so that its set of complex points is the
Poincaré upper half-plane H = {z € C|[Im(z) > 0}.

Let = be a point of R™, which is the image of a point z = (z1,...,2,) € C* = C™.
For a tuple r = (r1,...,m,) € (R})", we set D(z;7) = {2’ € (C”Hz; — zj| < r; for
all 1 < j < n} (the open polydisc in C"), and denote by D(z;r) its image in R™
(it is an open subset of R™). If the point z is complex and r; < |Im(z;)| for some
1 < j < n, then there is an isomorphism of locally ringed spaces D(z;r)=D(z;7),
and in this case the latter is called a complex open polydisc in R™. If the point x is
real, i.e., z; € R for all 1 < j < n, then D(z;r) — D(x;r) is a double cover, and
the latter is called a real open polydisc in R™.

1.2. R-analytic spaces. Let R-Lrs denote the category of locally R-ringed spaces,
i.e., the subcategory of the category of locally ringed spaces whose structural sheaves
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are commutative R-algebras and in which morphisms are defined in the usual way
but through homomorphisms of R-algebras. An example of such a space is the
following one, called a local model (of an R-analytic space). Let U be an open
subset of R™ and let J be a finitely generated subsheaf of ideals in Oy = Ogn |,
The local model associated with these data is the support X of Oy /J with the
sheaf Oy, which is the restriction of Oy /J to X.

The category of R-analytic spaces R-An is a full subcategory of R-Lrs consisting
of the spaces locally isomorphic to a local model. We call a local chart of an R-
analytic space X a tuple W, ¢,Y, (U, TJ)) consisting of an open subset W C X,
an isomorphism ¢ : WY, where Y is a local model associated to a pair (U, J)
as above for an open subset U C R™ and a finitely generated subsheaf of ideals
J C Oyp. For apoint z € X, one sets H(x) = Ox ,/m,, where m, is the maximal
ideal of Ox ,. If H(z) = R, the point is said to be real. Otherwise, it is said to be
complez. The set of real points X(R) is closed in X. Notice that every real (resp.
complex) point has a fundamental system of local charts as above in which U is a
real (resp. complex) polydisc in R™.

Remarks 1.2.1. (i) Any complex analytic space Y can be considered as an R-
analytic space, which will be denoted by Yr. Indeed, given a point z = (21, ..., 2,) €
C™ = C", take a real number r bigger than —Im(z;). Then the shift C* — C™ :
z' v+ 2"+ (ri,0,...,0) gives rise to an isomorphism between an open neighborhood
of the point z and an open neighborhood of its image in the subset W, C C™ from
Remark 1.1.1(i), which can be identified with an open subset of R™.

(ii) The functor C-An — R-An : Y — YR is not fully faithful. The easiest
example is as follows. The automorphism group of the zero dimensional affine
complex analytic space C? is trivial, but that of the R-analytic space C% consists of
two elements, the trivial one and the one induced by the complex conjugation. Here
is another example. The automorphism group of the upper-half plane H, considered
as complex analytic space, is PSLy(R), which is also the group of orientation-
preserving isometries of the hyperbolic plane H, but the automorphism group of
the R-analytic space Hgr is PGL2(R), which is the group of isometries that are not
necessarily orientation-preserving. Namely, a matrix v with negative determinant
takes a point z € H to the point v(2) = %_ts € H and a function f to the function
~*f for which (v*f)(2) = f(y(z)). A morphism between complex analytic spaces,
considered in the category R-Lrs, will be called an R-morphism. For example, the
involution ¢ of C™ from the previous subsection is an R-automorphism.

We are going to describe the category R-An in terms of a category of complex
analytic spaces provided with an additional structure.

We say that a pair (V,J), consisting of an open subset of C" and a finitely
generated subsheaf of ideals J C Oy, is c-invariant if ¢(V) = V and, for every
open subset W C V, the conjugation isomorphism O(W)=0O(c¢(W)) : f — f€ takes
J(W) onto J(c(W)). If a pair (V,J) is c-invariant, the complex conjugation on
C™ gives rise to an involutive R-automorphism ¢ : Y=Y of the corresponding local
model Y of a complex analytic space. We say that an involutive R-automorphism
¢ : Y=Y of a local model Y is a complex conjugation if it is induced by that
of an associated c-invariant pair (V,J). A complex analytic space with complex
conjugation is a pair (Y, ¢) consisting of a complex analytic space Y provided with
an R-automorphism ¢ : Y=Y such that Y can be covered by c-invariant local charts
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with the property that the restriction of ¢ to the corresponding local model is a
complex conjugation. This implies that the automorphism ¢ of Y is an involution,
and group {1, c} acting on such Y will be denoted by {(c). The quotient of ¥ by
the action of (c) is the object of the category R-Lrs whose underlying topological
space is the quotient X = Y/(c) provided with the sheaf Ox = (p.Oy)'. Tt will
be denoted just by Y/{c).

Complex analytic spaces with complex conjugation form a category C-Anc¢
whose morphisms are morphisms in C-An which commute with the complex con-
jugation automorphisms. We are going to construct an extension of scalars functor

R-An — C-An® : X — X¢c = X®grC .

First of all, let X be a local model of an R-analytic space associated to a pair
(U,Z) for an open subset U C R™ and a subsheaf of ideals Z C Oy. We let X¢
denote the local model of a complex analytic space associated to the c-invariant pair
(U,T"), whered = p~1(U) C C™ and T’ is the subsheaf of ideals in Oy, generated by
. Given a second local model Y of an R-analytic space, associated to a similar pair
(V,J) with V. C R™, and a morphism ¢ : X — Y in R-An, consider the induced
morphism X — R™. It defines (and is determined by) a homomorphism of R-
algebras R[T1, ..., T,] = O(X). The latter defines a homomorphism of C-algebras
C[Ty,...,T,] = O(Xc) which, in its turn, determines a morphism of complex
analytic spaces Xc — C™ whose image lies in V = p~1(V). Since the subsheaf of
ideals J’ C Oy is generated by J, it follows that ¢ induces a morphism of local
models ¢c : X¢ — Y. This morphism commutes with the complex conjugation on
both local models. It follows also that, if the morphism ¢ is an isomorphism, then
so is the morphism ¢c. Notice that there is a canonical isomorphism in R-Lrs,
Xc/{c)=X, and one has (X¢c){© = X(R).

If X is an arbitrary R-analytic space and {X%};c; is a covering of X by local
charts, we define X¢ by gluing the complex analytic local charts X% along the open
subsets (X*NX7)c. The complex analytic space X¢ does not depend on the choice
of a covering up to a canonical isomorphism, and this gives the required extension of
scalars functor X — X¢. The involutions ¢ on X&’s are compatible and, therefore,
they give rise to an involution ¢ : X¢—Xc, which is an R-automorphism of X¢.
By the construction, the complex analytic space X¢ is an object of C-An, and
the correspondence X — X is a functor. It follows also from the construction that
there is a canonical isomorphism in R-Lrs, Xc/{c)=X, and one has (X¢){© =
X (R). If the complex analytic space X¢ is considered as an object of the category
C-An®® we denote it by X&.

Proposition 1.2.2. (i) The functor R-An — C-An® : X — X& is an equivalence
of categories;

(i1) for every Y € C-Ancc, the quotient Y/{(c) is an object of R-An, and the
correspondence Y +— Y/{(c) is an equivalence of categories inverse to that from (i).

Proof. It suffices to show that, for every Y € C-An®, the quotient Y/(c), considered
as a locally ringed space, is locally isomorphic to an R-analytic space. Let y be
a point of Y, and let (W, p, Z,(V,J)) be a c-invariant local chart with y € W.
Suppose first that ¢(y) # y. Then we can find an open neighborhood V' of y in
V with V' Ne(V') = 0. If W is the preimage of Z NV’ in W, it follows that the
morphism p : Y — Y/(c) gives rise to an isomorphism of W’ onto its image. Suppose
now that c¢(y) = y. We can shrink W and assume that V' is an open polydisc in
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C™ with center at zero, which is the image of the point y. Then D = V/{c) is a
real open polydisc in R™, O(V) is the C-algebra of power series with coeflicients in
C convergent in V', and O(D) is the subalgebra of the series with real coefficients.
Notice that every function g € O(V) is represented in a unique way as a sum w+ iv
for u,v € O(D) and, for the function g¢ € O(V), one has g¢ = u — iv. It follows
that, if g € J(V), then g® € J(V) and, therefore, u = £ (g+¢°) and v = —%(g—g°)
belong to the ideal I = J(V)NO(D). It is also easy to see that J(V) = IO(V), that
the ideal I is generated over O(D) by the real and imaginary parts of generators
of the finitely generated ideal J(V) of O(V'), and that I generated the subsheaf of
ideals Z = J N Oy of Oy. Thus, the sheaf (p,07)¢? on the quotient space Z/(c)
coincides with the restriction of the sheaf Op/Z and, therefore, the quotient Z/{c)
is a local model of an R-analytic space. This implies the required fact. [l

Let X be an R-analytic space. The action of the complex conjugation on the
structural sheaf O, compatible with the action of ¢ on X¢, induces a similar
action on the constant subsheaf Cx, C Ox. By the above construction, one has
Ox = (p*OXC)@. We introduce the following subsheaf of Ox: ¢x = (p*CXC)<C>.
It is called the sheaf of constant analytic functions on X. Notice that p~1(cx) is
a subsheaf of the constant sheaf Cx,, and that X(R) = {z € X|cx,, = R}. The
complex conjugation on the field of complex numbers induces an automorphism
¥ of the constant sheaf Cx, (compatible with the trivial action on X¢), which
commutes with the above complex conjugation ¢ on Cx. It follows that 9 induces

an automorphism of the sheaf c¢x, also denoted by 9. Notice that cé}” =Ryx.

Let Y be a complex analytic space. For a local chart (W, ¢, Z,(V,J)) of Y,
we set V¢ = ¢(V), denote by J¢ the subsheaf of ideals of Oy« consisting of local
sections of the form f°(z) = f(Z) for local sections f of Oy, and denote by Z¢
the local model associated to the pair (V¢, 7¢). Then the involution ¢ : C* — C"
induces a conjugation isomorphism of local models ¢ : Z°=Z. Any local chart
W', Z' (V' T") of Y with W C W gives rise to an open immersion of local
models Z'¢ < Z¢ which is compatible with the conjugation isomorphisms on Z and
Z'. Thus, when W runs through local charts of Y, one glue local models Z¢ and
get a complex analytic space Y¢ and a conjugation isomorphism ¢ = cy : Y=Y,
which is an R-morphism. Notice that one can identify (Y )¢ with ¥ so that the
conjugation isomorphism cy. : Y = (Y)Y is inverse to cy : Y=Y

For example, if Y € C-An®¢, there is an evident isomorphism of complex analytic
spaces Y=Y ¢ whose composition with the above R-morphism ¢ : Y*=Y coincides
with the complex conjugation ¢ : Y=Y defined on Y.

If Z is a complex analytic space, then the conjugation isomorphisms cz and
cze define a complex conjugation on the disjoint union Z ][] Z¢, and the corre-
spondence Z +— Z [ Z¢ is a functor C-An — C-Ancc left adjoint to the forgetful
functor C-An® — C-An. Notice that (Z[][Z°)/(c) = Zr and (Zr)c = Z]] Z°.
Furthermore, the same cz and czc together with the permutation define a com-
plex conjugation on the direct product Z x Z¢, and we get an R-analytic space
Resc/r(Z) = (Z x Z°)/(c).

Proposition 1.2.3. The functors C-An — R-An :Y — Yr and Y + Resc/r(Y)
are left and right adjoint, respectively, to the extension of scalars functor R-An —
C-An: X — Xc.

The functor Y+ Resc/r(Y) is called the Weil restriction of scalars functor.
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Proof. Given an R-analytic space X, each morphism of complex analytic spaces
Y — Xc¢ (resp. X¢ — Y) induces a morphism Y¢ — X¢g (resp. X¢ — Y°),
which is compatible with the complex conjugation on X and the conjugation
morphism Y=Y . It defines therefore a morphism of complex analytic spaces with
complex conjugation Y [[Y°® — X¢ (resp. Xc — Y x Y°). By Proposition 1.2.2,
the latter gives rise to a morphism Yr = (Y[[Y°)/{c) = X = Xc/{c) (resp.
X = Resg/r(Y) = (Y x Y°)/(c)). O

Proposition 1.2.2 allows one to extend various constructions, notions and re-
sults from the category of complex analytic spaces to that of R-analytic ones. For
example, the category R-An admits fiber product. Namely, given morphisms of
R-analytic spaces Y — X and Z — X, the fiber product Y x x Z is the R-analytic
space (Yo Xxo Zc)/{c). Notice the canonical map between the underlying topo-
logical spaces |Y xx Z| — |Y| X x| |Z] is not a bijection in general. It is a proper
map and, for points y € Y and z € Z over the same point x € X, the preimage of
the point (y, z) is the space M(H(y) @ (x) H(2)), which consists of at most two
points. (Recall that map of locally Hausdorff topological spaces T — S is said to
be proper if it is Hausdorff, i.e., the diagonal map T'— T x g T is closed, and the
preimage of a compact subset is compact.) The zero dimensional affine space RV is
a final object of the category R-An, and so this category admits direct products.
Notice that, for an R-analytic space X and a complex analytic space Y, one has
X x YR—~(Xc x Y)gr. For example, X x C{—(Xc)Rr-

Let ¢ : Y — X be a morphism of R-analytic spaces. It is said to be separated if
it Hausdorff as a map of topological spaces. It is said to be proper if it is proper as
a map of topological spaces. It is said to be finite if it is proper and the preimage of
each point of X is a finite subset of Y. It is said to be a closed immersion if it is finite
and the induced homomorphism of sheaves Ox — ¢.(Oy ) is surjective. It is said to
be a locally closed immersion if, for every point y € Y, there are open neighborhoods
V of y and U of ¢(y) such that ¢ induces a closed immersion V' — U. One can easily
see that ¢ possesses one of these properties if and only if the induced morphism
of complex analytic spaces pc : Yo — X possesses that property. Notice that
the canonical morphism (Xc)r — X is finite (of degree two), and the diagonal
morphism Ay,/x : Y — Y xXx Y is a locally closed immersion. If ¢ : ¥ — X is
a locally closed immersion, U and V are as above, and J = Ker(Oy — ¢.(Ov)),
then the quotient J/J? can be considered as an Oy-module. All these sheaves
are compatible on intersections, and so they define a coherent Oy -module which is
said to be the conormal sheaf of ¢ and denoted by Ny, x.

Given a morphism of R-analytic spaces ¢ : Y — X, the conormal sheaf of the
diagonal morphism Ay, x is said to be the sheaf of one-forms of ¢ and denoted by
Q;/X. The ¢-th exterior power of Q;/X is said to be the sheaf of q-forms of ¢ and
denoted by Qf, /X As usual, the direct sum @tﬁioﬂqy /X forms a differential graded
algebra Q'Y/X which, in the case X = ]RO, is denoted just by £2y,.

Furthermore, a morphism ¢ : Y — X is said to be flat (resp. unramified) at a
point y € Y if the local ring Oy, is a flat Ox z-module (resp. m, = m,Ox ),
where 2 = ¢(y). It is said to be étale at y if it is flat and unramified at y. The
morphism ¢ is étale at y, if and only if either it is a local isomorphism at y, or
H(z) = R and there exist open neighborhoods V of y and U of X such that ¢ gives
rise to a morphism V — U which is the composition of an isomorphism V=Uc and
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the canonical morphism (Uc)r — U. The morphism ¢ is said to be unramified
(resp. étale) if it is unramified (resp. étale) at all points of Y. A morphism
¢ Y — X is unramified if and only if Q%,/X =0, and the morphism (X¢)r — X
is étale.

A morphism ¢ : Y — X is said to be smooth at y if there is an open neighborhood
YV C Y of y such that <,0|v is a composition of an étale morphism ¢ : ¥V — X x R"
and the canonical projection X x R™ — X. Notice that, if ¢ is smooth but not
étale at y (i.e., the above n is positive), one can always find a composition as above
in which % is a local isomorphism. Indeed, if % is not a local isomorphism, then y
is a complex point and ¥(y) is a real point. Shrinking Y, we may therefore assume
that ¢ goes through an étale morphism ¢’ : ¥ — X x C}, which is of course
a local isomorphism at y. After a shift on C", we can make the image of ¥’'(y)
in C" lying outside R™. Then the composition of v/’ with the canonical morphism
X xC% — X xR"™ is alocal isomorphism at y. The morphism ¢ is said to be smooth
if it is smooth at all points of Y. If ¢ is smooth of pure dimension n > 0, the Oy-
module Q3 /x 18 locally free of rank n. An R-analytic space X is said to be smooth

if the morphism X — RO is smooth. In this case, one has Ker(Ox A QL) =cx. If
X is of pure dimension n > 1, then X is smooth if and only if it is locally isomorphic
to the affine space R™. A Hausdorff smooth R-analytic space of pure dimension n
will be said to be an R-analytic manifold of dimension n.

Let X be a scheme of locally finite type over R. Then the contravariant functor
from R-An to the category of sets that takes an R-analytic space Y to the set
of morphisms Homg_z,s(Y, X) is representable by an R-analytic space X" and a
morphism X" — X : z — x. The construction of X" and establishment of its
properties follow the usual way of the complex GAGA. We only notice that, as
a set, X" coincides with the set Xy of closed points of X, i.e., the points whose
residue field is R or C. For every ¥ € X, the local homomorphism Ox x — Oxn

is faithfully flat and induces an isomorphism of completions @X’x:@){h’m. One
also has (X")c = (X @r C)".

Notice that , if an R-analytic space X is connected, then the R-algebra cx (X)
is either R, or isomorphic to C. In the latter case, X is isomorphic to YR for a
complex analytic space Y, and one has Xc=Y [[Y*©.

Proposition 1.2.4. The following properties of a connected R-analytic space X
are equivalent:

(i) the complex analytic space Xc is connected;
(ii) for any connected R-analytic space Y, the direct product X XY is connected;
(iii) cx(X) =R.

Proof. (1)=(ii). The fibers of the projection X xY — Y are homeomorphic either
to X, or to X¢. Since Y is connected and the projection is an open map, it follows
that X x Y is connected.

(ii)==(iii). Since (X¢c)r = X xC, it follows that X is connected. This would
be impossible if ¢x (X)) is isomorphic to C.

(iii)==(i). Suppose that X¢ is not connected, and consider first the case X (R) #
(). Let V be the connected component of X¢ that contains the unique preimage of
a point from X (R). Then c¢(V) NV # (. Since ¢(V) is also a connected component
of X¢, it follows that ¢(V) = V. This implies that V = p~1(U) for U = p(V). If
V # X then the image of W = Xc\V in X does not intersect U, i.e., it is an open



22 VLADIMIR G. BERKOVICH

subset of X and the complement of ¢/ in X. This contradicts connectivity of X.
Consider now the case X(R) = @. Then p : (Xc)r — X is a local isomorphism
which is a double topological covering of X. If some connected component V of
Xc has nonempty intersection with ¢(V), then ¢(V) =V, and the above reasoning
shows that V should coincide with X. Suppose therefore that ¢(V) NV = 0 for
all connected components V of X. If VU ¢(V) # X¢, then the image of W =
Xc\(VUce(V)) in X does not intersect p()), and this contradicts connectivity of
X. Thus, VU¢(V) = X¢. Since there is an isomorphism of complex analytic spaces
c(V)=Ve, it follows that X = Vg and, therefore, ¢x(X) is isomorphic to C. This
contradicts the assumption. O

A connected R-analytic space X is said to be geometrically connected if it pos-
sesses the equivalent properties of Proposition 1.2.4.

1.3. Klein surfaces as R-analytic manifolds of dimension one. We recall
the definition of Klein surfaces from [AGT71].

Let W be an open subset of the closed upper half-plane H. A function W —
C is said to be analytic if it is the restriction of a function analytic in an open
neighborhood of W in C. A function f : W — C is said to be antianalytic if the
function W — C : z ~ f(z) is analytic. A function f : W — C is said to be
dianalytic if its restriction to any connected component of W is either analytic, or
antianalytic.

Furthermore, a dianalytic atlas on a topological space X consists of an open
covering {U,};cs of X and, for each j € J, a homeomorphism h; of U; with
an open subset of H such that, for every pair j,k € J, the function hy o hj_1 :

hi(U; NUg) = he(U; NU) C H C C is dianalytic. A Klein surface is a Hausdorff
topological space X provided with a dianalytic structure i.e., a maximal dianalytic
atlas. Such a space X is a two dimensional manifold with boundary 9(X). The
boundary consists of the points z € X such that there exists a local dianalytic chart
(U, h) (from the dianalytic structure of X) with z € U and h(z) € R C H.

A morphism of Klein surfaces ¢ : X’ — X is a continuous map with the proper-
ties that p(9(X’)) C 9(X) and, for every point ' € X', there exist local dianalytic
charts (U’,h') of X" and (U, h) of X such that 2’ € U’, p(U’") C U and the induced
map hopoh/~1 : K'(U’) — h(U) is of the form ¢og, where g is an analytic function
on I'(U') and ¢ is the “folding map” C — H : a + bi > a + |b|i.

Let X be a Klein surface. We provide it as follows with a sheaf of local R-
algebras Ox. Let {(U, hy)}u be the maximal dianalytic atlas of X. For an open
subset W C X, we define O(W) as the R-algebra of families { fi}v of continuous
functions fy : UNW — C with the following properties:

(1) for every chart U, the function f7 o hy;' : hyy(U N W) — C is analytic and
takes real values at hy (U NW) N I(X);

(2) for every pair charts U, V with UNV NW # @ and every connected
component S of UNV NW, one has fU|S = fV|S (resp. fU’S = fv|s), if
the restriction of hy o hljl to S is analytic (resp. antianalytic).

Notice that the same sheaf Ox is obtained if one uses an arbitrary (not nec-
essarily maximal) dianalytic atlas. We also notice that, if we identify the closed
upper half-plane H with R, the properties (1) and (2) imply that the restriction
of the sheaf Ox to a chart U is identified with that of Og to hy(U). This means
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that (X, Ox) is an R-analytic manifold of dimension one. Moreover, the boundary
0(X) is nothing else than the set of R-points of (X, Ox).

Proposition 1.3.1. The correspondence X — (X, Ox) gives rise to an equivalence
between the category of Klein surfaces and the category of R-analytic manifolds of
dimension one.

Proof. Step 1. The correspondence X — (X, Ox) is a functor. Let p : X’ — X be a
morphism of Klein surfaces. We have to associate to it a homomorphism of sheaves
©* : o 1(Ox) — Ox that gives rise to a morphism of locally R-ringed spaces
(X',0x/) = (X,0x). It suffices to define a system of compatible homomorphisms
OWU) - OU'") : f — ¢*f for all pairs of local dianalytic charts (U, h) of X and
(U', 1) of X’ with ¢(U’) C U. By the definition, the map hogoh'~!: M (U') —
h(U) is of the form ¢ o ¢’, where ¢’ is an analytic function on A'(U’) and ¢ is the
“folding map” C — H:a+bi—a+ |bli. We define the value of ¢* f at a point
2 € U’ as follows: (" f)(a') equals to f(p(z)), if ¢'(W (') € H, and to f(p(z)),
if ¢’(h'(2")) € C\H. We have to check that ¢*f € O(U’) and that, for every local
chart (U”,h") of X with o(U"”) C U and U'NU" # (@, the above function v’ = ¢* f
on U’ and the similar function v/ on U” are compatible on U’ N U".

First of all, since p(9(X")) C 9(X) and f takes real values at UNJ(X), v" takes
real values at U’ N d(X’). Furthermore, the restriction of v’ o h’~! to the open set
g'~'(H) is clearly analytic. The restriction of the map hopoh'~1 : K (U’") — h(U)
to the open set g’*l(C\ITI) is equal to the antianalytic function z — ¢’(z) and,
therefore, the restriction of v/ o A’~! to that set, which corresponds to the function

z+ (foh™1)(¢'(2)), is analytic. Finally, let 2’ be a point of U’ with ¢'(h/(2')) € R.

There is an open disc D in C with center at ¢'(h'(z’)) such that D NH C h(U)
and the function (f o h_l)’DmA is the restriction of an analytic function in D. We

H
now notice that, for any analytic function u on D that takes real values at D N R,

one has u(z) = u(%) for all points z € D. This implies that the above two analytic
functions on ¢'~*(H) and ¢'~!(C\H) are restrictions of the same analytic function
on W' (U'), i.e., ¢*f € OU’).

Let now (U”,h") be a local chart of X with ¢(U”) C U and U' NU" # 0. As
above, the map ho o h”~1 : K'(U") — h(U) is of the form ¢ o g”, where g” is
an analytic function on h”(U"), and the value of v" at point 2’ € U” is as follows:
v (2') equals to f(p(x')), if ¢” (K (') € H, and to f(p(2')), if ¢" (k" (z')) € C\H.
Let W be a connected component of U’ N U”, and denote by w the restriction of
the function h” o A’~1 to A'(W). One has

(howo ™)y = (hopoh”™)

h( hr(w) O W -
By the previous paragraph, the function h o o h’~! and ho o h”"~! restricted to
¢ ~1(H) and ¢"~*(H) (resp. ¢ }(C\H) and ¢"”"~1(C\H)) are equal to the analytic
functions z — ¢'(z) and ¢”(z) (resp. the antianalytic functions z — ¢’(z) and
g"(2)), respectively. Thus, if the function w is analytic, we get ¢'~1(H) = ¢”~}(H)
and g'~'(C\H) = ¢"~*(C\H), and this implies that v'| ,, =v”| . If the function
w is antianalytic, we get ¢'~!(H) = ¢”~}(C\H) and ¢'~!(C\H) = ¢"~'(H), and
this implies that v”W =7

o],
Step 2. The functor considered is fully faithful. Given Klein surfaces X and X',
let ¢ : (X',0x/) = (X,0x) be a morphism of R-analytic manifolds. Since the
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boundary of a Klein surface coincides with the set of real points of the correspond-
ing R-analytic space, we have p(9(X')) C 9(X). Let now (U, h) and (U',h’) be
dianalytic charts of X and X', respectively, with ¢(U’') C U. We have to show
that the induced map h o o h'~1 : h/(U’') — h(U) is of the form ¢ o g for an
analytic function g on A'(U’). The latter map is the underlying map of a morphism
YU =h(U") = U = h(U) of R-analytic open subspaces of R = H. Consider
the induced morphism ¢ : U5 — Uc of complex analytic open subspaces of C.
This morphism is defined by a complex analytic function f on U5. If g denotes the
restriction of f to U’, which is a closed subset of U, we get ¢ = ¢ og.

Step 3. The functor is essentially surjective. Indeed, let X be an R-analytic
manifold of dimension one. It is covered by open charts U with given isomorphisms
hy : U=h(U) C R. If we identify R with ﬁ, we get a dianalytic atlas on X, which
defines the structure of a Klein surface on X. O

1.4. Etale fundamental group of an R-analytic space. A morphism of R-
analytic spaces ¢ : Y — X is said to be an étale covering map if it is an étale
morphism with the property that each point of X has an open neighborhood U for
which ¢~1(U) is a disjoint union of spaces such that the induced morphism from
each of them to U is finite étale. In this situation Y is said to be an étale covering
space over X. The category of étale covering spaces over X is denoted by Covét(X ).
Notice that any morphism in this category is automatically an étale covering map.
Notice also that any topological space Y provided with a topological covering map
Y — X has a canonical structure of an R-analytic space for which this map is an
étale covering map. If all points of X are complex, then each étale covering map
Y — X is a topological covering map and, in particular, Cov®® (X) coincides with
the category Cov(X) of topological covering spaces over X.

Furthermore, we say that an étale covering space Y over a connected R-analytic
space X is an étale universal covering, if it is connected and, for any étale covering
space Y’ over X, there exists a morphism Y — Y’ over X. Notice that, if Y’
is connected, any such morphism Y — Y’ is surjective. The remark from the
previous paragraph implies that, if X is not geometrically connected, i.e., X = Zr
for a complex analytic space Z, then for a topological universal covering Y of Z, Yr
is an étale universal covering of X and, in particular, any étale universal covering
of X is isomorphic to Yr over X.

Proposition 1.4.1. Let X be a geometrically connected R-analytic space, and let
Y be a topological universal covering over Xc. Then

(i) Yr is an étale universal covering over X ;

i) any étale universal covering of X is isomorphic to Yr;

(iii) the complex conjugation ¢ on X¢ lifts to an R-automorphism of Y';

(iv) if X(R) # 0, the complex conjugation ¢ on X¢ lifts to a complex conjuga-
tion cy on'Y and, in particular, Y is isomorphic to Zc for a geometrically
connected étale covering space Z over X.

Notice that the set of liftings of ¢ to Y (from (iii)) is a principal homogeneous
space for the group of automorphisms of Y over X.

Proof. (i) Let Z be an étale covering space over X. Then Z¢ is an étale covering
space over X¢ and, therefore, there exists a morphism Y — Zg over Xg. By
Proposition 1.2.3, the latter gives rise to a morphism Yg — Z over X.
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(ii) Let Z be an étale universal covering space over X. By the definition there
are morphisms ¢ : Yg — Z and ¥ : Z — Ygr over X. They are themselves étale
covering maps, and their composition is a morphism ¥ o ¢ : Yg — Yr over X
which gives rise to a morphism Y — Y over X¢. Since Y is an étale universal
covering space over Xc¢, the latter is an isomorphism and, therefore, ¥ o ¢ is an
isomorphism. This implies that ¥ : Y — Z is an open immersion. Since Z is
connected, it follows that 1) is an isomorphism.

(iii) Consider the cartesian diagram of maps of topological spaces

Y —%s X¢

BT T
Y — X¢

Since o : Y/ — X is a topological covering map, Y’ has the canonical structure
of a complex analytic space with respect to which o/ is a local isomorphism. Let x
be a point X¢. If ¢(x) # x (resp. ¢(x) = z), we can find an open neighborhood U
of & such that ¢«(U)NU =0 (vesp. ¢(U) =U) and a ' (U) = [[,c; Vi with V; C Y
for which « induces a complex analytic isomorphism U;—U. Then o/~!(c(U)) =
[ic; V{ with V{ = V; xy ¢(U). Then o' induces a complex analytic isomorphism
V/=¢(U) and B induces an R-isomorphism V/=V;. In this way Y’ is identified
with the complex analytic space Y ¢ and £ is identified with the complex conjugation
¢: Y=Y, Furthermore, since both a and o’ are universal coverings of the complex
analytic space X¢, there is a complex analytic isomorphism Y=Y ¢ over X¢ whose
composition with §: Y=Y is a required R-automorphism of Y.

(iv) Let = be a point of X over a real point of X. Then ¢(z) = x and, as in the
proof of (iii), we can find an open neighborhood U of z such that ¢(U) = U and
o™ (U) =1l;¢; Vi with V; C Y for which o induces a complex analytic isomorphism
V;=U. Let y be a point in a~!(z). It lies in some V;. Let now ' be a point in
o'7Y(z) that lies in V//, and let § : Y=Y’ be the complex analytic isomorphism
of topological universal coverings over X¢ that takes y to y'. We claim that the
composition ¢ = B0 : Y=Y defines a complex conjugation on Y. Indeed, since
the R-isomorphism ¢’ is compatible with the complex conjugation ¢ on X¢, one has
c(y) = y. Then the complex analytic isomorphism ¢’? : Y=Y is an automorphism
of the topological universal covering of X that takes the point y to itself. It
follows that ¢/? is the identity map on Y. It remains to show that Y is covered by
c/-invariant local charts.

First of all, as in the proof of (iii), X¢ is covered by open subsets U with either
cU)NU =0, or ¢(U) = U, and such that a="(U) = [[,c;U; and g~ (U) =
icr U! with U; U and U/=5¢(U) for all i € I. The R-isomorphism /3 induces
R-isomorphisms (7,’ —¢(U),, and the complex analytic isomorphism § gives rise to
isomorphisms (72:?[7 ! (i) where ¢ is a permutation of the set I. It follows that the
involution ¢ gives rise to R-isomorphisms U; ~¢(U )o(iy- Thus, Y is covered by the

—_—

¢/-invariant open sets (71» U C(U>g(i)- =

Corollary 1.4.2. In the situation of Proposition 1.4.1(iv), the automorphism group
of Yr over X is a semi-direct product of the automorphism group of Y over Xc
and the complex conjugation cy . [
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A geometric point of an R-analytic space X is a morphism x : C% — X. It
is nothing else than a point of the complex analytic space Xc. The image of a
geometric point x in X will be denoted by z. A geometric point x : C — X defines
the following covariant functor Fy : Cov®(X) — Ens. Tt takes an étale covering
space Y over X to the set of geometric points y : C% — Y whose composition
with the étale covering map ¥ — X is the geometric point x or, equivalently,
the preimage of the point x € X¢ in Y. Similarly, any point z € X defines a
functor F, : Cov(X) — Ens that takes a topological covering space Y over X to
the preimage of z in Y.

Proposition 1.4.3. Let X be a connected R-analytic space. Then for any pair of
geometric points X,y of X, there exists an isomorphism of functors Fx—Fy.

Proof. Consider first the case when all points of X are complex. Then any étale cov-
ering map ¢ : Y — X is a topological covering map and, therefore, Fx (Y)=F,(Y) =
¢~ 1(x). Thus, any path from x to y in X defines a required isomorphism of functors.

Consider now the case when X(R) # () and, in particular, X is geometrically
connected. Then (X¢)r is connected. The geometric points x and y can be
lifted to geometric points x’ and y’ of (X¢)r with respect to the canonical mor-
phism (X¢)r — X. By the previous case, there exists an isomorphism of functors
Fyw—=Fy:. It gives rise to the required isomorphism Fx—Fy,. a

Given geometric points x and y of an R-analytic space X, the homotopy class
of an étale path from x to y is an isomorphism of functors v : Fx—Fy. For
brevity, we call it the étale path from x to y and denote by v : x — y. The
étale fundamental groupoid of an R-analytic space X is the category II; (X) whose
objects are geometric points x of X (i.e., points of X¢) and the sets of morphisms
IT; (X, x,y) are the sets of étale paths v : x — y. The étale fundamental group of
X at a geometric point x is the group 71 (X, x) = II; (X, x,x). The corresponding
topological fundamental groupoid and the topological fundamental group of the
underlying topological space |X| of X will be denoted by II; (| X]) and m (| X/, z),
respectively. For example, if X is connected but not geometrically connected, then
the evident functor II;(X) — II;(J]X]) : x — « is an equivalence of categories,
which is not a bijection between their sets of objects.

Proposition 1.4.4. Let X be a connected R-analytic space. Then for any geomet-
ric point x of X, the functor Fyx gives rise to an equivalent of categories

Cov®(X)=m (X, x)-Ens .
The right hand side is the category of 71 (X, x)-sets.

Proof. Step 1. Let ¢ : Y — X is an étale covering morphism. Then there is a
bijection between connected components of Y and w1 (X, x)-orbits in Fx(Y'). Indeed,
any set of points from Fy(Y) lying in one connected component of Y is a union
of m1(X,x)-orbit. On the other hand, let y; and ys are geometric points of a
connected component Y’ of Y over x. By Proposition 1.4.3, there exists an étale
path v : y1 — y2. Then ¢ o+ is an étale path x — x, i.e., an element of 7 (X, x)
which takes y; to yo in Fx(Y).

Step 2. The functor considered is fully faithful. Indeed, let Y and Z be connected
étale covering spaces over X. Then morphisms Y — Z in Cov®"(X) correspond to
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connected components W of Y x x Z for which the projection W — Y is an isomor-
phism. On the other hand, m (X, x)-equivariant maps Fx(Y) — Fy(Z) correspond
to m (X, x)-orbits ¥ in Fy(Y xx Z) = Fx(Y) x Fx(Z) for which the projection
Y — Fx(Y) is a bijection. The claim therefore follows from Step 1.

Step 3. The functor is essentially surjective. Firts of all, we need the following
fact.

Lemma 1.4.5. Let Y be an étale universal covering of X. Then Fx(Y) is a
principal homogeneous space for m (X, x).

Proof. Step 1 implies that the group 71 (X, x) acts transitively on the set Fy(Y).
Furthermore, let g be a nonrivial element of 71 (X, x). Then there exists a connected
étale covering space Z over X such that g acts nontrivially on F,(Z). Since there
is a morphism Y — Z over X that induces a surjective 71 (X, x)-equivariant map
F(Y) — F,(Z), it follows that the element g acts nontrivially on the set Fx(Y').
This implies the lemma. O

Corollary 1.4.6. In the situation of Lemma 1.4.5, the following is true

(i) the group 71 (X, %) is isomorphic to the automorphism group of Y over X ;
(ii) if X is geometrically connected, then there is an exact sequence

1—mXe,x) —m((X,x) — (¢) — 1,
and if X(R) # 0, this sequence splits.

Proof. (i) Let y be a fixed point from Fy(Y'). By Lemma 1.4.5, for any automor-
phism ¢ of Y over X there exists a unique element h € 71 (X, x) with o(y) = h=1y.
Then ¢(gy) = gh~'y for all g € m(X,x). The correspondence ¢ + h gives a
required isomorphism.

(ii) follows from (i) and Proposition 1.4.1. O

It suffices to consider the case when X is geometrically connected. Let ¥ be a
transitive 71 (X, x)-set. Fix a point o € 3, denote by H its stabilizer in 71 (X, x),
and set Hy = H N71(Xc,x). Let Z be the complex analytic quotient Y/Hy. If
Hy = H, then the étale covering space over X that corresponds to the 7 (X, x)-set
Y is Zr. If Hy # H, then Hj is an invariant subgroup of index two in H, and the
nontrivial element of the quotient H/Hj acts as a complex conjugation ¢ on Z. In
this case, the étale covering space over X that corresponds to the m (X, x)-set ¥ is
the R-analytic space Z/{c). O

Example 1.4.7. Let R* be the punctured R-analytic affine line R\{0}. Its scalars
extension R¢ is the punctured complex analytic affine line C*, and the complex
analytic affine line C is a topological universal covering of C* with respect to the
exponential map C — C* : b+ eb. It follows that Cg is an étale universal covering
of R*. The automorphism group of Cr over R*, which will be denoted by m (R*),
is canonically isomorphic to the group 2miZ x (c).

1.5. Etale topology of an R-analytic space. For an R-analytic space X, let
Et(X ) denote the category of étale morphisms U — X. The étale topology on X
is the Grothendieck topology on the category Et(X ) generated by the pretopology
in which the set of coverings of (U — X) € Et(X) is formed by the families

{U; Y Utier such that U = |J;c; U;. The site obtained in this way is denoted
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by X¢ (the étale site of X), and the category of sheaves of sets on X is denoted
by X¢&. The cohomology groups of an abelian sheaf A on X will be denoted by
H(X, A), and those of an abelian sheaf A on the underlying topological space will
be denoted by H1(|X|, A).

By the way, it will be convenient for us to use a similar site Y for a topological
space Y. It is defined in the same way as above for maps V' — Y which are local
homeomorphisms at each point of V' (such maps will be called étale). Of course,
Y& coincides with the usual category of sheaves on the topological space Y. The
convenience of using the site Yz is, for example, in follows. Any continuous map
@ Y — X to our R-analytic space X, which goes through a continuous map
Y — Xc, gives rise to a morphism of sites Ys — X¢ and, in particular, one can
use usual operations on sheaves (direct image, inverse image and so on).

The stalk of an étale sheaf A at a geometric point x is denoted by Ayx. One has
Ax = h_r)nA(V), where V' runs through open neighborhoods of the point x in X¢.

It is a set provided with an action of the Galois group Gx = Gal(H(x)/H(x)). The
latter is trivial if z, the image of x in X, is a complex point, and is of order two, if
x is a real point. There is a morphism of sites 7 : X¢; — | X| and, if all points of X
are complex, it gives rise to an equivalence of topoi |X|~ =Xg. For any abelian
sheaf A on Xg, one has (Rim,A),—~H?(Gy, Ay). It follows that (m,A), = AS>
and, for ¢ > 1, the sheaves R7,(A) are supported at the subset X(R). The above
morphism of sites gives rise to a spectral sequence

EPY = HP(|X|, Rim, A) = HPT(X, A) .

In particular, if all points of X are complex or the sheaf A is uniquely divisible by
two, for all ¢ > 0 one has HY(| X |, 7. A)=HI(X, A).

For example, if F' is a coherent sheaf of O x-modules, then the étale presheaf F
whose value at an étale morphism ¢ : U — X is (¢ 1 (F) ®,-1(05) Ov)(U) is a
sheaf, and one has HI(X, ﬁ)’—THq(\XL F) for all ¢ > 0. The latter groups will be
denoted just by HY(X, F).

The restriction of an étale sheaf A on X to the complex analytic space X¢ is
denoted by Ac. It is provided with an action of the group (c) compatible with its
action on the space Xc. The correspondence A — Ac gives rise to an equivalence
Xa—=Xc({c)) between the category X¢ and the category X ({c)] of c-sheaves on
Xg, i.e., sheaves provided with an action of the group {(c) compatible with its action
on the space X¢. The functor Z(®, which takes a c-sheaf B to the subsheaf of c-
invariant sections in the direct image on B with respect to the morphism X¢ — X,
is inverse to the above one (and exact). If I{® denotes the functor that takes
a {c)-module to the subgroup of c-invariant elements, then for any étale abelian
sheaf A there is a canonical isomorphism RI'(X, A)=RI‘“ (RT'(X¢, Ac)) and, in
particular, there is a Hochschield-Serre spectral sequence of the étale Galois cover
Xc over X

EY? = HP((c),H!(Xc,Ac)) = HY(X,A) .
It follows that, if the sheaf A is uniquely divisible by two, then for all ¢ > 0 one
has H9(X, A)SHY(Xc, Ac){®.

A Hausdorff R-analytic space is said to be Stein if H%(X, F') = 0 for all coherent
Ox-modules F' and all ¢ > 1. It is easy to see that X is Stein if and only if the
complex analytic space X¢ is Stein. Indeed, if F' is a coherent Ox-module, then
its direct image p.(F) is a coherent Ox module, where p is the morphism X¢ — X.
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Since Rip,(F) = 0 for all ¢ > 1, it follows that HY(X¢, F) = HY(X, p.(F)) for
all ¢ > 0, and this implies the direct implication. On the other hand, if F' is a
coherent Ox-module, then HY(X, F)SH(X¢, F){ for all ¢ > 0, and this implies
the converse implication.

An étale sheaf of sets F' on X is said to be locally constant if there is an étale
covering {U; — X}ier such that the restriction of F' to each U; is a constant
sheaf. The functor Cov®"(X) — X% that takes an étale covering space Y over
X to the étale sheaf representable by it gives rise to an equivalence of categories
between Cov®*(X) and the category Lcon®(X) of étale locally constant sheaves on
X. Proposition 1.4.4 implies that, if X is connected, the functor from the latter
that takes an étale locally constant sheaf I’ to the stalk Fx at a geometric point x
gives rises to an equivalence of categories Lcon® (X)= (X, x)-Ens.

Remark 1.5.1. There is an alternative description of the category Lcon®(X)
which will be used later. Namely, let Covét’“"(X ) be the full subcategory of
Cov®*(X) consisting of étale universal coverings of X. The category Cov®"*"(X) is
a groupoid. Then the correspondence F' — F(Y') gives rise to an equivalence be-
tween Lcon®(X) and the category of contravariant functors Cové™ ™ (X) — Ens.
The same is true for any full subgroupoid of Cov®"""(X).

2. VANISHING CYCLES IN ARCHIMEDEAN ANALYTIC GEOMETRY

Beginning with this section, the bold letter F is used to denote an Archimedean
field, i.e., R or C, and the corresponding F-analytic affine space of dimension
n > 0 is denoted by F”, or just F if n = 1. (There is a canonical embedding of sets
F™ — F™, which is a bijection only if F = C or n = 0.) The category of F-analytic
spaces is denoted by F-An. The residue field Ox ,/m, of a point x of an F-analytic
space X is denoted by H(x). If F = C, then H(z) = C. If F = R, then H(z) is
either R, or (non-canonically) isomorphic to C. We also denote by K the fraction
field of Op o, and set K¢ = Oc,o = K ®r C. In order to make exposition uniform,
we use the notation X¢ even for C-analytic spaces X bearing in mind that in this
case X¢ = X.

2.1. The analytification of a scheme over a Stein germ. Recall that a Stein
compact is a compact subset ¥ of an F-analytic space X which has a fundamental
system of open neighborhoods which are Stein spaces. For example, if ¥ = {z} is
just a point, it is a Stein compact and Ox(X) = Ox , is the stalk of the struc-
tural sheaf of X at x. A natural framework for dealing with the analytification of
schemes finitely presented over the ring Ox (2) is that of pro-analytic spaces. This
framework is developed in [SGA4, Exp. I] (see also [Ber96a, §2]). We recall briefly
some notations and facts.

The category Pro(C') of pro-objects of a category C' is defined as follows. Its
objects are covariant functors I — C : i — X;, where I is a small cofiltered
category, and they are denoted by "lim"X;. Morphisms between such objects are

T

defined as follows: Hom("lim"Y;,"lim"X;) = limlim Hom(Y}, X;). The category
T T T

Pro(C) admits cofiltered projective limits, and if C' admits fiber products, then so

is Pro(C). If C is the category F-An,, we get the category of pro-F-analytic (or

just pro-analytic) spaces Pro(F-An) . A pro-analytic space "lgn"Xi gives rise to
T
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the underlying locally ringed space |X| of X. Namely, the underlying topological
space |X| of X is the projective limit of the underlying topological spaces | X;| of
X;and Ox , = lil? Ox, z;, where z; is the image of 2 in X;. We remark that the

space |X| may be empty even when X is nontrivial. We also notice that there is an
evident functor Pro(F-An) — Pro(C-An) : X — X¢. (If F = C, then X¢ = X.)

An example of pro-analytic spaces is provided by F-germs of analytic spaces.
Recall (see [Ber93, §3.4]) that the latter are pairs (X, X)), where X is an F-analytic
space and X is a subset of X, and the set of morphisms Hom((X’,¥), (X,X)) is
the inductive limit of the sets of morphisms ¢ : U’ — X with ¢(X') C 3, where U’
runs through open neighborhoods of ¥’ in X’. If ¥ is a Stein compact, the germ
(X,%) is said to be Stein.

There is a fully faithful functor F-Germs — Pro(F-An) from the category of
F-germs F-Germs that takes (X, %) to X(X) :"1}31"2,1 , where U runs through

open neighborhoods of ¥ in X. This functor commutes with direct products, but
does not commute in general with fiber products. For example, let ¢ : ¥ — X
be a morphism of complex analytic spaces and x € X. Then the fiber product
Y xx (X,z) in the category F-Germs is the F-germ (Y, ¢~ !(2)), ie., it gives
rise to Y (o7 (z)) :"1<iLn"V7 where V runs through all open neighborhoods of the

fiber ¢~!(z). The corresponding fiber product Y (x) := Y xx X(z) in the cat-
egory Pro(F-An) is "{iin"go_l(u), where U runs through open neighborhoods of

x. We remark that the canonical morphism Y (¢~!(z)) — Y () induces an iso-
morphism between the underlying locally ringed spaces, and there is a morphism
Y, — Y(p71(x)) which induces a homeomorphism between the underlying topo-
logical spaces. (Here Y, is the analytic space which is the fiber of Y at = in the
usual sense.) We also notice that the evident functor Pro(F-An) — Pro(C-An)
takes F-Germs to C-Germs.

For an F-analytic space X, the category of morphisms of F-analytic spaces
Y — X is denoted by X-An. Such an Y is said to be an X-analytic space. If
X :"lim"Xi is a pro-analytic space, then an X-analytic space is an object of the

I
category X-An := lim X;-An . If P is a class of morphisms between F-analytic

spaces which is preserved under any base change, then one can extend in the evident
way the class P to morphisms between X-analytic spaces.

Construction 2.1.1. Let (X, X) be a Stein germ. We are going to construct an
analytification functor Ox (X)-Sch — X (X)-An : Y +— V" where, for a commuta-
tive ring A, A-Sch denotes the category of schemes finitely presented over A. This
is done in two steps.

(1) For a Stein space U, there is an analytification functor

OU)-Sch — U-An: Y — V" .

Namely, for a scheme ) finitely presented over O(U), V" represents the functor on
U-An that takes a morphism Z — U to the set of morphisms of locally ringed spaces
Z — Y over O(U). For example, if ) = Spec(A), where A = O(X)[T1,...,Tm]/a
with finitely generated ideal a, then J" is the closed analytic subspace of U x F™
defined by the coherent subsheaf of ideals 7 generated by a.
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(2) An X (X)-scheme is an object of the category

X (X)-Sch = lim O(U)-Sch ,
Uo%

where the inductive limit is taken over the open Stein neighborhoods of ¥ in S.
There is a natural fully faithful functor Ox (2)-Sch — X (X)-Sch : Y — Y. Namely,
if ) is finitely presented over Ox (X), it follows from [EGA4, Théoréme (8.8.2)] that
there exists a scheme )y finitely presented over O(U) for an open Stein neighbor-
hood U of ¥, and ) is defined by this }j;. The analytification functor from (1)
defines a functor X(X)-Sch — X(X)-An : Z +— 2" and the required analytifi-
cation functor Ox(X)-Sch — X (X)-An is the composition of the latter with the
functor Ox (%)-Sch — X (X)-Sch, ie., Y* = (V)" for V as above is defined by
y{;. We notice that there is a canonical morphism of pro-objects in the category of
locally ringed spaces J® — ). We also notice that, given morphisms of Stein germs
(X',¥) = (X, X), there is a canonical isomorphism of X’(¥')-analytic spaces

(Y @0 (m) Ox/ (ZN)" =Y % x(m) X' () .

Lemma 2.1.2. If a morphism ¢ : Z — Y of schemes finitely presented over
Ox(X) is separated (resp. proper, resp. finite, resp. closed immersion, resp. open
immersion, resp. étale, resp. smooth), then so is the induced morphism of X (X)-
analytic spaces " : Z" — Yh. ([

For a pro-analytic space X :"ligp"Xi, the category of étale sheaves of sets T'(X)
1
is defined as the inductive limit of the categories of étale sheaves of sets T(X;) on

X;. An étale sheaf on X is said to be locally constant if it comes from an étale
locally constant sheaf on some X;. Furthermore, there are abelian categories of
étale abelian sheaves S(X) and of étale sheaves of R-module S(X, R), where R is
a commutative ring. Their derived categories are denoted by D(X) and D(X, R).
If all of the transition morphisms X; — X are étale (e.g., open immersions),
then the category S(X) has injectives, and so the values of the left exact functor
S(X) - Ab: F— F(X) = thF(Xi) are HI(X, F) = lim HY(X;, F).
I° Io
Given a morphism of pro-analytic spaces ¢ : Y :"lim"ig - X :"lim"Xi, there

J I

is a well defined inverse image functor ¢* : T(X) — T(Y) and, in the situations
we really need, there is a direct image functor ¢, : T(Y) — T(X) which is right
adjoint to ¢* (see [Ber96a, §2]). Namely, the functor @, is defined if the morphism
© makes Y an X-analytic space. In this case we may assume that I = J and ¢ is
defined by a morphism of analytic spaces Y; — X; for some ¢ € I. If F' is a sheaf on
Y, we can increase ¢ and assume that it is defined by a sheaf F; on Y;. Then ¢, is
defined by the sheaf ¢;.(F) on X;. The restriction of ¢, to the category of abelian
sheaves is a left exact functor ¢, : S(Y) — S(X). If all of the transition morphisms
X, — X, are étale, the categories S(X) and S(Y) have enough injectives, and the
high direct images R, (F') are defined by the sheaves R%p,.(F'). If the morphism
© is separated, ¢, has a left exact subfunctor ¢, : S(Y) — S(X) which are defined
in the evident way and, in the above situation, the high direct image RY¢(F)
is defined by the sheaf Ripy(Fy) on X. For example, @, is well defined for all
morphisms in the category B(X)-An.
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Proposition 2.1.3. (Comparison Theorem for Cohomology with Compact Support)
Let (X, X) be a Stein germ, and let ¢ : Z — Y be a compactifiable morphism between
schemes finitely presented over Ox (X). Then for any étale abelian torsion sheaf F
on Z, there is a canonical isomorphism (R JF)"= Rl F".

Proof. We can shrink X and assume that it is a Stein space, the schemes Z and )
are base changes of schemes Z’ and ) finitely presented over O(X), the morphism
¢ is induced by a compactifiable morphism ¢’ : Z’ — ), and the sheaf F is defined
by an abelian torsion sheaf 7’ on Z’. It suffices therefore to show that the canonical
homomorphism (RI¢|F')* — Rip"F'" of sheaves on Y'" is an isomorphism. For
this it suffices to verify that this homomorphism induces an isomorphism of stalks
of both sheaves at every point y € ). By the well known results on étale and
classical cohomology, the stalks of the sheaves on the left and right hand sides are
HY(Z,,F,) and HI(Z,"", F|"), respectively, and the classical comparison theorem
for cohomology with compact support implies the required fact. [

Remarks 2.1.4. (i) We say that a Stein germ (X,Y) (or a Stein compact X) is
noetherian if the ring Ox(X) is noetherian. By a theorem of Frisch-Siu ([Fri67,
(I,9)] and [Siu69]), a Stein compact ¥ is noetherian if and only if it possesses the
following property: if Y is a closed analytic subspace of an open neighborhood of
Y., then the set of connected components of the intersection Y N X is finite.

(ii) One can prove the following analog of the generic comparison theorem [Ber93,
7.5.1] in which noetherian Stein compacts play the role of affinoid spaces. Suppose
that S is a scheme of finite type over Ox (%), where (X, X) is a noetherian Stein
germ, f: Y — S and ¢ : Z — Y are morphisms of finite type, and F is an étale
constructible abelian (torsion) sheaf on Z. Then there exists a dense open subset
U C S such that

(1) The sheaves Rip,F | Foi Are constructible and almost all of them are
equal to zero.

(2) The formation of the sheaves R9p,F is compatible with any base change
S’ — 8§ such that the image of 8’ is contained in U.

(3) In (2), assume that S’ is a scheme of finite type over Ox/(¥’), where
(X',Y) is a noetherian Stein germ, and that the morphism &' — § is
the composition §" = S ®p, (5) Ox/(¥') — S for a morphism of germs
(X", Y) = (X,X). Let ¢ be the morphism 2/ = ZxsS8" = V' =Y xs8/,
and let 7' be the inverse image of 7 on Z’. Then there is a canonical
isomorphism

(Rwif/)iz’:)’R(p;/Lf/}L )

The proof is the same as that in loc. cit. which, in its turn, follows the proof
of Deligne’s generic theorem 1.9 from [SGA41, Th. finitude]. If S = Spec(F)
is a point, the above fact gives the classical comparison theorem from [SGAA4,
Exp. XI]. Here is another case of application. Let ¢ : Z — ) be a morphism
between schemes of finite type over the fraction field K of the local ring O g,
and let F be a constructible sheaf on Z. Then there is a canonical isomorphism
(Rp F)" =R F!.

2.2. An example. Suppose we are given a morphism of germs (B,b) — (F,0),
where b is a point of an F-analytic space B. For an Op;-scheme Y, we set Y, =

Y ®oz, K (the generic fiber of Y) , y=y ®op, F (the special fiber of V), and
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Vs = Y ®0,, H(b) (the closed fiber of ). For example, if (B,b) = (F,0), then
YV, = )7 In general, there are morphisms of schemes

Y, =y <ty

N

By Construction 2.1.1, applied to the germ (B, b), there is an associated diagram
of morphisms of B(b)-analytic spaces (which are also pro-analytic spaces over F(0))

-h -h
Yy~ Y <Y

BN

jh
Notice that Y" is just the F-analytification of the scheme ), and that the vertical
arrow induces a homeomorphism Y| V"|.

Furthermore, every subscheme Z C Y, defines a F-germ (J", Z") which, in its
turn, defines a pro-analytic space Y"(Z") ="lim"V , where V runs through open
—

neighborhoods of Z" in Y*. The generic fiber of the latter is the pro-analytic
space yh(ZhL7 :"li;n"V77 over F*, where V;, is the preimage of F* in V. There are
canonical morphisms of pro-analytic spaces Y"(2Z") — Y" and yh(zh)n — y,};,
which are isomorphisms if Y is proper over Op and Z = ).

On the other hand, the formal completion JA/ 1z of Y along a subscheme Z C ) is
a formal scheme of finite type over Spf ((9 B,b), Where @) B.b is the my-adic completion
of Opy. This completion is a special (’)F o-algebra and, therefore, y/ z is a special
formal scheme over K° = O]Fyo, where K is the completion of I with respect to
a fixed discrete valuation. Notice that, for every open neighborhood V of Z in
Y there are canonical isomorphisms V" (Z")=Y"(Z") and 9/3337/2. Recall (see
[Ber06, §1.1]) that a strictly k-analytic space X is said to be rig-smooth if, for
every connected strictly affinoid domain V' C X, the sheaf of differentials i, is
locally free of rank dim(V"). If char(k) = 0, this is equivalent to the property that
the local ring Ox , of every point € X with [H(x) : k] < oo is regular. The
following statement is a characterization of rig-smoothness of the generic fiber of
JA)/ =z in simple complex analytic terms.

Theorem 2.2.1. In the above situation, the following are equivalent:
(a) the K-analytic space (5)\/2),, is rig-smooth;
(b) there is an open neighborhood V of Z in' Y such that V, is regular;
(c) the morphism Y"(Z"), — F* is smooth.

The property (c) just tells that there is an open neighborhood V of Z" in )"
such that the induced morphism V — F is smooth outside the preimage of zero.

Proof. First of all, we remark that, for every closed point y € YV, there is a canon-
ical isomorphism (93; y%Oyh . Since the local rings considered are excellent, it
follows that regularity of the scheme Spec(Oy ), is equivalent to regularity of the
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scheme Spec(Oyn ). In particular, if the property (b) holds, then the schemes

Spec(Oyn )y are regular for all closed points y € Z. Conversely, suppose the latter

is true. Then the schemes Spec(Oy , ), are regular for all closed points y € Z and,

therefore, they are contained in the regularity locus i of ),,. If now V is the com-

plement of the Zariski closure of the set yn\u in)Y,then V> Y, and VNY, =U,
e., (b) holds.

(a)<=(b). Since ()}/Z) =7~ Y(Z), where 7 is the reduction map )A)n = Vs,
the K-analytic space (y/z),, is rig-smooth if and only if the spaces (y/{z}) are
rig-smooth for all closed points z € Z. (Since the latter spaces have no boundary,
rig-smoothness for them is equivalent to smoothness.) The above remark therefore
reduces the situation to the case Y = Spec(Op,) and Z = ), = {b}, and we have
to show that 3777 is smooth if and only if the scheme ), is regular.

Till the end of the proof we set K = K. Let A= Opp. Then JAJ = Spf(g), where
A is the my-adic completion of A. By a result of de Jong [deJ95, 7.1.9], the map
y — n, that takes a point y € 3/)\,7 with [H(y) : K] < oo to the preimage of m, under
the canonical homomorphism A Rpo K — (’)ymy is a bijection between the set of

such points and the set of maximal ideals of A®ke K , and this homomorphism
induces an isomorphism between the ny-adic completion of A ® xo K and the m,-

adic completion of (’)5} Y We now notice that the above maximal ideals n, of
.

A® ro K correspond to the prime ideals p C A which have coheight one and
whose intersection with K° is zero. Moreover, the n,-adic completion of A®po K
coincides with the p-adic completion of the localization (A\)p This implies that
the K-analytic space )AJ,, is rig-smooth if and only if the affine scheme Spec(f/l\) is

regular at all points that correspond to the above prime ideals p C A. Since the
ring A is excellent, the latter is equivalent to regularity of the affine scheme ).

(b)==(c). Indeed, replacing Y by V, we may assume that )}, is regular. By
Temkin’s result on desingularization from [Tem08], there exists a blow-up ¢ : J' —
Y with Y; =Y, and such that )’ is regular and the support of y=Y Rop, F is
a divisor with strict normal crossings. Given a closed point ¥y’ € Z’, the preimage
of Zin Y., let t1,...,tq be a system of regular parameters of )’ at y’ such that
ty,...,t, for 1 < n < d define the irreducible components of 37 passing through
y'. Then z = ¢7* - ... - t&u for some e; > 1 and u € O3 ,- We can find an étale
neighborhood v : )’ — )’ of the point 3’ such that all of the functions t1,...,ts,u
are defined on )" and the ring O()") contains an e;-th root of u. If y" € ¥ ~1(y),
it induces an isomorphism of complex analytic germs (V" y")=(V",y). We set
t) = €%f’ and P = Spec(Oro[Th, ..., T4)/(T7" -...- Tt —z)). The homomorphism

Oﬂr’o[Th...,Td}/(Tfl-...~T§"’ —Z) —>O(y”)ZT1 l—)t/l, T, —t; fOI‘QSiS(L

gives rise to a morphism x : YV'—>P. Ifp= X(y ), there is an induced isomorphism
of completions Opp = Oph —)Oy// "= Oyl/h v and, therefore, it induces an
isomorphism of complex analytic germs (V" y")= (Ph, p). Since the morphism
7312‘ — C* is smooth, it follows that there exists an open neighborhood V} of y in
V" for which the morphism Vyn yﬁ — C* is smooth. Then the property (c) holds
for the union V' = |JV,, taken over all closed points y € Z.
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(¢)=(a). By the remark at the beginning of the proof, it suffices to consider the
case when ) = Spec(Op,) and Z = )5 = {b}, and we have to show that the space
)Ain is rig-smooth.. Recall the definition of the Jacobian ideal Hy/p of A = Opy
over R = Op. Fix generators fi,..., f, of the maximal ideal of A, and consider
the associated surjective homomorphism S = Opyxpn o — A over R that takes T; to
fi, 1 <1 <mn. Let ¢g1,...,gm be generators of the kernel the latter surjection, and
denote by A the matrix (%)1§i§m,l§j§n with coeflicients in S. Furthermore, for
asubset L C {1,...,m}, let Hy, denote the ideal of S generated by the r x r-minors
of A whose rows correspond to the elements of L, where r = |L|. Let also J, denote
the ideal of S generated by g;’s with ¢ € L, and set J = (g1, ..., 9m) = Ker(S — A).
The Jacobian ideal of A over R is the ideal

Ha/p = rad (Z(JL : J)HLA> ,
L
where (J, : J) = {z € S|zJ C J.}. It is well known that the ideal H4/r depends
only on the homomorphism R — A. Let V be an open neighborhood of the point
b in B for which the latter homomorphism is induced by a morphism V' — F such
that all elements from a finite system of generators of H 4, are defined over V. By
the assumption, we can shrink V' and assume that the morphism V' — F is smooth
outside the preimage of zero. The Jacobian criterion of smoothness implies that the
ideal H 4/ contains a nonzero element of the maximal ideal of R = Op . It follows
that the similar Jacobian ideal H 3 /B for the completions of R and A contains a

nonzero element of the maximal ideal of K° = R. Finally, the strictly K-analytic
space j}n can be covered by strictly affinoid domains X such that X = X, for
an affine formal scheme X = Spf(D) of finite type over K° and the canonical
embedding X — )A)n is induced by a morphism of formal scheme X — Y. It follows
that the Jacobian ideal Hp ko contains a nonzero element of the maximal ideal
of K°, i.e., it is open in D. By [Tem08, Proposition 3.3.2], X is rig-smooth. This
implies that )A)n is rig-smooth. O

Remark 2.2.2. Let X = Spf(A4), where A = CJ[[T4,...,T,]] and n > 1. Each
nonzero element f of the maximal ideal of A defines a homomorphism Ko =
Cllz]] - A : z — f that makes X a special formal scheme over K°. Since the
ring A is regular, it follows that the (n — 1)-dimensional I/C\—analytic space X, is
rig-smooth. Furthermore, the number u(f) = dimc(A4/J(f)), where J(f) is the
ideal generated by the partial derivatives %’ is said to be the Milnor number of
f. I p(f) < oo, then f is equivalent to a polynomial g, i.e., there exists an adic
automorphism « of A over C with «(f) = g. The polynomial g defines a morphism
Y = Spec(A) — Spec(CJz]) which is smooth outside the zero point 0 in its open
neighborhood, and the automorphism « defines an isomorphism y /{0y —X over Kce.
If n > 3, there exists an element f of the maximal ideal of A which is not equivalent
to a convergent power series from Ogcn o (see [Sh76]).

2.3. Nearby and vanishing cycles functors. In this subsection we recall the
definition of the nearby and vanishing cycles functors in complex analytic geometry
(see [SGAT, Exp. XIV]).

Recall that C is a topological universal covering of C* with respect to the expo-
nential map b > e, and Cg is an étale universal covering of R*. Let K? be the
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field of functions meromorphic in the preimage D* of some punctured open disc
with center at zero D* in F and algebraic over K¢. It is an algebraic closure of
Kc (and of ), and it is generated over K¢ by the functions b — e%, n > 1. We
set G = Gal(K?*/K). The action of the Galois group G¢ = Gal(K*/K¢) on those
functions gives rise to an isomorphism GC’J@W”, where pu, is the group of n-th

roots of unity. The element o = (6%)7;21 is a topological generator of Go. The
canonical action of the fundamental group 71 (C*) on K? identifies it with a dense
subgroup of G¢, and the shift b — b + 27i of C, which is a generator of m1(C*),
corresponds to the above element o.

If F = R, the Galois group G is a semidirect product G¢ x {¢) with the complex
conjugation ¢ acting trivially on the functions b — en and acting on K¢ in the
evident way. There is a canonical embedding 71 (R*) < G which identifies the
former with a dense subgroup of the latter. (Recall that we denote by 71 (R*) the
automorphism group of Cg over R*.)

We set D = F(0) *"hm"D and D* *"hm"D* where D runs through open discs

in F with center at zero. The zero point, Wthh is complement of D* in D and of D*
in D, can be identified with the one point space F°. (Notice that D = Spec(Of )",
D* = Spec(K)", and F° = Spec(F)".) For a pro-analytic space X over D, we set
X, = X xp D* (the generic fiber of X) and X = X xp F (the special fiber of X).
Furthermore, suppose we are given a closed immersion X — X from an F-analytic
space X, which induces a homeomorphism |X,|=|X|. This space X, is said to be
the closed fiber of X. There are morphisms of pro-analytic spaces

X, =X <"1-X,

RN

X

Notice that if X is a D-analytic space, then X{—Tf(. The F-analytic nearby cycles
functor is the functor © : T(X,)) — T(X;) from the category of étale sheaves on
X, to that of étale sheaves on X, defined by O(F) = i*(j.(F)). If F* € D(X,),
one has RO(F") = i*(Rj.(F")) in D(Xy).

Furthermore, we set D* :"Eiin"D* and X5z = X, Xp D* . We also set X5 =
(X5)c. (Of course, if F = C, then X¢ = X and X5 = X,.) These are pro-
topological spaces over D provided with an action of the group 71 (F*), and there
is a commutative diagram

Xy > Xo < X5

R

X, —1>X <X,
The F-analytic vanishing cycles functor ¥, : T(X,) — T @) (Xs) is defined by
U, (F) =i (j,F), where Ty, ) (Xs) is the category of m; (F*)-sheaves on X5 (i.e.,
sheaves provided with an action of m (F*) compatible with its action on Xz) and
F is the pullback of F on Xg. If F* € D¥(X,), one has R¥, (F') =7 (Rj,(F)) in
the derived category DT (X5(m1(F*))) of abelian 71 (F*)-sheaves on Xs.
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We notice that (X¢)s = X5 and, since (X,))c = (X¢)y, one has X5 = (Xc)7.
It follows that, for any F* € D*(X,,)), there are canonical isomorphisms

(RO(F'))c=RO(F5), RO(F )T (RO(Fg)), and RY, (F)SRY,(Fs) ,

where Z{¢) denotes the exact functor that takes a (c)-sheaf L on Xz to the subsheaf
(m.L){ of c-invariant sections of its direct image with respect to the morphism
p : X5 — X,. These isomorphisms reduce verification of various facts on nearby
and vanishing cycles to the case F = C.

Furthermore, if Z™(") denotes the functor that takes a m; (F*)-sheaf L on Xz
to the subsheaf (p,L)™ ("), there is a canonical isomorphism

RI™®)(RU, (F))=RO(F) .

As above, this isomorphism reduces verification of various facts on nearby cycles to
verification of corresponding facts on vanishing cycles.

Example 2.3.1. Suppose we are given a morphism of germs (B,b) — (F,0) and
a scheme ) of finite type over Op; (as in §1.2). If the above X is the analytifi-
cation Y of ), which is a B(b)-analytic space over D, then X, X and X, are
the analytifications yj;, th and V" of the corresponding objects of ), Xy is the

analytification yg of the scheme )5 = YV, ®r C, and X is the analytification ?h of
the scheme )V = Y ®p C. The above construction gives rise to nearby and vanishing
cycles functors © and ¥,, from the category of étale sheaves on yg to those of étale
sheaves and étale my (F*)-sheaves on " and Y2, respectively.

2.4. Comparison with algebraic vanishing cycles. Suppose we are given a
morphism of germs (B,b) — (IF,0) and a scheme Y of finite type over Op; as in
Example 2.3.1. Consider the commutative diagram of morphisms of schemes with
Vi = Yy Qe £

yﬁ - j ~—— Vs

L

V, =Y,

The algebraic geometry nearby cycles functor is the functor © : T(),) — T(Vs)
from the category of étale sheaves on ), to that of étale sheaves on ), defined
by O(F) = i*j.(F). If 7 € D(Y,), then RO(F') = i*(Rj.(F')). The vanishing
cycles functor is the functor ¥, : T(Y,) — T (Vs) to the category T (Ys) of étale
G-sheaves on s (i.e., étale sheaves on )k provided with a continuous action of the
group G compatible with its action on V) defined by W, (F) =7 j,(F), where F
is the pullback of F on Y. If F* € D(,), one has R, (F) =i (Rj,(F)).

For a scheme Z and d > 1, let D.(Z,Z/dZ) denote the derived category of étale
Z/dZ-modules on Z with constructible cohomology sheaves.

Theorem 2.4.1. In the above situation, for any F* € D} (Y,, Z/dZ) the complezes
RO(F") and RY,(F") have constructible cohomology, and there are canonical iso-
morphisms in DY (V") and D (Y2(Q)), respectively,

(RO(F)'"SRO(F") and (RY,(F )" SR, (F") .
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Proof. 1t suffices to establish the isomorphism for the vanishing cycles complexes
and in the case F = C. We also notice that validity of the theorem for sheaves is
equivalent to its validity for bounded below complexes of constructible sheaves of
Z/dZ-modules. Replacing Y by the scheme theoretic closure of V,, we may assume
that ), is dense in ).

Step 1. Suppose we are given a proper morphism ¢ : J’ — ), and a complex
of constructible sheaves G on y{]. If the theorem is true for the pair (V',G"), then
it is also true for the pair (Y, Rpn«(G')). Indeed, since ¢ is proper, the complex
Ry, (G") has constructible cohomology sheaves, and one has

RV, (RQDn*g )= Reps. (R\I/ng‘ ) -

It follows that the complex on the left hand side also has constructible cohomology
sheaves and

o o B L )
(RU,(Rpp.G))" = R (RY,G)" = Ryl (RT,G") = RV, (Rp},G")

where « is an isomorphism, by Proposition 2.1.3, 5 is an isomorphism, by the
assumption, and ~ is an isomorphism because (" is a proper map.

Step 2. To prove the theorem, it suffices to find for each constructible sheaf of
Z/dZ-modules F an embedding of F — G, where G is a similar sheaf G for which
the theorem holds. Indeed, if this is true then, we can find for each m > 1 an
exact sequence of constructible sheaves, 0 = F — G° — ... — G™, such that the
theorem is true for all of the sheaves G¢. This easily implies validity of the theorem
for F.

Step 3. We may assume that Y is irreducible and reduced, i.e., integral, and F
is constant. Indeed, by [SGA4, Exp. IX, 2.14(ii)], the sheaf F can be embedded
in a finite direct sum of sheaves of the form f.G, where f : Z/ — X, is a finite
morphism and G is constant. We may assume that all such Z’ are reduced and,
therefore, we can replace them by their normalizations and assume that they are
irreducible. If Z is the normalization of J in Z’, we may assume that 2’ = Z,,
where Z is irreducible, normal and finite over ). It remains to use Steps 1 and 2.

Step 4. We may assume that the scheme Y is regular and the supports of Vs and
Y are divisors with strict normal crossings. Indeed, replacing ) by a blow-up, we
may assume that the support of )y is a divisor. Since the scheme ) is excellent, we
can apply the result of Temkin [Tem08, 1.1] for ) and its subscheme Y. It follows
that there is a blow-up )’ — ) such that )’ and j are divisors with strict normal
crossings. Step 1 implies that validity of theorem for the pair (), F) follows from
its validity for the pair (), '), where F' is the pullback of F on y;],.

Step 5. The theorem is true. Indeed, in the situation of Step 4 the required
statement follows from the well known description of algebraic (and analytic) nearby
and vanishing cycles sheaves which are easy consequences of the characteristic zero
purity theorem [SGA4, Exp. XIX, 3.2]. O

Remark 2.4.2. Theorem 2.4.1 and the generic comparison theorem stated in Re-
mark 2.1.4 can be used to prove the following fact. Let (X,X) be a Stein germ
such that the dimension of X is at most one and the set of connected components
of ¥ is finite. (By the results mentioned at the beginning of §1.1, the latter is
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equivalent to the property that the Stein germ (X, X) is noetherian.) Given a mor-
phism ¢ : Z — Y of schemes of finite type over Ox (X) and a constructible sheaf F
on Z, the complex Ry, (F) has constructible cohomology and there is a canonical
isomorphism

(R, F)"SRAF" .

2.5. Vanishing cycles on log smooth analytic spaces. In the pro-F-analytic

spaces X =" lirp"Xi, considered in this subsection, all of the transition morphisms

I
Xy — X; are assumed to be étale. Notice that any morphism Y :"llrp"ﬂg —

J
X ="lim"X; between such pro-analytic spaces is defined (in the evident way) by a

I
morphism of analytic spaces Y; — X; for some i € [ and j € J.
Basic notions of log geometry are naturally extended from analytic to such pro-
analytic spaces. Namely, a pre-log structure on a pro-F-analytic space X :"l(i_rzl"Xi

is a homomorphism of étale sheaves of multiplicative monoids 5 : M — Ox W}iich is
induced by a pre-log structure §; : M; — Ox, on the F-analytic space X; for some
i € I. A pre-log structure is said to be a log structure if 371 (0% )=0O%. A log pro-
analytic space (X, : M — Ox) as above is said to be coherent (resp. fine; resp.
fs) if B is induced by a coherent (resp. fine; resp. fs) log structure 3; : M; — Ox,
for some ¢ € I. A morphism of log pro-analytic spaces Y — X is said to be log
smooth if it is defined by a log smooth morphism Y; — X; for some i € [ and j € J.
(Recall that a morphism of log analytic spaces Y — X is log smooth if locally in the
étale topology of X and Y it admits a chart (P — O(X),Q — O(Y), P — Q) with
finitely generated and integral monoids P and @ such that the induced morphism
Y = X Xgpee(p)r Spec(Q)" is a strict open immersion.)

For example, the pro-analytic space D :"@"D is provided with the fs log-

structure Mp = Op N Of. — Op. (Notice that D = D", where the scheme D =
Spec(R) with R = Op g is provided with the log structure that corresponds to the
homomorphism of multiplicative monoids R\{0} — R = O(D).) We are interested
here with log analytic spaces over D, i.e., log pro-analytic spaces X provided with
a morphism of log pro-analytic spaces X — D. For such X the special and closed
fibers X and X, are provided with the log structures 8 : M = Z_l(M) — Ox and
Bs : My = i~*(M) — Ox,, where 7 and i are the closed immersions X — X and
X5 — X, respectively. They are also provided with the induced morphisms of log
pro-analytic and analytic spaces X — D, and X; — D;. By the way, Dy is an
analytic log point which is provided with a homomorphism P — F from the free
monoid generated by the coordinate function z on the F-analytic affine line F which
goes to zero in F. This log point is denoted by pt = ptg , and the image of z in
Mpy is denoted by the same z.

Log smoothness of the morphism X — D means that it is defined by a log smooth
morphism X — D, i.e., locally in the étale topology of X there is a fine chart
P — O(X) and an element p € P whose image in O(X) coincides with the image
of z and such that the morphism of log analytic spaces X — Spec(R[P]/(p — 2))"
is a strict open immersion. Such a log structure on X is said to be wvertical if it
restriction to X, is trivial. In this case one can find a local chart as above with
the additional property that, for every a € P, there exist b € P and n > 1 with
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ab = p™. If X is log smooth over D, then X is log smooth over pt, but X; is not
log smooth over pt in general.

We are going to describe nearby and vanishing cycles complexes of a log smooth
morphism X — D in terms of the logarithmic structure on X. First of all this is
done for F = C, and then for F = R.

Recall that in [KN99] Kato and Nakayama constructed in a functorial way for
every fs log C-analytic space (X, Mx) a topological space X'°¢ and a proper sur-
jective map 7 : X' — X. The construction works for the class of fine and not
necessarily saturated log analytic spaces. Recall the definition. Let X be a fine log
C-analytic space. As a set, X'°¢ is defined by

Xlog = {(m, ho)|z € X, hy € Hom(MY,, S') with hy(f) = m for f € O}m} ,

, = ;
where S! is the unit circle in C, and 7 is the canonical projection (x, hy) + . If
B : Py — Oy is a chart over an open subset U C X, there is a bijection

T (U)= {(2,h) € U x Hom(P", S1)|5(p)(x) = h(p)|B(p)(x)| for all p € P}

that identifies 771 (U) with a closed subset of U x Hom(P9", S1), and the induced
topology on 77(U) does not depend on the choice of the chart on U. In this way,
one gets the required topology on X'2. If X is log smooth, X!°8 is a topologi-
cal manifold with boundary. For every strict morphism of fine log analytic spaces
¢ : Y — X, there is a canonical homeomorphism Y'Y x x X' (In partic-
ular, if X,eq is the underlying reduced analytic space provided with the induced
log structure, then Xigg’;?X 1og ) For every point = € X, there is a (non-canonical)
homeomorphism 77! (z)=Hom(M%, /O% ,,S'). In particular, 7~'(z) is homeo-
morphic to disjoint union of k copies of (S!)!, where k is the order of the torsion
subgroup of MY, /O% , and [ is its rational rank. If X is log smooth, X'°% is a
topological manifold with boundary.

Examples 2.5.1. (i) (see [KN99,(1.2.1.1)]). Suppose X = Spec(C[P])" for a fine
monoid P, and provide X with the log structure that corresponds to the homomor-
phism P — CJ[P]. Then there are homeomorphisms X—Hom(P,C) : x — x, and
X'eSHom(P,Ry x SY) : (x,hy) — (|X$|7h$|p) that are included in the follow-
ing commutative diagram in which the right vertical arrow is induced by the map
R, xS = C:(ta)—ta

X—— "~ -~ Hom(P,C)

d T

X'e =~ Hom(P,Ry) x Hom(P, S!)

(ii) Consider the log complex plane C with the log structure generated by the
coordinate function z. Then

C'°% = {(b,h) € C x Hom(P9", S")|b = h(2)|b|} SRy x S*,

where P is monoid freely generated by z, and the map takes a pair (b, h) to the
pair (], h(2)). In what follows we identify C'°® with R, x S* via the above map.
Then the map C'°¢ — C takes (t,a) to ta. The exponential maps C — C* and
iR — S': b exp(b) = e’ are topological universal coverings, and they gives rise
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to the topological universal covering Cloe = R, x iR — C!°8 : (t,b) > (t,e’). We
get a commutative diagram of maps

Clog = R, x iR < ptls = iR

1o J{ l
exp

C Clot = Ry x §1 < ptloz — g1

> |
exp

C* ! C L pt={0}

Here j'°8(a) = (|al, ﬁ) and jlog(b) = (eR¢(®) iIm(b)).

(iii) For a fine log C-analytic space X over the log complex plane C, there is
an induced map X'°& — C°8 : (z,h,) — (|¢(x)|, hs(2)), where ¢ denotes the
morphism X — C, and we set

X108 = X198 x (10 Clog = {((z, hy), (t.0)||p(z)] =t and hy(z) =€} .

The canonical map X°8 — X'°8 : ((x, h,), (t,b)) + (z, hs) is a topological covering
map with the Galois group 7;(S1) = m(C*) and the generator o of the latter group
acting by ((x, hy), (¢,0)) = ((z, hs), (t,b+2mi)). In particular, if D = D(0; p) is the
open disc in C with center at zero of radius p > 0 and provided with the induced
log structure, then D'°8 and D' can be identified is with [0,p) x St and [0, p) x iR,
respectively.

Consider now the case F = R. Let X be a fine log R-analytic space. Then
there is a canonical lifting of the complex conjugation morphism ¢ : Xc—X¢ to an
involutive homeomorphism ¢ : XS5 X 5%, Namely, let My = p*(Mx). Then the
morphism ¢ induces an isomorphism of sheaves of monoids ¢*(Mx,)=Mx) which
is compatible with the R-isomorphism ¢*(Ox,)—Ox. This means that, for any
open subset V' C X¢, ¢ induces an isomorphism Mx (V)= Mxq(c(V)) : m +— mS,
which is compatible with the isomorphism O(V)=O(¢(V)) : f — f€, where f(z) =
f(c(x)). We define the required map ¢ : X8 SXSE by c(x, hy) = (c(2), hyy)s

where for a homomorphism h, : M§  — S' one sets Ry (M) = ha(me). We set

— . __
Xlog = X 5% Xciog Clog |

The group 71 (R*) = 2miZ % (c) acts on the space X'°&. Namely, it acts on ch‘;g

and C!°8 through its quotient by m(C*) = 2miZ, i.e., through the action of c
which is defined above. (For example, ¢ acts on C'°¢ = R, x S! as the complex
conjugation on S'.) And 7 (R*) acts evidently on Clog = R, x iR with ¢ acting

as complex conjugation on ¢R. Notice also that the canonical map Xlg — chog is
71 (R*)-equivariant.
Let again F be either C, or R. For a fine vertical log pro-F-analytic space
X ="lim"X;, we define Xlég :"li@"Xgi and X!log :"lir{l"Xiog as pro-topological
I I I
spaces. For example, for D ="lim"D(0;p), one has Dlég ="lim" ([0, p[xS') and
— —

Dlog ="lim" ([0, p[xiR). There is a 7 (F*)-equivariant open embedding D*
—
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Dlog, The complement of D* in D8 is the universal covering pti°g = iR of ptl(gg =

S1. Furthermore, there is the following commutative diagram with cartesian squares

Xlog <2 xlos

Tog
J o v
-log
log log
Xﬁ XC XE
log
l J T’ ’
jc ic
Xc.y Xc X5
X, X< X
n S

Since the restriction of the log structure to X,, is trivial, the map 7’ : Xlég — Xc
is a homeomorphism over the open subset X, and, therefore, it gives rise to

compatible open embeddings j°¢8 : X, < Xlég and jlos : X5 — Xlog over j. We

denote by 7 and 7 the induced maps X8 — X5 and X928 — X, respectively,
and by j the canonical map X5 — Xc.

Any 71 (F*)-module A defines a locally constant sheaf on each of the pro-analytic
spaces D*, Dlé)g and ptlé)g7 and the pullback of the latter to X, chog and X? € is
denoted by Ax, , Axl(gg and AX?g, respectively. Its pullback to Xz, X!°g and Xlos
is a 71 (F*)-sheaf which is denoted by Axﬁ Aoz and Aﬁ’ respectively. We also
denote by Ax_ the constant 7 (F*)-sheaf on the 71 (IF*)-space Xz associated to A.

Theorem 2.5.2. Let X be a vertical log pro-F-analytic space log smooth over D.
Then for any A € Db(m,(F*)-Mod), the following is true
(i) there are canonical isomorphisms in DT (Xg(m1 (F*)))
RY,(Zx,) 8§ Ax, TRV, (Ax, ] TR (M)
(ii) f F = C, then R@(A'XTI)SRT*(A'XI%),’
(ii) i F =R, then RO(Ax ) =T (RTu(Aye))-

Lemma 2.5.3. Let (X, Mx) be a log smooth C-analytic space, and let ¢ : X' —
X be the normalization of X provided with the log structure Mx: which is the
saturation of the sheaf of monoids p*(Mx) in Ox:. Then X' is an fs log smooth
analytic space, and the canonical map X"'°% — X'°% is a homeomorphism.

We notice that, for a log smooth analytic space (X, Mx), the homomorphism of
sheaves of monoids Mx — Ox is injective.

Proof. The statement is local in X and, therefore, we may assume that X =
Spec(C[P])" for a fine monoid P. Then X’ = Spec(C[P’])", where P’ is the
saturation of P in PY", and the log structure My, — Ox- is defined by the canon-
ical homomorphism P’ — C[P’]. Since the monoid Ry is uniquely divisible, one
has Hom(P’',R.)=Hom(P,R,). Furthermore, since P'9" = P9, one also has
Hom(P’, S*)=~Hom(P, S). By Example 2.5.1(i), one has X"°8=5 Xog, O
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For a log analytic space X, let X* denote the open subset at which the log
structure is trivial. Then (X*)'°8 = X* and, therefore, there is a canonical open
immersion j°% : X* < X'°8 over the open immersion j : X* < X.

Corollary 2.5.4. Let X be a log smooth C-analytic space. Then each pomt of
X8 has a fundamental system of open neighborhoods V such that (§°°8)~*(V) is
nonempty and contractible.

Proof. If the log structure on X is saturated, the statement is a result of Ogus
([Ogus03, 3.1.2]). If X is arbitrary, let X’ be its normalization provided with the
log structure as in Lemma 2.5.3. Then X”*=X* and X"'°¢ X% and the general
case of the statement follows from the result of Ogus. O

Proof. The statement (iii) follows from (ii). It suffices therefore to prove the state-
ments (i) and (ii) in the case F = C, and this is assumed below.

By Corollary 2.5.4, there is a canonical isomorphism A')(log:Rjiog(AX”) and,
therefore, Rj.(Ax, )=R7[(Ax.,). Since the map 7' : X' — X is proper, we get
the statement (ii).

One has R¥,(Ax ) = i*(Rj.(Ax,)). Since Rj\8(Ax ) = Axios
that RJIOg(A'X) Al and, therefore, RW,(Ay ) = i*(RT, (Axlog)). Further-
more, one has Ff’ (Asrg) = R (Rv, (Ags;))- Since the map 7' is proper, we get
RV, (A, ) = Rr.(i jlo8* ( Ry, (Agrg))). The map v/ is not proper, but it is a base

change of the topological covering map D& — D8 and, in particular, 2/ and v
are also topological covering maps. It follows that i'°&*(Rv/, (Axlog))HRV*(AXIO )

it follows

and, therefore,
R\IJW(A'X )—)RT*(RV*(AXIOg))—)RT*(Axlog) .

This gives the second isomorphism for the functor ¥,. It follows also that in
order to get the first isomorphism for W¥,, it suffices to show that, given a log
smooth morphism X — pt, for any Z-torsion free II-module A and any ¢ > 0, the
canonical map R7.(Z5;) ®z Ax — RIT.(As5;) is an isomorphism. For this we
can disregard the action of IT on A and even assume that it is trivial. The stalk
of the sheaf on the left hand side at a point x € X is the inductive limit of the
cohomology groups HY(7~1(U),Z) ®z A taken on the open neighborhoods U of z,
and that on the right hand side is the inductive limit of the groups H?(7~!(U), A).
Since for sufficiently small U the space 7~1(U) is a connected topological manifold
with boundary, it follows that HY(7~'(U),Z) ®z A=H4(7 '(U),A), and we get
the required isomorphism for ¥,,. O

Corollary 2.5.5. In the situation of Theorem 2.5.2, there is a canonical isomor-
phism

RO(Ax, )=RI™ ") (R7, (M) - O

3. DISTINGUISHED FORMAL SCHEMES

3.1. Uniformization of special formal schemes. Let k be a non-Archimedean
field with nontrivial discrete valuation. All formal schemes considered in this section
are special formal schemes over k°, all morphisms between them are assumed to
be over k°, and the étale topology on a special formal scheme is the Grothendieck
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topology which is generated in the usual way by the étale morphisms introduced in
[Ber96b, §2].

Given an element v € k°\{0} and integers ey, ..., e, > 1 with m > 1, we set
AD) e, =R Tl /(T T =)

Definition 3.1.1. (i) A scheme X of locally finite type and flat over k° is said
to be distinguished (resp. semistable) if each point x € X, has an étale neigh-
borhood X’ — X that admits an étale morphism X’ — Spec(A) with A =
Ag??__,,em (Ts1s- -, T for v € k°°\(k°°)? (vesp. e1 = ... = ey = 1).

(ii) A special formal scheme X over k° is said to be distinguished (resp. semistable)
if étale locally it is isomorphic to a formal scheme of the form )A)/ =z, where ) is a
distinguished (resp. semistable) scheme over k° and Z is a union of some of the
irreducible components of );.

Remarks 3.1.2. (i) Every semistable scheme X over k° is normal, the generic
fiber X, is smooth over k, and the closed fiber X is a divisor with normal crossings.
Every distinguished scheme X over k° is regular and, therefore, X}, is also regular.
The support of the closed fiber X of any distinguished scheme X is a divisor with
normal crossings and, if char(k) = 0, &, is smooth over k.

(ii) It follows from (i) that a distinguished (resp. semistable) formal scheme X
is regular (resp. normal), and the generic fiber X, is regular (resp. rig-smooth).
If char(k) = 0, then generic fiber of any distinguished formal scheme is also rig-
smooth.

For a special formal scheme X over k°, we denote by X the closed (formal)
subscheme of X defined by the ideal generated by k°°. It is called the special fiber
of X . A closed fiber of X is a scheme X; of locally finite type over k& which is
defined by an ideal of definition of X that contains £°°. It is also a closed fiber of X
and, if X is of locally finite type over k°, then the supports of both coincide. (We
will be interested only in the étale site of X; and, when k= C, in the underlying
topological space of the complex analytification f{};, which do not depend on the
choice of an ideal of definition.)

We say that a morphism X' — X of special formal schemes over k° is proper if
it is of finite type and the induced morphism between their closed fibers X/, — X,
is proper. An example of a proper morphism is the blow-up of X with center at
a coherent subsheaf of ideals 7 C Oy. It is a morphism of finite type ¢ : 9 =
Blz(X) — X such that (1) Z generates an invertible subsheaf of ideals of (’)2)7 and
(2) every morphism of special formal schemes 3 — X, such that Z generates an
invertible subsheaf of ideals of (93, goes through a unique morphism 3 — 2). In
this case, the ideal Z as well as the corresponding closed formal subscheme of X
are called centers of the blow-up. Recall the construction of blow-up (see [Tem08,
§2.1]).

For every open affine subscheme 4 = Spf(A) of X, the restriction of Z to U
corresponds to an ideal a C A. Let V = Bl,(Y) — U be the algebraic geometry
blow-up of the scheme U = Spec(A) with center a. Then U = Bl,(4l) is the
formal completion of Bl, ({/) with respect to the ideal of definition of 4. The blow-
ups Bl,(4) are compatible on intersections of open affine subschemes of X, and so
one can glue all of them, and in this way one gets the required blow-up Blz(X).
For example, if fi,..., f, are fixed generators of the ideal a, then V = Bl,(U) is
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obtained by gluing the affine schemes V' = Spec(4;), 1 < i < n, where A; is the
quotient of by the f;-torsion of

A; = A[Tl? e ’Ti—laTi-‘rlv cee aTn]/(flT] - f])]?ﬁz
and, therefore, Bl,(4l) is obtained by gluing the affine formal schemes 2" = Spf (&),

1 <i < n, where ﬁi is the quotient by the f;-torsion of E;, the k°°-adic completion
of AL. Recall also that the composition of two blow-ups is a blow-up.

Theorem 3.1.3. Suppose that char(k) = 0, and let X be a quasicompact reduced
special formal scheme flat over k°. Then

(i) there exists a blow-up P — X which induces an isomorphism over the reg-
ular locus of X, and such that Q) is distinguished over k°;

(ii) 4f X is distinguished, there exists an integer e > 1 such that the normaliza-
tion X' of XRyok'®, where k' = k(/1, /@) for a generator w of k°°, is a
semistable formal scheme over k'°.

Proposition 3.1.4. Suppose that char(k) = 0. Then a special formal scheme X
flat over k° is distinguished if and only if it possesses the following properties:

(1) X is regular;
(2) the support of X is a divisor with normal crossings;
(3) the support of X5 is a union of some of the irreducible components of X.

A closed (formal) subscheme 9) of a special formal scheme X is said to be a divisor
with normal crossings if, for every open affine subscheme Spf(A) of X, the closed
subscheme of Spec(A) that is induced by ) is a divisor with normal crossings. (The
empty subscheme is considered as a divisor with normal crossings.) The property
(3) has the similar meaning. Namely, for every open affine subscheme { = Spf(A)

of X, #{; is a union of some of the irreducible components of the scheme Spec(A4),
where 4 = Spf(A).

Proof. The direct implication easily follows from the definition of a distinguished
formal scheme. Suppose therefore that a special formal scheme X possesses the
properties (1)-(3). In order to show that X is distinguished, we may assume that
X = Spf(A) is affine. We set X = Spec(A), X = Spec(A/I), where I = {a € Ala" €
k°° A for some n > 1}, and X; = Spec(A/J), where J is the Jacobson radical of A.
Since the required property is local in the étale topology, we may assume that X
and X; are divisors with strict normal crossings.

Let w be a generator of k°°, let x be a closed point of Xy, and let Zq,..., 2,
be the irreducible components of X that contain the point x. One has 1 < n < d,
where d is the dimension of X. We assume that the irreducible components of X

are Z1,..., 2, with 1 < m < n. Furthermore, let ¢1,...,t4 be a regular system
of parameters of Oy, such that each ¢; for 1 < i < n defines Z; in an open
neighborhood of x in X'. Then w =t{* - ... - t5ru for eq,...,e, > 1 and u € Of .

Let X’ = Spec(A’) be an open affine neighborhood of the point x in X' such that
t1,...,tg € A" and u € A™. If a’ is the ideal of A’ generated by the elements
@ and ty - ... ty, then X' = Spf(A’), where A’ is the a’-adic completion of A'.
Since char(%) = 0, the special k°-algebra A” = A’'[ ¢/u] is finite étale over A’ i.e.,
X" = Spec(A”) — X' is a finite étale morphism. We replace ¢; by the element
t1- %/u of B”, and so we may assume that w =5 -...-t5» in A”. If a” is the ideal
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of A” generated by the elements @ and ¢; - ... - t,,, then X = Spf(ﬁ”), where A"
is the A”-adic completion of A”. Notice that the induced morphism X" — X’ is
also finite étale. Let x” be a preimage of the point x in X

Let B = k°[Ty,...,Tq)/(T5* ... - Tt — w), and let B be the b-adic completion
of B, where b is the ideal generated by the elements w and T3 - ... - Ty,. We claim
that one can replace X" by an open meighborhood of x" so that the morphism of
special formal schemes X" — N = Spf(é), which is induced to the homomorphism
B — A" :T; — t;, is étale. Indeed, by [Berl5, Lemma 3.2.5], one can shrink X" so
that the induced morphism X" — ), = Spec(k[Ty, ..., T4)/(Ty - ... - T,,)) is étale.
By [Ber96b, 2.1(i)], there exists an étale morphism 3 = Spf(C) — 2) with X/=53,
over 9),. Since C' is formally étale over E, the latter isomorphism is induced by
a unique homomorphism C' — A” over B ([EGA4,, 19.3.10]). From [Bou, Ch.
ITI, §2, n® 11, Prop. 14] it follows that the homomorphism C' — A" is surjective.

Since both rings are regular of the same dimension, we get C=5A” and the claim
follows. O

It is a minor consequence of the proof of Proposition 3.1.4 that, given a distin-
guished X, for any generator w of k°° one can always find étale morphisms as in
Definition 3.1.1 with v = w.

Proof of Theorem 3.1.3. (i) First of all, we recall a result of de Jong. Let ) = Spf(A)
be a special affine formal scheme over k°, and set J) = Spec(A). By [deJ95, Lemma
7.1.9], the map y + n, that takes a point y € 2, with [H(y) : k] < oo to the
preimage of m, under the canonical homomorphism 4 = A ®yo k — OQ) y

a bijection between the set of such points y and the set of maximal ideals of A
Furthermore, this homomorphism induces an isomorphism Ay%O@ between the

n,-adic completion of A and the m,-adic completion of (92) These facts imply

that the regular locus of 9),, coincides with the preimage of tfle regular locus of the
affine scheme ), = Spec(A).

By Temkin’s Theorem 1.1.13 from [Tem18], there exists a blow-up ¢ : 9 — X
with the following properties:

(a) for any open affine formal subscheme Spf(A4) C X, the corresponding blow-
up of the affine scheme Spec(A) is an isomorphism over its regular locus;
(b) 2 possesses the property (1)-(3) of Proposition 3.1.4.

It follows that the special formal scheme %) is distinguished and the induced mor-
phism %), — X, is an isomorphism over the regular locus of X,. This gives the
statement (i).

(ii) Since X is quasicompact, it has a finite étale covering by affine formal schemes
that admit an étale morphism to an affine formal scheme of the form as in Definition
3.1.1. Let e be a positive integer divisible by all of the numbers e;’s that appear in
the construction of those schemes, and let &' = k(+v/1, /=) and X’ the normaliza-
tion of the formal scheme X®jy0k’®. Then the induced morphism of special formal
schemes X’ — X is finite and, since X,, is rig-smooth, it follows that %%3%n®kk' .
We claim that the special formal scheme X' is semistable.

Indeed, in order to prove the claim, we may replace k by k' and X by X®p. k.
Since the normalization commutes with completion and étale morphisms, it suffices
to show that the normalization X’ = Spec(A’) of the scheme X = Spec(A4) with
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A=k°[Ty,...,Ty) /(T - ... T — ') such that k contains all e-th roots of one
and [ is divisible by all of e;’s is semistable over k°.
We set v = g.c.d.(e1,...,e,), €, =&, I/ = %, denote by t; the image of T} in A,

7 v
! ! ’ v
and set t = t{ -...¢;". One has t” = (' )¥ and, therefore, (ﬁ) =1. Let A” be

the subalgebra of A’ generated over A by the element wtl,. Then X" = Spec(A”)
is a disjoint union of the schemes XC/ = Spec(A’C), where ( is a v-th root of one and
AL = RO[Ty, . T /(T - T = ¢b'). TE ¢y is an U'-root of ¢, then (w! =
(Clw)l'. Replacing A by any of A’C’s, we reduce the situation to the case v = 1.

In the case v = 1, the group M9" of the monoid M generated by the elements
t1,...,t, and @ has no torsion, and t{ - ...t = w!. The algebra A is the ring
of polynomials k°[M][T},+1,...,Ty) over the monoid algebra k°[M]. Let M be the
saturation of M in M9", ie., M ={p € M|p* € M for some k > 1}.

Lemma 3.1.5. There erist elements s1,...,s5, € M which together with the el-

ement w generate the monoid M and are such that sy - ... s, = w" forr =
Y S
lLem.(eq,...,en) "

Proof. We set m =l.cm.(ey,...,e,) andr = % Ifg; = 2, theng.c.d(qi,...,qn) =
1 and, therefore, g.c.d.(q1,...,qn) =1, where ¢; = q1-..."Gi—1-Git+1---.* qn. Let N
be the submonoid of M generated by the elements ¢4, ...,t, and w”, and consider
the homomorphism « : N — Z% to the additive monoid Z7 that takes t; to ¢;f;
and @w” to Y ., fi, where fi,..., f, is the canonical basis of Z". We claim that
mduces an isomorphism NI =Z".

Indeed, it suffices to show that the subgroup of Z" generated by the vectors
afty),...,a(t,),a(w”) coincides with the whole group. This subgroup contains
the n 4+ 1 subgroups generated by n of the above elements. We now notice that
the index of the subgroup of Z™ generated by n linearly independent vectors equals
(up to a sign) to the determinant of the matrix formed by the coordinates of those
vectors. In our case the determinants that correspond to those m subgroups are
Qs >qn,q1 " - qn, and the claim follows.

The claim implies that ¢« induces an isomorphism of monoids N—=Z7, where N
is the saturation of N in N9". If sq,...,s, are the preimages of the basis vectors
fiyoosfn,wegetsg-...-s, =w". O

The algebra A” = k" [M|[Ty+1,- .., Ty is integral over A = k°[M][Ty41, ..., T4]
and, therefore, it is embedded in A’. By Lemma 3.1.5, one has

A”:k;o[Sl,...,Sn,Tn+1,...,Td]/(Sl Sn—wr) .

Since Spec(A”) is a semistable scheme over k', it is normal. It follows that A” = A’,
and the required fact follows. O

Recall (see [Berl5, §3.3) that an augmented simplicial formal scheme a : Q), —
X is said to be a compact hypercovering of X if all of the morphisms ), — X
are of finite type and the augmented k-analytic space 9, , — X, is a compact
hypercovering of X,,. If in addition all of the morphisms ),, — X are proper, it is
called a proper hypercovering of X . Furthermore, a hypercovering a : ), — X is
said to be distinguished if all formal schemes 2),, are distinguished.

Corollary 3.1.6. If Char(E) =0, every quasicompact special formal scheme X over
k° admits a distinguished proper hypercovering a : ), — X. (]
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Remarks 3.1.7. (i) In the construction of the functor R\I'Z, we use a weaker fact
that every special formal scheme over k° admits a distinguished compact hypercov-
ering. Existence of such a hypercovering is proved in the same way but, instead of
functorial desingularization from [Tem18], one can apply Temkin’s result on desin-
gularization from [Tem08] to affine schemes of the form Spec(A) with an integral
special k°-algebra A.

(ii) In the situation of §2.2, assume that the scheme ) is flat over O and
regular, and that the support of Y is a divisor with normal crossings and the
support of ) is the union of some of the irreducible components of ). Proposition
3.1.4 then implies that the formal completion Yofy along )Y is a distinguished
formal scheme over @IM'

(iii) Temkin’s Theorem 1.1.8 from [Tem18] implies that, in the situation of The-
orem 3.1.3, there exists a blow-up ) — X, which induces an isomorphism over the
regular locus of X,;, and a finite extension &’ over k such that the normalization )’
of YDy k’® is semistable and regular (i.e., for 9’ one always has v € k/°°\(k'*°)?
and e; = ... = e, = 1 in Definition 3.1.1).

3.2. Log special formal schemes. Basic notions of logarithmic geometry for
schemes are naturally extended to special formal schemes. Namely, a pre-log struc-
ture on a special formal scheme X is a homomorphism of étale sheaves of monoids
B: M — Ox. A pre-log structure is said to be a log structure if 5_1(01*‘{)30*%. If
B : M — Oy is a pre-log structure, there is a homomorphism M — M* to a log
structure on X such that any homomorphism M — N to a log structure on X goes
through a unique homomorphism M* — N. If X is provided with a log structure, it
is said to be a log special formal scheme. For example, every special formal scheme
X can be provided with the trivial log structure for which M = O?‘{. If necessary,
the underlying formal scheme of a log special formal scheme X is sometimes denoted
by X. Given a log special formal scheme X, any morphism of special formal schemes
Y- %, gives rise to a homomorphism ¢~ (M. x) — (’);y from the inverse image
of My. The sheaf of monoids for the corresponding log structure on ) is denoted
by ©*(My).

A morphism of log special formal schemes ) — X is a pair consisting of a
morphism ¢ : 2] — X and a homomorphisms of sheaves of monoids gp’l(M:{) —
M@ which is compatible with the homomorphism @‘1(0%) — 02)' It gives rise
to a homomorphism of sheaves ¢*(My) — MQ)' A morphism is called strict if the
latter is an isomorphism, i.e., ¢©* (M%)’—TMQJ The category of log special formal
schemes admits finite inverse limits which are constructed in the same way as for
schemes (see [Kato89, (1.6)]).

Example 3.2.1. Every special formal scheme X flat over k° (e.g., Spf(k°)) is
provided with the following log structure, called canonical: for an étale morphism
s — X, M(Y) consists of all elements of O(4l) whose image in O(LL,;) is invertible.
Notice that any morphism of special formal schemes is the underlying morphism of
log special formal schemes provided with the canonical log structures.

A k°-log special formal scheme is a log special formal scheme X which is flat over
k° and provided with a morphism of log formal schemes X — Spf(k°) in which the
log structure on Spf(k°) is canonical. A k°-log special formal scheme X is said to
be wvertical if the localization of My with respect to k°\{0} is a sheaf of groups.
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For example, if X is provided with the canonical log structure, it is a vertical k°-log
special formal scheme.

A k°-log scheme is a log scheme X with X of locally finite type over k° provided
with a morphism of log schemes X — Spec(k°®) in which the log structure on
Spec(k®) is canonical, i.e., defined by k°\{0} — k°. (A scheme of locally finite
type over k° is a locally finite union of open affine subschemes Spec(A) with finitely
generated k°-algebras A.)

If X is a k°-log special formal scheme, its closed fiber X, is provided with the
log structure i*(My ), where i is the closed immersion X, — X (notice that X, can
be considered as a special formal scheme over k°). It is easy to see that this log
structure on X, is the homomorphism My / le — Ox_, where le is the subsheaf
of O% consisting of the local sections which are congruent to 1 modulo the ideal
of definition of X that defines X,. In particular, this defines a log structure on
the scheme Spec(k), which is the closed fiber of the formal scheme Spf(k°). It is
an algebraic log point associated to the field k, and it is denoted by ptge. Every
generator w of the maximal ideal k°° of k° gives rise to a chart P — Mo = Mptkg =
k°\{0}/k!, where P is a free monoid generated by @ and k' = {a € k||a -1 <1}
A k3-log scheme is a scheme of locally finite type over k provided with a morphism
to the log scheme ptys.

Examples 3.2.2. (i) Let X be a scheme of locally finite type over k°. Then any
log structure 8 : My — Ox on & gives rise to a log structure 8 : M3 — Oz

on the formal completion X of X along its closed fiber Xy = X ®jo %, which is
the inverse image of the log structure 8 with respect to the canonical morphism of
locally ringed spaces X > X. Of course, of 8 is k°-log, then so is B In this case,
the canonical morphism of k7-log schemes ()/(\ )s — Xs (which is the identity on the
underlying schemes) is an isomorphism. If in addition, the restriction of 5 to A, is
the trivial log structure, then 3 is vertical over k°.

(ii) Given a log (resp. k°-log) special formal scheme X, the log structure S :
My — Oy on X gives rise to a log (resp. k°-log) structure 3,y : M.'{/y — O%/y
on the formal completion X along a subscheme ) C X, which is the inverse image
of 8 with respect to the morphism X, — X. In particular, in the situation of
(i), given a subscheme )Y C X, the log (resp., k°-log) structure [ gives rise to

a log (resp. k°-log) structure E/y : M/g/y — O)?/y' If 8 is k°-log, then the k$-
log structure on X = ) is canonically isomorphic to the restriction of the k7-log
structure of X, to V.

(iii) Let (B,b) — (F,0) be a morphism of F-analytic germs, and let ) be a
scheme of finite type over Opy. As in (i), any log structure g : My — Oy on Y
gives rise to a log structure B\ : My — (937 on the special formal scheme )7 over @]F,O
(see §2.2).

As for schemes, a log structure on X is said to be coherent if locally in the
étale topology it is associated to a pre-log structure defined by a homomorphism
Py — Ox (called a chart of the log structure), where Py is the constant sheaf for
a finitely generated monoid P. If such P is integral, the log structure is said to be
fine and if, in addition, P is saturated, it is said to be fine saturated or, for brevity,
fs. For example, the canonical log structure on Spf(k°) is fs, and it is associated by
the pre-log structure defined by a homomorphism P — k°, where P is a free monoid
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generated by one element which maps to a generator of k°°. If a log structure on
X is associated to a chart Py — Oy, then its inverse image on the closed fiber X
is associated to the induced chart P% — Oy

The category of fine log special formal 5chemes admits finite inverse limits which
are constructed in the same way as for schemes (see [Kato89, (2.8)]). For example,
if X is a fine k°-log formal scheme and k' is a finite extension of k, the formal
scheme ¥®y0k’®, considered as the fiber product in the category of fine log special
formal schemes, is a fine k’°-log formal scheme.

In [Kato89, §3], Kato introduced the notion of a log smooth (resp. log étale)
morphism between fine log schemes. He also proves that a morphism ¢ : Y —
X is log smooth if and only if locally in the étale topology there exist a chart
(Py = Ox,Qy — Oy,P — Q) of ¢ such that the kernel and the torsion of
the cokernel (resp. the kernel and the cokernel) of the homomorphism of groups
P97 — Q9" are finite of orders invertible in X and the induced morphism of schemes
Y — X ®z1p) Z[Q)] is étale.

Definition 3.2.3. A k°-log special formal scheme X is said to be k°-log smooth
(resp. formally k°-log smooth) if locally in the étale topology X it is isomorphic
to the formal completion X (resp. X /y) for a vertical log smooth morphism X —
Spec(k°®) (resp. and a subscheme ) C Xj).

3.3. Formal log smoothness of distinguished formal schemes. Every scheme
X flat over k° is provided with the following log structure called canonical: for an
étale morphism U — X, M(U) consists of all elements of O(U) whose image in
O(U,) is invertible. In the examples we really need, X' is a noetherian excellent
regular scheme in which the closed fiber X is a divisor with normal crossings. In
this case the canonical log structure on & is fs. It is trivial outside X and, locally in
the étale topology, it is associated with a chart Py — Oy for the monoid generated
by the regular parameters at a point z € X which define the irreducible components
of X passing through .

In the situation of Example 3.2.2(ii), the canonical log structure on X defines a
log structure on the formal completion X Iy along a subscheme )Y C &5 which maps
in a natural way to the canonical log structure on the special formal scheme by 1y
over k°. Similarly, in the situation of Example 3.2.2(iii), the canonical log structure
on ) defines a log structure on the formal completion j)\ which maps in a natural
way to the canonical log structure on the special formal scheme Y over @]F,O-

For example, any semistable (resp. distinguished) scheme X over k° (resp. with
char(k) = 0) provided with the canonical log structure is smooth (resp. log smooth)
over k° and, therefore, the formal completion X (resp. X /y) provided with the log
structure induced from X are k°-log smooth (resp. formally k°-log smooth).

Theorem 3.3.1. Suppose that a scheme X admits an étale morphism X — T, and
either

(1) T = Spec(k°[Ty,..., T, /(Ty ... - Ty, —@')), L > 1, or

(2) char(k) =0 and T = Spec(k°[T1, ..., Tn)/ (T3 ... - TS —w)), ; > 1,
where 1 < m < n and w is a generator of k°°. We set X = A?/y for a closed

subscheme Y C Xs, and denote by P the multiplicative submonoid of O(X) generated
by the images of the coordinate functions T; for 1 < ¢ < m and the element ww. Then
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the log structure associated to the chart Py — Ox coincides with the canonical log
structure on X.

Proof. In the case (1), the above facts easily follow from results from [Ber99, §5],
especially Theorem 5.3. Namely, we can shrink X so that the étale morphism
X — T induces a homeomorphism of skeletons S ()/(\ )=S(T). The skeleton S(X)
is a polytope, its intersection with X,, is the complement of a union of proper
faces of S(X) and, in particular, S(X) N X,, contains the interior of S(X). There
is a retraction map 7 : 56\77 — S(é?) and, for z € S’()?), the fiber 771(z) is an
affinoid domain with the maximal point z. If z € S(X) N X,, then 77 1(z) C X,,.
It follows that, for every function h € O(X,) and every point y € X,, one has
|h(y)| < |h(r(y))|]. If now f is as above, then the restriction of the real valued
function z — | f(z)| to the interior of S()?) is equal to the function x — |g(z)| for
some g € P. This implies that f = gu for u € O(X,)* with the property |u(y)| =1
for all y € X,,. Since the ring O(X) is normal, a theorem of de Jong [deJ95, 7.4.1]
implies that u € O(X). For the same reason, one has u=! € O(X) and, therefore,
u e OX)*.

In the case (2), let v be the greatest common divisor of ey, ..., e,. If e; = vg;,
then the k°-subalgebra of O(T) generated by the element ¢7' -...-¢%" is the ring of
integers k’° of the field k¥’ = k(y/w), i.e., T and ) can be considered as distinguished
schemes over k’°. This reduces the situation to the case v = 1.

Let e be a positive integer divisible by all of the numbers ¢;’s, X’ the normaliza-
tion of Y @go k'°, where k' = k(+/1, /@), V' the preimage of Y in X/, X' = 5(\/’),,,
P’ the submonoid of O(X') generated by the functions from P and the element
7= /@, and P the saturation of P’ in P'9". By Theorem 3.1.3(ii) and the previ-
ous case, the formal scheme X’ is semistable over k’° and the lift of the function f
to X' is of the form gv with g € P and v € O(X')*. Notice that each element of
P'9" has the form hn”, where h € P and r € Z and, therefore, f = hu, where h € P
and v = 7"v. Since .’{;] is a finite Galois covering of X,,, it follows that v € O(X,)*
and the function « — |u(z)| on X,, is a constant equal to |r|". It suffices to show
that the latter number belongs to |k*|, i.e., r is divisible by e. Indeed, suppose this
is true. Then replacing h by hwe and u by uw™ ¢, we may assume that h € PI"
and v € O(X)*. Since the element h belongs to P’ and the monoid P is saturated
in P97, it follows that h € P.

In order to verify the required fact, we may replace ) by any closed point y
whose image in 7y is the point t at which all of the coordinate functions are zero.
Replacing k by a finite unramified extension, we may assume that the point y is
k-rational. Then X = /'?/{y}:?'?/{t}. We may therefore assume that X = T, and
the generic fiber X, has the following description. Let Y be the closed analytic
subspace of A™ defined by the equation 77" - ... - T = tw, V the open subset
{y € Y||T;(y)| <1 for all 1 <i < m}, and D the open unit polydisc with center
at zero in A"~"™. Then X,—V x D. Notice that the zero of D defines a closed
immersion V — X, : ¢ — (x,0), and so it suffices to verify the necessary fact for
the restriction of the function u to V instead of X,,.

The space V can be described as follows. Since the greatest common divisor of

€1,...,em is one, we can find integers Iy, . . . , [, with 2211 e;l; = 1. If T’ is the torus
in the n-dimensional affine space defined by the equation Ty - ... - T% = 1, then

TOZY tx = (21,...,0m) = (x1041,..., 2ymwhn). The preimage of V in 7720 is
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the open subset U = {x € T'*»||T;(z)| < |w|™" for all 1 < i < m}. The latter
is the preimage of the open subset U of the skeleton S(7), defined by the same
inequalities in S(77), with respect to the retraction map 7 : 72" — S(7'). The
explicit description of analytic functions on 7~!(U) in terms of convergent Laurent
power series in T;’s easily implies that, for every invertible analytic function u on
771(U) with constant absolute value |u(z)|, |u(z)| is an element of |k*|. O

Corollary 3.3.2. Any semistable (resp. distinguished) formal scheme over k°

(resp. with char(k) = 0) provided with the canonical log structure is fs formally
k°-log smooth (resp. k°-log smooth). O

Corollary 3.3.3. In the situation of Remark 3.1.7(ii), the inverse image of the
canonical log structure on Y coincides with the canonical log structure on the dis-
tinguished formal scheme Y over Oy . d

4. THE FIELD K AND ASSOCIATED GROUPOIDS

4.1. Groupoids 7(K), II(K), and II(K¢c). In this section and till the end of
the paper, the capital letter K is used for a non-Archimedean field with nontrivial
discrete valuation and such that F ¢ K° and F3K. The calligraphic letter C is
used for the fraction field of Opy. We set K¢ = K ®r C and K¢ = K ®r C.
These are just the same fields K and K, if F = C, and are quadratic extensions
of K and I, if F = R, and constructions related to them depend on the original
fields K and K. If F = R, we denote by ¢ the automorphisms of K¢ over K
and K¢ over K. Each generator w of the maximal ideal K°° of K° induces a
homomorphism Oy — K° that takes the coordinate function z on F to w. It
gives rise to an isomorphism @RO’—TK ° and an embedding K — K whose image is
dense in K. The valuation on K induces a valuation on /C, which does not depend
on the element w. For an element § € K° (resp. K°), we denote by £(0) the
element of F with 8 — 8(0) € K°° (resp. K°°).

For r > 1, we set K = K°/(K°°)" . It is a finitely dimensional F-vector space
and, therefore, for any entire analytic function f = Y7 ja,z" on F, there is a
well defined function f : K2 — K?. Since K°=lim K7, we can provide the F-

algebra K° with the topology of a projective limit 8? finitely dimensional F-vector
spaces, and the same analytic function is well defined on K°. Applying this to
the exponential function exp(z) = Y.~ i—j, we get a well defined exponential
function exp on K°, which gives rise to an isomorphism K°=(K°)*, if F = R,
and to an exact sequence 0 — 2miZ — K& — (K&)* — 0. In any case, it induces
isomorphisms RSRY and K°SK!' = {u € (K°)*|ju — 1| < 1}. The inverse
isomorphisms to the latter give rise to an isomorphism R’ - K ISR+ K :0v =
au — log(v) = log|a| + log(u).

We are now going to introduce groupoids II(K¢), II(K) and 7(K) Objects of
II(Kg) are generators of K. For w,w’ € II(K¢), Hompy k) (w,w’) is the set of
transformations of K& which are either of the form a — o + 3 for 8 € K& with
exp(B) = = (B-morphisms of first type), or of the form a +— @+ for § € Kg with
exp(B) = g (B-morphisms of first type). Composition of morphisms corresponds
to composition of transformations. If F = C, there are only morphisms of first type.
Let II(K) be the full subcategory of II(K¢) whose objects are generators of the
maximal ideal K°° of K°, and let w(K) be the non-full subcategory of II(K) with
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the same set of objects and the sets Hom () (@, @’) consisting of the 3-morphisms
of first type with 8 € K°. Notice that, if F = R, the latter are one element sets
and, if F = C, then n(K) = II(K) = II(K¢).

For example, the 2mi-morphism of first type, denoted by ¢(®), generates the
group Z(1) = 2miZ, which coincides with Homyg(w,w), if F = C, and is a
subgroup of index two in Hompxq)(w, @), if F = R. If in the latter case w €
I(K) (i.e., @ is a generator of K°°), Homyg)(w, ™) coincides with the semi-
direct product Z(1) x (c(®)), where ¢(®) is the 0-morphism of second type. It is an
involution acting as inversion on Z(1). Moreover, for any pair w,w’ € II(K), one
has ¢ o 0(®) = o@)o @ and o @ = =)o ©, where ¢ is a morphism @ — @’
in 7(K). In this way, the groups Hompy (g (w, w) are identified for all w € II(K).

Applying the above construction to the field K, we get groupoids 7(K), II(K) and
H(IEC). Since the preimage of (K°)* under the exponential map on K° lies in Ke,
one can define full subcategories (K) C 7(K), II(K) C II(K) and II(K¢) C I(Kc)
whose objects are generators of the maximal ideal K£°° of K° and K& of Kg,
respectively, and there are natural functors 7 (K) — II(K) — II(K¢).

There is a faithful functor II(K¢) — G(K¢) to the following étale fundamental
groupoid G(K¢) of the field K. Given a generator w of K& and an integer n > 1,
we set K(@)" = Kg[T]/(T™ — @). Tt is a Galois extension of K generated over
K¢ by the image of T', which is denoted by w,. For every integer m > 1, there is
a canonical embedding K ()" < K(®).mn that takes w, to w”,. The inductive
limit K(®) of the fields K(®)-" taken over those embeddings is an algebraic closure
of K.K(®) The objects of G(K¢) are the fields K(®) for generators @ of K&, and
the set of morphisms Homg (k) (K (=) K (w/)) is the profinite set of isomorphisms

of fields K(®K(®) over K. We also denote by G(K) the full subcategory of
G(K¢) whose family of objects are the fields K(®) for generators w of K°°. For
example, if F = C, Homg i) (K™, K(™)) is the Galois group Gal(K () /K), which
is canonically isomorphic to 2(1) = 1}_111 pun and, if F = R, Homg(K)(K(w), K@) is

the Galois group Gal(K(®)/K), which is canonically isomorphic to the semi-direct
product 2(1) x (c). The functor I[I(K¢) — G(K¢) takes w € II(K¢) to the field
K@) and it takes a B-morphism of first (resp. second) type ¢ : @ — @’ to
the isomorphism ¢ : K@ZK®) over K with o (wn) = exp(%)w;l and which
acts trivially (resp. as the complex conjugation) on K¢. It gives rise to a functor
II(K) = G(K).

In the same way one defines étale fundamental groupoids G(K¢) and G(K) of
K whose objects are algebraic closures K(®) of K for generators w of K& and
K°°, respectively. For example, if z is the coordinate function on F, there is a
canonical isomorphism K*=K (%) that takes the function b — ew on I to the element
2, € K&, where K? is the algebraic closure of K introduced in §2.3. There are
faithful functors II(K¢) = G(K¢) and II(K) — G(K).

In what follows, we will also use the following groupoid equivalent to the above
ones. Let ptgo (resp. ptyo) be the scheme Spec(K°) (resp. Spec(K°)) provided
with the canonical log structure. Generators of the maximal ideal of K° (resp. K°)
can be viewed as elements of the monoid Mgo = My, ., = K°\{0} (resp. Mxo =
Mpt,.. = K°\{0}) whose image in the quotient Mo /(K°)* (resp. Mo /(K°)*),
which is a free monoid of rank one, is the generator of the latter. For » > 1, we
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denote by ptyo (resp. ptyo) the scheme Spec(K7) (resp. Spec(Ky)) provided with
the log structure which is induced from that on pty. (resp. ptgo). Notice that
Ko = I/C\ﬁ The groupoids we are going to introduce are associated to the log scheme
ptgo and denoted by 7(K7), II(K}) and II(K¢ ,.).

Objects of n(K7) and II(Ky) are elements of the monoid Mg. = Myt o
(K°\{0})/K", where K" = {a € K°|a — 1 € (K°°)"}, whose image in the quo-
tient Mo /(K;)" is the generator of the latter, and objects of II(Kg ) are simi-
lar elements of the monoid Mkg, . Morphisms in all three categories are defined
in the same way as in the corrésponding categories for K but with elements 3
from K and K¢ ., respectively, and one can easily see that the canonical functors
m(K) = 7(K}), I(K) — [I(K7) and II(Kc) — TI(Kg,.) are equivalences of cate-
gories. By the way, the image of an object @ of II(K¢) in II(K¢ ,) will be denoted
in the same way by w, but the image of the latter in K&, will be denoted by w@.

A groupoid P is called connected, if the set of morphisms between any two of its
objects is nonempty. For example, all of the above groupoids are connected. All
groupoids considered here are assumed to be connected (and small). A groupoid
P is said to be abelian if the groups G*) = Aut(P) for P € P are abelian. If P
is abelian, then all of the groups G*) are canonically isomorphic. For example,
if F = C, all of the considered groupoids are abelian. If F = R, the groupoids
II(K) and II(K¢) are not abelian but, as was mentioned above, all of the groups
Hompyx(w, @) for w € II(K) are canonically isomorphic.

A subgroupoid P’ of P is said to be invariant if it has the same family of objects
and, for some Py € P, G'F%) is an invariant subgroup of G(*0). In this case, G'(") is
an invariant subgroup of G for all P € P, and one can define a quotient groupoid
P /P’ with the same family of objects and with the quotient set Homp (P, Q)/G'")
as the set of morphisms from P to Q. For example, if F = R and K’ = K¢, II(K”)
and TI(K;°) are invariant subgroupoids of II(K¢) and II(Kg ), respectively, and
there are equivalences of groupoids II( K¢) /TL(K')=TI(Kg ) /TI(K,° )= Gal(Kc/K).

4.2. P-spaces. Let P be a groupoid. The category of P-spaces is, by definition,
the category of contravariant functors P — Top : P — X ) to the category of
topological spaces Top. In the same way one defines P-spaces in other geometric
categories such as complex and non-Archimedean analytic spaces, schemes, formal
schemes and so on. For a morphism ¢ : P — P’, we denote by fy the induced
morphism XP) 5 x(P) We say that a P-space X is single if the corresponding
functor takes each P € P to the same space. We say that a P-space X is univocal
if, for any pair P,P’ € P, it takes each morphism P — P’ to the same map
XPY 5 XB)If X s single and univocal, it is called strict. We say that a
P-space X is trivial if it is strict and takes each morphism in P to the identity
map.

Every P-space X is isomorphic to a single P-space. Indeed, fix an object Py of P
and, for every object P € P, fix a morphism ap : Py — P in P. We define a single
P-space Y as follows: it takes each P to X(®) and each morphism ¢ : P — P’
to {(apr o poap) : X — X(P0) The correspondence P + *(ap) defines an
isomorphism X—Y. Notice that if the P-space X is univocal, the P-space Y is
trivial, and it does not depend on Py up to a canonical isomorphism. Conversely,
any P-space, which is isomorphic to a trivial P-space, is univocal. Notice that,
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for any P-space X, the P-space P\X formed by the quotient spaces G(P)\X(F) is
univocal.

The following series of examples of P-spaces for II(K¢), II(Kg ), and II(Kc),
respectively, play an important role in the paper.

Examples 4.2.1. (i) Let D* be the log pro-F-analytic space "lim"D*(0;p) from
PA—

§2.5, where D(0;p) is the open disc of radius p > 0 with center at zero. For

w € II(Kg), take D of sufficiently small radius so that w is convergent at D and

invertible at D*, and define an étale universal covering D(®) of D* by the cartesian

diagram

b
c_ bz o

]

D*(®) — = Dg

A point of D*(®) is a pair (x,b) € D x C with e® = w(x), and the F-analytic space
D*(®) defines a pro-F-analytic space D*(®). Each morphism ¢ : @ — @’ in II(K¢)
gives rise to a morphism ‘o : D*®) — D*(®) as follows. If ® is a f-morphism of
first type, then ¢ is defined by the morphism D*(®) — D*=) . (z,0) — (z,b+
B(x)) (for D of sufficiently small radius). If F = R and ¢ is a S-morphism of second
type, then to is defined by the morphism D*(®) — D*(=) . (z,b) — (Z,b+ B(x)).
In this way we get a pro-F-analytic II(K¢)-space D* : w D*(®) . Suppose
now that F = R. Notice that the exponential function exp : C — C* commutes
with the complex conjugation and, therefore, it induces an étale R-analytic map
exp : R — R* and is in fact a base change of the latter with respect to the canonical
map p : C* — R*. Thus, if w € 7(K), the above cartesian diagram is a similar base
change of the cartesian diagram of R-analytic spaces

b
R 2 Re

]

Q*(w) D*

so that the complex analytic space D*(®) is obtained by the extension of scalars
from the R-analytic space Q*(W), ie., D*(@) = D*®)@rC and D*®) = D*(w)/<c>.
Any morphism ¢ : w — @’ in 7(K) gives rise to a well defined morphism of R-
analytic spaces ‘o : D*®) 5 p*=) (for D of sufficiently small radius).

(ii) Let D be the log pro-F-analytic space "{iLn"D(O;p). As in (i), one can
construct for each w € TI(K¢) an “étale universal coverings” D(®) of DI°8. Namely,

let D = D(0,p) be of sufficiently small radius p such that w is convergent at D¢
and invertible at D§&. Then w induces a map

t
D% = [0,p) x S' = C°8 =R, x S : (t,a) — <t7(ta)|,alzgt3> ,
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where v = Z, and we define a topological space D(®) by the cartesian diagram

(Clog - (ClOg

]

D= —~ D

A point of D(®) is a pair ((t,a), (s,b)) € DSE x Clo8 with ¢|y(ta)| = s and alzgzg‘
e’ (recall that C'°¢ = R, x iR), and D(®) defines a pro-topological space D(®). A
morphism ¢ : @ — @' in [I(K¢) gives rise to a morphism o : D(®) — D) ag
follows. If ¢ is a S-morphism of first type, then *p is defined by the map
D) — D) ((t,a), (5,b)) = ((t, @), (sePED) b+ Tm(B(ta))i)) -
If F = R and ¢ is a S-morphism of second type, then *p is defined by the map
D) = D) ((t,a), (5,b)) = ((t,3), (se" D), —b — Tm(B(ta))i)) .
In this way we get a pro-topological II(K¢)-space D : @ D(®). Notice that the
maps D*(®) — D) . (2,b) — ((|z], ‘zl) (eRe®) Tm(b)i)) define an open immersion
of pro-topological IT1(Xc)-spaces D* — Dlog,
(iii) Each fine vertical log germ of an F-analytic space (Y, X) over (IF,0) defines
a pro-F-analytic II(K¢)-space Y (X)z7 : w — Y(X)%m) =Y(X), XD~ D*(w) and a
pro-topological TI(K¢)-space Y (X))l : @ = YV (X)(®) = V(X)'8 x 0 D)

Examples 4.2.2. (i) Given an integer r > 1, we set ptxo = (ptKﬁ)h and ptie =
(ptxo)". Notice that the monoids of both pty. and ptxe (resp. ptico and ptie)
coincide. Each object @ € (K¢ ,.) defines a ﬂomeomorphism ptre —S* which
takes a point of pt1Og

h(w). (That it is a homeomorphlsm follows from the fact that h(a) 2 ra7 for all

a € C* and h(u) =1 for all u € K&, with u(0) = 1.) We define a space pt( =) by
the cartesian diagram

that corresponds to a homomorphism h : M ffo — St to

iR b—e IS
Ptie — Ptis

A point of pt(m;) is a pair (h,b) € ptlog X iR with h(w) = e’. Each morphism

p:w— @ in H(KC ,) gives rise to a morphism ‘¢ : pt( RN pt( o as follows.

If ¢ is a B-morphism of first type, then ‘@(h,b) = (h,b+ Im(ﬁ(O))z) IfF=R
and ¢ is a S-morphism of second type, then ‘p(h,b) = (h¢, —b—Im(5(0))i). Thus,
)

log

the correspondence w pt(w!, is a [I(Kg ,.)-space over ptll?%, denoted by ptzs,

and there is a canonical isomorphism IT(Kg T)\ptlog —>ptlog. Of course, there are

canonical isomorphisms of topological TI(Kg , ,)-spaces pt's Ke, —>ptlog (In §10,

these spaces will be endowed with non-isomorphic ringed structures ) Notice also

that there is a canonical closed immersion of II(X¢)-spaces pt}é’? — Dlog,



COMPLEX ANALYTIC VANISHING CYCLES FOR FORMAL SCHEMES 57

(ii) Let X be a fine log F-analytic space over ptxe. Then the correspondence
X180 X(%) = X pos PO = X X1 iR
C,r
is a II( K¢ ,.)-space. A point of X(®) is a pair ((z, hy),b) € ng x iR with hy(w) =
e’. Each S-morphism of first type ¢ : @ — @’ in H(K&T) gives rise to a map
X 5 X®) (2, hye),b) — (2, ha), b+ Im(B(0))i) .
IfF =R and ¢ : @w — @' is a f-morphism of second type, *¢ gives rise to a map

X&) X (@, ha),b) = ((c(@), heyy), —b — Im(B(0))i) .

As at the end of (i), there is a canonical homeomorphism H(K&T)\Xlog:Xlog.

In what follows we consider X¢ and ng as single TI(K g ,.)-spaces on which mor-
phisms of first type act trivially, and those of second type act as the complex
conjugation.

(iii) Let X be a distinguished formal scheme over K°. Recall that X is a regular
formal scheme. For an integer r > 1, let J, be the ideal of definition of X such
that, for an open subset Y C X, J,(4) consists of the element f € O() with
ordy (f) > r - ordy (w) for every irreducible component Y of the closed fiber of i,
where ordy (f) is the order of f at the generic point of Y. We denote by X, the
closed subscheme of X defined by the ideal J, and provided with the induced log
structure. It is an fs log scheme of finite type over the log scheme pt Ko and called

the r-th closed fiber of X. The analytification X = %ZT of X, is an fs log F-analytic
space over ptre. Asin (iii), one gets a II(Kg ,.)-space Xog : oo X(@) . Of course,
all these II(K¢ ,.)-spaces (for different 7’s) are canonically homeomorphic but in §10
they will be provided with an extra structure that depends on r.

Example 4.2.3. Given a K-analytic space X, the correspondence
X:we X = X@xgK®)
is G(K¢)-space and, in particular, a II(K¢)-space.

4.3. P-sheaves, P-modules and P-cosheaves. Let P be a groupoid, and let X
be a P-space. A P-sheaf of sets on X is a family of sheaves F(P) on X(P) for
P € P provided with a system of isomorphisms ¢ : (f@)~ (F(P)SFF) such
that (¥p)r = ¥r o (*4)~1(¢F) for all morphisms ¢ : P — P’ and ¢ : P’ — P".
(The same definition works of P-sheaves of rings, fields and so on.) The family
of P-sheaves of sets on X forms a category, which is denoted by Tp(X). Given
a morphism of P-spaces ¢ : ¥ — X and P-sheaves F on X and F on Y, the
correspondences P — (o)=Y (EW)) and P — (o), (F")) are P-sheaves on Y’
and X, respectively. In the following subsection we show that Tp(X) is equivalent
to the category of sheaves on a site and, in particular, that it is a topos.

If X is a one point space, then the corresponding category of P-sheaves is just the
category of covariant functors from P to that of sets (resp. rings, fields and so on).
Such an object is called a P-set (a P-ring, a P-field and so on). If W is a P-ring,
a W-module is a covariant functor that takes an object P € P to an W)-module
A and a morphism ¢ : P — P’ to a homomorphism ¢, : A(P) — AP which is
compatible with the homomorphism ¢y : W) — W) If W = Z considered as
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a trivial P-ring, such an object is called a P-module. The abelian category of W-
modules is denoted by W-Mod, and its derived category is denoted by D(W-Mod).
If W = Z, they are denoted by P-Mod and D(P-Mod), respectively.

For example, for an étale locally constant sheaf F' on D*, the correspondence
@+ F(D*®)) is a TI(K)-set and, by Remark 1.5.1, this gives rise to an equivalence
between the category of étale (resp. étale abelian) locally constant sheaves on D*
and the category of II(C)-sets (resp. II(X)-modules II(K)-Mod). For this reason
the category of II(K')-sets can be considered as a substitute of the category of étale
locally constant sheaves on a non-existent geometric object for K (like D for ).

A P-set is called single, univocal, strict or trivial if it possesses the properties
from the corresponding definitions for P-spaces. One shows in the same way that
any P-set (resp. univocal P-set) is isomorphic to a single (resp. trivial) P-set.

Remarks 4.3.1. (i) Every P-set A defines a P-sheaf Ay on each P-space X.

Namely, for P € P, Agf) is the constant sheaf on X(¥) associated to the set A(F)
with the isomorphisms ¢, (for morphisms ¢ : P — P’ in P) defined in the evident
way.

(ii) Let X be a trivial P-space. Then for every open subset U C X (resp. a
point z € X), the set of sections F(U) (resp. the stalk F,) is a P-set. Namely,
it takes each object P € P to the set F(P)(U) (resp. the stalk FQEP)) and each
morphism ¢ : P — P’ to the map g : FP)(U) = FP)(U) (resp. ISR FJ(-P/)).
We denote by F7 the sheaf on X whose set of sections over an open subset U C X
consists of families (7)) p of elements fF) e F(P)(U) with gp(fF)) = P for
all morphisms g : P — P’ in P. Notice that, for every P € P, the projection
(fPNp s fP) gives rise to an isomorphism FP= (F(P))G( ’. We will denote by
TP = T% the left exact functor that takes a P-sheaf F to the sheaf FP.

(iii) Suppose that the action of an invariant subgroupoid P’ of P on a P-space X
is free (i.e., the action of G'P) on each X(P) is free) and we are given an isomorphism
of P/P’-spaces P\X=Y. Let m denote the map X — Y. Then for any P-
sheaf A on X, m,(A) is a P-sheaf on Y, and so there is a well defined P /P’-sheaf
77" (A) = (m.(A))"". Conversely, for a P/P'-sheaf B on Y, f~'(B) is a P-sheaf on
X. Tt follows from [Gro57, §5.1] that B=x” (7~'(B)) and 7~ (x7" (A))=A. This
means that the correspondences B — 7 1(B) and A — 77 (A) are inverse to each
other and establish an equivalence between the category of P/P’-sheaves on Y and
that of P-sheaves on X.

Examples 4.3.2. (i) In the situation of Example 4.2.1(iii), every II(Kg)-set A
defines an étale locally constant sheaf Ay (x),, which is the pullback of the corre-
sponding étale locally constant sheaf on D*. Its pullback to Y (X )z is a locally con-
stant II(Kc)-sheaf Ay (x)_, and its pushforward with respect to the open immersion
Y (X)7 < Y(X)l¢# is a locally constant TI(K¢)-sheaf Ay-—mmr Xtz O the TI(Kc)-space
Y (X)le. By Remark 4.3.1(iii), the latter defines a locally constant sheaf Ay(X)lCog

on Y (X)&8. (If F = R, the latter is a (c)-sheaf on a (c)-space.)
(ii) In the situation of Example 4.2.2(ii), every II(K¢ ,.)-set A defines a II(K7)-

sheaf A7 on the TI(K;)-space X'og. If v denotes the map X8 — X S8, the latter
sheaf gives rise to the locally constant sheaf AXICog = VE(KC”")(Axbg) on ch‘,’g. (If

F = R, the latter is a (c¢)-sheaf on a (c)-space.) Notice that, if A is trivial as a
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(K¢ ,)-set, the sheaf Axgg coincides with Axgg. In general, they are different
objects.

(iii) We consider the field C as a single II(K¢)-field on which morphisms of
first type act trivially and those of second type act as the complex conjugation.
This induces the structure of a single II( K¢ )-module on C itself and the subgroups
Z(q) = (2mi)?Z (with q € Z), iR of C, and S* = {a € C*||a| = 1} of C*. As in
Remark 4.3.1(i), the corresponding II( K¢ )-sheaves on an F-analytic II( K¢)-space
X are denoted by Cy, Z(q)x, and S%. Of course, if F = C, these are just constant
sheaves associated to C. If F = R, the (c)-sheaf Cy_ on the (c)-space X¢ defines
the étale sheaf of constant analytic functions ¢x on X, introduced in §1.2. All this
is also applied to the groupoids II(K¢) and II(Kg ,.).

If W is a P-ring, its inverse image Wx on a P-space X is a P-ring on X, and
sheaves of left modules over the latter are said to be sheaves of W-modules on X,
or just W-modules on X. An object of the derived category of abelian P-sheaves
on X will be said to be a W-module, if it is provided with a homomorphism from
W to the P-ring of endomorphism ring of the object. For example, any complex of
sheaves of W-modules E" on X is a W-module in the derived category of P-sheaves.
Furthermore, any quasi-isomorphism of complexes of abelian P-sheaves E° — F"
(from the above E") provides F" with the structure of a W-module in the derived
category of abelian P-sheaves.

Examples 4.3.3. (i) The field K¢ (resp. K¢) can be considered as a strict II(K¢)-
field (resp. II(Kc)-field). Namely, for every w € II(K¢g) (resp. II(K¢)) each
element of K¢ (resp. K¢) has a unique representation in the form f(w) for f =
Yopan T € C((T)) (resp. f =), an2™ € Kc). One associates to a morphism
w — @’ of first type the automorphism f(w) — f(w@’). Furthermore, if F = R,
one sets for f as above f = > @,T" (resp. f =Y., @,2"), and one associates
to a morphism @ — @’ of second type the automorphism f(w) — f(’). In the
same way one provides the ring of integers K& (resp. Kg) and its quotients K¢,
(resp. K¢g,.), 7 > 1, with the structure of a strict II(K¢)- and TI(Kg ,.)-ring (resp.
(Kc)- and II(Kg , )-ring). Since K¢, = l%&T, K&, is also a II(K¢)-ring. Notice
that C and Z(q) are II(K¢)-submodules of K¢ as well as II(Kg ,.)-submodules of
K¢, (see Example 4.3.2(iii)).

(ii) Let W(K) (resp. W(K)) be the algebra of F-linear endomorphisms of K
(resp. K) generated by multiplications by elements of K (resp. K) and derivations
% for generators w of the maximal ideal K°° (resp. K°°). If w is a fixed generator,
each element of W(K) (resp. W(K)) has a unique representation in the form
gn@?ﬂ% ‘*‘gnfl%y:l + ... —&—gl% + go with n > 0 and ¢g; € K (resp. K). Then
W (K¢) (resp. W(K¢)) can be considered as a strict II(K¢)-ring (resp. II(K¢)-
ring). Namely, one associates to a morphism w — w’ the automorphism of W (K¢)
(resp. W(K¢)) that acts on K¢ as in (i) and takes % to %. Notice that K¢
(resp. K¢) is a W(K¢)-module (resp. W(K¢)-module).

(iii) For a generator w of K°° (resp. K°°), let 0 denote the derivation w%
on K (resp. K). Then 05(w’) = jw? for all j > 0 and 6 = (1 + 5“’7(&))617/
for a = % In particular, §, preserves the subring K° (resp. K°) and all of its
ideals. We denote by W(K°) (resp. W(K®)) the K°-subalgebra of W (K) (resp.
the KC°-subalgebra of W(K)) generated by all of the operators d,. This algebra is
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isomorphic to the algebra of noncommutative polynomials over K° (resp. K°) in
one variable 0, and the relations 0, - g — g 0 = 05 (g) for g € K° (resp. K°).
The subalgebra W(Kg) of W(Kc¢) (resp. W(Kg) of W(K¢)) is preserved by the
automorphisms induced by morphisms in II(K¢) (resp. II(K¢)), and so it can be
considered as a strict II(K¢)-ring (resp. II(K¢)-ring). Notice that K& (resp. Kg)
is a W(KQ)-module (resp. W (Kg)-module).

(iv) For r > 1, let W(K?) (resp. W(K?2)) be the quotient of W (K°) (resp.
W(K°)) by the ideal generated by (K°°)" (resp. (K°°)"). This algebra is isomor-
phic to the algebra of noncommutative polynomials over K; (resp. K2) in one
variable 0, and the relation 0, - @ — @ - 6 = @. If r = 1, the algebra Wxo is
in fact commutative, and all of the elements §, are equal. As in (iii), one pro-
vides W (K¢ ,.) (resp. W(Kg ,.)) with the structure of a strict II(K¢g ,.)-ring (resp.
(K&, )-ring). Since Kg, = K¢, ., one has W(Kg,) = W(E%T) Notice that
Kg, (resp. Kg,) is a W(KE:,T)Qmodule (resp. W(Kg ,.)-module). Notice also
that any W(Kg,)-module (resp. W(Kg ,)-module) can be also considered as a
W (K&)-module (resp. W (Kg-module).

Recall that a precosheaf of sets on a topological space X is a covariant functor
U +— Y(U) from the category of open subsets of X to that of sets. A precosheaf
is called a cosheaf if T(f) = @ and, for any open covering Y = {U,;}ics of an
open subset U C X, one has T(U)=Y(U), where YT (U) is the set of equivalence
classes on [, ; T(U;) with respect to the equivalence relation induced by the two
canonical maps to it from the set [, ;; Y(U;NU;). For example, given a continuous
map of locally connected topological spaces ¢ : Y — X, the correspondence U —
7o(p~1(U)) is a cosheaf of sets.

A P-cosheaf of sets on a P-space X is a family of cosheaves T(¥) on X(P) for
P e P provided with a compatible system of bijections Y(P) () =1 (U))=TP)(U)
for all morphisms ¢ : P — P’ and all open subsets U ¢ X(P). Given a P-cosheaf
YT on X, for any P-sheaf F' on X the correspondence U + FT(U) that takes an
open subset U € X(P) to the set of maps Y (U) — FF)(U) is a P-sheaf on X,
denoted by FT.

Example 4.3.4. For a fine log F-analytic space X over ptke, let 7 and 7 denote
the maps ng — X¢ and Xbs — X¢, respectively. The correspondence U +—»
mo(F7H(U)) is a (K¢, )-cosheaf on the strict II(K7)-space X¢, denoted by 7o, x-
If Ais a II(Kg ,.)-module, there is a canonical isomorphism of (K& ,.)-modules

Aio(’:x —Tx(Axrz). More generally, for any locally constant abelian IT(K¢, ,.)-sheaf F¥
on X, there is a canonical isomorphism of II(Kg ,.)-modules FT0-X =7, (T L(F)).
In §5, the cosheaf Ty, x will be described for a class of log F-analytic spaces in terms

of their logarithmic structure.

Remark 4.3.5. Suppose F = R. Let X be an R-analytic space, and let L be an
II(K)-sheaf on the C-analytic II(K)-space X¢. Then for each w € II(K) the sheaf

L(®) together with the automorphism ¢(®) which is compatible with the complex
conjugation on X¢, gives rise to an étale sheaf L™ on X with L) ’Xc = L=,
and the correspondence @ — L(®) defines an étale (K )-sheaf on X. For example,
if X = FO, this implies that every II(K)-set A defines a m(K)-set A with A(®) =
(AN ) for @ € m(K).
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4.4. The category Tp(X) as a topos. Let X(P) denote a pair consisting of
a groupoid P and a P-space X. If P is the trivial groupoid, then a P-space is
just a topological space. The pairs X(P) form a category in which a morphism
@ X'(P') = X(P) consists of a functor v, : P’ — P and a functor morphism
¢ : X" - X owv,. The latter is a compatible family of continuous maps pp/ :
X'P) 5 XWeP') for all P’ € P'. If P’ is a subcategory of P and v, is the
canonical embedding, such a morphism is said to be a P’-morphism.

Let Et(X(P)) denote the category of P-morphisms U(P) — X (P) such that all
of the underlying maps U"") — X) are local homeomorphisms. We denote by
X(P)e the Grothendieck topology on Et(X (P)) generated by the pretopology for
which the set of coverings of (U(P) — X (P)) € Et(X(P)) consists of the families

(U:(P) L UP) s with U, £i.p(UT) = UP) for all P € P, and we denote by
X (P)é& the category of sheaves on X (P)eg; (the étale topos of X (P)). For example,
X is the category of sheaves on the topological space X.

For a P space, we denote by X(P) the topological space Hpep XP) " Every
P-sheaf F can be considered as a sheaf on X(P). On the other hand, if (U(P) —
X(P)) € Et(X(P)), then (UP) — X)) € Et(X™)) and a covering in Et(X(P))
gives rise to a covering in Et(X (P)). This means that there is a morphism of sites
b: XD = X(P)a.

Proposition 4.4.1. The inverse image functor for the morphism of sites b :
XC,(ZD) — X (P)es gives rise to an equivalence of categories X (P)eg—Tp(X).

Proof. Step 1. For P € P and an open subset U ¢ X(") we introduce as follows
a P-space U. It takes P’ € P to UF) = [[!g(U), where the disjoint union is
taken over all morphisms g : P’ — P. For a morphism h : P” — P’ in P. For a
morphism % : P” — P’ in P, the induced map *h : XF) — XP") takes tg(U) to
th(tg(U)) = *(gh)(U) and, therefore, it induces a map U — UF") ie., Uisa P-
space. The identity morphism P — P defines a map U — U®) which possesses the
following universal property: any continuous map U — V to a P-space V extends
in a unique way to a morphism ﬁ(’P) — V(P). Notice that, by the construction,
the induced morphism U(P) — X (P) is a morphism in the category Et(X (P)).

Step 2. For a sheaf F on X (P) and an open subset U ¢ X (") for P € P, we set
F(P)(U) = F(U(P)). By universality of U(P), the sheaf (b*]—')’X(P) is associated
to the presheaf U — F(P)(U). We claim that F(")=(b*F)|  p,. Indeed, for this
it suffices to verify that, given an open covering {U; };cr of U, one has

FO U)=Ker([[FP(U:) 3 [[FPU:inTy))
i 0.
But this follows from the easy facts that {U;(P)}sc; is a covering of U(P) in X (P)s
and that (U; NU;)") = T 0 TP in TP for all 4,5 € I and P € P.

Step 3. We claim that the correspondence P — FF) is a P-sheaf on X. (It
will be denoted by F.) Indeed, for a morphism g : P/ — P and an open subset
U c X®), the composition of the map (‘)" : tg(U)=U with the map U — U is
induced by a morphism (@)(P)ST}(P) We get a map

FP(tgU) = F((FgU)(P)=F(U(P)) = FP(U) .
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This defines an isomorphism of sheaves gr : (Yg) "' (F(P))=F() and the isomor-
phisms defined in this way possess the required properties.

Step 4. Let F be a P-sheaf on X. For (V(P) — X(P)) € Et(X(P)) one
has b, F(V(P)) = F(V(P). An element of the latter is a collection of sections
fp € FP)Y (V) for P € P. We define a sheaf F on X (P)¢ by

F(V(P)) ={(fr)rer € F(V(P))|gp(fp/) =fpforalg: P — P inP}.

We claim that F=SF. Indeed, if U is an open subset of X (") for some P € P, we
have F(P)(U) = F(U(P)). An element of the latter is a collection of sections fp/ €
F(P/)(INJ(P/)) for P’ € P with the property that hr(fp+) = fp: for all morphisms
h:P"” — P’ in P. Since UF") =[] *g(U), where the disjoint union is taken over all
morphisms g : P* — P, the section fp: is a collection of elements fp 4 € F(P,)(th)
for g € Hom(P’, P). The above condition implies that hr(fpr gn) = fpr 4 for all
morphisms h : P” — P’ in P. This implies that the sections fp, are completely

determined by the element fp1a, € F(U) and, therefore, F(U(P)) = F(U).

Step 5. For F € X(P)e, one has FF. Indeed, each object of Et(X(P)) can

be covered by objects of the form Tj’(P) for an open subset U ¢ XF) with P € P,
and we have .
FUP) =FOU) = FUP)) . 0
In what folows, Proposition 4.4.1 is used in order to apply usual sheaf construc-
tions to P-sheaves.
Suppose we are given a P-morphism X'(P) — X (P). It gives rise to a commu-
tative diagram of morphisms of sites

X'(P)ee ——= X (P)es

I
1(P) » P
XiP e XD
Furthermore, let W be a P-ring. For an W-modules F on X', let Rp,(F) be the
higher direct image of F' in the derived category of W-modules on X.

Corollary 4.4.2. In the above situation, for any W-module F on X' there is a
canonical isomorphism in the derived category of abelian sheaves on X (P)

b (Rp, F)=Rp.(bV*F) .
Proof. Tt suffices to verify that b*(Rp,F)—=R%p.(b'*F) for all ¢ > 0. If ¢ =0, for
every open subset U € X()| P € P, one has
(. F)(U) = 5. F(U(P)) = F(X' xx U)(P))
Since X' xx U = 17’, where U’ = X'(P) x () U, the latter coincides with
F(U'(P)) = (" F)(U') = (96" F)(U) .

Thus, it remains to show that every W-module F' on X’ can be embedded in a
W-module F’ on X’ with R7p,(F’) = 0 and Ri¢,.(b*F') = 0 for all ¢ > 1. For
this we notice that the family of morphisms zg — X'(P)& for points z € X'(P)
is a conservative family of points of the topos X’(P)g. This means that, if X'
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is the space X’(P) provided with the discrete topology and k is the morphism
X — X'(P)eg, then for any sheaf F on X'(P)s the canonical morphism of sheaves
F — k.k*(F) is injective. By [SGA4, Exp. XVII, 6.4.2], for abelian F' the sheaf
ko k*(F) on X'(P)e is flabby. One has k = bol, where [ is the canonical map
X' — X', and it is easy to see that there is a canonical isomorphism of sheaves
b* (kok*(F))=10* (b F). This implies that the sheaf b™*(k.k*(F)) is flabby, and
the required fact follows. ([
Example 4.4.3. In the situation of Example 4.2.2(ii), the constant sheaf (K¢ ,.)

is a sheaf of W(Kg ,)-modules on X'o&. Corollary 4.4.2 implies that
RT.(K¢ )z = BT+(Fx) O Ke,

is a complex of sheaves of W (K¢, ,)-modules on the II(Kg ,)-space Xc, where 7

Xlog

denotes the map X8 — Xs. In particular, RI7,(F
W (K¢ ,)-modules on Xc.

~ioz) @F K&, are sheaves of

If X is a trivial P-space, the left exact functor Z” : Tp(X) — T(X) gives rise
to an exact functor
RI” : DY (X(P)) » DT (X) .
Since for every P € P the projection (f))p — f() gives rise to an isomorphism
FP’;?(F(P))G(P), it also induces an isomorphism of functors RZPSRTE".
The following statement will be applied in the situation of Example 4.2.2(ii) to
the maps 7 : Xlog 25 Xlog T, X

Proposition 4.4.4. Suppose that the action of a groupoid P on a P-space Y is
free, and we are given an isomorphism P\Y =Y and a continuous map 7:Y — X
with a trivial P-space X. Let T denote the induced map Y — X. Then for every
F € D*(Y), there is a canonical isomorphism

R7.(F)SRIP(R7.(F)) ,
where Fis the pullback of F* onY .

Recall that the quotient P-space P\Y is univocal and, therefore, it is isomorphic
to a trivial P-space.

Proof. One has T = 7 o v, where v is the induced map ¥ — Y. Since for ev-
ery injective P-sheaf A on Y the P-sheaf v,(A) is also injective, it follows that
F'=RI[(Rv.(F)) and, therefore, RT.(F")=R7.(RIL (Rv.(F))). We now notice
that there is an isomorphism of functors 7, o0 ZF =Z% o 7.. Since the functor Z}’
takes injective P-sheaves to flabby sheaves (see [Gro57, Proposition 5.1.3]), it fol-
lows that there is an isomorphism of functors R7, o RI;E:RI? o R7,, and we get
the required isomorphism. O

4.5. Distinguished W (R¢)-modules. Let R be either K? for 1 <r < oo, or K°,
or K°. In the latter two cases we set 7 = co. We denote by R°° the maximal ideal
of R (it coincides with K°° - R, if r < co or R = K°, and with K°° - R if R = K°),
and we set Rc = R®rC. As above, the objects related to Rc depend also from the
original ring R. Let n(R), II(R) and II(R¢) denote the corresponding groupoids
(where m(K°) = m(K), II(K°) = II(K) and so on). We consider R and W (R) as
strict w(R)-rings, and Rc and W (R¢) as strict II(Rc)-rings. (Recall that, for every
w € II(Rc¢), each element of R¢ is represented in the form f(w) for f € C[[T1]].)
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Notice that every II(R¢)-ring, II( Rc)-module and so on gives rise to a II(R)-ring,
II(R)-module and so on. We mention II(R) explicitly only when it is necessary.
Notice also that R¢ is a left W(R¢)-module, and the field C is a II(R¢)-subfield
of the II(R¢)-rings Rc and W(R¢). We use the notations ¢(®), w € II(R¢), and
™) @ € TI(R), for the morphisms in II(Rc) and II(R), defined in the same way
as for the categories II(K¢) and II(K), respectively.

Let X be an F-analytic space. We consider X¢ as a single II(R¢)-space on
which morphisms from II(R¢) of first type act trivially and of second type act as
the complex conjugation, and denote by p the canonical map X¢ — X. For a field
k, a kTI(Rg)-module on X¢ is a covariant functor @ + V(@) from TI(Rc) to the
category of sheaves of k-vector spaces. The notion of a kII( Rc)-module is naturally
extended to the derived category of sheaves of k-vector spaces.

If F =R and D is an Rc-module on X¢, an Rc-semilinear automorphism of
D is a II(Rc¢)-automorphism of D with the property that 9(®) (az) = @)@ (z)
for all w € II(Rc), a € Rc and local sections = of D(¥). For example, given an
RII(R¢)-module V on X¢, the Rec-module ¥V ®r Rc is provided with the Re-
semilinear automorphism defined by ¥(®)(z ® f(w)) = = ® f(w). The notion
of an Rg-semilinear automorphism is naturally extended to Rc-modules in the
derived category of sheaves of C-vector spaces on X, and the latter construction
is extended to RII(R¢)-modules in the same derived category.

For a left W(Rc)-module D on Xc, a number A € R, an element @ € II(R¢),
and an open subset U C X¢, we set

D (U) = {& € D™ (U)|(6 — A)"(2) = 0 for some n > 1} .

If A and w are fixed, the correspondence U — Dg\w)(U) is a sheaf of C-vector
spaces on X¢, denoted by Dg\w). If X\ is fixed the correspondence w —» Dg\w) is a
II(Rc)-module on X¢, denoted by D). For a subset I C R, we set D = ®xerDa.

We also denote by D the II(Rc)-module D/(R°° - D).

Definition 4.5.1. A distinguished W (Rc)-module on X¢ is a left W(R¢)-module
D on X¢ which, in the case F = R, is a provided with an Rc-semilinear automor-
phism of order two ¥, and which possesses the following properties:
(1) for every w € II(R¢), D) is locally free of finite rank over Rc;
(2) the canonical homomorphism D — D induces an isomorphism of II(Rc)-
modules DQQ[O,U:ﬁ;
(3) the actions of ¢(®) and 6, on D) are related by the equality o(®) =
exp(—27idy ).

If X = FO we call the above object just a distinguished W (Rc)-module. For
example, R¢ is a distinguished W (R¢)-module with the endomorphisms 9@
f(@) = f(w) (for F = R). If X is arbitrary, then for any distinguished W (R¢)-
module D on X¢ and any connected open subset U C X, the correspondence w —
D) (p=1(U)) is a distinguished W (Rc)-module. The category of distinguished
W (Rc)-modules on X¢ is denoted by Xc (W (Rc))-Dist, or just W(Rc)-Dist, if
X =TFO.

Remarks 4.5.2. Let D be a distinguished W (R¢)-module on Xc¢.
(i) Tt follows from (2) that, for any open subset U C X¢, each element x €

D(®)(U) has a unique presentation in the form Y on>0 Tn@" with z, € Dgg[o’l) 0).
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If r < 0o, the sum is finite (and one should write @ instead of w). (If R = K°, the
sum is convergent, i.e., there exists € > 0 with )~ ||z,|[e" < oo, where || || is a

fixed norm on the finitely dimensional C-vector space DS?)[OJ)(U).) It follows also

that if = € Df\w)\{O} for some A € R, then 2 € @"D7)(U) for some p € I and
n > 0 (in particular, A = g+ n).

(ii) For any entire analytic function f = ano a, 2" on C, there are well defined
operators f(0) : D) — D). The operator exp(—2midy) in (3) is of this form.

It takes the element x from (i) to the sum > -, exp(—2midy)(zn)w".

(ili) For any 1 < ¢/ < r, D' = D/(R°°)" D is an distinguished W (Rl )-module
on X¢, where R' = K7,.

For a field k, a kII(Rc)-quasi-unipotent module on X¢ is a kII(Rg)-module
Y on X¢ such that, for every w € II(Rc) and every connected open subset
U C Xcg, V®)(U) is of finite dimension over k& and the action of o(®) on it is
quasi-unipotent. The category of kII( R¢)-quasi-unipotent modules on X¢ will be
denoted by Xc(kII(Rc))-Qun. If X = FO, it is denoted by kII( Rc)-Qun. It follows
from Definition 4.5.1 that there is a well defined functor

Xc(W(Rc))-Dist — Xc(FII(R))-Qun : D+ D=1

where D=1 is the II(R)-submodule @ — {z € 15‘19(“')(1‘) =z}, if F = R, and
DY=1 =D, if F=C.

Proposition 4.5.3. (i) The above functor is an equivalence of categories;
(i) there is a functor Xc(FII(Rc))-Qun — Xc(W(R¢))-Dist : V — V Qr Rc
which is left adjoint and inverse to that from (i).

Recall that the exponential map N +— exp(IV) on the set of nilpotent operators
on a finitely dimensional vector space over a field of characteristic zero gives rise
to a bijection with the set of unipotent operators, and the inverse map is given
by the logarithmic map U +— log(U). We extend the latter to the set of quasi-
unipotent operators by log(E) = L log(E™), where n is a positive integer for which
the operator E™ is unipotent. Suppose now that the ground field is C. Given a
quasi-unipotent operator F on a C-vector space V, let F = E, - E,, be its multi-
plicative Jordan decomposition, i.e., a unique decomposition of £ as a product of
commuting semisimple and unipotent operators F; and F,, respectively. In some
basis 21, ..., 2, of V, one has Eg(z;) = e~ 2"iz; for \; € QN 0, 1), and we define
an operator Log(E;) by Log(Es)(z,;) = —2miA;x; for all 1 < j < n. This operator
does not depend on the choice of the basis, and we set Log(E) = Log(FEs) + log(E).
Notice that the latter is the additive Jordan decomposition of the operator Log(E),
and one has E = exp(Log(E)). If E is an operator whose eigenvalues are imagi-
nary numbers —2mi\ with A € QN [0,1) and E = E; + E,, is its additive Jordan
decomposition, then E; = Log(exp(FEs)) and, therefore, E = Log(exp(E)).

Proof of Proposition 4.5.8. For simplicity, we assume that X = F°. For V ¢
FII(Rc)-Qun, the tensor product V ®p Rc : w — V(®) @r R is provided with the
structure of a W(R¢)-module as follows. First of all, if ¢ : w — @’ is a morphism
in II(R¢), then the corresponding isomorphism V@ @ Re = V&) @ R is
induced by the isomorphisms @y : V@ 5 V(&) and ¢Rr : Rc=Rc. Furthermore,
each nonzero element z € V() @g R is represented in a unique way in the form
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> >0 Tnw@w" for z, € Vc(w) = V(@ @p C (as in Remark 4.5.2(ii); if 7 < oo, one
should write @ instead of w). Then

1
n _ - (=) n
0w E T 0 E ( 27T_Z_Log(a )N zn) + mcn) w" .

n>0 n>0

If F = R, the Rc-semilinear Rc-module automorphism ¢ of V @r Rc is defined
by 9(%) (2 ® f(w)) = * @ f(w). This provides the tensor product D = V @ Rc
with the structure of a distinguished W (R¢)-module with V @ C—=D;(py—D and

V:)/D?(:Dl):f)ﬂ:l. By the way, I(D) = {\;}1<j<n C [0,1) for pairwise distinct

eigenvalues {exp(—2mi\;)}1<j<n of ¢(®). That the functor V + V @ Rc is fully
faithful follows from Remark 4.5.2(i). In order to verify that this functor is left
adjoint to the functor D — D=1 it suffices to verify that, in the case F = R,

the subspace D((me)[o 1 is invariant under the C-semilinear operator ¥(¥) for any

distinguished W (R¢)-module D and any w € II(R¢). For this we notice that, by
the property (2), there is an isomorphism of TI(Rc)-modules Dqno,1)—D, which

(=)

have finite dimension over C and, therefore, the property (3) implies that D

QN[0,1)
is the kernel of a sufficient large power of the operator [, ;(0(®) — exp(—2mi))),
where I = {A € QN |0, 1)|D)\ # 0}. This gives the required fact. O

Suppose now that F = R, and consider R¢ as a II(R)-module and W(R¢) as a
II(R)-ring. Restricting the above objects to the full subcategory II(R) of TI(Rc¢),
we get the notions of a distinguished W (Rg)-module (with the category II(R)
instead of II(R¢)) and of a RII(R)-quasi-unipotent module on X, and the similar
equivalence of the corresponding categories X¢ (W (Rc¢))-Dist— X (RII(R))-Qun.
We are going to describe the former category in terms of objects on the R-analytic
space X.

Recall that we consider R and W(R) as single w(R)-modules. Recall also that
in §1.2 we introduced the sheaf of constant analytic functions ¢x provided with
an automorphism of order two 1 with c?fl = Rx. We consider c¢x as a trivial
m(R)-field and the tensor products R ®gr cx and W(R) ®r cx as single m(R)-rings
in the category of abelian sheaves on the underlying topological space |X| of X.
An R ®r cx-semilinear endomorphism of an R ®g cx-module D on X is an 7(R)-
endomorphism ¢ of D such that, for every @ € m(R), one has 9(¥)((a ® a) - x) =
(a ®9(a)) - 9% (x) for a € R and local sections « of cx and x of D.

Definition 4.5.4. A distinguished W (R)-module on X is aleft W (R)®gr cx-module
D which is a provided with an R ®g ¢x-semilinear automorphism of order two 4,
and which possesses the following properties:
(1) for w € m(R), D) is locally free of finite rank over R ®g cx;
(2) the canonical homomorphism D — D induces an isomorphism of TI(R)-
modules DQm[O,l)/—vﬂS;
(3) 9% commutes with the operator cos(27d,) and anti-commutes with the
operator sin(27d,) on D),

For example, if X = R, then cxy = R and, therefore, 9 is just an R-module
automorphism of order two.
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Let D a distinguished W (R¢)-module on X¢ (for the category II(R)). For every
w € TI(R), the action of ¢®) on the sheaf D(¥) is compatible with its action on Xc.

It follows that D(®) defines an étale abelian sheaf f(w) on X, whose restriction to

Xc is D). Tt is easy to see that the restriction of D™ to | X| is a distinguished
W (R)-module on X. In this way we get a functor

Xc(W(Rg))-Dist — X (W (R))-Dist

where the right hand side is the category of distinguished W (R)-modules on X. If
X = RO it will be denoted by W (R)-Dist.

Proposition 4.5.5. The above functor is an equivalence of categories.

Proof. For a distinguished W (R)-module £ on X and w € w(R), we set
g((jw) _ p—l(g(w)) ®p—1(Cx) CXC .

The correspondence w —» 5((3w) is a m(R)-module £g, which is locally free of finite
rank over Rc. We claim that Ec admits a natural structure of a distinguished
W (Rc)-module. Indeed, the ring W(R¢) clearly acts on each 5((317). In order to
provide £c with an action of the groupoid TI(R), it suffices to define an action
of o(®) on each 58”7) and an action of ¢(*) on Séw) compatible with an action of
the complex conjugation on Xc. The former is defined by the formula o(®) =
exp(—27idy ), and the latter is induced by the corresponding action of the complex
conjugation on the sheaf Cx,. Thus, Ec is a II(R)-module and, in fact, a W(Rc¢)-
module. Finally, the R ®g c¢x-semilinear automorphism ¢ on £ and the complex
conjugation on the field C induce an Rg-semilinear automorphism 9 of E¢. For
w € m(R), %) commutes with o(®) since the latter is equal to exp(—2midy) =
c0s(2m0) — isin(2704), and it commutes with ¢(®) because the actions of ¥ and ¢
commute on Cx,. g

Corollary 4.5.6. In the above situation, there is a equivalence of categories
Xc(RII(R))-Qun—=X (W (R))-Dist . (]

Example 4.5.7. Applying Corollary 4.5.6 to X = R", we get an equivalence of
categories
RII(R))-Qun=W (R)-Dist .
An explicit construction of this functor and of its inverse is as follows. Given an
RII(R)-quasi-unipotent module V', the corresponding W (R)-distinguished module
is
(V@ R )c:l . (w) (®=1
R Rc vl (V ®r Rc)
with ¢(®) acting naturally on V(®) and as the complex congugation on Rc. The
actions of 0 on V(@) @r Rc is defined in the proof of Proposition 4.5.3 and that
of ¥(%) is induced by the complex conjugation on Rc. Since (%) commutes with
@) and (™) = exp(—27midy), it follows that ¥(®) commutes with cos(27,) and
anti-commutes with sin(27d,), and its action on V(®) @gr Rc induces an action on
its ¢(®)-invariant subspace. Conversely, given a distinguished W (R)-module D, the
corresponding RII(R)-quasi-unipotent module is

(D ®r C)*=!: w s (D @g C)" 7= = (D@)?=1 g j(D)) ™ =-1
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with 9(®) acting naturally on D(®) and as the complex conjugation on C. The
actions of ¢(®) and ¢(®) on D(®) @i C are defined as the complex conjugation on
C and as exp(—2mid ), respectively. The automorphism 9(®) evidently commutes
with ¢(®) and, by the condition (3) on (%) it commutes with o(®). Tt follows that
the action of II(R) on D®) ®g C induces an action on the ¥(*)-invariant subspace
of D) ®r C. Notice that the above RII(R)-quasi-unipotent module is canonically
isomorphic to w — (D((me)[al))ﬂ(m:1 ® z'(DSTT)[O,l))ﬁ(W):_l, and the action of ¢(®)
is the identity (resp. minus identity) on the first (resp. second) summand.

Remark 4.5.8. Let F' be a subfield of R (e.g., FF = R or Q), and let V be
an FTI(Rc)-quasi-unipotent module. Then for every w € TI(Rg), log(c(™)) is
a nilpotent F-linear operator on V(®). By the above, the tensor product D =
V ®@F Rc has the structure of a distinguished W (R¢g)-module. In particular, the
operator d, acts on the C-vector space V((:w) = V(® @p C, and one has d, =
—-Log(o(®)). It follows that Néw) = —5L-log(c(®)), where N((jw) denotes the
nilpotent part from the additive Jordan decomposition of the operator d,. Since
log(a(w)) is defined on V(@) N((:w) is induced by a nilpotent F-linear operator
N@ . yv@) — V@) (-1) = V(@ gy Z(—1), where Z(—1) = £-Z C C. We
consider Z(—1) as a II(R¢)-submodule of C, and this provides V(-1) : w
V(@) (1) with the structure of a TI( Rg)-module. We claim that, for any morphism
¢ :w — w inIl(Rc), one has oy (_1) o N@) = N 6 o, Indeed, it suffices
to show that ¢y o N((jw) = Néw/) ° ¢y, and the latter follows from the equality
©p 0085 = 0z 0 pp. Thus, the operators N(®) define a nilpotent morphism of
FTI(R¢)-quasi-unipotent modules N : V' — V(—1).

5. DISTINGUISHED LOG COMPLEX ANALYTIC SPACES

5.1. Definition and properties. In this section, R is either K; for 1 < r < oo,
or K° = O (in the latter case we set r = 00). The ring R gives rise to a log space
ptr, which is the log point ptxo, if r < oo, and the log germ (I, 0), if r = co. We
also consider both log spaces as one point spaces provided with the log structure
defined by the homomorphism of monoids Mr = R\{0} — R.

Given integers m,eq,...,e, > 1 and an element w € II(Rc), equal to z for
r = 00, we set

Ae, ey = RelTh, ..., Ty)/ (T ... - Tim — @) .
The monoid freely generated by the coordinate functions T7,...,T,, defines an fs

log structure on the scheme Y = Spec(Ae, ,....,,) and a log smooth morphism of log
spaces V" — ptre.

Definition 5.1.1. (i) r < co: A log F-analytic space X over ptg is said to be
distinguished if every point x € X¢ has an open neighborhood U which admits a
strict open immersion over ptg., in the log space Z = Spec(B)", where

B=A., . e [Tms1,---,Tn)/(T7 - o T), 1< p<m <o,

and the log structure on Z is generated by that of ) as above.
(ii) » = oo: A log germ (Y, X) of an F-analytic space over (IF,0) is said to be
distinguished if each point z € X¢ has an open neighborhood V' in Y that admits
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a strict open immersion over (C,0) in the log space Z = Spec(B)", where
B=A., . e Tmt1s---, 1]

such that X¢ NV is the preimage of the closed analytic subspace defined by the
equation 77 - ... T, =0 with 1 < p <m < n.

Notice that, for any point £ € X¢ one can find a strict open immersion as in
Definition 5.1.1 such that all of the coordinate functions 7; are equal to zero at x.

Examples 5.1.2. (i) Let (Y, X) be a distinguished log germ over (F,0). Given
1 < r < oo, let X, be the closed analytic subspace of Y whose intersection with
the chart V' as in Definition 5.1.1(ii) is defined by the ideal generated by 2" and
T7° - ... T,. The subspace X, provided with the induced log structure is a
distinguished log analytic space over ptxo. The support of the closed analytic
subspace X,. in Y coincides with X. Given a generator w of K°°, one can consider
X, as a distinguished log analytic space over pt e with respect to the isomorphism
K°SK° : 2z — w. Notice that any distinguished log analytic space over ptyo is
étale locally of the form X, for any generator w of K°° and a distinguished log
germ (Y, X) over (F,0).

(ii) Let X be a distinguished formal scheme over K°. Then for every 1 < r < oo,
%ZT is a distinguished log F-analytic space over ptxe. Indeed, we may assume that
F = C. Let x be a closed point of X, and let /?/y — X be an étale neighborhood
of x such that X is a distinguished scheme over K° and ) the union of some of the
irreducible components of X;. Let 7, be the coherent sheaf of ideals on X such that,
for every open subset U C X, J.(U) is generated by the elements f € O(U) with
ordz(f) > r-ordz(z) for each irreducible component Z of Y N Y, where ordz(f) is
the order of f at the generic point of Z. If ), the closed subscheme of X defined by
the ideal 7, and provided with the induced log structure, then )" is a distinguished
log analytic space over ptxe. The above morphism gives rise to an étale morphism

Y- xh

s.» Which induces an isomorphism from an open neighborhood of a point
x’ € Y over x in Y and an open neighborhood of x in %ZT.
(iii) Let X be a distinguished log F-analytic space over R. Given 1 < ' < r, let

X, denote the closed analytic subspace which is étale locally defined by the ideal

generated by ' and T{/el -...- T, " on each chart V as in Definition 5.1.1. Then
X, is a distinguished log F-analytic space over ptgo , and canonical morphism
X,» — X is an exact closed immersion of log analytic spaces.

In this section we study distinguished log F-analytic spaces over ptg from Def-
inition 5.1.1(i) and log germs over (FF,0) from Definition 5.1.1(ii). The results
obtained have similar formulation but slighly different interpretation. In order to
consider them simulteneously, in the case r = oo we refer to the latter germ by X
essentially viewing it as a topological space provided with the sheaf of local rings
Ox = i_l((’)y(x)) and the log structure My = i_l(My(X)) — Ox, where 17 is the
map X — Y(X). Other sheaves on X considered here are always induced from
Y (X) (as the sheaves Ox and Mx). We also denote by X2 and X108 the preimage
of X in Y(X)lé.g and Y (X)'°g, respectively. Notice that, for every 1 < r < oo, there
is a canonical exact closed immersion of log spaces X,, — X, which induces a home-
omorphism between the underlying topological spaces as well as homeomorphisms

X B IXSE and X5 Xog.
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Thus, we are back to the general situation when 1 < r < co. We study the
maps of II(Rc)-spaces v : X108 = X108 x ptll.t?g — ng, T ng — Xc and
T=71ov: Xl Xc. We also denote by 7(%), @ € TI(R¢), the restriction of 7
to X (@),

Lemma 5.1.3. Fach point x € X¢ has a fundamental system of open neighbor-
hoods U such that there are compatible strong deformation retractions of U to x, of
= YU) to 7= Y(x), and of T (U) to 7 (z).

Proof. By the remark in Example 5.1.2(i), we may assume that we are given a
distinguished log germ (Y, X) over (C,0), and it suffices to show that each point
x € X has a fundamental system of open neighborhoods U of z in Y which preserves
the intersection U N X and lifts to strong deformation retractions of 7=*(U) to
771(x) and of 771(U) to 7~ !(x), where 7 and 7 are the maps Y'°¢ — Y and
Ylos — Y, respectively. Thus, we may assume that Y is the affine space C"
provided with the log structure generated by the coordinate functions 17, ..., T,
1 < m < n, as in Definition 5.1.1(ii), X is the union of p hyperplanes defined by
the equations 7; = 0 for 1 <4 < pu < m, and z is the zero point in C".

There is a homeomorphism (R x (§1)™) x C"~™=(C")"°¢, and the projection
from the latter to C™ is as follows

(C™)°e — C" : ((r,a),c) — (ra,c) ,

where r = (r1,...,7m), a = (a1,...,am), and ¢ = (¢m41,- .-, Cn). One also has

(C)oe = {(((r,a),0),b) € (C")'® x iR| [[ af’ =€} .
j=1
If U is an open neighborhood of zero in C™ with the property that, for each point
y € U, the interval {ty|t € [0,1]} lies in U, then the map ®y : U x [0,1] — U
that takes a pair (y,t) to the point (1 — t)y is a strong deformation retraction of
U to the zero point 0, and this map ® lifts to deformation retractions of 7=1(U)
to 771(0) : (((r,a),¢),t) = (((1 —t)r,a), (1 — t)c) and of 71 (U) to 7 1(0). Notice
also that @y preserves the intersection of U with each of the hyperplanes in X. O

Corollary 5.1.4. Let (Y, X) be a distinguished log germ over (F,0). Then for any
II(Kg)-module A and every point x € X¢, there are canonical isomorphisms

RO(Ay(x),)o—HY (7 (), A) and RW,(Ay (x), )a—H (T ' (z),A) .
Proof. By Theorem 2.5.2, the left hand sides are the inductive limits of the groups
HY(r=Y(U),A) and HY(771(U),A), and they coincide with the right hand sides
since 771(z) and 7~!(z) are strong deformation retractions of 7=1(U) and 7~ *(U),
respectively, for sufficiently small U’s. O

Corollary 5.1.5. Let Z be a closed analytic subspace of X provided with the induced
log structure with respect to which it is also distinguished over ptr. Then for any
II(Rc)-module A, there is a canonical isomorphism

R7, (Aﬁ) ’ 23}% Z* (Aﬁ) . O

Recall (see Example 4.3.4) that 7o, x denotes the II(R)-cosheaf U — 7o (7= 1(U)) =
mo(U'°8) on Xc. The purpose of the following two subsection is to describe it in
terms of the logarithmic structure on X.
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5.2. Description of the cosheaf 7T, y. Let M be the étale sheaf of abelian
groups associated to the étale sheaf of monoids Mx. It contains the sheaf O%,

and we set M% = MY /O%. For example, My is canonically isomorphic to the

constant sheaf associated to Z. Let Mﬁﬁm) denote the torsion subsheaf of M‘QXT.

Finally, we set
MX/R = COkeI‘(M!IJQT — Mg;)

)

and denote by Mﬁ?j}f the torsion subsheaf of M x /R-

Proposition 5.2.1. For every étale morphism U — X¢ with nonempty connected
U, the following is true:

(i) the group Mg%;)(U) is finite cyclic (of order ey );

(ii) given a covering of U by nonempty connected open subsets {U,;};cr, one has
ey = g.c.d.(ey,)icr;
(iii) for every étale morphism V- — U with nonempty connected V', the canonical

homomorphism ME(OT )(U) — Mg?/);;)(‘/) is injective;

(iv) there is a unique gemerator My of Mg?;;)( U) with the property that its

restriction to a sufficiently small connected open neighborhood V' of every
point of U lifts to an element m € Mx (V') such that m®v is an element of
Mp whose image in MR =7 is one.

Proof. We may assume that F = C.

Step 1. By Definition 5.1.1, every point x € X has a connected open neighbor-
hood U that admits a strict open immersion in a log space of the form from that
definition (with a fixed @ € II(R)) and such that x is its zero point. (We call such
U a special open neighborhood of z.) If P is the free monoid generated by elements
V1,...,Um, the log structure on U is defined by the chart P — O(U) : v; — T;.
Let P, denote the quotient of PY9" by the subgroup generated by the element
w =o' ... 0%, Since P* = {1}, one has P~Mx , and P/UZMX/R@, and

m
these isomorphisms go through a homomorphism P — Mx(U). In particular,

P/(tOTS)NM;C/’;;)x, where P/(wrs) is the torsion subgroup of Py,. The group P/(wrs)
is cyclic of order ey = g.c.d.(e1,...,en) generated by the image of the element

’

€ e
v=uo;""... Um,wheree .

Step 2. For any point &' € U, the induced homomorphism P/(Zom) — Mg?;;;;)m, 18

injective. Indeed, suppose that for 1 < i < m the coordinate function T; is zero at
' foronly 1 <i<vory+1<i<m,wherel <v<pu<~vy<m. If P’isthe
localization of P with respect to the elements v,y1,...,v,, then P"/P"*=M x .
The quotient P’ = P”/P"* is isomorphic to the free monoid generated by the
elements v1,...,0,,Vy41,...,Un, and the image of w in P’ is the element v =
R P -U,eyff -...-v&m . This implies the claim. This also implies the following
facts:

(1) the group Mﬁﬁj;fl, is of order g.c.d.(e1,..., €y, €y41,--.,€m), and one has

tors) ~(tors)
P//(/ ) MX/RQC ;
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(2) for any special open neighborhood V of 2’ in U at which the element

Uyt1,...,Vy are invertible, one has P//(t,om)NMg?;T;)(V) and the homo-
morphism Mg(/,é)(U) — Mx/é (V) is injective.

Step 3. The canonical homomorphism P/(twb) — M;jg)(U) is a bijection. In-

deed, for a special open subset U’ C U, as at the end of Step 2, we set G(U’) =
P'(tors) Tt suffices to show that the value of the sheaf, associated with the presheaf
G, at U coincides with G(U). Suppose we are given a covering {U;};er of U by
nonempty special open subsets. By Step 2, all of the homomorphisms G(U) —
G(U;) are injective and, if x € U,,, then G(U)=G(U,,). Let {g;}icr be a system
of elements ¢; € G(U;) with gl‘UimUj = gj‘UmUj for all 4,5 € I. We claim that for
the element g € G(U) with g|Ui = ¢,,, one has g‘Ui = g; for all i € I. Indeed,
if U;, NU; #, take a nonempty s%ecial open subset V from the intersection Then
g|v = 91'0’\/ = gi‘v and, therefore, (g’U Ji ’v = g;-
If 7 € I is arbitrary, we can find a finite sequence i1, . ..,1, = i with U; N Ulq+1 #0
for all 0 < ¢ < p—1 and, by induction on ¢, we get gy, = ¢;. It follows that the

group Mﬁ?}? (U) is cyclic of order ey and it has a unique generator my which lifts
to an element m € Mx(U) such that m®v is an element of My whose image in
MY, =Z is one.

Step 4. Let now U be a nonempty connected C-analytic space étale over X. We

call an open subset of U special if it maps isomorphically onto a special open subset
of X. We claim that the group Mg?;;;)( U) is finite cyclic, and the support of any of
its nontrivial elements coincides with U. Indeed, assume that the support Supp(g)
of a nontrivial element g € M g?;:;)(U ) is smaller than U. Let z be a from the
topological boundary of Supp(g) in U, and let U’ be a special open neighborhood
o L Steps 2 and 3 imply that the image of g in M Sj’;‘“i/
is nontrivial for every point ' € U’, i.e.,, U C Supp(g), which contradicts the
——(tors) ——(tors)

assumption. Thus, Supp(g) = U, the homomorphism My, z" (U) = My, " (U’) is
injective, and the claim follows. This easily implies the statements (i) and (iii).

Step 5. The statements (ii) and (iv) are true. Indeed, take a covering {U;}ier
of U by nonempty special open subsets. It suffices to show that

(1) the group M&%?(U) is of order ey = g.c.d.(ev, )ier;
(2) there is a unique generator my of M g?;:;)(U) whose restriction to each U,

eu;

coincides with m[j for k; =
eu

First of all, since all of the homomorphisms M ;}’}S) U)—-M gx:;) (U;) are injective,

it follows that the order of M g?;;) (U) divides ey. Furthermore, if V' is a nonempty
special open subset of U; N Uj;, the restrictions of the elements mU and m’fj to V'

coincide since the ey-th powers of them are elements whose images in M R ' SZ are

one. This means that the elements mlfj are compatible on intersections U; N U;
and, therefore, there exists a unique element my € M g?;j;)(U) of order ey with

myl,, = mU"i for all ¢ € I. This implies the required statements (1) and (2). O

U;
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For a nonempty connected open subset U C X¢, let ky be the maximal positive
integer with the property that there exists m € Mx (U) such that m*v lies in Mp,
and its image in Mﬁ—;c:)/Z is one. It is clear that ky is a divisor of ey, and if U is
sufficiently small, then ky = eyy. Furthermore, for @ € II(R¢) we set

YE(U) = {m € Mx(U)|m"" ==} .
The set Y(®)(U) is a principal homogeneous space for the group Wiy, of ky-th roots
of one (acting by multiplication). Each S-morphism ¢ : @w — @’ of first (resp.
second) type gives rise to a bijective map

TENU) = YE(U) :m/ — exp (f) m/
U

(resp. TEN(U) = T ((U)) : m' — exp (ﬂ) m'e) .
For example, the morphism ¢(®) takes each m € Y(®)(U) to the element ¥ m.
This makes the correspondence w ~ Y(¥)(U) a finite TI(Rc)-space, which is
denoted by Y(U). Finally, for an element m € Y(®)(U), we set (see Example
4.2.2(ii))
U™ (m) = {((x, hs),b) € U |hy(m) = eFr } |

Proposition 5.2.2. The correspondence m — U (m) gives rise to an isomor-

phism of finite II(Rg)-spaces T (U)=smo(Us).

Proof. Step 1. For every element m € Y(®)(U), the open and closed set U™ (m)

is nonempty. Indeed, let ((x,h,),b) € U®). Since h,(w) = e’, it follows that
b

for every m € Y(®)(U) one has h,(m) = (e*v for a ky-root of one . Moreover,

multiplication by ky-roots of one acts transitively on the set T(w)(U ). This implies

the claim. Tt follows that &y divides the number n = |mo(U(®))|.

Step 2. The number n divides kiy. Indeed, the element w gives rise to homeomor-
phisms ptlﬁi:Sl : h+— h(w) and ptgﬂ):ﬁR : (h,b) — b. The exponential map
pt%w) =iR — ptllgi = 81 : b+ e is the composition of the map iR — S' : b+ en
and the map S* — S' : a — a™. Since |mo(U(™))| = n, the induced map

U™ Y =U" xg S!

gives rise to a bijection 7o (U (®)) 7o (Y). Tt follows that |mo(Y")| = n and, therefore,
the projection Y — U8 induces a homeomorphism of each connected component
of Y onto U'°&. This implies that this projection has a section U'%8 — Y : (x, h,) >
((x, hs), f(z, hy)) for a continuous map f : U8 — S with h,(w) = f(z, he)™.
Furthermore, we can find a covering {U, };cr of U by connected open subsets such
that all ky, = ey, = |7r0(Ui1°g)|. The latter implies that the number n divides all
of the numbers ey, and, in particular, n divides eyy. Take elements m; € T@)(U;).

6U7
Then for every point = € U;, one has h,(m;)™= = &f(x,h;) for a n-th root
of one &;. Since Ul-log is connected, it does not depend on the point z. We set

eu,
m} = & 'm;™ . Then for every pair 4,j € I with U; N U; # 0, one has h,(m}) =
he(m}) for all points (z,h,) € (U; N U;)'°e. On the other hand T+ is an element

m/.

J
of M9 (U; N U;) whose n-th power is one. This implies that its restriction to each
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connected component W of U; N U; is a n-root of one ¢, i.e., m’i|W = Cm;-’W
and, therefore, h,(mj) = Chy(m}) for all points (z, h,) € W8, This implies that
¢=1,ie., m;|UmUj =m} Ui, Thus, there exists an element m € Mx (U) with

m|U_ = m/, for all i € I, and one has m™ = w. The claim follows, and it implies that

the correspondence m + U(®)(m) gives rise to a bijection Y (@) (U)o (U(#)).

Step 3. The statement of the proposition is true. Indeed, let ¢ : w — @’ be a 8-
morphism of first (resp. second) type. Then the induced map Y= () — T (V)
(resp. Y= (U) = T®)(¢(U))) takes an element m’ to the element m = exp(%)m’

(resp. exp(%)m’c)7 and a point ((x,h,),b) € U™ to the point ((x, hg),b +

Im(5(0))i) € U (resp. ((e(z), hepy)s —b = Im(B(0))i) € c(U)®). If the former

point lies in U®")(m’), then h,(m’) = e®o . Tt follows that

Im(B(0))% b+Im(B(0))i
hy(m) = hw(exp(kﬁ)m') =e . hy(m')=e Fu
U
B —Im(8(0))i —b—Tm(5(0))i
(resp. hg(yy(m) = hg(m)(exp(%)m'c) e R hy(m')=e  F*u
and, therefore, the latter point lies in U(®)(m) (resp. ¢(U)(®)(m)). This implies
the claim. 0

Proposition 5.2.2 implies that, for any pair of nonempty connected open subsets
U CV, ky divides ky. We can therefore define a map

k
YE(U) - Y@ (V) :m s mv .

(There exists a unique element of Y(*) (V') whose restriction to U is m%, and
it is denoted here in the same way.) This map is compatible with the canonical
map 7o (U®)) — 7mo(V(®)). Thus, if we extend the definition of to arbitrary open
subsets U C X¢ by Y(&)/(U) = icno o Y= (U;), where {Ui}ieno(uy is the set of
connected components of U, then the correspondence U — Y{(®)(U) is a cosheaf of
sets, denoted by Tg?), and the family of them is a II(R¢)-cosheaf of sets on the
C-analytic II( Rc)-space X¢, denoted by Y x.

Corollary 5.2.3. The above construction gives rise to an isomorphism of II(Rg)-
cosheaves of sets on the C-analytic II(Rc)-space X¢

TX/_\;ﬁo,X . O

Remarks 5.2.4. (i) Here is an example of a connected distinguished log C-analytic

space X over the log point pt whose space X2 is also connected (i.e., kx = 1)
but ex = 3. Consider the affine algebraic curves X; = Spec(A4;), 0 <14 < 2, where

A; is the quotient of the ring of polynomials in two variables C %’, %, %} by
3
the ideal generated by the element (% . % . %) , and provide X; with the log

structure generated by the variables. Furthermore, let ( be a nontrivial cubic root
of one and, for 0 < ¢ # j < 2, let &;; = Spec(A;;) denote the open subset of

X; where the function % is invertible. We construct a connected log algebraic

curve X by gluing the logl curves X;’s along the following isomorphisms A19— A1 :

(%a %) = (C%v %)a AQO/;;AOQ : (%7 %) = ( %a %)7 and A21/;;A12 : (%a %) =
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(%, ¢ %) There is a morphism of log analytic spaces X = X" — pt that takes a

3
fixed generating element « for pt to the element (T" . % . %) in M(X;). Then

——(tors)

M (X) is a cyclic group of order three generated by the image of the element %
? gz , and the corresponding cocycle {(;; }o<i j<2 on the open covering {X}o<;<2

of X is defined by the following values for i < j: (o1 = (o2 = (12 = 2. This cocycle
is not a coboundary because the equality (g1 - (12 = (g2 does not hold.

(ii) It follows from the proof of Proposition 5.2.1 and the definition of the sets
Y(®)(U) that, if for any étale morphism U — X with connected U that admits a
strict étale morphism in a log space of the form from Definition 5.1.1, then ky = ey
and, for any étale morphism V' — U with connected V, one has T(=) (V)=1(=)(U).

5.3. Description of the sheaves RI7T.(Ay5;). Recall that, by [KN99, Lemma
(1.5)], for any abelian sheaf F' on X¢ and any g > 0, there is a canonical isomor-
phism

Rir (r Y (F)= q) @z /\MXC )

where F(q) = F ®z Z(q)x.. This is automatically extended to abelian II(R¢)-
sheaves F' on the II(R¢)-space and gives an isomorphism of II(R¢)-sheaves. (For
such F, one should define F(q) = F ®z Z(q)xs.) The following theorem is an
analog of the above for the map of II(R¢)-spaces T : Xlog — chog.

For a II(Rc)-sheaf F on the II(Rc)-space Xc, let F'Y denote the IT(Rc)-sheaf
whose set of sections over an open subset U C X¢ is the II(R¢)-set of maps
Y(U) — F(U). Of course, if F' is an abelian II(Rc)-sheaf, then so is FY. By
Corollary 5.2.3, for any II( Rc)-module A there is a canonical isomorphism of abelian
II(R¢)-sheaves A}(C'—vﬁ* (Asqes) on the II(Rg)-space Xc. We now set

—(nont) (tors)

Myr " =Mx/r/Mx/g

Theorem 5.3.1. For every locally constant II(R¢)-sheaf F' on the II(Rc)-space
Xc and every q > 0, there is an isomorphism of II( Rc)-sheaves

(nont)

RY7, (7 HF)SFY(—q) ®2 /\MXC/RC :

We use a construction from the proof of [KN99], Lemma (1.5)]. For a topolog-
ical TI(R¢)-space T, let Ry and Sy denote the abelian II( R¢)-sheaves of contin-
uous functions on T" with values in the II(Rc)-groups iR and S!, respectively
(see Example 4.3.2(iii)). Notice that the exponential map b — exp(b) repre-
sents Rr as an extension of Sy by the sheaf Z(1)7. We now apply this to the
II(Rc)-space X'¢. The homomorphism of sheaves 7~ (MY ) = S ioe that takes

m € MY, to the function (z,h;) = hy(m) induces a homomorphism of TI(Rc)-
sheaves 71 (M Xo) — Sk Which gives rise to an extension Lo of MY
by Z(1)5z- The restriction of the above homomorphism to the II(R¢)-subsheaf

?_1(0} ) is the homomorphism f — \fl from the latter to Sy, and it lifts to the

homomorphism 7' (Oxs) = Rymeg ¢ f + Im(f)i. Thus, we get a commutative
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diagram of homomorphisms of abelian II( R¢)-sheaves with exact rows

0 Z(1) 5 R ———> Sxrms 0
0 Z(1)5z Loz ——>=T HMY ) —=0
0 Z ()5 7Y Oxg) — =7 H0%,) —=0

The above construction is a natural extension of that from [KN99, (1.4)] for the

space X &8 and, in fact, there is a canonical isomorphism v~ (£ o)=L where
C

XTog)
v is the topological covering map Xog — ng and L Xlos is the abelian sheaf on

ch?g from [KN99] and denoted there just by L.

Examples 5.3.2. (i) Consider the log space ptr. For every w € II(Rc), the
homomorphism of groups of global sections Eﬁ?) = £(pt§3w)) — M 1%’; is surjective.
Indeed, the pair consisting of the function ptg%w) — iR : (h,b) = b in R(ptg%w))
and the element w in T(w)_l(Mlg%:j)(pt%w)) defines an element log(w) € EE;’U) with
exp(log(w)) = w, and the surjectivity claim follows from that of the exponential
map exp : Rc — R§&. Furthermore, for a f-morphism w — @’ (of any type), the
corresponding map L'g%w) — E%w/) takes log(w) to log(w’) + B. The lift of log(w)
to L£(X(®)) will be denoted in the same way by log(w) .

(ii) For a connected open subset U C X¢ and elements w € II(R¢c) and m €
Y(®)(U), the pair consisting of the function U (m) — iR : ((x, hy),b) % in
R(U®)(m)) and the element m in T(w)_l(M%J)(U(W) (m)) defines an element of
L(U®)(m)), denoted by log(m), with exp(log(m)) = m. Notice that the restriction
of log(w) from (i) to U(®) (m) coincides with kg -log(m). For a f-morphism w — w’
(of any type), the corresponding map L(U®) — L(U™)) (resp. LU™) —
L(c(U)=)) takes log(m) to log(m’) + %, where m’ is the preimage of m with
respect to the corresponding map Y= )(U) — Y@ (U) (resp. Y& ((U)) —
TE(U)).

Proof of Theorem 5.3.1. First of all, if ¢ = 0, there is a canonical isomorphism
T.(7 Y F))=FT (it was already mentioned in Example 4.3.4).

Applying the left exact functor 7, to the second row of the above diagram, we
get a homomorphism 1 : Z;r(c ®z MY, — R'7.(Z(1)5s;). Since the exponential
map exp : Oxo — O is surjective, ¢ goes through a homomorphism from
Z}(C ®z M?fc. Furthermore, since exp(log(w)) = w for all w € II(Rc), ¢ is
trivial on the image of the homomorphism M%C — Mﬁ}“c, i.e., it goes through a
homomorphism from Z}; - ®ZMXC /Re- Finally, if U is a sufficiently small nonempty
connected open subset of X¢, then ky = ey and, therefore, the image of an element
m e Y@ (U) in M?" (U) generates the subgroup M(wm)(U). Since exp(log(m)) =

m, it follows that 1 goes through a homomorphism from Z;r( c ®z Mg?g%{)c
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Thus, v gives rise to a homomorphism

—(nont)
Z§ ( )®Z MXc/R - RlT*( Xlog) .

Using the cup product, we get a homomorphism
——(nont) —
F¥(~q) ®2 Mx) e = RIT(TH(F)) .

Since F is locally constant, Lemma 5.1.3 implies that, in order to show that this is
an isomorphism, it suffices to check it on stalks of both sheaves. This is trivial. [J

The following statement is an analog of [SGA7, Exp. 1, 3.3 (see also [Nak98,
3.5]).

Corollary 5.3.3. Given a morphism of germs (B,b) — (F,0), let Y be a scheme
of finite type over Op such that Y is reqular, flat over Op g, the support of the
special fiber Y is the divisor with normal crossings, and that of the closed fiber Vs
is a union of some of the irreducible components of Y. We provide Y with the
log structure Myn induced by the canonical log structure on Y. Then there are

canonical isomorphisms of sheaves of I1(Kc)-modules on Y2

(nont)

RV, (Zyn ) FZ(~q)3n @z /\Myh e

Proof. By Corollary 3.3.3, the log structure Mynr coincides with that induced by

the canonical log structure on the distinguished formal scheme 5)\ It follows that
the log space V" is distinguished and, therefore, the required fact follows from
Theorems 2.5.2 and 5.3.1. (Il

5.4. A distinguished W (R¢)-module Cx. on Xc. Let U be a nonempty con-
nected open subset of X¢. For w € II(Reg), let tgjw) be the image in O(U) of an
element m € Y(®)(U) (the latter is deﬁned up to a multiplication by ky-th root
of one). Then (t(w))kU =w@. For A = ;& with 0 < j <rky, let C(w (U) denote the

C-vector subspace of O(U) generated by the element (tgjw)) . If a rational number
0 < X\ < ris not of the form kj—U with 0 < j < rky, we set Cg\w)(U) = 0. By Propo-
sition 5.2.1, for any bigger connected open subset V' the restriction homomorphism
O(V) — O(U) induces an isomorphism Cg\w)(V)Zng)(U). It follows that the
spaces Cg\w)(U) define a sheaf of C-vector spaces of dimension at most one CEZ;), A-
Given a S-morphism ¢ : @ — @’ in [I(R¢) and a nonempty connected open subset
U C Xc, if ¢ is of first type, we define an isomorphism ¢ : C(w)( )NC(w,)( U) by
@c(a(tgjw))j) = aexp(— )\5)( ))i for a € C, and if ¢ is of second type, we define an
omorphism e : (0 (UYSCE ) (e(U) by e alt§P)) = Texp(AF)(HP)Y fo
a€ C This provides each Cx x with the structure of a II( Rc)-sheaf. If F = R and
¢ = @) for w € TI(R), then § = 0 and, therefore, the action of ¢(®) coincides with
the complex conjugation f — f¢. Notice that the set V = {x € XC’CXC,)\J # 0}
II(R¢)-invariant Zariski open subset of X¢, and the restriction of Cxg x to U is
a locally constant abelian II( R¢)-sheaf (to which Theorem 5.3.1 can be applied).
The direct sum C(U) = @ACE\W)(U) is a local R¢-algebra, whose maximal ideal
is generated by the element 7). It does not depend on the choice of the element
w, and it can be defined as the R-algebra generated by the images in O(U) of the
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elements m € M (U) with the property that m* € II(Rc). Furthermore, it is a free
module of rank ki over R, and the C(U)’s define a sheaf of modules Cx over R¢
on Xc.

Theorem 5.4.1. (i) The II(Rc)-sheaf Cxo has the structure of a single distin-
guished W (Rg)-module on X¢;
(i) there is a canonical isomorphism of distinguished W (R¢)-modules on Xc¢

Cxe—=Tx (Fﬁ) ®r Rc .

Notice that 7. (Fs;) = F;EC is an FII(R¢)-quasi-unipotent module on X¢ and,
therefore, Proposition 4.5.3 implies that the right hand side in (ii) is a distinguished
W (R¢c)-module on X¢.

Proof. (i) For w € II(Rc) and a connected open subset U C X¢, the C-linear
operators 5 : C;\w)(U) — C;w)(U), defined by 6w((tgw))j) = )\(t(Uw))j, where
Jj = kuA, provide C/(\w)(U) and C(U) with the structure of a W (R¢)-module.

—_—

Moreover, there is a canonical isomorphism of II(R¢)-modules C(U);—C(U) for
I=1{0,7~,...,52=11 One also has U(w)((téw))j) = exp(—27ri/\)(t§,w))j, and this

N AR e
coincides with exp(—27ri(5w)((t£,w))j). Thus, if F = C, Cx,, is a single distinguished
W (R¢c)-module on X¢.

Suppose now that F = R. For w € II(R¢), we define an automorphism (=)
of C(U) as follows. Each element of C(U) has the form o = Z;:S f(w)t? with

fj(w) € Rc, where k = kyy and t = tgjw)7 and we set

k—1
9@ (a) = fo(w) + Z?k—j(w)tj .

It is easy to verify that, for any morphism ¢ : w — @’ in II(R¢) as above, one
has @¢ 0 9(®) = 9&) o @c- This means that 9 is an Rg-semilinear automorphism
of Cx.. It follows that Cx. is a distinguished W(R¢)-module on X¢ in the case
F =R as well.

(ii) Let U be a connected open subset of X¢, and let w € II(R¢). Given an
element m = m(Uw) € Y=)(U), a basis of the free Rg-module C(U) is formed by
the elements #J, for 0 < j < ky — 1, where t,, is the image of m in C(U). We define
a homomorphism of free Rc-modules of the same rank

uim)  C(U) = Hom (Y™ (U), F) @ Re = Hom(Y () (U), Re)

by ugﬁzl(tfﬁ)(m’) = (%)j, where for elements m,m’ € Y()(U), 2 denotes the

Eky-th root of one ¢ such that m = ¢m/. If m” € T(@)(U), then t,n = (m ) tm

m
and, therefore, one has

m m’

oy m" J o m" J - )
A ) = (22 ) A ) = (127 ) = W )
This means that the homomorphism ugw% does not depend on the choice of m. We

can therefore denote it by ugw). Here is the formula for the image of an arbitrary
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element « € C(U), represented in the form o = fo(w) + ZkU Ly fi(@)t, as in (i),

ky—1

u (@) (m') PR (2
The matrix of the Rc-linear operator ugjw) is a Vandermonde one and, therefore,
(w) is an isomorphism.
If Visa blgger connected open subset then the map T w)(U) — Y@)(V) takes

mton—m"v and m/ ton—m’“v andonehast|U .Weget
@) iy — (Y _ (MY _ )
2@ = (5) = () = a2 W)
This means that the 1somorph1sms u( @) and u%,w) are compatible, and we get an
isomorphism of sheaves u(®) : C Xo —>73£ )(FW) ®r Rc. We have to verify that it

gives rise to an 1somorphlsm of W(R¢)-modules on X¢.

First of all, it is an isomorphism of R-modules, by the construction. Furthermore,

set y; = ugjw)(tin). By the same construction, R has 7;(m') = (;f,)j. Since

o@)(m!) = ek m', it follows that o(®)(v;) = e~ w0 7, i.e., the elements ;, which
generate the free Rg-module Hom(Y(®)(U), R¢) are elgenvectors with eigenvalues
e ’:ci], respectively. By the construction of the operator d, one gets d5(v;) =
775 Since (1 7)) = tﬁn, it follows that ;(®) is an isomorphism of sheaves of
modules over the ring W(R)

Suppose now we are given a S-morphism ¢ : @ — @’ of first (resp. second) type.
The corresponding map T(=) (1) - TEN(U) (resp. TE)N(U) = Y& ((U)))

!

takes m’ to exp(%)m (resp. exp(%)m’c). It follows that the homomorphism
CE(U) = C=NU) (resp. C™)(c(U)) — CEN(U)) takes tm t0 tym (resp. tyme),
where v = exp (—%) and therefore, for m, m’ € Y@ (U) (resp. Y= (c(U))), one

has .
j |
(w/) . _ ym - m \J (w) .
W ') = (2] = (25) = P o)

N S A A A o v
e ¢ = (1) = () = W o))
Thus, the isomorphism considered is a map of II( R¢)-sheaves.
It remains to verify that, in the case F = R, the homomorphism x(®) commutes
with the action of the automorphism ¥#(). For the element o € C(U) as above, one

has
ku—1

(1 0 0 @) ') = To(@) + 3 Foey ()
j=1
On the other hand, one has
ky—1 —J
(=) O,UEJW))(CV)(m/) = fo(w) + f (%> -
j=1

It is easy to see that the right hand sides of both equalities coincide. [
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Corollary 5.4.2. There are canonical isomorphisms of sheaves of distinguished
W (Rg)-modules on Xc

q

R7.(Fxs) ©F Ro5Cxo(—q) ©2 \ Mveie, - 0

Suppose that F = R. As at the end of §4.5, the single distinguished W (R¢)-

module Cx defines a II(R)-sheaf Cx, which is a distinguished W (R)-module on

X. Theorem 5.4.1 implies that, for an open subset U C X, one has Cx(U) =

Cxc(p~H(U))e=! and, in particular, the W (R)-module Cx is single. The RII(R)-
quasi-unipotent module on X¢ that corresponds to Cx is Tu(Ryrg)-

Remark 5.4.3. It follows from Remark 5.2.4(ii), that in its situation there is a
canonical isomorphism Cx (U)=Cx (V).

6. THE ANALYTIFICATION OF VANISHING CYCLES FOR LOG SMOOTH FORMAL
SCHEMES

6.1. Formulation of results. The purpose of this section is to show that, for
a formally K°-log smooth special formal scheme X and any finite étale abelian
sheaf A on the spectrum of K, the analytifications of the complexes R@(A%n) and
RV, (A:{”), as defined in [Ber96b] and [Berl5], are described in the same way as
in Theorem 2.5.2. Here A%n is the pullback of A to the generic fiber X,, of X. We
already mentioned that the correspondence that takes such a sheaf A to the discrete
G(K¢)-module K(®) — A(®) is an equivalence of categories.

On the other hand, the nearby and vanishing cycles functors © and ¥, from
[Ber96b] and [Ber15] are naturally extended to the category of étale abelian G(K¢)-
sheaves on X,, and take values in the category of étale abelian G(K¢)-sheaves on
X, and Xz, respectively. Namely, the functor © takes an étale abelian G(Kc¢)-
sheaf L : K(®) 5 L(®) to the functor on G(K¢) whose value at K(®) is ©(L(®))
with the evident homomorphisms ©(L(®)) — ©(L(®")) for morphisms K= —
K@) in G(K¢). Notice that the G(K¢)-sheaf ©(L) is univocal and, in particular,
it is isomorphic to a trivial G(K¢)-sheaf. Similarly, the functor ¥, takes L to
the functor on G(K¢) whose value at K(®) is ¥, (L(*)) constructed using the
algebraic closure K(®) of K, and each morphism K(®) — K (=") induces the evident
homomorphism ¥, (L(®)) — \IIW(L(WI)).

Thus, instead of working with étale abelian sheaves on the spectrum of K, we
work with discrete G(K¢)-modules. Notice that there is a natural faithful functor
G(Kc)-Mod— II(K¢)-Mod. In particular, in the situation of Example 4.2.2(ii)

every discrete G(K¢)-module A defines II(Kc)-sheaves Achog and Ay on the

II( K¢ )-spaces chog and X8, respectively.

For an integer n > 1, let Z/nZ[G(Kc)]-Mod denote the category of discrete
G(Kc¢)-modules which are also Z/nZ-modules, and let D.(Z/nZ[G(Kc)]-Mod)
denote the derived category of complexes of discrete Z/nZ|G(Kc)]-modules with
finite cohomology modules.

Theorem 6.1.1. Let X be a formally K°-log smooth special formal scheme, and
set X = X", Then for any A" € D} (Z/nZ|G(K¢)]-Mod), the following is true
(i) there is a canonical isomorphism of complexes of II(K¢)-sheaves

RU,(Ay )'SRT. (A



COMPLEX ANALYTIC VANISHING CYCLES FOR FORMAL SCHEMES 81

(ii) if F = C, then R@(A'xn)h:?RT*(Aklog);
iii) «f F =R, then ' —I\ (R,
fF =R, then RO(Ajy hST (Rr, (A

" chog))

The proof of Theorem 6.1.1 is based on log étale cohomology developed by
Kazuya Kato and his collaborators for fs log schemes. We refer to [I1102] for a
survey of log étale cohomology.

6.2. Kummer étale morphisms of log special formal schemes. Recall (see
[11102, 1.6]) that a morphism of fs log schemes Y — X is said to be Kummer étale
if locally in the étale topology it admits a chart P — O(X) and @ — O(Y) with
fs monoids P and @ such that (1) the homomorphism P — @ is injective and
P =QnN P9 (2) the cokernel of the homomorphism P9" — Q97 is finite of order
invertible on ); (3) the induced morphism of schemes Y — X ®gpec(z(p)) SPec(Z[Q)])
is étale. If both schemes are of locally finite type over F, then the induced map
(VL)°e — (xh)s is a local homeomorphism. Kummer étale morphisms to an fs
log scheme X give rise to a Kummer étale site Xy¢ of X' and, if X is of locally finite
type over F, there is a morphism of sites (X%)1°8 — Xy

Let k be a non-Archimedean field with nontrivial discrete valuation. A morphism
of fs k°-log special formal schemes ) — X is said to be Kummer étale if it is of locally
finite type and, for any ideal of definition J of X, the morphism of log schemes
(2),0@/]@@) — (X,0%/J) is Kummer étale. The following is an analog of

[Ber96b, Proposition 2.1].

Proposition 6.2.1. Let X be an fs k°-log special formal scheme. Then

(i) the correspondence ) — ), gives rise to an equivalence between the cat-
egory of fs k°-log special formal schemes Kummer étale over X and the
category of fs ki-log schemes Kummer étale over Xs;

(i) If ¢ : Y — X is a Kummer étale morphism, then ©,(2),) = 7~ (2s(D))
and, in particular, %(%) is a closed analytic domain in X,);

(iii) if the k°-log structures on X and ) are vertical, then for any Kummer
étale morphism ¢ : Y — X the induced morphism of k-analytic spaces
oy 1Y, = Xy is quasi-étale.

Proof. (i) Since Kummer étale morphisms are log étale, fully faithfulness of the
functor follows from the definition of log étale morphisms (see [Kato89, 3.3]). There-
fore, in order to show that it is essentially surjective, it suffices to construct a lifting
of a Kummer étale morphism f : ) — X, locally in the étale topology. We may
therefore assume that the log structures on X and ) are defined by charts P — O(X)
and @ — O()) and the morphism f is defined by an injective homomorphism of fs
monoids P — @ such that (a) the image of P contains the image of a generator w
of the maximal ideal k°° of k°, (b) the cokernel of the homomorphism P9" — Q9"
is finite of orders prime to char(k), (c) P coincides with the preimage of Q in P9
with respect the latter homomorphism, and (d) the induced morphism of schemes

Yo X =X S pec(F(P)) Spec(k[Q)]) is étale. The scheme X’ is the closed fiber
X, of the special formal scheme X' = X Xgpe(ro(p}) SPI(k°{Q}) and, by [Ber96b,
2.1(i)], the morphism Y — X/ lifts to an étale morphism ) — X'. If we provide 2)
with the log structure defined by the induced homomorphism @ — O(9)), we get
the required Kummer étale morphism %) — X.
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(ii) By [Ber96b, 2.1(ii)], the required property holds for the étale morphism
9) — X' (with X’ from the proof of (i)). It suffices therefore to verify this property
for the morphism X’ — X which is a base change of the morphism Spf(k°{Q}) —
Spf(k°{P}). Since the latter morphism is finite and surjective, then so is the
induced morphism of k-affinoid spaces M(k{Q}) — M(k{P}), and the required
fact follows.

(ili) By [Ber96b, 2.3(iii)], the morphism ), — X, is quasi-étale. Let p be an
element of P whose image in O(X) coincides with the image of . Then X' =
X Xgpi(a) Spf(B), where A = k°{P}/(p — w) and B = k°{Q}/(p — w)k°{Q}. In
particular, the morphism 36;7 — X,, is a base change of the morphism of k-affinoid
spaces M(B) — M(A). By the assumption, the monoids P and @ are vertical.
It follows that their images in A and B consist of invertible elements and coincide
with the images of P9" and Q9", respectively. This implies that the morphism
M(B) — M(A) is étale and, therefore, the morphism ), — X,; is quasi-étale. [

Let X be an fs vertical k°-log special formal scheme. We fix a functor U +— &
from the category of fs k7-log schemes Kummer étale over X, to the category of
fs k°-log special formal scheme Kummer étale over X, which is inverse to that of
Proposition 6.2.1(i). By the proposition, the composition of the functor s — 4l
with the functor 4 — &, induces a morphism of sites vlos anét — Xsper, which
is an analog of the morphism of sites v : Xger = Xse from [Ber96b, §2]. In this
way we get a commutative diagram of morphisms of sites

v
> xsét

g
ylog

Xs ket

I
%"7 ét %77 qét

The nearby cycles functor from [Ber96b] is the functor © : X, ., — XJ¢, defined by

O(F) = v.(u*F), and the log nearby cycles functor is the functor ©°8 : X, —

X3per, defined by OP8(F) = U\°8(y*F).  They are analogs of the usual (from
[SGAT]) and logarithmic (from [Nak98]) algebraic geometry functors. Namely, for
an fs vertical k°-log scheme X', there are canonical morphisms of schemes X, <
. -log -log
X +— X, and of log schemes Xy ox i X,. The above functors © and ©'°8
are analogs of the functors X7, — X5¢ : F = i*(juF) and Xy, — Xipe + F
i°8* (j1°8 F) | which will be denoted © and ©'°8, respectively, as well.
The following is a straightforward generalization of [Ber94, 4.1 and 4.2].

Lemma 6.2.2. Let X be an fs vertical k°-log special formal scheme, and let F be
an étale sheaf on X,. Then

(i) if Y, is Kummer étale over X, then ©°8(F)(2),) = F(2),);
(ii) if I is abelian, then the sheaf R10'8(F) is associated to the presheaf ),
Hq(iyn7 F);
(iii) if F is abelian soft, then the sheaf ©'°8(F) is flabby. O

Corollary 6.2.3. (i) For a Kummer étale morphism Q) — X and an étale abelian
sheaf on X%,, one has Rq@log(F)@ 3Rq@1°g(F|@ );
s n
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(ii) for a morphism of fs vertical k°-log special formal schemes ¢ : ) — X and
F e D*(9,), one has RO™E(Rp,.(F))=Ryp,.(RO"S(F)). O

6.3. Nearby cycles of formally log smooth formal schemes. We turn back to
our field K. Every discrete G(K¢)-module A defines an étale G(K¢)-sheaf Ax on

Spec(K). Given w € II(K¢), the Kummer étale sheaf ®log(A§?)) on the algebraic
log point pt K? is denoted by A(w). Furthermore each morphism w — @’ in G( )

gives rise to a morphism A ) 5 AT Ko , and so the correspondence w — A Ko is a
Kummer étale G(KC)—sheaf on ptge. The pullback of the latter to the Kummer
étale site Xyg; of a log scheme X' over ptxe is denoted by Ax,,,-

Theorem 6.3.1. Let X be an fs formally K°-log smooth special formal scheme, and
A € DFZ/nZ|G(Kc)]-Mod). Then there is a canonical isomorphism of complezes
of Kummer étale G(K)-sheaves

A‘xskét:}z@log(% ).

n

Proof. First of all, it suffices to show that A(xw) ®1°g(A(w)) and Rq®log(A(w))

skét 77

0 for any ¢ > 1, any finite discrete Z/nZ[G (Kc)]—modules A and any fixed w. We
may therefore drop w in the superscript. Furthermore, for any m > 1 the morphism
Spf(Kc(wm)®) — Spf(K°) is Kummer étale and, therefore, so is its base change
to X. Since the statement is local in the Kummer étale topology, this reduces the
situation to the case when F = C and the action of G on A is trivial. Finally, for
the same reason, we may assume that X is of the form X sy for an fs log smooth
scheme X’ of finite type over K° with trivial log structure on &, and a subscheme
Y C X, (see Definition 3.2.3). We may also assume that the log structure on X
is defined by a chart Py — Oy for an fs monoid P with P* = {1} such that, for
every a € P there exist b€ P and m > 1 with ab=w

In order to verify the required property, we use the following facts on the usual
functor © (in the above situation):

(1) A(—q)x, @z \! Mg: /—\?Rq@(AX ), where My, — Oy, is the log structure
induced from that on X and M% = M /O%. ([Nak9s, (2.0.2)]);

(2) RO(Ax,)|,FRO(Ax, ) ([Ber96b, 3.1));

(3) there is a spectral sequence EY? = HP(Z{S,R‘IQ(A%")) = HPTI(X,,A)
functorial in X ([Ber96b, 2.2]).

We also use the fact that any Kummer étale morphism 2) — X is locally in
the Kummer étale topology is of the form X/y, — X = &)y for a Kummer étale
morphism X’ — X, where )’ is the preimage of J in X!.

By Lemma 6.2.2(i), if 9, is Kummer étale over X; then @1°g(Axﬁ)(@s) =
HY(,,A). IfY = )?/Iy/ as above, then Ay, —O(Ax,), by (1), and therefore
Ay:;@(/\:{n), by (2). This implies that H°(9,,A) = H(),,, A).

Furthermore, by Lemma 6.2.2(ii), the sheaf Rm@log(A:{”) for m > 1 is as-

sociated to the presheaf 9, — H™(9,,A). We therefore have to show that,
given a Kummer étale morphism X’ — X, there exists a Kummer étale cover-
ing {X¥® — AX’};c; such that the induced homomorphisms H™(X]y )y, A) —
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Hm((??/(g(i))n, A) are zero for all m > 1 and ¢ € I. By the spectral sequence (3) ap-

plied to 2’?/’3,,, each group Hm((P?/’y/)n, A) has a decreasing filtration Fo’m()?/’y/) =

Hm((f;y,)mA) oD Fbm 5 . o Frmem o pmtlm — () functorial in /fl’\/’y, and
such that each quotient FP™/FP+1m ig isomorphic to a subquotient of E5™ P =

Hp(y’,Rm*pe(A@, ) )). Thus, it suffices to show that, given X’ — X as above,
RK

there exists a Kummer étale covering {X® — X’};c; such that the above homo-

morphism takes Fp’m(z‘?/’y,) in Fp"’l’m(XA/(;Z(i)) forall 0 <p<mandallieI. (If
so, we can iterate this construction.) In order to show the latter, it suffices to verify

that, for every pair (p,q) with p + ¢ > 1, there exists a Kummer étale covering as

above for which all of the homomorphisms Eg’q()?/'y,) — ED1 (2/(\/(32(1)) are zero.

First of all, Eg’o = HP(Y',A), and so the required fact is true for ¢ = 0 (with
an étale covering of X”). If ¢ > 1, we set X" = X’ ®@zp| Z|P%], where P — Pw
is the homomorphism P — P : a — a™. Then f : X’ — X’ is a Kummer étale
covering and, by (1), the homomorphism f;l(Rq@(A()?/,y/)n)) — Rq@(A()?/,,W)") is

zero, and so is the homomorphism Eg’q(??/’y/) — Eg’q(P?/" ") O

Corollary 6.3.2. In the situation of Theorem 6.3.1, there is a canonical isomor-
phism R@(Axn)ﬁRs* (A%Skét). O
6.4. Proof of Theorem 6.1.1. Step 1. The statement (iii) follows from (ii).
Indeed, this is trivial.
Step 2. The statement (i) is true true if the log structure on X is fs. Indeed,
by Corollary 6.3.2, there is a canonical isomorphism R@(A'x )3R5*(A'x ). It
" .

skét

follows that R@(A'% )hg(Rs*(A'x ). Tt suffices therefore to show that the
n skét

canonical homomorphism (Re, (A}C )" = R7.(Ay1,), induced by the morphism
skét

of sites X198 — X4, is an isomorphism. For this we may assume that A" is a just
finite discrete G(K)-module A, and it suffices to verify isomorphism between ¢-th
cohomology groups of both complexes. By [Nak98, (2.0.2)] and [KN99, (1.5)], there
are canonical and compatible isomorphisms

q
Rie.(Ay, =My (—¢) @z /\Mggs and

q
R (Axes) S Ax(—q) @z \ MY |
and the claim follows.

Step 3. The statement (i) is true if X is fs. Indeed, we may assume that F = C.
Fix a generator @ of K°°. The induced homomorphism Oc,o — K° : 2 — w gives
rise to an embedding of algebraically closed fields K* — K(®). We consider first the
w-th part of the G(K)-module A and do not write the superscript w in notations.
Let Ay — F" be a resolution of Ay by soft sheaves F' (see [Ber94, §3]), and let

K, be the extension of K in K(®) of degree m > 1. Then the pullbacks F!, of F"’s
are soft sheaves on X, , where n,, = 1k, and, therefore, Ay — F} is a soft res-
nm

olution of Axn . By [Ber96b, 2.2(iii)], one has ROK= (A%n ) = 0%m(F; ) and, by

[Berl5, 3.1.6(ii)], there is a canonical isomorphism li_r}n@Km (F;n):R‘l/n(Axn). By
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Step 2, for each m > 1 there is a canonical isomorphism ©m (Fy, )" = R, (A y0e ),
where X, is the analytification of the closed fiber of X®xo K2, with the induced
log structure and 7, denotes the map X!°¢ — X. The composition of the latter
with the canonical homomorphism R7p«(A y106) = RT+(Ax (=) gives a homomor-
phism %= (F: Y* — R7,(Ax(= ). In this way we get a canonical homomorphism
RV (A%n) — R7.(Ax=7), and we have to verify that it is an isomorphism.
Since the latter property is local in the étale topology of X, we may assume that
X is of the form X /v, where X is an fs log smooth scheme of finite type over O¢ o and
Y is a subscheme of Xs. By [Ber96b, 3.1], one has R\I’n(A,’{n) RV, (Ax,) ‘y
by Theorem 2.4.1, R\IJ,,(AXn)’“”:;R\I',7 (A th). Hence, the required fact follows from

Theorem 2.5.2. The above construction is functorial with respect to w € II(K),
and the fs case of the theorem follows.

Step 4. The statements (i) and (ii) are true in the general case. For this we may
assume that F = C, and we need the following fact related to Lemma 2.5.3.

Lemma 6.4.1. Let X be a formally K°-log smooth special formal scheme, and let
0 X' — X be the normalization of X with the log structure My which is the
saturation of ¢*(My) in Oys. Then X' is an fs formally K°-log smooth special
formal scheme and, for X = %Z and X' = %;h provided with the induced log
structures, the canonical map X"°8 — X'°8 js a homeomorphism.

Proof. The statement is local in the étale topology of X, and so we may assume
that X is the formal completion JAJ/ z, where Y is the log scheme Spec(C[P]) for a
fine monoid P, the morphism of log schemes ) — Spec(K°) is defined by a chart
Q — P : ww— p for a free monoid @ generated by w € II(K) and an element
p € P such that the localization of P with respect to it is a group, and Z is a closed
subscheme of YV, = Spec(C[P]/(p)). Then X’ is the formal completion )A);Z,, where
Y’ = Spec(C[P']) for the saturation P’ of P in P9" and Z’ is the preimage of Z
in Y/, This implies the first statement. Since X'°® and X''¢ are the preimages of
X = Z" and X’ = 2" in (Y")'°% and (J'")!°8, respectively, in order to prove the
second statement it suffices to prove that the canonical map (Y'")1°8 — (Ph)log is
a homeomorphism, but this follows from Lemma 2.5.3. (]

Let ¥’ be the normalization of ¥ as in Lemma 6.4.1. Then by Steps 2 and 3,

one has R@(A‘x,n VP=R7L(Anoe) and R\IJ,,(A'}:W) = R7T, (M), where X' = xh,
and 7' and 7' are the canonical maps X°¢ — X’ and X°¢ — X’  respec-
tively. On the other hand, by [Ber96b, 2.3(ii)], there are canonical isomorphisms

R@(Af7,):R@S*(R®(Ax;)) and R\I/n(Axn):R@s*(R\I/n(Ax;)). This implies that

RO(Ay )" ReL (RT/(Axnes)) and R, (Ay )" SR, (RT, (M) -

Finally, by Lemma 6.4.1, there are canonical homeomorphisms « : X85 X1°8 and

@ XMoeSXlog Since o o7’ = Toa and ¢ o7 = Fo@, we get the required
isomorphisms. (I

7. COMPLEX ANALYTIC VANISHING CYCLES FOR FORMAL SCHEMES

7.1. Construction and first properties. We fix, for every special formal scheme
X over K°, a distinguished compact hypercovering a : %), — X which exists, by
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Corollary 3.1.6. (We do not require that this hypercovering is proper.) The formal
schemes 9),, provided with the canonical log structure form a simplicial object
in the category of fs log special formal schemes. It follows that the C-analytic
spaces Y, = @Z@ provided with the induced log structures, form a simplicial fs log
C-analytic space Y, = (Y, )n>0, and there is an associated augmented simplicial

topological space al° : Y108 = (V}°8), -, — X2, We set
ROMZy ) = Ra®(Zyex), if F=C
ROMZy, ) = T (Ral®(Zys)), if F=R.
If 7, denote the map of simplicial topological spaces Y.log —Y,, then alos = ag oT,
and, therefore, for F = C one also has
RO"(Zy) = Ral. (Rr,.(Zyy))

Furthermore, the fs log C-analytic spaces Y,, are over the log point pt Kg and

there is an associated augmented simplicial topological II(K¢)-space @ : Y}Og =

(Ya®) >0 — X2 We set

RV;(Zyx ) = Ra}fg(zy.log) .

If 7, denotes the map of simplicial topological II(K¢)-spaces Y8 — Y, then
a8 =gl o T, and, therefore, one also has

RV} (Zy ) = Rk, (R (Zyzz)) -

Theorem 7.1.1. The following is true:

(i) the complexes R@h(Z%n) and R\IJZ(ZZ{N) do not depend on the choice of

the hypercovering up to a canonical isomorphism, and are functorial in X;

(i) the sheaves Rq\IIZ(an) are constructible, equal to zero if ¢ > 2dim(X,),
and the action of II(K¢) on them is quasi-unipotent;

(iii) the sheaves Rq@h(Z:{n) are constructible, equal to zero if F = C and q¢ >

2dim(X%,)) + 1, and there is a canonical isomorphism
RI"NO)(RW}(Zy ) RO"(Zy ) -

Remarks 7.1.2. (i) Functoriality in (i) means that each morphism of special formal
schemes ¢ : ) — X gives rise to morphisms

0" () : pi* (RO"(Zy, ) — RO"(Zgy ) and
05 () - ot (RY})(Zx ) — R‘IfZ(Z@n)

Furthermore, if ¢ is the identity morphism X — X, then so is the morphism 97};(4,0)
and, given a second morphism ¥ : 3 — ), one has 9;;(@ o)) = 92(7,/1) ol (92(@))
(and the same for the morphisms 6" (y)).

(ii) An étale abelian sheaf L on the analytification V" of a scheme Y of locally
finite type over F is said to be (algebraically) constructible if, for every open sub-
scheme )’ C ) of finite type over F, there is a decreasing sequence of Zariski closed
subschemes Zy =)' D Z; O ... D Z, = 0 such that the restriction of L to each
F-analytic space Zf\ZihH is a locally constant sheaf whose stalks are finitely gen-
erated abelian groups. If F = C, it is the definition from [Ver76, §2]. It is easy to
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see that L is constructible if and only if its restriction to Y@ is constructible. For
example, the analytification " of an étale abelian constructible sheaf F on ) is a
constructible sheaf on Y (whose stalks are finite abelian groups). It follows from
[Ver76, 2.4.2] that, given a morphism ¢ : £ — ) between schemes of finite type
over F and a constructible sheaf L on Z", the sheaves R%¢"(L) are constructible.

(iii) If L is an étale abelian II(K¢)-sheaf on Y& (for Y from (ii)), we say that
the action of II(K¢) on it is quasi-unipotent if, for every open subscheme )’ C Y
of finite type over F, there exist m,n > 1 such that, for every w € II(K¢), the
element (o(®)™ —1)" acts as zero on the sheaf L

y/h :

Lemma 7.1.3. In the situation of Theorem 7.1.1, if A € D} (Z/nZ|G(Kc)]-Mod),
there are canonical isomorphisms

(i) R\Ifn(Axn)thaLog(A'ylog);
(ii) R@(A'xn)hiRafg(AY:Og), if F = C;

(i) RO(Ay "SI (Rar®(Aya)), if F =R,

Ylog
n .

Proof. The isomorphisms are obtained from Theorem 6.1.1 and [Berl5, 1.2.2(ii)
and 3.3.2]. O

Proof of Theorem 7.1.1. (ii) We may assume that the formal scheme X is quasi-
compact. By Theorem 5.3.1, for every m > 1 the sheaves Rqﬁn*(Zﬁ) are con-
structible, and the action of a sufficiently large power of o(®)’s on them is trivial.
It follows that the sheaves Rq\I!Z(Z%n) are constructible and the action of II(K¢)
on them is quasi-unipotent.

Consider now for every n > 1 the exact sequence 0 — Z > Z — Z/nZ — 0
which gives rise to exact sequences in the category of algebraically constructible
sheaves on X

(rg)) 0= RIGE(Zyrg)n — RIGE(Z/nZ)yres) — n R G052

Ylog) — O 9

where for an abelian sheaf L. we denoted by L, and ,L the cokernel and kernel
of the multiplication by n on F. By Lemma 7.1.3, the sheaf in the middle is the
analytification of the constructible sheaf RV, ((Z/nZ) xn) on X5. Since the latter

are zero for ¢ > 2dim(X,,), it follows that Rq\IIZ(an) = 0 for the same ¢’s.
(iii) Suppose first that F = C. Fix w € II(K), and set IT = Homyy(x) (@, @) and

o = 0(®). Then for every ¢ > 1 there is an exact sequence (for the w-parts of the
functors considered)

0— RN (Zy )/(0 = )RT 1 (Zy ) — RQGh(zfn) — ng(zxnw —0.

all of the required facts follow from (ii). Suppose now that F = R and set K’ = K¢.
(This notation is used in order to distinguish II(K¢) and II(K”’).) By previous case,
the first two claims are true, and one has

(K" ( pyh ~( pah
RT (R\I/n(an))*)(R@ an)c .
Since 71 (Ke) = 7(e) o THE")  we get the required isomorphism.

(i) It suffices to verify the following fact in the case when X is quasicompact. Sup-
pose we are given a commutative diagram of distinguished compact hypercoverings
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of X
Y, —=2X
v
©
3.
Then there is a canonical isomorphism (with Z, = 3?8).
Ra'(Zysg) S RD,* (Zogiss) -

For this we consider the homomorphism of the exact sequences (*@) — (*3)
as above. The homomorphism between the middle terms is an isomorphism, by
Lemma 7.1.3. Moreover, all of the sheaves considered are constructible and zero for
g > 2dim(%,,). The induction from ¢ = 2dim(X,,) to ¢ = 0 shows that the homo-
morphisms between the first and third terms are also isomorphisms. The required
facts follow. O

We can now extend as follows the definition of vanishing cycles complexes to an
exact functor R\I'Z

D*(I(Kc)-Mod) — D*(X3(I(K¢))) : A" = RV} (Zy ) ©F A

and that nearby cycles complexes to an exact functor RO"
DY(II(K¢)-Mod) — DF(X"(K¢)) : A — RIH(K)(R\IIZ(A'XW)) :

Notice that the latter complexes consist of univocal II( K¢ )-modules (they are iso-
morphic to trivial II(K¢)-modules). By Theorem 7.1.1, the construction is functo-
rial in X and, in particular, any morphism ¢ : ) — X defines morphisms 6" (i, A")
and 6 (¢, A') similar to those in Remark 7.1.2(i).

The following corollaries of Theorem 7.1.1 are formulated for an arbitrary com-
plex A" € D*(II(K¢)-Mod), but it suffices to verify them only for A° = Z.

Corollary 7.1.4. Given a morphism of finite type ¢ : Y — X with Y, —X,, there
are canonical isomorphisms

R@h(Axn):R@g*(R@h(A@n)) and R\IJ’;(Axn)Zng*(R‘PZ(A'Q_)n)) :

Proof. Let b : 3, — 2 be a distinguished compact hypercovering of ). Since
2)773%,7, the composition a = pob: 3, — X is a distinguished compact hypercov-

ering of X, and we have (with Z = 32)

—~ p—lo — —lo
RV (Zy )~ Ra®(Z )%R@Q*(Rb*g(zzlog)) = Ryg. (R (Zy) ) -

Zlog
.

The same holds for the functor ©. O

The nearby cycles and vanishing cycles functors RO" and R\I!Z are extended
component wise to simplicial formal schemes.

Corollary 7.1.5. Given a compact hypercovering a : ), — X, there are canonical
isomorphisms

R@h(A‘xn)ZRaZ*(R@h(A;D”)) and R\IJZ(Axn)ZRag‘*(R\IIZ(A@m)) :
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Proof. One can find a distinguished compact hypercovering b : 3, — X that
refines a, and has R\PZ(Aff )3Rb§*(R\PZ(A3 )). The required statement fol-
n o

lows therefore from the fact that the canonical morphism Rag*(R\I/Z(Zg) ) —
o7

RbE, (R\IJZ(ZB )) is an isomorphism. This fact is verified using the reasoning from
o7
the proof of Theorem 7.1.1. (]

Corollary 7.1.6. Let X be a formally K°-log smooth special formal scheme, and
let X be the analytification %Z provided with the induced log structure. Then there
are canonical isomorphisms

RT*(A'chog):;( R@hA'x")C and R?*(A'XTg):R\pg(Ax”) :

Proof. First of all, if X is distinguished, this follows from Theorem 7.1.1. Further-
more, if X is arbitrary, its generic fiber X, is regular and, by Theorem 3.1.3(i),
there exists a blow-up ¢ : 2 — X with distinguished 2) and 9, —X,. By Corol-

lary 7.1.4, there is a canonical isomorphism R\I/Z(an )= Rl (R\IJZ(ZQJ )) and, by
n
vies)); Where Y = 9", Thus,

we have to show that the canonical morphism R7,(Zwrz) — Re%, (R7.(Zyiz))
is an isomorphism. By the reasoning from the proof of Theorem 7.1.1, it suffices
to verify the above fact for the group Z/nZ instead of Z. By Theorem 6.1.1,
this is equivalent to the fact that the canonical homomorphism RV, ((Z/nZ) xn) —

R‘Pg*(R\Iln((Z/nZ)an) is an isomorphism. The latter follows from [Ber96b, 2.3(ii)].

The same reasoning is applicable to the functor RO". (I

the previous case, we get R\IJ;‘(Z£7 V=R (R7.(Z

Here is the first comparison statement.

Theorem 7.1.7. Let X be a special formal scheme over K°. Then for any A €
DY%(Z/nZ[G(Kc)]-Mod), there are canonical isomorphisms

R@(Axn)h:R@h(A'xn) and R\I/n(Axn)h3R\IIZ(A'xW) :
Proof. Since R@(A'xn) = RICGK) (R\I/n(A'%n)) (see [Berl5, 3.1.7]) and R@h(A'%") =
RTW(K) (R\I/Z(A'xn)), it suffices to construct the second isomorphism. By Corollary
3.1.6, there exists a distinguished proper hypercovering a : ), — X and, by Lemma

7.1.3, one has R\IJW(A;,{n)h:RaLog(A.YJOg
h

2 oT,, where T, is the map of simplicial topological spaces Y}Og Y,
one has Ra°8( )= Ral (R7,.(A
a topological covering map o _, Y% and a proper map Y °¢ — Y,,, one has

RT (A VS RT (L) ©% Ay, . Finally, since the hypercovering al 1Y, — xt

is proper', we get
RU,(Ay V"SRV (Zx ) ©F Ay = R\I/Z(A'x”) : 0

n

), where Y,, = @Z,@- Furthermore, since
—log __
a%® =a

and since each 7, is a composition of

Am -YTg))v
L L]

Ylog
.

7.2. Invariance under formally smooth morphisms. Let ¢ : ) — X be a
morphism of special formal schemes over k°, where k is a non-Archimedean field
with discrete valuation. We say that ¢ is smooth if every point of ) has an étale
neighborhood )’ — 9 such that the induced morphism 2)’ — X is a composition
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of an étale morphism ) — X x 3 and the projection X x 3 — X, where 3 is the
n-dimensional formal affine space Spf(k°{T1,...,T,}). We say that ¢ is formally
smooth if locally in the étale topology of ) it is a composition of morphisms of the
form 3 /Y = 3 for subschemes ) C 3, and of smooth morphisms.

Theorem 7.2.1. Let ¢ : ) — X be a formally smooth morphism between special
formal schemes over K°. Then 0"(p,A") and 92(30,1\') are isomorphisms for all
A € Db(II(K)-Mod).

First of all, in order to prove the above statement, it suffices to consider the
case when A" = Z. Furthermore, since the sheaves R‘I@h(Z%n) and Rq\Pf’(Z:{n)
are constructible, the situation is reduced to the case A = Z/nZ. Thus, by the
Comparison Theorem 7.1.7, Theorem 7.2.1 follows from the following statement in

which & is a non-Archimedean field with nontrivial discrete valuation, and G is the
Galois group Gal(k®/k) (for a fixed algebraic closure k* of k).

Theorem 7.2.2. Suppose that char(%) =0, andlet ¢ : P — X be a formally smooth
morphism between special formal schemes over k°. Then 6(¢, A') and 6, (0, A') are
isomorphisms for all A € D%(Z/nZ]G]-Mod).

Proof. It suffices to consider the case when A’ is a finite discrete G-module A. By
[Ber96b, 2.3(i)], the required fact is true if the morphism ¢ is étale. Thus, in order
to prove the theorem, it suffices to consider the two cases when (a) ¢ is of the form
X,y — X for a subscheme ) C X, and (b) ¢ is the projection X x 3 — X, where
3 is the n-dimensional formal affine space Spf(k°{T1,...,T,}).

(a) Let a : 3, — X be a distinguished proper hypercovering of X. If ), is the
preimage of ) in 3, ;, then 3, sy, — X,y is a distinguished proper hypercovering
of X,y. By the definition of the vanishing cycles complexes, we have

R,(Ax) = Ras(R¥, (A3 ) and RY,(Ax ) ) = Raw (R, (A3, )

The proper base change theorem for schemes implies that

RV, (Ag, )|y = Rasi(RY,, (A3,

y | Ve

Since the special formal schemes 3,, are locally aulgebrauc7 the comparison theorem
[Ber96b, 3.1] implies that

R‘IIW(AS.WH?. = R‘I’n(A@./y.)") )

and the required fact follows. The same reasoning holds from the functor ©.

(b) Let 9) = X x 3. Since all of the sheaves considered are constructible, it suffices
to show that, for every closed point ¥ € 9+, one has R@(A% )x—>R®(A§D )y (resp.
RY (Axn) x—~ RV (AQJ") ), where X is the image of ¥ in Xz. Replacmg k by a
finite unramified extension, we may assume that the images x and y of the points
X and y in X, and ¥),, respectively, are k-rational. By (a), it suffices to show that
RU (7= 1(x), A)=RI(77(y),A) (resp. RI'(m—1(x),A)=RI(n~1(y),A)), where 7
denotes the reduction maps X, = X5 and 9, — 2, and X = X@k@. Since the
morphism ¢ is smooth, it induces an isomorphism 7~ !(y)=7~1(x) x D, where D
is the open unit disc with center at zero in an affine space, and the required fact

follows from acyclicity of the canonical projection m=1(x) x D — 7~ 1(x) ([Ber93,
7.4.2)).
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7.3. Comparison theorem. Suppose we are given a morphism of germs (B, b) —
(F,0), an Op p-scheme X, and a subscheme Y C X,. Every H(l%c)—module A can
be viewed as a II(K¢)-module and, therefore, it gives rise to a locally constant sheaf
AX# on the pro-analytic space X# (see Example 4.3.2(1)). Since Xﬁh is a pro-analytic
II(Kc)-space (see Example 4.2.1(iii)), values of the complex analytic vanishing
cycles functor W, are abelian II(Kg)-sheaves on X”. Furthermore, the formal
completion )?/y is a special formal scheme over Ko = @]}4‘70, and R\I",;(A()?/y)n) is a

complex of abelian H(I/C\C)-sheaves on Y.

Theorem 7.3.1. In the above situation, for any A" € Db(H(I%C)—MOd) there are
canonical isomorphisms

. —~ h . . -~ h .
R@(AX#)\yﬁR@ (A, »?mn) and R\IIU(AX#)\%%R\I/W(A( /%)n) .

Proof. Theorem 7.2.1 reduces the situation to the case J = X5, and since the
complexes of nearby cycles are expressed from those of vanishing cycles (see §2.3
and §7.1), it suffices to prove the required fact only for the latter. Consider first
the case A" = Z. By Temkin’s theorem on desingularization from [Tem08], there
exists a proper hypercovering a : Y, — X of X such that each scheme ), is regular
and the supports of the subschemes ), s and )7” are divisors with strict normal
crossings. Then there are canonical isomorphisms

RY,(Zxn)SRal, (RY,(Zyn )) .
n en
By Theorem 2.5.2, one has

R, (Zyy Y5 RF, (L)
Since a : 37. — Xisa proper hypercovering of by , and all of the formal schemes
Yy are distinguished, the required isomorphisms (for A° = Z) follow from the
construction in §7.1. If A" is arbitrary, they follow from Theorem 2.5.2 and the
definition in §7.1. O

8. CONTINUITY THEOREMS

8.1. Formulation of results. The first theorem is an easy consequence of previous
results. Recall that the group of automorphisms of a special formal scheme X trivial
modulo an ideal of definition J is denoted (in [Ber96b]) by G7(X).

Theorem 8.1.1. Let J be the square of the mazimal ideal of definition of X. Then
for every II(K¢)-module A and every q > 0, the group G7(X) acts trivially on the
sheaves Rq\IIZ(A:{n).

Proof. Tt suffices to consider the case F = C and to show that, for every point
T € %Z and every ¢ > 0, the group G 7(X) acts trivially on the stalk Rq\IIZ(A% )

By Theorem 7.2.1, the latter coincides with RQ\PZ(AQJ ) for the affine formal scheme
n

9) = X/{z3- This reduces the situation to the case X = ). If the II(/)-module
A is torsion, the statement follows from the fact that the group G7(X) is uniquely
divisible (see [Ber94, Lemma 8.7]). Suppose now that A has no torsion. It is then
flat over Z and, therefore, Rq\I/Z(Axn) = Rq\I/Z(an) ®z Ayn. This reduces the

situation to the case A = Z. Since R? \IJZ(ZX ) is a finitely generated abelian group
n
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and, for every n > 1, its quotient by the subgroup of elements divisible by n embeds
in the finite group Rq\Iln((Z/nZ)%n), it suffices to show that the action of G7(X)
on the latter is trivial. But this follows from the previous case. Finally, if A is
arbitrary, let A" be the torsion II(K)-submodule of A, and denote by A and
B the image and cokernel of the homomorphism Rq\IlZ(A(th”)) — Rq\yf;( A%n)_

Since B embeds in R‘J\I/Z(A(xnont))7 where A"t = A/A(os) the group G (%)

acts trivially on A and B. It follows that its image in the automorphism group of
Rq\IIZ(Ax ) embeds in the torsion group Hom(B, A), and the same fact on unique
n

divisibility of G7(X) implies that the image is trivial. a

In the following theorems, the formal schemes considered are assumed to be
quasicompact special over K°.

Theorem 8.1.2. Given X with rig-smooth generic fiber, there exists n > 1 such
that, for every II(Kc)-module A which is either finite or has no Z-torsion, every 9)
of finite type over K°, every pair of morphisms ¢, : ) — X which are congruent
modulo (K°°)", and every q, one has HZ*q(go,A) = Gg’q(z/}, A).

Theorem 8.1.3. Given X and %) with rig-smooth generic fibers, there exists an
ideal of definition J of Y such that, for every II(Kc)-module A which is either finite
or has no Z-torsion, every pair of morphisms @, : Y — X which are congruent
modulo J, and every q, one has Gg’q(ga, A) = 9;;7‘1(1#,A).

Theorem 8.1.2 and 8.1.3 are deduced from the following Theorems 8.1.4 and
8.1.5, respectively, in which k is an arbitrary non-Archimedean field with nontrivial
discrete valuation and char(k) = 0, G is the Galois group Gal(k*/k) for a fixed
algebraic closure k* of k, and the formal schemes considered are quasicompact

special over k°.

Theorem 8.1.4. Given X with rig-smooth generic fiber, there exists n > 1 such
that, for every finite discrete G-module A, every Q) of finite type over k°, every pair
of morphisms @, : Y — X which are congruent modulo (k°°)™, and every q, one
has 03 (o, A) = 03 (¢, A).

Theorem 8.1.5. Given X and %) with rig-smooth generic fibers, there exists an
ideal of definition J of ) such that, for every finite discrete G-module A, every
pair of morphisms ¢, : ) — X which are congruent modulo J, and every q, one
has 03 (¢, A) = 0 (¥, A).

If A in Theorems 8.1.2 and 8.1.3 are finite, the required statements follow directly
from the corresponding Theorems 8.1.4 and 8.1.5. If A has no Z-torsion then, as in
the proof of Theorem 8.1.1, the statements are reduced to the case A" = Z, which
follows from the torsion case A = Z/nZ with n > 1.

8.2. Proof of Theorem 8.1.4. Let w be a generator of the maximal ideal £°° of
k°. Instead of the letter n, which will be used for a purpose different from that in
the formulation, we will use the letter .

Step 1. The theorem is true with | = 3 if X is distinguished. In the first substep

1.1, we do not assume that char(k) = 0.

Substep 1.1. Let %! = Spf(k°{T}) be the formal affine line over £°, and let 0
and 1 be the k°-points of 2' which correspond to the homomorphisms ko {T} — k°
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that take T to 0 and 1, respectively. A homotopy between two morphisms of special
formal schemes over k°, p, v : Y — X, is a morphism P : Q) x 2A' — X such that
®(-,0) = ¢ and D(-,1) =9 (cf. [MWES, 2.7]).

Suppose X = Spf(A), where A = k°{Ty,..., T, }/(T\*-.... Ttm —w), 1 <m < mn,
and e; > 1 for all 1 <4 < m, and suppose that at least one of the integers e; is
not divisible by char(k). Let also ) be a special formal scheme flat over k°. We
claim that, given two morphisms v, : ) — X congruent modulo @3>, there exists a
homotopy @ : ) x Al — X between them which is trivial modulo @2, i.e., it coincides
modulo w? with the composition of the projection 2) x 2A' — ) and ¢. (The latter
property implies that, for any subscheme Z C X, that contains ¢5(2),) = ¥s(,),
® induces a homotopy between the induced morphisms ¢, :9) — X, z.)

Indeed, the two morphisms from the claim are defined by the elements f; =
©*(T;) and g; = ¥*(T;), 1 < i < n. Since Q) is flat over k°, it follows that, for every
1 <i < n,onehas g; — f; = @3u; with u; € O(2)). Suppose that e; is not divisible
by char(k). For 2 < i < n, we set H; = f; + @3u;,T € O( x A'), and we have

fOOHS - HE = 0 (fo + @PuT)? - (f + U T = w(1 4+ w®oT)

where v € O(2) x A'). Since e; is not divisible by char(k), there exists an element
a = Y1+ w2vT congruent to one modulo w?. Then the element H; = fia~! is
congruent to g; modulo w?, and one has

HC-HY - Ho =

This means that there is a well defined homomorphism A — O(2) x A') : T; — H;,
1 <7 < n. We are going to show that the induced morphism & : 9 x A 5 X is a
homotopy between ¢ and . By the construction, one has H;(0) = f; for all 1 <
i <n,ie., ®(-,0) = ¢, and H;(1) = g; for all 2 <4 < n. Since gi*-g5*-... g = w,
Hy(1)r-g5?-... g% = w, and the homomorphism O(9)) — O(2)) Qe k is injective,
we get Hq(1)®* = g7'. The latter implies that Hy(1) = g1¢ for an e;-th root of one
¢. Since H; is congruent to g; modulo w?, it follows that ¢ = 1, i.e., H(1) = g1
and, therefore, ®(-, 1) = 1. This implies the claim.

Substep 1.2. The claim of Step 1 is true if X is the same as in Substep 1.1.
Indeed, suppose we are given a special formal scheme 2) (not necessarily of finite
type) over k°, and two morphisms ¢, : ) — X that coincide modulo w?®. We
are going to show that 0] (p,A) = 0] (), A) for all A and all g. First of all, since
the sheaves considered are constructible, it suffices to show that, for every closed
point ¥ € 25, the homomorphisms Rq\Iln(Axn)f — Rq\I/n(AgJ )y induced by ¢
and 1 coincide, where X is the image of ¥ in X3. Replacing the "ﬁeld k by a finite
unramified extension, we may assume that the points X and y are over k-rational
points x € X5 and y € ), respectively. Furthermore, by Theorem 7.2.2, one has
Rq\I/n(Axn)|{§}—)Rq\yn(A(%/(x})n) and Rq\I/n(AQJW)’Ty}*)Rq\I/n(A(Q‘j/{y})n). We
may therefore replace X by X,y and 9 by 2 /(yy and assume that X, = {x} and
), = {y}. In this case, the sheaves considered are just finite discrete G-modules.

We set 3 = ) x A and denote by p the canonical projection 3 — 2 and by
i and j the morphisms 9 — 3 : y — (y,0) and (y, 1), respectively. It follows
from Substep 1.1 that there exists a homotopy ® : 3 — X between ¢ and 1. By
Theorem 7.2.2, applied to the projection p, Rq\IJ,,(ABn) is the constant sheaf on

the affine line AL over k associated to the G-module Rq\I!n(Ag) ) and, therefore,
n
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03 (®, A) is just a homomorphism between constant sheaves on Qli associated to a
homomorphism between finite discrete G-modules. Since poi =poj = 1@, the
required fact follows.

Substep 1.3. The claim of Step 1 is true. Indeed, by Substep 1.2, it suffices to
verify the following two facts:

(1) given an étale morphism f : X' — X, if the statement is true for X (with
some 1), it is true for X' (with the same 1) and, if f is surjective, the
converse is also true (with the same l);

(2) if X = 3,y for a subscheme Y C 3, if the statement is true for 3, it is
also true for X (with the same l).

(1) By [Ber96b, 2.3(i)], one has R\IJ”(A%W)&/;—V)R\IIU(A%;), and this immedi-

ately implies the direct implication. Conversely, assume that f is surjective and the
statement is true for X’ with an integer [ > 1. Given two morphisms ¢, : Q) — X
that coincide modulo @', we set ) = X’ XX 2, 9" =% X%y ), and de-

note by ¢’ and 9" the induced morphisms from 9)" and )" to X', respectively.
The canonical isomorphism 2. =97 over 9),, induces an isomorphism 2)'=2)"”
over 2). Let 1’ be the composition of the latter isomorphism with "”. We get
two morphisms ¢’,1 : )’ — X’ that coincide modulo @' and are compatible
with ¢ and 1, respectively. By the assumption, we have 07 (o', A) = 0%(¢', A).
Since R\IIU(A%])&;:R\IIW(AX:I) and R\PW(A@n)kD%’—TR\Pn(A@;) and the étale

morphisms X{ — X, and 9, — ), are surjective, we get % (¢, A) = 62(, A).
(2) By Theorem 7.2.2, one has R, (A3 )‘y:;R‘Ijn(Ax ), and the required fact
n n
follows.

Step 2. The theorem is true in the general case.

Substep 2.1 (a little digression). Suppose 3 is a reduced formal scheme flat and
of finite type over k°. If Spf(B) is an open affine subscheme of 3 and B = B ®jo k,
then B° = {g € B||g(y)| < 1 for all y € M(B)} is finite over B and coincides with
the integral closure of B in B (see [BGR, 6.4.1/6]). Furthermore, if C' = By for an
element f € B and C = C'®yo k, then C° = (B°)(5;. We can therefore glue all of the
affine formal schemes Spf(5°) so that we get a finite morphism of formal schemes
3’ — 3 with 3/,,:?3,7 and B = B° for every open affine subscheme Spf(B) C 3/,
where B = B ®0 k. We will say that 3’ is the integral closure of 3 in 3y

Substep 2.2. In order to prove the theorem, we may assume that ¥ = Spf(A)
and ) = Spf(B) are reduced affine and flat over k°. Since X, is regular, there exists
a blow-up a : X' — X with distinguished X’ and X; =X, (see Theorem 3.1.3). The

ideal a C A, which is the center of the blow-up, contains the element ' for some
I > 1. We are going to show that the theorem is true with the number 2[ + 3.

Let ¢,9 : 9 — X be two morphisms which are congruent modulo ww?+3. We
set 9" =) x5 X', where the fiber product is taken with respect to the morphism

"

¢. Furthermore, let 2)” be the closed formal subscheme of 9"’ with the same
"

underlying space and whose structural sheaf is the quotient of that of 2™ by the
k°-torsion. Finally, let 9)" be the integral closure of )" in Q)’n/ (see Substep 2.1),

and denote by ¢ the induced morphism )" — X'. Since X, =X, and 2),=9),",
it follows that 2)%32),]. We claim that the morphism v, : 2);7 =9, > X, = X%

extends to a morphism ¢’ )" — X' which is congruent to ¢’ modulo w®>.
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Indeed, suppose the ideal a is generated by elements fy = @', f1,..., fn. Then
X' =, X" with X' = Spf(A;), where A; is the quotient of A’ by the k°-torsion
and

A= A{To, .., T, Tigay - T}/ (FiTo = foro o5 fiTo — f) -
Then %:7 ={z € X%,||f;(x)| < |fi(z)| for j #i}. (It is a strictly affinoid subdomain
of X,,.) The preimage 2)" of X" is an open affine subscheme of §’. Let 9’ = Spf(B;).
Then @; = M(B;) for B; = B; ®o k, and one has B; = BJ. By the assumption,
one has ¥*(f;) — p*(fi) = w?*+3g; with g; € B for all 0 <4 < n. This easily implies
that z/;n(élj;) C }IZ for all 0 < ¢ < n. It follows that the morphism 1, gives rise
to homomorphism A; — B; whose images lie in B; and, therefore, it extends to a
morphism 9’ : 9)’ — ¥’. It remains to verify that 1’ is congruent to ¢’ modulo w?>.
Since B; = B¢, it suffices to show that |(¥*(f) — ¢*(f))(y)| < || for all

0<i<nandall fe A;. The k°-subalgebra of A;, generated by the elements ;—’

with j # i, is dense. Since the image of 2)% in %; is compact, it follows that it
suffices to verify the above inequality only for the elements ]JZ—’ with j # 7. Notice
that |f;(z)| > ||’ for all points = € X, It follows that m, m € 2 B;. We
therefore have

R fj) s (fj> _ w3 g9 (fi) — 919" (f5)) 3B,
v (fi 7\ o*(fi)y*(fi) €= B
and the claim follows.

Substep 2.3. One has 03(¢, A) = 0(),A). Indeed, by Substep 2.2, there is a
E—

commutative diagram
X’ X
@’ md/ mw
EDI

@
@
Ly

Since 9);, =9, one has R¥,, (Agy )= RfBs:(RY,, (A@/ )) and, therefore, the required
n n

equality is equivalent to the equality 07 (o3, A) = 6 (¥3, A) which is equivalent, by
commutativity of the above diagram, to the equality 0 (ag’, A) = 0} (ay)’, A). The
left hand side of the latter is the composition 0(¢’, A) o o5 (07 (a, A)), and the right
hand side is the composition 67(¢)’, A) o 9" (0 (v, A)). Since o = )5, the required
equality follows from the equality 01(¢’, A) = 601 (¢)', A), which is a consequence of
Substep 2.2 and Step 1. O

8.3. Proof of Theorem 8.1.5. First of all, we can replace k by the completion o~f
the maximal unramified extension, and so we may assume that the residue field k
is algebraically closed. We also fix a generator w of the maximal ideal k°° of k°.

Step 1. Let 8 : 3 — 2 be a morphism of finite type such that the theorem is
true for the pair (X, 3), and suppose that either (1) 3,—%),, or (2) 3 is a covering
in the étale topology of ). Then the theorem is true for the pair (X,2)). Indeed, let
J be an ideal of definition of 3 such that, for every A and every pair of morphisms
¢',¢": 3 — X, which are congruent modulo J, one has 0] (p, A) = 0%(1), A). Let T
be an ideal of definition of ) which generates an ideal of definition of 3 contained
in J, and suppose we are given two morphisms ¢, 1 : Y — X, which are congruent
modulo Z.
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(1) Given an étale morphism X’ — X, and let )" and )" be its base changes with
respect to the morphisms ¢ and v, respectively. Since @, = 1), there is a canonical
isomorphism 2),=9)" which lifts to a unique isomorphism 2)'=%2)"”. In this way
we get two morphisms )’ — X’ which are compatible with the morphisms ¢ and
1), respectively, and they induce two homomorphisms H ‘1(%%, A) = R‘IF(%%, A) —
H1 @%, A). The equality 01(¢, A) = 01(¢), A) is equivalent to the property that the
latter two homomorphisms always coincide for any étale morphism X’ — X.

We apply the above remark to the morphisms ¢’,v’ : 3 — X, induced by ¢ and
1), respectively. By the construction of Z, the two morphisms ¢’ and v’ are congru-
ent modulo J. It follows that the two homomorphisms H9(Xy, A) — H9(37, A),
induced by ¢’ and ¢, coincide, where 3’ = 3 XX X'. Since 353 X9 %', where
' =9 x X X', it follows that 3;]/—72);7 and, therefore, the two homomorphisms
HY(%5,A) — HYY5, A), induced by ¢ and 1, coincide. This implies that the
theorem is true for the pair (%X,9)).

(2) The assumption implies that the two morphisms from (cpﬂ)Z(Rq\Iln(Axn)) to
Rq\I/n(Asn), induced by ¢ and 1, coincide. Since Rq\l’n(A:’)n) = [ (Rq\lln(Ai& )
and g is a covering in the étale topology of %), it follows that the two morphisr]ns
o (Rq\yn(A}:n)) — qu}n(Agj,, ), induced by ¢ and ), also coincide.

Since ), is rig-smooth, we can apply Theorem 3.1.3 to Q). The above state-
ment (1) then implies that, in order to prove the theorem, it suffices to consider
the case when 9) is distinguished, and (2) implies that it suffices to find an étale
neighborhood of every point of 9, in 2) for which the theorem is true (with X). We
may therefore assume that Q) is affine and there is an étale morphism ) — Spf (6),
where C is the adic completion of C = ke {Ty,...,Tn}/(T{ - ... - T¢m — w) with
respect to the ideal generated by Ty - ... -T,, where 1 < v <m < n, and ¢; > 1
for all 1 < ¢ < m. In this case, the ideal b C O(9)) generated by the elements
Ty-...-T, and w is an ideal of definition of ). Suppose the conclusion of Theorem
8.1.4 holds for the formal scheme X with an integer I > 1. We are going to show
that the conclusion of Theorem 8.1.5 for the pair (X,9)) with the ideal b, where
1 :l(61 —|—...—|—em).

Step 2. Since the sheaves Rq\l’n(Axn) and Rq\I/n(AQJ ) are constructible, in
order to prove the above fact, it suffices to show that for z:ny A as in the theorem
and any pair of morphisms ¢, : ) — X, which are congruent modulo b’ the
two homomorphisms RY \IIU(A}:,,)X — Rq\ll,](AQJn)y, induced by ¢ and 1), coincide

for all ¢ > 0 and all closed points y € 9),, where x = @s(y). Recall that, by
Theorem 7.2.1, there is a canonical isomorphism RY¥,, (ASU )x—RY, (Ag)/ ), where
n n

D' =9 /{y}- Thus, the required fact is reduced to the verification of the following
statement: given a closed point y € 2), and two morphisms ¢, ¢’ : Q) = Yy + X
which are congruent modulo b’"t, where b’ is the maximal ideal of definition of g)’,
one has 01(¢’,A) = 01(y',A) for all A as in the theorem. Furthermore, since
'3 (2}, where 3 = Spf(C) with C' from Step 1 and z is the image of y in 3,
we may replace 9) by 3, i.e., 2 = Spf(C) (we do not need the morphisms ¢ and
anymore).

Step 3. Suppose that T;(y) =0 for 1 <i<wand T;(y) #0 for u+1<i<m.
If T;(y) = 0 for some m + 1 < ¢ < n, we can replace such T; by T; — 1, and so we
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may assume that T;(y) # 0 precisely for u + 1 < i < n. Then we may replace 2)

by the open affine subscheme defined by the inequality T,41 - ... T, # 0, i.e., we
may replace C' by the localization Cyr,,,.....,,}. Furthermore, the homomorphism
B=k{Tn,....T,, T, ... T /(T o T8 Tyyy .. Ty —w) — C

that takes each T; with u+1 <7 <mto Tf’ and is identical on the other coordinate
functions, gives rise to an étale morphism %) — 3 = Spf(B). Then we have again
2)’33/{z}, where z is the image of the point y in 3, and so we may replace ) by
3, i.e., we may assume that ) = Spf(B) with the above B.

Step 4. For every u + 1 <14 < n, the element T;(y) is congruent to a; € (k°)*.
Replacing such T; by Tiai_l, we may assume that T;(y) =1 forall u4+1 <i <n.
Then the maximal ideal of definition b’ of )’ is generated by the elements w, T}
for 1 <i<wu,and Ty — 1 for u+ 1 < i < n, and one has and )’ = Spf(é), where
B is the bL—adic completion of B. Since each T; with u + 1 < i < m is congruent

to one in B, the latter ring contains an e;-th root of their product Tyy41 - ... Thp-
Thus, we can replace T by its product with an invertible element of B so that
B=E°[[T, .+ Ty Sutty - -y Sl /(T7 - Tow —w)

where S; = T; — 1. At this moment we may replace the letter u by m.

Step 5. From the above description of B it follows that there is an isomorphism
2)',,32 x D"~ where

Z={x € GR|T{ (x) -+ T (x) = w and |Ti(z)| < 1 for all 1 <i < m}

and D™~ ™ is the open unit polydisc in A"~ with centre at zero. Notice that the
projection Q_)% — Z gives rise to isomorphisms

HY(Z, A):Hq(gj%, A) = Rq\Iln(A@/ )
for all A as in the theorem.

Let e =g.c.d.(e1,...,en), and k' a finite extension of k in k* that contains an
element @’ with @’® = w. Then Z&,k is a disjoint union [ee,. Z©) with

z® ={zeGr, T (@) - TS () = €' and |Ty(x)] < 1 for all 1 < i < m},
where €] = < and, therefore, 2)%3]_[56% V©, where Y& = Z© x D" and

A= Z(é)@@k/@. All of the k’-analytic spaces Z() are isomorphic, and we are
going to describe them.
Let 7 be the kernel of the homomorphism of algebraic tori G/ — G :

(w1, Tp) = o5 - oo -z, It is a split torus of dimension m — 1. Fur-
thermore, we can find integers p1,...,pn, with >./*, eip; = 1. Then the shift
G = Gt (@1, o) ((E;’l)”l Yoy (gwg”,”;pm) takes Z(¢) to the open sub-

set {z € T*||t;(x)| < |@'|7Pi for all 1 < i < m}, where t; = (égﬁ The latter is
the preimage 771(P) of an open convex subset P of the skeleton S(7) of T with
respect to the retraction map 7 : 72 — S(T).

We set r = |w|€1+“1'+€m and V = {y € 9, |lg9(y)| < r for all g € b'}. One has
VRrk! = ee,, V(| where V) = (V&,k') NY©. For every £ € p, there is
an isomorphism V©=SU x E;7™(05r), where E;,"™(0;7) is the closed polydisc in
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D}7™ of radius r with center at zero and U = 77! (z), where z is the point of S(7)
with |T;(z)| = r for all 1 < i < m, i.e., U is a poly-annulus with all internal and
external poly-radii equal to r.

We claim that, for any A, there is a canonical isomorphism of cohomology groups
HY(Qy, A)=H9(V,A). (Notice that the group on the left hand side is Rq\I/n(AQJr ).)

Indeed, this follows from [Ber96b, 3.3], which implies that H?(Z© A)=HY(U,A)
(and both of these groups are ¢-th exterior powers of A(—1)).

Step 6. The theorem is true. Indeed, suppose we are given two morphisms
¢ 9" Q)" — %, which are congruent modulo b’ with [; as in Step 1. Since both
of them go through morphisms to X' = X /{x}> where x = ¢/ (y), it suffices to show
that the homomorphisms H(X7, A) — H9(V, A), induced by ¢’ and ¢/, coincide.

Since V' = M(C) is strictly k-affinoid, we can find an affine formal scheme U flat
and of finite type over £° with %, = V. We may also assume that 2 is normal.
Then U = Spf(C°), where C° = {g € C||g(y)| < 1 for all y € V}. It follows that the
canonical immersion V' — 2);7 is induced by a morphism of formal schemes U — 9)'.
Since ¢’ and ¢ are congruent modulo b, one has ¢"*(f) — "*(f) € b’™ for all
functions f € O(X’). It follows that |(¢"*(f) =" (f))(y)| < r'* = ||’ for all points
y € V. The latter implies that the restriction of the function ¢™*(f) — ¥"*(f) to
V lies in the ideal of C° generated by w', i.e., the morphisms 2 — ¥ induced by
¢ and 1)’ are congruent modulo w'. By our choice of [, the two homomorphisms
HY(x5;, A) — HY(V,A), induced by ¢’ and ¢/, coincide. O

9. INTEGRAL COHOMOLOGY OF RESTRICTED ANALYTIC SPACES

9.1. Construction and first properties. As in §0.7, we introduce the category
K-An of restricted K -analytic spaces, which is the localization of the category
quasicompact special formal schemes flat over K° with respect to admissible proper
morphisms , i.e., proper morphisms ) — X that induce an isomorphism between
the generic fibers 9),—X,. Its objects are denoted by X , Y and so on. The
quasicompact special formal schemes flat over K° which give rise to X are said to
be formal models of X. There is an evident faithful (but not fully faithful) functor
K-An — K-An : X — X so that the generic fiber functor X — X,, goes through
it. Raynaud theory [Ray74] implies that, if Y € K-An is such that the strictly K-
analytic space Y is compact, then for any X € K-An there is a canonical bijection
HomK_ﬂ(?,)?)’%’HomK_An(Y,X). In particular, the above functor gives rise to
an equivalence between the full subcategory of K -An formed by formal schemes flat
and of finite type over K° and the category of compact strictly K-analytic spaces.
We say that a restricted K-analytic space X is rig-smooth if the K-analytic space
X is rig-smooth. For such X , the family of distinguished formal models of X is
cofinal in that of all formal models

We fix for every restricted K-analytic space X a formal model X. Given A" €
DY(TI(K¢)-Mod), we define complexes of I1(K¢)-modules

RI(X,A') = RU(X%, RO"(Ay )) and RI(X,A) = RT(XL, RUJ(Ay ) -
For a II(K¢)-module A, we also define II(K¢)-modules
HY(X,A) = RID(X, A) and HY(X,A) = RIT(X,A) .
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For @ € II(K), the corresponding complex and group are denoted by RI'(X (&), A")
and Hq(X(w) A) If X is compact, then X(®) can be viewed as the K (=)- analytic
space X (@) and X can be viewed as a II(K¢)-space @ — X (@),

Theorem 9.1.1. The following is true:

(i) the complezes RT(X,A’) and RF(?,A') do not depend on the choice of a

model up to a canonical isomorphism, and are functorial in X;
(ii) there are canonical isomorphisms

RI(X,Z) ®% A SRD(X,A) and RT(X, A SRIM(RD(X,A))
where TM(Ke) s the functor II(Kc)-Mod — Ab: A — A(Ke),

(iii) Hq()/(\', Z) and Hq()?, Z) are finitely generated abelian groups equal to zero
for g >2dim(X) + 1, if F = C, and for q > 2dim(X), respectively;

(iv) the action of II(K¢) on Hq()?, Z) is quasi-unipotent; zf)A( is Tig-smooth,
there exists p > 1 such that, for every q > 0, the action of the element
(o7 — 1)7L on HI(X,Z) is zero;

(v) if A € DY(Z/nZ[G(Kc)]-Mod), there are canonical isomorphisms

RT(X,A)RT (X4, A') and RO(X, A) SR (X e, A) -

Remarks 9.1.2. (i) The subscript ét in (v) means that the corresponding com-
plexes are considered with respect to the étale site. They are also viewed as com-
plexes of II( K¢ )-modules and, in paurticular7 the second isomorphism is the isomor-
phism RF(X(w) AP SRO(X, @) A=) ) for each w € II(K¢).

(ii) By Theorem 9.1.1(i), one can define the cohomology groups H?(X,A) and
H9(X,A) canonically as projective limits of the groups RIr(xh, R@h(A%n)) and
qu/f,(%g, R@h(Ax )), respectively, taken over formal models X of X.

Proof. (i) Let X and Y be restricted K-analytic spaces with formal models X and
), respectively, and suppose we are given a morphism ¢ : Y - X. By the defi-
nition, there exists a proper morphism b : )’ — 2) with EZ)U—&]?? and a morphism
Y : Y’ — X which gives rise to the morphism ¢. Since 2)%32)77, Corollary 7.1.4

implies that R@h(AQJ )= RbE, (R@h(A@ )) and R\I'h(A'@n)'—TRbg*(R\I/Z(A'@,n)). It

follows that RI'(9),,, A')=~RI(Y;, A') and RT (Y5, A')=RT (Y5, A') and, therefore,
the morphism ¢ induces morphisms RI(X,A") — RI(Y,A’) and R['(X,A") —
Rl"(?, A’), which do not depend on the choice of the morphism b. This implies the
required statement.

(ii) follows from the corresponding properties of the functors RO" and R
introduced in §7.1.

(v) follows from Theorem 7.1.7.

(iii) That the groups considered are finitely generated follows from Theorem
7.1.1(iii) and [Ver76, 2.4.2]. The statement on vanishing of those groups follows
from (v) and the additional fact that the same holds for the II( K ¢)-modules Z/nZ,
n>1.

(iv) Quasi-unipotence of the action follows from the similar fact for the sheaves
Rq\IlZ(an) in Theorem 7.1.1(iv). If X is rig-smooth, one can find a distinguished
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model X. Theorem 5.3.1 implies that, for such X, there exists p > 1 such that oP
acts trivially on the above sheaves, and the required fact follows from the spectral

sequence E}? = HP (X5, R1W}(Zy ) = HP (X, Z). 0

Corollary 9.1.3. For every prime l, there are canonical II(Kg)-equivariant iso-
morphisms

HY(X,Z) 97 ZiSH (X, Zy) = lim H(X s, Z/1"Z) . 0
—

The above functors are naturally extended to functors 17_ — H q(?_,A') and
SA/. — HY (f/.,A‘) on the category of simplicial restricted K-analytic spaces 17.
The following statement easily follow from Corollary 7.1.5.

Corollary 9.1.4. Given a compact hypercovering a : 17. — )A(, there are canoni-
cal isomorphisms HY(X, Z):Hq(}/}., Z) and Hj(?, Z)’—TH‘I(?.,/Z\) and, in partic-
ular, there are spectral sequences EV'? = HY(Y,,Z) = HP*9(X,Z) and E}? =
HY(Y,,Z) = H"(X,Z). O

Corollary 9.1.5. Given a finite covering of a compact strictly K-analytic space
X by compact strictly analytic subdomains, U = {U,;};er, there are Leray spectral
sequences EY? = HP(U,H(Z)) = HPY9(X,Z) and EY? = H?(U,H'(Z)) =
HP4(X,Z), where H9(Z) and H'(Z) are the presheaves U — H9(U,Z) and U —
H4(U,Z) on the category of compact strictly analytic subdomains of X . (I

Remark 9.1.6. An example of an admissible proper morphism is an admissible
blow-up , i.e., a blow-up with the property that the restriction of its center 7
to every open quasicompact subscheme contains a nonzero element of K°°. It
would be interesting to know if the family of admissible blow-ups X' — X for a
quasicompact special formal scheme X is cofinal in that of all admissible proper
morphisms. This is true if X is of finite type over K°. In general, this would
imply that K _An coincides with the localization of the category of quasicompact
special formal schemes with respect to admissible formal blow-ups. Notice that the
canonical functor from the latter category to K-An goes through the category of
uniformly rigid spaces introduced by Kappen [Kapl2]

9.2. Comparison theorem. Suppose we are given a morphism of germs of F-
analytic spaces (B,b) — (F,0), a separated scheme ) of finite type over Op; and
flat over Of o, and a subscheme Z C );. The formal completion j/ z of )Y along
Z as a special formal scheme over K°. The scheme Y also defines a pro-F-analytic
space V" over D.

Theorem 9.2.1. In the above situation, there are canonical isomorphisms
HYY"(2L),, Z)=H((V)2), Z) and HUV"(Z])5, 2)FHY((Y)2)7. Z) -
Recall that the groups on the left hand sides are the inductive limits lim H?(V;,, Z)
—

and lim HY(Vz, Z) taken over open neighborhoods of Z" in (a representative of) Y™,
N

where V, is the preimage of F* in V and V5 = V;, X+ C with the fiber product taken
with respect to the exponential map C — C*. (Recall that, if F = R, HY(V,,Z)
are the étale cohomology groups of the R-analytic space V;,.)
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Proof. Comparison Theoregl 7.3.1 implies that there are canonical isorllorphisms
RqI‘(Zh,R@(Zy#))lHq((y/Z)n,Z) (resp. RqF(Zh,R\I/n(Zy#)):Hq((y/z)ﬁ, Z)).
Furthermore, since ) is separated, each representative of J* is a paracompact

topological space and, therefore, Z" has a fundamental system of open paracompact
neighborhoods in Y. From [Gro57, §3.10] it follows that

RIT(Z", RO(Zyn)) = lim R'C(V, Rj. Zyy,) = lim H(V,, Z) .

This gives the first isomorphism. The second isomorphism is established in a similar
way. For this we use a construction from [SGA7, Exp. XIV].

Let C denote the set C U {oo} provided with the topology which extends that
on C and such that a fundamental system of open neighborhoods of oo is formed
by the sets {z € C|Re(z) < r} U {oo}, r € R. Then the exponential map C — C*
extends to a continuous map C — C that takes co to zero, and the action of 7 (F*)
on C extends to a continuous action on C. It is easy to see that the space C is
homeomorphic to the subset {0} U{z € C|Re(z) > 0} C C. In particular, it is
metrizable. Given a pro-analytic space X over D, we set X = X x¢ C. Then the
last diagram in §2.3 can be complemented as follows

XWH'XCZ%X§

R

X, —>X <X,

Here j is an open immersion, and the complement of its image is i(X5). Notice that,
for any point 2 € X, each open neighborhood of the point i(z) in X contains the
preimage of an open neighborhood of the point i(x) in X¢. It follows that, for any
abelian sheaf F on X, there are canonical isomorphisms i*(Rj,(F))=RW, (F).

Applying the above construction to the pro-analytic space ", we get a pro-
topological space Y. Since representatives of " are metrizable, then so are repre-
sentatives of Y. It follows that Z" has a fundamental system of open paracompact
neighborhoods V in Y* and, therefore, RIT(Z", RW},(Zyn)) = hj}l RIT(V, Rj*th ).

Since each open neighborhood of Z" in VP contains the preimage of an open neigh-
borhoods of Z" in ", the latter group coincides with lim H?(Vz, Z) as in the
—

formulation. 0

Corollary 9.2.2. For every proper scheme ) over K, there are functorial isomor-
phisms

HI(YM Z)=HY (Y™, Z) and HI(Yh, Z)=SH (Y™, Z) ,
where W =Y xp F.

Proof. We can find an open embedding Y < )’ in a proper scheme Y’ over Op o
for which Y = y,; and Y*" = ,’7, and the inductive limit in Theorem 9.2.1 can
be taken over the preimages of open neighborhoods of zero in F. This gives the

required isomorphisms. [
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9.3. Compatibility with integral cohomology of algebraic varieties. Sup-
pose we are given a morphism of germs (B,b) — (F,0), and set 7 = Spec(Ops)
and 7, = T ®o;, K. The formal completion T = Spf(Op,) is a special formal
scheme over K° = @F,0~

A scheme X of finite type over 7, defines a pro-F-analytic space X h over D*.
One sets XP = X" xp. D* (it is a II(Kc)-space). Its base change X ®o, , (”)\B,b is
a scheme of finite type over Spec(@B,b ®go I/C\) and, therefore, it defines a strictly
K-analytic space X®® over 7A77, which will be called the (non-Archimedean) analyti-
fication of X (see [Berl5, §3.2]).

Theorem 9.3.1. Every morphism ¢ : Y — X?" from a compact strictly l%-analytic
space Y to the analytification X** of a separated scheme X of finite type over T,
gives rise to homomorphisms

HY(X" Z) - HY(Y,Z) and HY(X" Z) - H (Y, Z)
functorial in'Y and X.

Remark 9.3.2. Functoriality in Y and X’ means that, given a morphism of compact
strictly /E-analytic spaces Y/ — Y and a morphism of schemes X — X’ compatible
with a morphism of germs (B,b) — (B’,b") over (F,0), where X’ is a separated
scheme of finite type over 7 and T’ = Spec(Op ), the following diagrams are
commutative

HY(X", Z) — HY(Y,Z) HY(Xh, Z) — HY(Y,Z)
HY(X™ Z) —= HYY', Z) HY(X'",Z) — HYY ,Z)

The vertical arrows here are the canonical ones, the upper horizontal arrows cor-
respond to the morphism ¢ : Y — X" and the lower arrows correspond to the
induced morphism Y’ — Xx’an,

Let k be a non-Archimedean field with nontrivial discrete valuation, R a Henselian
discrete valuation ring whose completion is k°, S a local noetherian flat R-algebra
with residue field E, and K the fraction field of R (e.g., R = Opo and S = Op as
above). For a scheme of X of finite type over S, the formal completion Xof X along
the closed fiber X (defined by the maximal ideal of S) is a special formal scheme
over k°, whose generic fiber /’?,, is a paracompact strictly k-analytic space. We set
X, = X@rK, and denote by X" the analytification of the scheme X, @g S (defined
in [Berl1b, §3.2]). There is a canonical morphism /’?,7 — A" If X is separated over
S, it identifies the former with a closed analytic subdomain of the latter and, if X
is proper over S, then )/(\n:?éﬁ?“. If X is a scheme of finite type over S ®p IC, then
X, = X and we write X*" instead of A"

Lemma 9.3.3. Let X be a separated scheme of finite type over S @r K, and ¥ a
compact subset of X such that the subset o = {x € X|[H(x) : k] < oo} is dense
in 3. Then
(i) there exists an open embedding X < Y in a separated scheme of finite type
over S such that X =Y, and ¥ C jm'
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(ii) given a homomorphism S" — S from a similar local R-algebra S’, a sepa-
rated scheme X' of finite type over S' @ IC, a morphism ¢ : X — X’ com-
patible with the homomorphism S’ — S, and an open embedding X' — Y’
in a separated scheme of finite type over S" with X' = Y, and **(%) C 377’,,
there exist separated morphisms of finite type Y’ — Y and ¢’ : V" — )’
such that Y/ =Y, = X, ¢}, = ¢, and ¥ C 377’,’

Proof. (i) Step 1. By the Nagata compactification theorem (see [Con07]), there
exists an open embedding X < Z in a proper scheme Z over S flat over R. One
has 2?7 = Zp and ¥ N (Z,\X)* = (. It suffices therefore to verify the following
statement. Given a separated scheme X of finite type over S, a compact subset
Y C /’?,7, and a Zariski closed subset Y C &, with Y™ NY = B, there exists a blow-
up X' — X with X; =X, and ¥ C ZAn, where Z is the complement of the Zariski
closure of Y in X'.

Step 2. The statement is true if X = Spec(A) is an affine scheme. Indeed let
elements g1, ..., g, € A generate the ideal of J in A ®z K. We can find [ > 1 such
that the closed analytic domain W = {z € Xﬁm| l9i(2)| < || for all 1 <i < n} has
empty intersection with X, where w is a generator of the maximal ideal of R. Let
f : X’ = X be the blow-up of X whose center is the ideal of A generated by the
elements @', g1, ..., gn. One of the open affine subschemes from the construction
of X" is W = Spec(B), where B is the quotient of A[Ty,...,T,]/(@'Ti — gi)1<i<n
by the k°-torsion . Since 17\/\,7 = W, it follows that #'(X) N W, = (), where 7’ is
the reduction map )/('\,’] — X!. But W; contains the intersection Y’ N X!, where )’
is the Zariski closure of ) in X’. Thus, if Z is the complement of )’ in X”, then
7'(2) C Z, and, therefore, ¥ C 277.

Step 3. The statement is true for arbitrary X. Indeed, let {X};c; be a finite
open affine covering of X'. By Step 2, for every ¢ € I there exists a blow-up
X" — X7 with X" X} and such that $NX} C Zi, where 21 = X"\ ) and Y’ is
the Zariski closure of YN X! in X""*. For every i € I, the center of the i-th blow-up
can be extended to a coherent subsheaf of ideals J; C Oy that contains a nonzero
element of k°°. Let f; : X' — X be the blow-up with center 7;. We can find a
blow-up f : X’ — X whose center contains a nonzero element of £°° and such that,
for every i € I, one has f = f; o g;, where g; is a morphism X’ — X', We claim
that X' possesses the required property.

Indeed, that property is equivalent to the fact that #'(X) N (Y’ NX!) = 0, where
7’ is the reduction map AA?,’] — X! and )’ is the Zariski closure of ) in X”. Suppose
there exists a point z € ¥ with 7/(z) € Y’ NX.. One has x € Eﬂ)/('\é for some i € I.
Then 7'%(z) € V' N X/*, where 7/ is the reduction map /E;’ — X! and V' is the
Zariski closure of Y in X’%. Since X! is an open subscheme of X’?, the intersection
V' X" coincides with the Zariski closure of Y N Xé in X ie., with V', and we
get /i (xz) € V' N X%, This contradicts the assumption 3 N 2?,’] C 2}7

(ii) Consider the graph morphism I', : & — & Xgpec(s) X' = (¥ Xgpec(s) Y )n-
We claim that the closure Y" of T',(X) in Y Xgpec(s1y V' and the induced morphisms
V' =Y and ¢ :Y" — YV possess the required properties.

Indeed, by the construction, X = Y, and ¢; = ¢. It remains to verify that

Y C 377/,' Since the subset 377’7/ is closed in y;; an it suffices to show that it contains all
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points z € ¥g. The field H(x) of such a point z is the completion of a finite extension
K’ of K. The integral closure R’ of R in K’ is a Henselian discrete valuation ring.
Since z € 37,] and ¢*"(z) € 5)\7’77 there are associated morphisms Spec(R’) — ) and
Spec(R’) — ), which give rise to a morphism Spec(R') — Y Xgpec(sry V'. The
image of Spec(K’) under the latter lies in I',(X'). It follows that the image of the
closed point of Spec(R’) lies in Y. This implies that « € JA),’,' . O

Proof of Theorem 9.3.1. By Lemma 9.3.3(i), there exists an open embedding X —
Y in a separated scheme Y of finite type over 7 and flat over K° such that X =Y,
and o(Y) C JA)n. Comparison Theorem 7.3.1 implies that there is a canonical
isomorphism RO (Zy )ZR@"’(Z%) and, therefore, the morphism ¥ — )717 induced
by ¢ gives rise to a homomorphism

RIT(V!', RO(Zyn ) SRIT (V! RO" (23, ) = HI(Y,, Z) — HI(Y, Z) .
Furthermore, the spectral sequence
By = HY(V!, R1O(Zyy)) = RPHT(V!', RO(Zy1))

gives rise to a homomorphism Ey? = Ho(yg,RqG(ZyT;;)) — RqF(yg,R@(Zyg)).
The composition of the canonical map HY(X" Z) — HO(){?,R‘I@(ZWL)) with
the above two homomorphisms gives the required homomorphism H?(X" Z) —
HY(Y,Z). That it does not depend on the choice of the open embedding X — Y
easily follows from Lemma 9.3.3(ii). That this homomorphism is functorial in Y is
trivial. Functoriality in & also easily follows from Lemma 9.3.3(ii). The homomor-
phism HY(X" Z) — H(Y,Z) is constructed in the same way. O

9.4. Compatibility with cohomology of the underlying topological space.
Given a K-analytic space X, there are morphisms of sites X¢ — |X| and X¢ —
|X|, where | X| and | X| denote the underlying topological II( K¢)-spaces of X and
X, respectively. It follows that, for any abelian group A, there are canonical ho-
momorphisms H9(|X|,A) — H(Xg,A) and HY(|X|,A) — H9(X¢,A)) and, for
finite A’s, the groups on the right hand side coincide with the groups H4(X, A) and
HI(X, A), respectively.

Theorem 9.4.1. For every restricted K -analytic space X and every abelian group
A, there are canonical homomorphisms

HI(|X],A) — HY(X,A) and HY(|X|,A) — HU(X,A)

which are functorial in A and X and, for finite A’s, coincide with the above homo-
morphisms.

Proof. We construct the second homomorphism since the first one is constructed
in the same way.

Step 1. Suppose that X comes from a formal scheme of the form )A)/ =z, where Y
is a strictly semistable scheme over K° and Z is a union of some of the irreducible
components of X,. As in the proof of [Ber00, Lemma 4.1], one deduces from re-
sults of [Ber99, §5] that there is a canonical isomorphism H9(|X|, A)=~HZ,  (Zc, ).

Zar
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Furthermore, the canonical homomorphism Az, — R7. (A ) gives rise to a ho-

(Zh,)log
momorphism

HY(ZE, ) — HY(Z%, RUMA 5, ) = HI(X,A) .

Thus, the canonical homomorphism Hf (Zc,A) — HI(Z%,A) gives rise to the

~

required homomorphism which is functorial in A and X.

Step 2. Suppose that X’ be a restricted K ’_analytic space for a finite extension
K’ of K, and X is the space X' but considered as a restricted K- analytic space.

Then X5 X' x Hom g (K’, K*) with the induced action of the Galois group of K.

Step 1 implies that there are homomorphisms H?(|X |, A)=H q(X ,A) which are also
functorial on A and X.

/

Step 3. The functor X HY(|X]|,A) is naturally extended to the category of
simplicial restricted K-analytic spaces. Thus, if )A’. is a simplicial restricted K-
analytic space such that each ffn is a finite disjoint union of spaces from Step 2,
then there are canonical homomorphisms H?(|Y, |,A) — H q(}A’.n,A) which are
functorial in A and }A’.

Step 4: Let X be a restricted K- analytic space, and let X be an arbitrary formal
model of X. By Temkin’s results from [TemOS] (or Theorem 3.1.3), there exists a
compact hypercovering a : Y — X with Y_ as in Step 3. Then there are canonical
isomorphisms

)—>H‘1(Y A) = (X,A),

on?

H(|X|,A) — H(JY,

on

which are easily verified to be functorial in A and X. O

10. DIFFERENTIAL FORMS ON DISTINGUISHED LOG SPACES AND GERMS

10.1. Complexes wy and Wy /R Given a morphism of log F-analytic spaces ¢ :
X — B, one defines a coherent sheaf of relative logarithmic differentials w}( /B 88
follows: it is the étale O x-module which the quotient of Qk/BEB((’)X ®z MY by the
Ox-submodule generated by local sections of the form (df(m),0) — (0, B(m) ® m)
and (0,1 ®n) with m and n local sections of Mx and ¢~!(Mp), respectively. The
image of a local section m of M¥ under the homomorphism M¥ — wl that takes
m € MY to (0,1®m) is denoted by dlog(m), and one has dlog(f) = % for a local
section f of O%. If ¢ is log étale, then w}(/B =0.

Notice that homomorphisms of O x-modules wﬁ( /B Ox are in one-to-one cor-
respondence with ¢ ~!(Op)-linear log derivations on Ox, i.e., pairs (9, d) consisting
of a ¢~1(Op)-linear derivation d : Ox — Ox and a homomorphism 9 : MY — Ox
(to the sheaf of additive groups Ox) such that 9(8(m)) = B(m)d(m) and (n) =0
for all local sections m of Mx and n of ¢~ 1(Mp). The ¢~ !(Op)-linear log deriva-
tions of Ox form a sheaf of Lie ¢~ (Op)-algebras Der x,p with respect to the Lie
bracket [(91,01), (02,02)] = ([01, 2], [01, D2)), where [0y, Do) is defined in the usual
way and [01, 02](m) = 01(02(m)) — 02(01(m)) for local sections m of Mx.
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Let w% /5 be the g-th exterior power of wi s over Ox. The direct sum wy, 5 =
EBgiOwg( /B is a differential graded algebra. If the log structures on X and B are triv-
ial, then w, /B is the usual de Rham differential graded algebra Q' /B The g-th de
Rham cohomology groups (of X over B) are the groups Hj, (X/B) = RIT(X, Wy p)-
If B = F° provided with the trivial log structure, the de Rham complex and the de
Rham cohomology groups are denoted by wy and Hig (X), respectively. If F = R,
the sheaves wg(c are provided with an action of the complex involution ¢ compati-
ble with its action on X¢. It follows that the groups Hi (X¢) are provided with
an action of the complex involution ¢, and one has Hip (X) = Hé{R(Xc)<°'> and
Hiz (X) ®r CHHIR (Xc).

The classical Poincaré lemma is extended to log spaces as follows: if the mor-
phism of the underlying F-analytic spaces is smooth and ¢*(Mp)—= My, then for
every point z € X, the canonical morphism of complexes wpp — Wy, 1S & quasi-
isomorphism, where b = ¢(z).

The definition of the relative de Rham complex extends in the evident way to
morphisms of log pro-analytic spaces in which all of the transition morphisms are
étale.

Till the end of this section, X is a distinguished log F-analytic space over ptg,
where R is from §5, i.e., R is either K? for 1 <r < oo, or K° = Op (in the latter
case we set 7 = 00). Recall also that, if r = oo, X comes from a distinguished log
germ (Y, X) over (F,0) from Definition 5.1.1(ii), and it is provided with the étale
sheaf of local rings Ox = i~ '(Oy(x))) and the log structure Mx = i~ (My(x)),
where 4 is the map X — Y (X). We also set wy = i_l(w'y(X)) and wy,p, =
i_l(wi/(x)/n?(o))v and denote by Hip(X) and Hi (X/R) the higher direct images
of the latter with respect to the functor of global sections on X. As above, if
F = R, the sheaves wg(c /Re A€ provided with an action of the complex involution
¢ compatible with its action on X¢, and one has Hiy(X/R) = Hiz(Xc/Rc)'®
and Hjg(X/R) ®r C=HJ;(Xc/Rc). Notice also that if X has a fundamental
system of open paracompact neighborhoods in Y, then the above groups are just
the de Rham cohomology groups of the log pro-F-analytic space Y (X), Hi; (Y (X))
and Hiz (Y (X)/F(0)), respectively, and one has

Hip(X) = ILH}HgR(V) and Hip (X/R) = ILH}HgR(V/F) )

where V' runs through open neighborhoods of X in Y and the logarithmic structure
on the F-analytic affine line F is generated by the coordinate function z.

The sheaf wy . is an étale sheaf on F. Its value on F?, denoted by wp, is free of
rank one over R with generator dlog(w) for each w € m(R). If F = R, one has wh, =
(w}zc)<c>. If @’ is another element of w(R), then dlog(w’) = (1 + %@)dlog(w),
where a = %

The sheaves of O x-modules w% and wg( /R A€ locally free, and there is an exact

sequence of complexes
(%) 0—>w11%®Rw'X/R[—1]i>wx—>w'X/R—>O.

Here w}z is considered as a complex in degree one, the homomorphism f takes the
element dlog(w) ® n for a local section 7 of wgg/}% to the element dlog(w) A7 for

a local section 77 of wg(_/}{ that lifts 1. The exact sequence (x) induces a connecting
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homomorphism

V: Hig(X/R) = wi ©r Hig(X/R)
called the Gauss-Manin connection. That V is a connection, i.e., V(yz) = dy ®
r++V(z) for all v € R and € Hi; (X/R), follows from the facts it coincides with
the differential d? of the spectral sequence EV'? = RPtip, (grP) = RPip, (wy)
of the filtered object

F'=wy DF' =wp ®rwy p[~1] 2 F? =0

(see [EGA3, Ch. 0, 13.6.4]), the filtration is compatible with the exterior product,
ie., Fi A F/ C Fi*tJ and the sequence of functors RYyp, is multiplicative (see
[KO68)).

For each element w € m(R), the composition of V with the isomorphism y :
wpr—R : dlog(w) + 1 is a homomorphism

0w+ Hip (X/R) = Hip(X/R)
so that V(z) = 0 (z) ® dlog(w) for € Hip (Xc/Rc). One has 6w — @i, = @.
If @’ is another element of w(R) as above, then ¢, = (1 + 5’”T(0‘))(5w1. Thus,
the homomorphisms d, give rise to an action of the ring W(R) on the de Rham
cohomology groups Hi (X/R).

The exact sequence (x) gives rise to the similar long exact sequence for coho-
mology sheaves of the complexes and, in particular, to a similar homomorphism of
sheaves

ViH (wy/g) = Wi R H(wy/R) -
which is easily seen to possess the similar property V(yz) = d(y) ® = +yV(z) for
all v € R and all local sections x of H?(wy, ). Again, for each element @ € m(R)
the composition of V with the isomorphism y : wh=R : dlog(w) + 1 gives a
homomorphism
0 HQ(WX/R) — Hq(WX/R) )

and all these homomorphisms give rise to an action of the ring W (R) on the sheaves
H (wy/g)-

We now notice that the above operators d on the groups H; (X/R) and the
sheaves H9(w, / ) are induced by endomorphisms gw of the complex wy /R in the

derived category of complexes of sheaves of F-vector spaces. Namely, 0., as a
morphism in the derived category, is defined by the canonical quasi-isomorphism
C(f) — w,p and the morphism of complexes 6w C(f) — Wy p» Which is the
composition of the canonical morphism —4(f) : C(f) — wk Qg wy,p and the
isomorphism wh—R : dlog(w) — 1. It follows that the spectral sequence

() ERT = HP (X, H(wy ) = HIZ(X/R)

is compatible with the action of the operators gw. We will show in §10.5 that the
operators 5w define a homomorphism from W(Rc) to the endomorphism ring of
Wyg/Ro in the derived category of sheaves of F-vector spaces on Xc.

In what follows we also consider modified de Rham complexes, which are more
general than the complex w , and to which some results are extended without any
extra effort. Such a complex wy, , is associated to a number A € QN [0,7) and
consists of II( R¢)-sheaves of C-vector spaces on the II(R¢)-space X¢. (If A =0, it
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is the usual de Rham complex w .) Given g > 0, the sheaf wgfc) » that corresponds
to w € II(R¢) is canonically isomorphic to the subsheaf %[A]wg% of wg(c, where
[A] is the integral part of A, but it is convenient to denote it by w’A%[)‘]wg(c. The

reason is that the differential d : w%_ \ — wg(zl , is defined by

d(w ™) = @ (= Adlog(w) A n +dn) ,

[’\}wg(c. Given a B-morphism ¢ : w — @’

where 7 is a local section of the sheaf @
in II(R¢), the corresponding morphism w_/\z%[’\]wg(c — w’_/\z%'[/\]wg(c takes the
above @1 to @'~ exp(—AB) . (1), where ¢,, is the corresponding automorphism
of wk,,- (Recall that ¢, (1) = n (resp. n°) if ¢ is of first (resp. second) type.) We
also set Hig \(Xc) = RT(Xc,wy, \).- We notice that the there is a homomor-
phism of complexes of II(R¢)-sheaves:

WXC,A_[A] = WxoC w*()‘*[)\])n s w*A%[A]n ’

which is an isomorphism if 7 = co, and induces an isomorphism ‘“Xg, A /\]’—VM'XQ Ao
where X' is the closed analytic subspace X, _[y) of X (see Example 5.1.2(iii)). This
isomorphism gives rise to an isomorphism of II( R¢)-sheaves C XL, A=A —Cxc,n, and
often allows one to reduce some problems to the case A € [0,1).

The same construction defines similar complexes wy,, \ (resp. wy,, ) and de
Rham cohomology groups H{g \(Yc) (resp. Hig y(Vc)) for any log F-analytic
space Y (resp. any log scheme ) of finite type) over R.

10.2. Cohomology sheaves of the complexes wy_ , and Wye/Re®

Proposition 10.2.1. The homomorphism MY — wk : m — dlog(m) gives rise
to isomorphisms of II( Rc)-sheaves on X¢

q
Cxcn Pz /\ MS;(TC:H(I(WXC,A)

and isomorphisms of sheaves of C-vector spaces on X¢c, which commute with the
action of the ring W(R¢),

q
sF(nont) — .
Cxc ®z /\M)?CO;IRC—YH(Z(OJXC/RC) .

In §10.5, we provide Wxe/Re with the structure of a W(R¢)-module in the de-
rived category of sheaves of C-vector spaces on X¢ such that the latter isomorphism
is an isomorphism of W (R¢)-modules.

The proposition is an easy consequence of Lemma 10.2.4 which gives a local
description of the complexes wy y and Wye/Ro (and also includes an analog of
Lemma 17 from [HoAt55]). For this we recall the following classical construction.

Let A be a commutative C-algebra provided with p pairwise commuting C-linear
maps Dq,...,D, : A — A. One associates with these objects a complex of C-vector
spaces Ky (D1, ..., D,) with K% (D1, ..., D,) = \%(AP) and the differential defined
by

P
d(fl Ao ALy) = S Dl ALy A= AL,
i=1
It is called the Koszul complex on A with operators D1,...,D,. If Dy =...=D, =

0, this complex (with zero differentials) will be denoted by K, (0P). Notice that if
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one of the maps is bijective, the complex K4 (Dy, ..., D)) is exact. Indeed, suppose
D; is bijective. We define a C-linear map F; : K%(Dy,...,D,) = K4 1 (Dy,...,D,)
that takes fl; A--- Al with j1 < ... < jg to zero, if i &€ {j1,...,54}, and to
DAy A ATj A AL, if i = ji. Then Fyod+do F; = Id.

7

Construction 10.2.2. Suppose that A is a commutative C-algebra which is em-
bedded in the C-vector space of formal power series of the form f =3, . axT¥
with coefficients in C and such that, if f as above lies in the image of A, then
the latter contains the elements Y, g axT™ for all subsets S C Z™ (see examples
of such A’s below). Suppose we are given a tuple of functions § = (d1,...,0p)
on k € Z" with values in C . For 1 < < p+1, let A((;) denote the C-vector
subspace of A whose nonzero elements are f’s as above in which the sum is taken
over the tuples k with the property d;(k) =0 for all 1 < j <i¢—1 and d;(k) # 0.
(If © = p + 1, the latter condition is empty.) Then there is an isomorphism of
C-vector spaces @fill Ag’)’%“A. Finally, suppose we are given p pairwise commutat-
ing C-linear maps Dy,..., D, : A — A such that, if f =3, ;. axT* lies in the
image of A, one has D;(f) = >y cz. aid;(k)T™ for each 1 < i < p. Then for every
1 <14 < p, D; induces an injective C-linear operator A((;) — Agz), and we assume
that this operator is bijective. (This amounts to convergence of the formal power
series D, 1(Tj), 1 < j < p, and will always hold in our examples.) Then one can
define subcomplexes Ej,, ..., Ej, ., of K4 (D1,...,Dp) in which

Bl ={w=> fily A AL, |fi € AP}
J

and there is an isomorphism of complexes @f;lE&i'—TK'A (D1,...,Dy). Since the
restriction of each D; to A((;i) for 1 < i < p is a bijection, one can define C-linear
maps F; : Ef. — Egl_-l (as above) with F; - d + d - F; = Id. This means that
the complexes Ej,, ..., Eé,p are acyclic and, therefore, there is a canonical quasi-
isomorphism

E(g,p+1'—v>K;4(D1, ...,Dp) .

Examples 10.2.3. Here are some of the examples of C-algebras to which Con-
struction 10.2.2 will be applied in this and the following sections with the field
K =K.

(1) Ais the local ring Oy ,, where X' is the log scheme Spec(C;) with

Cp = Ko[Ty, ..., T /(T .. TS — 2, TT - TT), if 7 < 00,
and Coo = K°[T, ..., T,)/(TF* ... - Tom — z), if r = o0,

1 < v <m < n, the log structure on X is generated by the coordinate
functions 717, ..., T),, the morphism of log schemes X — ptp is defined by
the homomorphism z +— Tf' - ... T and z is the zero point of X",
ie., ti(z) = 0 for all 1 < 4 < n, where t; is the image of T; in C,. (If
r < o0, z is a fixed generator of R°°.) Each element of A has a unique
representation as a power series f = Zkezi axt® over C taken over tuples
k = (k1,...,k,) € Z7 with the property that, if 7 < oo, then k; < re;
for some 1 < i < v, and such that f is convergent at each point from the
intersection of X" with a small ball in C™ with center at zero. Notice that
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the local ring Ox , for a distinguished log analytic space (for r < oco) or
germ (for r = 00) X over ptg is of the above form A.

(2) B is the localization of A from (1) with respect to powers of the element
ti-...-t, withl <p<vifr <oo(resp. 1 < p < mifr=o0). Each
element of B has a unique representation as a power series f = Y, 7. axt®
taken over tuples k € Z* x Z' " such that (t; -...-t,)'f € A for some
1> 0. If X’ is the spectrum of the localization of C, with respect to powers
of the element ¢ - ...-t, and j denotes the open immersion X’ — X, then
B is the stalk at x of the analytification (j,Ox)" of the sheaf j,Ox:.

(3) B'is the stalk at x of the sheaf j#Oym for X’ from (2). Each element of B’
has a unique representation as a power series f = > . axt® taken over
tuples k € Z* x Z""" with the property that, if r < oo, then k; < re; for
some u+ 1 < ¢ < v and such that f is convergent at each point from the
intersection of X’" with a small ball in C™ with center at zero.

Lemma 10.2.4. In the examples (1)-(3), the following is true:
(i) the map L, A...Nlj, = dlog(Tj,)A...Adlog(T;,), 1 < j1 <...<js<m,
induces quasi-isomorphisms of complexes
Crr e @ K (0™)Fwn 3 o (i 2)s = (W 3o 5
(ii) the map lj A. . .Alj, = dlog(Tj,)A. . . Adlog(T},), 1 < j1 <...<jg <m—1,
induces quasi-isomorphisms of complexes
CXh@ ®c KC (Om_l):w;{h/R,z:;(j*w;v’/R)Z:(jfw}(/h/R)z :

We notice that the complexes (j*w‘X/’A);f and (j*w'X,/R)f}C depend only on the

complex analytic germs (X", z) and (", z), where I = X\X’. Indeed, if J is the

subsheaf of ideals of O with support ", then (j*wg(,)\)g and (j*wfv,/R);L coincide

with the stalks at = of the sheaves lim Hom(J",w%, ) and lingom(J”,wfv/R),

respectively.
Proof. In the situation of examples (1)-(3), we set e = g.c.d.(e1,...,en), €; = &
for 1 < i < m, and we denote by o the image of the element T," - ... Ty" in A.

Notice that o° = z, and o generates the R-algebra Cyn ;. If A is of the form £ with
0 <p<re, then Cyn 5, = CoP, and if A is not of that form, then Cxn » , = 0. Let
U be one of the rings A, B, or B’.

(i) First of all, the isomorphism from the end of §10.1 reduces the situation to
the case A € [0,1). In this case each of the complexes on the right hand side is
naturally isomorphic to the Koszul complex

B, 0
Ky (D1,....,Dpy—— .., — | ,
U( b e 6Tn>

where D; = Ti% — Ae; - Id. The classical Poincaré lemma implies that the latter
complex is quasi-isomorphic to the Koszul complex Kj;, (D1, ..., D,,) of the similar

ring U’ with n = m. We may therefore assume that n = m.

Since D;(T*) = (k; — Ae;)TX, we can apply Construction 10.2.2 for the tuple of
functions & = (81,...,06y,) with §;(k) = k; — Xe;. The C-linear maps D; : Ul —
Ug are bijective and, therefore, the complex considered is quasi-isomorphic to the
subcomplex Ej . . ;. The space Uémﬂ) consists of the elements f =", a T* €U
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in which the sum is taken over k’s with k; = Ae; for all 0 < 7 < m. If X is not of the
form £ with 0 < p < re, then such k do not exist and, therefore, E} i1 =0, and
it is precisely the case when Cyn » , = 0. Suppose now that A = £ for 0 < p < re.
Then for the above k one has k; = pe/, for all 1 < i < m, and the image of T* in
U is the element ¢P. This implies that Uémﬂ) Co? = Cyn ), and, therefore,
Carpe @c Ka(0M)=E5 4.

(i) Let Fj; and G}, denote the complexes that corresponds to U in (i) and
(i), respectively. The U-module G}, is the quotient of F{i by the U-submodule
generated by the one-form dlog(z) = >, eidlog(Ti)7 and, in particular, it is a free
U-module of rank n — 1 with generators dlog(Tl) o dlog(Tm—1),dTmt1, .-, dTy.
For1<i<m-—1, weset D; = TlaaT - TmaT Then for any f € U, one has

mz_:lD-( f)dlog(T; _df— of ——dlog(z) .
P ‘ 6T " 0T,

1=m-+1

This implies that there is a canonical isomorphism of complexes

0 0\ —
K, (Di1,..., Dty =y o —— -
U( 1, y 1 1 8Tm+1 8Tn>—>GU

As in (i), the Poincaré lemma reduces the situation to the case n =m

One has D;(T*) = 6;(k)T* for 6;(k) = k; — km <=, and the corresponding map
D, : Ugi) — Uéi) is bijective. We can therefore apply Construction 10.2.2. It follows
that the canonical map Ej,, — Ky (D1, ..., Dy—1) is a quasi-isomorphism. If k is
a tuple as above with k; = k,,, == for all 1 <4 < m, then k; = pe; with 0 <p < re
for all 1 <4 < m. It follows that U, ém) is the R-algebra generated by the element
0, i.e., it coincides with Cyn ,. This implies that Cxn , ®c K¢ (Om’1)3E57m. a

Proof of Proposition 10.2.1. In order to show that the homomorphisms constructed
are isomorphisms, we may assume that F = C and that X and x are from Example
10.2.3(1) with K = K. Both isomorphisms follow from Lemma 10.2.4. It remains
to show that the second isomorphism is a homomorphism of modules over W (R).
By the above description, each cohomology class in HY(w' / )z is represented by a
C-linear combination of elements of the form & = ¢'n with n = dlog(Tj,) A... A
dlog(T},) and ¢" € Cx x5 for A =% < r. One has d§ = Ao'dlog(w) A n. The form
on the right hand side is the image of element d log(w) @A € (wR®Rw'X/R[— 1])a+t.
It follows that 6, (&) = A¢. O

Corollary 10.2.5. In the situation of Proposition 10.2.1, if X is a complex number
such that the C-linear operator 6 — X is not invertible on Hig (Xc/Rc) for some
g >0, then A€ QN[0,7) and Cxo x # 0.

Proof. If X\ is a complex number, which does not lie in Q N [0,r), or Cxs.x = 0,
then the operator d — A is invertible on all of the sheaves H(wy / Re)- This

implies that the operator 5~w — ) is invertible on all of the C-vectors spaces E5?
from the spectral sequence (xx) in §10.1 and, therefore, it is invertible on the groups
Hip(Xc/Rc). O
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10.3. Complexes Wstog and W rog In [KN99, §3], the space ng is provided with
C
- log

a sheaf of differential graded C-algebras W tog (denoted there by wy.°%). We recall
C

the construction. Consider the exact sequence of abelian sheaves (see §5.3)
0— 7 10x) 2 L yiox — T (MY,) — 0.
One defines a sheaf of 77(Ox,,)-algebras (’)ng by

Oyioe = (17 (Ox) @z Symg (L 106)) /T

where J is the sheaf of ideals generated by local sections of the form f®@1—1®u(f)
for local section f of 77!(Ox,). The canonical homomorphism £ xlos = o xlos

is universal among homomorphisms from £ e to 77 (Ox, )-algebras. One also
C

defines a sheaf of differential graded C-algebras on Xé)g by
w.chog = OXé’g ®-,—71((9XC) Tﬁl(w'Xc) .

We consider wibg as single II(Rc)-sheaves on the II( Rc)-space ng so that mor-

C
phisms of first (resp. second) type act trivially (resp. as the complex conjugation).
We introduce II( Rc)-sheaves of C-algebras and of differential graded 7~ (O 106 )-
C

algebras on X8 by Oy = Vfl(OX'lcog) and W = V*I(w'ng), respectively. The

restrictions of the above II( R¢)-sheaves to X @) are denoted by Ox =) and Wy ()5
respectively, and for a morphism ¢ : @ — @’ in II(R¢c), the corresponding isomor-
phism (tgo)_l(w‘x(w))zw'x(w,) is denoted by ¢. For example, if ¢ : @ — @’ is a
B-morphism (of any type), gz takes log(w) to log(w’) + 8 (see Example 5.3.2(i)).

Notice that the Poincaré lemma implies the following fact: given a smooth mor-
phism ¢ : X' — X with ¢o*(Mx)=Mx, for every point 3’ € X"°¢, the canonical

morphisms of complexes w: — W eg v and w-—— are quasi-
C b

X&5y X Xy Xy
. . _ . . — - 1 /1
isomorphisms, where y, ¥’ and 7 are the images of the point 7' in X®*, X5™* and

Xlog, respectively.
We are going to introduce bigger complexes of sheaves of Rc-modules on chog
and Xlog

Wytos = OreQnio,nWyos , and Ty = Breqnio,n) Wy ) »

. I .
where Wiz, =V (lecug,)\) and each Wilor

from the previous subsection. As in the definition of the latter,

is related to the complex wy )

q .
w in essence
XSE

a but its differential is different so

log
XC

P‘]wigg. Namely, it is defined by

coincides with the subsheaf %P‘]w‘;(log of w
C

that it is convenient to denote it by w @

d(w =) = w A (=Adlog(w) A1 + dn)

for a local section 1 of z%[)‘]wg(bg (e.g., dlw @) = @[\ — N&PNdlog(w)).
C

The sheaves w°

~_ are also denoted by O 1 , and O ,, respec-
XZEA XTog,\ Y Yxlos y p

Xlog )7
tively.
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If ¢ : w — @ is a B-morphism in II(Rc) as above, then the corresponding
isomorphism ¢z : (") (@ r@MNw ) )T MWl ) is defined by
(@) = @' exp(=AB)wa(n) -
The element @5 (d(cw™n)) is equal to @'~ exp(—AB) multiplied by
pw(—Adlog(w) A+ dn) = —A(dlog(w') + dB) A x(n) + dpa(n) -
On the other hand, the element dyg(w™*n) is equal to o'~ multiplied by
—Aexp(=AB)dlog(w’) A ¢z(n) + d(exp(=AB)gam(n)) =
= exp(=AB) (—Adlog(w@') A we(n) — AdB A pu(n) + des(n))

This means that w1, , and we | are complexes of sheaves of II(Rc)-modules on
&, ;
the TI(R¢)-spaces Xé’g and X°g, respectively. If X = 0, they coincide with Witox
C
and w:
Xlog

We now provide the sheaves Eg(log and wqx(ﬁ,) with a different structure of an
C

Rc-module so that the differentials between them commute with the action of R¢
and the complexes w becomes a complex of sheaves of Rg-modules.

o and Wrog

Namely, for @ € II(R¢c) we define

@ (w ) == M (@)

for a local section n of z%wwigg and ﬁp‘]wg((ww respectively, as above. One has

d@- (@ ) = @ V(A + Ddlog(w) A (@n) + d(zn) =
w~ MY (& (=Ndlog(w) An+dn)) =& - d(w *n) .

This means that the endomorphism of multiplication by @ commutes with the
differential. Furthermore, given a morphism ¢ : w — @’ in I[I(R¢) as above, the
element (@ - (w™*n)) is equal to

(@ M (@n)) = @O exp(—(A + 1)B8)@a(n) -
Since exp(—f)w = w@’, that element is equal to

@' "G exp(—A\B)pw(n) = & - ol ) .

_ 1 Yos
Thus, wg(log and are complexes of sheaves of Rc-modules on X5® and Xog,
C

w:)(log
respectively.
There is a canonical morphism of complexes of sheaves of II(Rc)-modules on

log
XC

h)\ : Til(CXC)\) — leCog,)\ s

where 771(Cx,») is considered as a complex in degree zero. Namely, by the def-
inition of Cxs x (see §5.2), if U is a connected open subset of X¢ and A # kj—U
for 0 < j < rky, then C{™(U) = 0 for all w € II(Rc). Suppose A = = for

0 < j < rky. Then Cg\w)(U ) is the one-dimensional C-vector space generated by
the element ¢/ = @MNt? with t*v = & and p = j—ky-\. We define a homomorphism
() - w’)‘w[A]Ong(T’l(U)) by sending ¢/ to @~*#/. One has

d(w ) = @ (=Mt dlog(w) + jt’dlog(t)) =0
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and, therefore, h) is a morphism of complexes. Given a S-morphism ¢ : w — @’ in
II(Rc¢) of first (resp. second) type, the corresponding homomorphism from C;w) )
to {7 (U) (resp. €\ (c(U))) takes at! to aexp(—AB)t! (resp. @exp(—AB)(tc)7)
for a € C. It is compatible with the similar homomorphism for the sheaf of II( R¢)-
modules @~ @M O 10s. Thus, hy is a morphism of complexes of sheaves of II(R¢)-
modules. Finally, oné3 has

ha(@t?) = ha(H+0) = o= O (&t7) = & - hy(H)
and, therefore, the morphism h : 771 (Cxs) — Wy 10e induced by hy’s is morphism
C

1 . . . o
of complexes of Rc-modules on X%, The above morphisms gives rise to similar

morphisms of complexes of sheaves of II(Rg)-modules hy : 7' (Cxg.a) — Wi

and of Rg-modules h: 71 (Cxg) — Wiy ON Xlosg,

og
Proposition 10.3.1. The morphism hy is a quasi-isomorphism (and, therefore,
h, hy and h are quasi-isomorphisms).

Proof. We may assume that F = C.

Step 1. It suffices to show that, for every point y € X!°8, there is a canonical
quasi-isomorphism Cgf))\ym:?w_xﬁ[’\]wklog’y, where © = 7(y). We may therefore
assume that X = Spec(B)" with B as in Definition 5.1.1 and x is the zero point
in X, ie., Ti(x) = 0 for all 1 < i < n. (We use notations from that definition).
By the Poincaré lemma, we may even assume that n = m. Notice that for any
connected open neighborhood V' of = one has ky = ey = e = g.c.d.(eq,...,€m).
We set A = Ox,. By [KN99, (3.3)], if we fix elements of £xios , whose images
under the exponential map £ yios , — Mi’:’x are the generators Ty, ..., T,, of P(X),
we get an isomorphism R[S7,...,Smn]|=Oxw0 It follows that, for every ¢ > 0,
one has

g’y-
wiog , = A®c s, 6.1/

with dw = 2111 e;dS; and dT; = T;dS; for 1 < i < m. Elements of the C-algebra
A are represented as convergent power series Y, axT®, where ay € C and the sum
is taken over the tuples k = (ki1,...,ky,) € Z7 with k; < re; for some 1 < i < pu.
For such k, one has

d(w %) = @ TN (ki — Ae;) dS; .
i=1

Notice that k; — Xe; = 0 for all 1 <4 < m if and only if A = % for some 0 < j < re,

an in this case k; = jej for all 1 <i < m, where ¢ = <.
Step 2. We set V4 = Q%}[Sl,...,sm]/c and, for a tuple of complex numbers p =

(p1, ... ,pm), define a differential dp : V4 — VIT! by

dpw = — (ZpidS’Z) Aw+dw .

i=1

Each element w € w? is a convergent sum Y, T¥wy with max{deg(wi)} < oo,

Xlog y
where the degree of ) 35 f;dS;, A...AdS;, € V¥ is the maximum of degrees of nonzero
fi’s. Set e = (e1,...,em), Then there is a morphism of complexes

(V' dre—x) — w_’\w'Xlog’y i w A T*p
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such that (T%n) = Ok 'n. Furthermore, the correspondence w +— wy defines a
morphism of the same complexes in the opposite direction.

Thus, in order the prove proposition, it suffices to construct, for every nonzero
tuple p, a system of C-linear maps F : V¢ — V4~ L with dy” 1 qu+Fq+1 odl =1d
and such that, for every n € V9, one has deg(Fg(n)) < deg( ) and for every
w e wg(bg such that wy = 0 for k with Ae — k = 0 (as at the end of Step 2), the

sum ZkT FY, \(wk) is convergent.

Step 3. Let |p| denote the Euclidean length of a nonzero tuple p € C™. Then
the tuple £ ol lies on the unit sphere in R™ and, therefore, there exists an orthogonal
(m x m)-matrix D that takes it to the tuple pg = (1,0,...,0), and for the matrix
C = |1‘D one has p-C = po. Notice that all entries ¢;; of the matrix C' are of
length at most |[p|~!. Consider the automorphism ¢ of the C-algebra C[S1, ..., Sy,]
which is induced by the linear transformation ¢(S;) = Z;”:l ci;S;. It gives rise to
an isomorphism of complexes @ : (V',dp)—=(V",dp,). The latter is isomorphic to
the tensor product V; ®c Q‘C[S%_“, S,]/C where V] is the complex constructed for
the ring of polynomials C[S;] and the tuple 1. The required homotopy for C[S;],
i.e. a C-linear map F : Vit = C[S;]dS; — VP = C[S4], is given by the formula

n
Fy(SpdSy) = =87 =Y (=1)'n(n—1)-...- (n—i+1)8]""
i=1
It induces a homotopy F§ : (V9,dp,) = (V2! dp,) which, in its turn, induces
a homotopy Fg = (947 1)" o F2 o ®? : (V4 dp) — (VI !, dp) that satisfies the
required properties. O

Corollary 10.3.2. There is a canonical quasi-isomorphism of complexes of sheaves
of II(Re)-modules on the II(Re)-space X

RT*(T_l(CXC,/\)):w'XCV,\ .

Proof. By Proposition 10.3.1, there is a canonical quasi-isomorphism of complexes

of II(Rc)-sheaves 77! (Cxg.a )—mxlog a It gives rise to an isomorphism in the

derived category
R7, (171 (Cxo ) RTc(Wigos )
Cc

Thus, it remains to show that the canonical morphism of complexes wy_ \ —

To (W'

los )\) induces, for every ¢ > 0, an isomorphism of sheaves H(wy_ ) —
C ,

(Wiios ) = Ri7,(17Y(Cxs.2)) is an isomorphism. For this we may assume
Cc

that F = C, and the latter homomorphism can be described as follows.
The quasi-isomorphism 71 (Cx, A):Yw'Xlog’ ), gives rise to short exact sequences of

sheaves

_ d
0—7 I(CX7)\) — OXlog7)\ — Ker(w}(mgd — W§(1og7)\) —0 s and

+1
0— d(wxlog) — wxlog A Ker(w$ o A a4 Who )\) —0,qg>2.

The long exact sequences associated to the left exact functor 7, give rise, by induc-
tion, to a homomorphism of sheaves

Hq(T*(wklog,A)) - RqT*(T_l(CX,/\)) )
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whose composition with the canonical map H?(wx ) — H(T«(wyws ) gives the
required homomorphism

HY(wx \) — RqT*(T_l(Cx})\)) )

Since this homomorphism commutes with cup product, the situation is reduced
to the case ¢ = 1 and A = 0. In this case, by Proposition 10.2.1 and [KN99,
Lemma (1.5)], there are canonical isomorphisms f : Cx ®z, My =>H'(wy) and
g:C(-1)x ®Zx M‘(;(T‘:RlT*(CXlog) where C(—1) = C ®z 5--Z. The homomor-
phism a ® Q—n — 5 identifies the latter with C, and it follows easily from the
constructions of f and g that the homomorphism considered induces the identity
map on Cx ®z, Mig. This gives the required fact. ]

Corollary 10.3.3. For every distinguished formal scheme X over K°, there is a
compatible system of canonical isomorphisms

h ~ .
Proof. If F = C, then R@h(Cx”) coincides with the left hand side of the iso-
morphism in Corollary 10.3.2, and the required fact follows. If F = R, then that
isomorphism is an extension to K¢ ,. of an isomorphism of complexes on X;,.. Those

:{h , and this gives the required fact. O

complexes are R@h(R:{") and w;
10.4. Complexes Ly _. For A € QN [0,r), w € II(Rc) and p > 0, let pLg\w)q

denote the subsheaf of Tiw)(w_)‘f%[’\]wg((w)) with local sections of the form

P
=@ ) (logw)'m
1=0

where 79, ..., 7, are local sections of the subsheaf %[’\]wg(c of wgfc. It is a coherent
O x-module isomorphic to a direct sum of p + 1 copies of wg(c, if r = oo, and of
w /@ PWwh , if r < co. One has

P
dy =Y (logw)" (dlog(@) A (= + (1 + )mis1) + dmi) -
1=0
This means that d(pL(w ) C I’L(w)qul and, therefore, there are well defined sub-
complexes pLg\w) pL(w , and L(w Lg?) = hmpL(w) ofT(w)(w Az
B

and PL(®) = PLE?C)' = @AEQJ’LS” “and L(®) = Lg?c)‘ = @AEQJrLg\w " are sub-
complexes of ) (Wy (= )- Notice that, for every p > 1, there is an exact sequence
of complexes

X(W))

0— p_lLf\w)' — ”L(Aw)' — OL(;”)' —=0.

Moreover, the correspondence i — w~ @y gives rise to isomorphisms of com-

(w)- Wy, 0 L(w)-

plexes Wy, = Ly™", if r = oo, and wy_ \/@" [ Wy, ,if r < oco. In

particular, if Cx, x,, = 0 for a point z € X¢, the complexes pL “and Ly w)
acyclic (see Proposition 10.2.1).
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Furthermore, one has

P
&on=w At Z(log w)lan .
1=0

This means that the endomorphism of multiplication by z on w§(w) takes PL(®)4
to itself, and so PL(®)" and L(®)" are complexes of sheaves of modules over Rc.
We introduce C-linear operators 4, : pLE\w)q — po\w)q by

P
=w )‘Z logw)! My — (I + D) -
1=0

One has

p
bw(@-m) = < ~OH Y " (log w) wm) =
=0

— O+ Z@Og @) (A + Daon — (1 + D @msr) =
=0

= (@ dx+@)(n) -

This means that the operators 6., make each PL(#)7 and L(®)? sheaves of modules
over W(R¢). We notice that this operator d, commutes with the canonical action

of Rc on pLE\w)q (which takes the above 1) to w=*Y"V_ (log @)'cm,).
Finally, one has 6, (dn) = d(d-n) since both sides are equal to

P
w Z(logw)l (dlog(w) A (=N2m +2(1 + Dy — (1 + 1) (14 2)mi42) +
1=0
+dn; — (l + 1)d77l+1)

Thus, PL(®) and L(®) are complexes of sheaves of modules over W(Rc).
Let now ¢ : w — @’ be a B-morphism in II(R¢c) of first (resp. second) type.
Then the corresponding homomorphism ¢z from §10.3 takes the above ¢g-form 7 to

p
= exp(~78) Y (los(=) + 6)1
=0

which is a local section of pLE\w/)q, where 7, = n; (resp. n; = nf). This im-
plies that ¢ gives rise to C-linear (resp. R-linear) morphisms of complexes @»r,, :
pLg\w)' — pLE\w/)' (rlesp. Orp,y - c‘l(pLg\w)') — pLg\w/)'), which induce morphisms
VL, - Lg\w)' — Lg\w)' and ¢, : L®) — L&) (resp. op, : c_l(Lg\w)') — L(w)
and ¢r : ¢ (L(®)) = L=, 1t follows from the definition of the multiplication
by @ that @' - ¢ = ¢ - @ and, therefore, there are subcomplexes of sheaves of
II(Rc)-modules PLy C L, C 7, (w'Xlo ) and of Rg-modules PL° C L' C 7. (@

We claim that o © e, = @rr, © 5

Wros)-
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Indeed, setting a* = exp(—AfB), we have

l
Z( > logw')? 8!~ =

0 5=0

priy(m) = @' Azlog )+ B)'n ==’
=0

P P
= oot Z(log w')’ Z <l> By,
- J
j=0

1=j

P
=

If we set & = ), (l.)ﬁl_jn{7 we get
Jeor (o1, () = @'t Z log ') (A& = (j + 1)&j41)
On the other hand, we have
priy (0 (n) = @' o’ Z log(@") + B)' (Mg — (I + 1)mj ) =

= @) (logw')’ Z@ﬂl PO = (4 D)
j=0

l=j
P d l
- w'fw (log )7 [ A& — (l+1>(.)5”772+1

Since (I + I)C) (5 + 1)(”1) it follows that

p p
Z<Z+1>(j)6”‘n;+1<j+1> ) <]+ )ﬂl gt = G D
1= l=j+1

The claim follows and, therefore, PL" and L' are complexes of sheaves of W(R¢)-
modules.
We notice that there is a canonical isomorphism of sheaves of W (R¢)-modules
Cxo SKer(L0 -4 LYY .
It gives rise to a commutative diagram of morphisms of complexes of sheaves on
Xlog

7 (Cxe) —= (L)

|

“xtos

By Proposition 10.3.1, the left vertical arrow is a quasi-isomorphism. It provides
(Rc)-module structure in the derived category of
complexes of Rg-sheaves. It follows 7 1(L') — Wsp 18 a morphism of W(Rc)-
modules in the same derived category, and it induces a morphism of W(R¢)-
modules L" — RT,(Wi;) in the similar derived category on Xc.

We say that a R-linear endomorphism M of a sheaf of R-modules F' on X is
locally nilpotent if, for every section f € F(U) over an open subset U C X and
every point x € U, there exist an open neighborhood U’ of z in U and an integer
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n > 1 with M"(f|,,) = 0. For such M, the exponent exp(M) = > 7" ]‘7/{,” is a

well defined R-linear automorphism of F'. More generally, for any element § € R
the exponent exp(N) = > 7 ];]TT of the operator N = 3-Idr + M is well defined,

and it is in fact equal to exp(5) - exp(M). Indeed, for the above local section f, let

[ > 0 be an integer with M'*1(f ) = 0. Setting g = f|,,,, one has
o0 fe'e) 1
exp(N)(g) = Zl(ﬂ Id + M)™ an Z()Mjﬁn]) —
n=0 " n=0 j=0
- Z (Z ) g) = exp(f) - exp(M)(g) -
Jj= 0

Till the end of this subsection, assume that » < co. Then an example of such
N is the Rc-linear endomorphism J acting on the sheaf Lf\w)q. (The action of
Rc on the latter sheaf is the canonical one.) Indeed, for a local section n =

w Y0 (logw)im of pL( =) one has

r
=@ > (logw) (Am — (I + 1)mig1)

1=0
and, therefore, 6, = AId + M, where M is defined by M(n) = — Y7 (1 4+ 1)ni41.
It follows that MP+! = 0 on pLg\w)q and, in particular, M is locally nilpotent on

Lg\w)q. A more general example of such an endomorphism N is the product 50, for

B € R (with respect to the canonical Re-module structure on Lg\w)q). Notice that
the automorphism exp(fd,) extends naturally to the sheaf L(®)7 = EB)\GQ+ Lg\m)q.

Proposition 10.4.1. Given a B-morphism ¢ : w — @’ in I(Rc) of first (resp.
second) type, the following diagram is commutative

1@ <7 (@) ( resp. 1@ <7 (@) )
b P
L@ Y [@a 27
YXc/Ro “Xo/Re

Proof. Tt suffices to verify commutativity of the diagram on each of the sheaves
Lf\w)q. For a local section n = w=* Y72 (logw)'n; of LE\w)q (the sum is in fact
finite), one has —3d5(n) = —ABn+ M (n), where M is the locally nilpotent operator
with

=@ Y (logm) (1 + Dmiy1



120 VLADIMIR G. BERKOVICH

ep(M)n) = w Yo (Z(logw)l(z F1)- +n>m+n> -

Thus, () (exp(— =) (n)) = exp(=AB) 3272, 871 (vesp. (cot™))(exp(—F)(n)) =
exp(—AB) E;io Bjnjc-). On the other hand, one has

oo

o (n) =" Pexp(=AB) Y (log(@’) + B)'n;
=0
(resp. ] (n) = @' "N exp(—A3) Z(log(w/) +8)n5)
=0

and, therefore, ¥ (1, (1)) = exp(=AB) 3272, 7n; (resp. exp(=AB) Y02 BInS).
The required fact follows. ([l

In the situation of Proposition 10.4.1, the isomorphisms ¢ are induced by an
isomorphism of complexes ¢y, : L(®) — L") but the automorphisms exp(—f0)
do not commute with the differential of the complex L(®) unless § € C. In the
latter case we denote in the same way by exp(—fd) the induced automorphism of
the complex L(®),

Corollary 10.4.2. In the situation of Proposition 10.4.1, assume that € C.
Then @1, = exp(—Pd) (resp. pr = coexp(—Pig)). O

For example, the actions of ¢(®) and exp( —27mid4) on the complex L(®) coincide.

Remark 10.4.3. Suppose that r < oo and we are given an exact functor F' from
the derived category of W (R¢)-modules on X¢ to the derived category of W(Rc¢)-
modules such that F9(L(¥)") = HI(F(L(®)")) are finitely generated over Rc. Then
the operator exp(—2midy) on FI(L(®)") is well defined, but the equality ¢(®) =
exp(—2midy) for the action on L(®)" does not seem to imply the same equality
for the action on F9(L(®)"). The problem is that the action of d, on the sheaves
Lg\w)q is locally nilpotent and the space X in general is not compact. In §11.4 we
overcome this problem in a situation of interest for us.

10.5. A quasi-isomorphism L:XC:WXC/RC‘ If n is a local section of Lg\w)q as

above, we set (@) (n) = M,, where & denotes the image of a local section ¢ of Wg(c
in w‘§<c/Rc. Since (dn)o = dlog(w) A (—Ano +m) + dno, it follows that (dn)o = d7j,
ie., Y@ define an Rc-linear morphism of complexes z/;f\w) : Lg\w)‘ = Wxe/Re-
Furthermore, for a subset I C QN[0,r), we set ng)' = EB,\EILE\W)'. The morphisms
wg\w) define a morphism of complexes quw) : L(Iw)' = Wy e U1 =QN [0,7), we
withdraw it from the notations.
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Proposition 10.5.1. (i) If I contains all X’s with Cxgx # 0, then ™) : LI®)" —
Wye/Re is a quasi-isomorphism; in particular, () define a W (Rc)-module struc-
ture on the complex Wyg/Ro?

(i) the morphisms 65 on L(®) give rise to the morphisms 5~w 0N Wy pe (in-
troduced in §10.1) and, in particular, they induce the Gauss-Manin connection on
the de Rham cohomology groups Hix(Xc/Rc);

(iii) if F = R and w € TI(R), then the action of &) on L(®) is compatible
with the action of the complex conjugation on wg(C/RC.

Proof. Step 1. The statement (iii) is true. Indeed, if n = w=*Y7_ (logw)Pn; is

a local section of Lg\w)q as above, then ¢(@)(n) = w37 (logw)Pns. It follows

that ¢(®) (=) (n)) = 15 = (7,)¢, and we get the claim.

In order to prove (i) and (ii), we may assume that F = C.

Step 2. In order to prove (i), we have to show that, for every point z € X,
the map @AGIH‘I(L(AZ)') — Hq(wkc/Rc,m) induced by 1(®) is a bijection. We can
therefore assume that X = X" for X = Spec(B)" with B as in Step 1 from the
proof of Proposition 10.3.1, z the zero point, and n = m.

Step 3. The C-vector space Lg\?q is generated elements of the form

o @M (logw) fd log(Tj,) A ... Adlog(Tj,) ,

where 1 < ji < ... <j, <m, 1 >0,and f € A= Ox,_ 2 The latter is a
convergent power series » ai T taken over k € 77" with the property that k; <
(r — [A]))e; for some 1 < i < pu. Notice that the differential d(ww*@ (log w)!T*)
is equal to

w ATk (f: ((ki — (A = [A)es)(log @) + le;(log )™ 1)) dlog(Ti)> .

i=1
Let § = (61,...,0m) be the tuple of functions with §; = k; — (A — [A])e; and, for
1<i<m+1,let N/'\J be the subcomplex of Lg?;\x such that Ng_’i consists of C-

linear combinations of the above elements with f € Agi) (see Construction 10.2.2).
There is an isomorphism of complexes

m—+1
) NMQ’LEZ)' .
=1

Step 4. For [ > 0, let Nj ,;, be the subcomplex of Nj ; consisting of forms in
which the degree in log(w) is at most I. One has N, ; o = E5;, Ny ; = U2, N;
and there are exact sequences of complexes

Vi1

0= Ny = Nyiiw1— Es; —0.
Thus, if 1 < ¢ < m, the complex Ej; is exact, and from the above exact sequence
follow that all of the complexes Nj ,, are exact and, therefore, the complex Nj ; is

exact, i.e., there is a canonical quasi-isomorphism complexes N} ., +13Lg\wz)'. The
complex Ny .., is generated by the elements as above with sums » ax T* taken
over tuples k € Z7 with the property that k; = (A — [A])e; for all 1 < i < m.
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Notice that such a tuple exists only for A’s of the form [A] + 2 with 0 <p <e. In
particular, if A is not of this form, then the complex L , . is acyclic.

Step 5. Suppose A = [A] + 2 with 0 < p < e. Then for the above tuples k, one
has k; = pe}, 1 <i <m. It follows that each element of Nf\,m_H is of the form
l

n=w e Z(log w)’¢;
=0

where ¢ denotes the image of T} LT ﬁ:’" in A, and &; are C-linear combination
of the g-forms dlog(7},) A ... A dlog(T},). Notice that

1
dn = w &N " j(logw)’ ' dlog(w) A
§=0
It follows that dn = 0 if and only if dlog(w) A& = 0 for all 1 < j < 1. We
also notice that, since (@) (n) = wNtPg), Proposition 10.2.1 implies that the
map considered in Step 2 is a surjection, and it remains to verify that the map
(@) HINY my1) = MWy pe,.) is an injection.

Step 6. Suppose that for the above element 7, one has dn = 0 and (®) () = 0.
It follows that £, = 0 and, therefore,

1
J+1

j+1

k
n=d| o e Z (logw)’ ™ x; |
j=1

where x; is a (¢ + 1)-form of the same kind with &; = dlog(w) A x;. (Existence
of such x;’s follows from the fact that the Koszul complex K¢(Dy, ..., Dy,) for
the C-linear maps D; : C — C of multiplication by e; is exact.) Thus, the map

’Hq(LgZ)') — Hq(w'Xc/Rc ) is injective, and (i) is proved.
Step 7. Let C(f) be the cone of the morphism f from the exact sequence of
complexes (%) in 10.1 for X¢ over Re. In order to prove (ii), it suffices to construct

a morphism of complexes 7(®) : L(®)" — C(f)" that makes the following diagram
commutative

(=)
L@ C(fy

h léw

YXc/Rc

Recall that, for a local section n = = Zﬁzo(log @)ty of L(®)4, one has ¢(®) () =
7o Recall also that C(f)? = (wk, ®re wﬂgc/Rc) Dwk,, and 5 (dlog(w) @&, x) =
A\ —X. We define a C-linear homomorphism of sheaves (%) : L(®)4 — C(f)? by

@) () = (dlog(@) ® (A + 1), o) -

We see that 9(®) (1)) = 6 (7 (1)), and we have to verify that 4(*) is a morphism
of complexes. For this we recall that (dn)o = dlog(w) A (—Ano + 1) + dno and, in



COMPLEX ANALYTIC VANISHING CYCLES FOR FORMAL SCHEMES 123

particular, (dn)o = d7j,, and notice that (dn); = dlog(w@) A (=Any +2m2) +dny and,
in particular, (dn); = dn,. It follows that

7% (dn) = (dlog(w) @ (=Adiy + i), dlog(w) A (=Amo + 1) + dio) = d(+'=n) .

This implies the required fact. [

Corollary 10.5.2. The action of the ring W(Rc) on the de Rham cohomology
groups Hiz(Xc/Rc) is compatible with the W (Rc)-module structure induced by
that on the complex Wyg/ R O

In the situation of Proposition 10.4.1, the isomorphism of complexes ¢y, : L(®) —
L= gives rise to an automorphism ¢, of the complex wy | /R in the derived cat-
egory. If r < oo and 8 € C, we denote by exp(—fd,) the automorphism of the
complex wy /R induced by the corresponding automorphism of L(®)",

Corollary 10.5.3. In the situation of Proposition 10.4.1, assume that r < oo and
B € C. Then the automorphisms @, and exp(—Bd) (resp. coexp(—F0)) of the
complex Wes/Ro coincide. ([l

(w

For example, the actions of ¢(®) and exp(—2midy) on the complex Wye/Re

coincide.

If » = 1, the assumption of Corollary 10.5.3 holds for all morphisms in the
category II(Kg ;). In this case one also has W(Kg ;) = C[], and the element 6,
does not depend on w. Thus, if & denotes the operator induced by §, on WXo/KE

one has ¢, = exp(—f6). In particular, the action of the groupoid II(Kg,) on
Wyg, K¢ is completely determined by the operator §.
,1

10.6. An isomorphism R7,(Fxi;) ®F Rc—wy, p,- By Theorem 5.4.1, there
is a canonical isomorphism of sheaves of W (R¢)-modules on X¢
X 1 Cxo =T+ ((Ro)xms) = T+(Fxs) ®F Re
which induces a morphism of complexes of sheaves of W(R¢)-modules on X¢
foRT(T7 (Cxo)) = RT(Bo)xmes) = BT (Fxmz) @ Re -

By Proposition 10.3.1, there is an isomorphism of W (R¢)-modules in the derived
category

9 RT.(T 71 (Cxo)) P RT (W) -
We construct a morphism 6 : L' — R7.(Fi5;) ®F Re in the derived category as
the following composition of the homomorphisms

—1
L' = Rr.(@m) & RT(7 ' (Cxo)) 2+ R7.(Fxmr) ©r Re -
Proposition 10.6.1. The morphism 6 is an isomorphism in the derived category
of complezes of sheaves of C-vector spaces, and it gives rise to an isomorphism of
W(Rg)-modules

RT, (FW) XF RC;M.XC/RC
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Proof. 1t suffices to assume F = C and to prove that, for every point x € X and
every integer ¢ > 0, ¢ induces an isomorphism H(L, )= R+ (Cx15;). ®c R and,
for this, it suffices to verify commutativity of the following diagram

H(wx/pa) < Cxo @z N Mo —> R97,(Cxz)e ®c R

iwrl fa
g—l

HI(L,) —— RIT (@) —— > RI7, (7 (Cx))a

where u is the second isomorphism of Proposition 10.2.1, and v is induced by the
isomorphism of Theorem 5.3.1.

We may assume that X = X" for X = Spec(B) with B as in Step 1 from
the proof of Proposition 10.3.1. We set ¢ = g.c.d.(ey,...,€e,) and denote by ¢

the image of the element Tf/1 Ca Tﬁ;’" in O(X), where e; = <. Furthermore,
the group Mﬁ?jc"t) is freely generated by the images of the coordinate functions

T1,...,T—1 and, in particular, its ¢-th external power is zero for ¢ > m. We
may therefore assume that ¢ < m — 1. Each element of the tensor product in
the first row is a C-linear combination of elements of the form v = t/T;, A ... A
T;,. Tt suffices to check commutativity on these elements. After a permutation of
coordinates, we may assume that v = /T3 A ... A T,. Then u(y) is represented
by the element t/dlog(Ty) A ... A dlog(T,), and so 15 ! (u(7)) is represented by the
element w~#t/dlog(Ty) A ... A dlog(T,) of HI(L'), that maps to HUT w55
which, in its turn, maps to RI7. (Wirg)a-
On the other hand, there is a canonical homomorphism of sheaves

q
7.7 1(Cx)) @2, N Mxo™ = R7.(F1(Cx))
and the image of the element n = /71 A ... A T, from the stalk at = of the sheaf
on the left hand side in the stalk of that on the right hand side goes under the
map g, to the class of w~et/dlog(T1) A ... A dlog(T,) in RIT, (W)~ Thus,
commutativity of the above diagram follows from the fact that both maps v and
[« are induces by the same isomorphism x : Cx—=7«(Cp) @c R. O

Corollary 10.6.2. IfF = R, the isomorphism of Proposition 10.6.1 provides the
W(Rc)-module Wyq/Re (considered as an object of the derived category) with an
Rc-semilinear automorphism of order two 9. O

Corollary 10.6.3. For every distinguished formal scheme X over K°, there is a
compatible system of canonical isomorphisms of W(Ké,r)—modules in the derived
category

h o — .
R\I/n(F%n) RF KC’T_ng,ST/Ké,T .
Here we set X¢ = %@Kng.

Proof. By the definition of R\IIZ, the complex on the left hand side of the isomor-
phism in Proposition 10.6.1 is R\I/Z(Fxn), and the required fact follows. (]
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11. COMPARISON WITH DE RHAM COHOMOLOGY

11.1. Formulation of results. Let k be a non-Archimedean field (whose valuation
is not assumed to be nontrivial). For a morphism of k-analytic spaces ¢ : Y — X,
we consider the sheaf of relative one-differential forms 3, /x as a sheaf in the G-
topology on Y (it is denoted by Qy,,,/x,, in [Ber93, §1.4]). Its exterior powers qu/X
form a relative de Rham complex €, /X The de Rham cohomology groups (of Y
over X) are groups Hip (Y/X) = RIT(X, Qy/x). We are in fact interested only in
the following situation.

Let X be a rig-smooth K-analytic space. The de Rham complex and de Rham
cohomology of the canonical morphism X — M(K) are denoted by €y K and
Hi (X/K), respectively. By a theorem of Kiehl [Kie67], if X is a smooth scheme
of finite type over K, there is a canonical isomorphism Hjp (X /K)=HJg (X*"/K).
Furthermore, X can be also considered as a non-Archimedean F-analytic space
for the field F provided with the trivial valuation. The de Rham complex and de
Rham cohomology of the canonical morphism X — M(F) are denoted by Q' and
HY, (X)), respectively. Notice that, if F = R, there are canonical isomorphisms
HgR(X)/;;HgR(XCyd and HgR(X/K):HgR(XC/KC)<C>-

For example, for the morphism M(K) — M(F), one has Qf = K and Q}; is
a one dimensional K-vector space generated by the one form dlog(w) = dgw for
any generator w of the maximal ideal K°° of K°. In particular, HSR(K )=F and
H}p(K) is a one-dimensional F-vector space with a canonical generator, the image
of dlog(w) which does not depend on the choice of .

Furthermore, consider the exact sequence of complexes

0= Q) O Uy /x[-1] 5 Qy = Uy = 0.
As in §10.1, one shows that this exact sequence gives rise to a connection
V: Hip (X/K) = Q) ©x Hip(X/K)

called the Gauss-Manin connection. . For a generator w of K°°, the composition
of the latter with the isomorphism Q} =K : dlog(w) + 1, gives rise to F-linear
endomorphisms
0w Hig(X/K) = Hiz(X/K) ,

which provide the F-vector spaces Hi (X/K) with an action of the algebra W (K).

Furthermore, let k be a non-Archimedean field with discrete valuation which is
not assumed to be nontrivial. Given a morphism ¢ : X — 2) of special formal
schemes over k°, the sheaf of relative differential one-forms Q& ) is the conormal
sheaf of the diagonal immersion X — X x9) X. It is a coherent Ox-module which
gives rise to the sheaf of relative differential one-forms le % (If X = Spf(A) and

%) = Spf(B), then le/@ is the sheaf associated to the finite A-module I/I?, where

I is the kernel of the multiplication homomorphism ARz A — A.)

Furthermore, suppose that ¢ : X — %) is a morphism of fine log special formal
schemes over k°. The sheaf of relative logarithmic differential one-forms w}{ )
is a coherent Oy-module which is the quotient of Q-}f/@ © (O ®z Mg) by the

Ox-submodule generated by local sections of the form (d3(m),0) — (0, 3(m) @ m)
and (0,1 ® n) with m a local section of My and n the image of a local section
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of M@ in M. The image of a local section m of M&T under the homomorphism
Mg — wlf/% :m +— (0,1 ®m) is denoted by dlog(m). The exterior powers of
w%ﬁ/ form a relative log de Rham complex wf{/Q‘]' The log de Rham cohomology
groups (of X over 9)) are the groups Hi; (X/2) = RIT(X, w'%/@). If both formal

schemes X and 2) are of finite type over £° and their log structures are vertical,
then w'x/g) Rpo k = Q'xn/@n and, therefore,

Hip(X/D) @k k = Hig(X,/9,) -

Let us turn back to our field K, and let X be a quasicompact separated distin-
guished special formal scheme over K° provided with the canonical log structure.
The de Rham complex and de Rham cohomology groups of the canonical morphism
X — Spf(K°) will be denoted by Wi Ko and HJ (X/K®), respectively. By the

previous paragraph, if X is of finite type over K°, then w‘x/Ko Qo K = Q% K
n

and Hig(X/K°) ®ko K = Hiz(X,/K). The log formal scheme X can be also
considered as a log special formal scheme over the field F provided with the trivial
valuation and trivial log structure. The corresponding de Rham complex and de
Rham cohomology groups are denoted by Wy and HJp (%), respectively.

For example, for the morphism Spf(K°) — Spf(F), one has w%, = K° and wk. is
a free K°-module of rank one generated by the one form dlog(w) for any generator
w of K°°. In particular, wi. ®go K = Qk, H{z(K°) = F and Hlz(K°) is a
one-dimensional F-vector space with a canonical generator, the image of dlog(w)
which does not depend on the choice of w.

As above (and §10.1), one defines the Gauss-Manin connection

V:HIR(X/K°®) = wio @Ko HiR(X/K°) ,

which gives rise to an action of the ring W (K°) on the de Rham cohomology groups
Hi(X/K°) and, in particular, to F-linear endomorphisms d : Hig(X/K°) —
i (/).

Recall that HY(X5,F) are quasi-unipotent II(K)-modules of finite dimension
over F and, by §4.5, the tensor products H(X5, F) ®p K& are provided with the
structure of a distinguished W (Kg)-module. We set X¢ = %@KoKé. Notice that,
if F = R, then the action of the complex conjugation ¢ on X¢ induces an action
on the de Rham cohomology groups Hip(Xc) and Hig(Xc/Kg), and one has
Hip (X)=HIz (X)) and Hig (X/K°)=HI; (Xc/Kg)!. Recall also that in this
case we denoted by ¢(®) the automorphism of w € II(K), which is the 0-morphism
of second type.

Theorem 11.1.1. Let X be a quasicompact distinguished special formal scheme
over K°. Then

(i) there is a canonical isomorphism of finitely dimensional F-vector spaces
HY(Xp, F)=Hig (%) ;

(ii) the groups Hip (Xc/Kg) have the structure of a single distinguished W (Kg)-
module, and there are canonical isomorphisms of distinguished W (Kg)-
modules

HY(%7, F) @p Kg—Hip(Xc/Kg) -
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(ili) if F = R and w € T(K), the action of ¢ on Hiy(Xc/KQ) coincides
with that of the complex conjugation c.

Corollary 11.1.2. If F = R, the groups Hiy(X/K®°) have the structure of a
single distinguished W (K°)-module, and there are canonical isomorphisms of dis-
tinguished W (K &)-modules (considered as II(K)-modules)

H(X7R) @r KGSHI (X/K°) @0 K& . O

In the situation of Corollary 11.1.2, one can describe the RII(K)-quasi-unipotent
module H(X57, R) and the distinguished W (K°)-module Hj, (X/K°) in terms of
one another (see §0.8 and Example 4.5.7).

Theorem 11.1.1 implies that, for any admissible proper morphism between qua-
sicompact separated distinguished log special formal schemes X' — X, there are
canonical isomorphisms

Hig (X)=Hig (X) and Hip (X/K°)=Hip(X'/K°) .
This allows us to define de Rham cohomology groups of a separated rig-smooth re-
stricted K-analytic space as follows. (A restricted K-analytic space X is separated
if the K-analytic space X is separated.)
For a separated rig-smooth restricted K-analytic space X, we define

Hip(X) = lim Hjp (X) and Hip(X/K°) = lim Hig (¥/K°) ,

where the projective limits are taken over distinguished formal models X of X.
Notice that all transition homomorphisms in these projective systems are isomor-
phisms.

Corollary 11.1.3. Let X bea rig-smooth restricted K-analytic space. Then
(i) there is a canonical isomorphism of finite dimensional F-vector spaces
HY(X,F)FHIL(X) ;
ii) the groups HY )?c KQ) have the structure of a single distinguished W (Kg)-
(i) g dR C g g fe)
module, and there are canonical isomorphisms of distinguished W (Kg)-
modules o
HY(X,F) @ Kg=Hig(Xc/K) ;
(iii) of F = R, the groups HgR()/(\'/KO) have the structure of a single distin-
guished W (K?°)-module, and there are canonical isomorphisms of distin-
guished W (KQ)-modules (considered as II(K)-modules)

HY(X,R) 9r K&SH! (X /K°) @k K& . O

Here is a consequence of Corollary 11.1.3 for compact rig-smooth K-analytic
spaces. For this we say that a W(K¢)-module D is distinguished if it is isomorphic
to the tensor product D° ®pe Kc for a distinguished W (Kg&)-module D°. Tt is
easy to see that the functor D° — D° ®kg, K¢ from the category of distinguished
W (K&)-modules to that of distinguished W (K ¢)-modules is an equivalence of cat-
egories. Similarly, if F = R, we say that a W(K)-module D is distinguished if it
is isomorphic to D° ®go K for a distinguished W (K°)-module D. It follows from
Corollary 4.5.6 that the correspondence D — D ® g K¢ gives rise to an equivalence
between the category of distinguished W (K )-modules and that of distinguished
W (K¢)-modules (considered as II(K)-modules).
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Corollary 11.1.4. Let X be a compact rig-smooth K-analytic space. Then

(i) there are canonical isomorphisms of finite dimensional F-vector spaces
HYX,F)=Hiz(X) ;

(ii) the groups Hin(Xc/Kc) have the structure of a distinguished W (Kc)-
module, and there are canonical isomorphisms of distinguished W (Kc¢)-
modules

Hq(y7 F) X KC:HgR(XC/KC) ;
(iii) if F = R, the groups Hip(X/K) have the structure of a single distin-
guished W (K)-module, and there are canonical isomorphisms of distin-
guished W (K¢)-modules (considered as II(K)-modules)

Hq(Y,R) ®RKC,;HgR(X/K) R Ko . [l

Suppose now we are given a separated distinguished scheme X of finite type
over K° = Op and a closed subscheme Y C X which is a union of some of the
irreducible components of X,. Then (X", V") is a distinguished log germ over (I, 0)
in the sense of Definition 5.1.1(ii). It gives rise to a logarithmic space structure on
V" and was an object of study of the previous section in the case r = co. Instead of
the notation Hi, (V") and H(Y"/KZ,) for the corresponding de Rham cohomology
groups used in §10.1, we denote them by HI.(X"(Y")) and HIL (X"(I")/K°),
respectively. By Corollary 10.5.2, the groups Hi (X" (V")c/Kg) are provided with
the structure of a W (Kg)-module. It follows that the groups Hi, (X" (Y")/K°) are
provided with the structure of a W (K°)-module (considered as a 7(K°)-module).

Theorem 11.1.5. In the above situation, the following is true:

(i) there are canonical isomorphisms
HAX V"), F) = Hig (X" 7)) S Hi (X)) 5

(ii) the W(K°)-module structure on the groups Hip(X"(Y")/K°) is distin-
guished, and there are canonical isomorphisms of distinguished W (K°)-
modules

HG (XM(")/K°) @i KOS HIL (X)/K°) ;
(ili) there are canonical isomorphisms of distinguished W (Kg)-modules
HY(X"(Y")7,F) @ K& Hip (X" (V")c/Ke) |

which induce the isomorphisms of Theorem 11.1.1(ii) for (2?/3;)0;
(iv) if F = R, there are canonical isomorphisms of distinguished W (KCg)-
modules (considered as TI(K)-modules)

HI(X"(YM)7, R) @r K& Hig (X" (V")/K°) @ K&
which induce the isomorphisms of Corollary 11.1.2 for é?/y
Notice that, if X is proper over K°, GAGA implies that there are canonical
isomorphisms
Hifp (X /)= Hig (X" /K°) .
Theorem 11.1.1 will be proved in §11.4 using results from §10 and §§11.2-11.3,
and Theorem 11.1.5 will be proved in §11.5.
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11.2. Comparison of algebraic and analytic de Rham cohomology.

Theorem 11.2.1. Let X be a quasicompact distinguished special formal scheme
of K°. Then for every 1 < r < 0o and every X € QN [0,r), there are canonical
isomorphisms

HgR,,\(xsr):HgR,A(xg) and HgR(%Sr/K:):HgR(er/KS) .

Proof. If F = R, there are canonical isomorphisms HéfR’)\(}CST)’%’HgR’/\((%.g)ST)<c>

and Hiy A(f{};r):?HgR \((Xe)! )@ and there are similar isomorphisms for the sec-
ond pair of groups. This reduces the situation to the case F = C. In this case we
use the reasoning from the proof of Grothendieck’s theorem [Gro66].

Step 1. The statement is true if there exists an open immersion X — X' = JA)/Z,
where Y is a proper distinguished scheme over K° and Z is a union of irreducible
components of Vs such that Z\Xs = ZNW, where W is a union of some of the
other irreducible components of Y.

Indeed, in this case f’sr is a proper log scheme over K, the open immersion j :
X5, — Z{;T is strict, and the complement of X, is locally defined by one equation.

For every ¢ > 0, the coherent sheaves wqx N and (,u:q£ JKe are the restrictions to

,» respectively. Since the morphism

r

q q
X, of the coherent sheaves wx,sr’)\ and w%;r/K

of schemes j is affine, it follows that RPj.(F) = 0 for any coherent sheaf F on X,
and any p > 1 and, therefore, the de Rham cohomology groups H gR,A(%Sr) and

Hi, (X, /K?) are the g-th hypercohomology groups of the complexes j*w_f%s A and

j*ng Ko respectively. Since the scheme .’{’S is proper, GAGA implies that
Hip 2 (X, )FRIT(X, (uwy ") and Hip (X, /K2 SRIDX, (Guwy ) pe0)") -

On the other hand, since the complement of X, is locally defined by one equa-
tion, each point of f{’sh has a fundamental system of open Stein neighborhoods
whose intersections with Z{ZT is a Stein space. It follows that RPj(F) = 0 for any
coherent sheaf F' on .’f?r and any p > 1 and, therefore, one has

h \—~ h :h, - h o\~ h :h .-
H{p A (X5 )ZRIT(XL jiwyen ) and Hig (X0 /K?)=RIT(XL, jiwipen Jxce)
Thus, in order to verify the claim, it suffices to show that there are quasi-isomorphisms
of complexes

. h—~ -h - . h—~_ h, -
(]*W%Sr,)\) s w%:T,A and (J*w%b,/Kf) )« w:{)slr/Kﬁ .

This is a purely local complex analytic fact which follows from Lemma 10.2.4.

Step 2. Let X be an arbitrary quasicompact distinguished formal scheme over
K°. Then each point of X has an étale affine neighborhood which satisfies the
assumptions of Step 1. Indeed, by Definition 3.1.1(ii), each point of X has an étale
neighborhood of the form JA)/ =z, where ) is an affine distinguished scheme over K°
and Z is a union of irreducible components of ),. First of all, replacing ) by
an étale neighborhood, we may assume that all of the irreducible components of
the support of ), are smooth. Furthermore, take an open immersion ) — )’
in an integral projective scheme over K°. After replacing )’ by a blow-up, we
may assume that Y.\Y; is a union of irreducible components of V.. By Temkin’s
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theorem [TemO08, 1.1], there exists a blow-up " — )’ whose center is disjoint
from ). The scheme ) is proper and distinguished, the morphism )" — )’ is an
isomorphism over ) and, in particular, there is an open immersion ) < Y, and
the complement of ) in )” is a union of irreducible components of }?. The claim
follows.

Step 3. The theorem is true for X. Indeed, by Step 2, there exists an étale
hypercovering 9), — X such that each 9),, n > 0, is a finite disjoint union of
formal schemes which satisfy the assumptions of Step 1. By Step 1, the required
statement is true for all 9),,’s. Since the de Rham cohomology groups considered
are expressed in terms of the schemes and their complex analytifications related to
2..’s, the claim follows. O

Corollary 11.2.2. In the situation of Theorem 11.2.1, the cohomology groups
Hig 2(Xs,) and Higp(Xs,/K7) have finite dimension over F.

Proof. We may assume that F = C, and set X = %h By Proposition 10.2.1, one

has H(wy ) = Cxx ©z ' IIY (resp. HI(wy o) = Cx @z A" I ¢). The

sheaves on the right hand side are constructible sheaves of C-vector spaces on X.
Since X is the analytification of a scheme of finite type over C, it follows from
[Ver76, 2.4.2] that the cohomology groups of X with coefficients in those sheaves
have finite dimension over C. This implies that the groups Hig ,(Xs,) (resp.
Hig (X5, /K7)), which coincide, by Theorem 11.2.1, with the groups H{g ,(X)
(resp. Hip(X/Ky)) have finite dimension over F. O

Till the end of this subsection X denotes the log scheme X, over K7, and
we set B = K?. Recall that in §10.4, we introduced, for each A\ € Q N [0,r),

w € II(K¢,) and p,q > 0, a coherent O y-module pLE\w) pL(W)‘f\ This sheaf

is the analytification of the coherent Oxg-module PL{7) = pﬁg\fwc)'i with local
sections, which are convenient to represent in the form

P
=@ > (logw)'n
=0

where 79, ... ,m, are local sections of the subsheaf wMNw%  of w% . The sheaves
pﬁf\w)q form a complex pL‘E\w)' = pﬁgz)7'A with respect to the differential defined

by the same formula as for the complex pL(w)' = pL(w)' . For ¢ > 0, we set

£E\w)q = lim pﬁg\w)q and L™ = &, cqno, ,.)L )% The analytlﬁcatlon of the latter
P

Oxs-modules are the OXh -modules L(w)q and L(®) and they form complexes

E(w) —E ) 5 and L= —EX , respectively.

Corollary 11.2.3. In the above situation, there are canonical isomorphisms of
hypercohomology groups

RID(Xo, "L ) FRID(XE, "L

and these groups have finite dimension over C.
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Proof. For each p > 1, the homomorphisms pﬁg\w)q — Oﬁg\w)q i m = w2y, gives
rise to an exact sequence of complexes

o L O o =
By induction, this reduces the situation to the case p = 0. Furthermore, there are
isomorphisms of complexes
W-XC,A/%r*[A]W-XC,A’;;OE&W)' and wé{é’A/%r*[A]w'Xé’/\’EOLg\w)' )

The complexes on the left hand side coincide with w'Xé yand wy
. &,

X = f{sr%ﬂ. The required facts therefore follow from Theorem 11.2.1 and Corol-
lary 11.2.2. (Il

for the scheme

11.3. de Rham cohomology as a projective limit.

Theorem 11.3.1. Let X be a quasicompact distinguished special formal scheme of
K°. Then there are canonical isomorphisms

i ()75 lim Hip (%,,) and Hig (X/K°) lim Hig (X, /K?)

The following proposition and lemma are slight modifications of Theorem (4.5)
and Lemma (4.6) from Hartshorne’s paper [Har75]. All complexes F" considered
here are assumed to be such that F'?7 =0 for g < 0.

Proposition 11.3.2. Let {F,},>1 is a projective system of complexes of abelian
sheaves on a topological space X, and set F* = lim F}.. Let also T be a functor from

the category of abelian sheaves to that of abelian groups that commutes with direct
products. Assume that there is a base B of the topology of X such that for each
UenB

(1) the homomorphisms FY_(U) — Fi(U) are surjective for all ¢ > 0 and

r=>1;

(2) HP(U,F?) =0 forallp>0,q>0andr > 1.

Then for each p € Z, there is an exact sequence
0 — lim W RPIT(F;) — RPT(F") =% lim RPT(F}) — 0 .

In particular, if for some p, the system {RP™IT(F;)},>1 satisfies the Mittag-Leffler
condition (ML), then «, is an isomorphism.

Lemma 11.3.3. Given a morphism of complexes of abelian sheaves o : G° — F-
and an injective resolution @' : F° — I, there exists an injective resolution " :
G — J and a commutative diagram

I

J

P
Vel

with the property that, for every p, there is an isomorphism JP—=IP & K? such that
BP is the projection onto the first summand.

[}
_—
B

"

R
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Proof. For a complex of abelian sheaves K* and a homomorphism v : K% — L,
there is a complex K with K'(y) = L and a quasi-isomorphism of complexes v :
K — K. with ~9 = ~ which possess the universal property that, for any pair
consisting of a morphism of complexes 6 : K* — P° and a homomorphism L — P°
whose composition with v coincides with 6°, 6" goes through a unique morphism
of complexes K — P". (The complex K, is constructed as follows: KS = L and,
for i > 1, Ki is the cokernel of the homomorphism K*~! — K' @ Ki_l D (-
(dic ' (2), =" 1(2)).)

Let x : G° — K be an embedding in an injective sheaf. Then the sheaf
JO = I° @ KV is also injective, and denote by 1/° the homomorphism G° — J :
r = (a®(¢%(x)),%(z)). The canonical projection 8° : JO — I9 gives rise to a
morphism of complexes G;/)O — F;)O. Application of the same procedure to the
induced morphism of truncated complexes 0>1(G o) = 0>1(F o) and the injective
resolution >1(F0) — 0>1(I") gives an inductive procedure for constructing the
required injective resolution of G". O

Proof of Proposition 11.3.2. Step 1. By Lemma 11.3.3, applied inductively to
morphisms of complexes F; ; — F, we can find a compatible system of injective
resolutions 3. : F;. — I, such that I? ,=I? ® K? and f3,. is the projection onto the
first summand. Then all of the sheaves I” from the projective limit of complexes
I = lim I, are injective. We are going to show that the canonical morphism

.
F — I'is a quasi-isomorphism.

Step 2. For every U € B and every r > 1, the morphism F.(U) — I.(U) is a
quasi-isomorphism. Indeed, since F, — I is an injective resolution, it induces an
isomorphism of hypercohomology groups RPT'(U, F;)=RPT'(U, I,.). But the spectral
sequence E7" = HY(U,F?) = RPTIT(U, F}) and the condition (2) imply that
RPT(U, F;) = FP(U) for all p > 0. Since one also has RPT(U, I,.) = I?(U) for all
p > 0, the claim follows.

Step 3. For every U € B, the morphism F'(U) — I'(U) is a quasi-isomorphism.
Indeed, by the condition (1), all of the homomorphisms Fy, ,(u) — FF(U) are
surjective and, by the construction of the sheaves I'? the same is true for them. We
can therefore apply Proposition (4.4) from [Har75], and we get a homomorphism
of exact sequences

0 ——1im W HP=H(F(U)) — H?(F"(U)) — lim H?(F;(U)) —0
0 ——lim ™ HP~Y(L,(U)) —— H?(I'(U)) — lim H?(I,(U)) —=0

.
T T

By Step 1, the left and right vertical arrows are isomorphisms and, therefore, so is

the middle one. This implies that F* — I" is an injective resolusion of F".

Step 4. The proposition is true. Indeed, one has RPT(F,) = HP(T(I.)) and, by
Step 3, one also has RPT(F") = HP(T(I")). Since the functor T' commutes with
direct products, one has T'(I") = limT'(1;)), and since I? ia a direct summand of
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IP. |, the homomorphisms T'(1¥, ;) — T(IP) are surjective. The required fact now
follows from the same Proposition (4.4) from [Har75]. O

Proof of Theorem 11.3.1. We apply Proposition 11.3.2 to formal scheme X which
coincides, as a topological space, with each X . The base B consists of open affine
subschemes. The sheaves wqx and wqx , are coherent on X and, therefore,

s

the condition (2) is satisfied. That (1) holds follows from the same coherence
and the construction of those sheaves, which implies surjectivity of the canonical
homomorphisms from (r + 1)-th sheaf to 7-th one. Furthermore, the functor 7' is
the functor of global sections and, finally, the Mittag-Leffler condition is satisfied,
by Corollary 11.2.2. This implies Theorem 11.3.1. O

11.4. Proof of Theorem 11.1.1. Step 1. By the definition of the functor RO
and Corollary 10.3.2, there is a compatible system of canonical isomorphisms in
the derived category

R@(Fxn )/;;UJ%;:T 5

and it gives rise to a compatible system of isomorphisms of finitely dimensional
F-vector spaces H(X,, F):HgR(%ZT). By Theorem 11.2.1, the group on the right
hand side of the latter isomorphism is canonically isomorphic to Hig(X,,) and,
therefore, the statement (i) follows from Theorem 11.3.1.

Step 2. Similarly, by the definition of the functor R\IIZ and Proposition 10.6.1,
there is a compatible system of isomorphisms of W(K&r)—modules in the derived
category

RV} (Fy ) ©r K&, Wy IKs,,

where X, = %](13,5,.’ which in the case F = R define a compatible system of K¢ .-
semilinear automorphisms of order two ¥ of the complex w,, /K in the derived
L C,r
category. In this way we get a compatible system of isomorphisms of W (K¢ ,.)-
modules
H (%, F) @p K&, S Hip(X! /K )

which are free K¢ ,-modules of finite rank and which, in the case F = R, are
compatible with the K¢ ,-semilinear automorphisms 19 acting on both sides.

It remains to show that Hig(X,./Kg,) = Hig(X]!/Kg,) is a distinguished
W (K¢, )-module. Since the facts already established imply that the properties (1)
and (2) of Definitions 4.5.1 and 4.5.4 hold, we have to verify the equality o(®) =
exp(—2midz) for the action on Hip (X)/Kg ). For this we may assume that F =

C. (Recall that the property (3) of Definition 4.5.4 follows from that of Definition
45.1.)

Step 3. We set X = X" R = K¢, and fix w € II(R). Since X, is quasicompact,
the set I consisting of A € QN [0,r) with Cx  # 0 is finite. By Proposition 10.5.1,
there is a canonical quasi-isomorphism of complexes @ ¢ IL(;;"—VM'X /R Suppose
we are given an exact functor F' from the bounded derived category of W (R)-
modules on X to the bounded derived category of W(R)-modules such that all of
the R-modules F(wy, p) = HY(F(wy,p)) are finitely generated. We claim that
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the above quasi-isomorphism of complexes induces, for every A € I and every q > 0,
an isomorphism

FULE) S F(wy p)x = { € FI(wy,/5)| (0o — A)" = 0 for some n > 1} .

Indeed, by the proof of Proposition 10.5.1, the above quasi-isomorphism identifies
’Hq(Lg?/)\') with the subsheaf H?(wy  z)x of H?(wy, p) at which 0 acts as multipli-

(nont)

cation by A (it is the sheaf Cx  ®z A?My ). It follows that, for every N # A,
the operator 4, — X is invertible on Lg?’/)\ and, therefore, the image of Fq(Lg:/)\‘)
in F9(wy,p) is contained in F¥(wy, p)r. Since F(wy, p) = ©rerF(wy g)x, the
claim follows.

Step 4. It suffices to verify the equality 0(®) = exp(—2mid) on each of the sub-
spaces Hip (X/R)x. For this we use the theory of semi-algebraic sets (see [Hir75]).
This theory implies that the space X can be represented as a union of increasing
sequence of compact subsets Y7 C Y5 C ... with the following properties:

(1) the union of the topological interiors of Y,, in X coincides with X;

(2) each Y,, has the structure of a finite simplicial complex;

(3) the restrictions of the sheaves Cx x and M% to each open cell of V;, are
constant.

Proposition 10.2.1 and the property (3) imply that the same property holds for
all of the sheaves H?(w'y / r)x and, therefore, the spectral sequence

BB = RPD(Y,,, H Wy, p)x) = RPTIT(Yy, w g

implies that the groups RIT(Y,,,wy / r)x = RID(Yy,, Lg?;\) are of finite dimension

over C. It follows that HgR(X/R)A'—Tlin RIT(Yn,wy, p)x- We can therefore find

m >n > 1 such that the homomorphism HJ (X/R)) — RqI‘(me'X/R))\ is injec-

tive and its image coincides with that of RqF(Ym7w'X / R) A- Since Y,, is compact,

the canonical homomorphism lim RT(Yy,, pLgZi') — RIT'(Y,,, Lg?g\) is a bijection.
P

Again, since the group on the right hand side is of finite dimension over C, we can

find p for which the homomorphism qu"(meLgZ;\') — RIT(Y, Lg(m;) is surjec-
tive. In this way, we get a surjective homomorphism of W (R)-modules

RIT (Y, PLE)) — Hip (X/R)» .

Thus, the equality o(®) = exp(—2midy ) for the action on the left hand side implies
the same equality for the action on the right hand side. O

11.5. Proof of Theorem 11.1.5. Step 1. Consider the commutative diagram, in
which the horizontal arrows are isomorphisms, provided by Corollary 10.3.2, and
the left vertical arrow is an isomorphism, by Theorem 9.2.1,

HUX" (V") g, F) ——= Hig (X" (V"))

| |

H((X)y), F) ——— Hip (X)y)
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It follows that the right vertical arrow is an isomorphism, and this gives the state-
ment (i).

Step 2. Consider the similar commutative diagram, in which the horizontal
arrows are isomorphisms, provided by Proposition 10.6.1 and Theorem 11.1.1,

HI(X"(Y")g, F) @p Kg —— Hig (X" (V")c/KE)

| |

HI(X)y)7, F) ©p K& —— Hip(X)y)c/KS)

By Theorem 9.2.1, one has HY(X"(Y")z, F)Q’Hq((.??/y)ﬁ, F), and the statement
(ii) easily follows from Theorem 11.1.1(ii).

Step 3. The upper and lower horizontal arrows in the above diagram are com-
patible homomorphisms of W(Kg) and W (Kg)-modules, respectively, by the con-
struction of §10.5. This implies the statements (iii) and (iv). O
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J\fy/ x: the conormal sheaf of a locally closed immersion ¥ — X, 20
Q'Y/X: the de Rham complex of a morphism Y — X, 20

X" analytification of a scheme X over R, 21

Cov®'(X): the category of étale covering spaces over X, 24

m1(X,x): the étale fundamental group of X at x, 26

71 (R*): the automorphism group of Cgr over R*, 27

Et(X ): the category of étale morphisms over X, 27

Xgi: the étale site of X, 28

Xe: the category of sheaves of sets on X, 28

T the functor Xc({c)) — Xg, 28

F: an Archimedean field, i.e., R or C, 29

F" and F: the F-analytic affine space of dimension n > 0 and n =1, 29

F-An: the category of F-analytic spaces, 29

Pro(F-An): the category of pro-F-analytic spaces, 29

(X,%): germ of an analytic space, 30

F-Germs: the category of F-germs, 30

X (X): the pro-F-analytic space, associated to an F-germ (X, 3), 30

X-An: the category of X-analytic spaces, 30

Ox (X)-Sch: the category of Ox(X)-schemes, 30

V" the F-analytification of ), 30

T(X), S(X): the categories of sheaves of sets and of abelian groups on X, 31

A28 j7 Ys: the generic, special and closed fibers of ), 32-33

V" (ZM): the pro-analytic space, associated to the germ (V", Z"), Z c Y, 33

K?: the algebraic closure of K, 35

G: the Galois group of K? over K, 36

G¢: the Galois group of K£? over K¢, 36

D: the pro-analytic space F(0), 36

D*: the pro-analytic space, formed by punctured discs D*, 36

X, X, X, X3: the generic, special and closed fibers of X, 36

©, U,,: the nearby and vanishing cycles functors for a pro-analytic space, 36

D*: the pro-analytic space, formed by the spaces D*, 36

Xy the lift of X,, to D*, 36

T, 7+)(Xs): the category of m;(IF*)-sheaves on X, 36

Z™ () the functor that takes a 7 (F*)-sheaf to the subsheaf of 71 (F*)-invariant
sections, 37
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Yyt the lift of Y, to £, 37

O, U,,: the nearby and vanishing cycles functors for a scheme over O g, 37

T (Vs): the category of étale G-sheaves on Vg, 37

pt: the log point over F, 39

X'°¢: the Kato-Nakayama space of a fine log C-analytic space X, 40

Clog: the universal covering of Cl°8, 41

XTog: the lift of X' to Clog, 41

%, Xs: the special and closed fibers of a formal scheme X, 44

K: a non-Archimedean field with F ¢ K° and F3K , 52

K¢, Kc: the fields K @ C and £ Q¢ C, 52

K the quotient ring K°/(K°°)", 52

m(K), II(K), II(K¢): groupoids associated to K, 52

m(K), II(K), II(K¢): groupoids associated to K, 53

G(Ke), G(K), G(Kc), G(K): étale fundamental groupoids of K and I, 53

K(®): the algebraic closure of K that corresponds to w, 53

Ptro, Ptxo, Pto, Dtxo: logarithmic schemes associated to the corresponding
rings, 53-54

Mo, Myo, Mo, Myo: the monoids of the above logarithmic schemes, 53-54

m(Ky), I(KY), II(Kg,.): groupoids associated to K, 54

@: the image of @ in K¢ ,., 54

D*: the pro-F-analytic II(K¢)-space @ D*(®), an étale universal covering of
D*, 55

D: the pro-topological II(Kc)-space w D(%) | a universal covering of chog, 56

Y (X)g, Y(X)z: the pro-topological TI(K¢)-spaces @ — Y (X)) and Y(X)E,w),
56

Ptxo, Ptio: the analytifications of the log schemes pty. and pty., 56

ptIIC}%: the II(K¢ ,.)-space @ — pt(;;), a universal covering of ptlf(;% , b6

XTog: the TI(K ,)-space @ — X (@) = XS5 x g1 iR, 57

X;,: the r-th closed fiber of a distinguished formal scheme X, 57

Tp(X): the category of P-sheaves on a P-space X, 57

P-Mod, D(P-Mod): the category of P-modules and its derived category, 58

Ay : the P-sheaf on a P-space X associated to a P-set A, 58

IZ? the functor that takes a P-sheaf F on a trivial P-space X to F¥, 58

Ay(X)lég, Axgg: the sheaves associated to a II(K¢)- and II(Kg ,.)-set A, 58

W(K), W(K), W(K®), W(K°), W(K?), W(K?): the algebras associated to K
(and so on), 59-60

0w the derivation w%, 59

F™: the P-sheaf associated to a P-sheaf F' and a P-cosheaf T, 60

7o,x: the II(Kg ,.)-cosheaf U ~— mo(U'*8) on X, 60

X(P)st, X(P)e: the étale site and its category of sheaves for a pair X (P), 61

X (P): the topological space HPEP XP) 61

R: in §4.5 it is either K for 1 <r < oo, or K°, or K° for r = oo, 63

Dy, D: the II(R¢)-modules @x¢ Dy and D/(R°° - D), 64

W (Rc)-Dist: the category of distinguished W (R¢)-modules, 64

EII(Rc)-Qun: the category of kII(Rc)-quasi-unipotent modules, 65

W (R)-Dist: the category of distinguished W (R)-modules for F = R, 67
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R: in §5 and §10, it is either K for 1 < r < oo, or K° for r = oo, 68

X: in §5 and §10, it is a distinguished log analytic space over ptg, 69

7, v, 7: the maps of II( Rc)-spaces X'°8 — X, Xlog — ng and Xg — X, 70
MY : the quotient sheaf of groups MY /O%, 71

M ;OTS) the torsion subsheaf of MY , 71

MX/R the cokernel of the homomorphism MR — MX, 71

Mg?;;;) the torsion subsheaf of MX/R, 71

ey: the order of Mg?;g)(U), 71

ky: the order of Y(=)(U), 73
Tx: the II(Rc)-cosheaf w Tg(w), 73-74

——(nont) 7 (tors)

Mg '+ the quotient MX/R/Mx/R , 75

log(w): an element of £(X(®)) with exp(log(w)) = @, 76

Cx¢: a single distinguished W (R¢)-module on X¢, 78

©'°8: the log nearby cycles functor for a log formal scheme, 82
RO", R\I/f;: the exact nearby and vanishing cycles functors, 86-88

0" (p,A"), 0 (p,A'): the morphisms between complexes of nearby and vanishing
cycles associated to a morphism ¢ : Q) — X, 88

K-An: the category of restricted K-analytic spaces, 98

Hq()?, A), Hq()/(\', A): cohomology of X with coefficients in a II(K¢)-module A, 99

X" the non-Archimedean analytification of X', 102

Wy, g W Wx/ Rk the log de Rham complexes, 106

HgR(X) HgR(X/R): de Rham cohomology of X, 106

wp: the sheaf wy ., 106

Wxas ol dR, 1 (X¢): modified de Rham complexes and cohomology groups, 108

K, (D,...,D,): the Koszul complex on A with operators D1, ..., D), 108

wi— the Kato-Nakayama de Rham complexes on ng and Xlog 112

lecogv

: bigger complexes of sheaves of Rc-modules on ng and X0, 112

), 118

PL Lx,: subcomplexes of sheaves of W (Rc)-modules in T*( log) 116

Qy, Q'X/K: de Rham complexes of a rig-smooth K-analytic space X 125

Hip(X), Hiz(X/K): de Rham cohomology groups of X, 125

Wy Wy Ko de Rham complexes of a distinguished formal scheme X, 126

Hip (%), Hiz(X/K°): de Rham cohomology groups of X, 126

HgR()? ), HQ’R()A( /K°): de Rham cohomology groups of a rig-smooth restricted
K-analytic space, 127

Hip (XM(YM), Hiz (X"(Y™)/K°): de Rham cohomology groups of X”(Y") for a
distinguished scheme X over K°, 128

Wtog, W
XCg K Xlog
PL, L': subcomplexes of sheaves of W(R¢)-modules in 7, (w:
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affine space over R, 15
R-analytic manifold, 21
R-analytic space, 17
étale covering space over, 24
étale fundamental group of, 26

étale fundamental groupoid of, 26

étale site of, 28

étale topology on, 27

étale universal covering of, 24

complex point of, 17

geometric point of, 26

geometrically connected, 22

local chart of, 17

local model of, 17

real point of, 17
analytification, 21

non-Archimedean, 102

over a Stein germ, 30

closed fiber

of a formal scheme, 44

of a pro-analytic space, 36

of a scheme, 33
constructible sheaf, 86
P-cosheaf of sets, 60

de Rham cohomology groups
of a distinguished formal scheme,
126
of a distinguished log analytic
space, 106
of a rig-smooth K-analytic space,
125
of a rig-smooth restricted
K-analytic space, 127
distinguished
formal scheme, 44
r-th closed fiber of, 57
log analytic space over ptxo, 68
log germ over (F,0), 68
W(R)-module on X, 66
W(Rc)-module on X¢, 64
scheme, 44

extension of scalars functor, 18

P-field, 57

141

Gauss-Manin connection
for distinguished formal schemes,
126
for distinguished log analytic
spaces, 107
for rig-smooth K-analytic spaces,
125
generic fiber
of a pro-analytic space, 36
of a scheme, 32
germ of an analytic space, 30
noetherian, 32
Stein, 30

homotopy
between two morphisms of formal
schemes, 93
hypercovering
compact, 47
distinguished, 47
proper, 47

Klein surface, 22
dianalytic structure, 22
morphism, 22
Koszul complex, 108
Kummer étale morphism, 81

log derivation, 105
log differential forms, 105-106
of a distinguished formal scheme,
126
k°-log scheme, 49
k?-log scheme, 49
k°-log special formal scheme, 48
k°-log smooth, 50
formally k°-log smooth, 50
vertical, 48
log structure
canonical, 48
chart of, 49
coherent, 49
fine, 49
fs, 49
trivial, 48

P-module, 58
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kEII(Rc)-module, 64 quasi-unipotent action of II(K), 87
morphism of R-analytic spaces
étale. 20 restricted K-analytic space, 98
étale covering map, 24 formal model of, 98
closed immersion, 20 separated, 127
finite. 20 rig—smooth
flat 2’0 analytic space, 33
locally closed immersion, 20 restricted K-analytic space, 98
proper, 20 P-ring, 57
%epara;le(;,l20 Rc-semilinear automorphism, 64
Smoot %i 3 semistable
unramined, 20 formal scheme, 44
morphism of formal schemes scheme. 44
agm}ssﬁ{e blow—up(z);OO P-set, 57
admissible proper, P-sheaf, 57
blow-up, 44 Pes 54
formally smooth, 90 “pace
Orromzr y44 ’ single, 54
prop }’1 89 strict, 54
smooth, trivial, 54
nearby cycles functor un.ivocal, 54
for a formal scheme, 88 special fiber
for a log formal scheme, 82 of a formal sch.eme, 44
for a pro-analytic space, 36 of a pro-analytic space, 36
for a scheme, 37 of a scheme, 32

Stein compact, 29
open polydisc in R™

complex, 16 vanishing cycles functor
real. 16 ’ for a formal scheme, 88
7 for a pro-analytic space, 36
pro-analytic space, 29 for a scheme, 37
ETI( Rc)-quasi-unipotent module, 65 Weil restriction of scalars functor, 19
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