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0. Introduction

0.1. Previous work on vanishing cycles for formal schemes. Let k be a non-
Archimedean field with nontrivial discrete valuation, k◦ its ring of integers, k◦◦ the

maximal ideal of k◦, and k̃ = k◦/k◦◦ the residue field of k. A formal scheme X over
k◦ is said to be special if it is a locally finite union of open affine subschemes of
the form Spf(A) with A isomorphic to a quotient of k◦{T1, . . . , Tm}[[S1, . . . , Sn]].
If all of these open affine subschemes can be found with n = 0, such X is said to
be of locally finite type (or of finite type if in addition X is quasicompact). Each
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special formal scheme X over k◦ has a generic fiber Xη, which is a paracompact
strictly k-analytic space, and a closed fiber Xs, which is a scheme of locally finite

type over k̃. The class of formal schemes of locally finite type is preserved under
formal completion X/Y of X along an open subscheme Y ⊂ Xs, and the class of
special formal schemes is preserved under formal completion of X along an arbitrary
subscheme of Xs. For example, if Y is a scheme of finite type over k◦, then the

formal completion Ŷ (resp. Ŷ/Z) of Y along its closed fiber Ys = Y ⊗k◦ k̃ (resp.
along an arbitrary subscheme Z ⊂ Ys) is a formal scheme of finite type (resp. a
quasicompact special formal scheme) over k◦. All of the special formal schemes
considered in this paper are assumed to be quasicompact.

In [Ber96b] and [Ber15, §3.1], we constructed, for every special formal scheme
X over k◦, a vanishing cycles functor Ψη : Xη̃ → Xs(G)̃ from the category of étale

sheaves on Xη to the category of étale sheaves on Xs = Xs ⊗k̃ k̃a provided with a
continuous discrete action of G = Gal(ka/k) compatible with the action of G on
Xs, where ka is a fixed algebraic closure of k. In particular, if Λ is an étale abelian
sheaf on the spectrum of k, then for the locally constant sheaf ΛXη

induced by Λ

there is an associated complex RΨη(ΛXη
) of sheaves on Xs. The construction is

functorial and, therefore, any morphism of special formal schemes ϕ : Y→ X gives
rise to a morphism

θη(ϕ,Λ) : ϕ∗s(RΨη(ΛXη
))→ RΨη(ΛYη

) .

The corresponding homomorphism between q-th cohomology sheaves is denoted by
θqη(ϕ,Λ). Among other things, we proved the following results. Suppose Λ is finite

of order not divisible by char(k̃). Then

(i) the sheaves RqΨη(ΛXη
) are constructible;

(ii) one has Hq(Xη,Λ) = RqΓ(Xs, RΨη(ΛXη
)), where Xη = Xη⊗̂kk̂a;

(iii) given X, Y and Λ, as above, there exists an ideal of definition J of Y such
that, for any pair of morphisms ϕ,ψ : Y → X congruent modulo J and
any q, one has θqη(ϕ,Λ) = θqη(ψ,Λ);

(iv) given a scheme Y of finite type over a Henselian discrete valuation ring
with completion k◦ and a subscheme Z ⊂ Ys, there is a canonical iso-
morphism RΨη(ΛYη )

∣∣
Z→̃RΨη(Λ(Ŷ/Z)η

), where RΨη(ΛYη ) is the vanishing

cycles complex of the scheme Y and Z = Z ⊗k̃ k̃a.

0.2. The purpose of the paper. Although the above functor Ψη gives rise to
vanishing cycles complexes for arbitrary Λ’s, e.g., Z, those complexes do not pos-
sess good properties, and the reason is that such properties are not satisfied by
the integral étale cohomology groups of algebraic varieties and non-Archimedean
analytic spaces.

On the other hand, if Y is a scheme of finite type over the ring OC,0 of functions
analytic in a neighborhood of zero in the complex plane C, one can define vanishing
cycles complexes RΨη(ΛYhη ) on the analytification Yhs of Ys = Y ⊗OC,0 C for arbi-

trary locally constant sheaves Λ on an open punctured disc D∗ with center at zero
in the complex plane C. By [SGA7, Exp. XIV], if Λ is finite, there is a canonical
isomorphism RΨη(ΛYη )h→̃RΨη(ΛYhη ), and the above property (iv) implies that,
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for any subscheme Z ⊂ Ys, there is a canonical π1(C∗)-equivariant isomorphism

RΨη(ΛYhη )
∣∣
Zh→̃RΨη(Λ(Ŷ/Z)η

)h .

A natural question (mentioned, for example, by Kontsevich and Soibelman in
[KS11, 7.1, 7.4]) is as follows. Can one extend the construction of the vanishing

cycles complexes for special formal schemes over the completion ÔC,0 of OC,0 and
for arbitrary locally constant sheaves Λ on D∗ so that, in the case of the formal

scheme Ŷ/Z , one gets the complex RΨη(ΛYhη )
∣∣
Zh?

The purpose of this paper is to give a positive answer to this question and to
derive a construction of integral “étale” cohomology groups for a class of non-

Archimedean analytic spaces over the fraction field of ÔC,0, which includes the
analytifications of proper schemes over that field.

We in fact construct vanishing cycles complexes also for special formal schemes

over the completion ÔR,0 of the ring of convergent power series with real coefficients
OR,0. In this case they consist of sheaves provided with an action of the semidirect
product π1(C∗)o〈c〉, where c is the complex conjugation on C. For this we introduce
the category R-An of so called R-analytic spaces (see §0.3).

Furthermore, in the classical situation of [SGA7, Exp. XIV] (resp. in the sit-
uation of §0.1) the construction of the vanishing cycles complexes depends on the
choice of a universal covering of a punctured open disc (resp. an algebraic closure
of the field k) and, in fact, the object obtained is a functor from the corresponding
groupoids. Our ground field here is a non-Archimedean field K non-canonically

isomorphic to the fraction field of either ÔC,0, or ÔR,0. For such K, we introduce
a groupoid which plays the role of the above ones and allows us to work with an
analog of the category of étale locally constant sheaves on a punctured open disc
(see §0.4). Moreover, the use of this groupoid is a convenient way to encode depen-
dence of the comparison between “étale” and de Rham cohomology groups on the
choice of a generator of the maximal ideal K◦◦ of K◦ (see §0.8).

0.3. R-analytic spaces. In the book [Ber90] we introduced an approach to non-
Archimedean analytic geometry which is a natural generalization of the definition
of a complex analytic space, and noticed that one can apply that approach to
the field of real numbers R and get a new object, an R-analytic space, which
is different from the usual notion of a real analytic space (see [GMT86]). For
example, the R-analytic affine line R can be identified with the closed upper half-

plane Ĥ = {z ∈ C
∣∣Im(z) ≥ 0} whereas the classical real analytic affine line is the

field R naturally embedded R. By the way, we denote the complex analytic affine
line by C in order to distinguish it from the field C in spite of the fact that the
canonical map C→ C is a bijection.

Although R-analytic spaces are closely related to complex analytic ones (called
here C-analytic spaces) and can be described in terms of the latter, they have
an independent interest. For example, they include non-orientable manifolds, like
Moebius strips and Klein bottles, and we show that there is an equivalence between
the category of smooth R-analytic spaces of dimension one and the category of so
called Klein surfaces. In was in fact Klein who introduced in his 1882 book some
kind of an analytic structure, called dianalytic, in order to endow with it non-
orientable surfaces (see [AG71] for the history of this subject).
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R-analytic spaces have some features of non-Archimedean ones. For example,
the topology of the underlying topological spaces is not strong enough to describe
expected properties of their cohomology, and there is a stronger étale topology. It is
used to introduce étale universal coverings, étale fundamental groups, étale sheaves,
and étale cohomology groups. Furthermore, there is the ground field extension
functor R-An → C-An : X 7→ XC. For such X, the C-analytic space XC is
endowed with an involutive automorphism c, called the complex conjugation, so
that X is the quotient of XC by the cyclic group 〈c〉 (the automorphism and the
quotient are considered in the category of locally R-ringed spaces).

We consider in fact C-analytic and R-analytic spaces simulteneously. For this,
beginning with §2 we use the bold letter F for an Archimedean field, i.e., R or C,
and denote the corresponding F-analytic affine space of dimension n ≥ 0 by Fn, or
just F if n = 1. We fix a coordinate function z on the affine line F. The category
of F-analytic spaces is denoted by F-An. In order to make exposition uniform, we
use the notation XC even for C-analytic spaces X bearing in mind that in this case
XC = X. We also denote by K the fraction field of the discrete valuation ring OF,0.
For the sake of uniformity, we use the notation KC for the fraction field of OC,0
even if F = C and, as a result, KC = K.

0.4. The field K and associated groupoids. Beginning with §4, the capital
letter K is used for a non-Archimedean field with nontrivial discrete valuation and
such that F ⊂ K◦ and F→̃K̃. Each generator $ of the maximal ideal K◦◦ of K◦

induces a homomorphism OF,0 → K◦ that takes the coordinate function z on F to

$. It gives rise to an isomorphism ÔF,0→̃K◦ and an embedding K ↪→ K whose
image is dense in K. The valuation on K induces a valuation on K, which does not
depend on the element $. We also set KC = K ⊗F C. Of course, if F = C, then
KC = K. If F = R, KC is a quadratic extension of K, but in fact it is a notation
for the pair (K,KC) since the constructions related to KC depend on the original
field K. For example, we denote by c the automorphism α 7→ α of KC over K that
induces the complex conjugation on C.

Let Π(KC) be the groupoid whose objects are generators of the maximal ideal
K◦◦C of K◦C and morphisms are defined as follows. For $,$′ ∈ Π(KC), a morphism
ϕ : $ → $′ is a transformation of K◦C associated to an element β ∈ K◦C, and it is
either a β-morphism of first type, i.e., of the form α 7→ α+ β with exp(β) = $

$′ , or
in the case F = R also a β-morphism of second type, i.e., of the form α 7→ α + β
with exp(β) = $

$′ . It is easy to see that one can compose morphisms, and so
Π(KC) is really a groupoid. Although in most constructions of the paper we work
with the groupoid Π(KC), in some of them we have to use the full subcategory
Π(K) of Π(KC) whose objects are generators of the maximal ideal K◦◦ of K◦. We
also use the non-full subcategory π(K) of Π(K) with the same set of objects and
the sets Homπ(K)($,$

′) consisting of the β-morphisms of first type with β ∈ K◦.
Of course, if F = C, all three categories coincide, and the group HomΠ(K)($,$)
is canonically isomorphic to Z(1) = 2πiZ. Its generator, i.e., the 2πi-morphism
of first type is denoted by σ($). If F = R, then Homπ(K)($,$

′) is always a one
element set which corresponds to the unique element β ∈ K◦ with exp(β) = $

$′ .

The 2πi-morphism of first type $ → $ in Π(K) is also denoted by σ($), and
the 0-morphism of second type in HomΠ(K)($,$) is denoted by c($). For for any

morphism ϕ : $ → $′ in π(K) one has ϕ◦σ($) = σ($′) ◦ϕ and ϕ◦c($) = c($
′) ◦ϕ.
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Since for given $ and $′ such a morphism ϕ is unique, it gives rise to a canonical
isomorphism HomΠ(K)($,$)→̃HomΠ(K)($

′, $′). In particular, all of the groups
HomΠ(K)($,$) are canonically isomorphic to the semi-direct product Z(1) o 〈c〉
with c acting as inversion on the invariant subgroup.

There is a faithful functor from Π(KC) to the following étale fundamental grou-
poid G(KC) of the field K. Given a generator $ of K◦◦C and an integer n ≥ 1,

we set K($),n = KC[T ]/(Tn − $). It is a Galois extension of K generated over
KC by the image of T , which is denoted by $n. For every integer m ≥ 1, there is
a canonical embedding K($),n ↪→ K($),mn that takes $n to $m

mn. The inductive
limit K($) of the fields K($),n taken over those embeddings is an algebraic closure
of K. The objects of G(KC) are the fields K($) for generators $ of K◦◦C , and

the set of morphisms HomG(KC)(K
($),K($′)) is the profinite set of isomorphisms

of fields K($)→̃K($′) over K. We also denote by G(K) the full subcategory of
G(KC) whose family of objects are the fields K($) for generators $ of K◦◦. For
example, if F = C, HomG(K)(K

($),K($)) is the Galois group Gal(K($)/K), which

is canonically isomorphic to Ẑ(1) = lim
←−
n

µn and, if F = R, HomG(K)(K
($),K($)) is

the Galois group Gal(K($)/K), which is canonically isomorphic to the semi-direct

product Ẑ(1) o 〈c〉. The functor Π(KC) → G(KC) takes $ ∈ Π(KC) to the field
K($), and it takes a β-morphism of first (resp. second) type ϕ : $ → $′ to

the isomorphism ϕK : K($)→̃K($′) over K with ϕK($n) = exp(βn )$′n and which
acts trivially (resp. as the complex conjugation) on KC. It gives rise to a functor
Π(K)→ G(K).

One can make similar constructions for the field K and get full subcategories

Π(KC) ⊂ Π(K̂C) and G(KC) ⊂ Π(K̂C) whose objects are generators of the maximal

ideal K◦◦C of K◦C. One has also full subcategories π(K) ⊂ π(K̂), Π(K) ⊂ Π(K̂) and

G(K) ⊂ G(K̂) whose objects are generators of the maximal ideal K◦◦ of K◦. The
category Π(K) is a subgroupoid of G(K).

If P is a groupoid, a P-space is a contravariant functor P 7→ X(P ) from P to the
category of topological (or analytic) spaces. A P-sheaf F on a P-space X is a family
of sheaves F (P ) on X(P ) satisfying natural properties of compatibility with respect
to morphisms in P (see §4.3). In §4.4 we show that the category of P-sheaves
on X is a topos. The derived category of abelian P-sheaves on X is denoted by
D(X(P)). If X is a trivial P-space, i.e., the corresponding functor takes all objects
to the same space X and all morphisms to the identity map, a P-sheaf is just a
covariant functor from P to the category of sheaves on X. If it is a one point space,
the abelian P-sheaves on it are called P-modules and their category is denoted by
P-Mod. The map from X to a one point space defines a functor Λ 7→ ΛX from the
category of P-modules to that of abelian P-sheaves on X.

There is an equivalence between the category of étale abelian sheaves on the
spectrum of K and the category of discrete G(KC)-modules. Namely, if Λ is an
étale sheaf, the correspondence $ 7→ Λ(K($)) is a discrete G(KC)-module. For this
reason one can work with discrete G(KC)-modules instead of étale abelian sheaves
on the spectrum of K.

There is a parallel geometric construction. Namely, let D∗ be the projective
system of punctured open discs with center at zero in F. In Example 4.2.1(i), we
construct a Π(KC)-space D∗ that takes each $ ∈ Π(KC) to an étale universal
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covering D∗($) of D∗. Then the correspondence $ 7→ L(D∗($)) gives rise to an
equivalence between the category of étale abelian locally constant sheaves on D∗ and
the category of Π(KC)-modules Π(KC)-Mod. For this reason, Π(KC)-Mod plays
the role of the category of étale abelian locally constant sheaves on a punctured
open disc (non-existent for the field K).

0.5. Complex analytic vanishing cycles for formal schemes. For a special
formal scheme X over K◦, we consider the complex analytification Xhs of Xs =
Xs⊗F C as a Π(KC)-space on which morphisms of first type act trivially and those
of second type act through the complex conjugation on C.

The main purpose of this paper is to construct, for every (quasicompact) special
formal scheme X over K◦, an exact functor

Db(Π(KC)-Mod)→ Db(Xhs (Π(KC))) : Λ· 7→ RΨh
η(Λ·Xη

) .

(The notation RΨh
η(Λ·Xη

) for the resulting complex is suggestive.) We prove that

the complexes RΨh
η(Λ·Xη

) possess the following properties:

(i) they are functorial in X, i.e., every morphism of special formal schemes
ϕ : Y→ X gives rise to a morphism of complexes

θhη (ϕ,Λ·) : ϕh∗s (RΨh
η(Λ·Xη

))→ RΨh
η(Λ·Yη

)

which, in its turn, induces homomorphisms θh,qη (ϕ,Λ·) between q-th coho-
mology sheaves;

(ii) there is a canonical isomorphism

RΨh
η(Λ·Xη

)→̃RΨh
η(ZXη

)⊗L
Z Λ·

Xh

s

;

(iii) the sheaves RqΨh
η(ZXη

) are (algebraically) constructible in the sense of

[Ver76, §2], and the action of Π(KC) on them is quasi-unipotent;
(iv) if a morphism ϕ : Y → X is formally smooth, then θhη (ϕ,Λ·) is an isomor-

phism;
(v) given X with rig-smooth generic fiber, there exists n ≥ 1 such that, for

every Y of finite type over K◦, every pair of morphisms ϕ,ψ : Y → X
congruent modulo (K◦◦)n, every Π(KC)-module Λ which is either finite or
has no Z-torsion, and every q, one has θh,qη (ϕ,Λ) = θh,qη (ψ,Λ);

(vi) given X and Y both with rig-smooth generic fibers, there exists an ideal
of definition J of Y such that, for every pair of morphisms ϕ,ψ : Y → X
congruent modulo J , every Π(KC)-module Λ as in (v), and every q, one
has θh,qη (ϕ,Λ) = θh,qη (ψ,Λ);

(vii) given a complex of discrete Z/nZ[G(KC)]-modules Λ· with finite cohomol-
ogy modules, there is a canonical isomorphism

(RΨη(Λ·Xη
))h→̃RΨh

η(Λ·Xη
) ,

where RΨη(Λ·Xη
) is the vanishing cycles complex on Xs from §0.1;

(viii) given a morphism of germs of F-analytic spaces (B, b) → (F, 0), a scheme
Y of finite type over OB,b, a subscheme Z ⊂ Ys = Y ⊗OB,b F, and Λ· ∈
D(Π(K̂C)-Mod), there is a canonical isomorphism

RΨη(Λ·Yhη )
∣∣
ZhC
→̃RΨh

η(Λ·
(Ŷ/Z)η

) .
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Here is an explanation of the objects on both sides of the isomorphism in (viii).

First of all, the formal completion Ŷ/Z of Y along the subscheme Z is a special

formal scheme over K̂◦, and the right hand side in (viii) is the value at Λ· of the
above exact functor RΨh

η associated to it.

Furthermore, the scheme Y defines an F-analytic space Yh over an open neigh-
borhood of b in B. If the neighborhood is small enough, there is an induced mor-
phism Yh → F. The same construction applied to the schemes Ys and Yη =
Y ⊗OF,0 K gives the F-analytification Yhs of Ys and a space Yhη , which can be
identified with the preimage of F∗ under the above morphism. The complex of

Π(K̂)-modules Λ· defines a complex of Π(K)-modules which is considered as a com-
plex of locally constant sheaves on F∗ whose pullback on Yhη is denoted by Λ·Yhη

.

The complex RΨη(Λ·Yhη
) on the left hand side in (viii) is the value at Λ·Yhη

of the

derived functor of the F-analytic vanishing cycles functor Ψη from [SGA7, Exp.
XIV] (its definition, extended to the case F = R, is recalled in §2.3).

The continuity properties (v) and (vi) are stronger than corresponding results
from [Ber96b] and [Ber15] (mentioned in §0.1(iii)), but the assumptions on rig-

smoothness are probably superfluous. In any case, if X = Ŷ/Z as in (viii), then Xη
is rig-smooth if and only if there exists an open neighborhood V of Zh in Yh such
that the induced morphism V → F is smooth outside the preimage of zero.

Remark 0.5.1. Let F be the field C (resp. R). Recall that an F-valued function
in a neighborhood of zero in Rn is said to be smooth if it is infinitely differen-
tiable. Such a function defines a Taylor series expansion T(f) which is an element
of F[[T1, . . . , Tn]]. Recall also that, by Borel’s Lemma ([GG73, Ch. IV, §2]), each
element of the latter ring is the Taylor series expansion of some smooth F-valued
function in an open neighborhood of zero in Rn. Suppose now that such a function
f is equal to zero at zero. Then T(f) lies in the maximal ideal of the above ring
and, therefore, it defines a morphism of formal schemes X = Spf(F[[T1, . . . , Tn]])→
Spf(ÔF,0). Since Xs is a one point space, ψqf = RqΨh

η(ZXη
) are just finitely gen-

erated abelian groups provided with a quasi-unipotent action of the infinite cyclic
group 2πiZ (resp. the semi-direct product 2πiZo〈c〉). The groups ψqf are functorial

in f , i.e., each morphism (resp. isomorphism) of smooth germs (Rm, 0)→ (Rn, 0)
defines homomorphisms (resp. isomorphisms) ψqf → ψqg , where g is the lift of f to

(Rm, 0). The continuity property (vi) implies that, given f on (Rn, 0) and g on
(Rm, 0), there exists k ≥ 1 such that, for any pair of morphisms (Rm, 0)→ (Rn, 0)
that have the same k-jets and take f to g, the corresponding homomorphisms
ψqf → ψqg coincide. Notice that if, after an automorphism of (Rn, 0), the Taylor

series T(f) coincides with that of a function analytic in an open neighborhood of
zero in Fn, then ψqf are isomorphic to the vanishing cycles cohomology groups of

that analytic function. But there exist f ’s without this property (see [Sh76]). It
would be interesting to know the geometric meaning of the groups ψqf for arbitrary
smooth complex or real valued functions f .

0.6. Ingredients of the construction. The main ingredients used in the con-
struction of the vanishing cycles complexes and establishing their properties are
Michael Temkin’s work on functorial desingularization of quasi-excellent schemes
in characteristic zero ([Tem08], [Tem18]), the work of Kazuya Kato and his collabo-
rators on log geometry ([Kato89], [KN99], [Nak98]), and author’s work on vanishing
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cycles for formal schemes ([Ber93], [Ber96b], [Ber15]) and on the structure of poly-
stable formal schemes ([Ber99]).

Namely, a scheme Y of locally finite type over a discrete valuation Henselian
ring R (such as K◦ or K◦ = OF,0) is said to be distinguished if locally in the
étale topology it is isomorphic to an affine scheme of the form Spec(A) for A =
R[T1, . . . , Tn]/(T e11 · . . . · T emm − $), where 1 ≤ m ≤ n, ei ≥ 1 for all 1 ≤ i ≤ m,
and $ is a generator of the maximal ideal of R. We always consider such Y as a
log scheme provided with the canonical log structure (which is, for the above affine
scheme, is generated by the coordinate functions T1, . . . , Tm).

A special formal scheme X over K◦ is said to be distinguished if locally in the

étale topology it is isomorphic to an affine formal scheme of the form Ŷ/Z , where
Y is a distinguished scheme over K◦ and Z is the union of some of the irreducible

components of Ys = Y ⊗K◦ K̃. The log structure on the scheme Y induces a

log structure on the formal completion Ŷ/Z . Using results from [Ber99], we show
that the latter log structure coincides with the canonical one, i.e., the value of the
monoid sheaf on U étale over X is the multiplicative submonoid of O(U) consisting
of the functions invertible on the generic fiber Uη. In particular, this log structure

on X as well as that induced on the complex analytification Xhs of the closed fiber
Xs is functorial in X.

Furthermore, Temkin’s results from [Tem08] and [Tem18] imply that each special
formal scheme X over K◦ admits a proper hypercovering a : Y• → X by distin-

guished formal schemes Yn, n ≥ 0. Each C-analytic space Yn = Yh
n,s provided

with the log structure induced from Yn defines, by the construction of Kato and
Nakayama from [KN99], a topological space Y log

n . By the above, the latter form an

augmented simplicial topological space alog : Y log
•

= (Y log
n )n≥0 → Xhs . We define

the vanishing cycles complexes RΨh
η(ZXη

) on Xhs in terms of this augmented sim-

plicial topological space, and show that their cohomology sheaves RqΨh
η(ZXη

) are

(algebraically) constructible in the sense of [Ver76].
Finally, in order to establish properties of those complexes and, in particular, to

verify that they do not depend on the choice of the proper hypercovering, we use
results from [KN99] and [Nak99] to show that the same construction for the groups
Z/nZ gives the analytification of the vanishing cycles complexes RΨη((Z/nZ)Xη

)

introduced in [Ber96b] and [Ber15].

0.7. Integral “étale” cohomology of restricted analytic spaces. For a qua-
sicompact special formal scheme flat over K◦ and a Π(KC)-module Λ, we set

Hq(Xη,Λ) = RqΓ(Xhs , RΨh
η(ΛXη

)) .

This definition imitates the property (ii) from §0.1 and, if Λ comes from a finite
discrete G(KC)-module, gives the usual étale cohomology groups of the analytic
space Xη with coefficients in Λ. We believe that the groups on the left hand side
depend only on the K-analytic space Xη for arbitrary Λ’s, but can deduce from
results of the previous subsection only the following fact. For any admissible
proper morphism X′ → X (i.e., a proper morphism with X′η→̃Xη), the induced

maps Hq(Xη,Λ) → Hq(X′η,Λ) are isomorphisms. This leads us to introduction of

the category K-Ân of restricted K-analytic spaces, which is the localization of the
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category quasicompact special formal schemes flat over K◦ with respect to admis-

sible proper morphisms. Its objects are denoted by X̂, Ŷ and so on. There is an

evident faithful (but not fully faithful) functor K-Ân → K-An : X̂ 7→ X so that
the generic fiber functor X 7→ Xη goes through it. Raynaud theory implies that this

functor gives rise to an equivalence between the full subcategory of K-Ân formed
by formal schemes flat and of finite type over K◦ and the category of compact
strictly K-analytic spaces.

We fix for every restricted K-analytic space X̂ a formal model X and, for a

Π(KC)-module Λ, we set Hq(X̂,Λ) = Hq(Xη,Λ). For $ ∈ Π(KC), the $-

component of the latter is denoted by Hq(X̂($),Λ). If Λ has no Z-torsion, one

has Hq(X̂,Λ) = Hq(X̂,Z)⊗Z Λ. We prove that

(i) the Π(KC)-modules Hq(X̂,Λ) are well defined, and the correspondence

X̂ 7→ Hq(X̂,Λ) is functorial in X̂;

(ii) Hq(X̂,Z) are quasi-unipotent Π(KC)-modules and finitely generated over
Z;

(iii) for every prime l, there are canonical Π(KC)-equivariant isomorphisms

Hq(X̂,Z)⊗Z Zl→̃Hq(X ét,Zl) = lim
←−

Hq(X ét,Z/l
nZ) ,

where Hq(X ét,Z/l
nZ) are the Π(KC)-modules $ 7→ Hq(X

($)
ét ,Z/lnZ) and

the latter are étale cohomology groups of X($) = X⊗̂KK̂($) from [Ber93];
(iv) there are canonical Π(KC)-equivariant homomorphisms

Hq(|X|,Z)→ Hq(X̂,Z)

compatible with the canonical homomorphisms

Hq(|X|,Z/nZ)→ Hq(X̂ ét,Z/nZ) ,

where the groups on the left hand side are the cohomology groups of the
underlying topological Π(KC)-space |X| of X;

(v) in the situation of (viii) from §0.5, if Y is separated, then for X̂ represented

by Ŷ/Z there are canonical Π(K)-equivariant isomorphisms

Hq(Yh(Zh)η,Z)→̃Hq(X̂,Z) ,

where Hq(Yh(Zh)η,Z) = lim
−→

Hq(Vη,Z) with the inductive limit taken over

open neighborhoods V of Zh in Yh and Vη is the preimage of C∗ in V ;
(vi) in the situation of (viii) from §0.5, if Y is separated and Y = Yη, then every

morphism X → Yan from a compact strictly K-analytic space X gives rise

to canonical Π(KC)-equivariant homomorphisms Hq(Yh,Z) → Hq(X,Z),
which are also functorial in X and Y.

The property (iii), applied to X = Yan for a proper scheme Y over K, gives rise
to a Π(KC)-equivariant isomorphism

Hq(Yan,Z)⊗Z Zl→̃Hq(Y,Zl) ,

where the right hand side is the Π(KC)-module $ 7→ Hq(Y($),Zl) and the latter
is the l-adic étale cohomology group of the scheme Y($) = Y ⊗K K($).



COMPLEX ANALYTIC VANISHING CYCLES FOR FORMAL SCHEMES 11

In (v), if Y comes from a separated scheme Y ′ of finite type over F, i.e., Y =

Y ′⊗FK◦ and Z ⊂ Ys = Y ′, then Hq(X̂,Z) is just the cohomology group Hq(ZhC,Z)
at which morphisms of first type in Π(KC) act trivially, and those of second type
act through complex conjugation on ZhC.

In (vi), Yan is the K-analytic space associated (in [Ber15, §3.2]) to the scheme

Y ⊗OB,b (ÔB,b ⊗K◦ K), and Yh = Yh ×F∗ C. The group Hq(Yh,Z) is in fact an
inductive limit of the corresponding cohomology groups taken over open neighbor-
hoods of the point b in B (see §2). If the above Y is proper over K, the property

(v) implies that there is a canonical isomorphism Hq(Yh,Z)→̃Hq(Yan,Z).

We conjecture that the above Π(KC)-modules Hq(X̂,Z) are provided with a

mixed Hodge structure which is functorial in X̂ and such that, if X = Yan for a
proper scheme Y over K as in the previous paragraph, it coincides with the limit

mixed Hodge structure on the groups Hq(Yh,Z).

0.8. Comparison with de Rham cohomology. A restricted K-analytic space

X̂ is said to be rig-smooth, if the K-analytic space X is rig-smooth. For such X̂,
its distinguished formal models form a cofinal family in that of all formal mod-

els, and the de Rham cohomology groups Hq
dR(X̂/K◦) are defined as the hyper-

cohomology of the complex ω·X/K◦ of logarithmic differential forms over K◦ of

a fixed distinguished formal model X of X̂. Notice that, if X is compact and,
in particular, X is of finite type over K◦, then there are canonical isomorphisms

Hq
dR(X̂/K◦) ⊗K◦ K→̃Hq

dR(X/K), where the latter are the usual de Rham coho-
mology groups of X, i.e., the hypercohomology groups of the de Rham complex
of differential forms Ω·X/K considered in the G-topology of X. We show that the

groups Hq
dR(X̂/K◦) do not depend on the choice of a distinguished formal model

up to a canonical isomorphism, and they are provided with the Gauss-Manin con-

nection ∇ : Hq
dR(X̂/K◦) → Hq

dR(X̂/K◦) ⊗K◦ ω1
K◦ . We are going to describe a

comparison result from §11 that relates the groups Hq(X̂,F) and Hq
dR(X̂/K◦) in

a form which reminds Fontaine’s p-adic Hodge theory.
First of all, if W is a P-ring for a groupoid P (i.e., a covariant functor from P to

the category of rings), then a W -module is a left P-module D such that, for every
P ∈ P, D(P ) is a module over the ring W (P ) with the property that, for every
morphism ϕ : P → P ′ in P, one has ϕD(αx) = ϕW (α)ϕD(x) for all α ∈W (P ) and
x ∈ D(P ). If all D(P ) coincide, D is said to be single.

For example, the field KC can be considered as a single Π(KC)-field. Namely,
one associates to each $ ∈ Π(KC) the field KC and to each morphism $ → $′

in Π(KC) of first (resp. second) type the automorphism of KC that takes f($)
for f =

∑
n≥n0

anT
n ∈ C((T )) to f($′) (resp. f($′), where f =

∑
n≥n0

anT
n).

This induces the structure of a single Π(KC)-ring on K◦C. If F = R and D is
a K◦C-module, a K◦C-semilinear automorphism of D is a Π(KC)-automorphism ϑ

such that ϑ($)(αx) = αϑ($)(x) for all $ ∈ Π(KC), α ∈ K◦C and x ∈ D($). As
above, the field K and the ring K◦ can be considered as a single π(K)-field and a
single π(K)-ring, respectively.

Furthermore, let W (K) be the algebra of F-linear endomorphisms K generated
by multiplications by elements of K and derivations ∂

∂$ for generators $ of the
maximal ideal K◦◦. If $ is fixed, each element of W (K) has a unique representation
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in the form gn
∂n

∂$n +gn−1
∂n−1

∂$n−1 +. . .+g0 with n ≥ 0 and gi ∈ K. The algebra W (K)
can be considered as a single π(K)-ring. Namely, one associated to each $ ∈ π(K)
the algebra W (K) and to each morphism $ → $′ in π(K) the automorphism of
W (K) that acts on K as above and takes ∂

∂$ to ∂
∂$′ . Notice that K is a left W (K)-

module. The algebra W (KC) can be considered as a single Π(KC)-ring such that
a morphism ϕ : $ → $′ in Π(KC) acts on KC as in the previous paragraph and
takes ∂

∂$ to ∂
∂$′ .

Finally, for a generator $ of K◦◦, let δ$ denote the derivation $ ∂
∂$ on K

which preserves K◦ and all of its ideals. Let W (K◦) be the K◦-subalgebra of
W (K) generated by the derivations δ$. By the way, the Gauss-Manin connection

on the groups Hq
dR(X̂/K◦) gives rise to an action of the ring W (K◦) on them.

(The action of δ$ is the composition of the connection ∇ with the isomorphism
ω1
K◦→̃K◦ : d log($) 7→ 1.) The π(K)-ring structure on W (K) induces a π(K)-

structure on W (K◦), and K◦ is a single W (K◦)-module. In the same way, W (K◦C)
is a single Π(KC)-ring, and K◦C is a single W (K◦C)-module.

For a W (K◦C)- (resp. W (K◦)-) module D, a real number λ and an element

$ ∈ Π(KC) (resp. π(K)), we set D
($)
λ = {x ∈ D($)

∣∣(δ$ − λ)n(x) = 0 for some

n ≥ 1}. If λ is fixed, the correspondence $ 7→ D($) is a Π(KC)- (resp. π(K)-)
submodule of D denoted by Dλ. For a subset I ⊂ R, we set DI = ⊕λ∈IDλ. We

also denote by D̃ the Π(KC)- (resp. π(K)-) module D/(K◦◦ ·D). A distinguished
W (K◦C)-module (resp. W (K◦)-module for F = R) is a W (K◦C)- (resp. W (K◦)-)
module D, which in the case F = R is provided with a K◦C-semilinear (resp. K◦-
linear) automorphism of order two ϑ and which possesses the following properties:

(1) D is free of finite rank over K◦C (resp. K◦);

(2) the map D → D̃ induces an isomorphism of Π(KC)- (resp. π(K)-) modules

DQ∩[0,1)→̃D̃;

(3) for $ ∈ Π(KC) (resp. π(K)), the actions of σ($) and δ$ on D($) are
related by the equality σ($) = exp(−2πiδ$) (resp. ϑ($) commutes with
cos(2πδ$) and anti-commutes with sin(2πδ$)).

Let W (K◦C)-Dist (resp. W (K◦)-Dist) be the category of distinguished W (K◦C)-
(resp. W (K◦)-) modules. Let also FΠ(KC)-Qun (resp. FΠ(K)-Qun) denote the
category of Π(KC)- (resp. Π(K)-) modules in the category of finitely dimensional
F-vector spaces V such that, for each $, the action of σ($) on V is quasi-unipotent.
We show that the functor

W (K◦C)-Dist→ FΠ(KC)-Qun : D 7→ D̃ϑ=1

is an equivalence of categories, where D̃ϑ=1 is the Π(KC)-submodule $ 7→ {x ∈
D̃
∣∣ϑ($)(x) = 1}, if F = R, and D̃, if F = C. If V ∈ FΠ(KC)-Qun, one can provide

the tensor product V ⊗FK
◦
C with a distinguished W (K◦C)-module structure so that

the correspondence V 7→ V ⊗F K
◦
C is a functor inverse to the above one.

The comparison result we are talking about states that, for a separated rig-

smooth restricted K-analytic space X̂, the groups Hq
dR(X̂C/K

◦
C) are provided with

the structure of a single distinguished W (K◦C)-module which extends the action
induced by the Gauss-Manin connection, and there are canonical isomorphisms of
distinguished W (K◦C)-modules

Hq(X̂,C)⊗C K◦C→̃H
q
dR(X̂C/K

◦
C) .
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It follows that there are induced isomorphisms of Π(KC)-modules

Hq(X̂,C)→̃Hq
dR(X̂C/K

◦
C)Q∩[0,1) .

The above isomorphisms take place also for F = R, but in this case one can in fact

relate the groups Hq(X̂,R) and Hq
dR(X̂/K◦).

Suppose that F = R, and let us consider W (K◦C) as a Π(K)-module. (Recall
that W (K◦) is a π(K)-module.) We show that the functor

W (K◦C)-Dist→W (K◦)-Dist : D 7→ Dc=1

is an equivalence of categories. An inverse functor takes E ∈ W (K◦)-Dist to
E ⊗K◦ K◦C, which is provided with a distinguished W (K◦C)-module structure, and
therefore there is an equivalence of categories

RΠ(K)-Qun→̃W (K◦)-Dist .

The above comparison result implies that the groups Hq
dR(X̂/K◦) are provided

with the structure of a distinguished W (K◦)-module, and there are canonical iso-
morphisms of distinguished W (K◦C)-modules

Hq(X̂,R)⊗R K◦C→̃H
q
dR(X̂/K◦)⊗K◦ K◦C ,

which induce isomorphisms of distinguished W (K◦)-modules

(Hq(X̂,R)⊗R K◦C)c=1→̃Hq
dR(X̂/K◦)

and of quasi-unipotent Π(K)-modules

Hq(X̂,R)→̃Hq
dR(X̂/K◦)ϑ=1

Q∩[0,1) ⊕ iH
q
dR(X̂/K◦)ϑ=−1

Q∩[0,1) .

In both cases (when F is either C, or R), the action of δ$ on Hq
dR(X̂/K◦) is in-

duced by the derivation δ$ on K◦C and an operator − 1
2πiLog(σ($)) on Hq(X̂($),C)

with Log(σ($)), defined in §4.5. If F = R, the automorphism ϑ($) on Hq
dR(X̂/K◦)

is induced by the complex conjugation on K◦C in Hq(X̂($),R) ⊗R K◦C. Further-

more, in both cases the action of σ($) on Hq(X̂($),F) is induced by the operator

exp(−2πiδ$) = cos(2πδ$)−i sin(2πδ$) on Hq
dR(X̂/K◦)

($)
Q∩[0,1)⊗RC. If F = R, the

action of c($) on Hq(X̂($),R) is induced by the complex conjugation on the right
hand side, i.e., it is the identity (resp. minus identity) on the first (resp. second)
summand.

In §11, we also describe the above de Rham cohomology groups and the iso-

morphism when X̂ comes from a geometric object as in the situation of (viii) from
§0.5.

0.9. Plan of the paper. In §1, we introduce R-analytic spaces and establish their
basic properties necessary for the paper.

Our purpose in §2 is to recall the construction of and various facts about the
nearby and vanishing cycles functors from [SGA7, Exp. XIV] and to extend them
to R-analytic spaces. As was mentioned at the end of §0.3, for this and for further
exposition, we use the bold letter F for either R, or C. We recall the framework of
pro-F-analytic spaces and their cohomology which is convenient for dealing with the
analytifications X h of schemes X finitely presented over a Stein germ. In the situ-
ations we consider, pro-F-analytic spaces play the role of non-Archimedean objects
associated to formal completions of the corresponding schemes. For example, in the
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situation of the property §0.5(viii) we give a characterization of rig-smoothness of

the generic fiber of the formal scheme Ŷ/Z in terms of a certain pro-F-analytic space

Yh(Zh)η. In §2.4, we prove a comparison theorem (Theorem 2.4.1) for the class
of schemes from the same property §0.5(viii), which is more general than that in
loc. cit.. In §2.5, we recall some notions of log geometry and especially a beautiful
construction of Kato and Nakayama from [KN99] that associates to every fine log
complex analytic space (X,MX) a topological space X log and a proper surjective
map τ : X log → X. Their results easily imply a description of the vanishing cycles
complex RΨη(Λ·Xη ) of a vertical log smooth F-analytic space X over the log open

disc (D,MD) with MD = OD ∩ O∗D∗ in terms of the space X log
s associated to the

log structure on Xs = (Xs)C induced from X (Theorem 2.5.2).
In §3, k is an arbitrary non-Archimedean field with non-trivial discrete valuation.

We introduce distinguished schemes and special formal schemes over k◦, and deduce

from Temkin’s result [Tem18] that, if char(k̃) = 0, every reduced special formal
scheme X flat over k◦ admits a blow-up Y→ X which induces an isomorphism over
the rig-smooth locus of Xη and such that Y is distinguished. This implies that every
special formal scheme X admits a distinguished proper hypercovering a : Y• → X
(i.e., such that each Yn is distinguished and the morphism Yn → X is proper).

Furthermore, let X be the formal scheme Ŷ/Z with Y a distinguished scheme over
k◦ and Z the union of some of the irreducible components of Ys. Using results
from [Ber99], we prove that the log structure on X generated by the canonical log
structure on Y coincides with the canonical log structure on X whose value on U
étale over X is O(U) ∩ O(Uη)∗.

In §4.1, we introduce various groupoids related to the field K from §0.4. They
include the groupoids π(K) and Π(K), already mentioned in §0.5, as well as
groupoids π(K◦r ) and Π(K◦r ) related to the log scheme ptK◦r = Spec(K◦r ), where

K◦r = K◦/(K◦◦)r, r ≥ 1, with the log structure induced by the canonical one on
Spec(K◦). In §4.2, we consider examples of P-spaces for those groupoids and, in
§4.3, we introduce the notion of a P-sheaf and a P-cosheaf on a P-space and con-
sider important examples of those objects. In addition to the Π(K)-ring W (K◦C)
and the Π(K)-ring W (K◦C), mentioned in §0.8, we introduce a related Π(K◦r )-ring
W (K◦C,r). In §4.4, we show that the category of P-sheaves on a P-space X is equiva-

lent to the category of sheaves on an explicitely constructed site X(P)ét. Finally, in
§4.5, we introduce distinguished modules over W (K◦C), W (K◦C) and W (K◦C,r), and
construct an equivalence of each of their categories with a corresponding category
of quasi-unipotent modules of finite dimension over C similar to that mentioned in
§0.8.

In §5.1, we introduce distinguished log F-analytic spaces over the analytifica-
tion ptK◦r = pthK◦r of the log scheme ptK◦r mentioned in the previous paragraph.

They include log spaces obtained from distinguished special formal schemes over
K◦ and from distinguished log F-analytic spaces over (D,MD) from §2.5. For a
distinguished log F-analytic space X over ptK◦r , we describe the Π(K◦r )-sheaves
that appear in Theorem 2.5.2 in terms of the log structure on X, and use it for a
description of vanishing cycles sheaves in the situation of §0.5(viii) for a class of
schemes Y.

Our purpose in §6 is to prove that, for a log formal scheme X over K◦ from a
certain class that includes distinguished ones, the analytification (RΨη(Z/nZ)Xη

)h
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of the vanishing cycles complex, introduced in [Ber96b], has the same description

in terms of the topological space (Xhs )log as in Theorem 2.5.2 (Theorem 6.1.1). For
this we use, among other things, the log étale cohomology developed by Kazuya
Kato and his collaborators.

In §7, we introduce the complex RΨh
η(ZXη

) for an arbitrary special formal

scheme X over K◦ in terms of the simplicial topological space (Yh
•,s)

log associ-
ated to a distinguished proper hypercovering a : Y• → X. We prove the property
§0.5(iii) and use it together with the main result of §6 to show that the construction
does not depend on the choice of the hypercovering and is functorial in X. We then
extend the construction to an exact functor RΨh

η on arbitrary complexes Λ· taking
the property §0.5(ii) as a definition, and prove the comparison property §0.5(vii). In
§7.2 we prove the property §0.5(iv) and, in §7.3, we prove the comparison property
§0.5(viii).

In §8, we prove the continuity properties §0.5(v) and (vi).

In §9, we introduce the category of restricted K-analytic spaces K-Ân, define

the groups Hq(X̂,Z) for such a space X̂, and prove all of their properties listed in
§0.7.

In §10, we study a purely F-analytic object, the complex ω·X/K◦r
of log differential

forms on a distinguished log F-analytic space X over the log space ptK◦r . We con-
struct a complex ofW (K◦C,r)-sheaves L·XC

and a quasi-isomorphism L·XC
→̃ω·XC/K◦C,r

.

This implies, for example, that the de Rham cohomology groups Hq
dR(XC/K

◦
C,r)

have the structure of a W (K◦C,r)-module. We also construct a quasi-isomorphism of
L·XC

with a complex closely related to that from the construction of the vanishing
cycles complex in §7.1. Our construction is a refinement of that from Steenbrink’s
paper [Ste76, §2], but it is done in the framework of log geometry of Kato-Nakayama
[KN99].

In §11, we prove the comparison results formulated in §0.8.
We remark that the terms “nearby” and “vanishing cycles”, introduced in [Ber94]

and used in this paper (as well as in [Ber96b] and [Ber15]) for the functors Θ and Ψη,
are not standard ones used in literature. Nevertheless, all of these functors have the
same meaning as the corresponding functors with the same notations from [SGA7],
and we recall their definition.

1. R-analytic spaces

1.1. Affine space over R. For n ≥ 0 the n-dimensional affine space over R,
denoted by Rn, is the set of multiplicative seminorms on the ring of polynomials
A = R[T1, . . . , Tn] that extend the Archimedean absolute value | |∞ on R. It is
provided with the weakest topology with respect to which all functions Rn → R
of the form x 7→ |f |x with f ∈ A are continuous, where | |x is the seminorm
on A that corresponds to a point x ∈ An

R. The Gelfand-Mazur theorem implies
that the kernel Ker(| |x) of the latter seminorm is a maximal ideal of A and the
quotient H(x) = A/Ker(| |x) is either R or C. This identifies Rn with the maximal
spectrum Max(A) of A. It follows also that the canonical map ρ : Cn → Rn which
takes a point a ∈ Cn to the seminorm f 7→ |f(a)|∞ is surjective, and it induces a
homeomorphism between the quotient of Cn by the complex conjugation and the
affine space Rn.
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The above map identifies Rn with the set of real points of Rn, i.e., points x with
H(x) = R. Each real point has one preimage in Cn. Points from the complement
Rn\Rn are said to be complex ones. A complex point x has two preimages x′, x′′ in
Cn with x′′ = x′ and, for the corresponding isomorphisms χx′ : H(x)→̃H(x′) = C

and χx′′ : H(x)→̃H(x′′) = C, one has χx′′(a) = χx′(a) for all a ∈ H(x). Moreover,
the map ρ : Cn → Rn is a local homeomorphism at the points x′ and x′′.

The topological space Rn is provided with a sheaf of local R-algebras ORn as
follows. For an open subset U ⊂ Rn, the R-algebra O(U) consists of the functions
f : U → C which are local limits of rational functions with real coefficients, i.e., such
that every point x ∈ U has an open neighborhood U ′ in U with the property that, for

every ε > 0, there exist polynomials P,Q ∈ A with Q(x′) 6= 0 and |f(x′)− P (x′)
Q(x′) | < ε

for all x′ ∈ U ′. Since the space Rn coincides with the maximal spectrum of A,
analytic functions are local limits of polynomials with real coefficients and, for
every point x ∈ Rn, the completion of A with respect to powers of the corresponding

maximal ideal coincides with the completion ÔRn,x of the local ring ORn,x.
The definition in fact implies the following. Let c denote the following involution

of the locally ringed space (Cn,OCn). It takes a point z = (z1, . . . , zn) to the
point z = (z1, . . . , zn) and an analytic function f on an open subset U ⊂ Cn to

the analytic function f c on the image c(U), where f c(z) = f(z) . Then there is
a canonical isomorphism of sheaves ORn→̃(ρ∗OCn)c=1. It follows that, if a point
x ∈ Rn is real, the local ring ORn,x is the R-algebra of power series with coefficients
in R which are convergent in a neighborhood of x in Rn. If a point x is complex and
x ∈ ρ−1(x), then ρ is a local isomorphism at x, and it gives rise to an isomorphism
ORn,x→̃OCn,x. Notice that the sheaf ORn is coherent, and any subsheaf of ideals
in it is locally of finite type.

Remarks 1.1.1. (i) The affine space Rn can be identified with a closed subset of
Cn = Cn, which is a disjoint union

∐n
k=0Wk of the locally closed subsets

Wk = {(z1, . . . , zn)
∣∣z1, . . . , zk ∈ R, Im(zk+1) > 0} .

Under this identification, W0 is the open subset {(z1, . . . , zn) ∈ Cn
∣∣Im(z1) > 0}

and Wn is the closed subset Rn ⊂ Cn. The sheaf ORn is identified with a subsheaf
of the restriction of OCn to Rn such that, for an open subset U ⊂ Rn, O(U) consists
of the complex analytic functions in an open neighborhood of U in Cn that take
real values at points from the intersection U ∩Rn.

(ii) In the particular case n = 1, the affine line R is identified with the closed

upper half-plane Ĥ = {z ∈ C
∣∣Im(z) ≥ 0} so that its set of complex points is the

Poincaré upper half-plane H = {z ∈ C
∣∣Im(z) > 0}.

Let x be a point of Rn, which is the image of a point z = (z1, . . . , zn) ∈ Cn = Cn.
For a tuple r = (r1, . . . , rn) ∈ (R∗+)n, we set D(z; r) = {z′ ∈ Cn

∣∣|z′j − zj | < rj for
all 1 ≤ j ≤ n} (the open polydisc in Cn), and denote by D(x; r) its image in Rn
(it is an open subset of Rn). If the point x is complex and rj ≤ |Im(zj)| for some
1 ≤ j ≤ n, then there is an isomorphism of locally ringed spaces D(z; r)→̃D(x; r),
and in this case the latter is called a complex open polydisc in Rn. If the point x is
real, i.e., zj ∈ R for all 1 ≤ j ≤ n, then D(z; r) → D(x; r) is a double cover, and
the latter is called a real open polydisc in Rn.

1.2. R-analytic spaces. Let R-Lrs denote the category of locally R-ringed spaces,
i.e., the subcategory of the category of locally ringed spaces whose structural sheaves
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are commutative R-algebras and in which morphisms are defined in the usual way
but through homomorphisms of R-algebras. An example of such a space is the
following one, called a local model (of an R-analytic space). Let U be an open
subset of Rn and let J be a finitely generated subsheaf of ideals in OU = ORn

∣∣
U .

The local model associated with these data is the support X of OU/J with the
sheaf OX , which is the restriction of OU/J to X.

The category of R-analytic spaces R-An is a full subcategory of R-Lrs consisting
of the spaces locally isomorphic to a local model. We call a local chart of an R-
analytic space X a tuple (W, ϕ, Y, (U ,J )) consisting of an open subset W ⊂ X,
an isomorphism ϕ : W→̃Y , where Y is a local model associated to a pair (U,J )
as above for an open subset U ⊂ Rn and a finitely generated subsheaf of ideals
J ⊂ OU . For a point x ∈ X, one sets H(x) = OX,x/mx, where mx is the maximal
ideal of OX,x. If H(x) = R, the point is said to be real. Otherwise, it is said to be
complex. The set of real points X(R) is closed in X. Notice that every real (resp.
complex) point has a fundamental system of local charts as above in which U is a
real (resp. complex) polydisc in Rn.

Remarks 1.2.1. (i) Any complex analytic space Y can be considered as an R-
analytic space, which will be denoted by YR. Indeed, given a point z = (z1, . . . , zn) ∈
Cn = Cn, take a real number r bigger than −Im(z1). Then the shift Cn → Cn :
z′ 7→ z′+ (ri, 0, . . . , 0) gives rise to an isomorphism between an open neighborhood
of the point z and an open neighborhood of its image in the subset W0 ⊂ Cn from
Remark 1.1.1(i), which can be identified with an open subset of Rn.

(ii) The functor C-An → R-An : Y 7→ YR is not fully faithful. The easiest
example is as follows. The automorphism group of the zero dimensional affine
complex analytic space C0 is trivial, but that of the R-analytic space C0

R consists of
two elements, the trivial one and the one induced by the complex conjugation. Here
is another example. The automorphism group of the upper-half plane H, considered
as complex analytic space, is PSL2(R), which is also the group of orientation-
preserving isometries of the hyperbolic plane H, but the automorphism group of
the R-analytic space HR is PGL2(R), which is the group of isometries that are not
necessarily orientation-preserving. Namely, a matrix γ with negative determinant
takes a point z ∈ H to the point γ(z) = az+b

cz+d ∈ H and a function f to the function

γ∗f for which (γ∗f)(z) = f(γ(z)). A morphism between complex analytic spaces,
considered in the category R-Lrs, will be called an R-morphism. For example, the
involution c of Cn from the previous subsection is an R-automorphism.

We are going to describe the category R-An in terms of a category of complex
analytic spaces provided with an additional structure.

We say that a pair (V,J ), consisting of an open subset of Cn and a finitely
generated subsheaf of ideals J ⊂ OV , is c-invariant if c(V) = V and, for every
open subsetW ⊂ V, the conjugation isomorphism O(W)→̃O(c(W)) : f 7→ f c takes
J (W) onto J (c(W)). If a pair (V,J ) is c-invariant, the complex conjugation on
Cn gives rise to an involutive R-automorphism c : Y →̃Y of the corresponding local
model Y of a complex analytic space. We say that an involutive R-automorphism
c : Y →̃Y of a local model Y is a complex conjugation if it is induced by that
of an associated c-invariant pair (V,J ). A complex analytic space with complex
conjugation is a pair (Y, c) consisting of a complex analytic space Y provided with
an R-automorphism c : Y →̃Y such that Y can be covered by c-invariant local charts
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with the property that the restriction of c to the corresponding local model is a
complex conjugation. This implies that the automorphism c of Y is an involution,
and group {1, c} acting on such Y will be denoted by 〈c〉. The quotient of Y by
the action of 〈c〉 is the object of the category R-Lrs whose underlying topological
space is the quotient X = Y/〈c〉 provided with the sheaf OX = (ρ∗OY )〈c〉. It will
be denoted just by Y/〈c〉.

Complex analytic spaces with complex conjugation form a category C-Ancc
whose morphisms are morphisms in C-An which commute with the complex con-
jugation automorphisms. We are going to construct an extension of scalars functor

R-An→ C-Ancc : X 7→ XC = X⊗̂RC .

First of all, let X be a local model of an R-analytic space associated to a pair
(U, I) for an open subset U ⊂ Rm and a subsheaf of ideals I ⊂ OU . We let XC

denote the local model of a complex analytic space associated to the c-invariant pair
(U , I ′), where U = ρ−1(U) ⊂ Cm and I ′ is the subsheaf of ideals in OU generated by
I. Given a second local model Y of an R-analytic space, associated to a similar pair
(V,J ) with V ⊂ Rn, and a morphism ϕ : X → Y in R-An, consider the induced
morphism X → Rn. It defines (and is determined by) a homomorphism of R-
algebras R[T1, . . . , Tn]→ O(X). The latter defines a homomorphism of C-algebras
C[T1, . . . , Tn] → O(XC) which, in its turn, determines a morphism of complex
analytic spaces XC → Cn whose image lies in V = ρ−1(V ). Since the subsheaf of
ideals J ′ ⊂ OV is generated by J , it follows that ϕ induces a morphism of local
models ϕC : XC → YC. This morphism commutes with the complex conjugation on
both local models. It follows also that, if the morphism ϕ is an isomorphism, then
so is the morphism ϕC. Notice that there is a canonical isomorphism in R-Lrs,
XC/〈c〉→̃X, and one has (XC)〈c〉 = X(R).

If X is an arbitrary R-analytic space and {Xi}i∈I is a covering of X by local
charts, we define XC by gluing the complex analytic local charts Xi

C along the open
subsets (Xi∩Xj)C. The complex analytic space XC does not depend on the choice
of a covering up to a canonical isomorphism, and this gives the required extension of
scalars functor X 7→ XC. The involutions c on Xi

C’s are compatible and, therefore,
they give rise to an involution c : XC→̃XC, which is an R-automorphism of XC.
By the construction, the complex analytic space XC is an object of C-Ancc, and
the correspondence X 7→ XC is a functor. It follows also from the construction that
there is a canonical isomorphism in R-Lrs, XC/〈c〉→̃X, and one has (XC)〈c〉 =
X(R). If the complex analytic space XC is considered as an object of the category
C-Ancc we denote it by Xcc

C .

Proposition 1.2.2. (i) The functor R-An→ C-Ancc : X 7→ Xcc
C is an equivalence

of categories;
(ii) for every Y ∈ C-Ancc, the quotient Y/〈c〉 is an object of R-An, and the

correspondence Y 7→ Y/〈c〉 is an equivalence of categories inverse to that from (i).

Proof. It suffices to show that, for every Y ∈ C-Ancc, the quotient Y/〈c〉, considered
as a locally ringed space, is locally isomorphic to an R-analytic space. Let y be
a point of Y , and let (W, ϕ, Z, (V,J )) be a c-invariant local chart with y ∈ W.
Suppose first that c(y) 6= y. Then we can find an open neighborhood V ′ of y in
V with V ′ ∩ c(V ′) = ∅. If W ′ is the preimage of Z ∩ V ′ in W, it follows that the
morphism ρ : Y → Y/〈c〉 gives rise to an isomorphism ofW ′ onto its image. Suppose
now that c(y) = y. We can shrink W and assume that V is an open polydisc in
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Cn with center at zero, which is the image of the point y. Then D = V/〈c〉 is a
real open polydisc in Rn, O(V ) is the C-algebra of power series with coefficients in
C convergent in V , and O(D) is the subalgebra of the series with real coefficients.
Notice that every function g ∈ O(V ) is represented in a unique way as a sum u+ iv
for u, v ∈ O(D) and, for the function gc ∈ O(V ), one has gc = u − iv. It follows
that, if g ∈ J (V ), then gc ∈ J (V ) and, therefore, u = 1

2 (g+gc) and v = − i
2 (g−gc)

belong to the ideal I = J (V )∩O(D). It is also easy to see that J(V ) = IO(V ), that
the ideal I is generated over O(D) by the real and imaginary parts of generators
of the finitely generated ideal J (V ) of O(V ), and that I generated the subsheaf of
ideals I = J ∩ OV of OV . Thus, the sheaf (ρ∗OZ)〈c〉 on the quotient space Z/〈c〉
coincides with the restriction of the sheaf OD/I and, therefore, the quotient Z/〈c〉
is a local model of an R-analytic space. This implies the required fact. �

Let X be an R-analytic space. The action of the complex conjugation on the
structural sheaf OXC

, compatible with the action of c on XC, induces a similar
action on the constant subsheaf CXC

⊂ OXC
. By the above construction, one has

OX = (ρ∗OXC
)〈c〉. We introduce the following subsheaf of OX : cX = (ρ∗CXC

)〈c〉.
It is called the sheaf of constant analytic functions on X. Notice that ρ−1(cX) is
a subsheaf of the constant sheaf CXC

and that X(R) = {x ∈ X
∣∣cX,x = R}. The

complex conjugation on the field of complex numbers induces an automorphism
ϑ of the constant sheaf CXC

(compatible with the trivial action on XC), which
commutes with the above complex conjugation c on CXC

. It follows that ϑ induces

an automorphism of the sheaf cX , also denoted by ϑ. Notice that c
〈ϑ〉
X = RX .

Let Y be a complex analytic space. For a local chart (W, ϕ, Z, (V,J )) of Y ,
we set V c = c(V ), denote by J c the subsheaf of ideals of OV c consisting of local

sections of the form f c(z) = f(z) for local sections f of OV , and denote by Zc

the local model associated to the pair (V c,J c). Then the involution c : Cn → Cn
induces a conjugation isomorphism of local models c : Zc→̃Z. Any local chart
(W ′, ϕ′, Z ′, (V ′,J ′)) of Y with W ′ ⊂ W gives rise to an open immersion of local
models Z ′c ↪→ Zc which is compatible with the conjugation isomorphisms on Z and
Z ′. Thus, when W runs through local charts of Y , one glue local models Zc and
get a complex analytic space Y c and a conjugation isomorphism c = cY : Y c→̃Y ,
which is an R-morphism. Notice that one can identify (Y c)c with Y so that the
conjugation isomorphism cY c : Y = (Y c)c→̃Y c is inverse to cY : Y c→̃Y .

For example, if Y ∈ C-Ancc, there is an evident isomorphism of complex analytic
spaces Y →̃Y c whose composition with the above R-morphism c : Y c→̃Y coincides
with the complex conjugation c : Y →̃Y defined on Y .

If Z is a complex analytic space, then the conjugation isomorphisms cZ and
cZc define a complex conjugation on the disjoint union Z

∐
Zc, and the corre-

spondence Z 7→ Z
∐
Zc is a functor C-An → C-Ancc left adjoint to the forgetful

functor C-Ancc → C-An. Notice that (Z
∐
Zc)/〈c〉 = ZR and (ZR)C = Z

∐
Zc.

Furthermore, the same cZ and cZc together with the permutation define a com-
plex conjugation on the direct product Z × Zc, and we get an R-analytic space
ResC/R(Z) = (Z × Zc)/〈c〉.

Proposition 1.2.3. The functors C-An→ R-An : Y 7→ YR and Y 7→ ResC/R(Y )
are left and right adjoint, respectively, to the extension of scalars functor R-An→
C-An : X 7→ XC.

The functor Y 7→ ResC/R(Y ) is called the Weil restriction of scalars functor.
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Proof. Given an R-analytic space X, each morphism of complex analytic spaces
Y → XC (resp. XC → Y ) induces a morphism Y c → XC (resp. XC → Y c),
which is compatible with the complex conjugation on XC and the conjugation
morphism Y c→̃Y . It defines therefore a morphism of complex analytic spaces with
complex conjugation Y

∐
Y c → XC (resp. XC → Y × Y c). By Proposition 1.2.2,

the latter gives rise to a morphism YR = (Y
∐
Y c)/〈c〉 → X = XC/〈c〉 (resp.

X → ResC/R(Y ) = (Y × Y c)/〈c〉). �

Proposition 1.2.2 allows one to extend various constructions, notions and re-
sults from the category of complex analytic spaces to that of R-analytic ones. For
example, the category R-An admits fiber product. Namely, given morphisms of
R-analytic spaces Y → X and Z → X, the fiber product Y ×X Z is the R-analytic
space (YC ×XC

ZC)/〈c〉. Notice the canonical map between the underlying topo-
logical spaces |Y ×X Z| → |Y | ×|X| |Z| is not a bijection in general. It is a proper
map and, for points y ∈ Y and z ∈ Z over the same point x ∈ X, the preimage of
the point (y, z) is the space M(H(y) ⊗H(x) H(z)), which consists of at most two
points. (Recall that map of locally Hausdorff topological spaces T → S is said to
be proper if it is Hausdorff, i.e., the diagonal map T → T ×S T is closed, and the
preimage of a compact subset is compact.) The zero dimensional affine space R0 is
a final object of the category R-An, and so this category admits direct products.
Notice that, for an R-analytic space X and a complex analytic space Y , one has
X × YR→̃(XC × Y )R. For example, X × C0

R→̃(XC)R.
Let ϕ : Y → X be a morphism of R-analytic spaces. It is said to be separated if

it Hausdorff as a map of topological spaces. It is said to be proper if it is proper as
a map of topological spaces. It is said to be finite if it is proper and the preimage of
each point of X is a finite subset of Y . It is said to be a closed immersion if it is finite
and the induced homomorphism of sheaves OX → ϕ∗(OY ) is surjective. It is said to
be a locally closed immersion if, for every point y ∈ Y , there are open neighborhoods
V of y and U of ϕ(y) such that ϕ induces a closed immersion V → U . One can easily
see that ϕ possesses one of these properties if and only if the induced morphism
of complex analytic spaces ϕC : YC → XC possesses that property. Notice that
the canonical morphism (XC)R → X is finite (of degree two), and the diagonal
morphism ∆Y/X : Y → Y ×X Y is a locally closed immersion. If ϕ : Y → X is
a locally closed immersion, U and V are as above, and J = Ker(OU → ϕ∗(OV )),
then the quotient J /J 2 can be considered as an OV -module. All these sheaves
are compatible on intersections, and so they define a coherent OY -module which is
said to be the conormal sheaf of ϕ and denoted by NY/X .

Given a morphism of R-analytic spaces ϕ : Y → X, the conormal sheaf of the
diagonal morphism ∆Y/X is said to be the sheaf of one-forms of ϕ and denoted by

Ω1
Y/X . The q-th exterior power of Ω1

Y/X is said to be the sheaf of q-forms of ϕ and

denoted by ΩqY/X . As usual, the direct sum ⊕∞q=0ΩqY/X forms a differential graded

algebra Ω·Y/X which, in the case X = R0, is denoted just by Ω·Y .

Furthermore, a morphism ϕ : Y → X is said to be flat (resp. unramified) at a
point y ∈ Y if the local ring OY,x is a flat OX,x-module (resp. my = mxOX,x),
where x = ϕ(y). It is said to be étale at y if it is flat and unramified at y. The
morphism ϕ is étale at y, if and only if either it is a local isomorphism at y, or
H(x) = R and there exist open neighborhoods V of y and U of X such that ϕ gives
rise to a morphism V → U which is the composition of an isomorphism V→̃UC and
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the canonical morphism (UC)R → U . The morphism ϕ is said to be unramified
(resp. étale) if it is unramified (resp. étale) at all points of Y . A morphism
ϕ : Y → X is unramified if and only if Ω1

Y/X = 0, and the morphism (XC)R → X

is étale.
A morphism ϕ : Y → X is said to be smooth at y if there is an open neighborhood

V ⊂ Y of y such that ϕ
∣∣
V is a composition of an étale morphism ψ : V → X × Rn

and the canonical projection X × Rn → X. Notice that, if ϕ is smooth but not
étale at y (i.e., the above n is positive), one can always find a composition as above
in which ψ is a local isomorphism. Indeed, if ψ is not a local isomorphism, then y
is a complex point and ψ(y) is a real point. Shrinking Y , we may therefore assume
that ϕ goes through an étale morphism ψ′ : Y → X × CnR, which is of course
a local isomorphism at y. After a shift on Cn, we can make the image of ψ′(y)
in Cn lying outside Rn. Then the composition of ψ′ with the canonical morphism
X×CnR → X×Rn is a local isomorphism at y. The morphism ϕ is said to be smooth
if it is smooth at all points of Y . If ϕ is smooth of pure dimension n ≥ 0, the OY -
module Ω1

Y/X is locally free of rank n. An R-analytic space X is said to be smooth

if the morphism X → R0 is smooth. In this case, one has Ker(OX
d→ Ω1

X) = cX . If
X is of pure dimension n ≥ 1, then X is smooth if and only if it is locally isomorphic
to the affine space Rn. A Hausdorff smooth R-analytic space of pure dimension n
will be said to be an R-analytic manifold of dimension n.

Let X be a scheme of locally finite type over R. Then the contravariant functor
from R-An to the category of sets that takes an R-analytic space Y to the set
of morphisms HomR-Lrs(Y,X ) is representable by an R-analytic space X h and a
morphism X h → X : x 7→ x. The construction of X h and establishment of its
properties follow the usual way of the complex GAGA. We only notice that, as
a set, X h coincides with the set X0 of closed points of X , i.e., the points whose
residue field is R or C. For every x ∈ X, the local homomorphism OX ,x → OXh,x
is faithfully flat and induces an isomorphism of completions ÔX ,x→̃ÔXh,x. One

also has (X h)C = (X ⊗R C)h.
Notice that , if an R-analytic space X is connected, then the R-algebra cX(X)

is either R, or isomorphic to C. In the latter case, X is isomorphic to YR for a
complex analytic space Y , and one has XC→̃Y

∐
Y c.

Proposition 1.2.4. The following properties of a connected R-analytic space X
are equivalent:

(i) the complex analytic space XC is connected;
(ii) for any connected R-analytic space Y , the direct product X×Y is connected;
(iii) cX(X) = R.

Proof. (i)=⇒(ii). The fibers of the projection X×Y → Y are homeomorphic either
to X, or to XC. Since Y is connected and the projection is an open map, it follows
that X × Y is connected.

(ii)=⇒(iii). Since (XC)R = X×C0
R, it follows that XC is connected. This would

be impossible if cX(X) is isomorphic to C.
(iii)=⇒(i). Suppose thatXC is not connected, and consider first the caseX(R) 6=

∅. Let V be the connected component of XC that contains the unique preimage of
a point from X(R). Then c(V) ∩ V 6= ∅. Since c(V) is also a connected component
of XC, it follows that c(V) = V. This implies that V = ρ−1(U) for U = ρ(V). If
V 6= X, then the image of W = XC\V in X does not intersect U , i.e., it is an open
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subset of X and the complement of U in X. This contradicts connectivity of X.
Consider now the case X(R) = ∅. Then ρ : (XC)R → X is a local isomorphism
which is a double topological covering of X. If some connected component V of
XC has nonempty intersection with c(V), then c(V) = V, and the above reasoning
shows that V should coincide with X. Suppose therefore that c(V) ∩ V = ∅ for
all connected components V of X. If V ∪ c(V) 6= XC, then the image of W =
XC\(V ∪ c(V)) in X does not intersect ρ(V), and this contradicts connectivity of
X. Thus, V ∪c(V) = XC. Since there is an isomorphism of complex analytic spaces
c(V)→̃Vc, it follows that X = VR and, therefore, cX(X) is isomorphic to C. This
contradicts the assumption. �

A connected R-analytic space X is said to be geometrically connected if it pos-
sesses the equivalent properties of Proposition 1.2.4.

1.3. Klein surfaces as R-analytic manifolds of dimension one. We recall
the definition of Klein surfaces from [AG71].

Let W be an open subset of the closed upper half-plane Ĥ. A function f : W →
C is said to be analytic if it is the restriction of a function analytic in an open
neighborhood of W in C. A function f : W → C is said to be antianalytic if the
function W → C : z 7→ f(z) is analytic. A function f : W → C is said to be
dianalytic if its restriction to any connected component of W is either analytic, or
antianalytic.

Furthermore, a dianalytic atlas on a topological space X consists of an open
covering {Uj}j∈J of X and, for each j ∈ J , a homeomorphism hj of Uj with

an open subset of Ĥ such that, for every pair j, k ∈ J , the function hk ◦ h−1
j :

hj(Uj ∩ Uk)→ hk(Uj ∩ Uk) ⊂ Ĥ ⊂ C is dianalytic. A Klein surface is a Hausdorff
topological space X provided with a dianalytic structure i.e., a maximal dianalytic
atlas. Such a space X is a two dimensional manifold with boundary ∂(X). The
boundary consists of the points x ∈ X such that there exists a local dianalytic chart

(U, h) (from the dianalytic structure of X) with x ∈ U and h(x) ∈ R ⊂ Ĥ.
A morphism of Klein surfaces ϕ : X ′ → X is a continuous map with the proper-

ties that ϕ(∂(X ′)) ⊂ ∂(X) and, for every point x′ ∈ X ′, there exist local dianalytic
charts (U ′, h′) of X ′ and (U, h) of X such that x′ ∈ U ′, ϕ(U ′) ⊂ U and the induced
map h◦ϕ◦h′−1 : h′(U ′)→ h(U) is of the form φ◦g, where g is an analytic function

on h′(U ′) and φ is the “folding map” C→ Ĥ : a+ bi 7→ a+ |b|i.
Let X be a Klein surface. We provide it as follows with a sheaf of local R-

algebras OX . Let {(U, hU )}U be the maximal dianalytic atlas of X. For an open
subset W ⊂ X, we define O(W ) as the R-algebra of families {fU}U of continuous
functions fU : U ∩W → C with the following properties:

(1) for every chart U , the function fU ◦ h−1
U : hU (U ∩W )→ C is analytic and

takes real values at hU (U ∩W ) ∩ ∂(X);
(2) for every pair charts U , V with U ∩ V ∩ W 6= ∅ and every connected

component S of U ∩ V ∩W , one has fU
∣∣
S

= fV
∣∣
S

(resp. fU
∣∣
S

= fV
∣∣
S

), if

the restriction of hV ◦ h−1
U to S is analytic (resp. antianalytic).

Notice that the same sheaf OX is obtained if one uses an arbitrary (not nec-
essarily maximal) dianalytic atlas. We also notice that, if we identify the closed

upper half-plane Ĥ with R, the properties (1) and (2) imply that the restriction
of the sheaf OX to a chart U is identified with that of OR to hU (U). This means
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that (X,OX) is an R-analytic manifold of dimension one. Moreover, the boundary
∂(X) is nothing else than the set of R-points of (X,OX).

Proposition 1.3.1. The correspondence X 7→ (X,OX) gives rise to an equivalence
between the category of Klein surfaces and the category of R-analytic manifolds of
dimension one.

Proof. Step 1. The correspondence X 7→ (X,OX) is a functor. Let ϕ : X ′ → X be a
morphism of Klein surfaces. We have to associate to it a homomorphism of sheaves
ϕ∗ : ϕ−1(OX) → OX′ that gives rise to a morphism of locally R-ringed spaces
(X ′,OX′)→ (X,OX). It suffices to define a system of compatible homomorphisms
O(U) → O(U ′) : f 7→ ϕ∗f for all pairs of local dianalytic charts (U, h) of X and
(U ′, h′) of X ′ with ϕ(U ′) ⊂ U . By the definition, the map h ◦ ϕ ◦ h′−1 : h′(U ′) →
h(U) is of the form φ ◦ g′, where g′ is an analytic function on h′(U ′) and φ is the

“folding map” C → Ĥ : a + bi 7→ a + |b|i. We define the value of ϕ∗f at a point

x′ ∈ U ′ as follows: (ϕ∗f)(x′) equals to f(ϕ(x′)), if g′(h′(x′)) ∈ Ĥ, and to f(ϕ(x′)),
if g′(h′(x′)) ∈ C\H. We have to check that ϕ∗f ∈ O(U ′) and that, for every local
chart (U ′′, h′′) of X with ϕ(U ′′) ⊂ U and U ′∩U ′′ 6= ∅, the above function v′ = ϕ∗f
on U ′ and the similar function v′′ on U ′′ are compatible on U ′ ∩ U ′′.

First of all, since ϕ(∂(X ′)) ⊂ ∂(X) and f takes real values at U ∩∂(X), v′ takes
real values at U ′ ∩ ∂(X ′). Furthermore, the restriction of v′ ◦ h′−1 to the open set
g′−1(H) is clearly analytic. The restriction of the map h ◦ϕ ◦ h′−1 : h′(U ′)→ h(U)

to the open set g′−1(C\Ĥ) is equal to the antianalytic function z 7→ g′(z) and,
therefore, the restriction of v′ ◦ h′−1 to that set, which corresponds to the function

z 7→ (f ◦ h−1)(g′(z)), is analytic. Finally, let x′ be a point of U ′ with g′(h′(x′)) ∈ R.

There is an open disc D in C with center at g′(h′(x′)) such that D ∩ Ĥ ⊂ h(U)
and the function (f ◦ h−1)

∣∣
D∩Ĥ is the restriction of an analytic function in D. We

now notice that, for any analytic function u on D that takes real values at D ∩R,
one has u(z) = u(z) for all points z ∈ D. This implies that the above two analytic

functions on g′−1(H) and g′−1(C\Ĥ) are restrictions of the same analytic function
on h′(U ′), i.e., ϕ∗f ∈ O(U ′).

Let now (U ′′, h′′) be a local chart of X with ϕ(U ′′) ⊂ U and U ′ ∩ U ′′ 6= ∅. As
above, the map h ◦ ϕ ◦ h′′−1 : h′′(U ′′) → h(U) is of the form φ ◦ g′′, where g′′ is
an analytic function on h′′(U ′′), and the value of v′′ at point x′ ∈ U ′′ is as follows:

v′′(x′) equals to f(ϕ(x′)), if g′′(h′′(x′)) ∈ Ĥ, and to f(ϕ(x′)), if g′′(h′′(x′)) ∈ C\H.
Let W be a connected component of U ′ ∩ U ′′, and denote by w the restriction of
the function h′′ ◦ h′−1 to h′(W ). One has

(h ◦ ϕ ◦ h′−1)
∣∣
h′(W )

= (h ◦ ϕ ◦ h′′−1)
∣∣
h′′(W )

◦ w .

By the previous paragraph, the function h ◦ ϕ ◦ h′−1 and h ◦ ϕ ◦ h′′−1 restricted to
g′−1(H) and g′′−1(H) (resp. g′−1(C\H) and g′′−1(C\H)) are equal to the analytic

functions z 7→ g′(z) and g′′(z) (resp. the antianalytic functions z 7→ g′(z) and

g′′(z)), respectively. Thus, if the function w is analytic, we get g′−1(H) = g′′−1(H)
and g′−1(C\H) = g′′−1(C\H), and this implies that v′

∣∣
W

= v′′
∣∣
W

. If the function

w is antianalytic, we get g′−1(H) = g′′−1(C\H) and g′−1(C\H) = g′′−1(H), and
this implies that v′

∣∣
W

= v′′
∣∣
W

.

Step 2. The functor considered is fully faithful. Given Klein surfaces X and X ′,
let ϕ : (X ′,OX′) → (X,OX) be a morphism of R-analytic manifolds. Since the
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boundary of a Klein surface coincides with the set of real points of the correspond-
ing R-analytic space, we have ϕ(∂(X ′)) ⊂ ∂(X). Let now (U, h) and (U ′, h′) be
dianalytic charts of X and X ′, respectively, with ϕ(U ′) ⊂ U . We have to show
that the induced map h ◦ ϕ ◦ h′−1 : h′(U ′) → h(U) is of the form φ ◦ g for an
analytic function g on h′(U ′). The latter map is the underlying map of a morphism

ψ : U ′ = h′(U ′) → U = h(U) of R-analytic open subspaces of R = Ĥ. Consider
the induced morphism ψC : U ′C → UC of complex analytic open subspaces of C.
This morphism is defined by a complex analytic function f on U ′C. If g denotes the
restriction of f to U ′, which is a closed subset of U ′C, we get ψ = φ ◦ g.

Step 3. The functor is essentially surjective. Indeed, let X be an R-analytic
manifold of dimension one. It is covered by open charts U with given isomorphisms

hU : U→̃h(U) ⊂ R. If we identify R with Ĥ, we get a dianalytic atlas on X, which
defines the structure of a Klein surface on X. �

1.4. Étale fundamental group of an R-analytic space. A morphism of R-
analytic spaces ϕ : Y → X is said to be an étale covering map if it is an étale
morphism with the property that each point of X has an open neighborhood U for
which ϕ−1(U) is a disjoint union of spaces such that the induced morphism from
each of them to U is finite étale. In this situation Y is said to be an étale covering
space over X. The category of étale covering spaces over X is denoted by Covét(X).
Notice that any morphism in this category is automatically an étale covering map.
Notice also that any topological space Y provided with a topological covering map
Y → X has a canonical structure of an R-analytic space for which this map is an
étale covering map. If all points of X are complex, then each étale covering map
Y → X is a topological covering map and, in particular, Covét(X) coincides with
the category Cov(X) of topological covering spaces over X.

Furthermore, we say that an étale covering space Y over a connected R-analytic
space X is an étale universal covering, if it is connected and, for any étale covering
space Y ′ over X, there exists a morphism Y → Y ′ over X. Notice that, if Y ′

is connected, any such morphism Y → Y ′ is surjective. The remark from the
previous paragraph implies that, if X is not geometrically connected, i.e., X = ZR

for a complex analytic space Z, then for a topological universal covering Y of Z, YR
is an étale universal covering of X and, in particular, any étale universal covering
of X is isomorphic to YR over X.

Proposition 1.4.1. Let X be a geometrically connected R-analytic space, and let
Y be a topological universal covering over XC. Then

(i) YR is an étale universal covering over X;
(ii) any étale universal covering of X is isomorphic to YR;
(iii) the complex conjugation c on XC lifts to an R-automorphism of Y ;
(iv) if X(R) 6= ∅, the complex conjugation c on XC lifts to a complex conjuga-

tion cY on Y and, in particular, Y is isomorphic to ZC for a geometrically
connected étale covering space Z over X.

Notice that the set of liftings of c to Y (from (iii)) is a principal homogeneous
space for the group of automorphisms of Y over X.

Proof. (i) Let Z be an étale covering space over X. Then ZC is an étale covering
space over XC and, therefore, there exists a morphism Y → ZC over XC. By
Proposition 1.2.3, the latter gives rise to a morphism YR → Z over X.
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(ii) Let Z be an étale universal covering space over X. By the definition there
are morphisms ϕ : YR → Z and ψ : Z → YR over X. They are themselves étale
covering maps, and their composition is a morphism ψ ◦ ϕ : YR → YR over X
which gives rise to a morphism Y → Y over XC. Since Y is an étale universal
covering space over XC, the latter is an isomorphism and, therefore, ψ ◦ ϕ is an
isomorphism. This implies that ψ : YR → Z is an open immersion. Since Z is
connected, it follows that ψ is an isomorphism.

(iii) Consider the cartesian diagram of maps of topological spaces

Y
α // XC

Y ′

β

OO

α′ // XC

c

OO

Since α′ : Y ′ → XC is a topological covering map, Y ′ has the canonical structure
of a complex analytic space with respect to which α′ is a local isomorphism. Let x
be a point XC. If c(x) 6= x (resp. c(x) = x), we can find an open neighborhood U
of x such that c(U) ∩ U = ∅ (resp. c(U) = U) and α−1(U) =

∐
i∈I Vi with Vi ⊂ Y

for which α induces a complex analytic isomorphism Ui→̃U . Then α′−1(c(U)) =∐
i∈I V

′
i with V ′i = Vi ×U c(U). Then α′ induces a complex analytic isomorphism

V ′i →̃c(U) and β induces an R-isomorphism V ′i →̃Vi. In this way Y ′ is identified
with the complex analytic space Y c and β is identified with the complex conjugation
c : Y c→̃Y . Furthermore, since both α and α′ are universal coverings of the complex
analytic space XC, there is a complex analytic isomorphism Y →̃Y c over XC whose
composition with β : Y c→̃Y is a required R-automorphism of Y .

(iv) Let x be a point of XC over a real point of X. Then c(x) = x and, as in the
proof of (iii), we can find an open neighborhood U of x such that c(U) = U and
α−1(U) =

∐
i∈I Vi with Vi ⊂ Y for which α induces a complex analytic isomorphism

Vi→̃U . Let y be a point in α−1(x). It lies in some Vi. Let now y′ be a point in
α′−1(x) that lies in V ′i , and let δ : Y →̃Y ′ be the complex analytic isomorphism
of topological universal coverings over XC that takes y to y′. We claim that the
composition c′ = β ◦ δ : Y →̃Y defines a complex conjugation on Y . Indeed, since
the R-isomorphism c′ is compatible with the complex conjugation c on XC, one has
c′(y) = y. Then the complex analytic isomorphism c′2 : Y →̃Y is an automorphism
of the topological universal covering of XC that takes the point y to itself. It
follows that c′2 is the identity map on Y . It remains to show that Y is covered by
c′-invariant local charts.

First of all, as in the proof of (iii), XC is covered by open subsets U with either

c(U) ∩ U = ∅, or c(U) = U , and such that α−1(U) =
∐
i∈I Ũi and β−1(U) =∐

i∈I Ũ
′
i with Ũi→̃U and Ũ ′i→̃c(U) for all i ∈ I. The R-isomorphism β induces

R-isomorphisms Ũ ′i→̃c̃(U)i, and the complex analytic isomorphism δ gives rise to

isomorphisms Ũi→̃Ũ ′σ(i), where σ is a permutation of the set I. It follows that the

involution c′ gives rise to R-isomorphisms Ũi→̃c̃(U)σ(i). Thus, Y is covered by the

c′-invariant open sets Ũi ∪ c̃(U)σ(i). �

Corollary 1.4.2. In the situation of Proposition 1.4.1(iv), the automorphism group
of YR over X is a semi-direct product of the automorphism group of Y over XC

and the complex conjugation cY . �
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A geometric point of an R-analytic space X is a morphism x : C0
R → X. It

is nothing else than a point of the complex analytic space XC. The image of a
geometric point x in X will be denoted by x. A geometric point x : C0

R → X defines

the following covariant functor Fx : Covét(X) → Ens. It takes an étale covering
space Y over X to the set of geometric points y : C0

R → Y whose composition
with the étale covering map Y → X is the geometric point x or, equivalently,
the preimage of the point x ∈ XC in YC. Similarly, any point x ∈ X defines a
functor Fx : Cov(X) → Ens that takes a topological covering space Y over X to
the preimage of x in Y .

Proposition 1.4.3. Let X be a connected R-analytic space. Then for any pair of
geometric points x,y of X, there exists an isomorphism of functors Fx→̃Fy.

Proof. Consider first the case when all points of X are complex. Then any étale cov-
ering map ϕ : Y → X is a topological covering map and, therefore, Fx(Y )→̃Fx(Y ) =
ϕ−1(x). Thus, any path from x to y inX defines a required isomorphism of functors.

Consider now the case when X(R) 6= ∅ and, in particular, X is geometrically
connected. Then (XC)R is connected. The geometric points x and y can be
lifted to geometric points x′ and y′ of (XC)R with respect to the canonical mor-
phism (XC)R → X. By the previous case, there exists an isomorphism of functors
Fx′→̃Fy′ . It gives rise to the required isomorphism Fx→̃Fy. �

Given geometric points x and y of an R-analytic space X, the homotopy class
of an étale path from x to y is an isomorphism of functors γ : Fx→̃Fy. For
brevity, we call it the étale path from x to y and denote by γ : x 7→ y. The
étale fundamental groupoid of an R-analytic space X is the category Π1(X) whose
objects are geometric points x of X (i.e., points of XC) and the sets of morphisms
Π1(X,x,y) are the sets of étale paths γ : x 7→ y. The étale fundamental group of
X at a geometric point x is the group π1(X,x) = Π1(X,x,x). The corresponding
topological fundamental groupoid and the topological fundamental group of the
underlying topological space |X| of X will be denoted by Π1(|X|) and π1(|X|, x),
respectively. For example, if X is connected but not geometrically connected, then
the evident functor Π1(X) → Π1(|X|) : x 7→ x is an equivalence of categories,
which is not a bijection between their sets of objects.

Proposition 1.4.4. Let X be a connected R-analytic space. Then for any geomet-
ric point x of X, the functor Fx gives rise to an equivalent of categories

Covét(X)→̃π1(X,x)-Ens .

The right hand side is the category of π1(X,x)-sets.

Proof. Step 1. Let ϕ : Y → X is an étale covering morphism. Then there is a
bijection between connected components of Y and π1(X,x)-orbits in Fx(Y ). Indeed,
any set of points from Fx(Y ) lying in one connected component of Y is a union
of π1(X,x)-orbit. On the other hand, let y1 and y2 are geometric points of a
connected component Y ′ of Y over x. By Proposition 1.4.3, there exists an étale
path γ : y1 7→ y2. Then ϕ ◦ γ is an étale path x 7→ x, i.e., an element of π1(X,x)
which takes y1 to y2 in Fx(Y ).

Step 2. The functor considered is fully faithful. Indeed, let Y and Z be connected
étale covering spaces over X. Then morphisms Y → Z in Covét(X) correspond to
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connected components W of Y ×X Z for which the projection W → Y is an isomor-
phism. On the other hand, π1(X,x)-equivariant maps Fx(Y )→ Fy(Z) correspond
to π1(X,x)-orbits Σ in Fx(Y ×X Z) = Fx(Y ) × Fx(Z) for which the projection
Σ→ Fx(Y ) is a bijection. The claim therefore follows from Step 1.

Step 3. The functor is essentially surjective. Firts of all, we need the following
fact.

Lemma 1.4.5. Let Y be an étale universal covering of X. Then Fx(Y ) is a
principal homogeneous space for π1(X,x).

Proof. Step 1 implies that the group π1(X,x) acts transitively on the set Fx(Y ).
Furthermore, let g be a nonrivial element of π1(X,x). Then there exists a connected
étale covering space Z over X such that g acts nontrivially on Fx(Z). Since there
is a morphism Y → Z over X that induces a surjective π1(X,x)-equivariant map
Fx(Y ) → Fx(Z), it follows that the element g acts nontrivially on the set Fx(Y ).
This implies the lemma. �

Corollary 1.4.6. In the situation of Lemma 1.4.5, the following is true

(i) the group π1(X,x) is isomorphic to the automorphism group of Y over X;
(ii) if X is geometrically connected, then there is an exact sequence

1 −→ π1(XC,x) −→ π1(X,x) −→ 〈c〉 −→ 1 ,

and if X(R) 6= ∅, this sequence splits.

Proof. (i) Let y be a fixed point from Fx(Y ). By Lemma 1.4.5, for any automor-
phism ϕ of Y over X there exists a unique element h ∈ π1(X,x) with ϕ(y) = h−1y.
Then ϕ(gy) = gh−1y for all g ∈ π1(X,x). The correspondence ϕ 7→ h gives a
required isomorphism.

(ii) follows from (i) and Proposition 1.4.1. �

It suffices to consider the case when X is geometrically connected. Let Σ be a
transitive π1(X,x)-set. Fix a point σ ∈ Σ, denote by H its stabilizer in π1(X,x),
and set H0 = H ∩ π1(XC,x). Let Z be the complex analytic quotient Y/H0. If
H0 = H, then the étale covering space over X that corresponds to the π1(X,x)-set
Σ is ZR. If H0 6= H, then H0 is an invariant subgroup of index two in H, and the
nontrivial element of the quotient H/H0 acts as a complex conjugation c on Z. In
this case, the étale covering space over X that corresponds to the π1(X,x)-set Σ is
the R-analytic space Z/〈c〉. �

Example 1.4.7. Let R∗ be the punctured R-analytic affine line R\{0}. Its scalars
extension R∗C is the punctured complex analytic affine line C∗, and the complex
analytic affine line C is a topological universal covering of C∗ with respect to the
exponential map C→ C∗ : b 7→ eb. It follows that CR is an étale universal covering
of R∗. The automorphism group of CR over R∗, which will be denoted by π1(R∗),
is canonically isomorphic to the group 2πiZ o 〈c〉.

1.5. Étale topology of an R-analytic space. For an R-analytic space X, let
Ét(X) denote the category of étale morphisms U → X. The étale topology on X

is the Grothendieck topology on the category Ét(X) generated by the pretopology

in which the set of coverings of (U → X) ∈ Ét(X) is formed by the families

{Ui
fi→ U}i∈I such that U =

⋃
i∈I Ui. The site obtained in this way is denoted
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by Xét (the étale site of X), and the category of sheaves of sets on Xét is denoted
by X̃ ét. The cohomology groups of an abelian sheaf A on Xét will be denoted by
Hq(X,A), and those of an abelian sheaf A on the underlying topological space will
be denoted by Hq(|X|, A).

By the way, it will be convenient for us to use a similar site Yét for a topological
space Y . It is defined in the same way as above for maps V → Y which are local
homeomorphisms at each point of V (such maps will be called étale). Of course,
Y˜́et coincides with the usual category of sheaves on the topological space Y . The
convenience of using the site Yét is, for example, in follows. Any continuous map
ϕ : Y → X to our R-analytic space X, which goes through a continuous map
Y → XC, gives rise to a morphism of sites Yét → Xét and, in particular, one can
use usual operations on sheaves (direct image, inverse image and so on).

The stalk of an étale sheaf A at a geometric point x is denoted by Ax. One has
Ax = lim

−→
A(V ), where V runs through open neighborhoods of the point x in XC.

It is a set provided with an action of the Galois group Gx = Gal(H(x)/H(x)). The
latter is trivial if x, the image of x in X, is a complex point, and is of order two, if
x is a real point. There is a morphism of sites π : Xét → |X| and, if all points of X
are complex, it gives rise to an equivalence of topoi |X|˜ →̃X̃ ét. For any abelian
sheaf A on Xét, one has (Rqπ∗A)x→̃Hq(Gx, Ax). It follows that (π∗A)x = AGx

x

and, for q ≥ 1, the sheaves Rqπ∗(A) are supported at the subset X(R). The above
morphism of sites gives rise to a spectral sequence

Ep,q2 = Hp(|X|, Rqπ∗A) =⇒ Hp+q(X,A) .

In particular, if all points of X are complex or the sheaf A is uniquely divisible by
two, for all q ≥ 0 one has Hq(|X|, π∗A)→̃Hq(X,A).

For example, if F is a coherent sheaf of OX -modules, then the étale presheaf F̃
whose value at an étale morphism ϕ : U → X is (ϕ−1(F ) ⊗ϕ−1(OX) OU )(U) is a

sheaf, and one has Hq(X, F̃ )→̃Hq(|X|, F ) for all q ≥ 0. The latter groups will be
denoted just by Hq(X,F ).

The restriction of an étale sheaf A on X to the complex analytic space XC is
denoted by AC. It is provided with an action of the group 〈c〉 compatible with its
action on the space XC. The correspondence A 7→ AC gives rise to an equivalence
X̃ ét→̃XC(〈c〉)̃ between the category X̃ ét and the category XC(〈c〉)̃ of c-sheaves on
XC, i.e., sheaves provided with an action of the group 〈c〉 compatible with its action
on the space XC. The functor I〈c〉, which takes a c-sheaf B to the subsheaf of c-
invariant sections in the direct image on B with respect to the morphism XC → X,
is inverse to the above one (and exact). If I〈c〉 denotes the functor that takes
a 〈c〉-module to the subgroup of c-invariant elements, then for any étale abelian
sheaf A there is a canonical isomorphism RΓ(X,A)→̃RI〈c〉(RΓ(XC, AC)) and, in
particular, there is a Hochschield-Serre spectral sequence of the étale Galois cover
XC over X

Ep,q2 = Hp(〈c〉, Hq(XC, AC)) =⇒ Hq(X,A) .

It follows that, if the sheaf A is uniquely divisible by two, then for all q ≥ 0 one
has Hq(X,A)→̃Hq(XC, AC)〈c〉.

A Hausdorff R-analytic space is said to be Stein if Hq(X,F ) = 0 for all coherent
OX -modules F and all q ≥ 1. It is easy to see that X is Stein if and only if the
complex analytic space XC is Stein. Indeed, if F is a coherent OXC

-module, then
its direct image ρ∗(F ) is a coherent OX module, where ρ is the morphism XC → X.
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Since Rqρ∗(F ) = 0 for all q ≥ 1, it follows that Hq(XC, F ) = Hq(X, ρ∗(F )) for
all q ≥ 0, and this implies the direct implication. On the other hand, if F is a
coherent OX -module, then Hq(X,F )→̃Hq(XC, F )〈c〉 for all q ≥ 0, and this implies
the converse implication.

An étale sheaf of sets F on X is said to be locally constant if there is an étale
covering {Ui → X}i∈I such that the restriction of F to each Ui is a constant

sheaf. The functor Covét(X) → X̃ ét that takes an étale covering space Y over
X to the étale sheaf representable by it gives rise to an equivalence of categories
between Covét(X) and the category Lconét(X) of étale locally constant sheaves on
X. Proposition 1.4.4 implies that, if X is connected, the functor from the latter
that takes an étale locally constant sheaf F to the stalk Fx at a geometric point x
gives rises to an equivalence of categories Lconét(X)→̃π1(X,x)-Ens.

Remark 1.5.1. There is an alternative description of the category Lconét(X)

which will be used later. Namely, let Covét,un(X) be the full subcategory of

Covét(X) consisting of étale universal coverings of X. The category Covét,un(X) is
a groupoid. Then the correspondence F 7→ F (Y ) gives rise to an equivalence be-

tween Lconét(X) and the category of contravariant functors Covét,un(X) → Ens.
The same is true for any full subgroupoid of Covét,un(X).

2. Vanishing cycles in Archimedean analytic geometry

Beginning with this section, the bold letter F is used to denote an Archimedean
field, i.e., R or C, and the corresponding F-analytic affine space of dimension
n ≥ 0 is denoted by Fn, or just F if n = 1. (There is a canonical embedding of sets
Fn ↪→ Fn, which is a bijection only if F = C or n = 0.) The category of F-analytic
spaces is denoted by F-An. The residue field OX,x/mx of a point x of an F-analytic
space X is denoted by H(x). If F = C, then H(x) = C. If F = R, then H(x) is
either R, or (non-canonically) isomorphic to C. We also denote by K the fraction
field of OF,0, and set KC = OC,0 = K ⊗F C. In order to make exposition uniform,
we use the notation XC even for C-analytic spaces X bearing in mind that in this
case XC = X.

2.1. The analytification of a scheme over a Stein germ. Recall that a Stein
compact is a compact subset Σ of an F-analytic space X which has a fundamental
system of open neighborhoods which are Stein spaces. For example, if Σ = {x} is
just a point, it is a Stein compact and OX(Σ) = OX,x is the stalk of the struc-
tural sheaf of X at x. A natural framework for dealing with the analytification of
schemes finitely presented over the ring OX(Σ) is that of pro-analytic spaces. This
framework is developed in [SGA4, Exp. I] (see also [Ber96a, §2]). We recall briefly
some notations and facts.

The category Pro(C) of pro-objects of a category C is defined as follows. Its
objects are covariant functors I → C : i 7→ Xi, where I is a small cofiltered
category, and they are denoted by "lim←−

I

"Xi. Morphisms between such objects are

defined as follows: Hom("lim←−
J

"Yj ,"lim←−
I

"Xi) = lim←−
I

lim−−→
J◦

Hom(Yj , Xi). The category

Pro(C) admits cofiltered projective limits, and if C admits fiber products, then so
is Pro(C). If C is the category F-An,, we get the category of pro-F-analytic (or
just pro-analytic) spaces Pro(F-An) . A pro-analytic space "lim←−

I

"Xi gives rise to
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the underlying locally ringed space |X| of X. Namely, the underlying topological
space |X| of X is the projective limit of the underlying topological spaces |Xi| of
Xi and OX,x = lim−→

I◦
OXi,xi , where xi is the image of x in Xi. We remark that the

space |X| may be empty even when X is nontrivial. We also notice that there is an
evident functor Pro(F-An)→ Pro(C-An) : X 7→ XC. (If F = C, then XC = X.)

An example of pro-analytic spaces is provided by F-germs of analytic spaces.
Recall (see [Ber93, §3.4]) that the latter are pairs (X,Σ), where X is an F-analytic
space and Σ is a subset of X, and the set of morphisms Hom((X ′,Σ′), (X,Σ)) is
the inductive limit of the sets of morphisms ϕ : U ′ → X with ϕ(Σ′) ⊂ Σ, where U ′
runs through open neighborhoods of Σ′ in X ′. If Σ is a Stein compact, the germ
(X,Σ) is said to be Stein.

There is a fully faithful functor F-Germs → Pro(F-An) from the category of
F-germs F-Germs that takes (X,Σ) to X(Σ) ="lim

←−
"U , where U runs through

open neighborhoods of Σ in X. This functor commutes with direct products, but
does not commute in general with fiber products. For example, let ϕ : Y → X
be a morphism of complex analytic spaces and x ∈ X. Then the fiber product
Y ×X (X,x) in the category F-Germs is the F-germ (Y, ϕ−1(x)), i.e., it gives
rise to Y (ϕ−1(x)) ="lim

←−
"V, where V runs through all open neighborhoods of the

fiber ϕ−1(x). The corresponding fiber product Y (x) := Y ×X X(x) in the cat-
egory Pro(F-An) is "lim

←−
"ϕ−1(U), where U runs through open neighborhoods of

x. We remark that the canonical morphism Y (ϕ−1(x)) → Y (x) induces an iso-
morphism between the underlying locally ringed spaces, and there is a morphism
Yx → Y (ϕ−1(x)) which induces a homeomorphism between the underlying topo-
logical spaces. (Here Yx is the analytic space which is the fiber of Y at x in the
usual sense.) We also notice that the evident functor Pro(F-An) → Pro(C-An)
takes F-Germs to C-Germs.

For an F-analytic space X, the category of morphisms of F-analytic spaces
Y → X is denoted by X-An. Such an Y is said to be an X-analytic space. If
X ="lim

←−
I

"Xi is a pro-analytic space, then an X-analytic space is an object of the

category X-An := lim
−→
I◦

Xi-An . If P is a class of morphisms between F-analytic

spaces which is preserved under any base change, then one can extend in the evident
way the class P to morphisms between X-analytic spaces.

Construction 2.1.1. Let (X,Σ) be a Stein germ. We are going to construct an
analytification functor OX(Σ)-Sch → X(Σ)-An : Y 7→ Yh where, for a commuta-
tive ring A, A-Sch denotes the category of schemes finitely presented over A. This
is done in two steps.

(1) For a Stein space U , there is an analytification functor

O(U)-Sch→ U -An : Y 7→ Yh .

Namely, for a scheme Y finitely presented over O(U), Yh represents the functor on
U -An that takes a morphism Z → U to the set of morphisms of locally ringed spaces
Z → Y over O(U). For example, if Y = Spec(A), where A = O(X)[T1, . . . , Tm]/a
with finitely generated ideal a, then Yh is the closed analytic subspace of U × Fm
defined by the coherent subsheaf of ideals J generated by a.
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(2) An X(Σ)-scheme is an object of the category

X(Σ)-Sch = lim
−→
U⊃Σ

O(U)-Sch ,

where the inductive limit is taken over the open Stein neighborhoods of Σ in S.
There is a natural fully faithful functorOX(Σ)-Sch→ X(Σ)-Sch : Y 7→ Y. Namely,
if Y is finitely presented over OX(Σ), it follows from [EGA4, Théorème (8.8.2)] that
there exists a scheme YU finitely presented over O(U) for an open Stein neighbor-
hood U of Σ, and Y is defined by this YU . The analytification functor from (1)
defines a functor X(Σ)-Sch → X(Σ)-An : Z 7→ Zh, and the required analytifi-
cation functor OX(Σ)-Sch → X(Σ)-An is the composition of the latter with the
functor OX(Σ)-Sch → X(Σ)-Sch, i.e., Yh = (Y)h for Y as above is defined by
YhU . We notice that there is a canonical morphism of pro-objects in the category of
locally ringed spaces Yh → Y. We also notice that, given morphisms of Stein germs
(X ′,Σ′)→ (X,Σ), there is a canonical isomorphism of X ′(Σ′)-analytic spaces

(Y ⊗OX(Σ) OX′(Σ′))h→̃Yh ×X(Σ) X
′(Σ′) .

Lemma 2.1.2. If a morphism ϕ : Z → Y of schemes finitely presented over
OX(Σ) is separated (resp. proper, resp. finite, resp. closed immersion, resp. open
immersion, resp. étale, resp. smooth), then so is the induced morphism of X(Σ)-
analytic spaces ϕh : Zh → Yh. �

For a pro-analytic space X ="lim
←−
I

"Xi, the category of étale sheaves of sets T(X)

is defined as the inductive limit of the categories of étale sheaves of sets T(Xi) on
Xi. An étale sheaf on X is said to be locally constant if it comes from an étale
locally constant sheaf on some Xi. Furthermore, there are abelian categories of
étale abelian sheaves S(X) and of étale sheaves of R-module S(X, R), where R is
a commutative ring. Their derived categories are denoted by D(X) and D(X, R).
If all of the transition morphisms Xi → Xj are étale (e.g., open immersions),
then the category S(X) has injectives, and so the values of the left exact functor
S(X)→ Ab : F 7→ F (X) = lim

−→
I◦

F (Xi) are Hq(X, F ) = lim
−→
I◦

Hq(Xi, F ).

Given a morphism of pro-analytic spaces ϕ : Y ="lim
←−
J

"Yj → X ="lim
←−
I

"Xi, there

is a well defined inverse image functor ϕ∗ : T(X) → T(Y) and, in the situations
we really need, there is a direct image functor ϕ∗ : T(Y) → T(X) which is right
adjoint to ϕ∗ (see [Ber96a, §2]). Namely, the functor ϕ∗ is defined if the morphism
ϕ makes Y an X-analytic space. In this case we may assume that I = J and ϕ is
defined by a morphism of analytic spaces Yi → Xi for some i ∈ I. If F is a sheaf on
Y, we can increase i and assume that it is defined by a sheaf Fi on Yi. Then ϕ∗ is
defined by the sheaf ϕi∗(F ) on Xi. The restriction of ϕ∗ to the category of abelian
sheaves is a left exact functor ϕ∗ : S(Y)→ S(X). If all of the transition morphisms
Xj → Xi are étale, the categories S(X) and S(Y) have enough injectives, and the
high direct images Rqϕ∗(F ) are defined by the sheaves Rqϕi∗(F ). If the morphism
ϕ is separated, ϕ∗ has a left exact subfunctor ϕ! : S(Y)→ S(X) which are defined
in the evident way and, in the above situation, the high direct image Rqϕ!(F )
is defined by the sheaf RqϕU !(FU ) on X. For example, ϕ∗ is well defined for all
morphisms in the category B(Σ)-An.
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Proposition 2.1.3. (Comparison Theorem for Cohomology with Compact Support)
Let (X,Σ) be a Stein germ, and let ϕ : Z → Y be a compactifiable morphism between
schemes finitely presented over OX(Σ). Then for any étale abelian torsion sheaf F
on Z, there is a canonical isomorphism (Rϕ!F)h→̃Rϕh! Fh.

Proof. We can shrink X and assume that it is a Stein space, the schemes Z and Y
are base changes of schemes Z ′ and Y ′ finitely presented over O(X), the morphism
ϕ is induced by a compactifiable morphism ϕ′ : Z ′ → Y ′, and the sheaf F is defined
by an abelian torsion sheaf F ′ on Z ′. It suffices therefore to show that the canonical
homomorphism (Rqϕ′!F ′)h → Rqϕ′h! F ′h of sheaves on Y ′h is an isomorphism. For
this it suffices to verify that this homomorphism induces an isomorphism of stalks
of both sheaves at every point y ∈ Y ′h. By the well known results on étale and
classical cohomology, the stalks of the sheaves on the left and right hand sides are
Hq
c (Z ′y,F ′y) and Hq

c (Z ′hy ,F ′hy ), respectively, and the classical comparison theorem
for cohomology with compact support implies the required fact. �

Remarks 2.1.4. (i) We say that a Stein germ (X,Σ) (or a Stein compact Σ) is
noetherian if the ring OX(Σ) is noetherian. By a theorem of Frisch-Siu ([Fri67,
(I,9)] and [Siu69]), a Stein compact Σ is noetherian if and only if it possesses the
following property: if Y is a closed analytic subspace of an open neighborhood of
Σ, then the set of connected components of the intersection Y ∩ Σ is finite.

(ii) One can prove the following analog of the generic comparison theorem [Ber93,
7.5.1] in which noetherian Stein compacts play the role of affinoid spaces. Suppose
that S is a scheme of finite type over OX(Σ), where (X,Σ) is a noetherian Stein
germ, f : Y → S and ϕ : Z → Y are morphisms of finite type, and F is an étale
constructible abelian (torsion) sheaf on Z. Then there exists a dense open subset
U ⊂ S such that

(1) The sheaves Rqϕ∗F
∣∣
f−1(U)

are constructible and almost all of them are

equal to zero.
(2) The formation of the sheaves Rqϕ∗F is compatible with any base change
S ′ → S such that the image of S ′ is contained in U .

(3) In (2), assume that S ′ is a scheme of finite type over OX′(Σ′), where
(X ′,Σ′) is a noetherian Stein germ, and that the morphism S ′ → S is
the composition S ′ → S ⊗OX(Σ) OX′(Σ′) → S for a morphism of germs
(X ′,Σ′)→ (X,Σ). Let ϕ′ be the morphism Z ′ = Z ×S S ′ → Y ′ = Y ×S S ′,
and let F ′ be the inverse image of F on Z ′. Then there is a canonical
isomorphism

(Rϕ′∗F ′)h→̃Rϕ′h∗ F ′h .
The proof is the same as that in loc. cit. which, in its turn, follows the proof
of Deligne’s generic theorem 1.9 from [SGA4 1

2 , Th. finitude]. If S = Spec(F)
is a point, the above fact gives the classical comparison theorem from [SGA4,
Exp. XI]. Here is another case of application. Let ϕ : Z → Y be a morphism
between schemes of finite type over the fraction field K of the local ring OF,0,
and let F be a constructible sheaf on Z. Then there is a canonical isomorphism
(Rϕ∗F)h→̃Rϕh∗Fh.

2.2. An example. Suppose we are given a morphism of germs (B, b) → (F, 0),
where b is a point of an F-analytic space B. For an OB,b-scheme Y, we set Yη =

Y ⊗OF,0 K (the generic fiber of Y) , Ỹ = Y ⊗OF,0 F (the special fiber of Y), and
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Ys = Y ⊗OB,b H(b) (the closed fiber of Y). For example, if (B, b) = (F, 0), then

Ys = Ỹ. In general, there are morphisms of schemes

Yη
j // Y Ys

ioo

��
Ỹ

ĩ

__

By Construction 2.1.1, applied to the germ (B, b), there is an associated diagram
of morphisms of B(b)-analytic spaces (which are also pro-analytic spaces over F(0))

Yhη
jh // Yh Yhs

ihoo

��
Ỹh

ĩh

__

Notice that Yhs is just the F-analytification of the scheme Ys and that the vertical

arrow induces a homeomorphism Yhs →̃|Ỹh|.
Furthermore, every subscheme Z ⊂ Ys defines a F-germ (Yh,Zh) which, in its

turn, defines a pro-analytic space Yh(Zh) ="lim
←−

"V , where V runs through open

neighborhoods of Zh in Yh. The generic fiber of the latter is the pro-analytic
space Yh(Zh)η ="lim

←−
"Vη over F∗, where Vη is the preimage of F∗ in V . There are

canonical morphisms of pro-analytic spaces Yh(Zh) → Yh and Yh(Zh)η → Yhη ,
which are isomorphisms if Y is proper over OB,b and Z = Ys.

On the other hand, the formal completion Ŷ/Z of Y along a subscheme Z ⊂ Ys is

a formal scheme of finite type over Spf(ÔB,b), where ÔB,b is the mb-adic completion

of OB,b. This completion is a special ÔF,0-algebra and, therefore, Ŷ/Z is a special

formal scheme over K̂◦ = ÔF,0, where K̂ is the completion of K with respect to
a fixed discrete valuation. Notice that, for every open neighborhood V of Z in

Y there are canonical isomorphisms Vh(Zh)→̃Yh(Zh) and V̂/Z→̃Ŷ/Z . Recall (see
[Ber06, §1.1]) that a strictly k-analytic space X is said to be rig-smooth if, for
every connected strictly affinoid domain V ⊂ X, the sheaf of differentials Ω1

V is
locally free of rank dim(V ). If char(k) = 0, this is equivalent to the property that
the local ring OX,x of every point x ∈ X with [H(x) : k] < ∞ is regular. The
following statement is a characterization of rig-smoothness of the generic fiber of

Ŷ/Z in simple complex analytic terms.

Theorem 2.2.1. In the above situation, the following are equivalent:

(a) the K̂-analytic space (Ŷ/Z)η is rig-smooth;
(b) there is an open neighborhood V of Z in Y such that Vη is regular;
(c) the morphism Yh(Zh)η → F∗ is smooth.

The property (c) just tells that there is an open neighborhood V of Zh in Yh
such that the induced morphism V → F is smooth outside the preimage of zero.

Proof. First of all, we remark that, for every closed point y ∈ Ys, there is a canon-

ical isomorphism ÔY,y→̃ÔYh,y. Since the local rings considered are excellent, it
follows that regularity of the scheme Spec(OY,y)η is equivalent to regularity of the
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scheme Spec(OYh,y)η. In particular, if the property (b) holds, then the schemes
Spec(OYh,y)η are regular for all closed points y ∈ Z. Conversely, suppose the latter
is true. Then the schemes Spec(OY,y)η are regular for all closed points y ∈ Z and,
therefore, they are contained in the regularity locus U of Yη. If now V is the com-
plement of the Zariski closure of the set Yη\U in Y, then V ⊃ Ys and V ∩ Yη = U ,
i.e., (b) holds.

(a)⇐⇒(b). Since (Ŷ/Z)η→̃π−1(Z), where π is the reduction map Ŷη → Ys,
the K-analytic space (Ŷ/Z)η is rig-smooth if and only if the spaces (Ŷ/{z})η are
rig-smooth for all closed points z ∈ Z. (Since the latter spaces have no boundary,
rig-smoothness for them is equivalent to smoothness.) The above remark therefore
reduces the situation to the case Y = Spec(OB,b) and Z = Ys = {b}, and we have

to show that Ŷη is smooth if and only if the scheme Yη is regular.

Till the end of the proof we set K = K̂. Let A = OB,b. Then Ŷ = Spf(Â), where

Â is the mb-adic completion of A. By a result of de Jong [deJ95, 7.1.9], the map

y 7→ ny that takes a point y ∈ Ŷη with [H(y) : K] <∞ to the preimage of my under

the canonical homomorphism Â ⊗K◦ K → OŶη,y is a bijection between the set of

such points and the set of maximal ideals of Â ⊗K◦ K, and this homomorphism

induces an isomorphism between the ny-adic completion of Â⊗K◦ K and the my-
adic completion of OŶη,y. We now notice that the above maximal ideals ny of

Â ⊗K◦ K correspond to the prime ideals p ⊂ Â which have coheight one and

whose intersection with K◦ is zero. Moreover, the ny-adic completion of Â⊗K◦ K
coincides with the p-adic completion of the localization (Â)p. This implies that

the K-analytic space Ŷη is rig-smooth if and only if the affine scheme Spec(Â) is

regular at all points that correspond to the above prime ideals p ⊂ Â. Since the
ring A is excellent, the latter is equivalent to regularity of the affine scheme Yη.

(b)=⇒(c). Indeed, replacing Y by V, we may assume that Yη is regular. By
Temkin’s result on desingularization from [Tem08], there exists a blow-up ϕ : Y ′ →
Y with Y ′η→̃Yη and such that Y ′ is regular and the support of Ỹ = Y ⊗OF,0 F is
a divisor with strict normal crossings. Given a closed point y′ ∈ Z ′, the preimage
of Z in Y ′s, let t1, . . . , td be a system of regular parameters of Y ′ at y′ such that

t1, . . . , tn for 1 ≤ n ≤ d define the irreducible components of Ỹ passing through
y′. Then z = te11 · . . . · tenn u for some ei ≥ 1 and u ∈ O∗Y′,y. We can find an étale

neighborhood ψ : Y ′′ → Y ′ of the point y′ such that all of the functions t1, . . . , td, u
are defined on Y ′′ and the ring O(Y ′′) contains an e1-th root of u. If y′′ ∈ ψ−1(y),
it induces an isomorphism of complex analytic germs (Y ′′h, y′′)→̃(Yh, y). We set
t′1 = t1

e1
√
u

, and P = Spec(OF,0[T1, . . . , Td]/(T
e1
1 · . . . ·T enn − z)). The homomorphism

OF,0[T1, . . . , Td]/(T
e1
1 · . . . · T enn − z)→ O(Y ′′) : T1 7→ t′1, Ti 7→ ti for 2 ≤ i ≤ d,

gives rise to a morphism χ : Y ′′ → P. If p = χ(y′′), there is an induced isomorphism

of completions ÔP,p = ÔPh,p→̃ÔY′′,y′′ = ÔY′′h,y′′ and, therefore, it induces an

isomorphism of complex analytic germs (Y ′′h, y′′)→̃(Ph, p). Since the morphism
Phη → C∗ is smooth, it follows that there exists an open neighborhood Vy of y in

Yh for which the morphism Vy ∩Yhη → C∗ is smooth. Then the property (c) holds
for the union V =

⋃
Vy taken over all closed points y ∈ Z.
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(c)=⇒(a). By the remark at the beginning of the proof, it suffices to consider the
case when Y = Spec(OB,b) and Z = Ys = {b}, and we have to show that the space

Ŷη is rig-smooth.. Recall the definition of the Jacobian ideal HA/R of A = OB,b
over R = OF,0. Fix generators f1, . . . , fn of the maximal ideal of A, and consider
the associated surjective homomorphism S = OF×Fn,0 → A over R that takes Ti to
fi, 1 ≤ i ≤ n. Let g1, . . . , gm be generators of the kernel the latter surjection, and
denote by ∆ the matrix ( ∂gi∂Tj

)1≤i≤m,1≤j≤n with coefficients in S. Furthermore, for

a subset L ⊂ {1, . . . ,m}, let HL denote the ideal of S generated by the r×r-minors
of ∆ whose rows correspond to the elements of L, where r = |L|. Let also JL denote
the ideal of S generated by gi’s with i ∈ L, and set J = (g1, . . . , gm) = Ker(S → A).
The Jacobian ideal of A over R is the ideal

HA/R = rad

(∑
L

(JL : J)HLA

)
,

where (JL : J) = {x ∈ S
∣∣xJ ⊂ JL}. It is well known that the ideal HA/R depends

only on the homomorphism R → A. Let V be an open neighborhood of the point
b in B for which the latter homomorphism is induced by a morphism V → F such
that all elements from a finite system of generators of HA/R are defined over V . By
the assumption, we can shrink V and assume that the morphism V → F is smooth
outside the preimage of zero. The Jacobian criterion of smoothness implies that the
ideal HA/R contains a nonzero element of the maximal ideal of R = OF,0. It follows
that the similar Jacobian ideal HÂ/R̂ for the completions of R and A contains a

nonzero element of the maximal ideal of K◦ = R̂. Finally, the strictly K-analytic

space Ŷη can be covered by strictly affinoid domains X such that X = Xη for
an affine formal scheme X = Spf(D) of finite type over K◦ and the canonical

embedding X → Ŷη is induced by a morphism of formal scheme X→ Ŷ. It follows
that the Jacobian ideal HD/K◦ contains a nonzero element of the maximal ideal
of K◦, i.e., it is open in D. By [Tem08, Proposition 3.3.2], X is rig-smooth. This

implies that Ŷη is rig-smooth. �

Remark 2.2.2. Let X = Spf(A), where A = C[[T1, . . . , Tn]] and n ≥ 1. Each

nonzero element f of the maximal ideal of A defines a homomorphism K̂◦ =

C[[z]] → A : z 7→ f that makes X a special formal scheme over K̂◦. Since the

ring A is regular, it follows that the (n − 1)-dimensional K̂-analytic space Xη is
rig-smooth. Furthermore, the number µ(f) = dimC(A/J(f)), where J(f) is the

ideal generated by the partial derivatives ∂f
∂Ti

, is said to be the Milnor number of

f . If µ(f) < ∞, then f is equivalent to a polynomial g, i.e., there exists an adic
automorphism α of A over C with α(f) = g. The polynomial g defines a morphism
Y = Spec(A) → Spec(C[z]) which is smooth outside the zero point 0 in its open

neighborhood, and the automorphism α defines an isomorphism Ŷ/{0}→̃X over K̂◦.
If n ≥ 3, there exists an element f of the maximal ideal of A which is not equivalent
to a convergent power series from OCn,0 (see [Sh76]).

2.3. Nearby and vanishing cycles functors. In this subsection we recall the
definition of the nearby and vanishing cycles functors in complex analytic geometry
(see [SGA7, Exp. XIV]).

Recall that C is a topological universal covering of C∗ with respect to the expo-
nential map b 7→ eb, and CR is an étale universal covering of R∗. Let Ka be the
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field of functions meromorphic in the preimage D∗ of some punctured open disc
with center at zero D∗ in F and algebraic over KC. It is an algebraic closure of

KC (and of K), and it is generated over KC by the functions b 7→ e
b
n , n ≥ 1. We

set G = Gal(Ka/K). The action of the Galois group GC = Gal(Ka/KC) on those
functions gives rise to an isomorphism GC→̃lim←−µn, where µn is the group of n-th

roots of unity. The element σ = (e
2πi
n )n≥1 is a topological generator of GC. The

canonical action of the fundamental group π1(C∗) on Ka identifies it with a dense
subgroup of GC, and the shift b 7→ b + 2πi of C, which is a generator of π1(C∗),
corresponds to the above element σ.

If F = R, the Galois group G is a semidirect product GCo 〈c〉 with the complex

conjugation c acting trivially on the functions b 7→ e
b
n and acting on KC in the

evident way. There is a canonical embedding π1(R∗) ↪→ G which identifies the
former with a dense subgroup of the latter. (Recall that we denote by π1(R∗) the
automorphism group of CR over R∗.)

We set D = F(0) ="lim
←−

"D and D∗ ="lim
←−

"D∗, where D runs through open discs

in F with center at zero. The zero point, which is complement of D∗ in D and of D∗

in D, can be identified with the one point space F0. (Notice that D = Spec(OF,0)h,
D∗ = Spec(K)h, and F0 = Spec(F)h.) For a pro-analytic space X over D, we set

Xη = X×D D∗ (the generic fiber of X) and X̃ = X×D F0 (the special fiber of X).

Furthermore, suppose we are given a closed immersion Xs → X̃ from an F-analytic

space Xs which induces a homeomorphism |Xs|→̃|X̃|. This space Xs is said to be
the closed fiber of X. There are morphisms of pro-analytic spaces

Xη
j // X Xs

��

ioo

X̃

ĩ

__

Notice that if X is a D-analytic space, then Xs→̃X̃. The F-analytic nearby cycles
functor is the functor Θ : T(Xη) → T(Xs) from the category of étale sheaves on
Xη to that of étale sheaves on Xs defined by Θ(F ) = i∗(j∗(F )). If F · ∈ D(Xη),
one has RΘ(F ·) = i∗(Rj∗(F

·)) in D(Xs).
Furthermore, we set D∗ ="lim

←−
"D∗ and Xη = Xη ×D D∗ . We also set Xs =

(Xs)C. (Of course, if F = C, then XC = X and Xs = Xs.) These are pro-
topological spaces over D provided with an action of the group π1(F∗), and there
is a commutative diagram

Xη

��

j // XC

��

Xs

��

ioo

Xη
j // X Xs

ioo

The F-analytic vanishing cycles functor Ψη : T(Xη) → Tπ1(F∗)(Xs) is defined by

Ψη(F ) = i
∗
(j∗F ), where Tπ1(F∗)(Xs) is the category of π1(F∗)-sheaves on Xs (i.e.,

sheaves provided with an action of π1(F∗) compatible with its action on Xs) and

F is the pullback of F on Xη. If F · ∈ D+(Xη), one has RΨη(F ·) = i
∗
(Rj∗(F

·
)) in

the derived category D+(Xs(π1(F∗))) of abelian π1(F∗)-sheaves on Xs.
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We notice that (XC)s = Xs and, since (Xη)C = (XC)η, one has Xη = (XC)η.
It follows that, for any F · ∈ D+(Xη), there are canonical isomorphisms

(RΘ(F ·))C→̃RΘ(F ·C), RΘ(F ·)→̃I〈c〉(RΘ(F ·C)), and RΨη(F ·)→̃RΨη(F ·C) ,

where I〈c〉 denotes the exact functor that takes a 〈c〉-sheaf L on Xs to the subsheaf
(π∗L)〈c〉 of c-invariant sections of its direct image with respect to the morphism
ρ : Xs → Xs. These isomorphisms reduce verification of various facts on nearby
and vanishing cycles to the case F = C.

Furthermore, if Iπ1(F∗) denotes the functor that takes a π1(F∗)-sheaf L on Xs

to the subsheaf (ρ∗L)π1(F∗), there is a canonical isomorphism

RIπ1(F∗)(RΨη(F ·))→̃RΘ(F ·) .

As above, this isomorphism reduces verification of various facts on nearby cycles to
verification of corresponding facts on vanishing cycles.

Example 2.3.1. Suppose we are given a morphism of germs (B, b) → (F, 0) and
a scheme Y of finite type over OB,b (as in §1.2). If the above X is the analytifi-

cation Yh of Y, which is a B(b)-analytic space over D, then Xη, X̃ and Xs are

the analytifications Yhη , Ỹh and Yhs of the corresponding objects of Y, Xs is the

analytification Yhs of the scheme Ys = Ys⊗F C, and XC is the analytification Yh of

the scheme Y = Y⊗F C. The above construction gives rise to nearby and vanishing
cycles functors Θ and Ψη from the category of étale sheaves on Yhη to those of étale

sheaves and étale π1(F∗)-sheaves on Yhs and Yhs , respectively.

2.4. Comparison with algebraic vanishing cycles. Suppose we are given a
morphism of germs (B, b) → (F, 0) and a scheme Y of finite type over OB,b as in
Example 2.3.1. Consider the commutative diagram of morphisms of schemes with
Yη = Yη ⊗KF Ka

Yη

��

j // Y

��

Ys

��

ioo

Yη
j // Y Ys

ioo

The algebraic geometry nearby cycles functor is the functor Θ : T(Yη)→ T(Ys)
from the category of étale sheaves on Yη to that of étale sheaves on Ys defined
by Θ(F) = i∗j∗(F). If F · ∈ D(Yη), then RΘ(F ·) = i∗(Rj∗(F ·)). The vanishing
cycles functor is the functor Ψη : T(Yη)→ TG(Ys) to the category TG(Ys) of étale
G-sheaves on Ys (i.e., étale sheaves on Ys provided with a continuous action of the

group G compatible with its action on Ys) defined by Ψη(F) = i
∗
j∗(F), where F

is the pullback of F on Yη. If F · ∈ D(Yη), one has RΨη(F ·) = i
∗
(Rj∗(F

·
)).

For a scheme Z and d ≥ 1, let Dc(Z,Z/dZ) denote the derived category of étale
Z/dZ-modules on Z with constructible cohomology sheaves.

Theorem 2.4.1. In the above situation, for any F · ∈ D+
c (Yη,Z/dZ) the complexes

RΘ(F ·) and RΨη(F ·) have constructible cohomology, and there are canonical iso-
morphisms in D+(Yhs ) and D+(Yhs (G)), respectively,

(RΘ(F ·))h→̃RΘ(Fh·) and (RΨη(F ·))h→̃RΨη(Fh·) .
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Proof. It suffices to establish the isomorphism for the vanishing cycles complexes
and in the case F = C. We also notice that validity of the theorem for sheaves is
equivalent to its validity for bounded below complexes of constructible sheaves of
Z/dZ-modules. Replacing Y by the scheme theoretic closure of Yη, we may assume
that Yη is dense in Y.

Step 1. Suppose we are given a proper morphism ϕ : Y ′ → Y, and a complex
of constructible sheaves G· on Y ′η. If the theorem is true for the pair (Y ′,G·), then
it is also true for the pair (Y, Rϕη∗(G·)). Indeed, since ϕ is proper, the complex
Rϕη∗(G·) has constructible cohomology sheaves, and one has

RΨη(Rϕη∗G·)→̃Rϕs∗(RΨηG·) .

It follows that the complex on the left hand side also has constructible cohomology
sheaves and

(RΨη(Rϕη∗G·))h
α

→̃ Rϕhs∗(RΨηG·)h
β

→̃ Rϕhs∗(RΨηG·h)
γ

→̃ RΨη(Rϕhη∗G·h) ,

where α is an isomorphism, by Proposition 2.1.3, β is an isomorphism, by the
assumption, and γ is an isomorphism because ϕh is a proper map.

Step 2. To prove the theorem, it suffices to find for each constructible sheaf of
Z/dZ-modules F an embedding of F ↪→ G, where G is a similar sheaf G for which
the theorem holds. Indeed, if this is true then, we can find for each m ≥ 1 an
exact sequence of constructible sheaves, 0 → F → G0 → . . . → Gm, such that the
theorem is true for all of the sheaves Gi. This easily implies validity of the theorem
for F .

Step 3. We may assume that Y is irreducible and reduced, i.e., integral, and F
is constant. Indeed, by [SGA4, Exp. IX, 2.14(ii)], the sheaf F can be embedded
in a finite direct sum of sheaves of the form f∗G, where f : Z ′ → Xη is a finite
morphism and G is constant. We may assume that all such Z ′ are reduced and,
therefore, we can replace them by their normalizations and assume that they are
irreducible. If Z is the normalization of Y in Z ′, we may assume that Z ′ = Zη,
where Z is irreducible, normal and finite over Y. It remains to use Steps 1 and 2.

Step 4. We may assume that the scheme Y is regular and the supports of Ys and

Ỹ are divisors with strict normal crossings. Indeed, replacing Y by a blow-up, we
may assume that the support of Ys is a divisor. Since the scheme Y is excellent, we

can apply the result of Temkin [Tem08, 1.1] for Y and its subscheme Ỹ. It follows

that there is a blow-up Y ′ → Y such that Y ′s and Ỹ are divisors with strict normal
crossings. Step 1 implies that validity of theorem for the pair (Y,F) follows from
its validity for the pair (Y ′,F ′), where F ′ is the pullback of F on Y ′η′ .

Step 5. The theorem is true. Indeed, in the situation of Step 4 the required
statement follows from the well known description of algebraic (and analytic) nearby
and vanishing cycles sheaves which are easy consequences of the characteristic zero
purity theorem [SGA4, Exp. XIX, 3.2]. �

Remark 2.4.2. Theorem 2.4.1 and the generic comparison theorem stated in Re-
mark 2.1.4 can be used to prove the following fact. Let (X,Σ) be a Stein germ
such that the dimension of X is at most one and the set of connected components
of Σ is finite. (By the results mentioned at the beginning of §1.1, the latter is
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equivalent to the property that the Stein germ (X,Σ) is noetherian.) Given a mor-
phism ϕ : Z → Y of schemes of finite type over OX(Σ) and a constructible sheaf F
on Z, the complex Rϕ∗(F) has constructible cohomology and there is a canonical
isomorphism

(Rϕ∗F)h→̃Rϕh∗Fh .

2.5. Vanishing cycles on log smooth analytic spaces. In the pro-F-analytic
spaces X =" lim

←−
I

"Xi, considered in this subsection, all of the transition morphisms

Xi′ → Xi are assumed to be étale. Notice that any morphism Y ="lim
←−
J

"Yj →

X ="lim
←−
I

"Xi between such pro-analytic spaces is defined (in the evident way) by a

morphism of analytic spaces Yj → Xi for some i ∈ I and j ∈ J .
Basic notions of log geometry are naturally extended from analytic to such pro-

analytic spaces. Namely, a pre-log structure on a pro-F-analytic space X ="lim
←−
I

"Xi

is a homomorphism of étale sheaves of multiplicative monoids β : M → OX which is
induced by a pre-log structure βi : Mi → OXi on the F-analytic space Xi for some
i ∈ I. A pre-log structure is said to be a log structure if β−1(O∗X)→̃O∗X. A log pro-
analytic space (X, β : M → OX) as above is said to be coherent (resp. fine; resp.
fs) if β is induced by a coherent (resp. fine; resp. fs) log structure βi : Mi → OXi
for some i ∈ I. A morphism of log pro-analytic spaces Y → X is said to be log
smooth if it is defined by a log smooth morphism Yj → Xi for some i ∈ I and j ∈ J .
(Recall that a morphism of log analytic spaces Y → X is log smooth if locally in the
étale topology of X and Y it admits a chart (P → O(X), Q→ O(Y ), P → Q) with
finitely generated and integral monoids P and Q such that the induced morphism
Y → X ×Spec(P )h Spec(Q)h is a strict open immersion.)

For example, the pro-analytic space D ="lim
←−

"D is provided with the fs log-

structure MD = OD ∩ O∗D∗ ↪→ OD. (Notice that D = Dh, where the scheme D =
Spec(R) with R = OF,0 is provided with the log structure that corresponds to the
homomorphism of multiplicative monoids R\{0} ↪→ R = O(D).) We are interested
here with log analytic spaces over D, i.e., log pro-analytic spaces X provided with
a morphism of log pro-analytic spaces X → D. For such X the special and closed

fibers X̃ and Xs are provided with the log structures β̃ : M̃ = ĩ−1(M)→ OX̃ and

βs : Ms = i−1(M) → OXs
, where ĩ and i are the closed immersions X̃ → X and

Xs → X, respectively. They are also provided with the induced morphisms of log

pro-analytic and analytic spaces X̃ → Ds and Xs → Ds. By the way, Ds is an
analytic log point which is provided with a homomorphism P → F from the free
monoid generated by the coordinate function z on the F-analytic affine line F which
goes to zero in F. This log point is denoted by pt = ptF , and the image of z in
Mpt is denoted by the same z.

Log smoothness of the morphism X→ D means that it is defined by a log smooth
morphism X → D, i.e., locally in the étale topology of X there is a fine chart
P → O(X) and an element p ∈ P whose image in O(X) coincides with the image
of z and such that the morphism of log analytic spaces X → Spec(R[P ]/(p− z))h
is a strict open immersion. Such a log structure on X is said to be vertical if it
restriction to Xη is trivial. In this case one can find a local chart as above with
the additional property that, for every a ∈ P , there exist b ∈ P and n ≥ 1 with
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ab = pn. If X is log smooth over D, then X̃ is log smooth over pt, but Xs is not
log smooth over pt in general.

We are going to describe nearby and vanishing cycles complexes of a log smooth
morphism X → D in terms of the logarithmic structure on X. First of all this is
done for F = C, and then for F = R.

Recall that in [KN99] Kato and Nakayama constructed in a functorial way for
every fs log C-analytic space (X,MX) a topological space X log and a proper sur-
jective map τ : X log → X. The construction works for the class of fine and not
necessarily saturated log analytic spaces. Recall the definition. Let X be a fine log
C-analytic space. As a set, X log is defined by

X log =

{
(x, hx)

∣∣x ∈ X,hx ∈ Hom(Mgr
X,x, S

1) with hx(f) =
f(x)

|f(x)|
for f ∈ O∗X,x

}
,

where S1 is the unit circle in C, and τ is the canonical projection (x, hx) 7→ x. If
β : PU → OU is a chart over an open subset U ⊂ X, there is a bijection

τ−1(U)→̃
{

(x, h) ∈ U ×Hom(P gr, S1)
∣∣β(p)(x) = h(p)|β(p)(x)| for all p ∈ P

}
that identifies τ−1(U) with a closed subset of U × Hom(P gr, S1), and the induced
topology on τ−1(U) does not depend on the choice of the chart on U . In this way,
one gets the required topology on X log. If X is log smooth, X log is a topologi-
cal manifold with boundary. For every strict morphism of fine log analytic spaces
ϕ : Y → X, there is a canonical homeomorphism Y log→̃Y ×X X log. (In partic-
ular, if Xred is the underlying reduced analytic space provided with the induced

log structure, then X log
red→̃X log.) For every point x ∈ X, there is a (non-canonical)

homeomorphism τ−1(x)→̃Hom(Mgr
X,x/O∗X,x, S1). In particular, τ−1(x) is homeo-

morphic to disjoint union of k copies of (S1)l, where k is the order of the torsion
subgroup of Mgr

X,x/O∗X,x and l is its rational rank. If X is log smooth, X log is a
topological manifold with boundary.

Examples 2.5.1. (i) (see [KN99,(1.2.1.1)]). Suppose X = Spec(C[P ])h for a fine
monoid P , and provide X with the log structure that corresponds to the homomor-
phism P → C[P ]. Then there are homeomorphisms X→̃Hom(P,C) : x 7→ χx and
X log→̃Hom(P,R+ × S1) : (x, hx) 7→ (|χx|, hx

∣∣
P

) that are included in the follow-
ing commutative diagram in which the right vertical arrow is induced by the map
R+ × S1 → C : (t, a) 7→ ta

X
∼ // Hom(P,C)

X log ∼ //

τ

OO

Hom(P,R+)×Hom(P, S1)

OO

(ii) Consider the log complex plane C with the log structure generated by the
coordinate function z. Then

Clog = {(b, h) ∈ C×Hom(P gr, S1)
∣∣b = h(z)|b|}→̃R+ × S1 ,

where P is monoid freely generated by z, and the map takes a pair (b, h) to the
pair (|b|, h(z)). In what follows we identify Clog with R+ × S1 via the above map.
Then the map Clog → C takes (t, a) to ta. The exponential maps C → C∗ and
iR → S1 : b 7→ exp(b) = eb are topological universal coverings, and they gives rise
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to the topological universal covering Clog = R+ × iR → Clog : (t, b) 7→ (t, eb). We
get a commutative diagram of maps

Clog = R+ × iR

��

ptlog = iR

exp

��

ilogoo

C

jlog

88

exp

��

Clog = R+ × S1

��

ptlog = S1

��

ilog
oo

C∗
j //

jlog
88

C pt = {0}ioo

Here jlog(a) = (|a|, a|a| ) and jlog(b) = (eRe(b), iIm(b)).

(iii) For a fine log C-analytic space X over the log complex plane C, there is
an induced map X log → Clog : (x, hx) 7→ (|ϕ(x)|, hx(z)), where ϕ denotes the
morphism X → C, and we set

X log = X log ×Clog Clog = {((x, hx), (t, b))
∣∣|ϕ(x)| = t and hx(z) = eb} .

The canonical map X log → X log : ((x, hx), (t, b)) 7→ (x, hx) is a topological covering
map with the Galois group π1(S1) = π(C∗) and the generator σ of the latter group
acting by ((x, hx), (t, b)) 7→ ((x, hx), (t, b+2πi)). In particular, if D = D(0; p) is the
open disc in C with center at zero of radius p > 0 and provided with the induced

log structure, then Dlog and Dlog can be identified is with [0, p)×S1 and [0, p)×iR,
respectively.

Consider now the case F = R. Let X be a fine log R-analytic space. Then
there is a canonical lifting of the complex conjugation morphism c : XC→̃XC to an

involutive homeomorphism c : X log
C →̃X

log
C . Namely, let MXC

= ρ∗(MX). Then the
morphism c induces an isomorphism of sheaves of monoids c∗(MXC

)→̃MXC
) which

is compatible with the R-isomorphism c∗(OXC
)→̃OXC

. This means that, for any
open subset V ⊂ XC, c induces an isomorphism MXC

(V )→̃MXC
(c(V )) : m 7→ mc,

which is compatible with the isomorphismO(V )→̃O(c(V )) : f 7→ f c, where f c(x) =

f(c(x)). We define the required map c : X log
C →̃X

log
C by c(x, hx) = (c(x), hcc(x)),

where for a homomorphism hx : Mgr
XC,x

→ S1 one sets hcc(x)(m) = hx(mc). We set

X log = X log
C ×Clog Clog .

The group π1(R∗) = 2πiZ o 〈c〉 acts on the space X log. Namely, it acts on X log
C

and Clog through its quotient by π1(C∗) = 2πiZ, i.e., through the action of c
which is defined above. (For example, c acts on Clog = R+ × S1 as the complex

conjugation on S1.) And π1(R∗) acts evidently on Clog = R+ × iR with c acting

as complex conjugation on iR. Notice also that the canonical map X log → X log
C is

π1(R∗)-equivariant.
Let again F be either C, or R. For a fine vertical log pro-F-analytic space

X ="lim
←−
I

"Xi, we define Xlog
C ="lim

←−
I

"X log
C,i and Xlog ="lim

←−
I

"X log
i as pro-topological

spaces. For example, for D ="lim
←−

"D(0; p), one has Dlog
C ="lim

←−
"([0, p[×S1) and

Dlog ="lim
←−

"([0, p[×iR). There is a π1(F∗)-equivariant open embedding D∗ ↪→
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Dlog. The complement of D∗ in Dlog is the universal covering ptlog = iR of ptlog
C =

S1. Furthermore, there is the following commutative diagram with cartesian squares

Xlog

ν′

��

Xlog
s

ν

��

ilogoo

Xη

jlog

<<

��

Xlog
C

τ ′

��

Xlog
s

τ

��

ilog
oo

XC,η
jC //

jlog
<<

��

XC

��

Xs
iCoo

��
Xη

j // X Xs
ioo

Since the restriction of the log structure to Xη is trivial, the map τ ′ : Xlog
C → XC

is a homeomorphism over the open subset XC,η and, therefore, it gives rise to

compatible open embeddings jlog : XC,η ↪→ Xlog
C and jlog : Xη → Xlog over j. We

denote by τ and τ ′ the induced maps Xlog
s → Xs and Xlog → XC, respectively,

and by j the canonical map Xη → XC.
Any π1(F∗)-module Λ defines a locally constant sheaf on each of the pro-analytic

spaces D∗, Dlog
C and ptlog

C , and the pullback of the latter to Xη, Xlog
C and Xlog

s is

denoted by ΛXη
, ΛXlog

C
and ΛXlog

s
, respectively. Its pullback to Xη, Xlog and Xlog

s

is a π1(F∗)-sheaf which is denoted by ΛXη
, Λ

Xlog and Λ
Xlog
s

, respectively. We also

denote by ΛXs
the constant π1(F∗)-sheaf on the π1(F∗)-space Xs associated to Λ.

Theorem 2.5.2. Let X be a vertical log pro-F-analytic space log smooth over D.
Then for any Λ· ∈ Db(π1(F∗)-Mod), the following is true

(i) there are canonical isomorphisms in D+(Xs(π1(F∗)))

RΨη(ZXη
)⊗L

Z Λ·Xs
→̃RΨη(Λ·Xη

)→̃Rτ∗(Λ·
Xlog
s

) ;

(ii) if F = C, then RΘ(Λ·Xη
)→̃Rτ∗(Λ·Xlog

s
);

(iii) if F = R, then RΘ(Λ·Xη
)→̃I〈c〉(Rτ∗(Λ·Xlog

s

)).

Lemma 2.5.3. Let (X,MX) be a log smooth C-analytic space, and let ϕ : X ′ →
X be the normalization of X provided with the log structure MX′ which is the
saturation of the sheaf of monoids ϕ∗(MX) in OX′ . Then X ′ is an fs log smooth
analytic space, and the canonical map X ′log → X log is a homeomorphism.

We notice that, for a log smooth analytic space (X,MX), the homomorphism of
sheaves of monoids MX → OX is injective.

Proof. The statement is local in X and, therefore, we may assume that X =
Spec(C[P ])h for a fine monoid P . Then X ′ = Spec(C[P ′])h, where P ′ is the
saturation of P in P gr, and the log structure MX′ → OX′ is defined by the canon-
ical homomorphism P ′ → C[P ′]. Since the monoid R+ is uniquely divisible, one
has Hom(P ′,R+)→̃Hom(P,R+). Furthermore, since P ′gr = P gr, one also has
Hom(P ′, S1)→̃Hom(P, S1). By Example 2.5.1(i), one has X ′log→̃X log. �
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For a log analytic space X, let X∗ denote the open subset at which the log
structure is trivial. Then (X∗)log = X∗ and, therefore, there is a canonical open
immersion jlog : X∗ ↪→ X log over the open immersion j : X∗ ↪→ X.

Corollary 2.5.4. Let X be a log smooth C-analytic space. Then each point of
X log has a fundamental system of open neighborhoods V such that (jlog)−1(V ) is
nonempty and contractible.

Proof. If the log structure on X is saturated, the statement is a result of Ogus
([Ogus03, 3.1.2]). If X is arbitrary, let X ′ be its normalization provided with the
log structure as in Lemma 2.5.3. Then X ′∗→̃X∗ and X ′log→̃X log, and the general
case of the statement follows from the result of Ogus. �

Proof. The statement (iii) follows from (ii). It suffices therefore to prove the state-
ments (i) and (ii) in the case F = C, and this is assumed below.

By Corollary 2.5.4, there is a canonical isomorphism Λ·Xlog→̃Rjlog
∗ (Λ·Xη

) and,

therefore, Rj∗(Λ
·
Xη

)→̃Rτ ′∗(Λ·Xlog). Since the map τ ′ : Xlog → X is proper, we get

the statement (ii).

One has RΨη(Λ·Xη
) = i∗(Rj∗(Λ

·
Xη

)). Since Rjlog
∗ (Λ·Xη

) = Λ·Xlog , it follows

that Rjlog
∗ (Λ·Xη

) = Λ·
Xlog and, therefore, RΨη(Λ·Xη

) = i∗(Rτ ′∗(Λ
·
Xlog)). Further-

more, one has Rτ ′∗(Λ
·
Xlog)→̃Rτ ′∗(Rν′∗(Λ

·
Xlog)). Since the map τ ′ is proper, we get

RΨη(Λ·Xη
) = Rτ∗(i

log∗(Rν′∗(Λ
·
Xlog))). The map ν′ is not proper, but it is a base

change of the topological covering map Dlog → Dlog and, in particular, ν′ and ν
are also topological covering maps. It follows that ilog∗(Rν′∗(Λ

·
Xlog))→̃Rν∗(Λ·

Xlog
s

)

and, therefore,

RΨη(Λ·Xη
)→̃Rτ∗(Rν∗(Λ

Xlog
s

))→̃Rτ∗(Λ
Xlog
s

) .

This gives the second isomorphism for the functor Ψη. It follows also that in
order to get the first isomorphism for Ψη, it suffices to show that, given a log
smooth morphism X → pt, for any Z-torsion free Π-module Λ and any q ≥ 0, the
canonical map Rqτ∗(ZXlog)⊗Z ΛX → Rqτ∗(ΛXlog) is an isomorphism. For this we
can disregard the action of Π on Λ and even assume that it is trivial. The stalk
of the sheaf on the left hand side at a point x ∈ X is the inductive limit of the
cohomology groups Hq(τ−1(U),Z)⊗Z Λ taken on the open neighborhoods U of x,
and that on the right hand side is the inductive limit of the groups Hq(τ−1(U),Λ).
Since for sufficiently small U the space τ−1(U) is a connected topological manifold
with boundary, it follows that Hq(τ−1(U),Z) ⊗Z Λ→̃Hq(τ−1(U),Λ), and we get
the required isomorphism for Ψη. �

Corollary 2.5.5. In the situation of Theorem 2.5.2, there is a canonical isomor-
phism

RΘ(Λ·Xη
)→̃RIπ1(F∗)(Rτ∗(Λ

·
Xlog
s

)) . �

3. Distinguished formal schemes

3.1. Uniformization of special formal schemes. Let k be a non-Archimedean
field with nontrivial discrete valuation. All formal schemes considered in this section
are special formal schemes over k◦, all morphisms between them are assumed to
be over k◦, and the étale topology on a special formal scheme is the Grothendieck
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topology which is generated in the usual way by the étale morphisms introduced in
[Ber96b, §2].

Given an element γ ∈ k◦\{0} and integers e1, . . . , em ≥ 1 with m ≥ 1, we set

A(γ)
e1,...,em = k◦[T1, . . . , Tm]/(T e11 · . . . · T emm − γ) .

Definition 3.1.1. (i) A scheme X of locally finite type and flat over k◦ is said
to be distinguished (resp. semistable) if each point x ∈ Xs has an étale neigh-
borhood X ′ → X that admits an étale morphism X ′ → Spec(A) with A =

A
(γ)
e1,...,em [Tm+1, . . . , Tn] for γ ∈ k◦◦\(k◦◦)2 (resp. e1 = . . . = em = 1).
(ii) A special formal scheme X over k◦ is said to be distinguished (resp. semistable)

if étale locally it is isomorphic to a formal scheme of the form Ŷ/Z , where Y is a
distinguished (resp. semistable) scheme over k◦ and Z is a union of some of the
irreducible components of Ys.

Remarks 3.1.2. (i) Every semistable scheme X over k◦ is normal, the generic
fiber Xη is smooth over k, and the closed fiber Xs is a divisor with normal crossings.
Every distinguished scheme X over k◦ is regular and, therefore, Xη is also regular.
The support of the closed fiber Xs of any distinguished scheme X is a divisor with
normal crossings and, if char(k) = 0, Xη is smooth over k.

(ii) It follows from (i) that a distinguished (resp. semistable) formal scheme X
is regular (resp. normal), and the generic fiber Xη is regular (resp. rig-smooth).
If char(k) = 0, then generic fiber of any distinguished formal scheme is also rig-
smooth.

For a special formal scheme X over k◦, we denote by X̃ the closed (formal)
subscheme of X defined by the ideal generated by k◦◦. It is called the special fiber

of X . A closed fiber of X is a scheme Xs of locally finite type over k̃ which is

defined by an ideal of definition of X that contains k◦◦. It is also a closed fiber of X̃
and, if X is of locally finite type over k◦, then the supports of both coincide. (We

will be interested only in the étale site of Xs and, when k̃ = C, in the underlying
topological space of the complex analytification Xhs , which do not depend on the
choice of an ideal of definition.)

We say that a morphism X′ → X of special formal schemes over k◦ is proper if
it is of finite type and the induced morphism between their closed fibers X′s → Xs
is proper. An example of a proper morphism is the blow-up of X with center at
a coherent subsheaf of ideals I ⊂ OX. It is a morphism of finite type ϕ : Y =
BlI(X)→ X such that (1) I generates an invertible subsheaf of ideals of OY, and

(2) every morphism of special formal schemes Z → X, such that I generates an
invertible subsheaf of ideals of OZ, goes through a unique morphism Z → Y. In

this case, the ideal I as well as the corresponding closed formal subscheme of X
are called centers of the blow-up. Recall the construction of blow-up (see [Tem08,
§2.1]).

For every open affine subscheme U = Spf(A) of X, the restriction of I to U
corresponds to an ideal a ⊂ A. Let V = Bla(U) → U be the algebraic geometry
blow-up of the scheme U = Spec(A) with center a. Then V = Bla(U) is the
formal completion of Bla(U) with respect to the ideal of definition of U. The blow-
ups Bla(U) are compatible on intersections of open affine subschemes of X, and so
one can glue all of them, and in this way one gets the required blow-up BlI(X).
For example, if f1, . . . , fn are fixed generators of the ideal a, then V = Bla(U) is
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obtained by gluing the affine schemes Vi = Spec(Ai), 1 ≤ i ≤ n, where Ai is the
quotient of by the fi-torsion of

A′i = A[T1, . . . , Ti−1, Ti+1, . . . , Tn]/(fiTj − fj)j 6=i
and, therefore, Bla(U) is obtained by gluing the affine formal schemes Vi = Spf(Âi),

1 ≤ i ≤ n, where Âi is the quotient by the fi-torsion of Â′i, the k◦◦-adic completion
of A′i. Recall also that the composition of two blow-ups is a blow-up.

Theorem 3.1.3. Suppose that char(k̃) = 0, and let X be a quasicompact reduced
special formal scheme flat over k◦. Then

(i) there exists a blow-up Y→ X which induces an isomorphism over the reg-
ular locus of Xη and such that Y is distinguished over k◦;

(ii) if X is distinguished, there exists an integer e ≥ 1 such that the normaliza-

tion X′ of X⊗̂k◦k′◦, where k′ = k( e
√

1, e
√
$) for a generator $ of k◦◦, is a

semistable formal scheme over k′◦.

Proposition 3.1.4. Suppose that char(k̃) = 0. Then a special formal scheme X
flat over k◦ is distinguished if and only if it possesses the following properties:

(1) X is regular;

(2) the support of X̃ is a divisor with normal crossings;

(3) the support of Xs is a union of some of the irreducible components of X̃.

A closed (formal) subscheme Y of a special formal scheme X is said to be a divisor
with normal crossings if, for every open affine subscheme Spf(A) of X, the closed
subscheme of Spec(A) that is induced by Y is a divisor with normal crossings. (The
empty subscheme is considered as a divisor with normal crossings.) The property
(3) has the similar meaning. Namely, for every open affine subscheme U = Spf(A)

of X, Us is a union of some of the irreducible components of the scheme Spec(Ã),

where Ũ = Spf(Ã).

Proof. The direct implication easily follows from the definition of a distinguished
formal scheme. Suppose therefore that a special formal scheme X possesses the
properties (1)-(3). In order to show that X is distinguished, we may assume that

X = Spf(A) is affine. We set X = Spec(A), X̃ = Spec(A/I), where I = {a ∈ A
∣∣an ∈

k◦◦A for some n ≥ 1}, and Xs = Spec(A/J), where J is the Jacobson radical of A.

Since the required property is local in the étale topology, we may assume that X̃
and Xs are divisors with strict normal crossings.

Let $ be a generator of k◦◦, let x be a closed point of Xs, and let Z1, . . . ,Zn
be the irreducible components of X̃ that contain the point x. One has 1 ≤ n ≤ d,
where d is the dimension of X . We assume that the irreducible components of Xs
are Z1, . . . ,Zm with 1 ≤ m ≤ n. Furthermore, let t1, . . . , td be a regular system
of parameters of OX ,y such that each ti for 1 ≤ i ≤ n defines Zi in an open
neighborhood of x in X . Then $ = te11 · . . . · tenn u for e1, . . . , en ≥ 1 and u ∈ O∗X ,x.

Let X ′ = Spec(A′) be an open affine neighborhood of the point x in X such that
t1, . . . , td ∈ A′ and u ∈ A′∗. If a′ is the ideal of A′ generated by the elements

$ and t1 · . . . · tm, then X̂ ′ = Spf(Â′), where Â′ is the a′-adic completion of A′.

Since char(k̃) = 0, the special k◦-algebra A′′ = A′[ e1
√
u] is finite étale over A′, i.e.,

X ′′ = Spec(A′′) → X ′ is a finite étale morphism. We replace t1 by the element
t1 · e1
√
u of B′′, and so we may assume that $ = te11 · . . . · tenn in A′′. If a′′ is the ideal
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of A′′ generated by the elements $ and t1 · . . . · tm, then X̂ ′′ = Spf(Â′′), where Â′′

is the A′′-adic completion of A′′. Notice that the induced morphism X̂ ′′ → X̂ ′ is
also finite étale. Let x′′ be a preimage of the point x in X ′′s .

Let B = k◦[T1, . . . , Td]/(T
e1
1 · . . . · T enn −$), and let B̂ be the b-adic completion

of B, where b is the ideal generated by the elements $ and T1 · . . . · Tm. We claim
that one can replace X ′′ by an open neighborhood of x′′ so that the morphism of

special formal schemes X̂ ′′ → Y = Spf(B̂), which is induced to the homomorphism
B → A′′ : Ti 7→ ti, is étale. Indeed, by [Ber15, Lemma 3.2.5], one can shrink X ′′ so

that the induced morphism X̂ ′′s → Ys = Spec(k̃[T1, . . . , Td]/(T1 · . . . · Tm)) is étale.

By [Ber96b, 2.1(i)], there exists an étale morphism Z = Spf(C)→ Y with X̂ ′′s →̃Zs
over Ys. Since C is formally étale over B̂, the latter isomorphism is induced by

a unique homomorphism C → Â′′ over B̂ ([EGA40, 19.3.10]). From [Bou, Ch.

III, §2, n◦ 11, Prop. 14] it follows that the homomorphism C → Â′′ is surjective.

Since both rings are regular of the same dimension, we get C→̃Â′′ and the claim
follows. �

It is a minor consequence of the proof of Proposition 3.1.4 that, given a distin-
guished X, for any generator $ of k◦◦ one can always find étale morphisms as in
Definition 3.1.1 with γ = $.

Proof of Theorem 3.1.3. (i) First of all, we recall a result of de Jong. Let Y = Spf(A)
be a special affine formal scheme over k◦, and set Y = Spec(A). By [deJ95, Lemma
7.1.9], the map y 7→ ny that takes a point y ∈ Yη with [H(y) : k] < ∞ to the
preimage of my under the canonical homomorphism A = A ⊗k◦ k → OYη,y

is

a bijection between the set of such points y and the set of maximal ideals of A.

Furthermore, this homomorphism induces an isomorphism Ây→̃ÔYη,y
between the

ny-adic completion of A and the my-adic completion of OYη,y
. These facts imply

that the regular locus of Yη coincides with the preimage of the regular locus of the
affine scheme Yη = Spec(A).

By Temkin’s Theorem 1.1.13 from [Tem18], there exists a blow-up ϕ : Y → X
with the following properties:

(a) for any open affine formal subscheme Spf(A) ⊂ X, the corresponding blow-
up of the affine scheme Spec(A) is an isomorphism over its regular locus;

(b) Y possesses the property (1)-(3) of Proposition 3.1.4.

It follows that the special formal scheme Y is distinguished and the induced mor-
phism Yη → Xη is an isomorphism over the regular locus of Xη. This gives the
statement (i).

(ii) Since X is quasicompact, it has a finite étale covering by affine formal schemes
that admit an étale morphism to an affine formal scheme of the form as in Definition
3.1.1. Let e be a positive integer divisible by all of the numbers ei’s that appear in
the construction of those schemes, and let k′ = k( e

√
1, e
√
$) and X′ the normaliza-

tion of the formal scheme X⊗̂k◦k′◦. Then the induced morphism of special formal
schemes X′ → X is finite and, since Xη is rig-smooth, it follows that X′η→̃Xη⊗̂kk′.
We claim that the special formal scheme X′ is semistable.

Indeed, in order to prove the claim, we may replace k by k′ and X by X⊗̂k◦k′◦.
Since the normalization commutes with completion and étale morphisms, it suffices
to show that the normalization X ′ = Spec(A′) of the scheme X = Spec(A) with
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A = k◦[T1, . . . , Td]/(T
e1
1 · . . . · T enn −$l) such that k contains all e-th roots of one

and l is divisible by all of ei’s is semistable over k◦.
We set v = g.c.d.(e1, . . . , en), e′i = ei

v , l′ = l
v , denote by ti the image of Ti in A,

and set t = t
e′1
1 · . . . t

e′n
n . One has tv = ($l′)v and, therefore,

(
t
$l′

)v
= 1. Let A′′ be

the subalgebra of A′ generated over A by the element t
$l′

. Then X ′′ = Spec(A′′)

is a disjoint union of the schemes X ′ζ = Spec(A′ζ), where ζ is a v-th root of one and

A′ζ = k◦[T1, . . . , Td]/(T
e′1
1 · . . . · T

e′n
n − ζ$l′). If ζ1 is an l′-root of ζ, then ζ$l′ =

(ζ1$)l
′
. Replacing A by any of A′ζ ’s, we reduce the situation to the case v = 1.

In the case v = 1, the group Mgr of the monoid M generated by the elements
t1, . . . , tn and $ has no torsion, and te11 · . . . · tenn = $l. The algebra A is the ring

of polynomials k◦[M ][Tn+1, . . . , Td] over the monoid algebra k◦[M ]. Let M be the
saturation of M in Mgr, i.e., M = {p ∈M

∣∣pk ∈M for some k ≥ 1}.

Lemma 3.1.5. There exist elements s1, . . . , sn ∈ M which together with the el-
ement $ generate the monoid M and are such that s1 · . . . · sn = $r for r =

l
l.c.m.(e1,...,en) .

Proof. We set m = l.c.m.(e1, . . . , en) and r = l
m . If qi = m

ei
, then g.c.d(q1, . . . , qn) =

1 and, therefore, g.c.d.(q̂1, . . . , q̂n) = 1, where q̂i = q1 · . . . · qi−1 · qi+1 · . . . · qn. Let N
be the submonoid of M generated by the elements t1, . . . , tn and $r, and consider
the homomorphism α : N → Zn+ to the additive monoid Zn+ that takes ti to qifi
and $r to

∑n
i=1 fi, where f1, . . . , fn is the canonical basis of Zn. We claim that α

induces an isomorphism Ngr→̃Zn.
Indeed, it suffices to show that the subgroup of Zn generated by the vectors

α(t1), . . . , α(tn), α($r) coincides with the whole group. This subgroup contains
the n + 1 subgroups generated by n of the above elements. We now notice that
the index of the subgroup of Zn generated by n linearly independent vectors equals
(up to a sign) to the determinant of the matrix formed by the coordinates of those
vectors. In our case the determinants that correspond to those n subgroups are
q̂1, . . . , q̂n, q1 · . . . · qn, and the claim follows.

The claim implies that α induces an isomorphism of monoids N→̃Zn+, where N
is the saturation of N in Ngr. If s1, . . . , sn are the preimages of the basis vectors
f1, . . . , fn, we get s1 · . . . · sn = $r. �

The algebra A′′ = k′◦[M ][Tn+1, . . . , Td] is integral over A = k◦[M ][Tn+1, . . . , Td]
and, therefore, it is embedded in A′. By Lemma 3.1.5, one has

A′′ = k◦[S1, . . . , Sn, Tn+1, . . . , Td]/(S1 · . . . · Sn −$r) .

Since Spec(A′′) is a semistable scheme over k′◦, it is normal. It follows that A′′ = A′,
and the required fact follows. �

Recall (see [Ber15, §3.3) that an augmented simplicial formal scheme a : Y• →
X is said to be a compact hypercovering of X if all of the morphisms Yn → X
are of finite type and the augmented k-analytic space Y•,η → Xη is a compact
hypercovering of Xη. If in addition all of the morphisms Yn → X are proper, it is
called a proper hypercovering of X . Furthermore, a hypercovering a : Y• → X is
said to be distinguished if all formal schemes Yn are distinguished.

Corollary 3.1.6. If char(k̃) = 0, every quasicompact special formal scheme X over
k◦ admits a distinguished proper hypercovering a : Y• → X. �
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Remarks 3.1.7. (i) In the construction of the functor RΨh
η , we use a weaker fact

that every special formal scheme over k◦ admits a distinguished compact hypercov-
ering. Existence of such a hypercovering is proved in the same way but, instead of
functorial desingularization from [Tem18], one can apply Temkin’s result on desin-
gularization from [Tem08] to affine schemes of the form Spec(A) with an integral
special k◦-algebra A.

(ii) In the situation of §2.2, assume that the scheme Y is flat over OF,0 and

regular, and that the support of Ỹ is a divisor with normal crossings and the

support of Ys is the union of some of the irreducible components of Ỹ. Proposition

3.1.4 then implies that the formal completion Ŷ of Y along Ys is a distinguished

formal scheme over ÔF,0.
(iii) Temkin’s Theorem 1.1.8 from [Tem18] implies that, in the situation of The-

orem 3.1.3, there exists a blow-up Y→ X, which induces an isomorphism over the
regular locus of Xη, and a finite extension k′ over k such that the normalization Y′

of Y⊗̂k◦k′◦ is semistable and regular (i.e., for Y′ one always has γ ∈ k′◦◦\(k′◦◦)2

and e1 = . . . = em = 1 in Definition 3.1.1).

3.2. Log special formal schemes. Basic notions of logarithmic geometry for
schemes are naturally extended to special formal schemes. Namely, a pre-log struc-
ture on a special formal scheme X is a homomorphism of étale sheaves of monoids
β : M → OX. A pre-log structure is said to be a log structure if β−1(O∗X)→̃O∗X. If

β : M → OX is a pre-log structure, there is a homomorphism M → Ma to a log
structure on X such that any homomorphism M → N to a log structure on X goes
through a unique homomorphism Ma → N . If X is provided with a log structure, it
is said to be a log special formal scheme. For example, every special formal scheme
X can be provided with the trivial log structure for which M = O∗X. If necessary,

the underlying formal scheme of a log special formal scheme X is sometimes denoted
by X̊. Given a log special formal scheme X, any morphism of special formal schemes
ϕ : Y→ X̊, gives rise to a homomorphism ϕ−1(MX)→ OY from the inverse image

of MX. The sheaf of monoids for the corresponding log structure on Y is denoted
by ϕ∗(MX).

A morphism of log special formal schemes Y → X is a pair consisting of a
morphism ϕ : Y̊ → X̊ and a homomorphisms of sheaves of monoids ϕ−1(MX) →
MY which is compatible with the homomorphism ϕ−1(OX) → OY. It gives rise

to a homomorphism of sheaves ϕ∗(MX)→MY. A morphism is called strict if the

latter is an isomorphism, i.e., ϕ∗(MX)→̃MY. The category of log special formal

schemes admits finite inverse limits which are constructed in the same way as for
schemes (see [Kato89, (1.6)]).

Example 3.2.1. Every special formal scheme X flat over k◦ (e.g., Spf(k◦)) is
provided with the following log structure, called canonical: for an étale morphism
U→ X, M(U) consists of all elements of O(U) whose image in O(Uη) is invertible.
Notice that any morphism of special formal schemes is the underlying morphism of
log special formal schemes provided with the canonical log structures.

A k◦-log special formal scheme is a log special formal scheme X which is flat over
k◦ and provided with a morphism of log formal schemes X→ Spf(k◦) in which the
log structure on Spf(k◦) is canonical. A k◦-log special formal scheme X is said to
be vertical if the localization of MX with respect to k◦\{0} is a sheaf of groups.
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For example, if X is provided with the canonical log structure, it is a vertical k◦-log
special formal scheme.

A k◦-log scheme is a log scheme X with X̊ of locally finite type over k◦ provided
with a morphism of log schemes X → Spec(k◦) in which the log structure on
Spec(k◦) is canonical, i.e., defined by k◦\{0} ↪→ k◦. (A scheme of locally finite
type over k◦ is a locally finite union of open affine subschemes Spec(A) with finitely
generated k◦-algebras A.)

If X is a k◦-log special formal scheme, its closed fiber Xs is provided with the
log structure i∗(MX), where i is the closed immersion Xs → X (notice that Xs can
be considered as a special formal scheme over k◦). It is easy to see that this log
structure on Xs is the homomorphism MX/O

1
X → OXs

, where O1
X is the subsheaf

of O∗X consisting of the local sections which are congruent to 1 modulo the ideal

of definition of X that defines Xs. In particular, this defines a log structure on

the scheme Spec(k̃), which is the closed fiber of the formal scheme Spf(k◦). It is
an algebraic log point associated to the field k, and it is denoted by ptk◦1 . Every
generator $ of the maximal ideal k◦◦ of k◦ gives rise to a chart P →Mk◦1

= Mptk◦1
=

k◦\{0}/k1, where P is a free monoid generated by $ and k1 = {a ∈ k
∣∣|a− 1| < 1}.

A k◦1-log scheme is a scheme of locally finite type over k̃ provided with a morphism
to the log scheme ptk◦1 .

Examples 3.2.2. (i) Let X be a scheme of locally finite type over k◦. Then any

log structure β : MX → OX on X gives rise to a log structure β̂ : MX̂ → OX̂
on the formal completion X̂ of X along its closed fiber Xs = X ⊗k◦ k̃, which is
the inverse image of the log structure β with respect to the canonical morphism of

locally ringed spaces X̂ → X . Of course, of β is k◦-log, then so is β̂. In this case,

the canonical morphism of k◦1-log schemes (X̂ )s → Xs (which is the identity on the
underlying schemes) is an isomorphism. If in addition, the restriction of β to Xη is

the trivial log structure, then β̂ is vertical over k◦.
(ii) Given a log (resp. k◦-log) special formal scheme X, the log structure β :

MX → OX on X gives rise to a log (resp. k◦-log) structure β̂/Y : MX/Y
→ OX/Y

on the formal completion X along a subscheme Y ⊂ Xs, which is the inverse image
of β with respect to the morphism X/Y → X. In particular, in the situation of
(i), given a subscheme Y ⊂ Xs, the log (resp., k◦-log) structure β gives rise to

a log (resp. k◦-log) structure β̂/Y : MX̂/Y → OX̂/Y . If β is k◦-log, then the k◦1-

log structure on Xs = Y is canonically isomorphic to the restriction of the k◦1-log
structure of Xs to Y.

(iii) Let (B, b) → (F, 0) be a morphism of F-analytic germs, and let Y be a
scheme of finite type over OB,b. As in (i), any log structure β : MY → OY on Y
gives rise to a log structure β̂ : MŶ → OŶ on the special formal scheme Ŷ over ÔF,0
(see §2.2).

As for schemes, a log structure on X is said to be coherent if locally in the
étale topology it is associated to a pre-log structure defined by a homomorphism
PX → OX (called a chart of the log structure), where PX is the constant sheaf for
a finitely generated monoid P . If such P is integral, the log structure is said to be
fine and if, in addition, P is saturated, it is said to be fine saturated or, for brevity,
fs. For example, the canonical log structure on Spf(k◦) is fs, and it is associated by
the pre-log structure defined by a homomorphism P → k◦, where P is a free monoid
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generated by one element which maps to a generator of k◦◦. If a log structure on
X is associated to a chart PX → OX, then its inverse image on the closed fiber Xs
is associated to the induced chart PXs

→ OXs
.

The category of fine log special formal schemes admits finite inverse limits which
are constructed in the same way as for schemes (see [Kato89, (2.8)]). For example,
if X is a fine k◦-log formal scheme and k′ is a finite extension of k, the formal
scheme X⊗̂k◦k′◦, considered as the fiber product in the category of fine log special
formal schemes, is a fine k′◦-log formal scheme.

In [Kato89, §3], Kato introduced the notion of a log smooth (resp. log étale)
morphism between fine log schemes. He also proves that a morphism ϕ : Y →
X is log smooth if and only if locally in the étale topology there exist a chart
(PX → OX , QY → OY , P → Q) of ϕ such that the kernel and the torsion of
the cokernel (resp. the kernel and the cokernel) of the homomorphism of groups
P gr → Qgr are finite of orders invertible in X and the induced morphism of schemes
Y → X ⊗Z[P ] Z[Q] is étale.

Definition 3.2.3. A k◦-log special formal scheme X is said to be k◦-log smooth
(resp. formally k◦-log smooth) if locally in the étale topology X it is isomorphic

to the formal completion X̂ (resp. X̂/Y) for a vertical log smooth morphism X →
Spec(k◦) (resp. and a subscheme Y ⊂ Xs).

3.3. Formal log smoothness of distinguished formal schemes. Every scheme
X flat over k◦ is provided with the following log structure called canonical: for an
étale morphism U → X , M(U) consists of all elements of O(U) whose image in
O(Uη) is invertible. In the examples we really need, X is a noetherian excellent

regular scheme in which the closed fiber X̃ is a divisor with normal crossings. In

this case the canonical log structure on X is fs. It is trivial outside X̃ and, locally in
the étale topology, it is associated with a chart PX → OX for the monoid generated

by the regular parameters at a point x ∈ X̃ which define the irreducible components

of X̃ passing through x.
In the situation of Example 3.2.2(ii), the canonical log structure on X defines a

log structure on the formal completion X̂/Y along a subscheme Y ⊂ Xs which maps

in a natural way to the canonical log structure on the special formal scheme X̂/Y
over k◦. Similarly, in the situation of Example 3.2.2(iii), the canonical log structure

on Y defines a log structure on the formal completion Ŷ which maps in a natural

way to the canonical log structure on the special formal scheme Ŷ over ÔF,0.
For example, any semistable (resp. distinguished) scheme X over k◦ (resp. with

char(k̃) = 0) provided with the canonical log structure is smooth (resp. log smooth)

over k◦ and, therefore, the formal completion X̂ (resp. X̂/Y) provided with the log
structure induced from X are k◦-log smooth (resp. formally k◦-log smooth).

Theorem 3.3.1. Suppose that a scheme X admits an étale morphism X → T , and
either

(1) T = Spec(k◦[T1, . . . , Tn]/(T1 · . . . · Tm −$l)), l ≥ 1, or

(2) char(k̃) = 0 and T = Spec(k◦[T1, . . . , Tn]/(T e11 · . . . · T emm −$)), ei ≥ 1,

where 1 ≤ m ≤ n and $ is a generator of k◦◦. We set X = X̂/Y for a closed
subscheme Y ⊂ Xs, and denote by P the multiplicative submonoid of O(X) generated
by the images of the coordinate functions Ti for 1 ≤ i ≤ m and the element $. Then
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the log structure associated to the chart PX → OX coincides with the canonical log
structure on X.

Proof. In the case (1), the above facts easily follow from results from [Ber99, §5],
especially Theorem 5.3. Namely, we can shrink X so that the étale morphism

X → T induces a homeomorphism of skeletons S(X̂ )→̃S(T̂ ). The skeleton S(X̂ )
is a polytope, its intersection with Xη is the complement of a union of proper

faces of S(X̂ ) and, in particular, S(X̂ ) ∩ Xη contains the interior of S(X̂ ). There

is a retraction map τ : X̂η → S(X̂ ) and, for x ∈ S(X̂ ), the fiber τ−1(x) is an

affinoid domain with the maximal point x. If x ∈ S(X̂ ) ∩ Xη, then τ−1(x) ⊂ Xη.
It follows that, for every function h ∈ O(Xη) and every point y ∈ Xη, one has
|h(y)| ≤ |h(τ(y))|. If now f is as above, then the restriction of the real valued

function x 7→ |f(x)| to the interior of S(X̂ ) is equal to the function x 7→ |g(x)| for
some g ∈ P . This implies that f = gu for u ∈ O(Xη)∗ with the property |u(y)| = 1
for all y ∈ Xη. Since the ring O(X) is normal, a theorem of de Jong [deJ95, 7.4.1]
implies that u ∈ O(X). For the same reason, one has u−1 ∈ O(X) and, therefore,
u ∈ O(X)∗.

In the case (2), let v be the greatest common divisor of e1, . . . , em. If ei = vqi,
then the k◦-subalgebra of O(T ) generated by the element tq11 · . . . · tqmm is the ring of
integers k′◦ of the field k′ = k( v

√
$), i.e., T and Y can be considered as distinguished

schemes over k′◦. This reduces the situation to the case v = 1.
Let e be a positive integer divisible by all of the numbers ei’s, X ′ the normaliza-

tion of Y ⊗k◦ k′◦, where k′ = k( e
√

1, e
√
$), Y ′ the preimage of Y in X ′s, X

′ = X̂ ′/Y′ ,
P ′ the submonoid of O(X′) generated by the functions from P and the element

π = e
√
$, and P

′
the saturation of P ′ in P ′gr. By Theorem 3.1.3(ii) and the previ-

ous case, the formal scheme X′ is semistable over k′◦ and the lift of the function f

to X′ is of the form gv with g ∈ P ′ and v ∈ O(X′)∗. Notice that each element of
P ′gr has the form hπr, where h ∈ P and r ∈ Z and, therefore, f = hu, where h ∈ P
and u = πrv. Since X′η is a finite Galois covering of Xη, it follows that u ∈ O(Xη)∗

and the function x 7→ |u(x)| on Xη is a constant equal to |π|r. It suffices to show
that the latter number belongs to |k∗|, i.e., r is divisible by e. Indeed, suppose this
is true. Then replacing h by h$

r
e and u by u$−

r
e , we may assume that h ∈ P gr

and u ∈ O(X)∗. Since the element h belongs to P
′

and the monoid P is saturated
in P gr, it follows that h ∈ P .

In order to verify the required fact, we may replace Y by any closed point y
whose image in Ts is the point t at which all of the coordinate functions are zero.
Replacing k by a finite unramified extension, we may assume that the point y is

k̃-rational. Then X = X̂/{y}→̃T̂/{t}. We may therefore assume that X = T , and
the generic fiber Xη has the following description. Let Y be the closed analytic
subspace of Am defined by the equation T e11 · . . . · T emm = $, V the open subset
{y ∈ Y

∣∣|Ti(y)| < 1 for all 1 ≤ i ≤ m}, and D the open unit polydisc with center
at zero in An−m. Then Xη→̃V × D. Notice that the zero of D defines a closed
immersion V → Xη : x 7→ (x, 0), and so it suffices to verify the necessary fact for
the restriction of the function u to V instead of Xη.

The space V can be described as follows. Since the greatest common divisor of
e1, . . . , em is one, we can find integers l1, . . . , lm with

∑m
i=1 eili = 1. If T ′ is the torus

in the n-dimensional affine space defined by the equation T e11 · . . . · T emm = 1, then
T ′an→̃Y : x = (x1, . . . , xm) 7→ (x1$

l1 , . . . , xm$
lm
m ). The preimage of V in T ′an is
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the open subset U = {x ∈ T ′an
∣∣|Ti(x)| < |$|−li for all 1 ≤ i ≤ m}. The latter

is the preimage of the open subset U of the skeleton S(T ′), defined by the same
inequalities in S(T ′), with respect to the retraction map τ : T ′an → S(T ′). The
explicit description of analytic functions on τ−1(U) in terms of convergent Laurent
power series in Ti’s easily implies that, for every invertible analytic function u on
τ−1(U) with constant absolute value |u(x)|, |u(x)| is an element of |k∗|. �

Corollary 3.3.2. Any semistable (resp. distinguished) formal scheme over k◦

(resp. with char(k̃) = 0) provided with the canonical log structure is fs formally
k◦-log smooth (resp. k◦-log smooth). �

Corollary 3.3.3. In the situation of Remark 3.1.7(ii), the inverse image of the
canonical log structure on Y coincides with the canonical log structure on the dis-

tinguished formal scheme Ŷ over ÔF,0. �

4. The field K and associated groupoids

4.1. Groupoids π(K), Π(K), and Π(KC). In this section and till the end of
the paper, the capital letter K is used for a non-Archimedean field with nontrivial

discrete valuation and such that F ⊂ K◦ and F→̃K̃. The calligraphic letter K is
used for the fraction field of OF,0. We set KC = K ⊗F C and KC = K ⊗F C.
These are just the same fields K and K, if F = C, and are quadratic extensions
of K and K, if F = R, and constructions related to them depend on the original
fields K and K. If F = R, we denote by c the automorphisms of KC over K
and KC over K. Each generator $ of the maximal ideal K◦◦ of K◦ induces a
homomorphism OF,0 → K◦ that takes the coordinate function z on F to $. It

gives rise to an isomorphism ÔF,0→̃K◦ and an embedding K ↪→ K whose image is
dense in K. The valuation on K induces a valuation on K, which does not depend
on the element $. For an element β ∈ K◦ (resp. K◦), we denote by β(0) the
element of F with β − β(0) ∈ K◦◦ (resp. K◦◦).

For r ≥ 1, we set K◦r = K◦/(K◦◦)r . It is a finitely dimensional F-vector space
and, therefore, for any entire analytic function f =

∑∞
n=0 anz

n on F, there is a
well defined function f : K◦r → K◦r . Since K◦→̃ lim

←−
K◦r , we can provide the F-

algebra K◦ with the topology of a projective limit of finitely dimensional F-vector
spaces, and the same analytic function is well defined on K◦. Applying this to
the exponential function exp(z) =

∑∞
n=0

zn

n! , we get a well defined exponential
function exp on K◦, which gives rise to an isomorphism K◦→̃(K◦)∗, if F = R,
and to an exact sequence 0 → 2πiZ → K◦C → (K◦C)∗ → 0. In any case, it induces
isomorphisms R→̃R∗+ and K◦◦→̃K1 = {u ∈ (K◦)∗

∣∣|u − 1| < 1}. The inverse

isomorphisms to the latter give rise to an isomorphism R∗+ · K1→̃R + K◦◦ : v =
au 7→ log(v) = log |a|+ log(u).

We are now going to introduce groupoids Π(KC), Π(K) and π(K) Objects of
Π(KC) are generators of K◦◦C . For $,$′ ∈ Π(KC), HomΠ(KC)($,$

′) is the set of
transformations of K◦C which are either of the form α 7→ α + β for β ∈ K◦C with
exp(β) = $

$′ (β-morphisms of first type), or of the form α 7→ α+β for β ∈ K◦C with

exp(β) = $
$′ (β-morphisms of first type). Composition of morphisms corresponds

to composition of transformations. If F = C, there are only morphisms of first type.
Let Π(K) be the full subcategory of Π(KC) whose objects are generators of the
maximal ideal K◦◦ of K◦, and let π(K) be the non-full subcategory of Π(K) with
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the same set of objects and the sets Homπ(K)($,$
′) consisting of the β-morphisms

of first type with β ∈ K◦. Notice that, if F = R, the latter are one element sets
and, if F = C, then π(K) = Π(K) = Π(KC).

For example, the 2πi-morphism of first type, denoted by σ($), generates the
group Z(1) = 2πiZ, which coincides with HomΠ(K)($,$), if F = C, and is a
subgroup of index two in HomΠ(KC)($,$), if F = R. If in the latter case $ ∈
Π(K) (i.e., $ is a generator of K◦◦), HomΠ(K)($,$) coincides with the semi-

direct product Z(1)o 〈c($)〉, where c($) is the 0-morphism of second type. It is an
involution acting as inversion on Z(1). Moreover, for any pair $,$′ ∈ Π(K), one

has ϕ ◦ σ($) = σ($′) ◦ ϕ and ϕ ◦ c($) = c($
′) ◦ ϕ, where ϕ is a morphism $ → $′

in π(K). In this way, the groups HomΠ(K)($,$) are identified for all $ ∈ Π(K).

Applying the above construction to the field K̂, we get groupoids π(K̂), Π(K̂) and

Π(K̂C). Since the preimage of (K◦)∗ under the exponential map on K̂◦ lies in K◦,
one can define full subcategories π(K) ⊂ π(K̂), Π(K) ⊂ Π(K̂) and Π(KC) ⊂ Π(K̂C)
whose objects are generators of the maximal ideal K◦◦ of K◦ and K◦◦C of K◦C,
respectively, and there are natural functors π(K)→ Π(K)→ Π(KC).

There is a faithful functor Π(KC)→ G(KC) to the following étale fundamental
groupoid G(KC) of the field K. Given a generator $ of K◦◦C and an integer n ≥ 1,

we set K($),n = KC[T ]/(Tn − $). It is a Galois extension of K generated over
KC by the image of T , which is denoted by $n. For every integer m ≥ 1, there is
a canonical embedding K($),n ↪→ K($),mn that takes $n to $m

mn. The inductive
limit K($) of the fields K($),n taken over those embeddings is an algebraic closure
of K.K($) The objects of G(KC) are the fields K($) for generators $ of K◦◦C , and

the set of morphisms HomG(KC)(K
($),K($′)) is the profinite set of isomorphisms

of fields K($)→̃K($′) over K. We also denote by G(K) the full subcategory of
G(KC) whose family of objects are the fields K($) for generators $ of K◦◦. For
example, if F = C, HomG(K)(K

($),K($)) is the Galois group Gal(K($)/K), which

is canonically isomorphic to Ẑ(1) = lim
←−
n

µn and, if F = R, HomG(K)(K
($),K($)) is

the Galois group Gal(K($)/K), which is canonically isomorphic to the semi-direct

product Ẑ(1) o 〈c〉. The functor Π(KC) → G(KC) takes $ ∈ Π(KC) to the field
K($), and it takes a β-morphism of first (resp. second) type ϕ : $ → $′ to

the isomorphism ϕK : K($)→̃K($′) over K with ϕK($n) = exp(βn )$′n and which
acts trivially (resp. as the complex conjugation) on KC. It gives rise to a functor
Π(K)→ G(K).

In the same way one defines étale fundamental groupoids G(KC) and G(K) of
K whose objects are algebraic closures K($) of K for generators $ of K◦◦C and
K◦◦, respectively. For example, if z is the coordinate function on F, there is a

canonical isomorphism Ka→̃K(z) that takes the function b 7→ e
b
n on F to the element

zn ∈ K(z), where Ka is the algebraic closure of K introduced in §2.3. There are
faithful functors Π(KC)→ G(KC) and Π(K)→ G(K).

In what follows, we will also use the following groupoid equivalent to the above
ones. Let ptK◦ (resp. ptK◦) be the scheme Spec(K◦) (resp. Spec(K◦)) provided
with the canonical log structure. Generators of the maximal ideal of K◦ (resp. K◦)
can be viewed as elements of the monoid MK◦ = MptK◦ = K◦\{0} (resp. MK◦ =
MptK◦ = K◦\{0}) whose image in the quotient MK◦/(K

◦)∗ (resp. MK◦/(K◦)∗),
which is a free monoid of rank one, is the generator of the latter. For r ≥ 1, we
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denote by ptK◦r (resp. ptK◦r ) the scheme Spec(K◦r ) (resp. Spec(K◦r)) provided with

the log structure which is induced from that on ptK◦ (resp. ptK◦). Notice that

K◦r = K̂◦r . The groupoids we are going to introduce are associated to the log scheme
ptK◦r and denoted by π(K◦r), Π(K◦r ) and Π(K◦C,r).

Objects of π(K◦r) and Π(K◦r ) are elements of the monoid MK◦r
= MptK◦r

=

(K◦\{0})/Kr, where Kr = {α ∈ K◦
∣∣α − 1 ∈ (K◦◦)r}, whose image in the quo-

tient MK◦r
/(K◦r )∗ is the generator of the latter, and objects of Π(K◦C,r) are simi-

lar elements of the monoid MK◦C,r
. Morphisms in all three categories are defined

in the same way as in the corresponding categories for K but with elements β
from K◦r and K◦C,r, respectively, and one can easily see that the canonical functors

π(K) → π(K◦r ), Π(K) → Π(K◦r ) and Π(KC) → Π(K◦C,r) are equivalences of cate-

gories. By the way, the image of an object $ of Π(KC) in Π(K◦C,r) will be denoted
in the same way by $, but the image of the latter in K◦C,r will be denoted by $̃.

A groupoid P is called connected, if the set of morphisms between any two of its
objects is nonempty. For example, all of the above groupoids are connected. All
groupoids considered here are assumed to be connected (and small). A groupoid
P is said to be abelian if the groups G(P ) = Aut(P ) for P ∈ P are abelian. If P
is abelian, then all of the groups G(P ) are canonically isomorphic. For example,
if F = C, all of the considered groupoids are abelian. If F = R, the groupoids
Π(K) and Π(KC) are not abelian but, as was mentioned above, all of the groups
HomΠ(K)($,$) for $ ∈ Π(K) are canonically isomorphic.

A subgroupoid P ′ of P is said to be invariant if it has the same family of objects
and, for some P0 ∈ P, G′(P0) is an invariant subgroup of G(P0). In this case, G′(P ) is
an invariant subgroup of G(P ) for all P ∈ P, and one can define a quotient groupoid
P/P ′ with the same family of objects and with the quotient set HomP(P,Q)/G′(P )

as the set of morphisms from P to Q. For example, if F = R and K ′ = KC, Π(K ′)
and Π(K ′◦r ) are invariant subgroupoids of Π(KC) and Π(K◦C,r), respectively, and

there are equivalences of groupoids Π(KC)/Π(K ′)→̃Π(K◦C,r)/Π(K ′◦r )→̃Gal(KC/K).

4.2. P-spaces. Let P be a groupoid. The category of P-spaces is, by definition,
the category of contravariant functors P 7→ T op : P 7→ X(P ) to the category of
topological spaces T op. In the same way one defines P-spaces in other geometric
categories such as complex and non-Archimedean analytic spaces, schemes, formal
schemes and so on. For a morphism ϕ : P → P ′, we denote by tϕ the induced
morphism X(P ′) → X(P ). We say that a P-space X is single if the corresponding
functor takes each P ∈ P to the same space. We say that a P-space X is univocal
if, for any pair P, P ′ ∈ P, it takes each morphism P → P ′ to the same map
X(P ′) → X(P ). If X is single and univocal, it is called strict. We say that a
P-space X is trivial if it is strict and takes each morphism in P to the identity
map.

Every P-space X is isomorphic to a single P-space. Indeed, fix an object P0 of P
and, for every object P ∈ P, fix a morphism αP : P0 → P in P. We define a single
P-space Y as follows: it takes each P to X(P0) and each morphism ϕ : P → P ′

to t(α−1
P ′ ◦ ϕ ◦ αP ) : X(P0) → X(P0). The correspondence P 7→ t(αP ) defines an

isomorphism X→̃Y . Notice that if the P-space X is univocal, the P-space Y is
trivial, and it does not depend on P0 up to a canonical isomorphism. Conversely,
any P-space, which is isomorphic to a trivial P-space, is univocal. Notice that,
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for any P-space X, the P-space P\X formed by the quotient spaces G(P )\X(P ) is
univocal.

The following series of examples of P-spaces for Π(KC), Π(K◦C,r), and Π(KC),
respectively, play an important role in the paper.

Examples 4.2.1. (i) Let D∗ be the log pro-F-analytic space "lim
←−

"D∗(0; p) from

§2.5, where D(0; p) is the open disc of radius p > 0 with center at zero. For
$ ∈ Π(KC), take D of sufficiently small radius so that $ is convergent at D and
invertible at D∗, and define an étale universal covering D($) of D∗ by the cartesian
diagram

C b 7→eb // C∗

D∗($)

OO

// D∗C

$

OO

A point of D∗($) is a pair (x, b) ∈ D∗C×C with eb = $(x), and the F-analytic space

D∗($) defines a pro-F-analytic space D∗($). Each morphism ϕ : $ → $′ in Π(KC)

gives rise to a morphism tϕ : D∗($
′) → D∗($) as follows. If ϕ is a β-morphism of

first type, then tϕ is defined by the morphism D∗($
′) → D∗($) : (x, b) 7→ (x, b +

β(x)) (for D of sufficiently small radius). If F = R and ϕ is a β-morphism of second

type, then tϕ is defined by the morphism D∗($
′) → D∗($) : (x, b) 7→ (x, b+ β(x)).

In this way we get a pro-F-analytic Π(KC)-space D∗ : $ 7→ D∗($). Suppose
now that F = R. Notice that the exponential function exp : C → C∗ commutes
with the complex conjugation and, therefore, it induces an étale R-analytic map
exp : R→ R∗ and is in fact a base change of the latter with respect to the canonical
map ρ : C∗ → R∗. Thus, if $ ∈ π(K), the above cartesian diagram is a similar base
change of the cartesian diagram of R-analytic spaces

R b 7→eb // R∗

D∗($)

OO

// D∗

$

OO

so that the complex analytic space D∗($) is obtained by the extension of scalars

from the R-analytic space D∗($), i.e., D∗($) = D∗($)⊗̂RC and D∗($) = D∗($)/〈c〉.
Any morphism ϕ : $ → $′ in π(K) gives rise to a well defined morphism of R-

analytic spaces tϕ : D∗($
′) → D∗($) (for D of sufficiently small radius).

(ii) Let D be the log pro-F-analytic space "lim
←−

"D(0; p). As in (i), one can

construct for each $ ∈ Π(KC) an “étale universal coverings” D($) of Dlog. Namely,
let D = D(0, p) be of sufficiently small radius p such that $ is convergent at DC

and invertible at D∗C. Then $ induces a map

Dlog
C = [0, p)× S1 → Clog = R+ × S1 : (t, a) 7→

(
t|γ(ta)|, a γ(ta)

|γ(ta)|

)
,
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where γ = $
z , and we define a topological space D($) by the cartesian diagram

Clog // Clog

D($)

OO

// Dlog
C

OO

A point of D($) is a pair ((t, a), (s, b)) ∈ Dlog
C ×Clog with t|γ(ta)| = s and a γ(ta)

|γ(ta)| =

eb (recall that Clog = R+× iR), and D($) defines a pro-topological space D($). A

morphism ϕ : $ → $′ in Π(KC) gives rise to a morphism tϕ : D($′) → D($) as
follows. If ϕ is a β-morphism of first type, then tϕ is defined by the map

D($′) → D($) : ((t, a), (s, b)) 7→ ((t, a), (seRe(β(ta)), b+ Im(β(ta))i)) .

If F = R and ϕ is a β-morphism of second type, then tϕ is defined by the map

D($′) → D($) : ((t, a), (s, b)) 7→ ((t, a), (seRe(β(ta)),−b− Im(β(ta))i)) .

In this way we get a pro-topological Π(KC)-space D : $ 7→ D($). Notice that the
maps D∗($) → D($) : (x, b) 7→ ((|x|, x|x| ), (e

Re(b), Im(b)i)) define an open immersion

of pro-topological Π(KC)-spaces D∗ ↪→ Dlog.
(iii) Each fine vertical log germ of an F-analytic space (Y,X) over (F, 0) defines

a pro-F-analytic Π(KC)-space Y (X)η : $ 7→ Y (X)
($)
η = Y (X)η ×D∗ D∗($) and a

pro-topological Π(KC)-space Y (X)log : $ 7→ Y (X)($) = Y (X)log ×Dlog D($) .

Examples 4.2.2. (i) Given an integer r ≥ 1, we set ptK◦r = (ptK◦r )h and ptK◦r =

(ptK◦r )h. Notice that the monoids of both ptK◦r and ptK◦r (resp. ptK◦r and ptK◦r )

coincide. Each object $ ∈ Π(K◦C,r) defines a homeomorphism ptK◦C,r→̃S
1 which

takes a point of ptlog
K◦C,r

, that corresponds to a homomorphism h : Mgr
K◦C,r

→ S1, to

h($). (That it is a homeomorphism follows from the fact that h(a) = a
|a| for all

a ∈ C∗ and h(u) = 1 for all u ∈ K◦C,r with u(0) = 1.) We define a space pt
($)
K◦r

by

the cartesian diagram

iR
b 7→eb // S1

pt
($)
K◦r

OO

// ptlog
K◦C,r

OO

A point of pt
($)
K◦r

is a pair (h, b) ∈ ptlog
K◦C,r

× iR with h($) = eb. Each morphism

ϕ : $ → $′ in Π(K◦C,r) gives rise to a morphism tϕ : pt
($′)
K◦r
→ pt

($)
K◦r

as follows.

If ϕ is a β-morphism of first type, then tϕ(h, b) = (h, b + Im(β(0))i). If F = R
and ϕ is a β-morphism of second type, then tϕ(h, b) = (hc,−b− Im(β(0))i). Thus,

the correspondence $ 7→ pt
($)
K◦r

is a Π(K◦C,r)-space over ptlog
K◦r

, denoted by ptlog
K◦r

,

and there is a canonical isomorphism Π(K◦C,r)\ptlog
K◦r
→̃ptlog

K◦r
. Of course, there are

canonical isomorphisms of topological Π(K◦C,r+1)-spaces ptlog
K◦r+1
→̃ptlog

K◦r
. (In §10,

these spaces will be endowed with non-isomorphic ringed structures.) Notice also

that there is a canonical closed immersion of Π(KC)-spaces ptlog
K◦r
→ Dlog.
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(ii) Let X be a fine log F-analytic space over ptK◦r . Then the correspondence

X log : $ 7→ X($) = X log
C ×ptlog

K◦
C,r

pt
($)
K◦r

= X log
C ×S1 iR

is a Π(K◦C,r)-space. A point of X($) is a pair ((x, hx), b) ∈ X log
C × iR with hx($) =

eb. Each β-morphism of first type ϕ : $ → $′ in Π(K◦C,r) gives rise to a map

X($′) → X($) : ((x, hx), b) 7→ ((x, hx), b+ Im(β(0))i) .

If F = R and ϕ : $ → $′ is a β-morphism of second type, tϕ gives rise to a map

X($′) → X($) : ((x, hx), b) 7→ ((c(x), hcc(x)),−b− Im(β(0))i) .

As at the end of (i), there is a canonical homeomorphism Π(K◦C,r)\X log→̃X log.

In what follows we consider XC and X log
C as single Π(K◦C,r)-spaces on which mor-

phisms of first type act trivially, and those of second type act as the complex
conjugation.

(iii) Let X be a distinguished formal scheme over K◦. Recall that X is a regular
formal scheme. For an integer r ≥ 1, let Jr be the ideal of definition of X such
that, for an open subset U ⊂ X, Jr(U) consists of the element f ∈ O(U) with
ordY (f) ≥ r · ordY ($) for every irreducible component Y of the closed fiber of U,
where ordY (f) is the order of f at the generic point of Y . We denote by Xsr the
closed subscheme of X defined by the ideal Jr and provided with the induced log
structure. It is an fs log scheme of finite type over the log scheme ptK◦r and called

the r-th closed fiber of X. The analytification X = Xhsr of Xsr is an fs log F-analytic

space over ptK◦r . As in (iii), one gets a Π(K◦C,r)-space X log : $ 7→ X($). Of course,

all these Π(K◦C,r)-spaces (for different r’s) are canonically homeomorphic but in §10
they will be provided with an extra structure that depends on r.

Example 4.2.3. Given a K-analytic space X, the correspondence

X : $ 7→ X($) = X⊗̂KK̂($)

is G(KC)-space and, in particular, a Π(KC)-space.

4.3. P-sheaves, P-modules and P-cosheaves. Let P be a groupoid, and let X
be a P-space. A P-sheaf of sets on X is a family of sheaves F (P ) on X(P ) for
P ∈ P provided with a system of isomorphisms ϕF : (tϕ)−1(F (P ))→̃F (P ′) such
that (ψϕ)F = ψF ◦ (tψ)−1(ϕF ) for all morphisms ϕ : P → P ′ and ψ : P ′ → P ′′.
(The same definition works of P-sheaves of rings, fields and so on.) The family
of P-sheaves of sets on X forms a category, which is denoted by TP(X). Given
a morphism of P-spaces ϕ : Y → X and P-sheaves E on X and F on Y , the
correspondences P 7→ (ϕ(P ))−1(E(P )) and P 7→ (ϕ(P ))∗(F

(P )) are P-sheaves on Y
and X, respectively. In the following subsection we show that TP(X) is equivalent
to the category of sheaves on a site and, in particular, that it is a topos.

If X is a one point space, then the corresponding category of P-sheaves is just the
category of covariant functors from P to that of sets (resp. rings, fields and so on).
Such an object is called a P-set (a P-ring, a P-field and so on). If W is a P-ring,
a W -module is a covariant functor that takes an object P ∈ P to an W (P )-module
Λ(P ) and a morphism ϕ : P → P ′ to a homomorphism ϕΛ : Λ(P ) → Λ(P ′) which is
compatible with the homomorphism ϕW : W (P ) →W (P ′). If W = Z considered as
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a trivial P-ring, such an object is called a P-module. The abelian category of W -
modules is denoted by W -Mod, and its derived category is denoted by D(W -Mod).
If W = Z, they are denoted by P-Mod and D(P-Mod), respectively.

For example, for an étale locally constant sheaf F on D∗, the correspondence
$ 7→ F (D∗($)) is a Π(K)-set and, by Remark 1.5.1, this gives rise to an equivalence
between the category of étale (resp. étale abelian) locally constant sheaves on D∗

and the category of Π(K)-sets (resp. Π(K)-modules Π(K)-Mod). For this reason
the category of Π(K)-sets can be considered as a substitute of the category of étale
locally constant sheaves on a non-existent geometric object for K (like D for K).

A P-set is called single, univocal, strict or trivial if it possesses the properties
from the corresponding definitions for P-spaces. One shows in the same way that
any P-set (resp. univocal P-set) is isomorphic to a single (resp. trivial) P-set.

Remarks 4.3.1. (i) Every P-set Λ defines a P-sheaf ΛX on each P-space X.

Namely, for P ∈ P, Λ
(P )
X is the constant sheaf on X(P ) associated to the set Λ(P )

with the isomorphisms ϕΛ (for morphisms ϕ : P → P ′ in P) defined in the evident
way.

(ii) Let X be a trivial P-space. Then for every open subset U ⊂ X (resp. a
point x ∈ X), the set of sections F (U) (resp. the stalk Fx) is a P-set. Namely,

it takes each object P ∈ P to the set F (P )(U) (resp. the stalk F
(P )
x ) and each

morphism g : P → P ′ to the map gF : F (P )(U)→ F (P ′)(U) (resp. F
(P )
x → F

(P ′)
x ).

We denote by FP the sheaf on X whose set of sections over an open subset U ⊂ X
consists of families (f (P ))P of elements f (P ) ∈ F (P )(U) with gF (f (P )) = f (P ′) for
all morphisms g : P → P ′ in P. Notice that, for every P ∈ P, the projection

(f (P ))P 7→ f (P ) gives rise to an isomorphism FP→̃(F (P ))G
(P )

. We will denote by
IP = IPX the left exact functor that takes a P-sheaf F to the sheaf FP .

(iii) Suppose that the action of an invariant subgroupoid P ′ of P on a P-space X
is free (i.e., the action ofG′(P ) on eachX(P ) is free) and we are given an isomorphism
of P/P ′-spaces P ′\X→̃Y . Let π denote the map X → Y . Then for any P-
sheaf A on X, π∗(A) is a P-sheaf on Y , and so there is a well defined P/P ′-sheaf

πP
′

∗ (A) = (π∗(A))P
′
. Conversely, for a P/P ′-sheaf B on Y , f−1(B) is a P-sheaf on

X. It follows from [Gro57, §5.1] that B→̃πP′∗ (π−1(B)) and π−1(πP
′

∗ (A))→̃A. This

means that the correspondences B 7→ π−1(B) and A 7→ πP
′

∗ (A) are inverse to each
other and establish an equivalence between the category of P/P ′-sheaves on Y and
that of P-sheaves on X.

Examples 4.3.2. (i) In the situation of Example 4.2.1(iii), every Π(KC)-set Λ
defines an étale locally constant sheaf ΛY (X)η , which is the pullback of the corre-
sponding étale locally constant sheaf on D∗. Its pullback to Y (X)η is a locally con-
stant Π(KC)-sheaf ΛY (X)η , and its pushforward with respect to the open immersion

Y (X)η ↪→ Y (X)log is a locally constant Π(KC)-sheaf Λ
Y (X)log on the Π(KC)-space

Y (X)log. By Remark 4.3.1(iii), the latter defines a locally constant sheaf ΛY (X)log
C

on Y (X)log
C . (If F = R, the latter is a 〈c〉-sheaf on a 〈c〉-space.)

(ii) In the situation of Example 4.2.2(ii), every Π(K◦C,r)-set Λ defines a Π(K◦r )-

sheaf Λ
Xlog on the Π(K◦r )-space X log. If ν denotes the map X log → X log

C , the latter

sheaf gives rise to the locally constant sheaf ΛXlog
C

= ν
Π(K◦C,r)
∗ (Λ

Xlog) on X log
C . (If

F = R, the latter is a 〈c〉-sheaf on a 〈c〉-space.) Notice that, if Λ is trivial as a
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Π(K◦C,r)-set, the sheaf ΛXlog
C

coincides with ΛXlog
C

. In general, they are different

objects.
(iii) We consider the field C as a single Π(KC)-field on which morphisms of

first type act trivially and those of second type act as the complex conjugation.
This induces the structure of a single Π(KC)-module on C itself and the subgroups
Z(q) = (2πi)qZ (with q ∈ Z), iR of C, and S1 = {a ∈ C∗

∣∣|a| = 1} of C∗. As in
Remark 4.3.1(i), the corresponding Π(KC)-sheaves on an F-analytic Π(KC)-space
X are denoted by CX , Z(q)X , and S1

X . Of course, if F = C, these are just constant
sheaves associated to C. If F = R, the 〈c〉-sheaf CXC

on the 〈c〉-space XC defines
the étale sheaf of constant analytic functions cX on X, introduced in §1.2. All this
is also applied to the groupoids Π(KC) and Π(K◦C,r).

If W is a P-ring, its inverse image WX on a P-space X is a P-ring on X, and
sheaves of left modules over the latter are said to be sheaves of W -modules on X,
or just W -modules on X. An object of the derived category of abelian P-sheaves
on X will be said to be a W -module, if it is provided with a homomorphism from
W to the P-ring of endomorphism ring of the object. For example, any complex of
sheaves of W -modules E· on X is a W -module in the derived category of P-sheaves.
Furthermore, any quasi-isomorphism of complexes of abelian P-sheaves E· → F ·

(from the above E·) provides F · with the structure of a W -module in the derived
category of abelian P-sheaves.

Examples 4.3.3. (i) The field KC (resp. KC) can be considered as a strict Π(KC)-
field (resp. Π(KC)-field). Namely, for every $ ∈ Π(KC) (resp. Π(KC)) each
element of KC (resp. KC) has a unique representation in the form f($) for f =∑
n anT

n ∈ C((T )) (resp. f =
∑
n anz

n ∈ KC). One associates to a morphism
$ → $′ of first type the automorphism f($) 7→ f($′). Furthermore, if F = R,
one sets for f as above f =

∑
n anT

n (resp. f =
∑
n anz

n), and one associates

to a morphism $ → $′ of second type the automorphism f($) 7→ f($′). In the
same way one provides the ring of integers K◦C (resp. K◦C) and its quotients K◦C,r
(resp. K◦C,r), r ≥ 1, with the structure of a strict Π(KC)- and Π(K◦C,r)-ring (resp.

Π(KC)- and Π(K◦C,r)-ring). Since K◦C,r = K̂◦C,r, K◦C,r is also a Π(K̂C)-ring. Notice

that C and Z(q) are Π(KC)-submodules of KC as well as Π(K◦C,r)-submodules of

K◦C,r (see Example 4.3.2(iii)).

(ii) Let W (K) (resp. W (K)) be the algebra of F-linear endomorphisms of K
(resp. K) generated by multiplications by elements of K (resp. K) and derivations
∂
∂$ for generators $ of the maximal ideal K◦◦ (resp. K◦◦). If $ is a fixed generator,
each element of W (K) (resp. W (K)) has a unique representation in the form

gn
∂n

∂$n + gn−1
∂n−1

∂$n−1 + . . . + g1
∂
∂$ + g0 with n ≥ 0 and gi ∈ K (resp. K). Then

W (KC) (resp. W (KC)) can be considered as a strict Π(KC)-ring (resp. Π(KC)-
ring). Namely, one associates to a morphism $ → $′ the automorphism of W (KC)
(resp. W (KC)) that acts on KC as in (i) and takes ∂

∂$ to ∂
∂$′ . Notice that KC

(resp. KC) is a W (KC)-module (resp. W (KC)-module).
(iii) For a generator $ of K◦◦ (resp. K◦◦), let δ$ denote the derivation $ ∂

∂$

on K (resp. K). Then δ$($j) = j$j for all j ≥ 0 and δ$ = (1 + δ$(α)
α )δ$′

for α = $′

$ . In particular, δ$ preserves the subring K◦ (resp. K◦) and all of its
ideals. We denote by W (K◦) (resp. W (K◦)) the K◦-subalgebra of W (K) (resp.
the K◦-subalgebra of W (K)) generated by all of the operators δ$. This algebra is
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isomorphic to the algebra of noncommutative polynomials over K◦ (resp. K◦) in
one variable δ$ and the relations δ$ · g − g · δ$ = δ$(g) for g ∈ K◦ (resp. K◦).
The subalgebra W (K◦C) of W (KC) (resp. W (K◦C) of W (KC)) is preserved by the
automorphisms induced by morphisms in Π(KC) (resp. Π(KC)), and so it can be
considered as a strict Π(KC)-ring (resp. Π(KC)-ring). Notice that K◦C (resp. K◦C)
is a W (K◦C)-module (resp. W (K◦C)-module).

(iv) For r ≥ 1, let W (K◦r ) (resp. W (K◦r)) be the quotient of W (K◦) (resp.
W (K◦)) by the ideal generated by (K◦◦)r (resp. (K◦◦)r). This algebra is isomor-
phic to the algebra of noncommutative polynomials over K◦r (resp. K◦r) in one
variable δ$ and the relation δ$ · $̃ − $̃ · δ$ = $̃. If r = 1, the algebra WK◦1

is
in fact commutative, and all of the elements δ$ are equal. As in (iii), one pro-
vides W (K◦C,r) (resp. W (K◦C,r)) with the structure of a strict Π(K◦C,r)-ring (resp.

Π(K◦C,r)-ring). Since K◦C,r = K̂◦C,r, one has W (K◦C,r) = W (K̂◦C,r). Notice that

K◦C,r (resp. K◦C,r) is a W (K◦C,r)-module (resp. W (K◦C,r)-module). Notice also

that any W (K◦C,r)-module (resp. W (K◦C,r)-module) can be also considered as a

W (K◦C)-module (resp. W (K◦C-module).

Recall that a precosheaf of sets on a topological space X is a covariant functor
U 7→ Υ(U) from the category of open subsets of X to that of sets. A precosheaf
is called a cosheaf if Υ(∅) = ∅ and, for any open covering U = {Ui}i∈I of an
open subset U ⊂ X, one has Υ(U)→̃Υ(U), where Υ(U) is the set of equivalence
classes on

∐
i∈I Υ(Ui) with respect to the equivalence relation induced by the two

canonical maps to it from the set
∐
i,j∈I Υ(Ui∩Uj). For example, given a continuous

map of locally connected topological spaces ϕ : Y → X, the correspondence U 7→
π0(ϕ−1(U)) is a cosheaf of sets.

A P-cosheaf of sets on a P-space X is a family of cosheaves Υ(P ) on X(P ) for
P ∈ P provided with a compatible system of bijections Υ(P ′)((tϕ)−1(U))→̃Υ(P )(U)
for all morphisms ϕ : P → P ′ and all open subsets U ⊂ X(P ). Given a P-cosheaf
Υ on X, for any P-sheaf F on X the correspondence U 7→ FΥ(U) that takes an
open subset U ⊂ X(P ) to the set of maps Υ(P )(U) → F (P )(U) is a P-sheaf on X,
denoted by FΥ.

Example 4.3.4. For a fine log F-analytic space X over ptK◦r , let τ and τ denote

the maps X log
C → XC and X log → XC, respectively. The correspondence U 7→

π0(τ−1(U)) is a Π(K◦C,r)-cosheaf on the strict Π(K◦r )-space XC, denoted by π0,X .

If Λ is a Π(K◦C,r)-module, there is a canonical isomorphism of Π(K◦C,r)-modules

Λ
π0,X

XC
→̃τ∗(ΛXlog). More generally, for any locally constant abelian Π(K◦C,r)-sheaf F

on XC, there is a canonical isomorphism of Π(K◦C,r)-modules Fπ0,X→̃τ∗(τ−1(F )).
In §5, the cosheaf π0,X will be described for a class of log F-analytic spaces in terms
of their logarithmic structure.

Remark 4.3.5. Suppose F = R. Let X be an R-analytic space, and let L be an
Π(K)-sheaf on the C-analytic Π(K)-space XC. Then for each $ ∈ Π(K) the sheaf
L($) together with the automorphism c($), which is compatible with the complex

conjugation on XC, gives rise to an étale sheaf L̃($) on X with L̃($)
∣∣
XC

= L($),

and the correspondence $ 7→ L̃($) defines an étale π(K)-sheaf on X. For example,

if X = F0, this implies that every Π(K)-set Λ defines a π(K)-set Λ̃ with Λ̃($) =

(Λ($))〈c
($)〉 for $ ∈ π(K).
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4.4. The category TP(X) as a topos. Let X(P) denote a pair consisting of
a groupoid P and a P-space X. If P is the trivial groupoid, then a P-space is
just a topological space. The pairs X(P) form a category in which a morphism
ϕ : X ′(P ′) → X(P) consists of a functor νϕ : P ′ → P and a functor morphism
ϕ : X ′ → X ◦ νϕ. The latter is a compatible family of continuous maps ϕP ′ :

X ′(P
′) → X(νϕP

′) for all P ′ ∈ P ′. If P ′ is a subcategory of P and νϕ is the
canonical embedding, such a morphism is said to be a P ′-morphism.

Let Ét(X(P)) denote the category of P-morphisms U(P)→ X(P) such that all
of the underlying maps U (P ) → X(P ) are local homeomorphisms. We denote by
X(P)ét the Grothendieck topology on Ét(X(P)) generated by the pretopology for

which the set of coverings of (U(P) → X(P)) ∈ Ét(X(P)) consists of the families

{Ui(P)
fi→ U(P)}i∈I with

⋃
i∈I fi,P (U

(P )
i ) = U (P ) for all P ∈ P, and we denote by

X(P)˜́et the category of sheaves on X(P)ét (the étale topos of X(P)). For example,
X ˜́et is the category of sheaves on the topological space X.

For a P space, we denote by X(P) the topological space
∐
P∈P X

(P ). Every

P-sheaf F can be considered as a sheaf on X(P). On the other hand, if (U(P) →
X(P)) ∈ Ét(X(P)), then (U (P) → X(P)) ∈ Ét(X(P)) and a covering in Ét(X(P))

gives rise to a covering in Ét(X(P)). This means that there is a morphism of sites

b : X
(P)
ét → X(P)ét.

Proposition 4.4.1. The inverse image functor for the morphism of sites b :

X
(P)
ét → X(P)ét gives rise to an equivalence of categories X(P)˜́et→̃TP(X).

Proof. Step 1. For P ∈ P and an open subset U ⊂ X(P ), we introduce as follows

a P-space Ũ . It takes P ′ ∈ P to Ũ (P ′) =
∐

tg(U), where the disjoint union is
taken over all morphisms g : P ′ → P . For a morphism h : P ′′ → P ′ in P. For a
morphism h : P ′′ → P ′ in P, the induced map th : X(P ′) → X(P ′′) takes tg(U) to
th(tg(U)) = t(gh)(U) and, therefore, it induces a map Ũ (P ′) → Ũ (P ′′), i.e., Ũ is a P-

space. The identity morphism P → P defines a map U → Ũ (P ) which possesses the
following universal property: any continuous map U → V to a P-space V extends

in a unique way to a morphism Ũ(P) → V (P). Notice that, by the construction,

the induced morphism Ũ(P)→ X(P) is a morphism in the category Ét(X(P)).

Step 2. For a sheaf F on X(P) and an open subset U ⊂ X(P ) for P ∈ P, we set

F (P )(U) = F(Ũ(P)). By universality of Ũ(P), the sheaf (b∗F)
∣∣
X(P ) is associated

to the presheaf U 7→ F (P )(U). We claim that F (P )→̃(b∗F)
∣∣
X(P ) . Indeed, for this

it suffices to verify that, given an open covering {Ui}i∈I of U , one has

F (P )(U)→̃Ker(
∏
i

F (P )(Ui)
→→
∏
i,j

F (P )(Ui ∩ Uj)) .

But this follows from the easy facts that {Ũi(P)}i∈I is a covering of Ũ(P) in X(P)ét

and that (Ũi ∩ Uj)(P ) = Ũ
(P )
i ∩ Ũ (P )

j in Ũ (P ) for all i, j ∈ I and P ∈ P.

Step 3. We claim that the correspondence P 7→ F (P ) is a P-sheaf on X. (It

will be denoted by F̃ .) Indeed, for a morphism g : P ′ → P and an open subset

U ⊂ X(P ), the composition of the map (tg)−1 : tg(U)→̃U with the map U → Ũ is

induced by a morphism (t̃gU)(P)→̃Ũ(P). We get a map

F (P ′)(tgU) = F((t̃gU)(P))→̃F(Ũ(P)) = F (P )(U) .



62 VLADIMIR G. BERKOVICH

This defines an isomorphism of sheaves gF : (tg)−1(F (P ′))→̃F (P ), and the isomor-
phisms defined in this way possess the required properties.

Step 4. Let F be a P-sheaf on X. For (V (P) → X(P)) ∈ Ét(X(P)) one
has b∗F (V (P)) = F (V (P)). An element of the latter is a collection of sections
fP ∈ F (P )(V (P )) for P ∈ P. We define a sheaf F on X(P)ét by

F (V (P)) = {(fP )P∈P ∈ F (V (P))
∣∣gF (fP ′) = fP for all g : P ′ → P in P} .

We claim that F̃→̃F . Indeed, if U is an open subset of X(P ) for some P ∈ P, we

have F̃ (P )(U) = F (Ũ(P)). An element of the latter is a collection of sections fP ′ ∈
F (P ′)(Ũ (P ′)) for P ′ ∈ P with the property that hF (fP ′′) = fP ′ for all morphisms

h : P ′′ → P ′ in P. Since Ũ (P ′) =
∐

tg(U), where the disjoint union is taken over all

morphisms g : P ′ → P , the section fP ′ is a collection of elements fP ′,g ∈ F (P ′)(tgU)
for g ∈ Hom(P ′, P ). The above condition implies that hF (fP ′′,gh) = fP ′,g for all
morphisms h : P ′′ → P ′ in P. This implies that the sections fP ′ are completely

determined by the element fP,IdP ∈ F (U) and, therefore, F (Ũ(P)) = F (U).

Step 5. For F ∈ X(P)˜́et, one has F→̃F̃ . Indeed, each object of Ét(X(P)) can

be covered by objects of the form Ũ(P) for an open subset U ⊂ X(P ) with P ∈ P,
and we have

F(Ũ(P)) = F̃ (P )(U) = F̃(Ũ(P)) . �

In what folows, Proposition 4.4.1 is used in order to apply usual sheaf construc-
tions to P-sheaves.

Suppose we are given a P-morphism X ′(P)→ X(P). It gives rise to a commu-
tative diagram of morphisms of sites

X ′(P)ét
ϕ // X(P)ét

X
′(P)
ét

ϕ //

b′

OO

X
(P)
ét

b

OO

Furthermore, let W be a P-ring. For an W -modules F on X ′, let Rϕ∗(F ) be the
higher direct image of F in the derived category of W -modules on X.

Corollary 4.4.2. In the above situation, for any W -module F on X ′ there is a
canonical isomorphism in the derived category of abelian sheaves on X(P)

b∗(Rϕ∗F )→̃Rϕ∗(b′∗F ) .

Proof. It suffices to verify that b∗(Rqϕ∗F )→̃Rqϕ∗(b′∗F ) for all q ≥ 0. If q = 0, for
every open subset U ⊂ X(P ), P ∈ P, one has

(b∗ϕ∗F )(U) = ϕ∗F (Ũ(P)) = F ((X ′ ×X Ũ)(P))

Since X ′ ×X Ũ = Ũ ′, where U ′ = X ′(P ) ×X(P ) U , the latter coincides with

F (Ũ ′(P)) = (b′∗F )(U ′) = (ϕ∗b
′∗F )(U) .

Thus, it remains to show that every W -module F on X ′ can be embedded in a
W -module F ′ on X ′ with Rqϕ∗(F

′) = 0 and Rqϕ∗(b
′∗F ′) = 0 for all q ≥ 1. For

this we notice that the family of morphisms x˜́et → X ′(P)˜́et for points x ∈ X ′(P)

is a conservative family of points of the topos X ′(P)˜́et. This means that, if X ′d
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is the space X ′(P) provided with the discrete topology and k is the morphism
X ′dét → X ′(P)ét, then for any sheaf F on X ′(P)ét the canonical morphism of sheaves
F → k∗k

∗(F ) is injective. By [SGA4, Exp. XVII, 6.4.2], for abelian F the sheaf
k∗k
∗(F ) on X ′(P)ét is flabby. One has k = b ◦ l, where l is the canonical map

X ′d → X ′, and it is easy to see that there is a canonical isomorphism of sheaves
b′∗(k∗k

∗(F ))→̃l∗l∗(b′∗F ). This implies that the sheaf b′∗(k∗k
∗(F )) is flabby, and

the required fact follows. �

Example 4.4.3. In the situation of Example 4.2.2(ii), the constant sheaf (K◦C,r)Xlog

is a sheaf of W (K◦C,r)-modules on X log. Corollary 4.4.2 implies that

Rτ∗(K
◦
C,r)Xlog = Rτ∗(FXlog)⊗F K

◦
C,r

is a complex of sheaves of W (K◦C,r)-modules on the Π(K◦C,r)-space XC, where τ

denotes the map X log → XC. In particular, Rqτ∗(FXlog) ⊗F K
◦
C,r are sheaves of

W (K◦C,r)-modules on XC.

If X is a trivial P-space, the left exact functor IP : TP(X) → T(X) gives rise
to an exact functor

RIP : D+(X(P))→ D+(X) .

Since for every P ∈ P the projection (f (P ))P 7→ f (P ) gives rise to an isomorphism

FP→̃(F (P ))G
(P )

, it also induces an isomorphism of functors RIP→̃RIG(P )

.
The following statement will be applied in the situation of Example 4.2.2(ii) to

the maps τ : X log ν−→ X log τ−→ XC.

Proposition 4.4.4. Suppose that the action of a groupoid P on a P-space Y is
free, and we are given an isomorphism P\Y →̃Y and a continuous map τ : Y → X
with a trivial P-space X. Let τ denote the induced map Y → X. Then for every
F · ∈ D+(Y ), there is a canonical isomorphism

Rτ∗(F
·)→̃RIP(Rτ∗(F

·
)) ,

where F
·

is the pullback of F · on Y .

Recall that the quotient P-space P\Y is univocal and, therefore, it is isomorphic
to a trivial P-space.

Proof. One has τ = τ ◦ ν, where ν is the induced map Y → Y . Since for ev-
ery injective P-sheaf A on Y the P-sheaf ν∗(A) is also injective, it follows that

F ·→̃RIPY (Rν∗(F
·
)) and, therefore, Rτ∗(F

·)→̃Rτ∗(RIPY (Rν∗(F
·
))). We now notice

that there is an isomorphism of functors τ∗ ◦ IPY →̃IPX ◦ τ∗. Since the functor IPY
takes injective P-sheaves to flabby sheaves (see [Gro57, Proposition 5.1.3]), it fol-
lows that there is an isomorphism of functors Rτ∗ ◦RIPY →̃RIPX ◦Rτ∗, and we get
the required isomorphism. �

4.5. Distinguished W (RC)-modules. Let R be either K◦r for 1 ≤ r <∞, or K◦,
or K◦. In the latter two cases we set r =∞. We denote by R◦◦ the maximal ideal
of R (it coincides with K◦◦ ·R, if r <∞ or R = K◦, and with K◦◦ ·R if R = K◦),
and we set RC = R⊗FC. As above, the objects related to RC depend also from the
original ring R. Let π(R), Π(R) and Π(RC) denote the corresponding groupoids
(where π(K◦) = π(K), Π(K◦) = Π(K) and so on). We consider R and W (R) as
strict π(R)-rings, and RC and W (RC) as strict Π(RC)-rings. (Recall that, for every
$ ∈ Π(RC), each element of RC is represented in the form f($) for f ∈ C[[T ]].)
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Notice that every Π(RC)-ring, Π(RC)-module and so on gives rise to a Π(R)-ring,
Π(R)-module and so on. We mention Π(R) explicitly only when it is necessary.
Notice also that RC is a left W (RC)-module, and the field C is a Π(RC)-subfield
of the Π(RC)-rings RC and W (RC). We use the notations σ($), $ ∈ Π(RC), and
c($), $ ∈ Π(R), for the morphisms in Π(RC) and Π(R), defined in the same way
as for the categories Π(KC) and Π(K), respectively.

Let X be an F-analytic space. We consider XC as a single Π(RC)-space on
which morphisms from Π(RC) of first type act trivially and of second type act as
the complex conjugation, and denote by ρ the canonical map XC → X. For a field
k, a kΠ(RC)-module on XC is a covariant functor $ 7→ V($) from Π(RC) to the
category of sheaves of k-vector spaces. The notion of a kΠ(RC)-module is naturally
extended to the derived category of sheaves of k-vector spaces.

If F = R and D is an RC-module on XC, an RC-semilinear automorphism of
D is a Π(RC)-automorphism of D with the property that ϑ($)(αx) = αϑ($)(x)
for all $ ∈ Π(RC), α ∈ RC and local sections x of D($). For example, given an
RΠ(RC)-module V on XC, the RC-module V ⊗R RC is provided with the RC-
semilinear automorphism defined by ϑ($)(x ⊗ f($)) = x ⊗ f($). The notion
of an RC-semilinear automorphism is naturally extended to RC-modules in the
derived category of sheaves of C-vector spaces on XC, and the latter construction
is extended to RΠ(RC)-modules in the same derived category.

For a left W (RC)-module D on XC, a number λ ∈ R, an element $ ∈ Π(RC),
and an open subset U ⊂ XC, we set

D($)
λ (U) = {x ∈ D($)(U)

∣∣(δ$ − λ)n(x) = 0 for some n ≥ 1} .

If λ and $ are fixed, the correspondence U 7→ D($)
λ (U) is a sheaf of C-vector

spaces on XC, denoted by D($)
λ . If λ is fixed the correspondence $ 7→ D($)

λ is a
Π(RC)-module on XC, denoted by Dλ. For a subset I ⊂ R, we set DI = ⊕λ∈IDλ.

We also denote by D̃ the Π(RC)-module D/(R◦◦ · D).

Definition 4.5.1. A distinguished W (RC)-module on XC is a left W (RC)-module
D on XC which, in the case F = R, is a provided with an RC-semilinear automor-
phism of order two ϑ, and which possesses the following properties:

(1) for every $ ∈ Π(RC), D($) is locally free of finite rank over RC;

(2) the canonical homomorphism D → D̃ induces an isomorphism of Π(RC)-

modules DQ∩[0,1)→̃D̃;

(3) the actions of σ($) and δ$ on D($) are related by the equality σ($) =
exp(−2πiδ$).

If X = F0, we call the above object just a distinguished W (RC)-module. For
example, RC is a distinguished W (RC)-module with the endomorphisms ϑ($) :
f($) 7→ f($) (for F = R). If X is arbitrary, then for any distinguished W (RC)-
module D on XC and any connected open subset U ⊂ X, the correspondence $ 7→
D($)(ρ−1(U)) is a distinguished W (RC)-module. The category of distinguished
W (RC)-modules on XC is denoted by XC(W (RC))-Dist, or just W (RC)-Dist, if
X = F0.

Remarks 4.5.2. Let D be a distinguished W (RC)-module on XC.
(i) It follows from (2) that, for any open subset U ⊂ XC, each element x ∈

D($)(U) has a unique presentation in the form
∑
n≥0 xn$

n with xn ∈ D($)
Q∩[0,1)(U).
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If r <∞, the sum is finite (and one should write $̃ instead of $). (If R = K◦, the
sum is convergent, i.e., there exists ε > 0 with

∑
n≥0 ||xn||εn < ∞, where || || is a

fixed norm on the finitely dimensional C-vector space D($)
Q∩[0,1)(U).) It follows also

that if x ∈ D($)
λ \{0} for some λ ∈ R, then x ∈ $nD($)

µ (U) for some µ ∈ I and
n ≥ 0 (in particular, λ = µ+ n).

(ii) For any entire analytic function f =
∑
n≥0 anz

n on C, there are well defined

operators f(δ$) : D($) → D($). The operator exp(−2πiδ$) in (3) is of this form.
It takes the element x from (i) to the sum

∑
n≥0 exp(−2πiδ$)(xn)$n.

(iii) For any 1 ≤ r′ < r, D′ = D/(R◦◦)r
′
D is an distinguished W (R′C)-module

on XC, where R′ = K◦r′ .

For a field k, a kΠ(RC)-quasi-unipotent module on XC is a kΠ(RC)-module
V on XC such that, for every $ ∈ Π(RC) and every connected open subset
U ⊂ XC, V($)(U) is of finite dimension over k and the action of σ($) on it is
quasi-unipotent. The category of kΠ(RC)-quasi-unipotent modules on XC will be
denoted by XC(kΠ(RC))-Qun. If X = F0, it is denoted by kΠ(RC)-Qun. It follows
from Definition 4.5.1 that there is a well defined functor

XC(W (RC))-Dist→ XC(FΠ(RC))-Qun : D 7→ D̃ϑ=1 ,

where D̃ϑ=1 is the Π(R)-submodule $ 7→ {x ∈ D̃
∣∣ϑ($)(x) = x}, if F = R, and

D̃ϑ=1 = D̃, if F = C.

Proposition 4.5.3. (i) The above functor is an equivalence of categories;
(ii) there is a functor XC(FΠ(RC))-Qun → XC(W (RC))-Dist : V 7→ V ⊗F RC

which is left adjoint and inverse to that from (i).

Recall that the exponential map N 7→ exp(N) on the set of nilpotent operators
on a finitely dimensional vector space over a field of characteristic zero gives rise
to a bijection with the set of unipotent operators, and the inverse map is given
by the logarithmic map U 7→ log(U). We extend the latter to the set of quasi-
unipotent operators by log(E) = 1

n log(En), where n is a positive integer for which
the operator En is unipotent. Suppose now that the ground field is C. Given a
quasi-unipotent operator E on a C-vector space V , let E = Es · Eu be its multi-
plicative Jordan decomposition, i.e., a unique decomposition of E as a product of
commuting semisimple and unipotent operators Es and Eu, respectively. In some
basis x1, . . . , xn of V , one has Es(xj) = e−2πiλjxj for λj ∈ Q∩ [0, 1), and we define
an operator Log(Es) by Log(Es)(xj) = −2πiλjxj for all 1 ≤ j ≤ n. This operator
does not depend on the choice of the basis, and we set Log(E) = Log(Es) + log(E).
Notice that the latter is the additive Jordan decomposition of the operator Log(E),
and one has E = exp(Log(E)). If E is an operator whose eigenvalues are imagi-
nary numbers −2πiλ with λ ∈ Q ∩ [0, 1) and E = Es + En is its additive Jordan
decomposition, then Es = Log(exp(Es)) and, therefore, E = Log(exp(E)).

Proof of Proposition 4.5.3. For simplicity, we assume that X = F0. For V ∈
FΠ(RC)-Qun, the tensor product V ⊗FRC : $ 7→ V ($)⊗FRC is provided with the
structure of a W (RC)-module as follows. First of all, if ϕ : $ → $′ is a morphism

in Π(RC), then the corresponding isomorphism V ($) ⊗F RC →̃ V ($′) ⊗F RC is

induced by the isomorphisms ϕV : V ($) → V ($′) and ϕR : RC→̃RC. Furthermore,
each nonzero element x ∈ V ($) ⊗F RC is represented in a unique way in the form
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n≥0 xn$

n for xn ∈ V ($)
C = V ($) ⊗F C (as in Remark 4.5.2(ii); if r < ∞, one

should write $̃ instead of $). Then

δ$

∑
n≥0

xn$
n

 =
∑
n≥0

(
− 1

2πi
Log(σ($))(xn) + nxn

)
$n .

If F = R, the RC-semilinear RC-module automorphism ϑ of V ⊗R RC is defined
by ϑ($)(x ⊗ f($)) = x ⊗ f($). This provides the tensor product D = V ⊗F RC

with the structure of a distinguished W (RC)-module with V ⊗F C→̃DI(D)→̃D̃ and

V →̃Dϑ=1
I(D)→̃D̃

ϑ=1. By the way, I(D) = {λj}1≤j≤n ⊂ [0, 1) for pairwise distinct

eigenvalues {exp(−2πiλj)}1≤j≤n of σ($). That the functor V 7→ V ⊗F RC is fully
faithful follows from Remark 4.5.2(i). In order to verify that this functor is left

adjoint to the functor D 7→ D̃ϑ=1, it suffices to verify that, in the case F = R,

the subspace D
($)
Q∩[0,1) is invariant under the C-semilinear operator ϑ($) for any

distinguished W (RC)-module D and any $ ∈ Π(RC). For this we notice that, by

the property (2), there is an isomorphism of Π(RC)-modules DQ∩[0,1)→̃D̃, which

have finite dimension over C and, therefore, the property (3) implies that D
($)
Q∩[0,1)

is the kernel of a sufficient large power of the operator
∏
λ∈I(σ

($) − exp(−2πiλ)),

where I = {λ ∈ Q ∩ [0, 1)
∣∣Dλ 6= 0}. This gives the required fact. �

Suppose now that F = R, and consider RC as a Π(R)-module and W (RC) as a
Π(R)-ring. Restricting the above objects to the full subcategory Π(R) of Π(RC),
we get the notions of a distinguished W (RC)-module (with the category Π(R)
instead of Π(RC)) and of a RΠ(R)-quasi-unipotent module on XC, and the similar
equivalence of the corresponding categories XC(W (RC))-Dist→̃XC(RΠ(R))-Qun.
We are going to describe the former category in terms of objects on the R-analytic
space X.

Recall that we consider R and W (R) as single π(R)-modules. Recall also that
in §1.2 we introduced the sheaf of constant analytic functions cX provided with
an automorphism of order two ϑ with cϑ=1

X = RX . We consider cX as a trivial
π(R)-field and the tensor products R⊗R cX and W (R)⊗R cX as single π(R)-rings
in the category of abelian sheaves on the underlying topological space |X| of X.
An R⊗R cX-semilinear endomorphism of an R⊗R cX -module D on X is an π(R)-
endomorphism ϑ of D such that, for every $ ∈ π(R), one has ϑ($)((a ⊗ α) · x) =
(a⊗ ϑ(α)) · ϑ($)(x) for a ∈ R and local sections α of cX and x of D.

Definition 4.5.4. A distinguished W (R)-module on X is a leftW (R)⊗RcX -module
D which is a provided with an R ⊗R cX -semilinear automorphism of order two ϑ,
and which possesses the following properties:

(1) for $ ∈ π(R), D($) is locally free of finite rank over R⊗R cX ;

(2) the canonical homomorphism D → D̃ induces an isomorphism of Π(R)-

modules DQ∩[0,1)→̃D̃;

(3) ϑ($) commutes with the operator cos(2πδ$) and anti-commutes with the
operator sin(2πδ$) on D($).

For example, if X = R0, then cX = R and, therefore, ϑ is just an R-module
automorphism of order two.
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Let D a distinguished W (RC)-module on XC (for the category Π(R)). For every
$ ∈ Π(R), the action of c($) on the sheaf D($) is compatible with its action on XC.

It follows that D($) defines an étale abelian sheaf D($)
on X, whose restriction to

XC is D($). It is easy to see that the restriction of D($)
to |X| is a distinguished

W (R)-module on X. In this way we get a functor

XC(W (RC))-Dist→ X(W (R))-Dist ,

where the right hand side is the category of distinguished W (R)-modules on X. If
X = R0, it will be denoted by W (R)-Dist.

Proposition 4.5.5. The above functor is an equivalence of categories.

Proof. For a distinguished W (R)-module E on X and $ ∈ π(R), we set

E($)
C = ρ−1(E($))⊗ρ−1(cX) CXC

.

The correspondence $ 7→ E($)
C is a π(R)-module EC, which is locally free of finite

rank over RC. We claim that EC admits a natural structure of a distinguished

W (RC)-module. Indeed, the ring W (RC) clearly acts on each E($)
C . In order to

provide EC with an action of the groupoid Π(R), it suffices to define an action

of σ($) on each E($)
C and an action of c($) on E($)

C compatible with an action of

the complex conjugation on XC. The former is defined by the formula σ($) =
exp(−2πiδ$), and the latter is induced by the corresponding action of the complex
conjugation on the sheaf CXC

. Thus, EC is a Π(R)-module and, in fact, a W (RC)-
module. Finally, the R ⊗R cX -semilinear automorphism ϑ on E and the complex
conjugation on the field C induce an RC-semilinear automorphism ϑ of EC. For
$ ∈ π(R), ϑ($) commutes with σ($) since the latter is equal to exp(−2πiδ$) =
cos(2πδ$)− i sin(2πδ$), and it commutes with c($) because the actions of ϑ and c
commute on CXC

. �

Corollary 4.5.6. In the above situation, there is a equivalence of categories

XC(RΠ(R))-Qun→̃X(W (R))-Dist . �

Example 4.5.7. Applying Corollary 4.5.6 to X = R0, we get an equivalence of
categories

RΠ(R))-Qun→̃W (R)-Dist .

An explicit construction of this functor and of its inverse is as follows. Given an
RΠ(R)-quasi-unipotent module V , the corresponding W (R)-distinguished module
is

(V ⊗R RC)c=1 : $ 7→ (V ($) ⊗R RC)c
($)=1

with c($) acting naturally on V ($) and as the complex congugation on RC. The
actions of δ$ on V ($) ⊗R RC is defined in the proof of Proposition 4.5.3 and that
of ϑ($) is induced by the complex conjugation on RC. Since ϑ($) commutes with
c($) and σ($) = exp(−2πiδ$), it follows that ϑ($) commutes with cos(2πδϕ) and

anti-commutes with sin(2πδϕ), and its action on V ($)⊗RRC induces an action on

its c($)-invariant subspace. Conversely, given a distinguished W (R)-module D, the
corresponding RΠ(R)-quasi-unipotent module is

(D̃ ⊗R C)ϑ=1 : $ 7→ (D̃($) ⊗R C)ϑ
($)=1 = (D̃($))ϑ

($)=1 ⊕ i(D̃($))ϑ
($)=−1
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with ϑ($) acting naturally on D($) and as the complex conjugation on C. The
actions of c($) and σ($) on D($) ⊗R C are defined as the complex conjugation on
C and as exp(−2πiδ$), respectively. The automorphism ϑ($) evidently commutes
with c($) and, by the condition (3) on ϑ($), it commutes with σ($). It follows that
the action of Π(R) on D($)⊗R C induces an action on the ϑ($)-invariant subspace

of D̃($)⊗RC. Notice that the above RΠ(R)-quasi-unipotent module is canonically

isomorphic to $ 7→ (D
($)
Q∩[0,1))

ϑ($)=1 ⊕ i(D($)
Q∩[0,1))

ϑ($)=−1, and the action of c($)

is the identity (resp. minus identity) on the first (resp. second) summand.

Remark 4.5.8. Let F be a subfield of R (e.g., F = R or Q), and let V be
an FΠ(RC)-quasi-unipotent module. Then for every $ ∈ Π(RC), log(σ($)) is
a nilpotent F -linear operator on V ($). By the above, the tensor product D =
V ⊗F RC has the structure of a distinguished W (RC)-module. In particular, the

operator δ$ acts on the C-vector space V
($)
C = V ($) ⊗F C, and one has δ$ =

− 1
2πiLog(σ($)). It follows that N

($)
C = − 1

2πi log(σ($)), where N
($)
C denotes the

nilpotent part from the additive Jordan decomposition of the operator δ$. Since

log(σ($)) is defined on V ($), N
($)
C is induced by a nilpotent F -linear operator

N ($) : V ($) → V ($)(−1) = V ($) ⊗Z Z(−1), where Z(−1) = 1
2πiZ ⊂ C. We

consider Z(−1) as a Π(RC)-submodule of C, and this provides V (−1) : $ 7→
V ($)(−1) with the structure of a Π(RC)-module. We claim that, for any morphism

ϕ : $ → $′ in Π(RC), one has ϕV (−1) ◦ N ($) = N ($′) ◦ ϕV . Indeed, it suffices

to show that ϕVC
◦ N ($)

C = N
($′)
C ◦ ϕVC

, and the latter follows from the equality

ϕD ◦ δ$ = δ$′ ◦ ϕD. Thus, the operators N ($) define a nilpotent morphism of
FΠ(RC)-quasi-unipotent modules N : V → V (−1).

5. Distinguished log complex analytic spaces

5.1. Definition and properties. In this section, R is either K◦r for 1 ≤ r < ∞,
or K◦ = OF,0 (in the latter case we set r =∞). The ring R gives rise to a log space
ptR, which is the log point ptK◦r , if r <∞, and the log germ (F, 0), if r =∞. We
also consider both log spaces as one point spaces provided with the log structure
defined by the homomorphism of monoids MR = R\{0} → R.

Given integers m, e1, . . . , em ≥ 1 and an element $ ∈ Π(RC), equal to z for
r =∞, we set

Ae1,...,em = RC[T1, . . . , Tm]/(T e11 · . . . · T emm − $̃) .

The monoid freely generated by the coordinate functions T1, . . . , Tm defines an fs
log structure on the scheme Y = Spec(Ae1,...,em) and a log smooth morphism of log
spaces Yh → ptRC

.

Definition 5.1.1. (i) r < ∞: A log F-analytic space X over ptR is said to be
distinguished if every point x ∈ XC has an open neighborhood U which admits a
strict open immersion over ptRC

in the log space Z = Spec(B)h, where

B = Ae1,...,em [Tm+1, . . . , Tn]/(T re11 · . . . · T reµµ ), 1 ≤ µ ≤ m ≤ n,

and the log structure on Z is generated by that of Y as above.
(ii) r = ∞: A log germ (Y,X) of an F-analytic space over (F, 0) is said to be

distinguished if each point x ∈ XC has an open neighborhood V in YC that admits
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a strict open immersion over (C, 0) in the log space Z = Spec(B)h, where

B = Ae1,...,em [Tm+1, . . . , Tn]

such that XC ∩ V is the preimage of the closed analytic subspace defined by the
equation T1 · . . . · Tµ = 0 with 1 ≤ µ ≤ m ≤ n.

Notice that, for any point x ∈ XC one can find a strict open immersion as in
Definition 5.1.1 such that all of the coordinate functions Ti are equal to zero at x.

Examples 5.1.2. (i) Let (Y,X) be a distinguished log germ over (F, 0). Given
1 ≤ r < ∞, let Xr be the closed analytic subspace of Y whose intersection with
the chart V as in Definition 5.1.1(ii) is defined by the ideal generated by zr and
T re11 · . . . · T reµµ . The subspace Xr provided with the induced log structure is a
distinguished log analytic space over ptK◦r . The support of the closed analytic
subspace Xr in Y coincides with X. Given a generator $ of K◦◦, one can consider
Xr as a distinguished log analytic space over ptK◦r with respect to the isomorphism

K̂◦→̃K◦ : z 7→ $. Notice that any distinguished log analytic space over ptK◦r is
étale locally of the form Xr for any generator $ of K◦◦ and a distinguished log
germ (Y,X) over (F, 0).

(ii) Let X be a distinguished formal scheme over K◦. Then for every 1 ≤ r <∞,

Xhsr is a distinguished log F-analytic space over ptK◦r . Indeed, we may assume that

F = C. Let x be a closed point of Xs, and let X̂/Y → X be an étale neighborhood
of x such that X is a distinguished scheme over K◦ and Y the union of some of the
irreducible components of Xs. Let Jr be the coherent sheaf of ideals on X such that,
for every open subset U ⊂ X , Jr(U) is generated by the elements f ∈ O(U) with
ordZ(f) ≥ r · ordZ(z) for each irreducible component Z of U ∩Y, where ordZ(f) is
the order of f at the generic point of Z. If Yr the closed subscheme of X defined by
the ideal Jr and provided with the induced log structure, then Yhr is a distinguished
log analytic space over ptK◦r . The above morphism gives rise to an étale morphism

Yhr → Xhsr , which induces an isomorphism from an open neighborhood of a point

x′ ∈ Y over x in Yhr and an open neighborhood of x in Xhsr .
(iii) Let X be a distinguished log F-analytic space over R. Given 1 ≤ r′ < r, let

Xr′ denote the closed analytic subspace which is étale locally defined by the ideal

generated by $̃l and T r
′e1

1 · . . . · T r
′eµ

µ on each chart V as in Definition 5.1.1. Then
Xr′ is a distinguished log F-analytic space over ptK◦

r′
, and canonical morphism

Xr′ → X is an exact closed immersion of log analytic spaces.

In this section we study distinguished log F-analytic spaces over ptR from Def-
inition 5.1.1(i) and log germs over (F, 0) from Definition 5.1.1(ii). The results
obtained have similar formulation but slighly different interpretation. In order to
consider them simulteneously, in the case r =∞ we refer to the latter germ by X
essentially viewing it as a topological space provided with the sheaf of local rings
OX = i−1(OY (X)) and the log structure MX = i−1(MY (X))→ OX , where i is the
map X → Y (X). Other sheaves on X considered here are always induced from

Y (X) (as the sheaves OX and MX). We also denote by X log
C and X log the preimage

of X in Y (X)log
C and Y (X)log, respectively. Notice that, for every 1 ≤ r <∞, there

is a canonical exact closed immersion of log spaces Xr → X, which induces a home-
omorphism between the underlying topological spaces as well as homeomorphisms

X log
C,r→̃X

log
C and X log

r →̃X log.



70 VLADIMIR G. BERKOVICH

Thus, we are back to the general situation when 1 ≤ r ≤ ∞. We study the

maps of Π(RC)-spaces ν : X log = X log ×ptR ptlog
R → X log

C , τ : X log
C → XC and

τ = τ ◦ ν : X log → XC. We also denote by τ ($), $ ∈ Π(RC), the restriction of τ
to X($).

Lemma 5.1.3. Each point x ∈ XC has a fundamental system of open neighbor-
hoods U such that there are compatible strong deformation retractions of U to x, of
τ−1(U) to τ−1(x), and of τ−1(U) to τ−1(x).

Proof. By the remark in Example 5.1.2(i), we may assume that we are given a
distinguished log germ (Y,X) over (C, 0), and it suffices to show that each point
x ∈ X has a fundamental system of open neighborhoods U of x in Y which preserves
the intersection U ∩ X and lifts to strong deformation retractions of τ−1(U) to
τ−1(x) and of τ−1(U) to τ−1(x), where τ and τ are the maps Y log → Y and

Y log → Y , respectively. Thus, we may assume that Y is the affine space Cn
provided with the log structure generated by the coordinate functions T1, . . . , Tm,
1 ≤ m ≤ n, as in Definition 5.1.1(ii), X is the union of µ hyperplanes defined by
the equations Ti = 0 for 1 ≤ i ≤ µ ≤ m, and x is the zero point in Cn.

There is a homeomorphism (Rm
+ × (S1)m)×Cn−m→̃(Cn)log, and the projection

from the latter to Cn is as follows

(Cn)log → Cn : ((r, a), c) 7→ (ra, c) ,

where r = (r1, . . . , rm), a = (a1, . . . , am), and c = (cm+1, . . . , cn). One also has

(Cn)log = {(((r, a), c), b) ∈ (Cn)log × iR
∣∣ m∏
j=1

a
ej
j = eb} .

If U is an open neighborhood of zero in Cn with the property that, for each point
y ∈ U , the interval {ty

∣∣t ∈ [0, 1]} lies in U , then the map ΦU : U × [0, 1] → U
that takes a pair (y, t) to the point (1 − t)y is a strong deformation retraction of
U to the zero point 0, and this map ΦU lifts to deformation retractions of τ−1(U)
to τ−1(0) : (((r, a), c), t) 7→ (((1− t)r, a), (1− t)c) and of τ−1(U) to τ−1(0). Notice
also that ΦU preserves the intersection of U with each of the hyperplanes in X. �

Corollary 5.1.4. Let (Y,X) be a distinguished log germ over (F, 0). Then for any
Π(K◦C)-module Λ and every point x ∈ XC, there are canonical isomorphisms

RqΘ(ΛY (X)η )x→̃Hq(τ−1(x),Λ) and RqΨη(ΛY (X)η )x→̃Hq(τ−1(x),Λ) .

Proof. By Theorem 2.5.2, the left hand sides are the inductive limits of the groups
Hq(τ−1(U),Λ) and Hq(τ−1(U),Λ), and they coincide with the right hand sides
since τ−1(x) and τ−1(x) are strong deformation retractions of τ−1(U) and τ−1(U),
respectively, for sufficiently small U ’s. �

Corollary 5.1.5. Let Z be a closed analytic subspace of X provided with the induced
log structure with respect to which it is also distinguished over ptR. Then for any
Π(RC)-module Λ, there is a canonical isomorphism

Rτ∗(ΛXlog)
∣∣
Z
→̃RτZ∗(ΛZlog) . �

Recall (see Example 4.3.4) that π0,X denotes the Π(R)-cosheaf U 7→ π0(τ−1(U)) =

π0(U log) on XC. The purpose of the following two subsection is to describe it in
terms of the logarithmic structure on X.
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5.2. Description of the cosheaf π0,X . Let Mgr
X be the étale sheaf of abelian

groups associated to the étale sheaf of monoids MX . It contains the sheaf O∗X ,

and we set M
gr

X = Mgr
X /O∗X . For example, M

gr

R is canonically isomorphic to the

constant sheaf associated to Z. Let M
(tors)

X denote the torsion subsheaf of M
gr

X .
Finally, we set

MX/R = Coker(M
gr

R →M
gr

X )

and denote by M
(tors)

X/R the torsion subsheaf of MX/R.

Proposition 5.2.1. For every étale morphism U → XC with nonempty connected
U , the following is true:

(i) the group M
(tors)

X/R (U) is finite cyclic (of order eU );

(ii) given a covering of U by nonempty connected open subsets {Ui}i∈I , one has
eU = g.c.d.(eUi)i∈I ;

(iii) for every étale morphism V → U with nonempty connected V , the canonical

homomorphism M
(tors)

X/R (U)→M
(tors)

X/R (V ) is injective;

(iv) there is a unique generator mU of M
(tors)

X/R (U) with the property that its
restriction to a sufficiently small connected open neighborhood V of every
point of U lifts to an element m ∈MX(V ) such that meU is an element of

MR whose image in M
gr

R →̃Z is one.

Proof. We may assume that F = C.

Step 1. By Definition 5.1.1, every point x ∈ X has a connected open neighbor-
hood U that admits a strict open immersion in a log space of the form from that
definition (with a fixed $ ∈ Π(R)) and such that x is its zero point. (We call such
U a special open neighborhood of x.) If P is the free monoid generated by elements
v1, . . . , vm, the log structure on U is defined by the chart P → O(U) : vi 7→ Ti.
Let P/u denote the quotient of P gr by the subgroup generated by the element

u = ve11 · . . . · vemm . Since P ∗ = {1}, one has P→̃MX,x and P/u→̃MX/R,x, and
these isomorphisms go through a homomorphism P → MX(U). In particular,

P
(tors)
/u →̃M (tors)

X/R,x, where P
(tors)
/u is the torsion subgroup of P/u. The group P

(tors)
/u

is cyclic of order eU = g.c.d.(e1, . . . , em) generated by the image of the element

v = v
e′1
1 · . . . · v

e′m
m , where e′i = ei

eU
.

Step 2. For any point x′ ∈ U , the induced homomorphism P
(tors)
/u →M

(tors)

X/R,x′ is

injective. Indeed, suppose that for 1 ≤ i ≤ m the coordinate function Ti is zero at
x′ for only 1 ≤ i ≤ ν or γ + 1 ≤ i ≤ m, where 1 ≤ ν ≤ µ ≤ γ ≤ m. If P ′′ is the
localization of P with respect to the elements vν+1, . . . , vγ , then P ′′/P ′′∗→̃MX,x′ .
The quotient P ′ = P ′′/P ′′∗ is isomorphic to the free monoid generated by the
elements v1, . . . , vν , vγ+1, . . . , vm, and the image of u in P ′ is the element u′ =
ve11 · . . . · veνν · v

eγ+1

γ+1 · . . . · vemm . This implies the claim. This also implies the following
facts:

(1) the group M
(tors)

X/R,x′ is of order g.c.d.(e1, . . . , eν , eγ+1, . . . , em), and one has

P
′(tors)
/u′ →̃M (tors)

X/R,x′ ;
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(2) for any special open neighborhood V of x′ in U at which the element

vν+1, . . . , vγ are invertible, one has P
′(tors)
/u′ →̃M (tors)

X/R (V ) and the homo-

morphism M
(tors)

X/R (U)→M
(tors)

X/R (V ) is injective.

Step 3. The canonical homomorphism P
(tors)
/u → M

(tors)

X/R (U) is a bijection. In-

deed, for a special open subset U ′ ⊂ U , as at the end of Step 2, we set G(U ′) =
P ′(tors). It suffices to show that the value of the sheaf, associated with the presheaf
G, at U coincides with G(U). Suppose we are given a covering {Ui}i∈I of U by
nonempty special open subsets. By Step 2, all of the homomorphisms G(U) →
G(Ui) are injective and, if x ∈ Ui0 , then G(U)→̃G(Ui0). Let {gi}i∈I be a system
of elements gi ∈ G(Ui) with gi

∣∣
Ui∩Uj

= gj
∣∣
Ui∩Uj

for all i, j ∈ I. We claim that for

the element g ∈ G(U) with g
∣∣
Ui0

= gi0 , one has g
∣∣
Ui

= gi for all i ∈ I. Indeed,

if Ui0 ∩ Ui 6=, take a nonempty special open subset V from the intersection. Then
g
∣∣
V

= gi0
∣∣
V

= gi
∣∣
V

and, therefore, (g
∣∣
Ui
− gi)

∣∣
V

= 0. This implies that g
∣∣
Ui

= gi.

If i ∈ I is arbitrary, we can find a finite sequence i1, . . . , ip = i with Uiq ∩Uiq+1 6= ∅
for all 0 ≤ q ≤ p − 1 and, by induction on q, we get gUi = gi. It follows that the

group M
(tors)

X/R (U) is cyclic of order eU and it has a unique generator mU which lifts

to an element m ∈ MX(U) such that meU is an element of MR whose image in

M
gr

R →̃Z is one.

Step 4. Let now U be a nonempty connected C-analytic space étale over X. We
call an open subset of U special if it maps isomorphically onto a special open subset

of X. We claim that the group M
(tors)

X/R (U) is finite cyclic, and the support of any of

its nontrivial elements coincides with U . Indeed, assume that the support Supp(g)

of a nontrivial element g ∈ M
(tors)

X/R (U) is smaller than U . Let x be a from the

topological boundary of Supp(g) in U , and let U ′ be a special open neighborhood

of x in U . Since g
∣∣
U ′
6= 1, Steps 2 and 3 imply that the image of g in M

(tors)

U/R,x′

is nontrivial for every point x′ ∈ U ′, i.e., U ′ ⊂ Supp(g), which contradicts the

assumption. Thus, Supp(g) = U , the homomorphism M
(tors)

X/R (U)→M
(tors)

X/R (U ′) is

injective, and the claim follows. This easily implies the statements (i) and (iii).

Step 5. The statements (ii) and (iv) are true. Indeed, take a covering {Ui}i∈I
of U by nonempty special open subsets. It suffices to show that

(1) the group M
(tors)

X/R (U) is of order eU = g.c.d.(eUi)i∈I ;

(2) there is a unique generator mU of M
(tors)

X/R (U) whose restriction to each Ui

coincides with mki
Ui

for ki =
eUi
eU

.

First of all, since all of the homomorphisms M
(tors)

X/R (U)→M
(tors)

X/R (Ui) are injective,

it follows that the order of M
(tors)

X/R (U) divides eU . Furthermore, if V is a nonempty

special open subset of Ui ∩ Uj , the restrictions of the elements mki
Ui

and m
kj
Uj

to V

coincide since the eU -th powers of them are elements whose images in M
gr

R →̃Z are

one. This means that the elements mki
Ui

are compatible on intersections Ui ∩ Uj
and, therefore, there exists a unique element mU ∈ M

(tors)

X/R (U) of order eU with

mU

∣∣
Ui

= mki
Ui

for all i ∈ I. This implies the required statements (1) and (2). �
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For a nonempty connected open subset U ⊂ XC, let kU be the maximal positive
integer with the property that there exists m ∈MX(U) such that mkU lies in MRC

and its image in M
gr

RC
→̃Z is one. It is clear that kU is a divisor of eU , and if U is

sufficiently small, then kU = eU . Furthermore, for $ ∈ Π(RC) we set

Υ($)(U) = {m ∈MX(U)
∣∣mkU = $} .

The set Υ($)(U) is a principal homogeneous space for the group µkU of kU -th roots
of one (acting by multiplication). Each β-morphism ϕ : $ → $′ of first (resp.
second) type gives rise to a bijective map

Υ($′)(U)→ Υ($)(U) : m′ 7→ exp

(
β

kU

)
m′

(resp. Υ($′)(U)→ Υ($)(c(U)) : m′ 7→ exp

(
β

kU

)
m′c) .

For example, the morphism σ($) takes each m ∈ Υ($)(U) to the element e
2πi
kU m.

This makes the correspondence $ 7→ Υ($)(U) a finite Π(RC)-space, which is
denoted by Υ(U). Finally, for an element m ∈ Υ($)(U), we set (see Example
4.2.2(ii))

U ($)(m) = {((x, hx), b) ∈ U ($)
∣∣hx(m) = e

b
kU } .

Proposition 5.2.2. The correspondence m 7→ U ($)(m) gives rise to an isomor-

phism of finite Π(RC)-spaces Υ(U)→̃π0(U log).

Proof. Step 1. For every element m ∈ Υ($)(U), the open and closed set U ($)(m)
is nonempty. Indeed, let ((x, hx), b) ∈ U ($). Since hx($) = eb, it follows that

for every m ∈ Υ($)(U) one has hx(m) = ζe
b
kU for a kU -root of one ζ. Moreover,

multiplication by kU -roots of one acts transitively on the set Υ($)(U). This implies
the claim. It follows that kU divides the number n = |π0(U ($))|.

Step 2. The number n divides kU . Indeed, the element $ gives rise to homeomor-

phisms ptlog
RC
→̃S1 : h 7→ h($) and pt

($)
R →̃iR : (h, b) 7→ b. The exponential map

pt
($)
R = iR→ ptlog

RC
= S1 : b 7→ eb is the composition of the map iR→ S1 : b 7→ e

b
n

and the map S1 → S1 : a 7→ an. Since |π0(U ($))| = n, the induced map

U ($) → Y = U log ×S1 S1

gives rise to a bijection π0(U ($))→̃π0(Y ). It follows that |π0(Y )| = n and, therefore,
the projection Y → U log induces a homeomorphism of each connected component
of Y onto U log. This implies that this projection has a section U log → Y : (x, hx) 7→
((x, hx), f(x, hx)) for a continuous map f : U log → S1 with hx($) = f(x, hx)n.

Furthermore, we can find a covering {Ui}i∈I of U by connected open subsets such

that all kUi = eUi = |π0(U log
i )|. The latter implies that the number n divides all

of the numbers eUi and, in particular, n divides eU . Take elements mi ∈ Υ($)(Ui).

Then for every point x ∈ Ui, one has hx(mi)
eUi
n = ξif(x, hx) for a n-th root

of one ξi. Since U log
i is connected, it does not depend on the point x. We set

m′i = ξ−1
i m

eUi
n
i . Then for every pair i, j ∈ I with Ui ∩ Uj 6= ∅, one has hx(m′i) =

hx(m′j) for all points (x, hx) ∈ (Ui ∩ Uj)log. On the other hand
m′i
m′j

is an element

of Mgr(Ui ∩ Uj) whose n-th power is one. This implies that its restriction to each
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connected component W of Ui ∩ Uj is a n-root of one ζ, i.e., m′i
∣∣
W

= ζm′j
∣∣
W

and, therefore, hx(m′i) = ζhx(m′j) for all points (x, hx) ∈ W log. This implies that

ζ = 1, i.e., m′i
∣∣
Ui∩Uj

= m′j
∣∣
Ui∩Uj

. Thus, there exists an element m ∈ MX(U) with

m
∣∣
Ui

= m′i for all i ∈ I, and one has mn = $. The claim follows, and it implies that

the correspondence m 7→ U ($)(m) gives rise to a bijection Υ($)(U)→̃π0(U ($)).

Step 3. The statement of the proposition is true. Indeed, let ϕ : $ → $′ be a β-
morphism of first (resp. second) type. Then the induced map Υ($′)(U)→ Υ($)(U)

(resp. Υ($′)(U)→ Υ($)(c(U))) takes an element m′ to the element m = exp( β
kU

)m′

(resp. exp( β
kU

)m′c), and a point ((x, hx), b) ∈ U ($′) to the point ((x, hx), b +

Im(β(0))i) ∈ U ($) (resp. ((c(x), hcc(x)),−b − Im(β(0))i) ∈ c(U)($)). If the former

point lies in U ($′)(m′), then hx(m′) = e
b
kU . It follows that

hx(m) = hx(exp(
β

kU
)m′) = e

Im(β(0))i
kU hx(m′) = e

b+Im(β(0))i
kU

(resp. hcc(x)(m) = hcc(x)(exp(
β

kU
)m′c) = e

−Im(β(0))i
kU hx(m′) = e

−b−Im(β(0))i
kU )

and, therefore, the latter point lies in U ($)(m) (resp. c(U)($)(m)). This implies
the claim. �

Proposition 5.2.2 implies that, for any pair of nonempty connected open subsets
U ⊂ V , kV divides kU . We can therefore define a map

Υ($)(U)→ Υ($)(V ) : m 7→ m
kU
kV .

(There exists a unique element of Υ($)(V ) whose restriction to U is m
kU
kV , and

it is denoted here in the same way.) This map is compatible with the canonical
map π0(U ($)) → π0(V ($)). Thus, if we extend the definition of to arbitrary open
subsets U ⊂ XC by Υ($)(U) =

∐
i∈π0(U) Υ($)(Ui), where {Ui}i∈π0(U) is the set of

connected components of U , then the correspondence U 7→ Υ($)(U) is a cosheaf of

sets, denoted by Υ
($)
X , and the family of them is a Π(RC)-cosheaf of sets on the

C-analytic Π(RC)-space XC, denoted by ΥX .

Corollary 5.2.3. The above construction gives rise to an isomorphism of Π(RC)-
cosheaves of sets on the C-analytic Π(RC)-space XC

ΥX→̃π0,X . �

Remarks 5.2.4. (i) Here is an example of a connected distinguished log C-analytic

space X over the log point pt whose space X log is also connected (i.e., kX = 1)
but eX = 3. Consider the affine algebraic curves Xi = Spec(Ai), 0 ≤ i ≤ 2, where

Ai is the quotient of the ring of polynomials in two variables C
[
T0

Ti
, T1

Ti
, T2

Ti

]
by

the ideal generated by the element
(
T0

Ti
· T1

Ti
· T2

Ti

)3

, and provide Xi with the log

structure generated by the variables. Furthermore, let ζ be a nontrivial cubic root
of one and, for 0 ≤ i 6= j ≤ 2, let Xij = Spec(Aij) denote the open subset of

Xi where the function
Tj
Ti

is invertible. We construct a connected log algebraic

curve X by gluing the log curves Xi’s along the following isomorphisms A10→̃A01 :
(T0

T1
, T2

T1
) 7→ (ζ T1

T0
, T2

T0
), A20→̃A02 : (T0

T2
, T1

T2
) 7→ (ζ T2

T0
, T1

T0
), and A21→̃A12 : (T0

T2
, T1

T2
) 7→
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(T0

T1
, ζ T2

T1
). There is a morphism of log analytic spaces X = X h → pt that takes a

fixed generating element α for pt to the element
(
T0

Ti
· T1

Ti
· T2

Ti

)3

in M(Xi). Then

M
(tors)

(X) is a cyclic group of order three generated by the image of the element T0

Ti
·

T1

Ti
· T2

Ti
, and the corresponding cocycle {ζij}0≤i,j≤2 on the open covering {X hi }0≤i≤2

of X is defined by the following values for i < j: ζ01 = ζ02 = ζ12 = ζ2. This cocycle
is not a coboundary because the equality ζ01 · ζ12 = ζ02 does not hold.

(ii) It follows from the proof of Proposition 5.2.1 and the definition of the sets
Υ($)(U) that, if for any étale morphism U → XC with connected U that admits a
strict étale morphism in a log space of the form from Definition 5.1.1, then kU = eU
and, for any étale morphism V → U with connected V , one has Υ($)(V )→̃Υ($)(U).

5.3. Description of the sheaves Rqτ∗(ΛXlog). Recall that, by [KN99, Lemma
(1.5)], for any abelian sheaf F on XC and any q ≥ 0, there is a canonical isomor-
phism

Rqτ∗(τ
−1(F ))→̃F (−q)⊗Z

q∧
M

gr

XC
,

where F (q) = F ⊗Z Z(q)XC
. This is automatically extended to abelian Π(RC)-

sheaves F on the Π(RC)-space and gives an isomorphism of Π(RC)-sheaves. (For
such F , one should define F (q) = F ⊗Z Z(q)XC

.) The following theorem is an

analog of the above for the map of Π(RC)-spaces τ : X log → X log
C .

For a Π(RC)-sheaf F on the Π(RC)-space XC, let FΥ denote the Π(RC)-sheaf
whose set of sections over an open subset U ⊂ XC is the Π(RC)-set of maps
Υ(U) → F (U). Of course, if F is an abelian Π(RC)-sheaf, then so is FΥ. By
Corollary 5.2.3, for any Π(RC)-module Λ there is a canonical isomorphism of abelian

Π(RC)-sheaves ΛΥ
XC
→̃τ∗(ΛXlog) on the Π(RC)-space XC. We now set

M
(nont)

X/R = MX/R/M
(tors)

X/R .

Theorem 5.3.1. For every locally constant Π(RC)-sheaf F on the Π(RC)-space
XC and every q ≥ 0, there is an isomorphism of Π(RC)-sheaves

Rqτ∗(τ
−1(F ))→̃FΥ(−q)⊗Z

q∧
M

(nont)

XC/RC
.

We use a construction from the proof of [KN99], Lemma (1.5)]. For a topolog-
ical Π(RC)-space T , let RT and ST denote the abelian Π(RC)-sheaves of contin-
uous functions on T with values in the Π(RC)-groups iR and S1, respectively
(see Example 4.3.2(iii)). Notice that the exponential map b 7→ exp(b) repre-
sents RT as an extension of ST by the sheaf Z(1)T . We now apply this to the

Π(RC)-space X log. The homomorphism of sheaves τ−1(Mgr
XC

) → SXlog
C

that takes

m ∈ Mgr
XC

to the function (x, hx) 7→ hx(m) induces a homomorphism of Π(RC)-

sheaves τ−1(Mgr
XC

) → S
Xlog which gives rise to an extension L

Xlog of τ−1(Mgr
X )

by Z(1)
Xlog . The restriction of the above homomorphism to the Π(RC)-subsheaf

τ−1(O∗XC
) is the homomorphism f 7→ f

|f | from the latter to S
Xlog , and it lifts to the

homomorphism τ−1(OXC
) → R

Xlog : f 7→ Im(f)i. Thus, we get a commutative
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diagram of homomorphisms of abelian Π(RC)-sheaves with exact rows

0 // Z(1)
Xlog

// R
Xlog

exp // S
Xlog

// 0

0 // Z(1)
Xlog

// L
Xlog

exp //

OO

τ−1(Mgr
XC

) //

OO

0

0 // Z(1)
Xlog

// τ−1(OXC
)

exp //

OO

τ−1(O∗XC
) //

OO

0

The above construction is a natural extension of that from [KN99, (1.4)] for the

space X log
C and, in fact, there is a canonical isomorphism ν−1(LXlog

C
)→̃L

Xlog , where

ν is the topological covering map X log → X log
C and LXlog

C
is the abelian sheaf on

X log
C from [KN99] and denoted there just by L.

Examples 5.3.2. (i) Consider the log space ptR. For every $ ∈ Π(RC), the

homomorphism of groups of global sections L($)
R = L(pt

($)
R )→Mgr

RC
is surjective.

Indeed, the pair consisting of the function pt
($)
R → iR : (h, b) 7→ b in R(pt

($)
R )

and the element $ in τ ($)−1(Mgr
RC

)(pt
($)
R ) defines an element log($) ∈ L($)

R with
exp(log($)) = $, and the surjectivity claim follows from that of the exponential
map exp : RC → R∗C. Furthermore, for a β-morphism $ → $′ (of any type), the

corresponding map L($)
R → L($′)

R takes log($) to log($′) + β. The lift of log($)

to L(X($)) will be denoted in the same way by log($) .
(ii) For a connected open subset U ⊂ XC and elements $ ∈ Π(RC) and m ∈

Υ($)(U), the pair consisting of the function U ($)(m) → iR : ((x, hx), b) 7→ b
kU

in

R(U ($)(m)) and the element m in τ ($)−1(Mgr
XC

)(U ($)(m)) defines an element of

L(U ($)(m)), denoted by log(m), with exp(log(m)) = m. Notice that the restriction
of log($) from (i) to U ($)(m) coincides with kU ·log(m). For a β-morphism $ → $′

(of any type), the corresponding map L(U ($)) → L(U ($′)) (resp. L(U ($)) →
L(c(U)($′))) takes log(m) to log(m′) + β

kU
, where m′ is the preimage of m with

respect to the corresponding map Υ($′)(U) → Υ($)(U) (resp. Υ($′)(c(U)) →
Υ($)(U)).

Proof of Theorem 5.3.1. First of all, if q = 0, there is a canonical isomorphism
τ∗(τ

−1(F ))→̃FΥ (it was already mentioned in Example 4.3.4).
Applying the left exact functor τ∗ to the second row of the above diagram, we

get a homomorphism ψ : ZΥ
XC
⊗Z M

gr
XC
→ R1τ∗(Z(1)

Xlog). Since the exponential
map exp : OXC

→ O∗XC
is surjective, ψ goes through a homomorphism from

ZΥ
XC
⊗Z M

gr

XC
. Furthermore, since exp(log($)) = $ for all $ ∈ Π(RC), ψ is

trivial on the image of the homomorphism M
gr

RC
→ M

gr

XC
, i.e., it goes through a

homomorphism from ZΥ
XC
⊗ZMXC/RC

. Finally, if U is a sufficiently small nonempty
connected open subset of XC, then kU = eU and, therefore, the image of an element

m ∈ Υ($)(U) in M
gr

(U) generates the subgroup M
(tors)

(U). Since exp(log(m)) =

m, it follows that ψ goes through a homomorphism from ZΥ
XC
⊗Z M

(nont)

XC/RC
.
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Thus, ψ gives rise to a homomorphism

ZΥ
XC

(−1)⊗Z M
(nont)

XC/RC
→ R1τ∗(ZXlog) .

Using the cup product, we get a homomorphism

FΥ(−q)⊗Z M
(nont)

XC/RC
→ Rqτ∗(τ

−1(F )) .

Since F is locally constant, Lemma 5.1.3 implies that, in order to show that this is
an isomorphism, it suffices to check it on stalks of both sheaves. This is trivial. �

The following statement is an analog of [SGA7, Exp. 1, 3.3] (see also [Nak98,
3.5]).

Corollary 5.3.3. Given a morphism of germs (B, b) → (F, 0), let Y be a scheme
of finite type over OB,b such that Y is regular, flat over OF,0, the support of the

special fiber Ỹ is the divisor with normal crossings, and that of the closed fiber Ys
is a union of some of the irreducible components of Ỹ. We provide Yhs with the
log structure MYhs induced by the canonical log structure on Y. Then there are

canonical isomorphisms of sheaves of Π(KC)-modules on Yhs

RqΨη(ZYhη )→̃Z(−q)Υ
Yhs
⊗Z

q∧
M

(nont)

Yhs /K◦C,1
.

Proof. By Corollary 3.3.3, the log structure MYhs coincides with that induced by

the canonical log structure on the distinguished formal scheme Ŷ. It follows that
the log space Yhs is distinguished and, therefore, the required fact follows from
Theorems 2.5.2 and 5.3.1. �

5.4. A distinguished W (RC)-module CXC
on XC. Let U be a nonempty con-

nected open subset of XC. For $ ∈ Π(RC), let t
($)
U be the image in O(U) of an

element m
($)
U ∈ Υ($)(U) (the latter is defined up to a multiplication by kU -th root

of one). Then (t
($)
U )kU = $̃. For λ = j

kU
with 0 ≤ j < rkU , let C($)

λ (U) denote the

C-vector subspace of O(U) generated by the element (t
($)
U )j . If a rational number

0 ≤ λ < r is not of the form j
kU

with 0 ≤ j < rkU , we set C($)
λ (U) = 0. By Propo-

sition 5.2.1, for any bigger connected open subset V the restriction homomorphism

O(V ) → O(U) induces an isomorphism C($)
λ (V )→̃C($)

λ (U). It follows that the

spaces C($)
λ (U) define a sheaf of C-vector spaces of dimension at most one C($)

XC,λ
.

Given a β-morphism ϕ : $ → $′ in Π(RC) and a nonempty connected open subset

U ⊂ XC, if ϕ is of first type, we define an isomorphism ϕC : C($)
λ (U)→̃C($′)

λ (U) by

ϕC(a(t
($)
U )j) = a exp(−λβ)(t

($)
U )j for a ∈ C, and if ϕ is of second type, we define an

isomorphism ϕC : C($)
λ (U)→̃C($′)

λ (c(U)) by ϕC(a(t
($)
U )j) = a exp(−λβ)((t

($)
U )c)j for

a ∈ C. This provides each CXC,λ with the structure of a Π(RC)-sheaf. If F = R and

ϕ = c($) for $ ∈ Π(R), then β = 0 and, therefore, the action of c($) coincides with
the complex conjugation f 7→ f c. Notice that the set V = {x ∈ XC

∣∣CXC,λ,x 6= 0}
is Π(RC)-invariant Zariski open subset of XC, and the restriction of CXC,λ to U is
a locally constant abelian Π(RC)-sheaf (to which Theorem 5.3.1 can be applied).

The direct sum C(U) = ⊕λC($)
λ (U) is a local RC-algebra, whose maximal ideal

is generated by the element t
($)
U . It does not depend on the choice of the element

$, and it can be defined as the R-algebra generated by the images in O(U) of the
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elements m ∈M(U) with the property that mk ∈ Π(RC). Furthermore, it is a free
module of rank kU over RC, and the C(U)’s define a sheaf of modules CXC

over RC

on XC.

Theorem 5.4.1. (i) The Π(RC)-sheaf CXC
has the structure of a single distin-

guished W (RC)-module on XC;
(ii) there is a canonical isomorphism of distinguished W (RC)-modules on XC

CXC
→̃τ∗(FXlog)⊗F RC .

Notice that τ∗(FXlog) = FΥ
XC

is an FΠ(RC)-quasi-unipotent module on XC and,
therefore, Proposition 4.5.3 implies that the right hand side in (ii) is a distinguished
W (RC)-module on XC.

Proof. (i) For $ ∈ Π(RC) and a connected open subset U ⊂ XC, the C-linear

operators δ$ : C($)
λ (U) → C($)

λ (U), defined by δ$((t
($)
U )j) = λ(t

($)
U )j , where

j = kUλ, provide C($)
λ (U) and C(U) with the structure of a W (RC)-module.

Moreover, there is a canonical isomorphism of Π(RC)-modules C(U)I→̃C̃(U) for

I = {0, 1
kU
, . . . , kU−1

kU
}. One also has σ($)((t

($)
U )j) = exp(−2πiλ)(t

($)
U )j , and this

coincides with exp(−2πiδ$)((t
($)
U )j). Thus, if F = C, CXC

is a single distinguished
W (RC)-module on XC.

Suppose now that F = R. For $ ∈ Π(RC), we define an automorphism ϑ($)

of C(U) as follows. Each element of C(U) has the form α =
∑k−1
j=0 fj($)tj with

fj($) ∈ RC, where k = kU and t = t
($)
U , and we set

ϑ($)(α) = f0($) +

k−1∑
j=1

fk−j($)tj .

It is easy to verify that, for any morphism ϕ : $ → $′ in Π(RC) as above, one

has ϕC ◦ ϑ($) = ϑ($′) ◦ ϕC . This means that ϑ is an RC-semilinear automorphism
of CXC

. It follows that CXC
is a distinguished W (RC)-module on XC in the case

F = R as well.
(ii) Let U be a connected open subset of XC, and let $ ∈ Π(RC). Given an

element m = m
($)
U ∈ Υ($)(U), a basis of the free RC-module C(U) is formed by

the elements tjm for 0 ≤ j ≤ kU − 1, where tm is the image of m in C(U). We define
a homomorphism of free RC-modules of the same rank

µ
($)
U,m : C(U)→ Hom(Υ($)(U),F)⊗F RC = Hom(Υ($)(U), RC)

by µ
($)
U,m(tjm)(m′) =

(
m
m′

)j
, where for elements m,m′ ∈ Υ($)(U), m

m′ denotes the

kU -th root of one ζ such that m = ζm′. If m′′ ∈ Υ($)(U), then tm′′ =
(
m′′

m

)
tm

and, therefore, one has

µ
($)
U,m(tjm′′)(m

′) =

(
m′′

m

)j
µ

($)
U,m(tjm)(m′) =

(
m′′

m′

)j
= µ

($)
U,m′′(t

j
m′′)(m

′) .

This means that the homomorphism µ
($)
U,m does not depend on the choice of m. We

can therefore denote it by µ
($)
U . Here is the formula for the image of an arbitrary
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element α ∈ C(U), represented in the form α = f0($) +
∑kU−1
j=1 fj($)tjm as in (i),

µ
($)
U (α)(m′) = f0($) +

kU−1∑
j=1

fj($)
(m
m′

)j
.

The matrix of the RC-linear operator µ
($)
U is a Vandermonde one and, therefore,

µ
($)
U is an isomorphism.

If V is a bigger connected open subset, then the map Υ($)(U)→ Υ($)(V ) takes

m to n = m
kU
kV and m′ to n′ = m

′ kUkV , and one has tn
∣∣
U

= t
kU
kV
m . We get

µ
($)
V (tjn)(n′) =

( n
n′

)j
=
(m
m′

) jkU
kV = µ

($)
U (tjn

∣∣
U

)(m′) .

This means that the isomorphisms µ
($)
U and µ

($)
V are compatible, and we get an

isomorphism of sheaves µ($) : CXC
→̃τ ($)
∗ (F

Xlog)⊗F RC. We have to verify that it
gives rise to an isomorphism of W (RC)-modules on XC.

First of all, it is an isomorphism of R-modules, by the construction. Furthermore,

set γj = µ
($)
U (tjm). By the same construction, one has γj(m

′) =
(
m
m′

)j
. Since

σ($)(m′) = e
2πi
kU m′, it follows that σ($)(γj) = e

− 2πij
kU γj , i.e., the elements γj , which

generate the free RC-module Hom(Υ($)(U), RC) are eigenvectors with eigenvalues

e
− 2πij

kU , respectively. By the construction of the operator δ$, one gets δ$(γj) =
j
kU
γj . Since δ$(tjm) = j

kU
tjm, it follows that µ($) is an isomorphism of sheaves of

modules over the ring W (R).
Suppose now we are given a β-morphism ϕ : $ → $′ of first (resp. second) type.

The corresponding map Υ($′)(U) → Υ($)(U) (resp. Υ($′)(U) → Υ($)(c(U)))

takes m′ to exp( β
kU

)m′ (resp. exp( β
kU

)m′c). It follows that the homomorphism

C($)(U) → C($′)(U) (resp. C($)(c(U)) → C($′)(U)) takes tm to tγm (resp. tγmc),

where γ = exp
(
− β
kU

)
and therefore, for m,m′ ∈ Υ($)(U) (resp. Υ($)(c(U))), one

has

µ
($′)
U (tjγm)(γm′) =

(
γm

γm′

)j
=
(m
m′

)j
= µ

($)
U (tjm)(m′)

(resp. µ
($′)
U (tjγmc)(γm

′c) =

(
γmc

γm′c

)j
=
(m
m′

)j
= µ

($)
c(U)(t

j
m)(m′) ) .

Thus, the isomorphism considered is a map of Π(RC)-sheaves.
It remains to verify that, in the case F = R, the homomorphism µ($) commutes

with the action of the automorphism ϑ($). For the element α ∈ C(U) as above, one
has

(µ
($)
U ◦ ϑ($))(α)(m′) = f0($) +

kU−1∑
j=1

fk−j

(m
m′

)j
.

On the other hand, one has

(ϑ($) ◦ µ($)
U )(α)(m′) = f0($) +

kU−1∑
j=1

f j

(m
m′

)−j
.

It is easy to see that the right hand sides of both equalities coincide. �
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Corollary 5.4.2. There are canonical isomorphisms of sheaves of distinguished
W (RC)-modules on XC

Rqτ∗(FXlog)⊗F RC→̃CXC
(−q)⊗Z

q∧
M

(nont)

XC/RC
. �

Suppose that F = R. As at the end of §4.5, the single distinguished W (RC)-
module CXC

defines a Π(R)-sheaf CX , which is a distinguished W (R)-module on
X. Theorem 5.4.1 implies that, for an open subset U ⊂ X, one has CX(U) =
CXC

(ρ−1(U))c=1 and, in particular, the W (R)-module CX is single. The RΠ(R)-
quasi-unipotent module on XC that corresponds to CX is τ∗(RXlog).

Remark 5.4.3. It follows from Remark 5.2.4(ii), that in its situation there is a
canonical isomorphism CXC

(U)→̃CXC
(V ).

6. The analytification of vanishing cycles for log smooth formal
schemes

6.1. Formulation of results. The purpose of this section is to show that, for
a formally K◦-log smooth special formal scheme X and any finite étale abelian
sheaf Λ on the spectrum of K, the analytifications of the complexes RΘ(ΛXη

) and

RΨη(ΛXη
), as defined in [Ber96b] and [Ber15], are described in the same way as

in Theorem 2.5.2. Here ΛXη
is the pullback of Λ to the generic fiber Xη of X. We

already mentioned that the correspondence that takes such a sheaf Λ to the discrete
G(KC)-module K($) 7→ Λ($) is an equivalence of categories.

On the other hand, the nearby and vanishing cycles functors Θ and Ψη from
[Ber96b] and [Ber15] are naturally extended to the category of étale abelian G(KC)-
sheaves on Xη and take values in the category of étale abelian G(KC)-sheaves on
Xs and Xs, respectively. Namely, the functor Θ takes an étale abelian G(KC)-
sheaf L : K($) 7→ L($) to the functor on G(KC) whose value at K($) is Θ(L($))

with the evident homomorphisms Θ(L($)) → Θ(L($′)) for morphisms K($) →
K($′) in G(KC). Notice that the G(KC)-sheaf Θ(L) is univocal and, in particular,
it is isomorphic to a trivial G(KC)-sheaf. Similarly, the functor Ψη takes L to

the functor on G(KC) whose value at K($) is Ψη(L($)) constructed using the

algebraic closure K($) of K, and each morphism K($) → K($′) induces the evident
homomorphism Ψη(L($))→ Ψη(L($′)).

Thus, instead of working with étale abelian sheaves on the spectrum of K, we
work with discrete G(KC)-modules. Notice that there is a natural faithful functor
G(KC)-Mod→ Π(KC)-Mod. In particular, in the situation of Example 4.2.2(ii)
every discrete G(KC)-module Λ defines Π(KC)-sheaves ΛXlog

C
and Λ

Xlog on the

Π(KC)-spaces X log
C and X log, respectively.

For an integer n ≥ 1, let Z/nZ[G(KC)]-Mod denote the category of discrete
G(KC)-modules which are also Z/nZ-modules, and let Dc(Z/nZ[G(KC)]-Mod)
denote the derived category of complexes of discrete Z/nZ[G(KC)]-modules with
finite cohomology modules.

Theorem 6.1.1. Let X be a formally K◦-log smooth special formal scheme, and
set X = Xhs . Then for any Λ· ∈ D+

c (Z/nZ[G(KC)]-Mod), the following is true

(i) there is a canonical isomorphism of complexes of Π(KC)-sheaves

RΨη(Λ·Xη
)h→̃Rτ∗(Λ·Xlog) ;
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(ii) if F = C, then RΘ(Λ·Xη
)h→̃Rτ∗(Λ·Xlog);

(iii) if F = R, then RΘ(Λ·Xη
)h→̃I〈c〉(Rτ∗(Λ·Xlog

C

)).

The proof of Theorem 6.1.1 is based on log étale cohomology developed by
Kazuya Kato and his collaborators for fs log schemes. We refer to [Ill02] for a
survey of log étale cohomology.

6.2. Kummer étale morphisms of log special formal schemes. Recall (see
[Ill02, 1.6]) that a morphism of fs log schemes Y → X is said to be Kummer étale
if locally in the étale topology it admits a chart P → O(X ) and Q → O(Y) with
fs monoids P and Q such that (1) the homomorphism P → Q is injective and
P = Q ∩ P gr; (2) the cokernel of the homomorphism P gr → Qgr is finite of order
invertible on Y; (3) the induced morphism of schemes Y → X⊗Spec(Z[P ])Spec(Z[Q])
is étale. If both schemes are of locally finite type over F, then the induced map
(YhC)log → (X hC)log is a local homeomorphism. Kummer étale morphisms to an fs
log scheme X give rise to a Kummer étale site Xkét of X and, if X is of locally finite
type over F, there is a morphism of sites (X hC)log → Xkét.

Let k be a non-Archimedean field with nontrivial discrete valuation. A morphism
of fs k◦-log special formal schemes Y→ X is said to be Kummer étale if it is of locally
finite type and, for any ideal of definition J of X, the morphism of log schemes
(Y,OY/JOY) → (X,OX/J ) is Kummer étale. The following is an analog of

[Ber96b, Proposition 2.1].

Proposition 6.2.1. Let X be an fs k◦-log special formal scheme. Then

(i) the correspondence Y 7→ Ys gives rise to an equivalence between the cat-
egory of fs k◦-log special formal schemes Kummer étale over X and the
category of fs k◦1-log schemes Kummer étale over Xs;

(ii) If ϕ : Y → X is a Kummer étale morphism, then ϕη(Yη) = π−1(ϕs(Ys))
and, in particular, ϕη(Yη) is a closed analytic domain in Xη;

(iii) if the k◦-log structures on X and Y are vertical, then for any Kummer
étale morphism ϕ : Y → X the induced morphism of k-analytic spaces
ϕη : Yη → Xη is quasi-étale.

Proof. (i) Since Kummer étale morphisms are log étale, fully faithfulness of the
functor follows from the definition of log étale morphisms (see [Kato89, 3.3]). There-
fore, in order to show that it is essentially surjective, it suffices to construct a lifting
of a Kummer étale morphism f : Y → Xs locally in the étale topology. We may
therefore assume that the log structures on X and Y are defined by charts P → O(X)
and Q→ O(Y) and the morphism f is defined by an injective homomorphism of fs
monoids P → Q such that (a) the image of P contains the image of a generator $
of the maximal ideal k◦◦ of k◦, (b) the cokernel of the homomorphism P gr → Qgr

is finite of orders prime to char(k̃), (c) P coincides with the preimage of Q in P gr

with respect the latter homomorphism, and (d) the induced morphism of schemes

Y → X ′ = Xs ⊗Spec(k̃[P ]) Spec(k̃[Q]) is étale. The scheme X ′ is the closed fiber

X′s of the special formal scheme X′ = X ×Spf(k◦{P}) Spf(k◦{Q}) and, by [Ber96b,

2.1(i)], the morphism Y → X′s lifts to an étale morphism Y→ X′. If we provide Y
with the log structure defined by the induced homomorphism Q → O(Y), we get
the required Kummer étale morphism Y→ X.
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(ii) By [Ber96b, 2.1(ii)], the required property holds for the étale morphism
Y→ X′ (with X′ from the proof of (i)). It suffices therefore to verify this property
for the morphism X′ → X which is a base change of the morphism Spf(k◦{Q}) →
Spf(k◦{P}). Since the latter morphism is finite and surjective, then so is the
induced morphism of k-affinoid spaces M(k{Q}) → M(k{P}), and the required
fact follows.

(iii) By [Ber96b, 2.3(iii)], the morphism Yη → X′η is quasi-étale. Let p be an

element of P whose image in O(X) coincides with the image of $. Then X′ =
X ×Spf(A) Spf(B), where A = k◦{P}/(p − $) and B = k◦{Q}/(p − $)k◦{Q}. In

particular, the morphism X′η → Xη is a base change of the morphism of k-affinoid
spaces M(B) → M(A). By the assumption, the monoids P and Q are vertical.
It follows that their images in A and B consist of invertible elements and coincide
with the images of P gr and Qgr, respectively. This implies that the morphism
M(B)→M(A) is étale and, therefore, the morphism Yη → Xη is quasi-étale. �

Let X be an fs vertical k◦-log special formal scheme. We fix a functor Us 7→ U
from the category of fs k◦1-log schemes Kummer étale over Xs to the category of
fs k◦-log special formal scheme Kummer étale over X, which is inverse to that of
Proposition 6.2.1(i). By the proposition, the composition of the functor Us 7→ U
with the functor U 7→ Uη induces a morphism of sites νlog : Xηqét → Xskét, which

is an analog of the morphism of sites ν : Xηqét → Xsét from [Ber96b, §2]. In this

way we get a commutative diagram of morphisms of sites

Xη ét Xηqét

µoo ν //

νlog

##

Xsét

Xskét

ε

OO

The nearby cycles functor from [Ber96b] is the functor Θ : Xη̃ ét → Xs̃ét, defined by

Θ(F ) = ν∗(µ
∗F ), and the log nearby cycles functor is the functor Θlog : Xη̃ ét →

Xs̃két, defined by Θlog(F ) = νlog
∗ (µ∗F ). They are analogs of the usual (from

[SGA7]) and logarithmic (from [Nak98]) algebraic geometry functors. Namely, for

an fs vertical k◦-log scheme X , there are canonical morphisms of schemes Xη
j
↪→

X i←− Xs and of log schemes Xη
jlog

↪→ X ilog

←− Xs. The above functors Θ and Θlog

are analogs of the functors X η̃ ét → Xs̃ét : F 7→ i∗(j∗F) and X η̃ ét → Xs̃két : F 7→
ilog∗(jlog

∗ F), which will be denoted Θ and Θlog, respectively, as well.
The following is a straightforward generalization of [Ber94, 4.1 and 4.2].

Lemma 6.2.2. Let X be an fs vertical k◦-log special formal scheme, and let F be
an étale sheaf on Xη. Then

(i) if Ys is Kummer étale over Xs, then Θlog(F )(Ys) = F (Yη);

(ii) if F is abelian, then the sheaf RqΘlog(F ) is associated to the presheaf Ys 7→
Hq(Yη, F );

(iii) if F is abelian soft, then the sheaf Θlog(F ) is flabby. �

Corollary 6.2.3. (i) For a Kummer étale morphism Y→ X and an étale abelian
sheaf on Xη, one has RqΘlog(F )

∣∣
Ys

→̃RqΘlog(F
∣∣
Yη

);
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(ii) for a morphism of fs vertical k◦-log special formal schemes ϕ : Y → X and
F · ∈ D+(Yη), one has RΘlog(Rϕη∗(F ))→̃Rϕs∗(RΘlog(F )). �

6.3. Nearby cycles of formally log smooth formal schemes. We turn back to
our field K. Every discrete G(KC)-module Λ defines an étale G(KC)-sheaf ΛK on

Spec(K). Given $ ∈ Π(KC), the Kummer étale sheaf Θlog(Λ
($)
K ) on the algebraic

log point ptK◦1 is denoted by Λ
($)
K◦1

. Furthermore, each morphism $ → $′ in G(K)

gives rise to a morphism Λ
($)
K◦1
→ Λ

($′)
K◦1

, and so the correspondence $ 7→ Λ
($)
K◦1

is a

Kummer étale G(KC)-sheaf on ptK◦1 . The pullback of the latter to the Kummer

étale site Xkét of a log scheme X over ptK◦1 is denoted by ΛXkét
.

Theorem 6.3.1. Let X be an fs formally K◦-log smooth special formal scheme, and
Λ· ∈ D+

c (Z/nZ[G(KC)]-Mod). Then there is a canonical isomorphism of complexes
of Kummer étale G(K)-sheaves

Λ·Xskét
→̃RΘlog(Λ·Xη

) .

Proof. First of all, it suffices to show that Λ
($)

Xskét

→̃Θlog(Λ
($)

Xη
) and RqΘlog(Λ

($)

Xη
) =

0 for any q ≥ 1, any finite discrete Z/nZ[G(KC)]-modules Λ, and any fixed $. We
may therefore drop $ in the superscript. Furthermore, for any m ≥ 1 the morphism
Spf(KC($m)◦) → Spf(K◦) is Kummer étale and, therefore, so is its base change
to X. Since the statement is local in the Kummer étale topology, this reduces the
situation to the case when F = C and the action of G on Λ is trivial. Finally, for

the same reason, we may assume that X is of the form X̂/Y for an fs log smooth
scheme X of finite type over K◦ with trivial log structure on Xη and a subscheme
Y ⊂ Xs (see Definition 3.2.3). We may also assume that the log structure on X
is defined by a chart PX → OX for an fs monoid P with P ∗ = {1} such that, for
every a ∈ P there exist b ∈ P and m ≥ 1 with ab = $m.

In order to verify the required property, we use the following facts on the usual
functor Θ (in the above situation):

(1) Λ(−q)Xs ⊗Z

∧q
M

gr

Xs→̃R
qΘ(ΛXη ), where MXs → OXs is the log structure

induced from that on X and M
gr

Xs = Mgr
Xs/O

∗
Xs ([Nak98, (2.0.2)]);

(2) RΘ(ΛXη )
∣∣
Y→̃RΘ(ΛXη

) ([Ber96b, 3.1]);

(3) there is a spectral sequence Ep,q2 = Hp(Xs, R
qΘ(ΛXη

)) =⇒ Hp+q(Xη,Λ)

functorial in X ([Ber96b, 2.2]).

We also use the fact that any Kummer étale morphism Y → X is locally in

the Kummer étale topology is of the form X̂ ′/Y′ → X = X̂/Y for a Kummer étale

morphism X ′ → X , where Y ′ is the preimage of Y in X ′s.
By Lemma 6.2.2(i), if Ys is Kummer étale over Xs then Θlog(ΛXη

)(Ys) =

H0(Yη,Λ). If Y = X̂ ′/Y′ as above, then ΛXs→̃Θ(ΛXη ), by (1), and therefore

ΛY→̃Θ(ΛXη
), by (2). This implies that H0(Ys,Λ) = H0(Yη,Λ).

Furthermore, by Lemma 6.2.2(ii), the sheaf RmΘlog(ΛXη
) for m ≥ 1 is as-

sociated to the presheaf Ys 7→ Hm(Yη,Λ). We therefore have to show that,
given a Kummer étale morphism X ′ → X , there exists a Kummer étale cover-

ing {X (i) → X ′}i∈I such that the induced homomorphisms Hm((X̂ ′/Y′)η,Λ) →
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Hm((X̂ (i)

/Y(i))η,Λ) are zero for all m ≥ 1 and i ∈ I. By the spectral sequence (3) ap-

plied to X̂ ′/Y′ , each group Hm((X̂ ′/Y′)η,Λ) has a decreasing filtration F 0,m(X̂ ′/Y′) =

Hm((X̂ ′/Y′)η,Λ) ⊃ F 1,m ⊃ . . . ⊃ Fm,m ⊃ Fm+1,m = 0 functorial in X̂ ′/Y′ and

such that each quotient F p,m/F p+1,m is isomorphic to a subquotient of Ep,m−p2 =
Hp(Y ′, Rm−pΘ(Λ(X̂ ′

/Y′ )η
)). Thus, it suffices to show that, given X ′ → X as above,

there exists a Kummer étale covering {X (i) → X ′}i∈I such that the above homo-

morphism takes F p,m(X̂ ′/Y′) in F p+1,m(X̂ (i)

/Y(i)) for all 0 ≤ p ≤ m and all i ∈ I. (If

so, we can iterate this construction.) In order to show the latter, it suffices to verify
that, for every pair (p, q) with p + q ≥ 1, there exists a Kummer étale covering as

above for which all of the homomorphisms Ep,q2 (X̂ ′/Y′)→ Ep,q2 (X̂ (i)

/Y(i)) are zero.

First of all, Ep,02 = Hp(Y ′,Λ), and so the required fact is true for q = 0 (with

an étale covering of X ′). If q ≥ 1, we set X ′′ = X ′ ⊗Z[P ] Z[P
1
n ], where P → P

1
n

is the homomorphism P → P : a 7→ an. Then f : X ′′ → X ′ is a Kummer étale
covering and, by (1), the homomorphism f−1

s (RqΘ(Λ(X̂ ′
/Y′ )η))→ RqΘ(Λ(X̂ ′′

/Y′′ )η
) is

zero, and so is the homomorphism Ep,q2 (X̂ ′/Y′)→ Ep,q2 (X̂ ′′/Y′′). �

Corollary 6.3.2. In the situation of Theorem 6.3.1, there is a canonical isomor-
phism RΘ(Λ·Xη

)→̃Rε∗(Λ·Xskét

). �

6.4. Proof of Theorem 6.1.1. Step 1. The statement (iii) follows from (ii).
Indeed, this is trivial.

Step 2. The statement (ii) is true true if the log structure on X is fs. Indeed,
by Corollary 6.3.2, there is a canonical isomorphism RΘ(Λ·Xη

)→̃Rε∗(Λ·Xskét

). It

follows that RΘ(Λ·Xη
)h→̃(Rε∗(Λ

·
Xskét

))h. It suffices therefore to show that the

canonical homomorphism (Rε∗(Λ
·
Xskét

))h → Rτ∗(Λ
·
Xlog), induced by the morphism

of sites X log → Xskét, is an isomorphism. For this we may assume that Λ· is a just
finite discrete G(K)-module Λ, and it suffices to verify isomorphism between q-th
cohomology groups of both complexes. By [Nak98, (2.0.2)] and [KN99, (1.5)], there
are canonical and compatible isomorphisms

Rqε∗(ΛXskét
)→̃ΛXs

(−q)⊗Z

q∧
M

gr

Xs
and

Rqτ∗(ΛXlog)→̃ΛX(−q)⊗Z

q∧
M

gr

X ,

and the claim follows.

Step 3. The statement (i) is true if X is fs. Indeed, we may assume that F = C.
Fix a generator $ of K◦◦. The induced homomorphism OC,0 → K◦ : z 7→ $ gives

rise to an embedding of algebraically closed fields Ka → K($). We consider first the
$-th part of the G(K)-module Λ and do not write the superscript $ in notations.
Let ΛXη

→ F · be a resolution of ΛXη
by soft sheaves F i (see [Ber94, §3]), and let

Km be the extension of K in K($) of degree m ≥ 1. Then the pullbacks F im of F i’s
are soft sheaves on Xηm , where ηm = ηKm , and, therefore, ΛXηm

→ F ·m is a soft res-

olution of ΛXηm
. By [Ber96b, 2.2(iii)], one has RΘKm(ΛXηm

) = ΘKm(F ·m) and, by

[Ber15, 3.1.6(ii)], there is a canonical isomorphism lim
−→

ΘKm(F ·m)→̃RΨη(ΛXη
). By
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Step 2, for each m ≥ 1 there is a canonical isomorphism ΘKm(F ·m)h→̃Rτm∗(ΛXlog
m

),

where Xm is the analytification of the closed fiber of X⊗̂K◦K◦m with the induced
log structure and τm denotes the map X log

m → X. The composition of the latter
with the canonical homomorphism Rτm∗(ΛXlog

m
) → Rτ∗(ΛX($)) gives a homomor-

phism ΘKm(F ·m)h → Rτ∗(ΛX($)). In this way we get a canonical homomorphism
RΨη(ΛXη

)h → Rτ∗(ΛX($)), and we have to verify that it is an isomorphism.

Since the latter property is local in the étale topology of X, we may assume that

X is of the form X̂/Y , where X is an fs log smooth scheme of finite type over OC,0 and

Y is a subscheme of Xs. By [Ber96b, 3.1], one has RΨη(ΛXη
) = RΨη(ΛXη )

∣∣
Y and,

by Theorem 2.4.1, RΨη(ΛXη )h→̃RΨη(ΛXhη ). Hence, the required fact follows from

Theorem 2.5.2. The above construction is functorial with respect to $ ∈ Π(K),
and the fs case of the theorem follows.

Step 4. The statements (i) and (ii) are true in the general case. For this we may
assume that F = C, and we need the following fact related to Lemma 2.5.3.

Lemma 6.4.1. Let X be a formally K◦-log smooth special formal scheme, and let
ϕ : X′ → X be the normalization of X with the log structure MX′ which is the

saturation of ϕ∗(MX) in OX′ . Then X′ is an fs formally K◦-log smooth special

formal scheme and, for X = Xhs and X ′ = X′hs provided with the induced log
structures, the canonical map X ′log → X log is a homeomorphism.

Proof. The statement is local in the étale topology of X, and so we may assume

that X is the formal completion Ŷ/Z , where Y is the log scheme Spec(C[P ]) for a
fine monoid P , the morphism of log schemes Y → Spec(K◦) is defined by a chart
Q → P : $ 7→ p for a free monoid Q generated by $ ∈ Π(K) and an element
p ∈ P such that the localization of P with respect to it is a group, and Z is a closed

subscheme of Ys = Spec(C[P ]/(p)). Then X′ is the formal completion Ŷ ′/Z′ , where

Y ′ = Spec(C[P ′]) for the saturation P ′ of P in P gr and Z ′ is the preimage of Z
in Y ′s. This implies the first statement. Since X log and X ′log are the preimages of
X = Zh and X ′ = Z ′h in (Yh)log and (Y ′h)log, respectively, in order to prove the
second statement it suffices to prove that the canonical map (Y ′h)log → (Yh)log is
a homeomorphism, but this follows from Lemma 2.5.3. �

Let X′ be the normalization of X as in Lemma 6.4.1. Then by Steps 2 and 3,
one has RΘ(Λ·

X′η
)h→̃Rτ ′∗(Λ·X′log) and RΨη(Λ·

X′η
)h→̃Rτ ′∗(Λ

·
X′log), where X ′ = X′hs ,

and τ ′ and τ ′ are the canonical maps X ′log → X ′ and X ′log → X ′, respec-
tively. On the other hand, by [Ber96b, 2.3(ii)], there are canonical isomorphisms
RΘ(Λ·Xη

)→̃Rϕs∗(RΘ(Λ·
X′η

)) andRΨη(Λ·Xη
)→̃Rϕs∗(RΨη(Λ·

X′η
)). This implies that

RΘ(Λ·Xη
)h→̃Rϕhs∗(Rτ ′∗(Λ·X′log)) and RΨη(Λ·Xη

)h→̃Rϕhs∗(Rτ ′∗(Λ
·
X′log)) .

Finally, by Lemma 6.4.1, there are canonical homeomorphisms α : X ′log→̃X log and

α : X ′log→̃X log. Since ϕhs ◦ τ ′ = τ ◦ α and ϕhs ◦ τ ′ = τ ◦ α, we get the required
isomorphisms. �

7. Complex analytic vanishing cycles for formal schemes

7.1. Construction and first properties. We fix, for every special formal scheme
X over K◦, a distinguished compact hypercovering a : Y• → X which exists, by
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Corollary 3.1.6. (We do not require that this hypercovering is proper.) The formal
schemes Yn provided with the canonical log structure form a simplicial object
in the category of fs log special formal schemes. It follows that the C-analytic
spaces Yn = Yh

n,s, provided with the induced log structures, form a simplicial fs log
C-analytic space Y• = (Yn)n≥0, and there is an associated augmented simplicial

topological space alog : Y log
•

= (Y log
n )n≥0 → Xhs . We set

RΘh(ZXη
) = Ralog

∗ (ZY log
•

), if F = C

RΘh(ZXη
) = I〈c〉(Ralog

∗ (ZY log
•

)), if F = R .

If τ• denote the map of simplicial topological spaces Y log
•
→ Y• , then alog = ahs ◦ τ•

and, therefore, for F = C one also has

RΘh(ZXη
) = Rahs∗(Rτ•∗(ZY log

•
)) .

Furthermore, the fs log C-analytic spaces Yn are over the log point ptK◦C,1 , and

there is an associated augmented simplicial topological Π(KC)-space alog : Y log
•

=

(Y log
n )n≥0 → Xhs . We set

RΨh
η(ZXη

) = Ralog
∗ (Z

Y log
•

) .

If τ • denotes the map of simplicial topological Π(KC)-spaces Y log
•
→ Y• , then

alog = ahs ◦ τ • and, therefore, one also has

RΨh
η(ZXη

) = Rahs∗(Rτ •∗(ZY log
•

)) .

Theorem 7.1.1. The following is true:

(i) the complexes RΘh(ZXη
) and RΨh

η(ZXη
) do not depend on the choice of

the hypercovering up to a canonical isomorphism, and are functorial in X;
(ii) the sheaves RqΨh

η(ZXη
) are constructible, equal to zero if q > 2dim(Xη),

and the action of Π(KC) on them is quasi-unipotent;
(iii) the sheaves RqΘh(ZXη

) are constructible, equal to zero if F = C and q >

2dim(Xη) + 1, and there is a canonical isomorphism

RIΠ(KC)(RΨh
η(ZXη

))→̃RΘh(ZXη
) .

Remarks 7.1.2. (i) Functoriality in (i) means that each morphism of special formal
schemes ϕ : Y→ X gives rise to morphisms

θh(ϕ) : ϕh∗s (RΘh(ZXη
))→ RΘh(ZYη

) and

θhη (ϕ) : ϕh∗s (RΨh
η(ZXη

))→ RΨh
η(ZYη

)

Furthermore, if ϕ is the identity morphism X→ X, then so is the morphism θhη (ϕ)

and, given a second morphism ψ : Z→ Y, one has θhη (ϕ ◦ ψ) = θhη (ψ) ◦ ψh∗s (θhη (ϕ))

(and the same for the morphisms θh(ϕ)).
(ii) An étale abelian sheaf L on the analytification Yh of a scheme Y of locally

finite type over F is said to be (algebraically) constructible if, for every open sub-
scheme Y ′ ⊂ Y of finite type over F, there is a decreasing sequence of Zariski closed
subschemes Z0 = Y ′ ⊃ Z1 ⊃ . . . ⊃ Zn = ∅ such that the restriction of L to each
F-analytic space Zhi \Zhi+1 is a locally constant sheaf whose stalks are finitely gen-
erated abelian groups. If F = C, it is the definition from [Ver76, §2]. It is easy to
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see that L is constructible if and only if its restriction to YhC is constructible. For
example, the analytification Fh of an étale abelian constructible sheaf F on Y is a
constructible sheaf on Yh (whose stalks are finite abelian groups). It follows from
[Ver76, 2.4.2] that, given a morphism ϕ : Z → Y between schemes of finite type
over F and a constructible sheaf L on Zh, the sheaves Rqϕh∗(L) are constructible.

(iii) If L is an étale abelian Π(KC)-sheaf on YhC (for Y from (ii)), we say that
the action of Π(KC) on it is quasi-unipotent if, for every open subscheme Y ′ ⊂ Y
of finite type over F, there exist m,n ≥ 1 such that, for every $ ∈ Π(KC), the
element (σ($)m − 1)n acts as zero on the sheaf L

∣∣
Y′h .

Lemma 7.1.3. In the situation of Theorem 7.1.1, if Λ· ∈ D+
c (Z/nZ[G(KC)]-Mod),

there are canonical isomorphisms

(i) RΨη(Λ·Xη
)h→̃Ralog

∗ (Λ·
Y log
•

);

(ii) RΘ(Λ·Xη
)h→̃Ralog

∗ (Λ·Y log
•

), if F = C;

(iii) RΘ(Λ·Xη
)h→̃I〈c〉(Ralog

∗ (Λ·Y log
•

)), if F = R.

Proof. The isomorphisms are obtained from Theorem 6.1.1 and [Ber15, 1.2.2(ii)
and 3.3.2]. �

Proof of Theorem 7.1.1. (ii) We may assume that the formal scheme X is quasi-
compact. By Theorem 5.3.1, for every m ≥ 1 the sheaves Rqτm∗(ZY log

m
) are con-

structible, and the action of a sufficiently large power of σ($)’s on them is trivial.
It follows that the sheaves RqΨh

η(ZXη
) are constructible and the action of Π(KC)

on them is quasi-unipotent.

Consider now for every n ≥ 1 the exact sequence 0 → Z
n→ Z → Z/nZ → 0

which gives rise to exact sequences in the category of algebraically constructible
sheaves on Xhs

(∗Y) 0→ Rqalog
∗ (Z

Y log
•

)n → Rqalog
∗ ((Z/nZ)

Y log
•

)→ nR
q+1alog

∗ (Z
Y log
•

)→ 0 ,

where for an abelian sheaf L we denoted by Ln and nL the cokernel and kernel
of the multiplication by n on F . By Lemma 7.1.3, the sheaf in the middle is the
analytification of the constructible sheaf RqΨη((Z/nZ)Xη

) on Xs. Since the latter

are zero for q > 2dim(Xη), it follows that RqΨh
η(ZXη

) = 0 for the same q’s.

(iii) Suppose first that F = C. Fix $ ∈ Π(K), and set Π = HomΠ(K)($,$) and

σ = σ($). Then for every q ≥ 1 there is an exact sequence (for the $-parts of the
functors considered)

0→ Rq−1Ψh
η(ZXη

)/(σ − 1)Rq−1Ψh
η(ZXη

)→ RqΘh(ZXη
)→ RqΨh

η(ZXη
)Π → 0 .

all of the required facts follow from (ii). Suppose now that F = R and set K ′ = KC.
(This notation is used in order to distinguish Π(KC) and Π(K ′).) By previous case,
the first two claims are true, and one has

RIΠ(K′)(RΨh
η(ZXη

))→̃(RΘhZXη
)C .

Since IΠ(KC) = I〈c〉 ◦ IΠ(K′), we get the required isomorphism.

(i) It suffices to verify the following fact in the case when X is quasicompact. Sup-
pose we are given a commutative diagram of distinguished compact hypercoverings
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of X

Y•
a // X

Z•

ϕ

OO
b

??

Then there is a canonical isomorphism (with Z• = Zh
•s).

Ralog
∗ (Z

Y log
•

)→̃Rblog

∗ (Z
Zlog
•

) .

For this we consider the homomorphism of the exact sequences (∗Y) → (∗Z)

as above. The homomorphism between the middle terms is an isomorphism, by
Lemma 7.1.3. Moreover, all of the sheaves considered are constructible and zero for
q > 2dim(Xη). The induction from q = 2dim(Xη) to q = 0 shows that the homo-
morphisms between the first and third terms are also isomorphisms. The required
facts follow. �

We can now extend as follows the definition of vanishing cycles complexes to an
exact functor RΨh

η

Db(Π(KC)-Mod)→ Db(Xhs (Π(KC))) : Λ· 7→ RΨh
η(ZXη

)⊗L
Z Λ·

Xh

s

and that nearby cycles complexes to an exact functor RΘh

Db(Π(KC)-Mod)→ D+(Xhs (KC)) : Λ· 7→ RIΠ(K)(RΨh
η(Λ·Xη

)) .

Notice that the latter complexes consist of univocal Π(KC)-modules (they are iso-
morphic to trivial Π(KC)-modules). By Theorem 7.1.1, the construction is functo-
rial in X and, in particular, any morphism ϕ : Y→ X defines morphisms θh(ϕ,Λ·)
and θhη (ϕ,Λ·) similar to those in Remark 7.1.2(i).

The following corollaries of Theorem 7.1.1 are formulated for an arbitrary com-
plex Λ· ∈ Db(Π(KC)-Mod), but it suffices to verify them only for Λ· = Z.

Corollary 7.1.4. Given a morphism of finite type ϕ : Y→ X with Yη→̃Xη, there
are canonical isomorphisms

RΘh(Λ·Xη
)→̃Rϕhs∗(RΘh(Λ·Yη

)) and RΨh
η(Λ·Xη

)→̃Rϕhs∗(RΨh
η(Λ·Yη

)) .

Proof. Let b : Z• → Y be a distinguished compact hypercovering of Y. Since
Yη→̃Xη, the composition a = ϕ ◦ b : Z• → X is a distinguished compact hypercov-

ering of X, and we have (with Z = Zhs )

RΨh
η(ZXη

))→̃Ralog
∗ (Z

Zlog
•

)→̃Rϕhs∗(Rb
log

∗ (Z
Zlog
•

)) = Rϕhs∗(RΨh
η(ZYη

)) .

The same holds for the functor Θ. �

The nearby cycles and vanishing cycles functors RΘh and RΨh
η are extended

component wise to simplicial formal schemes.

Corollary 7.1.5. Given a compact hypercovering a : Y• → X, there are canonical
isomorphisms

RΘh(Λ·Xη
)→̃Rahs∗(RΘh(Λ·Y•η

)) and RΨh
η(Λ·Xη

)→̃Rahs∗(RΨh
η(Λ·Y•η

)) .
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Proof. One can find a distinguished compact hypercovering b : Z• → X that
refines a, and has RΨh

η(Λ·Xη
)→̃Rbhs∗(RΨh

η(Λ·Z•η
)). The required statement fol-

lows therefore from the fact that the canonical morphism Rahs∗(RΨh
η(ZY•η

)) →
Rbhs∗(RΨh

η(ZZ•η
)) is an isomorphism. This fact is verified using the reasoning from

the proof of Theorem 7.1.1. �

Corollary 7.1.6. Let X be a formally K◦-log smooth special formal scheme, and
let X be the analytification Xhs provided with the induced log structure. Then there
are canonical isomorphisms

Rτ∗(Λ
·
Xlog

C

)→̃(RΘhΛ·Xη
)C and Rτ∗(Λ

·
Xlog

)→̃RΨh
η(Λ·Xη

) .

Proof. First of all, if X is distinguished, this follows from Theorem 7.1.1. Further-
more, if X is arbitrary, its generic fiber Xη is regular and, by Theorem 3.1.3(i),
there exists a blow-up ϕ : Y → X with distinguished Y and Yη→̃Xη. By Corol-

lary 7.1.4, there is a canonical isomorphism RΨh
η(ZXη

)→̃Rϕhs∗(RΨh
η(ZYη

)) and, by

the previous case, we get RΨh
η(ZXη

)→̃Rϕhs∗(Rτ∗(ZY log)), where Y = Yh
s . Thus,

we have to show that the canonical morphism Rτ∗(ZXlog) → Rϕhs∗(Rτ∗(ZY log))
is an isomorphism. By the reasoning from the proof of Theorem 7.1.1, it suffices
to verify the above fact for the group Z/nZ instead of Z. By Theorem 6.1.1,
this is equivalent to the fact that the canonical homomorphism RΨη((Z/nZ)Xη

)→
Rϕs∗(RΨη((Z/nZ)Yη

) is an isomorphism. The latter follows from [Ber96b, 2.3(ii)].

The same reasoning is applicable to the functor RΘh. �

Here is the first comparison statement.

Theorem 7.1.7. Let X be a special formal scheme over K◦. Then for any Λ· ∈
Db
c(Z/nZ[G(KC)]-Mod), there are canonical isomorphisms

RΘ(Λ·Xη
)h→̃RΘh(Λ·Xη

) and RΨη(Λ·Xη
)h→̃RΨh

η(Λ·Xη
) .

Proof. SinceRΘ(Λ·Xη
) = RIG(K)(RΨη(Λ·Xη

)) (see [Ber15, 3.1.7]) andRΘh(Λ·Xη
) =

RIΠ(K)(RΨh
η(Λ·Xη

)), it suffices to construct the second isomorphism. By Corollary

3.1.6, there exists a distinguished proper hypercovering a : Y• → X and, by Lemma

7.1.3, one has RΨη(Λ·Xη
)h→̃Ralog

∗ (Λ·
Y log
•

), where Yn = Yh
n,s. Furthermore, since

alog = ahs ◦ τ • , where τ • is the map of simplicial topological spaces Y log
•
→ Y• ,

one has Ralog
∗ (Λ·

Y log
•

)→̃Rahs∗(Rτ •∗(Λ·Y log
•

)), and since each τm is a composition of

a topological covering map Y log
m → Y log

m and a proper map Y log
m → Ym, one has

Rτ •∗(Λ
·
Y log
•

)→̃Rτ •∗(ZY log
•

) ⊗L
Z Λ·Y• . Finally, since the hypercovering ahs : Y• → Xhs

is proper, we get

RΨη(Λ·Xη
)h→̃RΨh

η(ZXη
)⊗L

Z Λ·
Xh

s

= RΨh
η(Λ·Xη

) . �

7.2. Invariance under formally smooth morphisms. Let ϕ : Y → X be a
morphism of special formal schemes over k◦, where k is a non-Archimedean field
with discrete valuation. We say that ϕ is smooth if every point of Y has an étale
neighborhood Y′ → Y such that the induced morphism Y′ → X is a composition
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of an étale morphism Y′ → X × Z and the projection X × Z → X, where Z is the
n-dimensional formal affine space Spf(k◦{T1, . . . , Tn}). We say that ϕ is formally
smooth if locally in the étale topology of Y it is a composition of morphisms of the
form Z/Y → Z for subschemes Y ⊂ Zs and of smooth morphisms.

Theorem 7.2.1. Let ϕ : Y → X be a formally smooth morphism between special
formal schemes over K◦. Then θh(ϕ,Λ·) and θhη (ϕ,Λ·) are isomorphisms for all

Λ· ∈ Db(Π(K)-Mod).

First of all, in order to prove the above statement, it suffices to consider the
case when Λ· = Z. Furthermore, since the sheaves RqΘh(ZXη

) and RqΨh
η(ZXη

)

are constructible, the situation is reduced to the case Λ· = Z/nZ. Thus, by the
Comparison Theorem 7.1.7, Theorem 7.2.1 follows from the following statement in
which k is a non-Archimedean field with nontrivial discrete valuation, and G is the
Galois group Gal(ka/k) (for a fixed algebraic closure ka of k).

Theorem 7.2.2. Suppose that char(k̃) = 0, and let ϕ : Y→ X be a formally smooth
morphism between special formal schemes over k◦. Then θ(ϕ,Λ·) and θη(ϕ,Λ·) are
isomorphisms for all Λ· ∈ Db

c(Z/nZ[G]-Mod).

Proof. It suffices to consider the case when Λ· is a finite discrete G-module Λ. By
[Ber96b, 2.3(i)], the required fact is true if the morphism ϕ is étale. Thus, in order
to prove the theorem, it suffices to consider the two cases when (a) ϕ is of the form
X/Y → X for a subscheme Y ⊂ Xs, and (b) ϕ is the projection X × Z → X, where
Z is the n-dimensional formal affine space Spf(k◦{T1, . . . , Tn}).

(a) Let a : Z• → X be a distinguished proper hypercovering of X. If Yn is the
preimage of Y in Zn,s, then Z•/Y• → X/Y is a distinguished proper hypercovering
of X/Y . By the definition of the vanishing cycles complexes, we have

RΨη(ΛXη
) = Ras∗(RΨη(ΛZ•η

)) and RΨη(Λ(X/Y)η
) = Ras∗(RΨη(Λ(Z•/Y• )η

)) .

The proper base change theorem for schemes implies that

RΨη(ΛXη
)
∣∣
Y = Ras∗(RΨη(ΛZ•η

)
∣∣
Y•

) .

Since the special formal schemes Zn are locally algebraic, the comparison theorem
[Ber96b, 3.1] implies that

RΨη(ΛZ•η
)
∣∣
Y•

= RΨη(Λ(Z•/Y• )η
) ,

and the required fact follows. The same reasoning holds from the functor Θ.
(b) Let Y = X×Z. Since all of the sheaves considered are constructible, it suffices

to show that, for every closed point y ∈ Ys, one has RΘ(ΛXη
)x→̃RΘ(ΛYη

)y (resp.

RΨη(ΛXη
)x→̃RΨη(ΛYη

)y), where x is the image of y in Xs. Replacing k by a

finite unramified extension, we may assume that the images x and y of the points

x and y in Xs and Ys, respectively, are k̃-rational. By (a), it suffices to show that

RΓ(π−1(x),Λ)→̃RΓ(π−1(y),Λ) (resp. RΓ(π−1(x),Λ)→̃RΓ(π−1(y),Λ)), where π

denotes the reduction maps Xη → Xs and Yη → Ys, and X = X⊗̂kk̂a. Since the

morphism ϕ is smooth, it induces an isomorphism π−1(y)→̃π−1(x)×D, where D
is the open unit disc with center at zero in an affine space, and the required fact
follows from acyclicity of the canonical projection π−1(x) ×D → π−1(x) ([Ber93,
7.4.2]). �
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7.3. Comparison theorem. Suppose we are given a morphism of germs (B, b)→
(F, 0), an OB,b-scheme X , and a subscheme Y ⊂ Xs. Every Π(K̂C)-module Λ can
be viewed as a Π(KC)-module and, therefore, it gives rise to a locally constant sheaf
ΛXhη on the pro-analytic space X hη (see Example 4.3.2(i)). Since X hη is a pro-analytic

Π(KC)-space (see Example 4.2.1(iii)), values of the complex analytic vanishing
cycles functor Ψη are abelian Π(KC)-sheaves on X hs . Furthermore, the formal

completion X̂/Y is a special formal scheme over K̂◦ = ÔF,0, and RΨh
η(Λ(X̂/Y)η

) is a

complex of abelian Π(K̂C)-sheaves on Yh.

Theorem 7.3.1. In the above situation, for any Λ· ∈ Db(Π(K̂C)-Mod) there are
canonical isomorphisms

RΘ(Λ·Xhη )
∣∣
Yh→̃RΘh(Λ·

(X̂/Y)η
) and RΨη(Λ·Xhη )

∣∣
YhC
→̃RΨh

η(Λ·
(X̂/Y)η

) .

Proof. Theorem 7.2.1 reduces the situation to the case Y = Xs, and since the
complexes of nearby cycles are expressed from those of vanishing cycles (see §2.3
and §7.1), it suffices to prove the required fact only for the latter. Consider first
the case Λ· = Z. By Temkin’s theorem on desingularization from [Tem08], there
exists a proper hypercovering a : Y• → X of X such that each scheme Yn is regular

and the supports of the subschemes Yn,s and Ỹn are divisors with strict normal
crossings. Then there are canonical isomorphisms

RΨη(ZXhη )→̃Rahs∗(RΨη(ZYh•η
)) .

By Theorem 2.5.2, one has

RΨη(ZYh•η
)→̃Rτ •∗(Z·Y log

•
)

Since â : Ŷ• → X̂ is a proper hypercovering of X̂ , and all of the formal schemes

Ŷn are distinguished, the required isomorphisms (for Λ· = Z) follow from the
construction in §7.1. If Λ· is arbitrary, they follow from Theorem 2.5.2 and the
definition in §7.1. �

8. Continuity theorems

8.1. Formulation of results. The first theorem is an easy consequence of previous
results. Recall that the group of automorphisms of a special formal scheme X trivial
modulo an ideal of definition J is denoted (in [Ber96b]) by GJ (X).

Theorem 8.1.1. Let J be the square of the maximal ideal of definition of X. Then
for every Π(KC)-module Λ and every q ≥ 0, the group GJ (X) acts trivially on the
sheaves RqΨh

η(ΛXη
).

Proof. It suffices to consider the case F = C and to show that, for every point
x ∈ Xhs and every q ≥ 0, the group GJ (X) acts trivially on the stalk RqΨh

η(ΛXη
)x.

By Theorem 7.2.1, the latter coincides with RqΨh
η(ΛYη

) for the affine formal scheme

Y = X/{x}. This reduces the situation to the case X = Y. If the Π(K)-module
Λ is torsion, the statement follows from the fact that the group GJ (X) is uniquely
divisible (see [Ber94, Lemma 8.7]). Suppose now that Λ has no torsion. It is then
flat over Z and, therefore, RqΨh

η(ΛXη
) = RqΨh

η(ZXη
) ⊗Z ΛXh

s

. This reduces the

situation to the case Λ = Z. Since RqΨh
η(Z·Xη

) is a finitely generated abelian group
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and, for every n ≥ 1, its quotient by the subgroup of elements divisible by n embeds
in the finite group RqΨη((Z/nZ)Xη

), it suffices to show that the action of GJ (X)

on the latter is trivial. But this follows from the previous case. Finally, if Λ is
arbitrary, let Λ(tors) be the torsion Π(K)-submodule of Λ, and denote by A and

B the image and cokernel of the homomorphism RqΨh
η(Λ

(tors)

Xη
) → RqΨh

η(ΛXη
).

Since B embeds in RqΨh
η(Λ

(nont)

Xη
), where Λ(nont) = Λ/Λ(tors), the group GJ (X)

acts trivially on A and B. It follows that its image in the automorphism group of
RqΨh

η(ΛXη
) embeds in the torsion group Hom(B,A), and the same fact on unique

divisibility of GJ (X) implies that the image is trivial. �

In the following theorems, the formal schemes considered are assumed to be
quasicompact special over K◦.

Theorem 8.1.2. Given X with rig-smooth generic fiber, there exists n ≥ 1 such
that, for every Π(KC)-module Λ which is either finite or has no Z-torsion, every Y
of finite type over K◦, every pair of morphisms ϕ,ψ : Y→ X which are congruent
modulo (K◦◦)n, and every q, one has θh,qη (ϕ,Λ) = θh,qη (ψ,Λ).

Theorem 8.1.3. Given X and Y with rig-smooth generic fibers, there exists an
ideal of definition J of Y such that, for every Π(KC)-module Λ which is either finite
or has no Z-torsion, every pair of morphisms ϕ,ψ : Y → X which are congruent
modulo J , and every q, one has θh,qη (ϕ,Λ) = θh,qη (ψ,Λ).

Theorem 8.1.2 and 8.1.3 are deduced from the following Theorems 8.1.4 and
8.1.5, respectively, in which k is an arbitrary non-Archimedean field with nontrivial

discrete valuation and char(k̃) = 0, G is the Galois group Gal(ka/k) for a fixed
algebraic closure ka of k, and the formal schemes considered are quasicompact
special over k◦.

Theorem 8.1.4. Given X with rig-smooth generic fiber, there exists n ≥ 1 such
that, for every finite discrete G-module Λ, every Y of finite type over k◦, every pair
of morphisms ϕ,ψ : Y → X which are congruent modulo (k◦◦)n, and every q, one
has θqη(ϕ,Λ) = θqη(ψ,Λ).

Theorem 8.1.5. Given X and Y with rig-smooth generic fibers, there exists an
ideal of definition J of Y such that, for every finite discrete G-module Λ, every
pair of morphisms ϕ,ψ : Y → X which are congruent modulo J , and every q, one
has θqη(ϕ,Λ) = θqη(ψ,Λ).

If Λ in Theorems 8.1.2 and 8.1.3 are finite, the required statements follow directly
from the corresponding Theorems 8.1.4 and 8.1.5. If Λ has no Z-torsion then, as in
the proof of Theorem 8.1.1, the statements are reduced to the case Λ· = Z, which
follows from the torsion case Λ = Z/nZ with n ≥ 1.

8.2. Proof of Theorem 8.1.4. Let $ be a generator of the maximal ideal k◦◦ of
k◦. Instead of the letter n, which will be used for a purpose different from that in
the formulation, we will use the letter l.

Step 1. The theorem is true with l = 3 if X is distinguished. In the first substep

1.1, we do not assume that char(k̃) = 0.

Substep 1.1. Let A1 = Spf(k◦{T}) be the formal affine line over k◦, and let 0
and 1 be the k◦-points of A1 which correspond to the homomorphisms k◦{T} → k◦
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that take T to 0 and 1, respectively. A homotopy between two morphisms of special
formal schemes over k◦, ϕ,ψ : Y → X, is a morphism Φ : Y × A1 → X such that
Φ(·, 0) = ϕ and Φ(·, 1) = ψ (cf. [MW68, 2.7]).

Suppose X = Spf(A), where A = k◦{T1, . . . , Tn}/(T e11 · . . . ·T emm −$), 1 ≤ m ≤ n,
and ei ≥ 1 for all 1 ≤ i ≤ m, and suppose that at least one of the integers ei is

not divisible by char(k̃). Let also Y be a special formal scheme flat over k◦. We
claim that, given two morphisms ϕ,ψ : Y→ X congruent modulo $3, there exists a
homotopy Φ : Y×A1 → X between them which is trivial modulo $2, i.e., it coincides
modulo $2 with the composition of the projection Y×A1 → Y and ϕ. (The latter
property implies that, for any subscheme Z ⊂ Xs that contains ϕs(Ys) = ψs(Ys),
Φ induces a homotopy between the induced morphisms ϕ,ψ : Y→ X/Z .)

Indeed, the two morphisms from the claim are defined by the elements fi =
ϕ∗(Ti) and gi = ψ∗(Ti), 1 ≤ i ≤ n. Since Y is flat over k◦, it follows that, for every
1 ≤ i ≤ n, one has gi− fi = $3ui with ui ∈ O(Y). Suppose that e1 is not divisible

by char(k̃). For 2 ≤ i ≤ n, we set Hi = fi +$3uiT ∈ O(Y× A1), and we have

fe11 He2
2 · . . . ·Hem

m = fe11 (f2 +$3u2T )e2 · . . . · (fm +$3umT )em = $(1 +$2vT ) ,

where v ∈ O(Y× A1). Since e1 is not divisible by char(k̃), there exists an element

α = e1
√

1 +$2vT congruent to one modulo $2. Then the element H1 = f1α
−1 is

congruent to g1 modulo $2, and one has

He1
1 ·H

e2
2 · . . . ·Hem

m = $ .

This means that there is a well defined homomorphism A→ O(Y×A1) : Ti 7→ Hi,
1 ≤ i ≤ n. We are going to show that the induced morphism Φ : Y× A1 → X is a
homotopy between ϕ and ψ. By the construction, one has Hi(0) = fi for all 1 ≤
i ≤ n, i.e., Φ(·, 0) = ϕ, and Hi(1) = gi for all 2 ≤ i ≤ n. Since ge11 ·g

e2
2 · . . . gemm = $,

H1(1)e1 ·ge22 · . . . gemm = $, and the homomorphism O(Y)→ O(Y)⊗k◦ k is injective,
we get H1(1)e1 = ge11 . The latter implies that H1(1) = g1ζ for an e1-th root of one
ζ. Since H1 is congruent to g1 modulo $2, it follows that ζ = 1, i.e., H(1) = g1

and, therefore, Φ(·, 1) = ψ. This implies the claim.

Substep 1.2. The claim of Step 1 is true if X is the same as in Substep 1.1.
Indeed, suppose we are given a special formal scheme Y (not necessarily of finite
type) over k◦, and two morphisms ϕ,ψ : Y → X that coincide modulo $3. We
are going to show that θqη(ϕ,Λ) = θqη(ψ,Λ) for all Λ and all q. First of all, since
the sheaves considered are constructible, it suffices to show that, for every closed
point y ∈ Ys, the homomorphisms RqΨη(ΛXη

)x → RqΨη(ΛYη
)y induced by ϕ

and ψ coincide, where x is the image of y in Xs. Replacing the field k by a finite

unramified extension, we may assume that the points x and y are over k̃-rational
points x ∈ Xs and y ∈ Ys, respectively. Furthermore, by Theorem 7.2.2, one has
RqΨη(ΛXη

)
∣∣
{x}→̃R

qΨη(Λ(X/{x})η
) and RqΨη(ΛYη

)
∣∣
{y}→̃R

qΨη(Λ(Y/{y})η
). We

may therefore replace X by X/{x} and Y by Y/{y} and assume that Xs = {x} and

Ys = {y}. In this case, the sheaves considered are just finite discrete G-modules.
We set Z = Y × A1 and denote by p the canonical projection Z → Y and by

i and j the morphisms Y → Z : y 7→ (y, 0) and (y, 1), respectively. It follows
from Substep 1.1 that there exists a homotopy Φ : Z → X between ϕ and ψ. By
Theorem 7.2.2, applied to the projection p, RqΨη(ΛZη

) is the constant sheaf on

the affine line A1
s over k̃ associated to the G-module RqΨη(ΛYη

) and, therefore,
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θqη(Φ,Λ) is just a homomorphism between constant sheaves on A1
s associated to a

homomorphism between finite discrete G-modules. Since p ◦ i = p ◦ j = 1Y, the

required fact follows.

Substep 1.3. The claim of Step 1 is true. Indeed, by Substep 1.2, it suffices to
verify the following two facts:

(1) given an étale morphism f : X′ → X, if the statement is true for X (with
some l), it is true for X′ (with the same l) and, if f is surjective, the
converse is also true (with the same l);

(2) if X = Z/Y for a subscheme Y ⊂ Zs, if the statement is true for Z, it is
also true for X (with the same l).

(1) By [Ber96b, 2.3(i)], one has RΨη(ΛXη
)
∣∣
X′s
→̃RΨη(ΛX′η

), and this immedi-

ately implies the direct implication. Conversely, assume that f is surjective and the
statement is true for X′ with an integer l ≥ 1. Given two morphisms ϕ,ψ : Y→ X
that coincide modulo $l, we set Y′ = X′ ×X,ϕ Y, Y′′ = X′ ×X,ψ Y, and de-

note by ϕ′ and ψ′′ the induced morphisms from Y′ and Y′′ to X′, respectively.
The canonical isomorphism Y′s→̃Y′′s over Ys, induces an isomorphism Y′→̃Y′′

over Y. Let ψ′ be the composition of the latter isomorphism with ψ′′. We get
two morphisms ϕ′, ψ′ : Y′ → X′ that coincide modulo $l and are compatible
with ϕ and ψ, respectively. By the assumption, we have θqη(ϕ′,Λ) = θqη(ψ′,Λ).

Since RΨη(ΛXη
)
∣∣
X′s
→̃RΨη(ΛX′η

) and RΨη(ΛYη
)
∣∣
Y′s
→̃RΨη(ΛY′η

) and the étale

morphisms X′s → Xs and Y′s → Ys are surjective, we get θqη(ϕ,Λ) = θqη(ψ,Λ).

(2) By Theorem 7.2.2, one has RΨη(ΛZη
)
∣∣
Y→̃RΨη(ΛXη

), and the required fact

follows.

Step 2. The theorem is true in the general case.

Substep 2.1 (a little digression). Suppose Z is a reduced formal scheme flat and
of finite type over k◦. If Spf(B) is an open affine subscheme of Z and B = B⊗k◦ k,
then B◦ = {g ∈ B

∣∣|g(y)| ≤ 1 for all y ∈ M(B)} is finite over B and coincides with
the integral closure of B in B (see [BGR, 6.4.1/6]). Furthermore, if C = B{f} for an
element f ∈ B and C = C⊗k◦ k, then C◦ = (B◦){f}. We can therefore glue all of the
affine formal schemes Spf(B◦) so that we get a finite morphism of formal schemes
Z′ → Z with Z′η→̃Zη and B = B◦ for every open affine subscheme Spf(B) ⊂ Z′,

where B = B ⊗k◦ k. We will say that Z′ is the integral closure of Z in Zη.

Substep 2.2. In order to prove the theorem, we may assume that X = Spf(A)
and Y = Spf(B) are reduced affine and flat over k◦. Since Xη is regular, there exists
a blow-up α : X′ → X with distinguished X′ and X′η→̃Xη (see Theorem 3.1.3). The

ideal a ⊂ A, which is the center of the blow-up, contains the element $l for some
l ≥ 1. We are going to show that the theorem is true with the number 2l + 3.

Let ϕ,ψ : Y → X be two morphisms which are congruent modulo $2l+3. We
set Y′′′ = Y×X X′, where the fiber product is taken with respect to the morphism

ϕ. Furthermore, let Y′′ be the closed formal subscheme of Y′′′ with the same
underlying space and whose structural sheaf is the quotient of that of Y′′′ by the
k◦-torsion. Finally, let Y′ be the integral closure of Y′′ in Y′′η (see Substep 2.1),

and denote by ϕ′ the induced morphism Y′ → X′. Since X′η→̃Xη and Y′η→̃Y′′′η ,

it follows that Y′η→̃Yη. We claim that the morphism ψη : Y′η = Yη → Xη = X′η
extends to a morphism ψ′ : Y′ → X′ which is congruent to ϕ′ modulo $3.
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Indeed, suppose the ideal a is generated by elements f0 = $l, f1, . . . , fn. Then
X′ =

⋃n
i=0 X

i with Xi = Spf(Ai), where Ai is the quotient of A′i by the k◦-torsion
and

A′i = A{T0, . . . , Ti−1, Ti+1, . . . , Tn}/(fiT0 − f0, . . . , fiTn − fn) .

Then Xiη = {x ∈ Xη
∣∣|fj(x)| ≤ |fi(x)| for j 6= i}. (It is a strictly affinoid subdomain

of Xη.) The preimage Yi of Xi is an open affine subscheme of Y′. Let Yi = Spf(Bi).

Then Yi
η = M(Bi) for Bi = Bi ⊗k◦ k, and one has Bi = B◦i . By the assumption,

one has ψ∗(fi)−ϕ∗(fi) = $2l+3gi with gi ∈ B for all 0 ≤ i ≤ n. This easily implies

that ψη(Yi
η) ⊂ Xiη for all 0 ≤ i ≤ n. It follows that the morphism ψη gives rise

to homomorphism Ai → Bi whose images lie in Bi and, therefore, it extends to a
morphism ψ′ : Y′ → X′. It remains to verify that ψ′ is congruent to ϕ′ modulo $3.

Since Bi = B◦i , it suffices to show that |(ψ∗(f) − ϕ∗(f))(y)| ≤ |$|3 for all

0 ≤ i ≤ n and all f ∈ Ai. The k◦-subalgebra of Ai, generated by the elements
fj
fi

with j 6= i, is dense. Since the image of Yi
η in Xiη is compact, it follows that it

suffices to verify the above inequality only for the elements
fj
fi

with j 6= i. Notice

that |fi(x)| ≥ |$|l for all points x ∈ Xiη. It follows that 1
ϕ∗(fi)

, 1
ψ∗(fi)

∈ 1
$l
Bi. We

therefore have

ψ∗
(
fj
fi

)
− ϕ∗

(
fj
fi

)
=
$2l+3(gjϕ

∗(fi)− giϕ∗(fj))
ϕ∗(fi)ψ∗(fi)

∈ $3Bi ,

and the claim follows.

Substep 2.3. One has θqη(ϕ,Λ) = θqη(ψ,Λ). Indeed, by Substep 2.2, there is a
commutative diagram

X′
α // X

Y′

ϕ′

OO

ψ′

OO

β // Y

ϕ

OO

ψ

OO

Since Y′η→̃Yη, one has RΨη(ΛYη
)→̃Rβs∗(RΨη(ΛY′η

)) and, therefore, the required

equality is equivalent to the equality θqη(ϕβ,Λ) = θqη(ψβ,Λ) which is equivalent, by
commutativity of the above diagram, to the equality θqη(αϕ′,Λ) = θqη(αψ′,Λ). The
left hand side of the latter is the composition θqη(ϕ′,Λ)◦ϕ′∗s (θqη(α,Λ)), and the right
hand side is the composition θqη(ψ′,Λ) ◦ ψ′∗s (θqη(α,Λ)). Since ϕ′s = ψ′s, the required
equality follows from the equality θqη(ϕ′,Λ) = θqη(ψ′,Λ), which is a consequence of
Substep 2.2 and Step 1. �

8.3. Proof of Theorem 8.1.5. First of all, we can replace k by the completion of

the maximal unramified extension, and so we may assume that the residue field k̃
is algebraically closed. We also fix a generator $ of the maximal ideal k◦◦ of k◦.

Step 1. Let β : Z → Y be a morphism of finite type such that the theorem is
true for the pair (X,Z), and suppose that either (1) Zη→̃Yη, or (2) β is a covering
in the étale topology of Y. Then the theorem is true for the pair (X,Y). Indeed, let
J be an ideal of definition of Z such that, for every Λ and every pair of morphisms
ϕ′, ψ′ : Z→ X, which are congruent modulo J , one has θqη(ϕ,Λ) = θqη(ψ,Λ). Let I
be an ideal of definition of Y which generates an ideal of definition of Z contained
in J , and suppose we are given two morphisms ϕ,ψ : Y→ X, which are congruent
modulo I.



96 VLADIMIR G. BERKOVICH

(1) Given an étale morphism X′ → X, and let Y′ and Y′′ be its base changes with
respect to the morphisms ϕ and ψ, respectively. Since ϕs = ψs, there is a canonical
isomorphism Y′s→̃Y′′s which lifts to a unique isomorphism Y′→̃Y′′. In this way
we get two morphisms Y′ → X′ which are compatible with the morphisms ϕ and
ψ, respectively, and they induce two homomorphisms Hq(X′η,Λ) = RqΓ(X′η,Λ) →
Hq(Y′η,Λ). The equality θqη(ϕ,Λ) = θqη(ψ,Λ) is equivalent to the property that the

latter two homomorphisms always coincide for any étale morphism X′ → X.
We apply the above remark to the morphisms ϕ′, ψ′ : Z→ X, induced by ϕ and

ψ, respectively. By the construction of I, the two morphisms ϕ′ and ψ′ are congru-
ent modulo J . It follows that the two homomorphisms Hq(X′η,Λ) → Hq(Z′η,Λ),

induced by ϕ′ and ψ′, coincide, where Z′ = Z×X,ϕ′ X
′. Since Z′→̃Z×Y Y′, where

Y′ = Y ×X,ϕ X′, it follows that Z′η→̃Y′η and, therefore, the two homomorphisms

Hq(X′η,Λ) → Hq(Y′η,Λ), induced by ϕ and ψ, coincide. This implies that the
theorem is true for the pair (X,Y).

(2) The assumption implies that the two morphisms from (ϕβ)∗s(R
qΨη(ΛXη

)) to

RqΨη(ΛZη
), induced by ϕ and ψ, coincide. Since RqΨη(ΛZη

) = β∗s (RqΨη(ΛYη
))

and β is a covering in the étale topology of Y, it follows that the two morphisms
ϕ∗s(R

qΨη(ΛXη
))→ RqΨη(ΛYη

), induced by ϕ and ψ, also coincide.

Since Yη is rig-smooth, we can apply Theorem 3.1.3 to Y. The above state-
ment (1) then implies that, in order to prove the theorem, it suffices to consider
the case when Y is distinguished, and (2) implies that it suffices to find an étale
neighborhood of every point of Ys in Y for which the theorem is true (with X). We

may therefore assume that Y is affine and there is an étale morphism Y→ Spf(Ĉ),

where Ĉ is the adic completion of C = k◦{T1, . . . , Tn}/(T e11 · . . . · T emm − $) with
respect to the ideal generated by T1 · . . . · Tv, where 1 ≤ v ≤ m ≤ n, and ei ≥ 1
for all 1 ≤ i ≤ m. In this case, the ideal b ⊂ O(Y) generated by the elements
T1 · . . . ·Tv and $ is an ideal of definition of Y. Suppose the conclusion of Theorem
8.1.4 holds for the formal scheme X with an integer l ≥ 1. We are going to show
that the conclusion of Theorem 8.1.5 for the pair (X,Y) with the ideal bl1 , where
l1 = l(e1 + . . .+ em).

Step 2. Since the sheaves RqΨη(ΛXη
) and RqΨη(ΛYη

) are constructible, in

order to prove the above fact, it suffices to show that for any Λ as in the theorem
and any pair of morphisms ϕ,ψ : Y → X, which are congruent modulo bl1 , the
two homomorphisms RqΨη(ΛXη

)x → RqΨη(ΛYη
)y, induced by ϕ and ψ, coincide

for all q ≥ 0 and all closed points y ∈ Ys, where x = ϕs(y). Recall that, by
Theorem 7.2.1, there is a canonical isomorphism RΨη(ΛYη

)x→̃RΨη(ΛY′η
), where

Y′ = Y/{y}. Thus, the required fact is reduced to the verification of the following

statement: given a closed point y ∈ Ys and two morphisms ϕ′, ψ′ : Y′ = Y/{y} → X

which are congruent modulo b′l1 , where b′ is the maximal ideal of definition of Y′,
one has θqη(ϕ′,Λ) = θqη(ψ′,Λ) for all Λ as in the theorem. Furthermore, since

Y′→̃Z/{z}, where Z = Spf(C) with C from Step 1 and z is the image of y in Z,
we may replace Y by Z, i.e., Y = Spf(C) (we do not need the morphisms ϕ and ψ
anymore).

Step 3. Suppose that Ti(y) = 0 for 1 ≤ i ≤ u and Ti(y) 6= 0 for u+ 1 ≤ i ≤ m.
If Ti(y) = 0 for some m + 1 ≤ i ≤ n, we can replace such Ti by Ti − 1, and so we
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may assume that Ti(y) 6= 0 precisely for u + 1 ≤ i ≤ n. Then we may replace Y
by the open affine subscheme defined by the inequality Tu+1 · . . . · Tn 6= 0, i.e., we
may replace C by the localization C{Tu+1·...·Tn}. Furthermore, the homomorphism

B = k◦{T1, . . . , Tu, T
±1
u+1, . . . , T

±1
n }/(T

e1
1 · . . . · T euu · Tu+1 · . . . · Tm −$) −→ C

that takes each Ti with u+1 ≤ i ≤ m to T eii and is identical on the other coordinate
functions, gives rise to an étale morphism Y → Z = Spf(B). Then we have again
Y′→̃Z/{z}, where z is the image of the point y in Zs, and so we may replace Y by
Z, i.e., we may assume that Y = Spf(B) with the above B.

Step 4. For every u + 1 ≤ i ≤ n, the element Ti(y) is congruent to ai ∈ (k◦)∗.
Replacing such Ti by Tia

−1
i , we may assume that Ti(y) = 1 for all u + 1 ≤ i ≤ n.

Then the maximal ideal of definition b′ of Y′ is generated by the elements $, Ti
for 1 ≤ i ≤ u, and Ti − 1 for u + 1 ≤ i ≤ n, and one has and Y′ = Spf(B̂), where

B̂ is the b′-adic completion of B. Since each Ti with u + 1 ≤ i ≤ m is congruent

to one in B̂, the latter ring contains an e1-th root of their product Tu+1 · . . . · Tm.

Thus, we can replace T1 by its product with an invertible element of B̂ so that

B̂→̃k◦[[T1, . . . , Tu, Su+1, . . . , Sn]]/(T e11 · · · · · T euu −$) ,

where Si = Ti − 1. At this moment we may replace the letter u by m.

Step 5. From the above description of B̂ it follows that there is an isomorphism
Y′η→̃Z ×Dn−m, where

Z = {x ∈ Gm
m

∣∣T e11 (x) · · · · · T emm (x) = $ and |Ti(x)| < 1 for all 1 ≤ i ≤ m}

and Dn−m is the open unit polydisc in An−m with centre at zero. Notice that the
projection Y′η → Z gives rise to isomorphisms

Hq(Z,Λ)→̃Hq(Y′η,Λ) = RqΨη(ΛY′η
)

for all Λ as in the theorem.
Let e =g.c.d.(e1, . . . , em), and k′ a finite extension of k in ka that contains an

element $′ with $′e = $. Then Z⊗̂kk′ is a disjoint union
∐
ξ∈µe Z

(ξ) with

Z(ξ) = {x ∈ Gm
m,k′

∣∣T e′11 (x) · · · · · T e
′
m
m (x) = ξ$′ and |Ti(x)| < 1 for all 1 ≤ i ≤ m},

where e′i = ei
e and, therefore, Y′η→̃

∐
ξ∈µe Y

(ξ), where Y (ξ) = Z(ξ) × Dn−m
and

Z(ξ) = Z(ξ)⊗̂k′ k̂a. All of the k′-analytic spaces Z(ξ) are isomorphic, and we are
going to describe them.

Let T be the kernel of the homomorphism of algebraic tori Gmm,k′ → Gm,k′ :

(x1, . . . , xm) 7→ x
e′1
1 · · · · · x

e′m
m . It is a split torus of dimension m − 1. Fur-

thermore, we can find integers p1, . . . , pm with
∑m
i=1 e

′
ipi = 1. Then the shift

Gmm,k′ → Gmm,k′ : (x1, . . . , xm) 7→ ( x1

(ξ$′)p1
, . . . , xm

(ξ$′)pm ) takes Z(ξ) to the open sub-

set {x ∈ T an
∣∣|ti(x)| < |$′|−pi for all 1 ≤ i ≤ m}, where ti = Ti

(ξ$′)pi . The latter is

the preimage τ−1(P) of an open convex subset P of the skeleton S(T ) of T with
respect to the retraction map τ : T an → S(T ).

We set r = |$|
1

e1+···+em and V = {y ∈ Y′η
∣∣|g(y)| ≤ r for all g ∈ b′}. One has

V ⊗̂kk′ =
∐
ξ∈µp V

(ξ), where V (ξ) = (V ⊗̂kk′) ∩ Y (ξ). For every ξ ∈ µe, there is

an isomorphism V (ξ)→̃U ×En−mk′ (0; r), where En−mk′ (0; r) is the closed polydisc in
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Dn−m
k′ of radius r with center at zero and U = τ−1(z), where z is the point of S(T )

with |Ti(z)| = r for all 1 ≤ i ≤ m, i.e., U is a poly-annulus with all internal and
external poly-radii equal to r.

We claim that, for any Λ, there is a canonical isomorphism of cohomology groups
Hq(Y′η,Λ)→̃Hq(V ,Λ). (Notice that the group on the left hand side is RqΨη(ΛY′η

).)

Indeed, this follows from [Ber96b, 3.3], which implies that Hq(Z(ξ),Λ)→̃Hq(U,Λ)
(and both of these groups are q-th exterior powers of Λ(−1)).

Step 6. The theorem is true. Indeed, suppose we are given two morphisms
ϕ′, ψ′ : Y′ → X, which are congruent modulo b′l1 with l1 as in Step 1. Since both
of them go through morphisms to X′ = X/{x}, where x = ϕ′s(y), it suffices to show

that the homomorphisms Hq(X′η,Λ)→ Hq(V ,Λ), induced by ϕ′ and ψ′, coincide.
Since V =M(C) is strictly k-affinoid, we can find an affine formal scheme V flat

and of finite type over k◦ with Vη = V . We may also assume that V is normal.
Then V = Spf(C◦), where C◦ = {g ∈ C

∣∣|g(y)| ≤ 1 for all y ∈ V }. It follows that the

canonical immersion V → Y′η is induced by a morphism of formal schemes V→ Y′.

Since ϕ′ and ψ′ are congruent modulo b′l1 , one has ϕ′∗(f) − ψ′∗(f) ∈ b′l1 for all
functions f ∈ O(X′). It follows that |(ϕ′∗(f)−ψ′∗(f))(y)| ≤ rl1 = |$|l for all points
y ∈ V . The latter implies that the restriction of the function ϕ′∗(f) − ψ′∗(f) to
V lies in the ideal of C◦ generated by $l, i.e., the morphisms V → X induced by
ϕ′ and ψ′ are congruent modulo $l. By our choice of l, the two homomorphisms
Hq(X′η,Λ)→ Hq(V ,Λ), induced by ϕ′ and ψ′, coincide. �

9. Integral cohomology of restricted analytic spaces

9.1. Construction and first properties. As in §0.7, we introduce the category

K-Ân of restricted K-analytic spaces, which is the localization of the category
quasicompact special formal schemes flat over K◦ with respect to admissible proper
morphisms , i.e., proper morphisms Y → X that induce an isomorphism between

the generic fibers Yη→̃Xη. Its objects are denoted by X̂, Ŷ and so on. The

quasicompact special formal schemes flat over K◦ which give rise to X̂ are said to

be formal models of X̂. There is an evident faithful (but not fully faithful) functor

K-Ân → K-An : X̂ 7→ X so that the generic fiber functor X 7→ Xη goes through

it. Raynaud theory [Ray74] implies that, if Ŷ ∈ K-Ân is such that the strictly K-

analytic space Y is compact, then for any X̂ ∈ K-Ân there is a canonical bijection

Hom
K-Ân(Ŷ , X̂)→̃HomK-An(Y,X). In particular, the above functor gives rise to

an equivalence between the full subcategory of K-Ân formed by formal schemes flat
and of finite type over K◦ and the category of compact strictly K-analytic spaces.

We say that a restricted K-analytic space X̂ is rig-smooth if the K-analytic space

X is rig-smooth. For such X̂, the family of distinguished formal models of X̂ is
cofinal in that of all formal models

We fix for every restricted K-analytic space X̂ a formal model X. Given Λ· ∈
Db(Π(KC)-Mod), we define complexes of Π(KC)-modules

RΓ(X̂,Λ·) = RΓ(Xhs , RΘh(Λ·Xη
)) and RΓ(X̂,Λ·) = RΓ(Xhs , RΨh

η(Λ·Xη
)) .

For a Π(KC)-module Λ, we also define Π(KC)-modules

Hq(X̂,Λ) = RqΓ(X̂,Λ) and Hq(X̂,Λ) = RqΓ(X̂,Λ) .
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For$ ∈ Π(KC), the corresponding complex and group are denoted byRΓ(X̂($),Λ·)

and Hq(X̂($),Λ). If X is compact, then X̂($) can be viewed as the K̂($)-analytic

space X($), and X̂ can be viewed as a Π(KC)-space $ 7→ X($).

Theorem 9.1.1. The following is true:

(i) the complexes RΓ(X̂,Λ·) and RΓ(X̂,Λ·) do not depend on the choice of a

model up to a canonical isomorphism, and are functorial in X̂;
(ii) there are canonical isomorphisms

RΓ(X̂,Z)⊗L
Z Λ·→̃RΓ(X̂,Λ·) and RΓ(X̂,Λ·)→̃RIΠ(K)(RΓ(X̂,Λ·)) ,

where IΠ(KC) is the functor Π(KC)-Mod→ Ab : Λ 7→ ΛΠ(KC);

(iii) Hq(X̂,Z) and Hq(X̂,Z) are finitely generated abelian groups equal to zero
for q > 2dim(X) + 1, if F = C, and for q > 2dim(X), respectively;

(iv) the action of Π(KC) on Hq(X̂,Z) is quasi-unipotent; if X̂ is rig-smooth,
there exists p ≥ 1 such that, for every q ≥ 0, the action of the element

(σp − 1)q+1 on Hq(X̂,Z) is zero;
(v) if Λ· ∈ Db

c(Z/nZ[G(KC)]-Mod), there are canonical isomorphisms

RΓ(X̂,Λ·)→̃RΓ(Xét,Λ
·) and RΓ(X̂,Λ·)→̃RΓ(X ét,Λ

·) .

Remarks 9.1.2. (i) The subscript ét in (v) means that the corresponding com-
plexes are considered with respect to the étale site. They are also viewed as com-
plexes of Π(KC)-modules and, in particular, the second isomorphism is the isomor-

phism RΓ(X̂($),Λ($)·)→̃RΓ(X
($)
ét ,Λ($)·) for each $ ∈ Π(KC).

(ii) By Theorem 9.1.1(i), one can define the cohomology groups Hq(X̂,Λ) and

Hq(X̂,Λ) canonically as projective limits of the groups RqΓ(Xhs , RΘh(ΛXη
)) and

RqΨh
η(Xhs , RΘh(ΛXη

)), respectively, taken over formal models X of X̂.

Proof. (i) Let X̂ and Ŷ be restricted K-analytic spaces with formal models X and

Y, respectively, and suppose we are given a morphism ϕ : Ŷ → X̂. By the defi-
nition, there exists a proper morphism b : Y′ → Y with Y′η→̃Yη and a morphism

ψ : Y′ → X which gives rise to the morphism ϕ. Since Y′η→̃Yη, Corollary 7.1.4

implies that RΘh(Λ·Yη

)→̃Rbhs∗(RΘh(Λ·
Y′η

)) and RΨh
η(Λ·Yη

)→̃Rbhs∗(RΨh
η(Λ·

Y′η
)). It

follows that RΓ(Yη,Λ
·)→̃RΓ(Y′η,Λ

·) and RΓ(Yη,Λ
·)→̃RΓ(Y′η,Λ

·) and, therefore,

the morphism ϕ induces morphisms RΓ(X̂,Λ·) → RΓ(Ŷ ,Λ·) and RΓ(X̂,Λ·) →
RΓ(Ŷ ,Λ·), which do not depend on the choice of the morphism b. This implies the
required statement.

(ii) follows from the corresponding properties of the functors RΘh and RΨh
η

introduced in §7.1.
(v) follows from Theorem 7.1.7.
(iii) That the groups considered are finitely generated follows from Theorem

7.1.1(iii) and [Ver76, 2.4.2]. The statement on vanishing of those groups follows
from (v) and the additional fact that the same holds for the Π(KC)-modules Z/nZ,
n ≥ 1.

(iv) Quasi-unipotence of the action follows from the similar fact for the sheaves

RqΨh
η(ZXη

) in Theorem 7.1.1(iv). If X̂ is rig-smooth, one can find a distinguished
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model X. Theorem 5.3.1 implies that, for such X, there exists p ≥ 1 such that σp

acts trivially on the above sheaves, and the required fact follows from the spectral

sequence Ep,q2 = Hp(Xs, R
qΨh

η(ZXη
)) =⇒ Hp+q(X̂,Z). �

Corollary 9.1.3. For every prime l, there are canonical Π(KC)-equivariant iso-
morphisms

Hq(X̂,Z)⊗Z Zl→̃Hq(X ét,Zl) = lim
←−

Hq(X ét,Z/l
nZ) . �

The above functors are naturally extended to functors Ŷ• 7→ Hq(Ŷ• ,Λ
·) and

Ŷ• 7→ Hq(Ŷ • ,Λ
·) on the category of simplicial restricted K-analytic spaces Ŷ• .

The following statement easily follow from Corollary 7.1.5.

Corollary 9.1.4. Given a compact hypercovering a : Ŷ• → X̂, there are canoni-

cal isomorphisms Hq(X̂,Z)→̃Hq(Ŷ• ,Z) and Hq(X̂,Z)→̃Hq(Ŷ • ,Z) and, in partic-

ular, there are spectral sequences Ep,q1 = Hq(Ŷp,Z) =⇒ Hp+q(X̂,Z) and Ep,q1 =

Hq(Ŷ p,Z) =⇒ Hp+q(X̂,Z). �

Corollary 9.1.5. Given a finite covering of a compact strictly K-analytic space
X by compact strictly analytic subdomains, U = {Ui}i∈I , there are Leray spectral

sequences Ep,q2 = Ȟp(U ,Hq(Z)) =⇒ Hp+q(X,Z) and Ep,q2 = Ȟp(U ,Hq(Z)) =⇒
Hp+q(X,Z), where Hq(Z) and Hq(Z) are the presheaves U 7→ Hq(U,Z) and U 7→
Hq(U,Z) on the category of compact strictly analytic subdomains of X. �

Remark 9.1.6. An example of an admissible proper morphism is an admissible
blow-up , i.e., a blow-up with the property that the restriction of its center I
to every open quasicompact subscheme contains a nonzero element of K◦◦. It
would be interesting to know if the family of admissible blow-ups X′ → X for a
quasicompact special formal scheme X is cofinal in that of all admissible proper
morphisms. This is true if X is of finite type over K◦. In general, this would

imply that K-Ân coincides with the localization of the category of quasicompact
special formal schemes with respect to admissible formal blow-ups. Notice that the
canonical functor from the latter category to K-An goes through the category of
uniformly rigid spaces introduced by Kappen [Kap12]

9.2. Comparison theorem. Suppose we are given a morphism of germs of F-
analytic spaces (B, b) → (F, 0), a separated scheme Y of finite type over OB,b and

flat over OF,0, and a subscheme Z ⊂ Ys. The formal completion Ŷ/Z of Y along

Z as a special formal scheme over K̂◦. The scheme Y also defines a pro-F-analytic
space Yh over D.

Theorem 9.2.1. In the above situation, there are canonical isomorphisms

Hq(Yh(Zhs )η,Z)→̃Hq((Ŷ/Z)η,Z) and Hq(Yh(Zhs )η,Z)→̃Hq((Ŷ/Z)η,Z) .

Recall that the groups on the left hand sides are the inductive limits lim
−→

Hq(Vη,Z)

and lim
−→

Hq(Vη,Z) taken over open neighborhoods of Zh in (a representative of) Yh,

where Vη is the preimage of F∗ in V and Vη = Vη×F∗C with the fiber product taken
with respect to the exponential map C → C∗. (Recall that, if F = R, Hq(Vη,Z)
are the étale cohomology groups of the R-analytic space Vη.)
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Proof. Comparison Theorem 7.3.1 implies that there are canonical isomorphisms

RqΓ(Zh, RΘ(ZYhη ))→̃Hq((Ŷ/Z)η,Z) (resp. RqΓ(Zh, RΨη(ZYhη ))→̃Hq((Ŷ/Z)η,Z)).

Furthermore, since Y is separated, each representative of Yh is a paracompact
topological space and, therefore, Zh has a fundamental system of open paracompact
neighborhoods in Yh. From [Gro57, §3.10] it follows that

RqΓ(Zh, RΘ(ZYhη )) = lim
−→

RqΓ(V,Rj∗ZYhη ) = lim
−→

Hq(Vη,Z) .

This gives the first isomorphism. The second isomorphism is established in a similar
way. For this we use a construction from [SGA7, Exp. XIV].

Let C denote the set C ∪ {∞} provided with the topology which extends that
on C and such that a fundamental system of open neighborhoods of ∞ is formed
by the sets {z ∈ C

∣∣Re(z) < r} ∪ {∞}, r ∈ R. Then the exponential map C → C∗

extends to a continuous map C→ C that takes∞ to zero, and the action of π1(F∗)
on C extends to a continuous action on C. It is easy to see that the space C is
homeomorphic to the subset {0} ∪ {z ∈ C

∣∣Re(z) > 0} ⊂ C. In particular, it is

metrizable. Given a pro-analytic space X over D, we set X = X ×C C. Then the
last diagram in §2.3 can be complemented as follows

X

��
Xη

��

j //

j̃

==

XC

��

Xs

��

ioo

ĩ

aa

Xη
j // X Xs

ioo

Here j̃ is an open immersion, and the complement of its image is ĩ(Xs). Notice that,

for any point x ∈ Xs, each open neighborhood of the point ĩ(x) in X contains the
preimage of an open neighborhood of the point i(x) in XC. It follows that, for any

abelian sheaf F on Xη, there are canonical isomorphisms ĩ∗(Rj̃∗(F ))→̃RΨη(F ).
Applying the above construction to the pro-analytic space Yh, we get a pro-

topological space Yh. Since representatives of Yh are metrizable, then so are repre-

sentatives of Yh. It follows that Zh has a fundamental system of open paracompact

neighborhoods V in Yh and, therefore, RqΓ(Zh, RΨh(ZYh)) = lim
−→

RqΓ(V, Rj̃∗ZYh).

Since each open neighborhood of Zh in Yh contains the preimage of an open neigh-
borhoods of Zh in Yh, the latter group coincides with lim

−→
Hq(Vη,Z) as in the

formulation. �

Corollary 9.2.2. For every proper scheme Y over K, there are functorial isomor-
phisms

Hq(Yh,Z)→̃Hq(Yan,Z) and Hq(Yh,Z)→̃Hq(Yan,Z) ,

where Yh = Yh ×F∗ F.

Proof. We can find an open embedding Y ↪→ Y ′ in a proper scheme Y ′ over OF,0

for which Y = Y ′η and Yan = Ŷ ′η, and the inductive limit in Theorem 9.2.1 can
be taken over the preimages of open neighborhoods of zero in F. This gives the
required isomorphisms. �



102 VLADIMIR G. BERKOVICH

9.3. Compatibility with integral cohomology of algebraic varieties. Sup-
pose we are given a morphism of germs (B, b) → (F, 0), and set T = Spec(OB,b)
and Tη = T ⊗OF,0 K. The formal completion T̂ = Spf(ÔB,b) is a special formal

scheme over K̂◦ = ÔF,0.
A scheme X of finite type over Tη defines a pro-F-analytic space X h over D∗.

One sets X h = X h ×D∗ D∗ (it is a Π(KC)-space). Its base change X ⊗OB,b ÔB,b is

a scheme of finite type over Spec(ÔB,b ⊗K̂◦ K̂) and, therefore, it defines a strictly

K̂-analytic space X an over T̂η, which will be called the (non-Archimedean) analyti-
fication of X (see [Ber15, §3.2]).

Theorem 9.3.1. Every morphism ϕ : Y → X an from a compact strictly K̂-analytic
space Y to the analytification X an of a separated scheme X of finite type over Tη
gives rise to homomorphisms

Hq(X h,Z)→ Hq(Y,Z) and Hq(X h,Z)→ Hq(Y ,Z)

functorial in Y and X .

Remark 9.3.2. Functoriality in Y and X means that, given a morphism of compact

strictly K̂-analytic spaces Y ′ → Y and a morphism of schemes X → X ′ compatible
with a morphism of germs (B, b) → (B′, b′) over (F, 0), where X ′ is a separated
scheme of finite type over T ′η and T ′ = Spec(OB′,b′), the following diagrams are
commutative

Hq(X h,Z) // Hq(Y,Z)

��

Hq(X h,Z) // Hq(Y ,Z)

��
Hq(X ′h,Z)

OO

// Hq(Y ′,Z) Hq(X ′h,Z)

OO

// Hq(Y
′
,Z)

The vertical arrows here are the canonical ones, the upper horizontal arrows cor-
respond to the morphism ϕ : Y → X an, and the lower arrows correspond to the
induced morphism Y ′ → X ′an.

Let k be a non-Archimedean field with nontrivial discrete valuation, R a Henselian
discrete valuation ring whose completion is k◦, S a local noetherian flat R-algebra

with residue field k̃, and K the fraction field of R (e.g., R = OF,0 and S = OB,b as

above). For a scheme of X of finite type over S, the formal completion X̂ of X along
the closed fiber Xs (defined by the maximal ideal of S) is a special formal scheme

over k◦, whose generic fiber X̂η is a paracompact strictly k-analytic space. We set

Xη = X⊗RK, and denote by X an
η the analytification of the scheme Xη⊗S Ŝ (defined

in [Ber15, §3.2]). There is a canonical morphism X̂η → X an
η . If X is separated over

S, it identifies the former with a closed analytic subdomain of the latter and, if X
is proper over S, then X̂η→̃X an

η . If X is a scheme of finite type over S ⊗R K, then
Xη = X and we write X an instead of X an

η .

Lemma 9.3.3. Let X be a separated scheme of finite type over S ⊗R K, and Σ a
compact subset of X an such that the subset Σ0 = {x ∈ Σ

∣∣[H(x) : k] <∞} is dense
in Σ. Then

(i) there exists an open embedding X ↪→ Y in a separated scheme of finite type

over S such that X = Yη and Σ ⊂ Ŷη;
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(ii) given a homomorphism S′ → S from a similar local R-algebra S′, a sepa-
rated scheme X ′ of finite type over S′⊗R K, a morphism ϕ : X → X ′ com-
patible with the homomorphism S′ → S, and an open embedding X ′ ↪→ Y ′
in a separated scheme of finite type over S′ with X ′ = Y ′η and ϕan(Σ) ⊂ Ŷ ′η,
there exist separated morphisms of finite type Y ′′ → Y and ϕ′ : Y ′′ → Y ′
such that Y ′′η →̃Yη = X , ϕ′η = ϕ, and Σ ⊂ Ŷ ′′η .

Proof. (i) Step 1. By the Nagata compactification theorem (see [Con07]), there
exists an open embedding X ↪→ Z in a proper scheme Z over S flat over R. One

has Ẑη = Zan
η and Σ ∩ (Zη\X )an = ∅. It suffices therefore to verify the following

statement. Given a separated scheme X of finite type over S, a compact subset

Σ ⊂ X̂η, and a Zariski closed subset Y ⊂ Xη with Yan ∩Σ = ∅, there exists a blow-

up X ′ → X with X ′η→̃Xη and Σ ⊂ Ẑη, where Z is the complement of the Zariski
closure of Y in X ′.

Step 2. The statement is true if X = Spec(A) is an affine scheme. Indeed let
elements g1, . . . , gn ∈ A generate the ideal of Y in A⊗R K. We can find l ≥ 1 such
that the closed analytic domain W = {x ∈ X an

η

∣∣|gi(x)| ≤ |$|l for all 1 ≤ i ≤ n} has
empty intersection with Σ, where $ is a generator of the maximal ideal of R. Let
f : X ′ → X be the blow-up of X whose center is the ideal of A generated by the
elements $l, g1, . . . , gn. One of the open affine subschemes from the construction
of X ′ is W = Spec(B), where B is the quotient of A[T1, . . . , Tn]/($lTi − gi)1≤i≤n

by the k◦-torsion . Since Ŵη = W , it follows that π′(Σ) ∩ Ws = ∅, where π′ is

the reduction map X̂ ′η → X ′s. But Ws contains the intersection Y ′ ∩ X ′s, where Y ′
is the Zariski closure of Y in X ′. Thus, if Z is the complement of Y ′ in X ′, then

π′(Σ) ⊂ Zs and, therefore, Σ ⊂ Ẑη.

Step 3. The statement is true for arbitrary X . Indeed, let {X i}i∈I be a finite
open affine covering of X . By Step 2, for every i ∈ I there exists a blow-up

X ′′i → X i with X ′′iη →̃X iη and such that Σ∩X̂ iη ⊂ Ẑiη, where Zi = X ′′i\Yi and Yi is

the Zariski closure of Y ∩X iη in X ′′i. For every i ∈ I, the center of the i-th blow-up
can be extended to a coherent subsheaf of ideals Ji ⊂ OX that contains a nonzero
element of k◦◦. Let fi : X ′i → X be the blow-up with center Ji. We can find a
blow-up f : X ′ → X whose center contains a nonzero element of k◦◦ and such that,
for every i ∈ I, one has f = fi ◦ gi, where gi is a morphism X ′ → X ′i. We claim
that X ′ possesses the required property.

Indeed, that property is equivalent to the fact that π′(Σ)∩ (Y ′ ∩X ′s) = ∅, where

π′ is the reduction map X̂ ′η → X ′s and Y ′ is the Zariski closure of Y in X ′. Suppose

there exists a point x ∈ Σ with π′(x) ∈ Y ′∩X ′s. One has x ∈ Σ∩X̂ iη for some i ∈ I.

Then π′i(x) ∈ Y ′i ∩ X ′is , where π′i is the reduction map X̂ ′iη → X ′is and Y ′i is the

Zariski closure of Y in X ′i. Since X ′′i is an open subscheme of X ′i, the intersection
Y ′i ∩X ′′i coincides with the Zariski closure of Y ∩X iη in X ′′i, i.e., with Yi, and we

get π′i(x) ∈ Yi ∩ X ′′is . This contradicts the assumption Σ ∩ X̂ iη ⊂ Ẑiη.

(ii) Consider the graph morphism Γϕ : X → X ×Spec(S′) X ′ = (Y ×Spec(S′) Y ′)η.
We claim that the closure Y ′′ of Γϕ(X ) in Y×Spec(S′)Y ′ and the induced morphisms
Y ′′ → Y and ϕ′ : Y ′′ → Y ′ possess the required properties.

Indeed, by the construction, X = Y ′′η and ψ′η = ϕ. It remains to verify that

Σ ⊂ Ŷ ′′η . Since the subset Ŷ ′′η is closed in Y ′′an
η , it suffices to show that it contains all
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points x ∈ Σ0. The fieldH(x) of such a point x is the completion of a finite extension
K′ of K. The integral closure R′ of R in K′ is a Henselian discrete valuation ring.

Since x ∈ Ŷη and ϕan(x) ∈ Ŷ ′η, there are associated morphisms Spec(R′)→ Y and
Spec(R′) → Y ′, which give rise to a morphism Spec(R′) → Y ×Spec(S′) Y ′. The
image of Spec(K′) under the latter lies in Γϕ(X ). It follows that the image of the

closed point of Spec(R′) lies in Y ′′s . This implies that x ∈ Ŷ ′′η . �

Proof of Theorem 9.3.1. By Lemma 9.3.3(i), there exists an open embedding X ↪→
Y in a separated scheme Y of finite type over T and flat over K◦ such that X = Yη
and ϕ(Y ) ⊂ Ŷη. Comparison Theorem 7.3.1 implies that there is a canonical

isomorphism RΘ(ZYhη )→̃RΘh(ZŶη ) and, therefore, the morphism Y → Ŷη induced

by ϕ gives rise to a homomorphism

RqΓ(Yhs , RΘ(ZYhη ))→̃RqΓ(Yhs , RΘh(ZŶη )) = Hq(Ŷη,Z)→ Hq(Y,Z) .

Furthermore, the spectral sequence

Ep,q2 = Hp(Yhs , RqΘ(ZYhη )) =⇒ Rp+qΓ(Yhs , RΘ(ZYhη ))

gives rise to a homomorphism E0,q
2 = H0(Yhs , RqΘ(ZYhη )) → RqΓ(Yhs , RΘ(ZYhη )).

The composition of the canonical map Hq(X h,Z) → H0(Yhs , RqΘ(ZYhη )) with

the above two homomorphisms gives the required homomorphism Hq(X h,Z) →
Hq(Y,Z). That it does not depend on the choice of the open embedding X ↪→ Y
easily follows from Lemma 9.3.3(ii). That this homomorphism is functorial in Y is
trivial. Functoriality in X also easily follows from Lemma 9.3.3(ii). The homomor-

phism Hq(X h,Z)→ Hq(Y ,Z) is constructed in the same way. �

9.4. Compatibility with cohomology of the underlying topological space.
Given a K-analytic space X, there are morphisms of sites Xét → |X| and X ét →
|X|, where |X| and |X| denote the underlying topological Π(KC)-spaces of X and
X, respectively. It follows that, for any abelian group Λ, there are canonical ho-
momorphisms Hq(|X|,Λ) → Hq(Xét,Λ) and Hq(|X|,Λ) → Hq(X ét,Λ)) and, for
finite Λ’s, the groups on the right hand side coincide with the groups Hq(X,Λ) and
Hq(X,Λ), respectively.

Theorem 9.4.1. For every restricted K-analytic space X̂ and every abelian group
Λ, there are canonical homomorphisms

Hq(|X|,Λ)→ Hq(X̂,Λ) and Hq(|X|,Λ)→ Hq(X̂,Λ) ,

which are functorial in Λ and X and, for finite Λ’s, coincide with the above homo-
morphisms.

Proof. We construct the second homomorphism since the first one is constructed
in the same way.

Step 1. Suppose that X̂ comes from a formal scheme of the form Ŷ/Z , where Y
is a strictly semistable scheme over K◦ and Z is a union of some of the irreducible
components of Xs. As in the proof of [Ber00, Lemma 4.1], one deduces from re-
sults of [Ber99, §5] that there is a canonical isomorphism Hq(|X|,Λ)→̃Hq

Zar(ZC,Λ).
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Furthermore, the canonical homomorphism ΛZhC → Rτ∗(Λ(Zh)log) gives rise to a ho-

momorphism

Hq(ZhC,Λ)→ Hq(ZhC, RΨh
η(Λ(Ŷ/Z)η

)) = Hq(X̂,Λ) .

Thus, the canonical homomorphism Hq
Zar(ZC,Λ) → Hq(ZhC,Λ) gives rise to the

required homomorphism which is functorial in Λ and X̂.

Step 2. Suppose that X̂ ′ be a restricted K ′-analytic space for a finite extension

K ′ of K, and X̂ is the space X̂ ′ but considered as a restricted K-analytic space.

Then X̂→̃X̂ ′ × HomK(K ′,Ka) with the induced action of the Galois group of K.

Step 1 implies that there are homomorphisms Hq(|X|,Λ)→̃Hq(X̂,Λ) which are also

functorial on Λ and X̂.

Step 3. The functor X̂ 7→ Hq(|X|,Λ) is naturally extended to the category of

simplicial restricted K-analytic spaces. Thus, if Ŷ• is a simplicial restricted K-

analytic space such that each Ŷn is a finite disjoint union of spaces from Step 2,

then there are canonical homomorphisms Hq(|Y •η |,Λ) → Hq(Ŷ •η ,Λ) which are

functorial in Λ and Ŷ• .

Step 4: Let X̂ be a restricted K-analytic space, and let X be an arbitrary formal
model of X. By Temkin’s results from [Tem08] (or Theorem 3.1.3), there exists a

compact hypercovering a : Ŷ• → X̂ with Ŷ• as in Step 3. Then there are canonical
isomorphisms

Hq(|X|,Λ)→ Hq(|Y •η |,Λ)→ Hq(Ŷ •η ,Λ) = Hq(X̂,Λ) ,

which are easily verified to be functorial in Λ and X̂. �

10. Differential forms on distinguished log spaces and germs

10.1. Complexes ω·X and ω·X/R. Given a morphism of log F-analytic spaces ϕ :

X → B, one defines a coherent sheaf of relative logarithmic differentials ω1
X/B as

follows: it is the étale OX -module which the quotient of Ω1
X/B⊕(OX⊗ZM

gr
X ) by the

OX -submodule generated by local sections of the form (dβ(m), 0)− (0, β(m)⊗m)
and (0, 1⊗ n) with m and n local sections of MX and ϕ−1(MB), respectively. The
image of a local section m of Mgr

X under the homomorphism Mgr
X → ω1

X that takes

m ∈Mgr
X to (0, 1⊗m) is denoted by d log(m), and one has d log(f) = df

f for a local

section f of O∗X . If ϕ is log étale, then ω1
X/B = 0.

Notice that homomorphisms of OX -modules ω1
X/B → OX are in one-to-one cor-

respondence with ϕ−1(OB)-linear log derivations on OX , i.e., pairs (∂, ∂) consisting
of a ϕ−1(OB)-linear derivation ∂ : OX → OX and a homomorphism ∂ : Mgr

X → OX
(to the sheaf of additive groups OX) such that ∂(β(m)) = β(m)∂(m) and ∂(n) = 0
for all local sections m of MX and n of ϕ−1(MB). The ϕ−1(OB)-linear log deriva-
tions of OX form a sheaf of Lie ϕ−1(OB)-algebras DerX/B with respect to the Lie

bracket [(∂1, ∂1), (∂2, ∂2)] = ([∂1, ∂2], [∂1, ∂2]), where [∂1, ∂2] is defined in the usual
way and [∂1, ∂2](m) = ∂1(∂2(m))− ∂2(∂1(m)) for local sections m of MX .
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Let ωqX/B be the q-th exterior power of ω1
X/B over OX . The direct sum ω·X/B =

⊕∞q=0ω
q
X/B is a differential graded algebra. If the log structures on X and B are triv-

ial, then ω·X/B is the usual de Rham differential graded algebra Ω·X/B . The q-th de

Rham cohomology groups (ofX overB) are the groupsHq
dR(X/B) = RqΓ(X,ω·X/B).

If B = F0 provided with the trivial log structure, the de Rham complex and the de
Rham cohomology groups are denoted by ω·X and Hq

dR(X), respectively. If F = R,
the sheaves ωqXC

are provided with an action of the complex involution c compati-

ble with its action on XC. It follows that the groups Hq
dR(XC) are provided with

an action of the complex involution c, and one has Hq
dR(X) = Hq

dR(XC)〈c〉 and
Hq

dR(X)⊗R C→̃Hq
dR(XC).

The classical Poincaré lemma is extended to log spaces as follows: if the mor-
phism of the underlying F-analytic spaces is smooth and ϕ∗(MB)→̃MX , then for
every point x ∈ X, the canonical morphism of complexes ω·B,b → ω·X,x is a quasi-

isomorphism, where b = ϕ(x).
The definition of the relative de Rham complex extends in the evident way to

morphisms of log pro-analytic spaces in which all of the transition morphisms are
étale.

Till the end of this section, X is a distinguished log F-analytic space over ptR,
where R is from §5, i.e., R is either K◦r for 1 ≤ r <∞, or K◦ = OF,0 (in the latter
case we set r = ∞). Recall also that, if r = ∞, X comes from a distinguished log
germ (Y,X) over (F, 0) from Definition 5.1.1(ii), and it is provided with the étale
sheaf of local rings OX = i−1(OY (X))) and the log structure MX = i−1(MY (X)),

where i is the map X → Y (X). We also set ω·X = i−1(ω·Y (X)) and ω·X/R =

i−1(ω·Y (X)/F(0)), and denote by Hq
dR(X) and Hq

dR(X/R) the higher direct images

of the latter with respect to the functor of global sections on X. As above, if
F = R, the sheaves ωqXC/RC

are provided with an action of the complex involution

c compatible with its action on XC, and one has Hq
dR(X/R) = Hq

dR(XC/RC)〈c〉

and Hq
dR(X/R) ⊗R C→̃Hq

dR(XC/RC). Notice also that if X has a fundamental
system of open paracompact neighborhoods in Y , then the above groups are just
the de Rham cohomology groups of the log pro-F-analytic space Y (X), Hq

dR(Y (X))
and Hq

dR(Y (X)/F(0)), respectively, and one has

Hq
dR(X) = lim

−→
Hq

dR(V ) and Hq
dR(X/R) = lim

−→
Hq

dR(V/F) ,

where V runs through open neighborhoods of X in Y and the logarithmic structure
on the F-analytic affine line F is generated by the coordinate function z.

The sheaf ω1
ptR is an étale sheaf on F0. Its value on F0, denoted by ω1

R, is free of

rank one over R with generator d log($) for each $ ∈ π(R). If F = R, one has ω1
R =

(ω1
RC

)〈c〉. If $′ is another element of π(R), then d log($′) = (1 + δ$(α)
α )d log($),

where α = $′

$ .
The sheaves of OX -modules ωqX and ωqX/R are locally free, and there is an exact

sequence of complexes

(∗) 0→ ω1
R ⊗R ω·X/R[−1]

f→ ω·X → ω·X/R → 0 .

Here ω1
R is considered as a complex in degree one, the homomorphism f takes the

element d log($) ⊗ η for a local section η of ωq−1
X/R to the element d log($) ∧ η for

a local section η of ωq−1
X/R that lifts η. The exact sequence (∗) induces a connecting
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homomorphism

∇ : Hq
dR(X/R)→ ω1

R ⊗R H
q
dR(X/R)

called the Gauss-Manin connection. That ∇ is a connection, i.e., ∇(γx) = dγ ⊗
x+γ∇(x) for all γ ∈ R and x ∈ Hq

dR(X/R), follows from the facts it coincides with

the differential d0,q
1 of the spectral sequence Ep,q1 = Rp+qϕ∗(grp) =⇒ Rp+qϕ∗(ω

·
X)

of the filtered object

F 0 = ω·X ⊃ F 1 = ω1
R ⊗R ω·X/R[−1] ⊃ F 2 = 0

(see [EGA3, Ch. 0, 13.6.4]), the filtration is compatible with the exterior product,
i.e., F i ∧ F j ⊂ F i+j , and the sequence of functors Rqϕ∗ is multiplicative (see
[KO68]).

For each element $ ∈ π(R), the composition of ∇ with the isomorphism χ$ :
ω1
R→̃R : d log($) 7→ 1 is a homomorphism

δ$ : Hq
dR(X/R)→ Hq

dR(X/R)

so that ∇(x) = δ$(x)⊗d log($) for x ∈ Hq
dR(XC/RC). One has δ$$̃− $̃δ$ = $̃.

If $′ is another element of π(R) as above, then δ$ = (1 + δ$(α)
α )δ$′ . Thus,

the homomorphisms δ$ give rise to an action of the ring W (R) on the de Rham
cohomology groups Hq

dR(X/R).
The exact sequence (∗) gives rise to the similar long exact sequence for coho-

mology sheaves of the complexes and, in particular, to a similar homomorphism of
sheaves

∇ : Hq(ω·X/R)→ ω1
R ⊗R Hq(ω·X/R) .

which is easily seen to possess the similar property ∇(γx) = d(γ)⊗ x+ γ∇(x) for
all γ ∈ R and all local sections x of Hq(ω·X/R). Again, for each element $ ∈ π(R)

the composition of ∇ with the isomorphism χ$ : ω1
R→̃R : d log($) 7→ 1 gives a

homomorphism

δ$ : Hq(ω·X/R)→ Hq(ω·X/R) ,

and all these homomorphisms give rise to an action of the ring W (R) on the sheaves
Hq(ω·X/R).

We now notice that the above operators δ$ on the groups Hq
dR(X/R) and the

sheaves Hq(ω·X/R) are induced by endomorphisms δ̃$ of the complex ω·X/R in the

derived category of complexes of sheaves of F-vector spaces. Namely, δ̃$, as a
morphism in the derived category, is defined by the canonical quasi-isomorphism

C(f)· → ω·X/R and the morphism of complexes δ̃$ : C(f)· → ω·X/R, which is the

composition of the canonical morphism −δ(f) : C(f)· → ω1
R ⊗R ω·X/R and the

isomorphism ω1
R→̃R : d log($) 7→ 1. It follows that the spectral sequence

(∗∗) Ep,q2 = Hp(X,Hq(ω·X/R)) =⇒ Hp+q
dR (X/R)

is compatible with the action of the operators δ̃$. We will show in §10.5 that the

operators δ̃$ define a homomorphism from W (RC) to the endomorphism ring of
ω·XC/RC

in the derived category of sheaves of F-vector spaces on XC.

In what follows we also consider modified de Rham complexes, which are more
general than the complex ω·XC

and to which some results are extended without any
extra effort. Such a complex ω·XC,λ

is associated to a number λ ∈ Q ∩ [0, r) and

consists of Π(RC)-sheaves of C-vector spaces on the Π(RC)-space XC. (If λ = 0, it
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is the usual de Rham complex ω·XC
.) Given q ≥ 0, the sheaf ωqXC,λ

that corresponds

to $ ∈ Π(RC) is canonically isomorphic to the subsheaf $̃[λ]ωqXC
of ωqXC

, where

[λ] is the integral part of λ, but it is convenient to denote it by $−λ$̃[λ]ωqXC
. The

reason is that the differential d : ωqXC,λ
→ ωq+1

XC,λ
is defined by

d($−λη) = $−λ(−λd log($) ∧ η + dη) ,

where η is a local section of the sheaf $̃[λ]ωqXC
. Given a β-morphism ϕ : $ → $′

in Π(RC), the corresponding morphism $−λ$̃[λ]ωqXC
→ $′−λ$̃′[λ]ωqXC

takes the

above $−λη to $′−λ exp(−λβ)ϕω(η), where ϕω is the corresponding automorphism
of ωqXC

. (Recall that ϕω(η) = η (resp. ηc) if ϕ is of first (resp. second) type.) We

also set Hq
dR,λ(XC) = RqΓ(XC, ω

·
XC,λ

). We notice that the there is a homomor-

phism of complexes of Π(RC)-sheaves:

ω·XC,λ−[λ] → ω·XC,λ : $−(λ−[λ])η 7→ $−λ$̃[λ]η ,

which is an isomorphism if r =∞, and induces an isomorphism ω·X′C,λ−[λ]→̃ω
·
XC,λ

,

where X ′ is the closed analytic subspace Xr−[λ] of X (see Example 5.1.2(iii)). This
isomorphism gives rise to an isomorphism of Π(RC)-sheaves CX′C,λ−[λ]→̃CXC,λ, and

often allows one to reduce some problems to the case λ ∈ [0, 1).
The same construction defines similar complexes ω·YC,λ

(resp. ω·YC,λ
) and de

Rham cohomology groups Hq
dR,λ(YC) (resp. Hq

dR,λ(YC)) for any log F-analytic

space Y (resp. any log scheme Y of finite type) over R.

10.2. Cohomology sheaves of the complexes ω·XC,λ
and ω·XC/RC

.

Proposition 10.2.1. The homomorphism Mgr
X → ω1

X : m 7→ d log(m) gives rise
to isomorphisms of Π(RC)-sheaves on XC

CXC,λ ⊗Z

q∧
M

gr

XC
→̃Hq(ω·XC,λ)

and isomorphisms of sheaves of C-vector spaces on XC, which commute with the
action of the ring W (RC),

CXC
⊗Z

q∧
M

(nont)

XC/RC
→̃Hq(ω·XC/RC

) .

In §10.5, we provide ω·XC/RC
with the structure of a W (RC)-module in the de-

rived category of sheaves of C-vector spaces on XC such that the latter isomorphism
is an isomorphism of W (RC)-modules.

The proposition is an easy consequence of Lemma 10.2.4 which gives a local
description of the complexes ω·XC,λ

and ω·XC/RC
(and also includes an analog of

Lemma 17 from [HoAt55]). For this we recall the following classical construction.
Let A be a commutative C-algebra provided with p pairwise commuting C-linear

maps D1, . . . , Dp : A→ A. One associates with these objects a complex of C-vector
spaces K·A(D1, . . . , Dp) with Kq

A(D1, . . . , Dp) =
∧q
A(Ap) and the differential defined

by

d(flj1 ∧ · · · ∧ ljq ) =

p∑
i=1

Di(f)li ∧ lj1 ∧ · · · ∧ ljq .

It is called the Koszul complex on A with operatorsD1, . . . , Dp. IfD1 = . . . = Dp =
0, this complex (with zero differentials) will be denoted by K·A(0p). Notice that if
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one of the maps is bijective, the complex K·A(D1, . . . , Dp) is exact. Indeed, suppose

Di is bijective. We define a C-linear map Fi : Kq
A(D1, . . . , Dp)→ Kq−1

A (D1, . . . , Dp)
that takes flj1 ∧ · · · ∧ ljq with j1 < . . . < jq to zero, if i 6∈ {j1, . . . , jq}, and to

D−1
i (f)lj1 ∧ . . . ∧ l̂jk ∧ . . . ∧ ljq , if i = jk. Then Fi ◦ d+ d ◦ Fi = Id.

Construction 10.2.2. Suppose that A is a commutative C-algebra which is em-
bedded in the C-vector space of formal power series of the form f =

∑
k∈Zn akT

k

with coefficients in C and such that, if f as above lies in the image of A, then
the latter contains the elements

∑
k∈S akT

k for all subsets S ⊂ Zn (see examples
of such A’s below). Suppose we are given a tuple of functions δ = (δ1, . . . , δp)

on k ∈ Zn with values in C . For 1 ≤ i ≤ p + 1, let A
(i)
δ denote the C-vector

subspace of A whose nonzero elements are f ’s as above in which the sum is taken
over the tuples k with the property δj(k) = 0 for all 1 ≤ j ≤ i − 1 and δi(k) 6= 0.
(If i = p + 1, the latter condition is empty.) Then there is an isomorphism of

C-vector spaces ⊕p+1
i=1A

(i)
δ →̃A. Finally, suppose we are given p pairwise commutat-

ing C-linear maps D1, . . . , Dp : A → A such that, if f =
∑

k∈Zn akT
k lies in the

image of A, one has Di(f) =
∑

k∈Zn akδi(k)Tk for each 1 ≤ i ≤ p. Then for every

1 ≤ i ≤ p, Di induces an injective C-linear operator A
(i)
δ → A

(i)
δ , and we assume

that this operator is bijective. (This amounts to convergence of the formal power
series D−1

i (Tj), 1 ≤ j ≤ p, and will always hold in our examples.) Then one can
define subcomplexes E·δ,1, . . . , E

·
δ,m+1 of K·A(D1, . . . , Dp) in which

Eqδ,i = {ω =
∑
j

fjlj1 ∧ . . . ∧ ljq
∣∣fj ∈ A(i)

δ } ,

and there is an isomorphism of complexes ⊕p+1
i=1E

·
δ,i→̃K·A(D1, . . . , Ds). Since the

restriction of each Di to A
(i)
δ for 1 ≤ i ≤ p is a bijection, one can define C-linear

maps Fi : Eqδ,i → Eq−1
δ,i (as above) with Fi · d + d · Fi = Id. This means that

the complexes E·δ,1, . . . , E
·
δ,p are acyclic and, therefore, there is a canonical quasi-

isomorphism

E·δ,p+1→̃K·A(D1, . . . , Dp) .

Examples 10.2.3. Here are some of the examples of C-algebras to which Con-
struction 10.2.2 will be applied in this and the following sections with the field

K = K̂.

(1) A is the local ring OXh,x, where X is the log scheme Spec(Cr) with

Cr = K◦r [T1, . . . , Tn]/(T e11 · . . . · T emm − z, T re11 · . . . · T reνν ), if r <∞,

and C∞ = K◦[T1, . . . , Tn]/(T e11 · . . . · T emm − z), if r =∞,
1 ≤ ν ≤ m ≤ n, the log structure on X is generated by the coordinate
functions T1, . . . , Tm, the morphism of log schemes X → ptR is defined by
the homomorphism z 7→ T e11 · . . . · T emm , and x is the zero point of X h,
i.e., ti(x) = 0 for all 1 ≤ i ≤ n, where ti is the image of Ti in Cr. (If
r < ∞, z is a fixed generator of R◦◦.) Each element of A has a unique
representation as a power series f =

∑
k∈Zn+

akt
k over C taken over tuples

k = (k1, . . . , kn) ∈ Zn+ with the property that, if r < ∞, then ki < rei
for some 1 ≤ i ≤ ν, and such that f is convergent at each point from the
intersection of X h with a small ball in Cn with center at zero. Notice that
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the local ring OX,x for a distinguished log analytic space (for r < ∞) or
germ (for r =∞) X over ptR is of the above form A.

(2) B is the localization of A from (1) with respect to powers of the element
t1 · . . . · tµ with 1 ≤ µ < ν if r < ∞ (resp. 1 ≤ µ < m if r = ∞). Each
element of B has a unique representation as a power series f =

∑
k∈Zn akt

k

taken over tuples k ∈ Zµ × Zn−µ+ such that (t1 · . . . · tµ)lf ∈ A for some
l ≥ 0. If X ′ is the spectrum of the localization of Cr with respect to powers
of the element t1 · . . . · tµ and j denotes the open immersion X ′ ↪→ X , then
B is the stalk at x of the analytification (j∗OX ′)h of the sheaf j∗OX ′ .

(3) B′ is the stalk at x of the sheaf jh∗OX ′h for X ′ from (2). Each element of B′

has a unique representation as a power series f =
∑

k∈Zn akt
k taken over

tuples k ∈ Zµ × Zn−µ+ with the property that, if r < ∞, then ki < rei for
some µ + 1 ≤ i ≤ ν and such that f is convergent at each point from the
intersection of X ′h with a small ball in Cn with center at zero.

Lemma 10.2.4. In the examples (1)-(3), the following is true:

(i) the map lj1 ∧ . . .∧ ljq 7→ d log(Tj1)∧ . . .∧ d log(Tjq ), 1 ≤ j1 < . . . < jq ≤ m,
induces quasi-isomorphisms of complexes

CXh,λ,x ⊗C K·C(0m)→̃ω·Xh,λ,x→̃(j∗ω
·
X ′,λ)hx→̃(jh∗ω

·
X ′h,λ)x ;

(ii) the map lj1∧. . .∧ljq 7→ d log(Tj1)∧. . .∧d log(Tjq ), 1 ≤ j1 < . . . < jq ≤ m−1,
induces quasi-isomorphisms of complexes

CXh,x ⊗C K·C(0m−1)→̃ω·Xh/R,x→̃(j∗ω
·
X ′/R)hx→̃(jh∗ω

·
X ′h/R)x .

We notice that the complexes (j∗ω
·
X ′,λ)hx and (j∗ω

·
X ′/R)hx depend only on the

complex analytic germs (X h, x) and (Yh, x), where Y = X\X ′. Indeed, if J is the
subsheaf of ideals of OXh with support Yh, then (j∗ω

q
X ′,λ)hx and (j∗ω

q
X ′/R)hx coincide

with the stalks at x of the sheaves lim
−→
n

Hom(J n, ωqXh,λ) and lim
−→
n

Hom(J n, ωqX/R),

respectively.

Proof. In the situation of examples (1)-(3), we set e = g.c.d.(e1, . . . , em), e′i = ei
e

for 1 ≤ i ≤ m, and we denote by % the image of the element T
e′1
1 · . . . · T

e′m
m in A.

Notice that %e = z, and % generates the R-algebra CXh,x. If λ is of the form p
e with

0 ≤ p < re, then CXh,λ,x = C%p, and if λ is not of that form, then CXh,λ,x = 0. Let
U be one of the rings A, B, or B′.

(i) First of all, the isomorphism from the end of §10.1 reduces the situation to
the case λ ∈ [0, 1). In this case each of the complexes on the right hand side is
naturally isomorphic to the Koszul complex

K·U

(
D1, . . . , Dm,

∂

∂Tm+1
, . . . ,

∂

∂Tn

)
,

where Di = Ti
∂
∂Ti
− λei · Id. The classical Poincaré lemma implies that the latter

complex is quasi-isomorphic to the Koszul complex K·U ′(D1, . . . , Dm) of the similar
ring U ′ with n = m. We may therefore assume that n = m.

Since Di(T
k) = (ki − λei)Tk, we can apply Construction 10.2.2 for the tuple of

functions δ = (δ1, . . . , δm) with δi(k) = ki − λei. The C-linear maps Di : U iδ →
U iδ are bijective and, therefore, the complex considered is quasi-isomorphic to the

subcomplex E·δ,m+1. The space U
(m+1)
δ consists of the elements f =

∑
k akT

k ∈ U
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in which the sum is taken over k’s with ki = λei for all 0 ≤ i ≤ m. If λ is not of the
form p

e with 0 ≤ p < re, then such k do not exist and, therefore, E·δ,m+1 = 0, and

it is precisely the case when CXh,λ,x = 0. Suppose now that λ = p
e for 0 ≤ p < re.

Then for the above k one has ki = pe′i for all 1 ≤ i ≤ m, and the image of Tk in

U is the element %p. This implies that U
(m+1)
δ = C%p = CXh,λ,x and, therefore,

CXh,λ,x ⊗C K·C(0m)→̃E·δ,m+1.

(ii) Let F ·U and G·U denote the complexes that corresponds to U in (i) and
(ii), respectively. The U -module G1

U is the quotient of F 1
U by the U -submodule

generated by the one-form d log(z) =
∑m
i=1 eid log(Ti), and, in particular, it is a free

U -module of rank n−1 with generators d log(T1), . . . , d log(Tm−1), dTm+1, . . . , dTn.
For 1 ≤ i ≤ m− 1, we set Di = Ti

∂
∂Ti
− ei

em
Tm

∂
∂Tm

. Then for any f ∈ U , one has

m−1∑
i=1

Di(f)d log(Ti) +

n∑
i=m+1

∂f

∂Ti
dTi = df − 1

em
Tm

∂f

∂Tm
d log(z) .

This implies that there is a canonical isomorphism of complexes

K·U

(
D1, . . . , Dm−1,

∂

∂Tm+1
, . . . ,

∂

∂Tn

)
→̃G·U .

As in (i), the Poincaré lemma reduces the situation to the case n = m.
One has Di(T

k) = δi(k)Tk for δi(k) = ki − km ei
em

, and the corresponding map

Di : U
(i)
δ → U

(i)
δ is bijective. We can therefore apply Construction 10.2.2. It follows

that the canonical map E·δ,m → K·U (D1, . . . , Dm−1) is a quasi-isomorphism. If k is

a tuple as above with ki = km
ei
em

for all 1 ≤ i ≤ m, then ki = pe′i with 0 ≤ p < re

for all 1 ≤ i ≤ m. It follows that U
(m)
δ is the R-algebra generated by the element

%, i.e., it coincides with CXh,x. This implies that CXh,x ⊗C K·C(0m−1)→̃E·δ,m. �

Proof of Proposition 10.2.1. In order to show that the homomorphisms constructed
are isomorphisms, we may assume that F = C and that X and x are from Example

10.2.3(1) with K = K̂. Both isomorphisms follow from Lemma 10.2.4. It remains
to show that the second isomorphism is a homomorphism of modules over W (R).
By the above description, each cohomology class in Hq(ω·X/R)x is represented by a

C-linear combination of elements of the form ξ = %iη with η = d log(Tj1) ∧ . . . ∧
d log(Tjq ) and %i ∈ CX,λ,x for λ = i

e < r. One has dξ = λ%id log($) ∧ η. The form

on the right hand side is the image of element d log($)⊗λξ ∈ (ω1
R⊗Rω·X/R[−1])q+1

x .

It follows that δ$(ξ) = λξ. �

Corollary 10.2.5. In the situation of Proposition 10.2.1, if λ is a complex number
such that the C-linear operator δ$ − λ is not invertible on Hq

dR(XC/RC) for some
q ≥ 0, then λ ∈ Q ∩ [0, r) and CXC,λ 6= 0.

Proof. If λ is a complex number, which does not lie in Q ∩ [0, r), or CXC,λ = 0,
then the operator δ$ − λ is invertible on all of the sheaves Hq(ω·XC/RC

). This

implies that the operator δ̃$ − λ is invertible on all of the C-vectors spaces Ep,q2

from the spectral sequence (∗∗) in §10.1 and, therefore, it is invertible on the groups
Hq

dR(XC/RC). �
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10.3. Complexes ω·
Xlog

C

and ω·
Xlog

. In [KN99, §3], the space X log
C is provided with

a sheaf of differential graded C-algebras ω·
Xlog

C

(denoted there by ω·,log
XC

). We recall

the construction. Consider the exact sequence of abelian sheaves (see §5.3)

0 −→ τ−1(OXC
)

µ−→ LXlog
C
−→ τ−1(M

gr

XC
) −→ 0 .

One defines a sheaf of τ−1(OXC
)-algebras OXlog

C
by

OXlog
C

= (τ−1(OXC
)⊗Z SymZ(LXlog

C
))/J ,

where J is the sheaf of ideals generated by local sections of the form f⊗1−1⊗µ(f)
for local section f of τ−1(OXC

). The canonical homomorphism LXlog
C
→ OXlog

C

is universal among homomorphisms from LXlog
C

to τ−1(OXC
)-algebras. One also

defines a sheaf of differential graded C-algebras on X log
C by

ω·
Xlog

C

= OXlog
C
⊗τ−1(OXC

) τ
−1(ω·XC

) .

We consider ωq
Xlog

C

as single Π(RC)-sheaves on the Π(RC)-space X log
C so that mor-

phisms of first (resp. second) type act trivially (resp. as the complex conjugation).
We introduce Π(RC)-sheaves of C-algebras and of differential graded τ−1(OXlog

C
)-

algebras on X log by O
Xlog = ν−1(OXlog

C
) and ω·

Xlog
= ν−1(ω·

Xlog
C

), respectively. The

restrictions of the above Π(RC)-sheaves to X($) are denoted by OX($) and ω·
X($) ,

respectively, and for a morphism ϕ : $ → $′ in Π(RC), the corresponding isomor-
phism (tϕ)−1(ω·

X($))→̃ω·X($′) is denoted by ϕω. For example, if ϕ : $ → $′ is a

β-morphism (of any type), ϕω takes log($) to log($′) + β (see Example 5.3.2(i)).
Notice that the Poincaré lemma implies the following fact: given a smooth mor-

phism ϕ : X ′ → X with ϕ∗(MX)→̃MX′ , for every point y′ ∈ X ′log, the canonical
morphisms of complexes ω·

Xlog
C ,y

→ ω·
X′log

C ,y′
and ω·

Xlog,y
→ ω·

X′log,y′
are quasi-

isomorphisms, where y, y′ and y are the images of the point y′ in X log
C , X ′log

C and

X log, respectively.

We are going to introduce bigger complexes of sheaves of RC-modules on X log
C

and X log

ω·
Xlog

C

= ⊕λ∈Q∩[0,r)ω
·
Xlog

C ,λ
and ω·

Xlog
= ⊕λ∈Q∩[0,r)ω

·
Xlog,λ

,

where ω·
Xlog,λ

= ν−1(ω·
Xlog

C ,λ
) and each ω·

Xlog
C ,λ

is related to the complex ω·XC,λ

from the previous subsection. As in the definition of the latter, ωq
Xlog

C ,λ
in essence

coincides with the subsheaf $̃[λ]ωq
Xlog

C

of ωq
Xlog

C

, but its differential is different so

that it is convenient to denote it by $−λ$̃[λ]ωq
Xlog

C

. Namely, it is defined by

d($−λη) = $−λ(−λd log($) ∧ η + dη)

for a local section η of $̃[λ]ωq
Xlog

C

(e.g., d($−λ$̃[λ]) = $−λ([λ] − λ)$̃[λ]d log($)).

The sheaves ω0
Xlog

C ,λ
and ω0

Xlog,λ
are also denoted by OXlog

C ,λ and O
Xlog,λ

, respec-

tively.
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If ϕ : $ → $′ is a β-morphism in Π(RC) as above, then the corresponding
isomorphism ϕω : (tϕ)−1($−λ$̃[λ]ωq

X($))→̃$′−λ$̃′[λ]ωq
X($′) is defined by

ϕω($−λη) = $′−λ exp(−λβ)ϕω(η) .

The element ϕω(d($−λη)) is equal to $′−λ exp(−λβ) multiplied by

ϕω(−λd log($) ∧ η + dη) = −λ (d log($′) + dβ) ∧ ϕω(η) + dϕω(η) .

On the other hand, the element dϕω($−λη) is equal to $′−λ multiplied by

−λ exp(−λβ)d log($′) ∧ ϕω(η) + d(exp(−λβ)ϕω(η)) =

= exp(−λβ) (−λd log($′) ∧ ϕω(η)− λdβ ∧ ϕω(η) + dϕω(η)) .

This means that ω·
Xlog

C ,λ
and ω·

Xlog,λ
are complexes of sheaves of Π(RC)-modules on

the Π(RC)-spaces X log
C and X log, respectively. If λ = 0, they coincide with ω·

Xlog
C

and ω·
Xlog

.

We now provide the sheaves ωq
Xlog

C

and ωq
X($) with a different structure of an

RC-module so that the differentials between them commute with the action of RC

and the complexes ω·
Xlog

C

and ω·
Xlog

becomes a complex of sheaves of RC-modules.

Namely, for $ ∈ Π(RC) we define

$̃ · ($−λη) = $−(λ+1)($̃η)

for a local section η of $̃[λ]ωq
Xlog

C

and $̃[λ]ωq
X($) , respectively, as above. One has

d($̃ · ($−λη)) = $−(λ+1)(−(λ+ 1)d log($) ∧ ($̃η) + d($̃η) =

= $−(λ+1)($̃(−λd log($) ∧ η + dη)) = $̃ · d($−λη) .

This means that the endomorphism of multiplication by $̃ commutes with the
differential. Furthermore, given a morphism ϕ : $ → $′ in Π(RC) as above, the
element ϕω($̃ · ($−λη)) is equal to

ϕω($−(λ+1)($̃η)) = $′−(λ+1) exp(−(λ+ 1)β)$̃ϕω(η) .

Since exp(−β)$ = $′, that element is equal to

$′−(λ+1)$̃′ exp(−λβ)ϕω(η) = $̃′ · ϕω($−λη) .

Thus, ωq
Xlog

C

and ω·
Xlog

are complexes of sheaves of RC-modules on X log
C and X log,

respectively.
There is a canonical morphism of complexes of sheaves of Π(RC)-modules on

X log
C

hλ : τ−1(CXC,λ)→ ω·
Xlog

C ,λ
,

where τ−1(CXC,λ) is considered as a complex in degree zero. Namely, by the def-

inition of CXC,λ (see §5.2), if U is a connected open subset of XC and λ 6= j
kU

for 0 ≤ j < rkU , then C($)
λ (U) = 0 for all $ ∈ Π(RC). Suppose λ = j

kU
for

0 ≤ j < rkU . Then C($)
λ (U) is the one-dimensional C-vector space generated by

the element tj = $̃[λ]tp with tkU = $̃ and p = j−kU ·λ. We define a homomorphism

C($)
λ (U)→ $−λ$[λ]OXlog

C
(τ−1(U)) by sending tj to $−λtj . One has

d($−λtj) = $−λ
(
−λtjd log($) + jtjd log(t)

)
= 0
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and, therefore, hλ is a morphism of complexes. Given a β-morphism ϕ : $ → $′ in

Π(RC) of first (resp. second) type, the corresponding homomorphism from C($)
λ (U)

to C($′)
λ (U) (resp. C($′)

λ (c(U))) takes atj to a exp(−λβ)tj (resp. a exp(−λβ)(tc)j)
for a ∈ C. It is compatible with the similar homomorphism for the sheaf of Π(RC)-
modules $−λ$[λ]OXlog

C
. Thus, hλ is a morphism of complexes of sheaves of Π(RC)-

modules. Finally, one has

hλ($̃tj) = hλ(tj+kU ) = $−(λ+1)($̃tj) = $̃ · hλ(tj)

and, therefore, the morphism h : τ−1(CXC
) → ω·

Xlog
C

induced by hλ’s is morphism

of complexes of RC-modules on X log
C . The above morphisms gives rise to similar

morphisms of complexes of sheaves of Π(RC)-modules hλ : τ−1(CXC,λ) → ω·
Xlog,λ

and of RC-modules h : τ−1(CXC
)→ ω·

Xlog
on X log.

Proposition 10.3.1. The morphism hλ is a quasi-isomorphism (and, therefore,
h, hλ and h are quasi-isomorphisms).

Proof. We may assume that F = C.
Step 1. It suffices to show that, for every point y ∈ X log, there is a canonical

quasi-isomorphism C($)
X,λ,x→̃$−λ$̃[λ]ω·Xlog,y, where x = τ(y). We may therefore

assume that X = Spec(B)h with B as in Definition 5.1.1 and x is the zero point
in X, i.e., Ti(x) = 0 for all 1 ≤ i ≤ n. (We use notations from that definition).
By the Poincaré lemma, we may even assume that n = m. Notice that for any
connected open neighborhood V of x one has kV = eV = e = g.c.d.(e1, . . . , em).
We set A = OX,x. By [KN99, (3.3)], if we fix elements of LXlog,y whose images

under the exponential map LXlog,y →M
gr

X,x are the generators T1, . . . , Tm of P (X),
we get an isomorphism R[S1, . . . , Sm]→̃OXlog,y. It follows that, for every q ≥ 0,
one has

ωq
Xlog,y

= A⊗C ΩqC[S1,...,Sm]/C

with d$ =
∑m
i=1 eidSi and dTi = TidSi for 1 ≤ i ≤ m. Elements of the C-algebra

A are represented as convergent power series
∑

k akT
k, where ak ∈ C and the sum

is taken over the tuples k = (k1, . . . , km) ∈ Zm+ with ki < rei for some 1 ≤ i ≤ µ.
For such k, one has

d($−λTk) = $−λTk
m∑
i=1

(ki − λei) dSi .

Notice that ki − λei = 0 for all 1 ≤ i ≤ m if and only if λ = j
e for some 0 ≤ j < re,

an in this case ki = je′i for all 1 ≤ i ≤ m, where e′i = ei
e .

Step 2. We set V q = ΩqC[S1,...,Sm]/C and, for a tuple of complex numbers p =

(p1, . . . , pm), define a differential dp : V q → V q+1 by

dpω = −

(
m∑
i=1

pidSi

)
∧ ω + dω .

Each element ω ∈ ωq
Xlog,y

is a convergent sum
∑

k T
kωk with maxk{deg(ωk)} <∞,

where the degree of
∑

j fjdSj1∧. . .∧dSjq ∈ V q is the maximum of degrees of nonzero

fj’s. Set e = (e1, . . . , em), Then there is a morphism of complexes

(V ·, dλe−k)→ $−λω·Xlog,y : η 7→ $−λTkη
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such that (Tkη)k′ = δk,k′η. Furthermore, the correspondence ω 7→ ωk defines a
morphism of the same complexes in the opposite direction.

Thus, in order the prove proposition, it suffices to construct, for every nonzero
tuple p, a system of C-linear maps F qp : V q → V q−1 with dq−1

p ◦F qp +F q+1
p ◦dqp = Id

and such that, for every η ∈ V q, one has deg(F qp(η)) ≤ deg(η) and, for every

ω ∈ ωq
Xlog,y

such that ωk = 0 for k with λe − k = 0 (as at the end of Step 2), the

sum
∑

k T
kF qλe−k(ωk) is convergent.

Step 3. Let |p| denote the Euclidean length of a nonzero tuple p ∈ Cm. Then
the tuple p

|p| lies on the unit sphere in Rm and, therefore, there exists an orthogonal

(m×m)-matrix D that takes it to the tuple p0 = (1, 0, . . . , 0), and for the matrix
C = 1

|r|D one has p · C = p0. Notice that all entries cij of the matrix C are of

length at most |p|−1. Consider the automorphism ϕ of the C-algebra C[S1, . . . , Sm]
which is induced by the linear transformation ϕ(Si) =

∑m
j=1 cijSj . It gives rise to

an isomorphism of complexes Φ· : (V ·, dp)→̃(V ·, dp0
). The latter is isomorphic to

the tensor product V ·1 ⊗C Ω·C[S2,...,Sm]/C, where V ·1 is the complex constructed for

the ring of polynomials C[S1] and the tuple 1. The required homotopy for C[S1],
i.e. a C-linear map F1 : V 1

1 = C[S1]dS1 → V 0
1 = C[S1], is given by the formula

F1(Sn1 dS1) = −Sn1 −
n∑
i=1

(−1)in(n− 1) · . . . · (n− i+ 1)Sn−i1

It induces a homotopy F qp0
: (V q, dp0) → (V q−1, dp0) which, in its turn, induces

a homotopy F qp = (Φq−1)−1 ◦ F qp0
◦ Φq : (V q, dp) → (V q−1, dp) that satisfies the

required properties. �

Corollary 10.3.2. There is a canonical quasi-isomorphism of complexes of sheaves
of Π(RC)-modules on the Π(RC)-space XC

Rτ∗(τ
−1(CXC,λ))→̃ω·XC,λ .

Proof. By Proposition 10.3.1, there is a canonical quasi-isomorphism of complexes
of Π(RC)-sheaves τ−1(CXC,λ)→̃ω·

Xlog
C ,λ

. It gives rise to an isomorphism in the

derived category

Rτ∗(τ
−1(CXC,λ))→̃Rτ∗(ω·Xlog

C ,λ
)

Thus, it remains to show that the canonical morphism of complexes ω·XC,λ
→

τ∗(ω
·
Xlog

C ,λ
) induces, for every q ≥ 0, an isomorphism of sheaves Hq(ω·XC,λ

) →
Rqτ∗(ω

·
Xlog

C ,λ
) = Rqτ∗(τ

−1(CXC,λ)) is an isomorphism. For this we may assume

that F = C, and the latter homomorphism can be described as follows.
The quasi-isomorphism τ−1(CX,λ)→̃ω·Xlog,λ gives rise to short exact sequences of

sheaves

0→ τ−1(CX,λ)→ OXlog,λ → Ker(ω1
Xlog,λ

d→ ω2
Xlog,λ)→ 0 , and

0→ d(ωq−2
Xlog)→ ωq−1

Xlog,λ
→ Ker(ωq

Xlog,λ

d→ ωq+1
Xlog,λ

)→ 0 , q ≥ 2.

The long exact sequences associated to the left exact functor τ∗ give rise, by induc-
tion, to a homomorphism of sheaves

Hq(τ∗(ω·Xlog,λ))→ Rqτ∗(τ
−1(CX,λ)) ,
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whose composition with the canonical map Hq(ω·X,λ) → Hq(τ∗(ω·Xlog,λ)) gives the

required homomorphism

Hq(ω·X,λ)→ Rqτ∗(τ
−1(CX,λ)) .

Since this homomorphism commutes with cup product, the situation is reduced
to the case q = 1 and λ = 0. In this case, by Proposition 10.2.1 and [KN99,

Lemma (1.5)], there are canonical isomorphisms f : CX ⊗ZX M
gr

X →̃H1(ω·X) and

g : C(−1)X ⊗ZX M
gr

X →̃R1τ∗(CXlog), where C(−1) = C ⊗Z
1

2πiZ. The homomor-

phism a ⊗ 1
2πin 7→

an
2πi identifies the latter with C, and it follows easily from the

constructions of f and g that the homomorphism considered induces the identity
map on CX ⊗ZX M

gr

X . This gives the required fact. �

Corollary 10.3.3. For every distinguished formal scheme X over K◦, there is a
compatible system of canonical isomorphisms

RΘh(FXη
)→̃ω·

Xh

sr

.

Proof. If F = C, then RΘh(CXη
) coincides with the left hand side of the iso-

morphism in Corollary 10.3.2, and the required fact follows. If F = R, then that
isomorphism is an extension to K◦C,r of an isomorphism of complexes on Xsr . Those

complexes are RΘh(RXη
) and ω·

Xh

sr

, and this gives the required fact. �

10.4. Complexes L·XC
. For λ ∈ Q ∩ [0, r), $ ∈ Π(RC) and p ≥ 0, let pL

($)q
λ

denote the subsheaf of τ
($)
∗ ($−λ$̃[λ]ωq

X($)) with local sections of the form

η = $−λ
p∑
l=0

(log$)lηl ,

where η0, . . . , ηp are local sections of the subsheaf $̃[λ]ωqXC
of ωqXC

. It is a coherent

OXC
-module isomorphic to a direct sum of p + 1 copies of ωqXC

, if r = ∞, and of

ωqXC
/$̃r−[λ]ωqXC

, if r <∞. One has

dη = $−λ
p∑
l=0

(log$)l (d log($) ∧ (−ληl + (l + 1)ηl+1) + dηl) .

This means that d(pL
($)q
λ ) ⊂ pL

($)q+1
λ and, therefore, there are well defined sub-

complexes pL
($)·
λ = pL

($)·
XC,λ

and L
($)·
λ = L

($)·
XC,λ

= lim
−→
p

pL
($)·
λ of τ

($)
∗ ($−λ$̃[λ]ωq

X($)),

and pL($)· = pL
($)·
XC

= ⊕λ∈Q+
pL

($)·
λ and L($)· = L

($)·
XC

= ⊕λ∈Q+
L

($)·
λ are sub-

complexes of τ
($)
∗ (ω·

X($)). Notice that, for every p ≥ 1, there is an exact sequence
of complexes

0→ p−1L
($)·
λ → pL

($)·
λ → 0L

($)·
λ → 0 .

Moreover, the correspondence η 7→ $−λ$̃[λ]η gives rise to isomorphisms of com-

plexes ω·XC,λ
→̃0L

($)·
λ , if r = ∞, and ω·XC,λ

/$̃r−[λ]ω·XC,λ
→̃0L

($)·
λ , if r < ∞. In

particular, if CXC,λ,x = 0 for a point x ∈ XC, the complexes pL
($)·
λ,x and L

($)·
λ,x are

acyclic (see Proposition 10.2.1).
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Furthermore, one has

$̃ · η = $−(λ+1)

p∑
l=0

(log$)l$̃ηl .

This means that the endomorphism of multiplication by $̃ on ωq
X($) takes pL($)q

to itself, and so pL($)· and L($)· are complexes of sheaves of modules over RC.

We introduce C-linear operators δ$ : pL
($)q
λ → pL

($)q
λ by

δ$(η) = $−λ
p∑
l=0

(log$)l (ληl − (l + 1)ηl+1) .

One has

δ$($̃ · η) = δ$

(
$−(λ+1)

p∑
l=0

(log$)l$̃ηl

)
=

= $−(λ+1)

p∑
l=0

(log$)l ((λ+ 1)$̃ηl − (l + 1)$̃ηl+1) =

= ($̃ · δ$ + $̃)(η) .

This means that the operators δ$ make each pL($)q and L($)q sheaves of modules
over W (RC). We notice that this operator δ$ commutes with the canonical action

of RC on pL
($)q
λ (which takes the above η to $−λ

∑p
l=0(log$)l$̃ηl).

Finally, one has δ$(dη) = d(δ$η) since both sides are equal to

$−λ
p∑
l=0

(log$)l (d log($) ∧ (−λ2ηl + 2(l + 1)ηl+1 − (l + 1)(l + 2)ηl+2) +

+λdηl − (l + 1)dηl+1)

Thus, pL($)· and L($)· are complexes of sheaves of modules over W (RC).
Let now ϕ : $ → $′ be a β-morphism in Π(RC) of first (resp. second) type.

Then the corresponding homomorphism ϕω from §10.3 takes the above q-form η to

$′−λ exp(−λβ)

p∑
l=0

(log($′) + β)lη′l ,

which is a local section of pL
($′)q
λ , where η′l = ηl (resp. η′l = ηcl ). This im-

plies that ϕ gives rise to C-linear (resp. R-linear) morphisms of complexes ϕpLλ :
pL

($)·
λ → pL

($′)·
λ (resp. ϕpLλ : c−1(pL

($)·
λ ) → pL

($′)·
λ ), which induce morphisms

ϕLλ : L
($)·
λ → L

($′)·
λ and ϕL : L($)· → L($′)· (resp. ϕLλ : c−1(L

($)·
λ ) → L

($′)·
λ

and ϕL : c−1(L($)·) → L($′)·). It follows from the definition of the multiplication
by $̃ that $̃′ · ϕL = ϕL · $̃ and, therefore, there are subcomplexes of sheaves of
Π(RC)-modules pL·λ ⊂ L·λ ⊂ τ∗(ω·Xlog,λ

) and of RC-modules pL· ⊂ L· ⊂ τ∗(ω·Xlog
).

We claim that δ$′ ◦ ϕpLλ = ϕpLλ ◦ δ$.
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Indeed, setting αλ = exp(−λβ), we have

ϕpLλ(η) = $′−λαλ
p∑
l=0

(log($′) + β)lη′l = $′−λαλ
p∑
l=0

l∑
j=0

(
l

j

)
(log$′)jβl−jη′l =

= $′−λαλ
p∑
j=0

(log$′)j

 p∑
l=j

(
l

j

)
βl−jη′l

 .

If we set ξj =
∑p
l=j

(
l
j

)
βl−jη′l, we get

δ$′(ϕpLλ(η)) = $′−λαλ
p∑
j=0

(log$′)j (λξj − (j + 1)ξj+1)

On the other hand, we have

ϕpLλ(δ$(η)) = $′−λαλ
p∑
l=0

(log($′) + β)l(λη′l − (l + 1)η′l+1) =

= $′−λαλ
p∑
j=0

(log$′)j

 p∑
l=j

(
l

j

)
βl−j(λη′l − (l + 1)η′l+1)

 =

= $′−λαλ
p∑
j=0

(log$′)j

λξj − p∑
l=j

(l + 1)

(
l

j

)
βl−jη′l+1

 .

Since (l + 1)
(
l
j

)
= (j + 1)

(
l+1
j+1

)
, it follows that

p∑
l=j

(l + 1)

(
l

j

)
βl−jη′l+1 = (j + 1)

p∑
l=j+1

(
l

j + 1

)
βl−j−1η′l = (j + 1)ξj+1 .

The claim follows and, therefore, pL· and L· are complexes of sheaves of W (RC)-
modules.

We notice that there is a canonical isomorphism of sheaves of W (RC)-modules

CXC
→̃Ker(L0 d−→ L1) .

It gives rise to a commutative diagram of morphisms of complexes of sheaves on

X log

τ−1(CXC
) //

��

τ−1(L·)

yy
ω·
Xlog

By Proposition 10.3.1, the left vertical arrow is a quasi-isomorphism. It provides
the complex ω·

Xlog
with the W (RC)-module structure in the derived category of

complexes of RC-sheaves. It follows τ−1(L·) → ω·
Xlog

is a morphism of W (RC)-

modules in the same derived category, and it induces a morphism of W (RC)-
modules L· → Rτ∗(ω

·
Xlog

) in the similar derived category on XC.

We say that a R-linear endomorphism M of a sheaf of R-modules F on X is
locally nilpotent if, for every section f ∈ F (U) over an open subset U ⊂ X and
every point x ∈ U , there exist an open neighborhood U ′ of x in U and an integer
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n ≥ 1 with Mn(f
∣∣
U ′

) = 0. For such M , the exponent exp(M) =
∑∞
n=0

Mn

n! is a
well defined R-linear automorphism of F . More generally, for any element β ∈ R
the exponent exp(N) =

∑∞
n=0

Nn

n! of the operator N = β · IdF +M is well defined,
and it is in fact equal to exp(β) · exp(M). Indeed, for the above local section f , let
l ≥ 0 be an integer with M l+1(f

∣∣
U ′

) = 0. Setting g = f
∣∣
U ′

, one has

exp(N)(g) =

∞∑
n=0

1

n!
(β · Id +M)n(g) =

∞∑
n=0

1

n!

 l∑
j=0

(
n

j

)
M j(βn−jg)

 =

=

l∑
j=0

1

j!

( ∞∑
n=0

βn

n!

)
M j(g) = exp(β) · exp(M)(g) .

Till the end of this subsection, assume that r < ∞. Then an example of such

N is the RC-linear endomorphism δ$ acting on the sheaf L
($)q
λ . (The action of

RC on the latter sheaf is the canonical one.) Indeed, for a local section η =

$−λ
∑p
l=0(log$)lηl of pL

($)q
λ , one has

δ$(η) = $−λ
p∑
l=0

(log$)l (ληl − (l + 1)ηl+1)

and, therefore, δ$ = λId + M , where M is defined by M(η) = −
∑p
l=0(l + 1)ηl+1.

It follows that Mp+1 = 0 on pL
($)q
λ and, in particular, M is locally nilpotent on

L
($)q
λ . A more general example of such an endomorphism N is the product βδ$ for

β ∈ RC (with respect to the canonical RC-module structure on L
($)q
λ ). Notice that

the automorphism exp(βδ$) extends naturally to the sheaf L($)q =
⊕

λ∈Q+
L

($)q
λ .

Proposition 10.4.1. Given a β-morphism ϕ : $ → $′ in Π(RC) of first (resp.
second) type, the following diagram is commutative

L($)q e−βδ$ //

ϕqL
��

L($)q

ψ($)

��

( resp. L($)q e−βδ$ //

ϕqL
��

L($)q

c◦ψ($)

��

)

L($′)q ψ($′)
// ωqXC/RC

L($′)q ψ($′)
// ωqXC/RC

Proof. It suffices to verify commutativity of the diagram on each of the sheaves

L
($)q
λ . For a local section η = $−λ

∑∞
l=0(log$)lηl of L

($)q
λ (the sum is in fact

finite), one has −βδ$(η) = −λβη+M(η), where M is the locally nilpotent operator
with

M(η) = $−λβ

∞∑
l=0

(log$)l(l + 1)ηl+1 ,
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and therefore exp(−βδ$) = exp(−λβ) exp(M). One has

exp(M)(η) = $−λ
∞∑
n=0

βn

n!

( ∞∑
l=0

(log$)l(l + 1) · . . . · (l + n)ηl+n

)
=

= $−λ
∞∑
j=0

( ∞∑
l=0

(
j

l

)
(log$)l · βj−l

)
ηj =

= $−λ
∞∑
j=0

(log($) + β)jηj .

Thus, ψ($)(exp(−βδ$)(η)) = exp(−λβ)
∑∞
j=0 β

jηj (resp. (c◦ψ($))(exp(−βδ$)(η)) =

exp(−λβ)
∑∞
j=0 β

jηcj). On the other hand, one has

ϕqLλ(η) = $′−λ exp(−λβ)

∞∑
j=0

(log($′) + β)jηj

(resp. ϕqLλ(η) = $′−λ exp(−λβ)

∞∑
j=0

(log($′) + β)jηcj )

and, therefore, ψ($′)(ϕLλ(η)) = exp(−λβ)
∑∞
j=0 β

jηj (resp. exp(−λβ)
∑∞
j=0 β

jηcj).
The required fact follows. �

In the situation of Proposition 10.4.1, the isomorphisms ϕqL are induced by an

isomorphism of complexes ϕL : L($)· → L($′)·, but the automorphisms exp(−βδ$)
do not commute with the differential of the complex L($)· unless β ∈ C. In the
latter case we denote in the same way by exp(−βδ$) the induced automorphism of
the complex L($)·.

Corollary 10.4.2. In the situation of Proposition 10.4.1, assume that β ∈ C.
Then ϕL = exp(−βδ$) (resp. ϕL = c ◦ exp(−βδ$)). �

For example, the actions of σ($) and exp(−2πiδ$) on the complex L($)· coincide.

Remark 10.4.3. Suppose that r < ∞ and we are given an exact functor F from
the derived category of W (RC)-modules on XC to the derived category of W (RC)-
modules such that F q(L($)·) = Hq(F (L($)·)) are finitely generated over RC. Then
the operator exp(−2πiδ$) on F q(L($)·) is well defined, but the equality σ($) =
exp(−2πiδ$) for the action on L($)· does not seem to imply the same equality
for the action on F q(L($)·). The problem is that the action of δ$ on the sheaves

L
($)q
λ is locally nilpotent and the space X in general is not compact. In §11.4 we

overcome this problem in a situation of interest for us.

10.5. A quasi-isomorphism L·XC
→̃ω·XC/RC

. If η is a local section of L
($)q
λ as

above, we set ψ($)(η) = η0, where ξ denotes the image of a local section ξ of ωqXC

in ωqXC/RC
. Since (dη)0 = d log($)∧ (−λη0 +η1) +dη0, it follows that (dη)0 = dη0,

i.e., ψ($) define an RC-linear morphism of complexes ψ
($)
λ : L

($)·
λ → ω·XC/RC

.

Furthermore, for a subset I ⊂ Q∩ [0, r), we set L
($)·
I = ⊕λ∈IL($)·

λ . The morphisms

ψ
($)
λ define a morphism of complexes ψ

($)
I : L

($)·
I → ω·XC/RC

. If I = Q∩ [0, r), we

withdraw it from the notations.
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Proposition 10.5.1. (i) If I contains all λ’s with CXC,λ 6= 0, then ψ
($)
I : L

($)·
I →

ω·XC/RC
is a quasi-isomorphism; in particular, ψ($) define a W (RC)-module struc-

ture on the complex ω·XC/RC
;

(ii) the morphisms δ$ on L($)· give rise to the morphisms δ̃$ on ω·XC/RC
(in-

troduced in §10.1) and, in particular, they induce the Gauss-Manin connection on
the de Rham cohomology groups Hq

dR(XC/RC);

(iii) if F = R and $ ∈ Π(R), then the action of c($) on L($)q is compatible
with the action of the complex conjugation on ωqXC/RC

.

Proof. Step 1. The statement (iii) is true. Indeed, if η = $−λ
∑p
l=0(log$)pηl is

a local section of L
($)q
λ as above, then c($)(η) = $−λ

∑p
l=0(log$)pηcl . It follows

that ψ($)(c($)(η)) = ηc0 = (η0)c, and we get the claim.
In order to prove (i) and (ii), we may assume that F = C.

Step 2. In order to prove (i), we have to show that, for every point x ∈ X,

the map ⊕λ∈IHq(L($)·
λ,x ) → Hq(ω·XC/RC,x

) induced by ψ($) is a bijection. We can

therefore assume that X = X h for X = Spec(B)h with B as in Step 1 from the
proof of Proposition 10.3.1, x the zero point, and n = m.

Step 3. The C-vector space L
($)q
λ,x is generated elements of the form

$−λ$̃[λ](log$)lfd log(Tj1) ∧ . . . ∧ d log(Tjq ) ,

where 1 ≤ j1 < . . . < jq ≤ m, l ≥ 0, and f ∈ A = OXr−[λ],x. The latter is a

convergent power series
∑

k akT
k taken over k ∈ Zm+ with the property that ki <

(r − [λ])ei for some 1 ≤ i ≤ µ. Notice that the differential d($−λ$̃[λ](log$)lTk)
is equal to

$−λ$̃[λ]Tk

(
m∑
i=1

(
(ki − (λ− [λ])ei)(log$)l + lei(log$)l−1)

)
d log(Ti)

)
.

Let δ = (δ1, . . . , δm) be the tuple of functions with δi = ki − (λ − [λ])ei and, for

1 ≤ i ≤ m+ 1, let N ·λ,i be the subcomplex of L
($)·
X,λ,x such that Nq

λ,i consists of C-

linear combinations of the above elements with f ∈ A(i)
δ (see Construction 10.2.2).

There is an isomorphism of complexes

m+1⊕
i=1

N ·λ,i→̃L
($)·
X,λ .

Step 4. For l ≥ 0, let N ·λ,i,l be the subcomplex of N ·λ,i consisting of forms in

which the degree in log($) is at most l. One has N ·λ,i,0 = E·δ,i, N
·
λ,i =

⋃∞
l=0N

·
λ,i,l,

and there are exact sequences of complexes

0→ N ·λ,i,l → N ·λ,i,l+1 → E·δ,i → 0 .

Thus, if 1 ≤ i ≤ m, the complex E·δ,i is exact, and from the above exact sequence
follow that all of the complexes N ·λ,i,l are exact and, therefore, the complex N ·λ,i is

exact, i.e., there is a canonical quasi-isomorphism complexes N ·λ,m+1→̃L
($)·
λ,x . The

complex N ·λ,m+1 is generated by the elements as above with sums
∑

k akT
k taken

over tuples k ∈ Zm+ with the property that ki = (λ − [λ])ei for all 1 ≤ i ≤ m.
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Notice that such a tuple exists only for λ’s of the form [λ] + p
e with 0 ≤ p < e. In

particular, if λ is not of this form, then the complex L·X,λ,x is acyclic.

Step 5. Suppose λ = [λ] + p
e with 0 ≤ p < e. Then for the above tuples k, one

has ki = pe′i, 1 ≤ i ≤ m. It follows that each element of Nq
λ,m+1 is of the form

η = $−λ$̃[λ]tp
l∑

j=0

(log$)jξj ,

where t denotes the image of T
e′1
1 · . . . · T

e′m
m in A, and ξj are C-linear combination

of the q-forms d log(Tj1) ∧ . . . ∧ d log(Tjq ). Notice that

dη = $−λ$̃[λ]tp
l∑

j=0

j(log$)j−1d log($) ∧ ξj .

It follows that dη = 0 if and only if d log($) ∧ ξj = 0 for all 1 ≤ j ≤ l. We

also notice that, since ψ($)(η) = $[λ]tpξ0, Proposition 10.2.1 implies that the
map considered in Step 2 is a surjection, and it remains to verify that the map
ψ($) : Hq(N ·λ,m+1)→ Hq(ω·XC/RC,x

) is an injection.

Step 6. Suppose that for the above element η, one has dη = 0 and ψ($)(η) = 0.
It follows that ξ0 = 0 and, therefore,

η = d

$−λ$̃[λ]tp
k∑
j=1

1

j + 1
(log$)j+1χj

 ,

where χj is a (q + 1)-form of the same kind with ξj = d log($) ∧ χj . (Existence
of such χj ’s follows from the fact that the Koszul complex KC(D1, . . . , Dm) for
the C-linear maps Di : C → C of multiplication by ei is exact.) Thus, the map

Hq(L($)·
λ,x )→ Hq(ω·XC/RC,x

) is injective, and (i) is proved.

Step 7. Let C(f)· be the cone of the morphism f from the exact sequence of
complexes (∗) in 10.1 for XC over RC. In order to prove (ii), it suffices to construct

a morphism of complexes γ($) : L($)· → C(f)· that makes the following diagram
commutative

L($)· γ($)

//

ψ($)

$$

C(f)·

δ̃$

��
ω·XC/RC

Recall that, for a local section η = $−λ
∑l
l=0(log$)lηl of L($)q, one has ψ($)(η) =

η0. Recall also that C(f)q = (ω1
RC
⊗RC

ωqXC/RC
)⊕ωqXC

, and δ̃$(d log($)⊗ ξ, χ) =

λξ − χ. We define a C-linear homomorphism of sheaves γ($) : L($)q → C(f)q by

γ($)(η) = (d log($)⊗ (−λη0 + η1), η0) .

We see that ψ($)(η) = δ̃$(γ($)(η)), and we have to verify that γ($) is a morphism
of complexes. For this we recall that (dη)0 = d log($) ∧ (−λη0 + η1) + dη0 and, in
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particular, (dη)0 = dη0, and notice that (dη)1 = d log($)∧ (−λη1 + 2η2) +dη1 and,
in particular, (dη)1 = dη1. It follows that

γ($)(dη) = (d log($)⊗ (−λdη0 + dη1), d log($) ∧ (−λη0 + η1) + dη0) = d(γ($)η) .

This implies the required fact. �

Corollary 10.5.2. The action of the ring W (RC) on the de Rham cohomology
groups Hq

dR(XC/RC) is compatible with the W (RC)-module structure induced by
that on the complex ω·XC/RC

. �

In the situation of Proposition 10.4.1, the isomorphism of complexes ϕL : L($)· →
L($′)· gives rise to an automorphism ϕω of the complex ω·XC/RC

in the derived cat-

egory. If r < ∞ and β ∈ C, we denote by exp(−βδ$) the automorphism of the
complex ω·XC/RC

induced by the corresponding automorphism of L($)·.

Corollary 10.5.3. In the situation of Proposition 10.4.1, assume that r <∞ and
β ∈ C. Then the automorphisms ϕω and exp(−βδ$) (resp. c ◦ exp(−βδ$)) of the
complex ω·XC/RC

coincide. �

For example, the actions of σ($) and exp(−2πiδ$) on the complex ω·XC/RC

coincide.
If r = 1, the assumption of Corollary 10.5.3 holds for all morphisms in the

category Π(K◦C,1). In this case one also has W (K◦C,1) = C[δ$], and the element δ$
does not depend on $. Thus, if δ denotes the operator induced by δ$ on ω·XC/K◦C,1

,

one has ϕω = exp(−βδ). In particular, the action of the groupoid Π(K◦C,1) on
ω·XC/K◦C,1

is completely determined by the operator δ.

10.6. An isomorphism Rτ∗(FXlog) ⊗F RC→̃ω·XC/RC
. By Theorem 5.4.1, there

is a canonical isomorphism of sheaves of W (RC)-modules on XC

χ : CXC
→̃τ∗((RC)

Xlog) = τ∗(FXlog)⊗F RC

which induces a morphism of complexes of sheaves of W (RC)-modules on XC

f : Rτ∗(τ
−1(CXC

))→ Rτ∗((RC)
Xlog) = Rτ∗(FXlog)⊗F RC .

By Proposition 10.3.1, there is an isomorphism of W (RC)-modules in the derived
category

g : Rτ∗(τ
−1(CXC

))→̃Rτ∗(ω·Xlog
) .

We construct a morphism θ : L· → Rτ∗(FXlog) ⊗F RC in the derived category as
the following composition of the homomorphisms

L· → Rτ∗(ω
·
Xlog

)
g−1

→ Rτ∗(τ
−1(CXC

))
f→ Rτ∗(FXlog)⊗F RC .

Proposition 10.6.1. The morphism θ is an isomorphism in the derived category
of complexes of sheaves of C-vector spaces, and it gives rise to an isomorphism of
W (RC)-modules

Rτ∗(FXlog)⊗F RC→̃ω·XC/RC
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Proof. It suffices to assume F = C and to prove that, for every point x ∈ X and
every integer q ≥ 0, ϕ induces an isomorphism Hq(L·x)→̃Rqτ∗(CXlog)x ⊗C R and,
for this, it suffices to verify commutativity of the following diagram

Hq(ω·X/R,x)

ψ−1
x

��

CX,x ⊗Z

∧q
M

(nont)

X,x
uoo v // Rqτ∗(CXlog)x ⊗C R

Hq(L·x) // Rqτ∗(ω·Xlog
)x

g−1
x // Rqτ∗(τ−1(CX))x

fx

OO

where u is the second isomorphism of Proposition 10.2.1, and v is induced by the
isomorphism of Theorem 5.3.1.

We may assume that X = X h for X = Spec(B) with B as in Step 1 from
the proof of Proposition 10.3.1. We set e = g.c.d.(e1, . . . , em) and denote by t

the image of the element T
e′1
1 · . . . · T

e′m
m in O(X), where e′i = ei

e . Furthermore,

the group M
(nont)

X,x is freely generated by the images of the coordinate functions
T1, . . . , Tm−1 and, in particular, its q-th external power is zero for q ≥ m. We
may therefore assume that q ≤ m − 1. Each element of the tensor product in
the first row is a C-linear combination of elements of the form γ = tjTi1 ∧ . . . ∧
Tiq . It suffices to check commutativity on these elements. After a permutation of

coordinates, we may assume that γ = tjT1 ∧ . . . ∧ Tq. Then u(γ) is represented
by the element tjd log(T1)∧ . . .∧ d log(Tq), and so ψ−1

x (u(γ)) is represented by the

element $−
j
e tjd log(T1) ∧ . . . ∧ d log(Tq) of Hq(L·)x that maps to Hq(τ∗ω·Xlog

)x
which, in its turn, maps to Rqτ∗(ω

·
Xlog

)x.

On the other hand, there is a canonical homomorphism of sheaves

τ∗(τ
−1(CX))⊗ZX

q∧
M

(nont)

X,x → Rqτ∗(τ
−1(CX))

and the image of the element η = tjT1 ∧ . . . ∧ Tq from the stalk at x of the sheaf
on the left hand side in the stalk of that on the right hand side goes under the

map gx to the class of $−
j
e tjd log(T1) ∧ . . . ∧ d log(Tq) in Rqτ∗(ω

·
Xlog

)x. Thus,

commutativity of the above diagram follows from the fact that both maps v and
fx are induces by the same isomorphism χ : CX→̃τ∗(CXlog)⊗C R. �

Corollary 10.6.2. If F = R, the isomorphism of Proposition 10.6.1 provides the
W (RC)-module ω·XC/RC

(considered as an object of the derived category) with an

RC-semilinear automorphism of order two ϑ. �

Corollary 10.6.3. For every distinguished formal scheme X over K◦, there is a
compatible system of canonical isomorphisms of W (K◦C,r)-modules in the derived
category

RΨh
η(FXη

)⊗F K
◦
C,r→̃ω·Xh

C,sr
/K◦C,r

.

Here we set XC = X⊗̂K◦K◦C.

Proof. By the definition of RΨh
η , the complex on the left hand side of the isomor-

phism in Proposition 10.6.1 is RΨh
η(FXη

), and the required fact follows. �
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11. Comparison with de Rham cohomology

11.1. Formulation of results. Let k be a non-Archimedean field (whose valuation
is not assumed to be nontrivial). For a morphism of k-analytic spaces ϕ : Y → X,
we consider the sheaf of relative one-differential forms Ω1

Y/X as a sheaf in the G-

topology on Y (it is denoted by ΩYG/XG in [Ber93, §1.4]). Its exterior powers ΩqY/X
form a relative de Rham complex Ω·Y/X . The de Rham cohomology groups (of Y

over X) are groups Hq
dR(Y/X) = RqΓ(X,Ω·Y/X). We are in fact interested only in

the following situation.
Let X be a rig-smooth K-analytic space. The de Rham complex and de Rham

cohomology of the canonical morphism X → M(K) are denoted by Ω·X/K and

Hq
dR(X/K), respectively. By a theorem of Kiehl [Kie67], if X is a smooth scheme

of finite type over K, there is a canonical isomorphism Hq
dR(X/K)→̃Hq

dR(X an/K).
Furthermore, X can be also considered as a non-Archimedean F-analytic space
for the field F provided with the trivial valuation. The de Rham complex and de
Rham cohomology of the canonical morphism X →M(F) are denoted by Ω·X and
Hq

dR(X), respectively. Notice that, if F = R, there are canonical isomorphisms

Hq
dR(X)→̃Hq

dR(XC)〈c〉 and Hq
dR(X/K)→̃Hq

dR(XC/KC)〈c〉.
For example, for the morphism M(K) → M(F), one has Ω0

K = K and Ω1
K is

a one dimensional K-vector space generated by the one form d log($) = d$
$ for

any generator $ of the maximal ideal K◦◦ of K◦. In particular, H0
dR(K) = F and

H1
dR(K) is a one-dimensional F-vector space with a canonical generator, the image

of d log($) which does not depend on the choice of $.
Furthermore, consider the exact sequence of complexes

0→ Ω1
K ⊗K Ω·X/K [−1]

f→ Ω·X → Ω·X/K → 0 .

As in §10.1, one shows that this exact sequence gives rise to a connection

∇ : Hq
dR(X/K)→ Ω1

K ⊗K Hq
dR(X/K)

called the Gauss-Manin connection. . For a generator $ of K◦◦, the composition
of the latter with the isomorphism Ω1

K→̃K : d log($) 7→ 1, gives rise to F-linear
endomorphisms

δ$ : Hq
dR(X/K)→ Hq

dR(X/K) ,

which provide the F-vector spaces Hq
dR(X/K) with an action of the algebra W (K).

Furthermore, let k be a non-Archimedean field with discrete valuation which is
not assumed to be nontrivial. Given a morphism ϕ : X → Y of special formal
schemes over k◦, the sheaf of relative differential one-forms Ω1

X/Y is the conormal

sheaf of the diagonal immersion X → X ×Y X. It is a coherent OX-module which

gives rise to the sheaf of relative differential one-forms Ω1
X/Y. (If X = Spf(A) and

Y = Spf(B), then Ω1
X/Y is the sheaf associated to the finite A-module I/I2, where

I is the kernel of the multiplication homomorphism A⊗̂BA→ A.)
Furthermore, suppose that ϕ : X → Y is a morphism of fine log special formal

schemes over k◦. The sheaf of relative logarithmic differential one-forms ω1
X/Y

is a coherent OX-module which is the quotient of Ω1
X/Y ⊕ (OX ⊗Z M

gr

X
) by the

OX-submodule generated by local sections of the form (dβ(m), 0)− (0, β(m)⊗m)
and (0, 1 ⊗ n) with m a local section of MX and n the image of a local section
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of MY in MX. The image of a local section m of Mgr

X
under the homomorphism

Mgr

X
→ ω1

X/Y : m 7→ (0, 1 ⊗ m) is denoted by d log(m). The exterior powers of

ω1
X/Y form a relative log de Rham complex ω·X/Y. The log de Rham cohomology

groups (of X over Y) are the groups Hq
dR(X/Y) = RqΓ(X, ω·X/Y). If both formal

schemes X and Y are of finite type over k◦ and their log structures are vertical,
then ω·X/Y ⊗k◦ k = Ω·Xη/Yη

and, therefore,

Hq
dR(X/Y)⊗k◦ k = Hq

dR(Xη/Yη) .

Let us turn back to our field K, and let X be a quasicompact separated distin-
guished special formal scheme over K◦ provided with the canonical log structure.
The de Rham complex and de Rham cohomology groups of the canonical morphism
X → Spf(K◦) will be denoted by ω·X/K◦ and Hq

dR(X/K◦), respectively. By the

previous paragraph, if X is of finite type over K◦, then ω·X/K◦ ⊗K◦ K = Ω·Xη/K

and Hq
dR(X/K◦) ⊗K◦ K = Hq

dR(Xη/K). The log formal scheme X can be also
considered as a log special formal scheme over the field F provided with the trivial
valuation and trivial log structure. The corresponding de Rham complex and de
Rham cohomology groups are denoted by ω·X and Hq

dR(X), respectively.

For example, for the morphism Spf(K◦)→ Spf(F), one has ω0
K◦ = K◦ and ω1

K◦ is
a free K◦-module of rank one generated by the one form d log($) for any generator
$ of K◦◦. In particular, ω1

K◦ ⊗K◦ K = Ω1
K , H0

dR(K◦) = F and H1
dR(K◦) is a

one-dimensional F-vector space with a canonical generator, the image of d log($)
which does not depend on the choice of $.

As above (and §10.1), one defines the Gauss-Manin connection

∇ : Hq
dR(X/K◦)→ ω1

K◦ ⊗K◦ H
q
dR(X/K◦) ,

which gives rise to an action of the ring W (K◦) on the de Rham cohomology groups
Hq

dR(X/K◦) and, in particular, to F-linear endomorphisms δ$ : Hq
dR(X/K◦) →

Hq
dR(X/K◦).
Recall that Hq(Xη,F) are quasi-unipotent Π(K)-modules of finite dimension

over F and, by §4.5, the tensor products Hq(Xη,F) ⊗F K
◦
C are provided with the

structure of a distinguished W (K◦C)-module. We set XC = X⊗̂K◦K◦C. Notice that,
if F = R, then the action of the complex conjugation c on XC induces an action
on the de Rham cohomology groups Hq

dR(XC) and Hq
dR(XC/K

◦
C), and one has

Hq
dR(X)→̃Hq

dR(XC)〈c〉 and Hq
dR(X/K◦)→̃Hq

dR(XC/K
◦
C)〈c〉. Recall also that in this

case we denoted by c($) the automorphism of $ ∈ Π(K), which is the 0-morphism
of second type.

Theorem 11.1.1. Let X be a quasicompact distinguished special formal scheme
over K◦. Then

(i) there is a canonical isomorphism of finitely dimensional F-vector spaces

Hq(Xη,F)→̃Hq
dR(X) ;

(ii) the groups Hq
dR(XC/K

◦
C) have the structure of a single distinguished W (K◦C)-

module, and there are canonical isomorphisms of distinguished W (K◦C)-
modules

Hq(Xη,F)⊗F K
◦
C→̃H

q
dR(XC/K

◦
C) .
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(iii) if F = R and $ ∈ Π(K), the action of c($) on Hq
dR(XC/K

◦
C) coincides

with that of the complex conjugation c.

Corollary 11.1.2. If F = R, the groups Hq
dR(X/K◦) have the structure of a

single distinguished W (K◦)-module, and there are canonical isomorphisms of dis-
tinguished W (K◦C)-modules (considered as Π(K)-modules)

Hq(Xη,R)⊗R K◦C→̃H
q
dR(X/K◦)⊗K◦ K◦C . �

In the situation of Corollary 11.1.2, one can describe the RΠ(K)-quasi-unipotent
module Hq(Xη,R) and the distinguished W (K◦)-module Hq

dR(X/K◦) in terms of
one another (see §0.8 and Example 4.5.7).

Theorem 11.1.1 implies that, for any admissible proper morphism between qua-
sicompact separated distinguished log special formal schemes X′ → X, there are
canonical isomorphisms

Hq
dR(X)→̃Hq

dR(X′) and Hq
dR(X/K◦)→̃Hq

dR(X′/K◦) .

This allows us to define de Rham cohomology groups of a separated rig-smooth re-

stricted K-analytic space as follows. (A restricted K-analytic space X̂ is separated
if the K-analytic space X is separated.)

For a separated rig-smooth restricted K-analytic space X̂, we define

Hq
dR(X̂) = lim

←−
Hq

dR(X) and Hq
dR(X̂/K◦) = lim

←−
Hq

dR(X/K◦) ,

where the projective limits are taken over distinguished formal models X of X̂.
Notice that all transition homomorphisms in these projective systems are isomor-
phisms.

Corollary 11.1.3. Let X̂ be a rig-smooth restricted K-analytic space. Then

(i) there is a canonical isomorphism of finite dimensional F-vector spaces

Hq(X̂,F)→̃Hq
dR(X̂) ;

(ii) the groups Hq
dR(X̂C/K

◦
C) have the structure of a single distinguished W (K◦C)-

module, and there are canonical isomorphisms of distinguished W (K◦C)-
modules

Hq(X̂,F)⊗F K
◦
C→̃H

q
dR(X̂C/K

◦
C) ;

(iii) if F = R, the groups Hq
dR(X̂/K◦) have the structure of a single distin-

guished W (K◦)-module, and there are canonical isomorphisms of distin-
guished W (K◦C)-modules (considered as Π(K)-modules)

Hq(X̂,R)⊗R K◦C→̃H
q
dR(X̂/K◦)⊗K◦ K◦C . �

Here is a consequence of Corollary 11.1.3 for compact rig-smooth K-analytic
spaces. For this we say that a W (KC)-module D is distinguished if it is isomorphic
to the tensor product D◦ ⊗K◦C KC for a distinguished W (K◦C)-module D◦. It is
easy to see that the functor D◦ 7→ D◦ ⊗K◦C KC from the category of distinguished
W (K◦C)-modules to that of distinguished W (KC)-modules is an equivalence of cat-
egories. Similarly, if F = R, we say that a W (K)-module D is distinguished if it
is isomorphic to D◦ ⊗K◦ K for a distinguished W (K◦)-module D. It follows from
Corollary 4.5.6 that the correspondence D 7→ D⊗KKC gives rise to an equivalence
between the category of distinguished W (K)-modules and that of distinguished
W (KC)-modules (considered as Π(K)-modules).
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Corollary 11.1.4. Let X be a compact rig-smooth K-analytic space. Then

(i) there are canonical isomorphisms of finite dimensional F-vector spaces

Hq(X,F)→̃Hq
dR(X) ;

(ii) the groups Hq
dR(XC/KC) have the structure of a distinguished W (KC)-

module, and there are canonical isomorphisms of distinguished W (KC)-
modules

Hq(X,F)⊗F KC→̃Hq
dR(XC/KC) ;

(iii) if F = R, the groups Hq
dR(X/K) have the structure of a single distin-

guished W (K)-module, and there are canonical isomorphisms of distin-
guished W (KC)-modules (considered as Π(K)-modules)

Hq(X,R)⊗R KC→̃Hq
dR(X/K)⊗K KC . �

Suppose now we are given a separated distinguished scheme X of finite type
over K◦ = OF,0 and a closed subscheme Y ⊂ Xs which is a union of some of the
irreducible components of Xs. Then (X h,Yh) is a distinguished log germ over (F, 0)
in the sense of Definition 5.1.1(ii). It gives rise to a logarithmic space structure on
Yh and was an object of study of the previous section in the case r =∞. Instead of
the notation Hq

dR(Yh) and Hq(Yh/K◦∞) for the corresponding de Rham cohomology

groups used in §10.1, we denote them by Hq
dR(X h(Yh)) and Hq

dR(X h(Yh)/K◦),
respectively. By Corollary 10.5.2, the groups Hq

dR(X h(Yh)C/K◦C) are provided with

the structure of a W (K◦C)-module. It follows that the groups Hq
dR(X h(Yh)/K◦) are

provided with the structure of a W (K◦)-module (considered as a π(K◦)-module).

Theorem 11.1.5. In the above situation, the following is true:

(i) there are canonical isomorphisms

Hq(X h(Yh)η,F)→̃Hq
dR(X h(Yh))→̃Hq

dR(X̂/Y) ;

(ii) the W (K◦)-module structure on the groups Hq
dR(X h(Yh)/K◦) is distin-

guished, and there are canonical isomorphisms of distinguished W (K̂◦)-
modules

Hq
dR(X h(Yh)/K◦)⊗K◦ K̂◦→̃Hq

dR(X̂/Y/K̂◦) ;

(iii) there are canonical isomorphisms of distinguished W (K◦C)-modules

Hq(X h(Yh)η,F)⊗F K◦C→̃H
q
dR(X h(Yh)C/K◦C) ,

which induce the isomorphisms of Theorem 11.1.1(ii) for (X̂/Y)C;
(iv) if F = R, there are canonical isomorphisms of distinguished W (K◦C)-

modules (considered as Π(K)-modules)

Hq(X h(Yh)η,R)⊗R K◦C→̃H
q
dR(X h(Yh)/K◦)⊗K◦ K◦C

which induce the isomorphisms of Corollary 11.1.2 for X̂/Y
Notice that, if X is proper over K◦, GAGA implies that there are canonical

isomorphisms

Hq
dR(X/K◦)→̃Hq

dR(X h/K◦) .
Theorem 11.1.1 will be proved in §11.4 using results from §10 and §§11.2-11.3,

and Theorem 11.1.5 will be proved in §11.5.
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11.2. Comparison of algebraic and analytic de Rham cohomology.

Theorem 11.2.1. Let X be a quasicompact distinguished special formal scheme
of K◦. Then for every 1 ≤ r < ∞ and every λ ∈ Q ∩ [0, r), there are canonical
isomorphisms

Hq
dR,λ(Xsr )→̃H

q
dR,λ(Xhsr ) and Hq

dR(Xsr/K
◦
r )→̃Hq

dR(Xhsr/K
◦
r ) .

Proof. If F = R, there are canonical isomorphisms Hq
dR,λ(Xsr )→̃H

q
dR,λ((XC)sr )

〈c〉

and Hq
dR,λ(Xhsr )→̃H

q
dR,λ((XC)hsr )

〈c〉 and there are similar isomorphisms for the sec-
ond pair of groups. This reduces the situation to the case F = C. In this case we
use the reasoning from the proof of Grothendieck’s theorem [Gro66].

Step 1. The statement is true if there exists an open immersion X ↪→ X′ = Ŷ/Z ,
where Y is a proper distinguished scheme over K◦ and Z is a union of irreducible
components of Ys such that Z\Xs = Z ∩ W, where W is a union of some of the
other irreducible components of Ys.

Indeed, in this case X′sr is a proper log scheme over K◦r , the open immersion j :

Xsr ↪→ X′sr is strict, and the complement of Xsr is locally defined by one equation.
For every q ≥ 0, the coherent sheaves ωq

Xsr ,λ
and ωq

Xsr/K
◦
r

are the restrictions to

Xsr of the coherent sheaves ωq
X′sr ,λ

and ωq
X′sr/K

◦
r

, respectively. Since the morphism

of schemes j is affine, it follows that Rpj∗(F) = 0 for any coherent sheaf F on Xsr
and any p ≥ 1 and, therefore, the de Rham cohomology groups Hq

dR,λ(Xsr ) and

Hq
dR(Xsr/K

◦
r ) are the q-th hypercohomology groups of the complexes j∗ω

q

Xsr ,λ
and

j∗ω
q

Xsr/K
◦
r

, respectively. Since the scheme X′sr is proper, GAGA implies that

Hq
dR,λ(Xsr )→̃RqΓ(X′hsr , (j∗ω

·
Xsr ,λ

)h) and Hq
dR(Xsr/K

◦
r )→̃RqΓ(X′hsr , (j∗ω

·
Xsr/K

◦
r

)h) .

On the other hand, since the complement of Xsr is locally defined by one equa-

tion, each point of X′hsr has a fundamental system of open Stein neighborhoods

whose intersections with Xhsr is a Stein space. It follows that Rpjh∗ (F ) = 0 for any

coherent sheaf F on Xhsr and any p ≥ 1 and, therefore, one has

Hq
dR,λ(Xhsr )→̃R

qΓ(X′hsr , j
h
∗ω
·
Xh

sr
,λ

) and Hq
dR(Xhsr/K

◦
r )→̃RqΓ(X′hsr , j

h
∗ω
·
Xh

sr
/K◦r

) .

Thus, in order to verify the claim, it suffices to show that there are quasi-isomorphisms
of complexes

(j∗ω
·
Xsr ,λ

)h→̃jh∗ω·Xh

sr
,λ

and (j∗ω
·
Xsr/K

◦
r

)h→̃jh∗ω·Xh

sr
/K◦r

.

This is a purely local complex analytic fact which follows from Lemma 10.2.4.

Step 2. Let X be an arbitrary quasicompact distinguished formal scheme over
K◦. Then each point of X has an étale affine neighborhood which satisfies the
assumptions of Step 1. Indeed, by Definition 3.1.1(ii), each point of X has an étale

neighborhood of the form Ŷ/Z , where Y is an affine distinguished scheme over K◦

and Z is a union of irreducible components of Ys. First of all, replacing Y by
an étale neighborhood, we may assume that all of the irreducible components of
the support of Ys are smooth. Furthermore, take an open immersion Y ↪→ Y ′
in an integral projective scheme over K◦. After replacing Y ′ by a blow-up, we
may assume that Y ′s\Ys is a union of irreducible components of Y ′s. By Temkin’s
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theorem [Tem08, 1.1], there exists a blow-up Y ′′ → Y ′ whose center is disjoint
from Y. The scheme Y ′′ is proper and distinguished, the morphism Y ′′ → Y ′ is an
isomorphism over Y and, in particular, there is an open immersion Y ↪→ Y ′′, and
the complement of Ys in Y ′′s is a union of irreducible components of Y ′′s . The claim
follows.

Step 3. The theorem is true for X. Indeed, by Step 2, there exists an étale
hypercovering Y• → X such that each Yn, n ≥ 0, is a finite disjoint union of
formal schemes which satisfy the assumptions of Step 1. By Step 1, the required
statement is true for all Yn’s. Since the de Rham cohomology groups considered
are expressed in terms of the schemes and their complex analytifications related to
Yn’s, the claim follows. �

Corollary 11.2.2. In the situation of Theorem 11.2.1, the cohomology groups
Hq

dR,λ(Xsr ) and Hq
dR(Xsr/K

◦
r ) have finite dimension over F.

Proof. We may assume that F = C, and set X = Xhsr . By Proposition 10.2.1, one

has Hq(ω·X,λ) = CX,λ ⊗Z

∧q
M

gr

X (resp. Hq(ω·X/K◦r ) = CX ⊗Z

∧q
M

(nont)

X/K◦r
). The

sheaves on the right hand side are constructible sheaves of C-vector spaces on X.
Since X is the analytification of a scheme of finite type over C, it follows from
[Ver76, 2.4.2] that the cohomology groups of X with coefficients in those sheaves
have finite dimension over C. This implies that the groups Hq

dR,λ(Xsr ) (resp.

Hq
dR(Xsr/K

◦
r )), which coincide, by Theorem 11.2.1, with the groups Hq

dR,λ(X)

(resp. Hq
dR(X/K◦r )) have finite dimension over F. �

Till the end of this subsection X denotes the log scheme Xsr over K◦r , and
we set R = K◦r . Recall that in §10.4, we introduced, for each λ ∈ Q ∩ [0, r),

$ ∈ Π(K◦C,r) and p, q ≥ 0, a coherent OXhC -module pL
($)q
λ = pL

($)q

XhC,λ
. This sheaf

is the analytification of the coherent OXC
-module pL($)q

λ = pL($)q
XC,λ

with local
sections, which are convenient to represent in the form

η = $−λ
p∑
l=0

(log$)lηl ,

where η0, . . . , ηp are local sections of the subsheaf $̃[λ]ωqXC
of ωqXC

. The sheaves
pL($)q

λ form a complex pL($)·
λ = pL($)·

XC,λ
with respect to the differential defined

by the same formula as for the complex pL
($)·
λ = pL

($)·
XhC,λ

. For q ≥ 0, we set

L($)q
λ = lim

−→
p

pL($)q
λ and L($)q = ⊕λ∈Q∩[0,r)L

($)q
λ . The analytification of the latter

OXC
-modules are the OXhC -modules L

($)q
λ and L($)q, and they form complexes

L($)·
λ = L$)·

XC,λ
and L$)· = L$)·

XC
, respectively.

Corollary 11.2.3. In the above situation, there are canonical isomorphisms of
hypercohomology groups

RqΓ(XC,
pL($)·

λ )→̃RqΓ(X hC, pL
($)·
λ ) ,

and these groups have finite dimension over C.
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Proof. For each p ≥ 1, the homomorphisms pL($)q
λ → 0L($)q

λ : η 7→ $−ληp gives
rise to an exact sequence of complexes

0→ p−1L($)·
λ → pL($)·

λ → 0L($)·
λ → 0 .

By induction, this reduces the situation to the case p = 0. Furthermore, there are
isomorphisms of complexes

ω·XC,λ/$̃
r−[λ]ω·XC,λ→̃

0L($)·
λ and ω·XhC,λ

/$̃r−[λ]ω·XhC,λ
→̃0L

($)·
λ .

The complexes on the left hand side coincide with ω·X ′C,λ
and ω·X ′hC ,λ

for the scheme

X ′ = Xsr−[λ]
. The required facts therefore follow from Theorem 11.2.1 and Corol-

lary 11.2.2. �

11.3. de Rham cohomology as a projective limit.

Theorem 11.3.1. Let X be a quasicompact distinguished special formal scheme of
K◦. Then there are canonical isomorphisms

Hq
dR(X)→̃ lim

←−
r

Hq
dR(Xsr ) and Hq

dR(X/K◦)→̃ lim
←−
r

Hq
dR(Xsr/K

◦
r ) .

The following proposition and lemma are slight modifications of Theorem (4.5)
and Lemma (4.6) from Hartshorne’s paper [Har75]. All complexes F · considered
here are assumed to be such that F q = 0 for q < 0.

Proposition 11.3.2. Let {F ·r}r≥1 is a projective system of complexes of abelian
sheaves on a topological space X, and set F · = lim

←−
r

F ·r. Let also T be a functor from

the category of abelian sheaves to that of abelian groups that commutes with direct
products. Assume that there is a base B of the topology of X such that for each
U ∈ B

(1) the homomorphisms F qr+1(U) → F qr (U) are surjective for all q ≥ 0 and
r ≥ 1;

(2) Hp(U,F qr ) = 0 for all p > 0, q ≥ 0 and r ≥ 1.

Then for each p ∈ Z, there is an exact sequence

0→ lim
←−
r

(1) Rp−1T (F ·r)→ RpT (F ·)
αp→ lim

←−
r

RpT (F ·r)→ 0 .

In particular, if for some p, the system {Rp−1T (F ·r)}r≥1 satisfies the Mittag-Leffler
condition (ML), then αp is an isomorphism.

Lemma 11.3.3. Given a morphism of complexes of abelian sheaves α· : G· → F ·

and an injective resolution ϕ· : F · → I ·, there exists an injective resolution ψ· :
G· → J · and a commutative diagram

F ·
ϕ· // I ·

G·
ψ· //

α·

OO

J ·

β·

OO

with the property that, for every p, there is an isomorphism Jp→̃Ip⊕Kp such that
βp is the projection onto the first summand.
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Proof. For a complex of abelian sheaves K · and a homomorphism γ : K0 → L,
there is a complex K ·γ with K0

γ = L and a quasi-isomorphism of complexes γ· :

K · → K ·γ with γ0 = γ which possess the universal property that, for any pair

consisting of a morphism of complexes δ· : K · → P · and a homomorphism L→ P 0

whose composition with γ coincides with δ0, δ· goes through a unique morphism
of complexes K ·γ → P ·. (The complex K ·γ is constructed as follows: K0

γ = L and,

for i ≥ 1, Ki
γ is the cokernel of the homomorphism Ki−1 → Ki ⊕ Ki−1

γ : (x 7→
(di−1
K (x),−γi−1(x)).)
Let χ : G0 → K0 be an embedding in an injective sheaf. Then the sheaf

J0 = I0 ⊕ K0 is also injective, and denote by ψ0 the homomorphism G0 → J0 :
x 7→ (α0(ϕ0(x)), ψ(x)). The canonical projection β0 : J0 → I0 gives rise to a
morphism of complexes G·ψ0 → F ·ϕ0 . Application of the same procedure to the

induced morphism of truncated complexes σ≥1(G·ψ0)→ σ≥1(F ·ϕ0) and the injective

resolution σ≥1(F ·ϕ0) → σ≥1(I ·) gives an inductive procedure for constructing the
required injective resolution of G·. �

Proof of Proposition 11.3.2. Step 1. By Lemma 11.3.3, applied inductively to
morphisms of complexes F ·r+1 → F ·r we can find a compatible system of injective
resolutions β·r : F ·r → I ·r such that Ipr+1→̃Ipr ⊕Kp

r and β·r is the projection onto the
first summand. Then all of the sheaves Ip from the projective limit of complexes
I · = lim

←−
r

I ·r are injective. We are going to show that the canonical morphism

F · → I ·is a quasi-isomorphism.

Step 2. For every U ∈ B and every r ≥ 1, the morphism F ·r(U) → I ·r(U) is a
quasi-isomorphism. Indeed, since F ·r → I ·r is an injective resolution, it induces an
isomorphism of hypercohomology groups RpΓ(U,F ·r)→̃RpΓ(U, I ·r). But the spectral
sequence Ep,q1 = Hq(U,F pr ) =⇒ Rp+qΓ(U,F ·r) and the condition (2) imply that
RpΓ(U,F ·r) = F p(U) for all p ≥ 0. Since one also has RpΓ(U, I ·r) = Ipr (U) for all
p ≥ 0, the claim follows.

Step 3. For every U ∈ B, the morphism F ·(U)→ I ·(U) is a quasi-isomorphism.
Indeed, by the condition (1), all of the homomorphisms F pr+1(u) → F pr (U) are
surjective and, by the construction of the sheaves Iqr the same is true for them. We
can therefore apply Proposition (4.4) from [Har75], and we get a homomorphism
of exact sequences

0 // lim
←−
r

(1) Hp−1(F ·r(U)) //

��

Hp(F ·(U)) //

��

lim
←−
r

Hp(F ·r(U)) //

��

0

0 // lim
←−
r

(1) Hp−1(I ·r(U)) // Hp(I ·(U)) // lim
←−
r

Hp(I ·r(U)) // 0

By Step 1, the left and right vertical arrows are isomorphisms and, therefore, so is
the middle one. This implies that F · → I · is an injective resolusion of F ·.

Step 4. The proposition is true. Indeed, one has RpT (F ·r) = Hp(T (I ·r)) and, by
Step 3, one also has RpT (F ·) = Hp(T (I ·)). Since the functor T commutes with
direct products, one has T (I ·) = lim

←−
r

T (I ·r)), and since Ipr ia a direct summand of
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Ipr+1, the homomorphisms T (Ipr+1) → T (Ipr ) are surjective. The required fact now
follows from the same Proposition (4.4) from [Har75]. �

Proof of Theorem 11.3.1. We apply Proposition 11.3.2 to formal scheme X which
coincides, as a topological space, with each Xsr . The base B consists of open affine
subschemes. The sheaves ωq

Xsr

and ωq
Xsr/K

◦
r

are coherent on Xsr and, therefore,

the condition (2) is satisfied. That (1) holds follows from the same coherence
and the construction of those sheaves, which implies surjectivity of the canonical
homomorphisms from (r + 1)-th sheaf to r-th one. Furthermore, the functor T is
the functor of global sections and, finally, the Mittag-Leffler condition is satisfied,
by Corollary 11.2.2. This implies Theorem 11.3.1. �

11.4. Proof of Theorem 11.1.1. Step 1. By the definition of the functor RΘ
and Corollary 10.3.2, there is a compatible system of canonical isomorphisms in
the derived category

RΘ(FXη
)→̃ω·

Xh

sr

,

and it gives rise to a compatible system of isomorphisms of finitely dimensional
F-vector spaces Hq(Xη,F)→̃Hq

dR(Xhsr ). By Theorem 11.2.1, the group on the right
hand side of the latter isomorphism is canonically isomorphic to Hq

dR(Xsr ) and,
therefore, the statement (i) follows from Theorem 11.3.1.

Step 2. Similarly, by the definition of the functor RΨh
η and Proposition 10.6.1,

there is a compatible system of isomorphisms of W (K◦C,r)-modules in the derived
category

RΨh
η(FXη

)⊗F K
◦
C,r→̃ω·Xhr /K◦C,r ,

where Xr = XhC,sr , which in the case F = R define a compatible system of K◦C,r-
semilinear automorphisms of order two ϑ of the complex ω·Xhr /K◦C,r

in the derived

category. In this way we get a compatible system of isomorphisms of W (K◦C,r)-
modules

Hq(Xη,F)⊗F K
◦
C,r→̃H

q
dR(X hr /K◦C,r) ,

which are free K◦C,r-modules of finite rank and which, in the case F = R, are
compatible with the K◦C,r-semilinear automorphisms ϑ acting on both sides.

It remains to show that Hq
dR(Xr/K◦C,r) = Hq

dR(X hr /K◦C,r) is a distinguished

W (K◦C,r)-module. Since the facts already established imply that the properties (1)

and (2) of Definitions 4.5.1 and 4.5.4 hold, we have to verify the equality σ($) =
exp(−2πiδ$) for the action on Hq

dR(X hr /K◦C,r). For this we may assume that F =

C. (Recall that the property (3) of Definition 4.5.4 follows from that of Definition
4.5.1.)

Step 3. We set X = X hr , R = K◦r , and fix $ ∈ Π(R). Since Xr is quasicompact,
the set I consisting of λ ∈ Q∩ [0, r) with CX,λ 6= 0 is finite. By Proposition 10.5.1,

there is a canonical quasi-isomorphism of complexes ⊕λ∈IL($)·
X,λ →̃ω·X/R. Suppose

we are given an exact functor F from the bounded derived category of W (R)-
modules on X to the bounded derived category of W (R)-modules such that all of
the R-modules F q(ω·X/R) = Hq(F (ω·X/R)) are finitely generated. We claim that



134 VLADIMIR G. BERKOVICH

the above quasi-isomorphism of complexes induces, for every λ ∈ I and every q ≥ 0,
an isomorphism

F q(L
($)·
X,λ )→̃F q(ω·X/R)λ = {x ∈ F q(ω·X/R)

∣∣(δ$ − λ)n = 0 for some n ≥ 1} .

Indeed, by the proof of Proposition 10.5.1, the above quasi-isomorphism identifies

Hq(L($)·
X,λ ) with the subsheaf Hq(ω·X/R)λ of Hq(ω·X/R) at which δ$ acts as multipli-

cation by λ (it is the sheaf CX,λ ⊗Z

∧q
M

(nont)

X ). It follows that, for every λ′ 6= λ,

the operator δ$ − λ′ is invertible on L
($)·
X,λ and, therefore, the image of F q(L

($)·
X,λ )

in F q(ω·X/R) is contained in F q(ω·X/R)λ. Since F q(ω·X/R) = ⊕λ∈IF q(ω·X/R)λ, the

claim follows.

Step 4. It suffices to verify the equality σ($) = exp(−2πiδ$) on each of the sub-
spaces Hq

dR(X/R)λ. For this we use the theory of semi-algebraic sets (see [Hir75]).
This theory implies that the space X can be represented as a union of increasing
sequence of compact subsets Y1 ⊂ Y2 ⊂ . . . with the following properties:

(1) the union of the topological interiors of Yn in X coincides with X;
(2) each Yn has the structure of a finite simplicial complex;

(3) the restrictions of the sheaves CX,λ and M
gr

X to each open cell of Yn are
constant.

Proposition 10.2.1 and the property (3) imply that the same property holds for
all of the sheaves Hq(ω·X/R)λ and, therefore, the spectral sequence

Ep,q2 = RpΓ(Yn,Hq(ω·X/R)λ) =⇒ Rp+qΓ(Yn, ω
·
X/R)λ

implies that the groups RqΓ(Yn, ω
·
X/R)λ = RqΓ(Yn, L

($)·
X,λ ) are of finite dimension

over C. It follows that Hq
dR(X/R)λ→̃ lim

←−
n

RqΓ(Yn, ω
·
X/R)λ. We can therefore find

m ≥ n ≥ 1 such that the homomorphism Hq
dR(X/R)λ → RqΓ(Yn, ω

·
X/R)λ is injec-

tive and its image coincides with that of RqΓ(Ym, ω
·
X/R)λ. Since Ym is compact,

the canonical homomorphism lim
−→
p

RqΓ(Ym,
pL

($)·
X,λ )→ RqΓ(Ym, L

($)·
X,λ ) is a bijection.

Again, since the group on the right hand side is of finite dimension over C, we can

find p for which the homomorphism RqΓ(Ym,
pL

($)·
X,λ ) → RqΓ(Ym, L

($)·
X,λ ) is surjec-

tive. In this way, we get a surjective homomorphism of W (R)-modules

RqΓ(Ym,
pL

($)·
X,λ )→ Hq

dR(X/R)λ .

Thus, the equality σ($) = exp(−2πiδ$) for the action on the left hand side implies
the same equality for the action on the right hand side. �

11.5. Proof of Theorem 11.1.5. Step 1. Consider the commutative diagram, in
which the horizontal arrows are isomorphisms, provided by Corollary 10.3.2, and
the left vertical arrow is an isomorphism, by Theorem 9.2.1,

Hq(X h(Yh)η,F) //

��

Hq
dR(X h(Yh))

��
Hq((X̂/Y)η,F) // Hq

dR(X̂/Y)



COMPLEX ANALYTIC VANISHING CYCLES FOR FORMAL SCHEMES 135

It follows that the right vertical arrow is an isomorphism, and this gives the state-
ment (i).

Step 2. Consider the similar commutative diagram, in which the horizontal
arrows are isomorphisms, provided by Proposition 10.6.1 and Theorem 11.1.1,

Hq(X h(Yh)η,F)⊗F K◦C //

��

Hq
dR(X h(Yh)C/K◦C)

��
Hq((X̂/Y)η,F)⊗F K̂◦C // Hq

dR((X̂/Y)C/K̂◦C)

By Theorem 9.2.1, one has Hq(X h(Yh)η,F)→̃Hq((X̂/Y)η,F), and the statement
(ii) easily follows from Theorem 11.1.1(ii).

Step 3. The upper and lower horizontal arrows in the above diagram are com-

patible homomorphisms of W (K◦C) and W (K̂◦C)-modules, respectively, by the con-
struction of §10.5. This implies the statements (iii) and (iv). �
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[Del70] Deligne, P.: Équations différentielles à points singuliers réguliers, Lecture Notes in Math.

163 Springer, Berlin-Heidelberg-New York, 1970.
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Ĥ, H: the closed and open upper half-plane, 16
R-Lrs: the category of locally R-ringed spaces, 16
R-An: the category of R-analytic spaces, 17
X(R): the set of real points of X, 17
YR: the R-analytic space associated to a complex analytic space Y , 17
C-Ancc: the category of complex analytic spaces with complex conjugation, 18
XC: the complex analytic space associated to an R-analytic space X, 18
ϑ: the automorphism of the sheaf cX , 19
Y c: the complex analytic space conjugate to Y , 19
NY/X : the conormal sheaf of a locally closed immersion Y → X, 20
Ω·Y/X : the de Rham complex of a morphism Y → X, 20

X h: analytification of a scheme X over R, 21
Covét(X): the category of étale covering spaces over X, 24
π1(X,x): the étale fundamental group of X at x, 26
π1(R∗): the automorphism group of CR over R∗, 27
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DI , D̃: the Π(RC)-modules ⊕λ∈IDλ and D/(R◦◦ · D), 64
W (RC)-Dist: the category of distinguished W (RC)-modules, 64
kΠ(RC)-Qun: the category of kΠ(RC)-quasi-unipotent modules, 65
W (R)-Dist: the category of distinguished W (R)-modules for F = R, 67



140 INDEX

R: in §5 and §10, it is either K◦r for 1 ≤ r <∞, or K◦ for r =∞, 68
X: in §5 and §10, it is a distinguished log analytic space over ptR, 69

τ , ν, τ : the maps of Π(RC)-spaces X log → XC, X log → X log
C and X log → XC, 70

M
gr

X : the quotient sheaf of groups Mgr
X /O∗X , 71

M
(tors)

X : the torsion subsheaf of M
gr

X , 71

MX/R: the cokernel of the homomorphism M
gr

R →M
gr

X , 71

M
(tors)

X/R : the torsion subsheaf of MX/R, 71

eU : the order of M
(tors)

X/R (U), 71

kU : the order of Υ($)(U), 73

ΥX : the Π(RC)-cosheaf $ 7→ Υ
($)
X , 73–74

M
(nont)

X/R : the quotient MX/R/M
(tors)

X/R , 75

log($): an element of L(X($)) with exp(log($)) = $, 76
CXC

: a single distinguished W (RC)-module on XC, 78
Θlog: the log nearby cycles functor for a log formal scheme, 82
RΘh, RΨh

η : the exact nearby and vanishing cycles functors, 86–88

θh(ϕ,Λ·), θhη (ϕ,Λ·): the morphisms between complexes of nearby and vanishing
cycles associated to a morphism ϕ : Y→ X, 88

K-Ân: the category of restricted K-analytic spaces, 98

Hq(X̂,Λ), Hq(X̂,Λ): cohomology of X̂ with coefficients in a Π(KC)-module Λ, 99
X an: the non-Archimedean analytification of X , 102
ω·X/B , ω·X , ω·X/R: the log de Rham complexes, 106

Hq
dR(X), Hq

dR(X/R): de Rham cohomology of X, 106
ω1
R: the sheaf ω1

ptR , 106

ω·XC,λ
, Hq

dR,λ(XC): modified de Rham complexes and cohomology groups, 108

K·A(D1, . . . , Dp): the Koszul complex on A with operators D1, . . . , Dp, 108

ω·
Xlog

C

, ω·
Xlog

: the Kato-Nakayama de Rham complexes on X log
C and X log, 112

ω·
Xlog

C

, ω·
Xlog

: bigger complexes of sheaves of RC-modules on X log
C and X log, 112

pL·, L·: subcomplexes of sheaves of W (RC)-modules in τ∗(ω
·
Xlog

), 118
pL·XC

, L·XC
: subcomplexes of sheaves of W (RC)-modules in τ∗(ω

·
Xlog

), 116

Ω·X , Ω·X/K : de Rham complexes of a rig-smooth K-analytic space X, 125

Hq
dR(X), Hq

dR(X/K): de Rham cohomology groups of X, 125
ω·X, ω·X/K◦ : de Rham complexes of a distinguished formal scheme X, 126

Hq
dR(X), Hq

dR(X/K◦): de Rham cohomology groups of X, 126

Hq
dR(X̂), Hq

dR(X̂/K◦): de Rham cohomology groups of a rig-smooth restricted
K-analytic space, 127

Hq
dR(X h(Yh)), Hq

dR(X h(Yh)/K◦): de Rham cohomology groups of X h(Yh) for a
distinguished scheme X over K◦, 128
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affine space over R, 15
R-analytic manifold, 21
R-analytic space, 17

étale covering space over, 24
étale fundamental group of, 26
étale fundamental groupoid of, 26
étale site of, 28
étale topology on, 27
étale universal covering of, 24
complex point of, 17
geometric point of, 26
geometrically connected, 22
local chart of, 17
local model of, 17
real point of, 17

analytification, 21
non-Archimedean, 102
over a Stein germ, 30

closed fiber
of a formal scheme, 44
of a pro-analytic space, 36
of a scheme, 33

constructible sheaf, 86
P-cosheaf of sets, 60

de Rham cohomology groups
of a distinguished formal scheme,

126
of a distinguished log analytic

space, 106
of a rig-smooth K-analytic space,

125
of a rig-smooth restricted
K-analytic space, 127

distinguished
formal scheme, 44
r-th closed fiber of, 57

log analytic space over ptK◦r , 68
log germ over (F, 0), 68
W (R)-module on X, 66
W (RC)-module on XC, 64
scheme, 44

extension of scalars functor, 18

P-field, 57

Gauss-Manin connection
for distinguished formal schemes,

126
for distinguished log analytic

spaces, 107
for rig-smooth K-analytic spaces,

125
generic fiber

of a pro-analytic space, 36
of a scheme, 32

germ of an analytic space, 30
noetherian, 32
Stein, 30

homotopy
between two morphisms of formal

schemes, 93
hypercovering

compact, 47
distinguished, 47
proper, 47

Klein surface, 22
dianalytic structure, 22
morphism, 22

Koszul complex, 108
Kummer étale morphism, 81

log derivation, 105
log differential forms, 105–106

of a distinguished formal scheme,
126

k◦-log scheme, 49
k◦1-log scheme, 49
k◦-log special formal scheme, 48
k◦-log smooth, 50
formally k◦-log smooth, 50
vertical, 48

log structure
canonical, 48
chart of, 49
coherent, 49
fine, 49
fs, 49
trivial, 48

P-module, 58
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kΠ(RC)-module, 64
morphism of R-analytic spaces

étale, 20
étale covering map, 24
closed immersion, 20
finite, 20
flat, 20
locally closed immersion, 20
proper, 20
separated, 20
smooth, 21
unramified, 20

morphism of formal schemes
admissible blow-up, 100
admissible proper, 98
blow-up, 44
formally smooth, 90
proper, 44
smooth, 89

nearby cycles functor
for a formal scheme, 88
for a log formal scheme, 82
for a pro-analytic space, 36
for a scheme, 37

open polydisc in Rn
complex, 16
real, 16

pro-analytic space, 29

kΠ(RC)-quasi-unipotent module, 65

quasi-unipotent action of Π(K), 87

restricted K-analytic space, 98
formal model of, 98
separated, 127

rig-smooth
analytic space, 33
restricted K-analytic space, 98
P-ring, 57

RC-semilinear automorphism, 64
semistable

formal scheme, 44
scheme, 44
P-set, 57
P-sheaf, 57
P-space, 54

single, 54
strict, 54
trivial, 54
univocal, 54

special fiber
of a formal scheme, 44
of a pro-analytic space, 36
of a scheme, 32

Stein compact, 29

vanishing cycles functor
for a formal scheme, 88
for a pro-analytic space, 36
for a scheme, 37

Weil restriction of scalars functor, 19
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