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INTRODUCTION

The problem of constructing an étale cohomology theory for non-Archimedean
analytic spaces has arisen from Drinfeld’s work on elliptic modules [Drl]. In his work,
Drinfeld defined (among other things) the first cohomology group HY(X, p,) as the set
of pairs (L, ¢), where L is an invertible sheaf on X, and ¢ is an isomorphism 0y = L®",
He showed that for the one-dimensional p-adic upper half-plane Q2 this group gives
rise to a certain infinite dimensional representation of GL,(k), where % is the ground
local field. Afterwards, in [Dr2], Drinfeld constructed a certain family of equivariant
coverings of the d-dimensional p-adic upper half-plane Q%*! and suggested that all
cuspidal representations of the group GL,, (%) are realized in high dimensional étale
cohomology groups of this family of coverings.

Since then, as far as I know, the only attempt to construct an étale cohomology
theory for non-Archimedean analytic spaces was undertaken by O. Gabber. We under-
stand that O. Gabber has made progress in the subject, but, unfortunately, he has
written nothing on it. Besides that, in [FrPu] and [ScSt], definitions of an étale topology
on a non-Archimedean analytic space were given, and in [ScSt] the cohomology
of Q4% is calculated for arbitrary d under the hypotheses that this cohomology satisfies
certain reasonable properties. Finally, in [Car], a conjecture, which is an explicit form
of Drinfeld’s suggestion, is proposed. The conjecture predicts the decomposition of
the representations of GL; (%) and the Galois group of 2 (k is a p-adic field) on the
d-dimensional cohomology group of the equivariant system of coverings of Q*?! in
terms of the Langlands correspondence.

The purpose of this work is to develop many basic results of étale cohomology
for non-Archimedean analytic spaces. We define the étale cohomology and the étale
cohomology with compact support and calculate the cohomological dimension of an
analytic space. We prove a Comparison Theorem for Cohomology with Compact Sup-
port which states that, for a compactifiable morphism ¢: % — % between schemes
of locally finite type over the spectrum of a k-affinoid algebra and a torsion sheaf &
on %, there is a canonical isomorphism (R%¢, #)* 5 R?¢{* %#*, ¢> 0. We also
prove a Poincaré Duality Theorem, the acyclicity of the canonical projection X X D — X,
where D is an open polydisc in the affine space, a Cohomological Purity Theorem,
the invariance of the cohomology under algebraically closed extensions of the ground
field, a Base Change Theorem for Cohomology with Compact Support and a Smooth
Base Change Theorem (all the results are proved for torsion sheaves with torsion orders
prime to the characteristics of the residue field of k). In particular, all the properties
of the “ abstract > cohomology theory from [ScSt] hold. Our main result is a Compa-
rison Theorem which states that, for a morphism of finite type ¢ : % — Z between
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schemes of locally finite type over 2 and a constructible sheaf & on # with torsion
orders prime to the characteristics of the residue field of %, there is a canonical isomor-
phism (R?q, #)* 3 R2¢*™ %™ ¢ > 0. We note that the only previous proof of the
Comparison Theorem in the classical situation over C uses Hironaka’s Theorem on
resolution of singularities. Our proof of the Comparison Theorem works over G as well
and does not use Hironaka’s Theorem. '

- Our approach to étale cohomology is completely based on the previous work
[Ber]. In that work we introduced analytic spaces which are natural generalizations of
the complex analytic spaces and have the advantage that they allow direct application
of the geometrical intuition. One should say that although the analytic spaces from [Ber]
were considered in a more general setting than that for rigid analytic geometry (for
example, the valuation of the ground field is not assumed fo be nontrivial), they don’t
give rise to all reasonable rigid spaces. And so our first purpose in this work is to extend
the category of analytic spaces from [Ber] so that the new category gives rise to all
reasonable rigid spaces, for example, to those that are associated with formal schemes
of locally finite type over the ring of integers of %.

We now give a summary of the material which follows. Let 2 be a non-Archimedean
field, and let % denote its residue field. As in [Ber], we don’t assume that the valuation
of % is nontrivial.

In § 1 we introduce a category of %-analytic spaces more general than those from
[Ber]. These analytic spaces possess nice topological properties. For example, a basis
of topology is formed by open locally compact paracompact arcwise connected sets.
One does not need to use Grothendieck topology in the definition of the spaces, but
they are naturally endowed with such a topology called the G-topology (§ 1.3). The
latter is formed by analytic domains of an analytic space. The spaces from [Ber] (they
are said to be “ good ) are exactly those in which every point has an affinoid neigh-
borhood. The G-topology on an analytic space is a natural framework for working
with coherent sheaves. (If the space is good, then it is enough to work with the usual
topology as in [Ber].) In § 1.4 we show that the category of analytic spaces introduced
admits fibre products and the ground field extension functor, and we associate with
every point x of an analytic space a non-Archimedean field 5#(x) so that any mor-
phism ¢:Y — X induces, for a point y €Y, a canonical isometric embedding
H(p(y) —>H#(y). In § 1.5 we define for a morphism ¢ : Y — X the relative interior
Int(Y/X) (this is an open subset of Y), and we call the morphism closed if Int(Y/X) = Y.
In § 1.6 we construct a fully faithful functor from the category of Hausdorff (strictly)
analytic spaces to the category of quasiseparated rigid spaces and show that it induces
an equivalence between the category of paracompact analytic spaces and the category
of quasiseparated rigid spaces that have an admissible affinoid covering of finite type.

In § 2 we establish properties of the local ring 0y , and its residue field k(x),
where x is a point of a k-affinoid space X. (The completion of x(x) is the field 5#(x).)
First, we establish those properties which are mentioned without proof in [Ber], § 2.3.
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Furthermore, we prove that the ring @y , is Henselian, and the canonical valuation
on k(x) extends uniquely to any algebraic extension (fields with this property are said
to be quasicomplete). The latter two facts are of crucial importance for the whole story.
The quasicompleteness of k(x) implies, for example, an equivalence between the cate-
gories of finite separable extensions of k(x) and of J#(x) and, in particular, an isomor-
phism of their Galois groups G,,, > Gy,,- In § 2.4 we establish properties of quasi-
complete fields (whose proofs are borrowed from [BGR] and [ZaSa]), and in § 2.5 ‘we
show that the /-cohomological dimension cd,(x(x)) of the field k(%) (or, equivalently,
of the field s (x)) is a most cd,(k) + dim(X), where ¢ is a prime integer. In § 2.6 to
every scheme % of locally finite type over Z = Spec(&/), where &7 is an affinoid algebra,
we associate an analytic space #** over X = .#(&/). These objects are very important,
in particular, for the proof of the Poincaré Duality Theorem. We establish some basic
facts on the correspondence % +— %*", which are necessary for this work.

In § 3 we introduce and study the classes of étale and smooth morphisms. The
first basic notion is that of a quasifinite morphism. A morphism ¢ :Y — X is said to
be quasifinite if for any point y € Y there exist open neighborhoods ¥~ of y and % of ¢( y)
such that ¢ induces a finite morphism ¥~ — %. It turns out that a morphism is quasi-
finite if and only if it has discrete fibres and is closed (in the sense of § 1.5). Furthermore,
we define étale morphisms. (By definition, they belong to the class of quasifinite mor-
phisms.) For example, the canonical immersion of the closed unit disc in the affine
line is not étale because it is not a closed morphism. In § 3.4 we introduce the notion
of a germ of an analytic space and prove the very important fact that the category of
germs finite and étale over the germ (X, x) of an analytic space X at a point # is equi-
valent to the category of schemes finite and étale over the field #(x). Furthermore,
in § 3.5 we study smooth morphisms. A mosphism ¢ :Y — X is said to be smooth if
locally it is a composition of an étale morphism to the affine space Ay = A? X X and
the canonical projection A% — X. In particular, any smooth morphism is closed. The
latter property of smooth morphisms is natural if we want to have for them Poincaré
Duality. In § 3.6 and § 3.7 we describe the local structure of a smooth morphism. This
description is very important for the sequel and is actually an analog of the trivial
fact that locally any smooth morphism of complex analytic spaces is isomorphic to the
projection X X D — X, where D is an open polydisc in the affine space.

In § 4 we define the étale topology on a k-analytic space X (the étale site X,)
and establish first basic properties of étale cohomology. In § 4.1 we verify that certain
reasonable presheaves are actually sheaves and give an interpretation of the first coho-
mology group with coefficients in a finite group. In § 4.2 we define the stalk F, of a
sheaf F at a point x € X. It is a discrete G,,,-set. It turns out that if = is the canonical
morphism of sites X,, — | X |, where | X | is the site generated by the usual topology of X,
then for any abelian sheaf F on X, there is an isomorphism (R?=, F), = HYGy,,, F,).
It follows that the sheaf F is flabby if and only if, for any point x € X, the fibre F, is
a flabby G, ,-module and, for any étale morphism U — X, the restriction of F to the

2
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usual topology of U is flabby. This fact reduces the verification of many properties of
the étale cohomology established in § 4 and § 5 to the verification of certain properties
of the cohomology of profinite groups and the usual cohomology with coefficients in
sheaves. As first applications of these considerations we prove that if X is good then
the étale cohomology of the sheaf induced by a coherent Ox-module coincides with its
usual cohomology and that the /-cohomological dimension cd,(X) of a paracompact
k-analytic space X is at most cd,(k) + 2 dim(X). The latter fact is easily obtained
from the spectral sequence of the morphism of sites w:X, —|X|, using the
facts that the topological dimension of such a space is at most dim(X) and that
cd,(#(x)) < cdy(k) + dim(X).

In § 4.3 we study quasi-immersions of analytic spaces. A morphism ¢:Y — X
of analytic spaces over % is said to be a quasi-immersion if it induces a homeomorphism
of Y with its image ¢(Y) in X and, for any point y € Y, the field 5#(y) is a purely
inseparable extension of 5 (¢(»)). For example, the canonical embeddings of analytic
domains in an analytic space and closed immersions are quasi-immersions. We prove
that if ¢ : Y — X is a quasi-immersion such that the set ¢(Y) has a basis of paracompact
neighborhoods, then for any abelian sheaf F on X one has H(Y, F |Y) = h_m) HY%,F),
where % runs through open neighborhoods of the set ¢(Y). Furthermore we construct
a spectral sequence which relates the cohomology of a paracompact k-analytic space X
to the cohomology of closed analytic domains from a locally finite coverings by such
domains. We use it to show that the group H(X, u,) has the interpretation given to
it by Drinfeld in [Drl]. In § 4.4 we introduce and study quasiconstructible sheaves
which play the role of constructible sheaves on schemes in the sense that any abelian
torsion sheaf is a filtered inductive limit of quasiconstructible sheaves (the word ¢ cons-
tructible ” is reserved for a future development).

In § 5 we introduce and study the étale cohomology with compact support. All
definitions and constructions are straightforward generalizations of the corresponding
topological notions. In particular, the cohomology groups with compact support are
defined as the right derived functors of the functor of sections with compact support.
Theorem 5.3.1 gives, for an abelian sheaf F, a description of the stalks of the sheaves
R? ¢, F, where ¢ is a Hausdorff morphism of k-analytic spaces, in terms of the coho-
mology of the fibres of ¢. As an application we show that if F is a torsion sheaf, then
R?%¢, F = 0 for all ¢> 24, where d is the dimension of ¢. In § 5.4 we construct for
every separated flat quasifinite morphism ¢ : Y — X and for every abelian sheaf F on
X a trace mapping Tr,: ¢, ¢*(F) —F.

In § 6 we establish various facts on the cohomology of analytic curves. These facts
are a basis for the induction used in the proof of the main theorems from § 7. In § 6.1
we prove the Comparison Theorem for Cohomology with Gompact Support for curves.
The proof of this theorem in the general case (§ 7.1) may be read immediately after
§ 6.1. In the rest of § 6 we assume that the ground field % is algebraically
closed. In § 6.2 we construct, for every smooth separated analytic curve X, a trace
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mapping Try : H3(X, u,) — Z/nZ, where n is prime to char(k), and we show that it
is an isomorphism if X is connected and 7 is prime to char(~). The central fact of § 6.3
(Theorem 6.3.2) states that any tame finite étale Galois covering of the one-dimensional

closed disc is trivial (an étale morphism ¢ : Y — X is said to be tame if for any point

y €Y the degree [#( ) : 5 (p())] is not divisible by char(k)). We deduce from this,
in particular, a Riemann Existence Theorem which states that, for an algebraic curve &
of locally finite type over %, the functor % +— #*® defines an equivalence between the

~

category of finite étale Galois coverings of & whose degree is prime to char(k) and the
category of similar coverings of Z®*. We deduce also the Comparison Theorem for
curves (the proof of this theorem in the general case (§ 7.5) does not use the particular
case). In § 6.4 we prove that, for a one-dimensional k-affinoid space X and a positive

~

integer n which is prime to char (%), the group H(X, Z[nZ) is finite for ¢ = 0, 1 and equal
to zero for ¢ > 2. Furthermore, this group is preserved under algebraically closed
extensions of the ground field.

In § 7 we obtain our main results. In § 7.1 we prove the Comparison Theorem for
Cohomology with Compact Support. This result implies that the cohomology groups
with compact support of a scheme of locally finite type over % (recall that 2 may have
trivial valuation) can be defined as the right derived functors of the functor of sections
with compact support over the associated k-analytic space. In § 7.2 we construct a
trace mapping Tr, : R* ¢,(u} ) — (Z/nZ)x for an arbitrary separated smooth mor-
phism ¢ : Y — X of pure dimension 4 and for » prime to char(k), and we show that it
is an isomorphism if the geometric fibres of ¢ are nonempty and connected and 7 is
prime to char(Z).

In the rest of § 7 all sheaves considered are torsion with torsion orders prime to

~

char(Z). In § 7.3 we prove the Poincaré Duality Theorem, which is actually a central
result of this work. The main ingredients of the proof are our Theorem 3.7.2 and the
Fundamental Lemma ([SGA4], Exp. XVIII, 2.14.2) from the proof of the Poincaré
Duality Theorem for schemes. In § 7.4 we give first applications of Poincaré Duality.
In particular, we prove the acyclicity of the canonical projections X X A? - X and
X x D — X and the Cohomological Purity Theorem. In § 7.5 we prove the Comparison
Theorem. The proof follows closely the proof of Deligne’s ¢ generic” theorem 1.9
from [SGA4%], Th. finitude, and uses it. (I am indebted to D. Kazhdan for suggesting
that Deligne’s ¢ Th. finitude > could be useful for the proof of the Comparison Theorem.)
The proof is actually a formal reasoning which works over the field of complex numbers G
as well. In § 7.6 we prove that the cohomology groups HYX, F) and HYX, F) are
preserved under algebraically closed extensions of the ground field. In § 7.7 we deduce
from this and from Theorem 5.3.1 the Base Change Theorem for Cohomology with
Compact Support. It implies, in particular, a Kiinneth Formula. In § 7.8 we prove
the Smooth Base Change Theorem. The proof uses Poincaré Duality and the Base Change
Theorem for Cohomology with Compact Support.
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§ 1. Analytic spaces

1.1. Underlying topological spaces

In this subsection we introduce some structures on topological spaces that will
be used in the sequel. We also fix general topology terminology.

All compact, locally compact and paracompact spaces are assumed to be Haus-
dorff. (A Hausdorff topological space is called paracompact if any open covering of
it has a locally finite refinement.) Recall that a locally compact space is paracompact
if and only if it is a disjoint union of open and closed subspaces countable at infinity
([Bou], Ch. I, § 10, n° 12, [En], 5.1.27). Recall also that if a HausdorfI topological
space has a locally finite covering by paracompact closed subsets, then the space is para-
compact ([En], 5.1.34). A topological space is said to be locally Hausdorff if each point
of it has an open Hausdorfl' neighborhood. _

Let X be a topological space, and let = be a collection of subsets of X. (All subsets
of X are provided with the induced topology.) For a subset YCX we set
T[Y ={Ver|V CY}. We say that t is dense if, for any V e 1, each point of V has a
fundamental system of neighborhoods in V consisting of sets from <. Furthermore,
we say that 7 is a quasinet on X if, for each point x € X, there exist V,, ..., V, € 1 such
that xe V; n ... NV, and the set V, U ... UV, is a neighborhood of x.

1.1.1. Lemma. — Let © be a quasinet on a topological space X.

(i) A subset U C X is open if and only if for each V €« the intersection U NV is open
in V.
(i) Suppose that © consists of compact sets. Then X is Hausdorff if and only if for any
pair U, V €t the intersection U NV is compact.

Proof. — The direct implication in both statements is trivial.

(i) Suppose that NV is open in V for all V €. For a point x € Z we take
Vi, ..., V,ex such that xreV;n ... "V, and V,U... UV, is a neighborhood
of x in X. By hypothesis, there exist open sets ¥;CX with NV, =%, NnV,.
Then the set ¥ :=%; N ... Nn¥, is an open neighborhood of x in X. It follows
that the set N (V, U ... UV,) is a neighborhood of x because it contains the inter-
section ¥" N (V, U ... UV,) which is a neighborhood of ». Therefore % is open in X.
o (ii) Suppose that U NV are compact for all pairs U, V e 7. Since

X t:={UxV|U,Ver}
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is a quasinet on X X X, then, by (1), it suffices to verify that the intersection of the
diagonal with any U X V for U,V et is closed in U x V. But this intersection is
homeomorphic to the compact set U NV, and therefore it is closed in U x V. m

We remark that if X is Hausdorff, then to establish that a collection of compact
subsets 7 is a quasinet, it suffices to verify that each point of X has a neighborhood of
the form V, U ... UV, with V, e 7. We remark also that a Hausdorff space admitting
a quasinet of compact subsets is locally compact.

Furthermore, we say that a collection ¢ of subsets of X is a net on X if it is a quasinet
and, for any pair U,V e, t|y~y is a quasinet on U NV,

1.1.2. Lemma. — Let © be a net of compact sets on a topological space X. Then

(i) for any pair U, V e, the intersection U NV is locally closed in U and V;
(i) f VCVyU ... UV, forsomeV,V,, ..., V, ex, then there exist Uy, ..., U, et
such that V.=U, U ... VU, and each U, is contained in some V.

Proof. — (i) Itsuffices to verify that U N V islocally compact in the induced topology.
But this is clear because 7|y, is a quasinet on U NV,

(ii) For each point x € V and for each i with x € V,, we take a neighborhood
of xin V. NV, of the form V,; u ... UV, where V;; €r. Then the union of such
neighborhoods over all i with x €V, is a neighborhood of x in V of the form
U, u ... UU, such that each U, belongs to v and is contained in some V;. Since V
is compact, we get the required fact. m

The underlying topological spaces of analytic spaces will be, by Definition 1.2.3
below, locally Hausdorff and provided with a net of compact subsets. It will follow from
the definition (Remark 1.2.4 (iii)) that they admit a basis of open locally compact
paracompact arcwise connected subsets (see also Proposition 1.2.18),

A continuous map of topological spaces ¢ : Y — X is said to be Hausdorff if for
any pair of different points y,, y, € Y with ¢( »;) = ¢(,) there exist open neighborhoods
¥, of y, and ¥, of y, with ¥, N ¥, = O (i.e., the image of Y in Y X3 Y is closed).
We remark that if ¢ : Y — X is Hausdorff and X is Hausdorf, then Y is also Hausdorff.
Furthermore, let X and Y be topological spaces and suppose that each point of X has
a compact neighborhood. A continuous map ¢ : Y - X is said to be compact if the prei-
mage of a compact subset of X is a compact subset of Y. It is clear that such a map is
Hausdorff, it takes closed subsets of Y to closed subsets of X, and each point of Y has
a compact neighborhood.

1.2. The category of analytic spaces

Throughout the paper we fix a non-Archimedean field 2. (We don’t assume that
the valuation on % is nontrivial.) The category of k-affinoid spaces is, by definition, the
category dual to the category of k-affinoid algebras (see [Ber], § 2.1). The k-affinoid
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space associated with a k-affinoid algebra & is denoted by X, where X = ().
(For properties of k-affinoid spaces and their affinoid domains, see loc, cit., § 2.) The
notion of a k-analytic space we are going to introduce is based essentially on the following
two fundamental facts. Let { V, };<; be a finite affinoid covering of a k-affinoid space
X=uML).

Tate’s Acyclicity Theorem. — For any finite Banach s/-module M, the Cech complex
0->M—>IIMQ®, o, »HM@M.MV‘“VJ, - ...
i 1,7

is exact and admissible. m

Kiehl’s Theorem. — Suppose we are given, for each i €1, a finite oy -module M; and, for
each pair 1, j € 1, an isomorphism of Ly, v, -modules «;; : M; ®,, .sz!v Av; 3 M, ®Mv .sa(,,'m,J
such that oy = oc,,[wooc,,lw, W =YV, nV NV, jbr al i sy lel. Then there exists a
Sfinite of-module M that gives rise to the 1—modules M; and to the isomorphisms o;;. ®

Both results are originally proved in the case when the valuation on % is nontrivial
and all the spaces considered are strictly %-affinoid (see [BGR], 8.2.1/5 and 9.4.3/3).
But the general case is reduced to this one by the standard argument from [Ber], § 2.1
(2.2.5 and 2.1.11). Tate’s Acyclicity Theorem is sufficient to define the category of
k-analytic spaces, and Kiehl’s Theorem is used to establish their basic properties.

1.2.1. Remarks. — (i) Let V be a subset of a k-affinoid space X = (/) which
is a finite union of affinoid domains { V, },c;. From Tate’s Acyclicity Theorem it follows
that the commutative Banach k-algebra oy = Ker(Il«/y, Il oy, y,) does not

[ i J

depend (up to a canonical isomorphism) on the covering. Furthermore, V is an affinoid
domain if and only if the Banach algebra .y is k-affinoid and the canonical map
V > () is bijective. (In [Ber], 2.2.6 (iii), the latter condition was missed.)

(ii) From Tate’s Acyclicity Theorem it follows that in the situation of Kiehl’s
Theorem the &/-module M is isomorphic to Ker(HM —»HM By, Dv;nv;) (Recall

that, by [Ber], 2.1.9, the category of finite Banach M—modulcs is equivalent to the
category of finite /-modules.)

Our purpose is to introduce a category of ®-analytic spaces associated with a
system @ of the following form. Suppose we are given for each non-Archimedean field K
over k a class of K-affinoid spaces @ so that the system ® = { @ } satisfies the following
conditions:

(1) #(K) € Qy;
(2) @ is stable under isomorphisms and direct products;

(3) 1f ¢:Y —X is a finite morphism of K-affinoid spaces and X € @y, then
Y e®y;
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(4) if {V;};c; is a finite affinoid covering of a K-affinoid space X such that
V, ey for all eI, then X e ®;

(5) if K< L is an isometric embedding of non-Archimedean fields over %, then
for any X e ®y one has X &g L € ®,.

The class @y is said to be dense if each point of each X € @ has a fundamental
system of affinoid neighborhoods V € ®. The system @ is said to be dense if all @ are
dense.

The affinoid spaces from @y (resp. ®) and their algebras will be called ®g-(resp. ®-)
affinoid. From (2) and (3) it follows that @y is stable under fibre products. In particular,
if : Y — X is a morphism of ®-affinoid spaces, then for any affinoid domain VC X
with V e @y one has ¢~ (V) € D.

1.2.2. Remark. — In fact we shall consider in this paper only analytic spaces for
the system of all affinoid spaces. The more general setting is necessary for establishing
connection with rigid analytic geometry in § 1.6 (see also Remark 1.2.16). For this
one takes for @ the class of strictly K-affinoid spaces. That this @y satisfies (4) is shown as
follows. Let X = #(/). By Tate’s Acyclicity Theorem, the algebra .7 is a closed
subalgebra of the direct product Il sy . It follows that for the spectral radius p(f)

of an element f € &/, one has p(f) = max ev;(f). Since py (f) eV|k | U{0]}, then
o(f) eV|k|U{0}, and therefore & is strictly K-affinoid, by [Ber], 2.1.6. (Of

course, in § 1.6 one assumes also that the valuation on % is nontrivial. In this case the
system @ is dense.) Here is one more example of ®. Assume that the valuation on £ is
trivial. If the valuation on K is also trivial, then we take for @y the class of K-affinoid
spaces X = (&) such that p(f) < 1 for all fe /. Otherwise we take for @ the
class of all K-affinoid spaces. The system ® = { @ } satisfies the conditions (1)-(5) and
it is dense.

Let X be a locally Hausdorff topological space, and let * be a net of compact
subsets on X.

1.2.3. Definition. — A ®,-affinoid atlas &/ on X with the net © is a map which assigns,
to each V e, a @ -affinoid algebra &/, and a homeomorphism V 5 .# (&) and, to
each pair U,V et with UCV, a bounded homomorphism of k-affinoid algebras
ayp: Ly — Ay that identifies (U, &) with an affinoid domain in (V, o).

1.2.4. Remarks. — (i) It follows from the definition that, for any triple U, V, W e ¢
with UCV CW, one has ayy = aygo dyy-

(ii) The family of @ -affinoid atlases with the same net forms a category.

(iii) By [Ber], 2.2.8 and 3.2.1, each point of a k-affinoid space has a fundamental
system of open arcwise connected subsets that are countable at infinity. It follows that
a basis of topology of a ®,-analytic space is formed by open locally compact paracompact
arcwise connected subsets.
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A triple (X, o, ) of the above form is said to be a ®,-analytic space. To define
morphisms between them, we need a preparatory work. First, we’ll define a category

(I)k-.,d’\nl whose objects are the ®,-analytic spaces and whose morphisms will be called
strong morphisms. After that the category of ®,-analytic spaces ®,-2/n will be constructed
as the category of fractions of @k-df; with respect to a certain system of strong morphisms
that admits calculus of right fractions.

Let (X, &, ) be a @ -analytic space.

1.2.5. Lemma. — If W is a ®-affinoid domain in some U € x, then it is a ®- aﬁnozd
domain in any V €« that contains W.

Proof. — Since TlUnv is a net and W is compact, we can find U,, ..., U, € T[Unv
with WCU; u ... U U,. Furthermore, since W and U, are ®-affinoid domains in U,
then W, := W N U, is a ®-affinoid domain in U,. It follows also that W, and W, n W,
are ®-affinoid domains in V. By Tate’s Acyclicity Theorem, applied to the affinoid
covering { W, } of W the Banach algebra &/ = Ker(l—[&/ w; > Hdw ~w,) is k-affinoid

and W5 #(,). By Remark 1.2.1 (i), W is a ®- afﬁn01d domam in V. m
Let 7 denote the family of all W such that W is a ®-affinoid domain in some
V er. If ®, is dense, then 7 is dense.

1.2.6. Proposition. — The family = is a net on X, and there exists a unique (up toa
canonical isomorphism) ®-affinoid atlas o with the net T that extends s

Proof. — Let U,Vezand xe UN V. Take U’, V' et with UCU’ and VC V',
We can find a neighborhood W; U ... UW, of x in U' nV’' with W, er and
xeW;n ... nW,. Since U (resp. V) and W, are ®-affinoid domains in U’ (resp. V'),
then U;:=U NnW, (resp. V,:=V Nn'W,) is a ®-affinoid domain in W,, and therefore
U, NV, is a ®-affinoid domain in W, i.e.,, U, NV, G'-f|vnv- Since

Ui(Ui N Vi) = (U N V) N (Uz Wi):

then U,(U, N V,) is a neighborhood of x in U NV with x € [,(U;, n V,). It follows
that 7 is a net.

Furthermore, for each V et we fix V' et with VCV’ and assign to V the
algebra &7, and the homeomorphism V = /(&) arising from (V’, &.). We have
to conmstruct, for each pair U, V e 7 with UCV, a canonical bounded homomorphism
oy — Ay that identifies (U, &) with an affinoid domain in (V, &/y). Consider first
the case when V e 1. Since 1y 4y is 2 quasinet, we can find sets Uy, ..., U, that are
®-affinoid domains in U’ and V and such that U =U, u ... U U,. By Tate’s Acy-
clicity Theorem, &y = Ker(H.sz{ — HMU nt;)> and therefore the homomorphisms

Ay — Ay, and Ay — Ly, y; induce a bounded homomorphism &7y — &/ that iden-
tifies (U, o ) with an affinoid domain in (V, &). In particular, the homomorphism

3
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constructed does not depend on the choice of U,, ..., U,. Assume now that V is arbi-
trary. Then U C 'V’ and, by the first case, there is a canonical bounded homomorphism
Ay — oy that identifies (U, &/y) with an affinoid domain in (V’, &y.). It follows
that (U, o) is a ®-affinoid domain in (V, &). B

1.2.7. Definition. — A strong morphism of ®,-analytic spaces
o: (X, &, 1) > (X, &', 7)

is a pair which consists of a continuous map ¢ : X — X', such that for each V & < there
exists V' e 1’ with ¢(V)CV’, and of a system of compatible morphisms of %-affinoid
spaces @,y : (V, &) = (V', %) for all pairs Vet and V' e’ with ¢(V)C V',

1.2.8. Proposition. — Any strong morphism ¢ : (X, &, 7) — (X', &', 1) extends in a
unique way to a strong morphism ¢ : (X, o, T) > (X, oL, ).

Progf. — Let U and U’ be ®-affinoid domains in V et and V' € 7', respectively,
and suppose that ¢(U) C U’. Take W’ € v’ with ¢(V) CW’. Then (U)CW, U ... UW,
for some Wy, ..., W, €|y, qw. The morphism of k-affinoid spaces ¢y induces
a morphism V;:= ¢34 (W,) > W, that induces, in its turn, a morphism
U;:=UnV,>U;:=U"NnW, (the latter is a ®-affinoid domain in V’). Thus,
we have a system of morphisms of k-affinoid spaces U; - U, — U’ that are compatible
on intersections. It gives rise to a morphism ¢y, : (U, &) - (U’, &y). It clear that
the morphisms ¢y, are compatible. m

We now define the composition y of two strong morphisms

o: (X, o, 1) > (X, &', v) and ¢: (X, ) > (X", L, 7).

The map y that is the composition of the maps ¢ and ¢ satisfies the necessary condition
of the Definition 1.2.7. Furthermore, by Proposition 1.2.8, we may assume that ¢
and ¢ are extended to the morphisms ¢ and ¢. Suppose now that we are given a pair
V er and V" 1" with (V) CV”. We have to define a morphism of k-affinoid spaces
Xvve s (Vs y) = (V", o). For this we take V' e’ and U” et with ¢(V)CV’
and (V') CU"”. Since (V) CU"” N V" and V is compact, it follows that there exist
Vi, oo, Vi et |giaye with x(V)CV U... UV, Then V;:={3}.(V{’) and
V, := ¢y (V;) are ®-affinoid domains in V' and V, respectively,and V=V, u ... UV,.
The morphisms ¢ and ¢ induce morphisms of k-affinoid spaces V; = V,’, and since V;’
are @-affinoid domains in V*’, they induce a system of morphisms V, - V'’ that are
compatible on intersections. It gives rise to the required morphism of %-affinoid spaces
Xvrve : (V, y) = (V", y.). It is easy to see that the morphisms yy,y are compatible.
Hence we get a morphism y that is the composition of ¢ and ¢ and is denoted by ¢ o ¢

(or simply by ¢¢). Thus, we get a category ®,-on.
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1.2.9. Definition. — A strong morphism ¢ : (X, &, 7) - (X', &, ') is said to
be a quasi-isomorphism if ¢ induces a homeomorphism between X and X’ and, for any pair
Ver and V' e’ with ¢(V)CV’, ¢ identifies V with an affinoid domain in V',

It is easy to see that if ¢ is a quasi-isomorphism, then so is ¢.

1.2.10. Proposition. — The system of quasi-isomorphisms in (I)k-dr; admits calculus
of right fractions.

Proof. — We have to verify (see [GaZi], Ch. I, § 2, 2.2) that the system satisfies
the following properties:

a) all identity morphisms are quasi-isomorphisms;
b) the composition of two quasi-isomorphisms is a quasi-isomorphism;
¢) any diagram of the form (X, &, 1) > (X', &', ') < (5(", o, %’), where g
is a quasi-isomorphism, can be complemented to a commutative square
(X, #,7) = (X, ', %)

I I

& %) 2 (&, %)
where f is a quasi-isomorphism;

d) if for two strong morphisms ¢, § : (X, &, ) > (X', &', 7') and for a quasi-
isomorphism g: (X', &', ') — ()N(", o, %') one has go = g¢, then there exists a quasi-
isomorphism f: (X, &, %) — (X, o, ©) with of = {f. (We’ll show, in fact, that in this
situation ¢ = {.)

The property a) is obviously valid. To verify 4), it suffices to apply the construction
of the composition and Remark 1.2.1 (i). To verify ¢), we need the following fact.

1.2.11. Lemma. — Let ¢: (X, &, 1) - (X', ', ') be a sirong morphism. Then
Jor any pair V €z and V' €7’ the intersection V N ¢~ (V') is a finite union of ®-affinoid
domains in V.

Proof. — Take U’ € with (V) C U’. Then we can find Uj, ..., U, e |pqv
with (V)C U, U ... uU,, and Vne Y(V') = U, ¢71.(U)). m

Suppose that we have a diagram as in ¢). We may assume that X’ = X'. Then
%' C . Let ¥ denote the family of all V e 7 for which there exists V' €% with (V) C .

From Lemma 1.2.11 it follows that ¥ is a net. The ®,-affinoid atlas &/ defines a
®,-affinoid atlas o with the net %, and the strong morphism ¢ induces a strong morphism
?: (X, .s;, %) - (X', .xa;", %’). Then § and the canonical quasi-isomorphism

fi (X, %) > (X, o)
satisfy the required property c).
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Finally, we claim that in the situation d) the morphisms ¢ and ¢ coincide. First
of all, it is clear that they coincide as maps. Furthermore, let V et and V'’ e ¢’ be such
that ¢(V) C V'. Take V' €%’ with g(V’) C ¥'. Then we have two morphisms of %-affinoid
space @y, Py 1 V>V’ such that their compositions with gy.,5. coincide. Since V’
is an affinoid domain in V’, it follows that vy = Yyv- A

The category of @,-analytic spaces @,-2/n is, by definition, the category of fractions

of @,-o/n with respect to the system of quasi-isomorphisms. By Proposition 1.2.10
morphisms in the category ®@,-o/n can be described as follows. Let (X, &7, 1) be a
®,-analytic space. If ¢ is a net on X, we write 6 <7 if 6C7. Then the ®,-affinoid
atlas o defines a ®,-affinoid atlas &, with the net o, and there is a canonical quasi-
isomorphism (X, &, 6) - (X, &, 7). The system of nets {6} with ¢ < tis filtered
and, for any @ -analytic space (X', &', '), one has

Hom((X, &, 1), (X', &', 7)) = 1_1%1 Hom (X, #,, o), (X', &, 7")).
We remark that all the maps in the inductive system are injective.

We now want to construct a maximal ®-affinoid atlas on a @ -analytic space
and to describe the set of morphisms between two ®,-analytic spaces in terms of their
maximal atlases. (Kiehl’s Theorem will be used here for the first time.)

Let (X, &/, t) be a ®,-analytic space. We say that a subset WC X is 1-special
if it is compact and there exists a covering W =W, U ... UW, such that W,,
W, nW;er and .szlwi®.ﬂwj — & w,~w; is an admissible epimorphism. A covering
of W of the above type will be said to be a t-special covering of W.

1.2.12. Lemma. — Let W be a v-special subset of X. If U,V € 'r|w, thnUNVex
and A5 ® oAy — Ay is an admissible epimorphism.

Proof. — Since the sets U Nn'W, and V n W, are compact, we can find finite
coverings { U, }, of UNW, and {V;}, of VAW, by sets from t. Furthermore,
since W; "W, - W, X W, are closed immersions, is follows that U, NV, e7 and
U, NV, -U, X V, is a closed immersion. Consider now the finite affinoid covering
{Uy X Vu}i s, of the k-affinoid space U X V. For each quadruplet i,j, 4,1,
A Gy v, is a finite &y, . v,-algebra, and the system { &/y, vy, } satisfies the condi-
tion of Kiehl’s Theorem. It follows that this system is defined by a finite &/}, y-algebra
isomorphic to gy 1= Ker(Il oy, (v, = Il &y, (v nvpav;), and  therefore
the latter algebra is ®@,-affinoid, UNV 3 # (&), and UNV - U X V is a closed
immersion. By Remark 1.2.1 (i), UNV is a ®-affinoid domain in U and V,
ie, UnVez m - .

Let W be a t-special subset of X. From Lemma 1.2.12 it follows that any finite
covering of W by sets from  is a t-special covering. Furthermore, if { W, } is a t-special
covering, then from Tate’s Acyclicity Theorem it follows that the commutative Banach

k-algebra oy := Ker (Il /g, — [1 o4y, nw,~) does not depend (up to a canonical iso-
i (%) .
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morphism) on the covering, and a continuous map W — #(&y,) is well defined. Let 7
denote the collection of all z-special subsets W such that the algebra &7 is k-affinoid,
W S #(sy) and, for some 7-special covering { W;} of W, (W,, /) are affinoid
domains in (W, &7y). We remark that from the condition (4) for the class @, it follows

that W belongs to ®,. Furthermore, the last property of W does not depend on the
choice of the covering.

1.2.13. Proposition. — (i) The collection T is a net, and for any net o << one has 3 = 7;
(ii) there exists a unique (up to a canonical isomorphism) ®,-analytic atlas o with the
net T that extends the atlas o

(i) 7T = 7.

Proof. — (i) Let U, V € 7. We take 7-special coverings { U; } of U and { V,} of V.
Since UnNV =U, (U;nV,) and =|,y, are quasinets, it follows that T|y,y is a
quasinet. Furthermore, let ¢ is a net with ¢ < 7. By Lemma 1.2.12, to verify the equality
8 =7, it suffices to show that for any V €7 there exist Uy, ..., U, ec with
V=U;u...uU,. Since ¢ is a net on X, we can find W,,...,W,_ eoc with
VCW,uU ... UW,_. Since V, W, €7 and 7 is a net, then, by Lemma 1.1.2 (ii), we
can find U, ..., U, €7 such that V=U,; v ... UU, and each U, is contained in
some W,. Finally, since W; e, it follows that U, .

(ii) For each V € T we fix a 7-special covering { V, } and assign to V the algebra &
and the homeomorphism V 5 (&) arising from the covering. We have to construct
for each pair U, Ve with UCV a canonical bounded homomorphism &y — &/
that identifies (U, &) with an affinoid domain in (V, &7y). Consider first the case
when U er. By Lemma 1.2.12, U NV, is an affinoid domain in V; and therefore
in V. It follows that U is an affinoid domain in V. If U is arbitrary, then by the first
case each U, from some 7-special covering of U is an affinoid domain in V. It follows
that U is an affinoid domain in V.

(iii) From Lemma 1.2.12 it follows that T = %. Let { V, } be a 7-special covering
of some V € 7. For each i we take a T-special covering { V;;}; of V,. Then {V,;};;
is a 7-special covering of V, and therefore Ve=. m

The sets from 7 are said to be ®-affinoid domains in X. The 7-special sets are said
to be ®-special domains in X. They have a canonical @ -analytic space structure. The
following statement follows from Lemma 1.2.11 and Proposition 1.2.13 (i).

1.2.14. Corollary. — If o: (X, &, 1) - (X', &', ") is a morphism of @ -analytic
spaces, then for any pair of ®-affinoid domains V CX and V' CX' the intersection V.0 @~ (V')
is a O-special domain in X. B ‘

1.2.15. Proposition. — Let (X, o, 7) and (X', &', 7') be ®-analytic spaces.
- (i) There is a one-to-one correspondence between the set Hom((X, &, 7), (X', &', 7')) and
the set of all pairs consisting of a continuous map ¢ : X — X', such that for each point x € X
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there exist neighborhoods V, LU ... UV, of x and ViU ... UV, of o(x) with
xeVin...nV, and o(V,)C V], where V,CX and V; C X' are ®-gffinoid domains, and
of a system ¢yf compatible morphisms of k-affinoid spaces ¢y : (V, Ly) — (V', ) for all
pairs of ®-affinoid domains VC X and V' C X’ with (V) C V', ’

(ii) A4 morphism ¢ : (X, o, 1) - (X', &', 7') is an isomorphism if and only if ¢ induces
a homeomorphism between X and X', (%) = ' and, for any Ve 7z, (V, ) S (V', &%),
where V' = (V).

Progf. — (i) Let o be a net on X with ¢ <7, and let ¢ : (X, &, 6) - (X', &', 7')
be a strong morphism. Itis easy to extend the system of compatible morphisms of 2-affinoid
spaces oy - (V, Hy) = (V', &) for all pairs V ed and V' € 7 with ¢(V) C V. Since
8 = 7, we get a map (evidently injective) from the first set to the second one. Conversely,
suppose that we have a pair of the above form. To verify that it comes from a morphism
of ®@,-analytic spaces, it suffices to show that the collection ¢ of all V €7 such that
(V) C V' for some V' € 7’ is a net. For this we take a point x € X and neighborhoods
Viu...uV,ofxand ViU ...V, of ¢(x) withxeV;n... "V, and ¢(V,)CV,
where V, €7 and V] € 7’. Then V, €5, and we get the required fact.

(ii) follows from (i). m

In practice we don’t make a difference between (X, 7, 1) and the ®,-analytic
spaces isomorphic to it. In particular, we shall denote it simply by X and assume that
it is endowed with the maximal @, -affinoid atlas. If it is necessary, we denote the under-
lying topological space by | X |. We remark that the functor that assigns to a ®,-affinoid
space X = () the @ -analytic space (X, o/, {X}) is fully faithful. A @ analytic
space isomorphic to such a space is called a @ -affinoid space.

Furthermore, if @ is the system of all affinoid spaces, then the category ®,-o/n
is denoted by k-2/n, and the corresponding spaces are called k-analytic spaces. In this case
we withdraw the reference to @ in the above and future definitions and notations. If ®
is the system of strictly affinoid spaces, then the category ®@,-&/n is denoted by si-k-2/n,
and the corresponding spaces are called strictly k-analytic spaces. Similarly, instead of
referring to @, we use the word  strictly * (strictly affinoid domains and so on).

1.2.16. Remark. — For an arbitrary @ there is an evident functor ®,-o/n — k-2/n.
From Proposition 1.2.15 it follows that this functor is faithful. But we don’t know
whether it is fully faithful. (This was another reason for introducing the category of
®,-analytic spaces.) The only fact in this connection is Proposition 1.2.17.

We say that a ®@,-analytic space is good if each point of it has a ®-affinoid neigh-
borhood.

1.2.17. Proposition. — Let X and Y be ®,-analytic spaces, and assume that the class ®,
is dense and X is good. Then any morphism of k-analytic spaces ¢ : Y —X is a morplzzsm of
D, -analytic spaces.
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Proof. — It suffices to show that the family © of all ®-affinoid domains VCY,.
for which there exists a ®-affinoid domain U C X with ¢(V) C U, is a net. For an arbi-
trary point y € Y we take a ®-affinoid neighborhood U of ¢( y). Since @, is dense, we
can find a neighborhood of » in ¢~ *(U) of the form V, U ... UV,, where V, are
®-affinoid domainsin Yandy e Vi, n ... NV, . WegetV, e, and therefore 7 is a net. ®

The dimension dim(X) of a @ -analytic space X is the supremum of the dimensions
of its ®-affinoid domains. (The dimension of a k-affinoid space is defined in [Ber],
p- 34.) We remark that the supremum can be taken over ®-affinoid domains from some
net, and, in particular, the dimension of X is the same whether the space is considered
as an object of ®,-o/n or of k-o/n.

1.2.18. Proposition. — The topological dimension of a paracompact ®,-analytic space is at most
the dimension of the space. If the space is strictly k-analytic, both numbers are equal.

Proof. — Suppose first that the space X = (&) is k-affinoid. If X is strictly
k-affinoid, the statement is proved in [Ber], 3.2.6. If X is arbitrary, we take a non-
Archimedean field K of the form K, , (see [Ber], § 2.1) such that the algebra
&' = o/ ®K is strictly k-affinoid, and consider the map ¢: X — X' = (/') which
takes a point ¥ € X to the point x" € X’ that corresponds to the multiplicative seminorm
2,0, T — max | a,(x) | r*. The map ¢ induces a homeomorphism of X with a closed

subset of X’. Therefore the topological dimension of X is at most dim(X’) = dim(X).

If X is an arbitrary paracompact k-analytic (resp. strictly Z-analytic) space, then
it has a locally finite covering by affinoid (resp. strictly affinoid) domains, and there-
fore the statement follows from [En], 7.2.3. m

1.3. Analytic domains and G-topology on an analytic space

1.3.1. Definition. — A subset Y of a ®,-analytic space X is said to be a ®-analytic
domain if, for any point y €Y, there exist ®-affinoid domains V,, ..., V, that are
contained in Y and such that ye V; n ... NV, and the set V, U ... UV, is a neigh-
borhood of in Y (i.e., the restriction of the net of ®-affinoid domainson Y is a net onY).

We remark that the intersection of two ®-analytic domains is a ®-analytic domain,
and the preimage of a ®-analytic domain with respect to a morphism of a ®,-analytic
spaces is a ®-analytic domain. Furthermore, the family of ®-affinoid domains that are
contained in a ®-analytic domain Y C X defines a @ -affinoid atlas on Y, and there is
a canonical morphism of ®,-analytic spaces v:Y — X. For any morphism ¢:Z — X
with ¢(Z) CY there exists a unique morphism ¢ : Z —Y with ¢ = v{. It is clear that
a Q-analytic domain that is isomorphic to a %-affinoid space is a ®-affinoid domain.
A morphism ¢ :Y — X that induces an isomorphism of Y with an open ®-analytic
domain in X is said to be an open immersion. If the class @, is dense, then all open subsets
of X are ®-analytic domains.
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1.3.2. Proposition. — Let { Y, }; 1 be a covering of a ®y-analytic space X by ®-analytic
domains such that each point of X has a neighborhood of the form Y, U ... NY, with
yeY, n...nY, (ie,{Y,;};cyts a quasinet on X). Then for any ® -analytic space X’
the following sequence of sets is exact

Hom(X, X') - [IHom(Y;, X’) 3 [IHom(Y; n Y, X").
i ii

Proof. — Let ¢,: Y, > X’ be a family of morphisms such that, for all pairs
,7€l, g |Yi ny; = cp,.IYij. Then these ¢; define a map X — X’ which is continuous,
by Lemma 1.1.1 (i). Furthermore, let © be the collection of ®-affinoid domains V.C X
such that there exist 7 € I and a ®-affinoid domain V' C X’ with VCY, and ¢,(V)C V',
It is easy to see that t is a net on X, and therefore there is a morphism ¢ : X — X’
that gives rise to all the morphisms ¢,. m

We now consider a process of gluing of analytic spaces. Let { X, };<; be a family
of @,-analytic spaces, and suppose that, for each pair 7, j € I, we are given a ®-analytic
domain X;;CX; and an isomorphism of @ -analytic spaces v;:X;; > X, so that
X=X, v;(X;; nXy) =X, nX,, and v; = v;;0v; on X;; N X,. We are looking
for a @,-analytic space X with a family of morphisms p,: X; - X such that:

(1) p; is an isomorphism of X; with a ®-analytic domain in X;
(2) all p(X;) cover X;

(3) m(Xyy) = w(X) N upy(Xy)s

(4) =y 0v; on X,

If such X exists, we say that it is obtained by gluing of X; along X;;.

1.3.3. Proposition. — The space X obtained by gluing of X, along X, exists and is
unique (up to a canonical isomorphism) in each of the following cases:

a) all X;; are open in X;;

b) for any i €1, all X,; are closed in X, and the number of j € I with X;; + O 1is finite.
Furthermore, in the case a) all p,(X,) are open in X. In the case b) all p,(X;) are closed in X
and, if all X, are Hausdorff (resp. paracompact), then X is Hausdorff (resp. paracompact).

Proof. — Let X be the disjoint union II, X,. The system {vi; } defines an equi-
valence relation R on X. We denote by X the quotient space X/R and by y; the induced
maps X; — X. In the case @), the equivalence relation R is open (see [Bou], Ch. I,
§ 9, n° 6), and therefore all p,(X;) are open in X. In the case b), the equivalence rela-
tion R is closed (see loc. cit., n° 7), and therefore all y,(X;) are closed in X and g, induces
a homeomorphism X; 5 u,(X;). Moreover, if all X; are Hausdorff, then X is Hausdorff,
by loc. cit., exerc. 6. If all X; are paracompact, then X is paracompact because it has a
locally finite covering by closed paracompact subsets ([En], 5.1.34).

Furthermore, let © denote the collection of all subsets VC X for which there
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exists ¢ €I such that VCy, (X)) and yp; (V) is a ®-affinoid domain in X, (in this
case p; '(V) is a @-affinoid domain in X; for any j with V.C u,(X,)). It is easy to see
that 7 is a net, and there is an evident ®@,-affinoid atlas o/ with the net X. In this way
we get a ®,-analytic space (X, &7, v) that satisfies the properties (1)-(4). That X is
unique up to canonical isomorphism follows from Proposition 1.3.2. m

Let X be a @,-analytic space. The family of its ®@-analytic domains can be considered
as a category, and it gives rise to a Grothendieck topology generated by the pretopology
for which the set of coverings of an analytic domain Y C X is formed by the families
{Y,}ie; of analytic domains in Y that are quasinets on Y. For brevity, the above
Grothendieck topology is called the G-fopology on X, and the corresponding site is
denoted by X;. From Proposition 1.3.2 it follows that any representable presheaf
on X, is a sheaf. The G-topology on X is a natural framework for working with coherent
sheaves.

Recall ([Ber], 1.5) that the n-dimensional affine space A" is the set of all mul-
tiplicative semi-norm on the ring of polynomials 2[T,, ..., T ] that extend the valuation
on k endowed with the evident topology. The family of closed polydiscs with center at
zero E(0;ry, ..., 7,) ={xeA"||T(x)| < r;, ] < i< n} defines a k-affinoid atlas on A™.
(We remark that A" is a good k-analytic space.) We remark that the affine line Al is a ring
object of the category k-2/n. If X = # (/) is a k-affinoid space, then Hom(X, A!) = /.

We return to ®-analytic spaces. Applying Proposition 1.3.2 to X’ = A! and the
category k-s/n, we get a structural sheaf Oy, on X, (this is a sheaf of rings). The category
of Oy -modules is denoted by Mod(X;). An Oy -module is said to be coherent if there
exists a quasinet v of ®-affinoid domains in X such that, for each V er, @Xalvc is iso-
morphic to the cokernel of a homomorphism of free @y -modules of finite rank. For
example, suppose that X = .#(/) is a @ -affinoid space. Then a finite &/-module M
defines a coherent Oy (M) by V> M®_ 7, and Kiehl’s Theorem tells that any
coherent Oy -module is isomorphic to Oy (M) for some M. The latter fact enables one
to define for a coherent O -module F the support Supp(F) of F. Namely, if X = ./# ()
is k-affinoid and F = O (M), then Supp(F) is the support of the annihilator of M.
If X is arbitrary, then Supp(F) is the set of point x € X such that for some (and therefore
for any) affinoid domain V that contains x the support of Flve contains x. Let Coh(X,)
denote the category of coherent @y -modules, and let Pic(X,) denote the Picard group
of invertible Ox_-modules. (One has Pic(X;) = H}X, 0% ).) From Kiehl’s Theorem
it follows that Coh(X,) and Pic(X,) are the same whether X is considered as an object
of ®,-o/n or of k-s/n.

We now consider connection of the above objects with their analogs in the usual
topology of X. For this we assume that the class @, is dense. Then all open subsets of X are
®-analytic domains, and there is a morphism of G-topological spaces = : X; — X which
induces a morphism of the corresponding topoi (x,, ©*) : X; — X~. The direct image
functor =, is simply the restriction functor. In particular, we have the structural sheaf
Oy := m, Ox, on X. The functor =, is not fully faithful (see Remark 1.3.8). The inverse

4
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image functor =" is as follows. For a sheaf F on X and a ®-affinoid (or ®-special) domain,
one has
= F(V) = lim F(%),
%DV

where % runs through open neighborhoods of V. It is easy to see that F 3 &, n* F.
In particular, the functor =* is fully faithful.

Let Mod(X) denote the category of Ox-modules. The functor =, defines an evident
functor Mod(X;) — Mod(X). The natural functor in the inverse direction is as follows:

Mod(X) -~ Mod(Xg) : F o Fy = n* F @ g, Oy

An Ox-module is said to be cokerent if locally (in the usual topology of X) it is isomorphic
to the cokernel of a homomorphism of free modules of finite rank. (For example, if
X =M (sf) is D-affinoid, then Ox(M) := =w, Ox (M) is a coherent @Og-module.) The
Picard group Pic(X) is the group of invertible Ox-modules. One has Pic(X) = H'(X, 0%).

1.3.4. Proposition. — If X is a good ®,-analytic space, then
(i) for any Og-module F one has F > w, Fy; in particular, the functor
Mod(X) - Mod(X,) : F — F,
is fully faithful;
(i) the functor F v+ F, induces an equivalence of categories Coh(X) > Coh(Xy);
(iii) @ coherent Og-module F is locally free if and only if F is locally free.

Proof. — (i) It suffices to verify that for any point x € X there is an isomorphism of
stalks F, = (m, Fy),. But this easily follows from the definitions because x has an affinoid
neighborhood.

(ii) By (i), it suffices to verify that for a coherent 0y -module & the Og-module
F = =, & is coherent and Fy; = #. This also follows easily from the definitions.

(iii) We may assume that X = (/) is k-affinoid. It suffices to show that a
finite o/-module M is projective if and only if the Oy -module Oy (M) is locally free.
The direct implication is simple. Conversely, suppose that for some finite affinoid cove-
ring { V; }; ¢ 1 of X the finite &/, -modules M ®,, &/ are free. It suffices to verify that M
is flat over . For this we take an injective homomorphism of finite &/-modules P — Q.
Then the homomorphisms (M ®, P)®, &y, -~ (M®,Q)®, &, are also injective.
Applying Tate’s Acyclicity Theorem to the finite &/-modules M ®_,P and M®, Q,
we obtain the injectivity of the homomorphism M®,P > M® Q. m

1.3.5. Corollary. — If X is a good ®,-analytic space, then there is an isomorphism
Pic(X) 5 Pic(Xy). m

The structural sheaf @y will be used only for good spaces X. The group Pic(X)
will appear in Corollary 4.3.8. We now compare the cohomology groups in both
topologies.
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1.3.6. Proposition. — (i) For any abelian sheaf F on X, one has H*(X, F) 5 H/(X,, ©* F),
g= 0.

(i) If X is good, then H'(X, F) 5 HYX,, Fy), ¢> 0, for any coherent Ox-module F.

(i) If X is paracompact, then HY(X, F) > HY(X,, = F) for any sheaf of groups F on X.

Proof. — (i) An open covering of X is a covering in the usual and the G-topology,
and therefore it generates two Leray spectral sequences that are convergent to the
groups HY(X, F) and H¥X,, =" F), respectively. Comparing them, we see that it suffices
to verify the statement for sufficiently small X. In particular, we may assume that X is
paracompact. It suffices to verify that if F is injective, then HY(X, =* F) = 0 for ¢ > 1.
Since X is paracompact, it suffices to verify that the Cech cohomology groups of n* F
with respect to a locally finite covering by compact analytic domains are trivial. But
this is clear because they are also the Cech cohomology groups of F with respect to the
same covering.

(ii) The same reasoning reduces the situation to the case when X is an open
paracompact subset of a k-affinoid space. (In particular, the intersection of two affinoid
domains is an affinoid domain.) In this case H(X, F) is an inductive limit of the ¢g-th coho-
mology groups of the Cech complexes associated with locally finite open coverings
{%,};c: of X. On the other hand, since the cohomology groups of a coherent sheaf on
a G-ringed k-affinoid space are trivial, then H%X,, F;) is the ¢-th cohomology group
of the Cech complex associated with an arbitrary locally finite affinoid covering { V, },¢
of X. Tt remains to remark that for any { %, };, . ; we can find { V, }, c ; such that each V,
is contained in some %; and U, ; Int(V,/X) = X.

(iii) is trivial. m

We remark that a morphism of ®,-analytic spaces ¢ : Y — X induces a morphism
of G-ringed topological spaces ¢4 : Yy — X;. If the spaces X and Y are good, then for
any coherent Ox-module F there is a canonical isomorphism of coherent @y -modules
(9* Fla = ¢ Fo.

We finish this subsection by introducing several classes of morphisms.

1.3.7. Lemma. — The following properties of a morphism of @.-analytic spaces
¢:Y — X are equivalent:

a) for any point x € X there exist ®-affinoid domains V,, ..., V,CX suck that
xeVin...nV, and 97 (V,) =V, are finite morphisms (resp. closed immersions) of
k-affinoid spaces;

b) for any ®-affinoid domain VC X, ¢~ (V) =V is a finite morphism (resp. a closed
immersion) of k-affinoid spaces.

Proof. — Suppose that a) is true. Then the collection 7 of all ®-affinoid domains
V C X such that 7 (V) — V is a finite morphism (resp. a closed immersion) of 2-affinoid
spacesis a net. Let V be an arbitrary ®-affinoid domain. Then VC V, U ... UV, for some
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V ex. By Lemma 1.1.2 (ii), we can find ®-affinoid domains U,, ..., U, C X such
that V.="U, U ... U U, and each Uj is contained in some V,. Then U, € . It remains
to apply Kiehl’s Theorem. m

A morphism ¢:Y — X satisfying the equivalent properties of Lemma 1.3.7
is said to be finite (resp. a closed immersion). It is clear that this property of ¢ is the same
whether we consider it in the category @,-%/n or in k-&/n. A finite morphism ¢ :Y — X
induces a compact map with finite fibres | Y| —| X |, and ¢q (0y.) is a coherent
Ox,-module. If ¢ is a closed immersion, then it induces a homeomorphism of | Y | with
its image in | X |, and the homomorphism Oy, — ¢4 (0y,) is surjective. Its kernel is a
coherent sheaf of ideals in Oy . Furthermore, we say that a subset X C X is Zariski closed
if, for any ®-affinoid domain V C X, the intersection £ NV is Zariski closed in V.
The complement to a Zariski closed subset is called Zariski open. For example, the support
of a coherent 0y -module is Zariski closed in X. If ¢ : Y — X is a closed immersion,
then the image of Y is Zariski closed in X. Conversely, if X is Zariski closed in X, then
there is a closed immersion Y — X that identifies | Y | with Z.

Furthermore, a morphism of ®,-analytic spaces ¢ : Y — X is said to be a G-locally
(resp. locally) closed immersion if there exist a quasinet © of ®-analytic (resp. open ®-analytic)
domains in Y and, for each V e+, a ®-analytic (resp. an open ®-analytic) domain
U C X such that ¢ induces a closed immersion V — U. (It is clear that this property
of ¢ is the same whether we consider it in the category ®,-&/n or in k-2/n.) Of course,
a locally closed immersion is a G-locally closed immersion. If the both spaces are good,
then the converse is also true.

Let now ¢ : Y — X be a G-locally closed immersion, and let V and U be as above.
If .7 is the sheaf of ideals in 0, that corresponds to V, then #/#2 can be considered as
an Oy -module. All these sheaves are compatible on intersections, and so they define a
coherent @y -module that is said to be the conormal sheaf of ¢ and is denoted by Ay ..
If both spaces are good, then one can also define a similar Ox-module Ay x, and one has
('/VY/X)G ; ‘/V‘YG/XG‘

1.3.8. Remark. — Here is an example showing that the direct image functor
7, : X; — X7 is not fully faithful. Let X be the closed unit disc

E(O: 1) ={xEA1“T(x)< 1}3

and let x, be the maximal point of X (it corresponds to the norm of the algebra 2{ T }).
We construct two sheaves F and F’ on X as follows. Let Y be an analytic domain in X.
Then F(Y) =Z if x,€Y, and F(Y) =0 otherwise. Furthermore, F'(Y) =2Z if
{xeX|r<|T(x)| <1} uU{x,}CY for some 0< r< 1, and F'(Y) = 0 otherwise. The
sheaves F and F’ are not isomorphic, but «, F = =, F' = i, Z, where ¢ is the embed-
ding { x, } - X.
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1.4. Fibre products and the ground field extension functor

1.4.1. Proposition. — The category ®,-fn admits fibre products.

Proof. — First we shall show the existence of fibre products in the category -2/n,
and after that we’ll use this fact to show that the same is true for the category ®,-o/n.
Let ¢: Y - X and f: X’ - X be morphisms of k-analytic spaces.

Consider first the case when all three spaces are paracompact. In this case we
may assume that ¢ and f are represented by strong morphisms (Y, %, ¢) - (X, &, 1)
and (X', &, 1) - (X, &, 1), where 1, ¢ and <’ are locally finite nets. Let S denote
the family of all triples (V, U, U’), where V eo, U er, U et and ¢(V), f(U")CU.
For « = (V, U, U’) € S we denote by W, the k-affinoid space V XU’ and by Z,
the topological space | V| X g, | U’|. The latter is a compact subset of the topological
space L := | Y | X x| | X'|, and the canonical map W, — X, induces a map =, : W, — Z.
We claim that, for any pair «, 8 €S, the set W5 := n; (£, N Z;) is a special domain
in W,, and there is a canonical isomorphism of k-analytic spaces v,z: W,z > Wg,.
Indeed, let § = (V,U,U’). Then UNnU =TU,; n... nU, for U, e 1. Furthermore,
for each 1< i< n, one has ¢y y(U,) No75(U) = UJ | V.. and

ft;/:J’(Ui) nf’ﬁ—'/lﬁ(Ui) = U;li=1 U;l

for some V,;ec and Uj er’. One has W, = Ui, i1 Vi; Xy, Uj. The right hand
side of the latter equality can also be considered as a subset of Wy, . It follows that W,
and W, are special domains in W, and Wy, respectively, and we get an isomorphism
Vag : Wog = Wy, that does not depend on the choice of the above coverings. It is clear
that Wy, = W, vqe(Wog "W, ) = W, n W and v, = vg,0v,5 on Ws n W, .
By Proposition 1.3.3, we can glue all W, along W, and get a k-analytic space (Y', &', o')
which is a fibre product of (Y, &, ) and (X', &', ') over (X, &, 7).

Consider now the case when only the space X is paracompact. In this case we take
coverings { Y, };c; of Y and { X}, ; of X' by open paracompact subsets, and we glue
all the spaces Y; Xx X along the open subspaces (Y; nY,) Xx (XN X]). We get
a locally Hausdorff space Y’'. The collection ¢’ of sets of the forms V X U’, where
VCY,;, UCX and U’'CX] are affinoid domains, is a net of compact subsets on Y’,
and there is an evident k-affinoid atlas #’ with the net ¢’. The triple (Y', #’,¢’) is a
fibre product of Y and X’ over X.

Finally, in the case when all three spaces are arbitrary we take a covering { X, }; <
of X by open paracompact subsets and construct a fibre product Y’ by gluing the spaces
9 1(X) Xx, f71(X;) along the open subspaces ¢7!(X; N X;) Xx,nx; f (X N X)).

We remark that the above construction gives also a compact map

TC:Y’—)!Y' X|X||X'|.
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In particular, if VCY, UCX and U’ C X’ are affinoid domains with ¢(V), fU’) C U,
then the set =7 (| V| X,y | U’|) is compact. It follows that the canonical morphism
V':=V Xy U - Y’ identifies V' with an affinoid domain in Y.

Suppose now that ¢ : Y — X and f: X’ — X are morphisms of ®,-analytic spaces.
Then the collection ¢’ of all affinoid domains of the form V Xy U’, where VCY,
UCX and U'C X’ are ®-affinoid domains with ¢(V), f(U’)CU, is a net on Y’, and
there is an evident @ -affinoid atlas with the net ¢’. It defines a ®,-analytic space structure
on Y'. It is easy to see that the canonical projections Y’ —~Y and Y’ — X’ are mor-
phisms of @, -analytic spaces and that Y’ is a fibre product of Y and X’ over X in the
category @,-o/n. m

Similarly, one constructs, for a non-Archimedean field K over &, a ground field
extension functor ®p-fn —>Pp-sfn: X +»>X®K and a compact map X®K - X. A
®-analytic space is a pair (K, X), where K is a non-Archimedean field K over k2 and
X € Og-o/n. A morphism (L, Y) — (K, X) is a pair consisting of an isometric embedding
K< L over £ and a morphism of ® -analytic spaces Y — X &, L. The category of
®-analytic spaces is denoted by ®-/n,. If @ is the family of all affinoid spaces, then
the category is denoted by &/n, and its objects are called analytic spaces over k. For brevity
we denote the analytic space (K, X) by X.

We remark that with each point x € X € ®,-/n one can associate a non-Archi-
medean field #(x) over x so that, for any ®-affinoid domain V C X that contains x,
there is a canonical bounded character &y — 3 (x) that identifies #(x) with the cor-
responding field of the point x with respect to V (see [Ber], 1.2.2 (i)). A morphism
¢ :Y — X induces, for each point y € Y, an isometric embedding 5 (¢(y)) <> ().
Furthermore, let x be a point of X. If V is a ®-affinoid domain that contains x, then
the caracter &y ® #(x) - H#(x) : fO A > M(x) defines an #(x)-point x5, € V & H#(x).
It is clear that the image x’ of % in X ® #(x) does not depend on the choice of V. If
now ¢:Y — X is a morphism of ®,-analytic spaces, then the 5 (x)-analytic space
(Y ®#(x)) ®x 5 @ H#(H#(x)), where the morphism A (#(x)) — X & H# (x) corresponds
to the point #’, is denoted by Y, and is said to be the fibre of ¢ at the point x. The canonical
morphism Y, — Y induces a homeomorphism Y, = ¢~ '(x). The dimension of ¢, dim(p),
is the supremum of the dimensions dim(Y,) over all x € X.

Let ¢: Y — X be a morphism of @, -analytic spaces, and consider the diagonal
morphism Ay : Y —Y Xx Y. The collection © of ®-affinoid domains VCY for which
there exists a ®-affinoid domain UC X with ¢(V)CU is a net, and, for such V and
U,V Xy Visa®-affinoid domain in Y and Ay x induces a closed immersion V -V X V.
Thus, Ayx is a G-locally closed immersion. The conormal sheaf of Ay is said to be
the sheaf of differentials of ¢ and is denoted by Qy x,. If both spaces are good, then one
can also define a similar coherent @y-module Qy/x, and one has (Qyx)s = Qy,x,- The
sheaves Qy . and Qyy will be studied in § 3.3.

A morphism of ®,-analytic spaces ¢ : Y — X is said to be separated (resp. locally
separated) if the diagonal morphism Ay is a closed (resp. a locally closed) immersion.
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If the canonical morphism X —.#(k) is separated (resp. locally separated), then X
is said to be separated (resp. locally separated). For example good ®,-analytic spaces and
morphisms between them are locally separated. If a morphism ¢ : Y — X is separated,
then | Y| is closed in | Y Xx Y |. Since the map =:|Y Xx Y| —>|Y| X x| Y] is
compact, then | Y | is closed also in | Y | X x| Y |, and therefore the map | Y | — | X |

is HausdorfE. In particular, if Y is separated, then its underlying topological space | Y |
is Hausdorff.

1.4.2. Proposition. — A locally separated morphism of ®,-analytic spaces ¢ : Y — X
is separated if and only if the induced map |Y | — | X | is Hausdorff.

Proof. — Suppose that the map | Y | — | X | is Hausdorff. Then the complement #
of Yin | Y| X x| Y| is open. Since the diagonal morphism A = Ay is a composition
of a closed immersion with an open immersion, it suffices to show that A(Y) is closed
in | Y Xx Y| For this we consider the compact map w:|Y Xy Y| > |Y| X x| Y|
Let z e (Y Xx Y\A(Y), and let =(z) = (4, 9,). If y; # 9, then =~ '(#") is an open
neighborhood of z that does not meet A(Y). If y, = y,, then we take an open neighbor-
hood 7" of y; =y, such that A, : ¥ - ¥ Xx ¥ is a closed immersion. Since ¥ Xx ¥~
is an open subset of Y X5 Y and z ¢ A(Y), then we can find an open neighborhood
of z that does not meet A(Y). The required fact follows. m

It is clear that the classes of closed and locally closed immersions, finite, separated
and locally separated morphisms are preserved under composition, under any base
change functor and under extensions of the ground field.

1.4.3. Remarks. — (i) The converse implication of Proposition 1.4.2 is not true
in general. For example, the space obtained by gluing two copies of the unit one-dimen-
sional disc along the closed annulus of radius one is Hausdorff but is not separated.

(ii) We conjecture that every point of a separated k-analytic space has an open
neighborhood which is isomorphic to an analytic domain in a k-affinoid space.

1.5. Analytic spaces from [Ber]

In this subsection we recall the notion of a k-analytic space from [Ber] (with the
necessary details that were omitted in [Ber]), and we show that the category of 2-analytic
spaces from [Ber] is equivalent to the category of good k-analytic spaces from the previous
subsection.

First of all, recall that a k-quasiaffinoid space is a pair (%, v) consisting of a locally
ringed space % and an open immersion v of % in a k-affinoid space X. We remark that
the immersion v induces a net © of all V C % for which v(V) is an affinoid domain in X
and a k-affinoid atlas o/ with the net v for which &/, = &/ ,, and therefore we get a
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k-analytic space (%, &, ©) from k-2/n. We remark also that if V is an affinoid domain
in %, then for any pair of open subsets ¥, %" C % with ¥"CV C#  there are canonical
homomorphisms O(#") — & — O(¥").

Furthermore, a morphism of k-quasiaffinoid spaces (%, v) — (%', v') is a morphism
of locally ringed spaces ¢ : % — %' such that for any pair of affinoid domains VC %
and V' C%’ with ¢(V)C¥ = Int(V’'/%’) (the topological interior of V' in #%’), the
induced homomorphism &5 — O(¥") — O0(p~*(¥")) - &y is bounded. We remark
that from the definition it follows that for any pair of affinoid domains UCV and
U’'C V'’ with ¢(U) CInt(U’/%’) the homomorphisms &y — &/ and &y, — & are
compatible.

1.5.1. Lemma. — The system of homomorphism % — sy extends canonically to the
Jamily of all pairs of affinoid domains V CU and V' CU' with ¢(V) C V' so that one gets a
well-defined morphism (U, A, ) —~ (', L', ').

Proof. — Let V, V' be such a pair. Assume first that ¢(V) CInt(V'/%’). We
claim that the two maps from V to V'’ induced by ¢ and by the homomorphism
&y — Ay coincide. Let ¢ denote the second map, and let x € V. Take affinoid
neighborhoods U of x in % and U’ of ¢(x) in %’ such that ¢(U) C Int(U’/#%’). Then
(U NnV)CInt(U nV'[/%'). The homomorphisms &, — & and &y Ay = Fynav
are compatible, and therefore ¢(U N V)C U’ NnV’. Since U and U’ can be taken
sufficiently small, then ¢(x) = ¢(x), and our claim follows. It follows that one can
construct in a canonical way bounded homomorphisms &/ — &/ for every pair of
affinoid domains UCYV and U’'C V' with ¢(U) C U’, and the two maps from U to U’
induced by ¢ and by the homomorphism &3 — &y coincide.

Assume now that V and V' are arbitrary. Then we can find affinoid domains
Vy, ..., V,C%and Vy, ..., V, C% suchthat VCV, U ... UV, ,VCViUu...UV,
and ¢(V,) CInt(V;/%'). By the first case, there are canonical bounded homomor-
phisms &y \v; > Fyny;, and Ly vinvi > Lyav;ay, that induce the maps

e: VNV, ->V'nV] and VnV,NV, >V AV NV,

Applying Tate’s Acyclicity Theorem to the coverings {V NV} of V and {V' nV]}
of V', we get a bounded homomorphism &7, — &7y that is compatible with the homo-
morphisms &y y; — &y ~vy; and such that the maps from V to V' induced by ¢ and
by the homomorphism &7y, — &7y coincide. Thus, we get the required morphism
(U, A <) > (U, A, <"). B

We remark that any morphism (%, &, <) — (%', &', <') comes from a unique
morphism (%, v) — (%',v"). Thus, k-quasiaffinoid spaces form a category which is
equivalent to a full subcategory of k-o/n. The latter consists of all k-analytic spaces that
admit an open immersion in a k-affinoid space.
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1.5.2. Corollary. — Let (%, v) and (%', <') be k-quasiaffinoid spaces, and let ¢ : U — U’
be a morphism (resp. an isomorphism) of locally ringed spaces. Then the following are equivalent:
a) ¢ induces a morphism (resp. an isomorphism) of k-quasiaffinoid spaces (%, v) — (%', V');
b) there exist open coverings { U, };cr of U and { U;},c5 of ¥ such that, for each
pair i, j, @ induces a morphism (resp. an isomorphism) of k-quasiaffinoid spaces
(% 0 o~ (%5),v) — (U5, V)

(resp. (U O o™ (A7), v) = (9(U) O U, Y'));5
c) property b) is true for arbitrary open coverings of U and U'. W

Let X be a locally ringed space. An (open) k-analytic atlas on X is a collection
of k-quasiaffinoid spaces {(%;, v;)};c; called charts of the atlas such that { %, }, o, is
an open covering of X (each %, is provided with the locally ringed structure induced
from X) and, for each pair i, j €I, the identity morphism induces an isomorphism of
k-quasiaffinoid spaces (%; N %;,v;) > (%; N %;,v;). Furthermore, suppose that we
are given an open subset  C X and an open immersion v of % in a k-affinoid space.
Then (%,v) is compatible with the atlas {(%;, v;)};e; if, for each 7 €I, the identity
morphism induces an isomorphism of k-quasiaffinoid spaces (% N %;,v) > (% N U, v,).
Two atlases are said to be compatible if every chart of one atlas is compatible with the
other atlas. From Corollary 1.5.2 it follows that the compatibility of atlases is an equi-
valence relation. A k-analytic space from [Ber] is a locally ringed space X provided
with an equivalence class of k-analytic atlases.

Let X, X’ be two k-analytic spaces defined in the above way, and let ¢ : X — X’
be a morphism of locally ringed spaces. Then ¢ is called a morphism of k-analytic
spaces if there exists an atlas {(%;, v)}ic; of X and an atlas {(%}, v)};cs
of X’ such that, for each pair i,j, ¢ induces a morphism of Z-quasiaffinoid spaces
(%, N o~ NU;),v;) > (%, v;). From Corollary 1.5.2 it follows that the same condition
holds for any choice of atlases on X and X’ defining the same %-analytic structure, and
that one can compose morphisms. Thus, one gets a category. This is the category intro-
duced in [Ber] (and denoted there by k-o7n).

We now construct a functor from the category of k-analytic spaces from [Ber]
to k-&/n. For each k-analytic space X from [Ber] we fix an open k-analytic
atlas {(%;, v;)}; c1- Let © be the family of the subsets V C X for which there exists i € I
such that V is an affinoid domain in %; (in this case V is an affinoid domain in any %;
that contains V). Then t is a net on X, and there is an evident k-affinoid atlas ./ with
the net ©. The k-analytic spaces (X, &, 1) obtained in this way is evidently good. Let
now ¢ : X — X' be a morphism of k-analytic spaces from [Ber]. We denote by ¢ the
family of all V e = for which there exists V' € " with (V) C V', It is clear that ¢ is a net
with ¢ < 7, and the morphism ¢ gives rise to a strong morphism (X, &/, 6) — (X', &', 7').
Therefore we have the required functor, and it is easy to see that it is fully faithful. Let
now X be a good k-analytic space from k-2/n. For an affinoid domain V C X we denote

5
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by %, the topological interior of V in X and by v, the canonical open immersion of
locally ringed spaces %y — V. Then {(%y, vy)} is an open k-analytic atlas on X, and the
k-analytic space from [Ber] obtained in this way gives rise to a k-analytic space from &-s/n
isomorphic to X. Thus, the correspondence X - (X, &, o) is an equivalence of the
category of k-analytic spaces from [Ber] and the category of good k-analytic spaces.

We now extend to the category k-2/n several classes of morphisms that were intro-
duced in [Ber] for good %-analytic spaces. Let P be a class or morphisms of good %-analytic
spaces which is preserved under compositions, under any base change and under exten-
sions of the ground field. We say that a morphism ¢ :Y — X in k-s/n is of class P if
for any morphism X’ — X from a good analytic space over % the space Y Xy X' is
good and the induced morphism Y Xy X’ — X' is of class P. It follows from the definition
that the class P is also preserved under the same operations. Furthermore, if P contains
locally closed immersions, then P processes the following property: if Y — X is a locally
separated morphism, then any morphism Z — Y, for which the composition Z — X
is of class T’, is of class P.

1.5.3. Examples. — (i) If P is the class of all morphisms of good analytic spaces,
then the morphisms from P are said to be good. For example, finite morphisms and
locally closed immersions are good morphisms.

(i) If P is the class of closed morphisms of good analytic spaces ([Ber], p. 49),
then the morphisms from P are said to be closed. For example, finite morphisms and
locally closed immersions are closed morphisms.

(iii) If P is the class of proper morphisms of good analytic spaces ([Ber], p. 50),
then the morphisms from P are said to be proper. It follows from the definitions that a
morphism is proper if and only if it is compact and closed. For example, finite morphisms
are closed. Conversely, if a proper morphism has discrete fibres, then it is finite
([Ber], 3.3.8).

1.5.4. Definition. — The relative interior of a morphism ¢ : Y — X is the set Int(Y/X)
of all points y € Y for which there exists an open neighborhood ¥~ of » such that the
induced morphism ¥ — X is closed. The complement of Int(Y/X) is called the relative
boundary of ¢ and is denoted by 9(Y/X). If X = .#(k), these sets are denoted by Int(Y)
and 9(Y) and are called the inferior and the boundary of Y, respectively.

It follows from the definition that 9(Y/X) = @ if and only if the morphism ¢ is
closed. The following properties of the relative interior are easily deduced from the
definition and [Ber], 3.1.3.

1.5.5. Proposition. — (1) If Y is an analytic domain in X, then Int(Y[|X) coincides
with the topological interior of Y in X.
(i) For a sequence of morphisms Z Ly3 X, one has

Int(Z[Y) N §~(Int(Y/X)) C Int(Z/X).
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If ¢ is locally separated (resp. and good) then
Int(Z/X) CInt(Y/X) (resp. Int(Z/X) = Int(Z[Y) n ¢~ }(Int(Y/X))).

(i) For a morphism f:X' — X, one has f'~*(Int(Y/X)) C Int(Y'/X’), where f' is
Y=Y XxxX">Y.

(iv) For a non-Archimedean field K over k, one has =~ *(Int(Y/X)) C Int(Y ® K/X ® K),
where = is YOK > Y. m

1.5.6. Remark. — The notion of a strictly k-analytic space introduced in [Ber],
P- 48, is not consistent with that introduced in the previous subsection. First of all, if
the valuation on % is trivial, the two notions are completely different. (For example,
the affine line A! is strictly k-analytic in the sense of [Ber] but is not such a space in the
sense of § 2.2.) Assume now that the valuation on £ is nontrivial. In this case the diffe-
rence is that in [Ber] strictly k-analytic spaces were considered as objects of the whole
category of k-analytic spaces, but here we consider them as objects of their own cate-
gory st-k-2/n because we do not know whether the faithful functor st-k-o/n — k-o/n is
fully faithful.

1.6. Connection with rigid analytic geometry

We work here with the category of rigid k-analytic spaces which is defined in
[BGR], § 9.

Assume that the valuation on % is nontrivial, and let X be a Hausdorff strictly
k-analytic space. The corresponding rigid %-analytic structure will be defined on the
set Xo={xeX|[*#(x):k] <o} (We remark that from [Ber], 2.1.15, it follows
that the set X, is everywhere dense in X.) First of all, if X = .# (&) is strictly %-affinoid,
then the maximal spectrum X, = Max(&/) is endowed with a rigid k-analytic space
structure as in [BGR], § 9.3.1. Suppose that X is arbitrary. We say that a subset
U C X, is admissible open if, for any strictly affinoid domain V C X the intersection NV,
is an admissible open set in the rigid -affinoid space V,,. Furthermore, a covering { %, }, <1
of an admissible open subset % C X, by admissible open subsets is admissible if, for any
strictly affinoid domain VC X, { %; NV}, < is an admissible open covering of N V,,.
In this way we get a G-topology on the set X,. The sheaves of rings 0y, , where V runs
through the strictly affinoid domains in X, are compatible on intersections, and to they
glue together to form a sheaf of rings Oy on the G-topological space X,. The locally
G-ringed space (X,, Oy, ) satisfies the conditions of Definition 9.3.1/4 from [BGR],
and so we get a rigid k-analytic space. We remark that the rigid %-analytic space cons-
tructed is quasiseparated. (A rigid k-analytic space is called quasiseparated if the inter-
section of two open affinoid domains is a finite union of open affinoid domains.)

1.6.1. Theorem. — The correspondence X — X, is a fully faithful functor from the
category of Hausdorff strictly k-analytic spaces to the category of quasiseparated rigid k-analytic
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spaces. Furthermore, this functor induces an equivalence between. the category of paracompact strictly

k-analytic spaces and the category of quasiseparated rigid k-analytic spaces that have an admissible
affinoid covering of finite type.

A collection of subsets of a set is said to be of finite type if each subset of the col-
lection meets only a finite number of other subsets. of the collection.

Proof. — Let X be a Hausdorff strictly k-analytic space. First of all we establish
the following fact.

_ 1.6.2. Lemma. — (i) Any open affinoid domain in the rigid k-analytic space X, is of the
Jorm Vo, where V is a strictly affinoid domain in X.

. (ii) Let {V,}ier be a system of strictly affinoid domains in X. Then {V,  };cy i
an admissible covering of X, if and only if each point of X has a neighborhood of the form
ViV ... UV, (ie, {V,},c; is a quasinet on X).

Progf. — (i) An open affinoid domain in X is an open immersion of rigid k-analytic
spaces f: U, — X, where U is a strictly £-affinoid space. In particular, for any strictly
affinoid domain VC X, f~*(V,) is a finite union of affinoid domains in U,, and
{f~'(Vy)}, where V runs through strictly affinoid domains in X, is an affinoid covering.
It follows that we can find strictly affinoid domains U;, ..., U,C Uand V,, ..., V,CX
such that U= U, u ... UU, and fl,, , comes from a morphism of strictly affinoid
spaces @, : U; — V, that identifies U, with an affinoid domain in V,. Moreover, all ¢;
are compatible on intersections. Therefore, we get a morphism of strictly k-analytic
spaces ¢ : U — X. Since ¢, as a map of topological spaces, is compact and induces an
injection on the everywhere dense subset U,C U, it follows that ¢ induces a homeo-
morphism of U with its image in X. Finally, ¢ identifies U; with a strictly affinoid
domain in V;, and therefore ¢ identifies U with a strictly analytic domain in X. It is
clear that this is a strictly affinoid domain.

(ii) Suppose first that { V, o },c; is an admissible covering of X,. This means
that, for any strictly affinoid domain VC X, {V, NV}, is an admissible covering
of V,. It follows that V is contained in a finite union V; U ... UV, , and therefore
each point of X has a neighborhood of the required form. Conversely, assume that
the latter property is true. Then any strictly affinoid domain is contained in a finite
union V, U ... UV, ,and therefore{ V; , N V, }; <, is an admissible covering of V. L]

Let ¢ : Y — X be a morphism of strictly k-analytic spaces. First of all we claim
that the induced map g, : Y, — X, is continuous with respect to the G-topologies on X,
and Y,. Let % C X, be an admissible open subset, and let VCY be a strictly affinoid
domain. By [BGR], 9.1.4/2, and Lemma 1.6.2 (i), the set % has an admissible cove-
ring { U; o};cy, where U, are strictly affinoid domains in X. By Corollary 1.2.!4,
for each i e I one has 9~ (U) NV = U, 5 Vi;, where V,; are strictly affinoid domains
in V and J;, is finite. We get a covering { V;; , } of the set ¢; (%) N V,. To verify that
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the latter set is admissible open in V,, it suffices to show that for any morphism of
strictly k-affinoid spaces ¢ : W — V with (W) C g5 (%) N V,, the covering { o5 *(V,; o)}
has a finite affinoid covering that refines it. But this follows from the fact that the latter
condition is satisfied by the covering {(¢¢); (U, , };c1- Thus, the set ¢; *(%) is admis-
sible open in Y,. In the same way one shows that the preimage of an admissible covering
of an admissible open set is an admissible open covering. Hence the map of G-topological
spaces @,: Y, - X, is continuous. That ¢ induces a morphism of locally G-ringed
spaces easily follows from this.

Let now f: Y, - X, be a morphism between the above rigid k-analytic spaces.
We have to show that it comes from a unique morphism of strictly k-analytic spaces
@:Y — X, First of all, from Proposition 1.3.2 it follows that it suffices to verify the
required fact only in the case when Y is strictly 4-affinoid. For this we remark that the
system { Uy}, where U runs through strictly affinoid domains in X, is an admissible
covering of X,. Therefore { f~'(U,)} is an admissible covering of Y, by admissible open
subsets. By [BGR], 9.1.4/2, the latter covering has a finite affinoid covering that refines
it. In this way we get strictly affinoid domains V,, ..., V,CY and U,,...,U,CX
such that Y, =V, U ... UV,  (and therefore Y = V, U ... UV )and f(V; ,) C U, ,.
The induced morphisms of strictly affinoid spaces V; — U, are obviously compatible
on intersections, and therefore we get a morphism of strictly k-analytic spaces ¢ : Y — X.
It is easy to see that ¢, = f and that ¢ is a unique morphism satisfying this property.

If X is a paracompact strictly k-analytic space, then it has a strictly k-affinoid
atlas with a locally finite net, and therefore the rigid %Z-analytic space X, has an admis-
sible affinoid covering of finite type. It is also evident that it is quasiseparated. Conversely,
let £ be a quasiseparated rigid k-analytic space that has an admissible affinoid cove-
ring { %, };c; of finite type. First of all, let %, = U, ,, where the U, are strictly
k-affinoid spaces. Since & is quasiseparated, for any pair ¢, j € I the intersection %; N %;
is a finite union of open affinoid domains in Z'. Thus, there are strictly special domains
U;;CU; and U;C U, that correspond to %; N %; under the identifications %; = U, ,
and %; = U, ,. Let v;; denote the induced isomorphism U; = U;. It is clear that
U, =1, v;(U;nU,) =U; nU; and v;=v;0v; on U;NnU,. By Proposi-
tion 1.3.3, we can glue all U, along U;; and get a paracompact strictly k-analytic
space X. It is easy to see that X, is isomorphic to Z. m

Let X be a Hausdorff strictly k-analytic space. From Lemma 1.6.2 it follows
that there is an isomorphism of topoi X; = X;~. In particular, there is a morphism of
topoi (m,, n*) : X,  — X~ such that the functor =* is fully faithful (and =, is not).
Furthermore, from Proposition 1.3.6 it follows that if F is an abelian sheaf on X, then
HY(X, F) 3 H(X,, n* F), ¢ > 0, and if X is good and F is a coherent Oy module, then
HYX, F) 3 HY(X,, Fy), ¢> 0, where Fy = n"F ®.(, O, . Finally, there are equi-
valences of categories Mod(X;) = Mod(X,) and Coh(X;) = Coh(X,) and an isomor-
phism of groups Pic(X;) = Pic(X,).
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= § 2. Local rings and residue fields of points of affinoid spaces

2.1. The local rings Oy ,

Throughout the section we consider a %-affinoid space X = #(&). The stalk 0X .
of the structural sheaf 0y at a point x € X is a local ring. Its maximal ideal is denoted
by m,, and its residue field Ox ,/m, is denoted by k(x). The field k(x) has a canonical
valuation. The completion of x(x) is the field 5 (x). Furthermore, let Z denote the affine
scheme Spec(&/). There is a morphism of locally ringed spaces =: X — %. For a point
x € X we denote by x its image in Z, by @, the corresponding prime ideal of & (it is
the kernel of the seminorm on & which corresponds to the point x) and by %(x) the fraction
field of &Z/gp,. :

2.1.1. Proposition. — The map =: X — % is surjective.

- Proof. — Suppose that the algebra is strictly k-affinoid. It suffices to show that if &/
has no zero divisors, then there exists a point x € X with o, = 0. By Noether Normaliza-
tion Lemma, there exists a finite injective homomorphism # =k{T,, ..., T, } - «.
By [Ber], 2.1.16, the map # () — # (&) is surjective. So it suffices to consider the
algebra k{T,, ..., T,}. In this case o, =0 for the point x corresponding to the
norm of #{T,, ..., T,}.

2.1.2. Lemma. — For a k-gffinoid algebra o/ and a non-Archimedean field K. over k the
algebra o' = o ® K is faithfully flat over L.

Progf. — First of all we recall that for Banach spaces B and M over % the canonical
map M®B — M®B is injective and, if 0 - M — N —P — 0 is an exact admissible
sequence of Banach spaces over %, then the sequence 0 - M®B - N&®B —-P&®B — 0
is also exact and admissible (see [Gru]). (One assumed in [Gru] that the valuation on %
is nontrivial, but in the case of trivial valuation one obtains the same fact by tensoring
with the field K, for some 0 < r< 1.) Let now M be a finite &/-module. It can be
regarded as a finite Banach &/-module and, in particular, as a Banach space over &
(see [Ber], 2.1.9). We have M®, &' = M®, o/’ = M® K. By the above fact, if
M %+ 0, then M ®,, &’ + 0. Furthermore, if a homomorphism M — N of finite 2/-modules
is injective, the homomorphism of Banach K-spaces M&® K — N &® K is injective. This
implies that the homomorphism M ®,, &’ -~ N ®,, &’ is injective. Hence, &/’ is a faith-
fully flat d-algebra [

. 2.1.3. Corollary. — In the situation of Lemma 2.1.2 for any pair of points x € X
x e X' = ML) with o(x') = x, where ¢ is the canonical map X' — X, O, .. is a faithfully
Slat Oy ,-algebra.
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Proof. — It suffices to show that for any pair of affinoid subdomains V CX’ and
U C X with ¢(V) CU, o is a flat &/y-algebra. By Lemma 2.1.2, o ;) = &z ®K
is a flat «/-algebra. Since &/ is a flat &7 _,y,-algebra ([Ber], 2.2.4 (ii)), then &5 is
a flat o/ -algebra. m

We now consider an arbitrary k-affinoid algebra &/. We can take a non-Archi-
medean field K over % such that the algebra &’ = &/ ® K is strictly K-affinoid. By
the previous case, the map X' = .# (') - %' = Spec(&’) is surjective, and, by
Lemma 2.1.2, the map &’ — % is surjective. It follows that the map = is surjective. m

2.1.4. Theorem. — The ring Ox , is a Noetherian ring faithfully flat over Oy, = o, .

Proof. — Suppose first that the valuation of % is nontrivial, the algebra & is strictly
k-affinoid and x € Max (o). In this case Oy , coincides with the algebra of germs of affinoid
functions on Max(%/) considered in [BGR], 7.3.2. By [BGR], 7.3.2/7, the ring Oy , is

Noetherian, and, by [BGR], 7.3.2/3, there is an isomorphism g3 oA oy = O , between
Px> Ox & Px? m,-adic completions of the rings &, & Py Ox o> respectively. By [Mat], 8.14,
the ring o/, O , is faithfully flat over &, and Oy ,.

We now consider the general case. We can find a non-Archimedean field K over %
with nontrivial valuation such that the algebra &' = o/ ® K is strictly K-affinoid,
and there exists a point x’ € Max(«&/’) which goes to x under the canonical map
X'=M(") - X.By Lemma 2.1.2 (resp. Corollay 2.1.3), the algebra &/, , (resp. O )
is faithfully flat over &/, (resp. O ,). Since Oy, . is faithfully flat over &/, ,, then Oy,
is faithfully flat over &/, . Furthermore, Corollary 2.1.3 implies that a = a0y, , N O ,
for any finitely generated ideal a € 0x ,. From this it follows easily that Oy , is a Noe-
therian ring. m

2.1.5. Theorem. — The ring Ox , is Henselian.

Progf. — We use the following criterion for a local ring A to be Henselian (see [Ray],
1.1.5). A is Henselian if and only if any finite free A-algebra B is a direct product of
local rings.

Let B be a finite free Oy ,-algebra. We claim that there exist an affinoid neigh-
borhood U of the point x and a finite free &/y-algebra # such that B = #®,, 0O ,.
Indeed, let &y, ..., b, be free generators of the Oy ,-module B and set 1 = X?_, 4, b,

=1 " Y
and b, b, = X7, a,;, b,, where a;,a,;, € Ox ,. The fact that B is an associative and
commutative ring with identity is equivalent to certain identities between the coeffi-
cients g¢; and g;;. Take a sufficiently small affinoid neighborhood U of the point x
such that all the g;, ;;; come from &/ and all the identities are true in &/y. Consider
the free &/y-module & = b, + ... + Ly b, and endow it with the multiplication
bib, =27 ,a,;b. Then # is a finite free «/y-algebra, and, by construction,
B=2%20,, 0,.
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Furthermore, we may assume that U = X and consider # as a finite Banach
&f-algebra (see [Ber], 2.1.12). Then we have a finite morphism of %-affinoid spaces
¢:Y =M(#) - X, and the theorem follows from the following lemma.

2.1.6. Lemma. — Let ¢ : Y = M(B) > X = M (L) be a finite morphism of k-affinoid
spaces. Then for any point x € X there is an isomorphism of rings B, Ox , = ITe_, Oy, ,; where
—1 —_ :
o '(®) ={ -}

Proof. — Since ¢ is a map of compact spaces, one has ¢~ 1(U) = U?_, V,, for any
sufficiently small affinoid neighborhood U of x, where V, are affinoid neighborhoods
of the points y; such that V, "V, =@ for i % j. Moreover, the domains V, form a
basis of affinoid neighborhoods of y,. We have

da

g®d 0X,x = g@"l(U) ®du (DX,Z = i];-ll ‘@V,' ®Mu 0X,ac‘

Here we used the equality # 1y, = #8, Ay = B ®, &y which follows from the fact
that 4 is a finite Banach &/-module. Therefore, #®,, 0y , = II!_ O, e n

2.2. Comparison of properties of 0x , and 04 ,

Let P be a property of local rings which is preserved under localizations with
respect to the complements to prime ideals. A commutative ring A is said to possess
the property P (or A is a P-ring) if all of the local rings A, , where @ runs through prime
ideals of A, possess the property P. More generally, let Y be a locally ringed space. The
set of points y € Y such that Oy , is a P-ring is denoted by P(Y). If P(Y) =Y, then Y
is said to possess the property P.

2.2.1. Theorem. — Let P be the property of being Red (reduced), Nor (normal), Reg

(regular), CI (complete intersection), Gor (Gorenstein), CM (Cohen-Macauley). Then P(X)
ts Zariski open in X and P(X) = =~ Y(P(X)).

For the definition of these properties and the verification of the fact that P is pre-
served under localizations see Matsumura’s book [Mat]. We shall deduce Theorem 2.2.1
from known results which are formulated in the following lemmas.

2.2.2, Lemma. — Let (A,m) — (B, m) be a faithfully flat homomorphism of local
Noctherian rings.

(i) If B is a P-ring, then so is A.
(i) If A is a P-ring, where P + Red, Nor, and n = mB, then B is a P-ring. m

2.2.3. Lemma. — Strictly k-affinoid algebras are excellent rings. m
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2.2.4. Lemma. — Let A be an excellent ring.
(1) If o is a prime ideal of A such that A, is a P-ring, where P = Red or Nor, then the

completion .sz;;, s a P-ring.
(ii) The set of prime ideals  C A such that A, is a P-ring is open in Spec(A). ®

For Lemma 2.2.2 and the assertion (ii) of Lemma 2.2.4 in the cases P = CI
or Gor see [Mat], § 23-24. Lemma 2.2.3 is proved in [Kie]. The assertions (i) and (ii)
(for P+ CI, Gor) of Lemma 2.2.4 are proved in [EGAIV], 7.8.3.

“ Proof of Theorem 2.2.1. — From Theorem 2.1.4 and Lemma 2.2.2 (i) it follows
that P(X) C n~'(P(Z’)). Let x be a point of X such that &/, is a P-ring. We have to
show that O , is a P-ring.

Suppose that the valuation of % is nontrivial and the algebra .7 is strictly 2-affinoid.
From Lemmas 2.2.3 and 2.2.4 it follows that the set P(%') is open in Z. Furthermore,

if x € Max(%/), then .g;x = 0;:, and therefore Oy , is a P-ring. Let x be an arbitrary
point. Since P(Z) is open in &, then V C n~}(P(Z)) for any sufficiently small strictly
affinoid neighborhood V of x. If y € Max (/) C Max(&), then O ., is a P-ring, and
therefore 0y , is a P-ring. Since Oy , = Oy, ,, then O, ., is a P-ring, where " = Spec(«/y).
It follows that P(#") = ¥~ because P(¥") is open in ¥". Thus, the algebras &/ are P-rings
for all sufficiently small strictly affinoid neighborhoods V of x. Since Oy , =lim &y,
then Oy , is a P-ring. Indeed, this is evident if P = Red or Nor. If P + Red, Nor, we
remark that m, = @, y Ox , for a sufficiently small strictly affinoid neighborhood V
of x, where @, is the prime ideal of &/, corresponding to the point x. From
Lemma 2.2.2 (ii) it follows that Oy , is a P-ring.

We remark that (under the same assumptions) the fact already verified implies
that the subsheaf of ideals £y C Oy consisting of nilpotent elements is coherent and, in
fact, is generated by the nilradical rad (/) of /. Furthermore, if X is reduced, then the
subsheaf %™ of the sheaf .#y of meromorphic functions consisting of elements, whose
images in all stalks .# , are integral over 0 ,, is coherent, and there exists a € <,
which is not a zero divisor, such that a@0%™ C 0.

~ We now consider the general case.

2.2.5. Lemma. — Let K be a field of the form K, (see [Ber], § 2.1) and
' = o/ ® K. Consider the map o:X — X' = M (') which sends a point x € X to the
point x' € X' corresponding to the multiplicative semi-norm 2, a, T® > max | a,(x)| 7. Then
P = Oy ' Furthermore, if Y' is a Zariski closed subset of X', then c‘l(Y') is a Zariski
closed subset of X.

Proof. — Let fi, ..., f, be generators of ,. Since the canonical epimorphism

A" o, (ay, ..., a,) — 2 af, is admissible (see [Ber], 2.1.9), there exists a

constant C > 0 such that any element a € @, can be represented in the form X'_, 4, f;

with || g ||< C|la]|, 1<i<n Let ¢’ =2 4, T" € p,. By construction, all the a,
6
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belong to @,. For every v we take a representation 4, = 2!_, g, ,f; as above. Then
b, =2, a, ; T* are well defined elements of &', and we have o' = X, b, f, € p, o'.
Thus p, = p, &'.

Let Y’ be defined by an ideal a’ C .&/’. Denote by a the ideal of &/ generated
by all of the coefficients a, from the representations ¢’ = X, a, T" of elements a’ € a’.
We claim that 6~ *(Y’) is the closed k-analytic subset of X defined by the ideal a. Indeed,
let xeX and ' = o6(x). Then x €67 (Y') <4 €Y «-a’'Cp. «<aCp,. m

Take a field K of the form K, , 7> 1, such that the algebra &' = &/ ®K
is strictly K-affinoid (the valuation on K is nontrivial since n > 1). First we consider
the case when P+ Red, Nor. Since @, = @, &', where 2’ = ¢(x), it follows from
Lemma 2.2.2 (ii) that &, , is a P-ring. By the strictly affinoid case, O, , is a P-ring.
Therefore Oy , is a P-ring, by Lemma 2.2.2 (i). We have

P(X) = 7' (P()) = o~ (B(X)).

From Lemma 2.2.5 it follows that P(X) is Zariski open in X.

Let P = Red. It suffices to verify that the subsheaf of ideals #y C 0x consisting
of nilpotent elements is generated by rad(&/). We may assume that rad(&/) = 0.
Then rad(%/’) = 0. Hence fx, = 0. Since 0 , is embedded to 0. .., where ' = o(x),
we have S5y = 0.

Let P = Nor. By the previous case, we may assume that X is reduced. We want
to verify that there exists a € & which is not a zero-divisor such that a0y™ C 0.
Since this is true for the subsheaf of #y generated by the normalization of &/ (see [Ber],
2.1.14 (i)), we may assume that & is a (normal) integral domain. By the strictly affinoid
case, there exists a non-zero element 2’ = X, a, T® € &’ with a’ 0™ C 0. It suffices
to show that a, 03™ C 0y for any v. Let % be an open subset of X, and let f be an element
from the full ring of fractions of Oy (%). Then a' f € Ox.(¢™ (%)), where ¢ denotes the
canonical map X’ — X. But Oy (¢ '(%)) consists of the series X,f, T" such that
Jf, € Ox(%), and, for any affinoid subdomain V C %, || f, ||y * = 0 as v — co. It follows
that a, f € Ox(%) for any v. m

2.2.6. Corollary. — Let P be one of the properties in Theorem 2.2.1. Then for any good
k-analytic space Y the set P(Y) is Zariski open in Y. Furthermore, if Y is reduced, then the comple-
ment to Reg(Y) is nowhere dense in Y. m

2.2.7. Corollary. — Let P be one of the properties in Theorem 2.2.1. Let % be a scheme of
locally finite type over k, and let  be the canonical map ¥*® — %Y. Then P(%**) = =~ *(P(¥)).

Progof. — We may assume that % = Spec(B) is an affine scheme, and B is a finitely
generated k-algebra. Suppose first that the valuation on % is trivial. If f3, ..., f, gene-
rate B over %, then #* is a union of affinoid subdomains of the type

V={ye@=|fW|<nl<i<n

Butifr > 1, then #, = B. Therefore the required statement follows from Theorem 2.2.1.
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- Suppose now that the valuation on % is nontrivial, and let y € #*, By [Ber], 3.4.1,

Ogan , is a faithfully flat O -algebra, and if y € Max(B), then Gyen, = @y, ,. Since A

is: an excellent ring, we get the required statement, by the reasoning from the proof
of Theorem 2.2.1. m

2.2.8. Corollary. — For any affinoid subdomain V C X one has Reg(V) = Reg(X) NV,

Proofs. — If X and V are strictly k-affinoid, this is clear because both sets are
determined by their intersections with X,. The general case is reduced to the strlctly
affinoid one by the reasoning from the proof of Theorem 2.2.1. m

2.2.9. Remark. — The maximal ideal m, of the local ring Oy , can be strictly
larger than @, Ox ,. This is related to the fact that the Zariski topology on an
affinoid subdomain V CX can be strictly stronger than that induced by the Zariski
topology on X. Here is an example. Let AT = 22,3, T be a formal power
'series in one variable over the residue field 'I; which is algebraically independent
of T, and set f(T) = X2 ,q, T, where a; are representatives of a in %°. We
claim that for any non-zero g(T,, T,) e k{T;, T, } one has g(T, f(T)) + 0. Indeed, let
&(Ty, Ty) = 2P, 04, ; T, T;. Multiplying g by a constant, we may assume that
llell = max |a ;| =1 Let S ={(s,j)| |4, ;| =1} (it is a finite set) and set

P(T,, Ty) = z(e,a‘)es W] T, T}
and h(Ty, Ty) = g(T,, Tp) — P(T,, Ty).

Since || 2| < 1, we have || (T, f(T))|| < 1. If g(T, f(T)) = 0, then || P(T, f(T))|| < 1.
It follows that P(T f(T)) = 0. This is impossible because f(T) is algebraically inde-
pendent of T over %. Thus, the Zariski closed subset of the two-dimensional disc V of
radius 7 < 1, which is defined by the equation T, — f(T,) = 0, does not extend to a
Zariski closed subset of the two-dimensional unit disc X. If now x is the point of X, which
corresponds to the multiplicative seminorm on k{T;, T,}: g(T;, T,) — | g(T, f(T))|,
then m, #+ 0 because T, — f(T;) em,, but g, = 0.

2.3. The residue fields «(x)

© 2.3.1. Definition. — A field K with valuation is said to be quaszcomplete if the
valuation extends uniquely to any algebraic extension of K.
For example, if K is complete with respect to its valuation (i.e. K is a valuation

field in the terminology of [Ber], § 1.1), then it is quasicomplete. The following lemma
easily follows from [BGR], § 3.2. ' o
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2.3.2. Lemma. — The following properties of a field K with valuation are equivalent:

(1) K s quasicomplete;

(ii) for any irreductible polynomial T" + a, T"~' + ... + a, e K[T], one has
la; "< |a, ['", 1< i< n;

(iii) the spectral norm of any finite extension of K is a valuation. m

2.3.3. Theorem. — The residue field x(x) of a point x € X is quasicomplete.

Proof. — Note that the field x(x) does not change if we replace X by a smaller
affinoid neighborhood of x or by a closed k-analytic subset which contains x. Since
the ring Oy , is Noetherian, m, = g, y O , for some affinoid neighborhood V of x,
where , y is the prime ideal of &/ which corresponds to x. So we can replace X
by M (4 [ v) and assume that m, = 0. Furthermore, since X is regular at x, we can
decrease X and assume that the algebra &/ is regular and has no zero divisors.

Let L be a finite extension of K = x(x). It suffices to show that the spectral
norm | | of L is a valuation. Recall (see [BGR], 3.2.1/1) that for an element g €L
one has | g|, = max |f |, where T" + f; T"~' 4 ... + f, is the minimal poly-

1<is<n

nomial of ¢ and | | is the valuation of K (if f comes from o/, then | f| = | f(x)|). We
may assume that L is separable over K and, in particular, that L is generated by one
element «. Let T™ + ¢, T®"' 4+ ... + a, be the minimal polynomial of « over K.
Decreasing X, we may assume that all the ¢; and f; belong to &/. Let £~ be the fraction
field of &/. Consider the finite extension £ of 2 which corresponds to the minimal
polynomial of «. We may assume that «, g € Z and L = K. Let # be the integral
closure of & in #, and let ¢ denote the morphism of k-affinoid spaces Y = A#(%#) — X.
By construction, ¢ '(x) ={y} and k() = L. It suffices to show that |g| = ]g(»)|
One has

| ()| = infey(e),

where V runs through a basis of affinoid neighborhoods of », and py(g) is the spectral
‘horm of g in the Banach algebra &7,. Since ¢~ !(x) ={y}, we have

|2(»)| = inf o1ty (2),

where U runs through a basis of affinoid neighborhoods of x.

~ 2.3.4. Lemma. — Let o/ —~ & be a finite injective homomorphism of regular k-affinoid
algebras, and suppose that B has no zero divisors. Then for any element g € # one has

p(g) = max o(f)",

1<i<n

where T + fy T" Y + ... + f, is the minimal polynomial of g over . -
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Proof. — Suppose that the valuation of % is nontrivial and the algebra & is strictly
k-affinoid. Then for an element f € &/ (resp. g € #) the spectral norm p( f) (resp. p(g))
is equal to the supremum semi-norm |f|,  (resp. | g|s,) on the maximal spectrum
Max(o/) (resp. Max(%#)). Hence the required fact follows from [BGR], 3.8.1/7.

In the general case we take a field %’ of the form K, ., n> 1, such that the
algebra &' = &/ ®F' is strictly E’-affinoid; then the rings &' and %' = #QF are
regular. From Lemma 2.2.5 it follows that %’ has no zero divisors. Since the canonical
homomorphisms &/ — &/’ and # — %’ are isometric, it suffices to show that the minimal
polynomial of g over &/ remains to be irreducible over &/’. But this is clear because &’
has no zero divisors. m

Using Lemma 2.3.4, we have

| 8(9)| = inf pe-10)(g) = inf max oy (f)"

1<i<n
= max infe,(f)" = max [f(x)[" =|gle-

Theorem 2.3.3 is proved. m

2.4. Quasicomplete fields

In this subsection we establish properties of quasicomplete fields which will be
very useful in the sequel. The Galois group of a normal extension L/K will be denoted
by G(L/K). The Galois group G(K*/K) of the separable closure K* of K will be denoted
by Gg. If K is a quasicomplete field, then the valuation on K uniquely extends to its
algebraical closure K® The same, of course, is true for the completion R of K.i

2.4.1. Proposztzon — Let K be a quasicomplete field. Then for any finite separable
extension LK one has L L®KK and the correspondence L. L induces an equivalence
between the categories of finite separable extensions of K and of K. In particular, there is an iso-
morphism Gg > Gg.

Proof. — Since the valuation of L coincides with the spectral norm, L is
weakly K-cartesian ([BGR] 3.5.1/3). By [BGR], 2.3.3/6, one has [L:R] =[L:K],
and therefore L3 L®g K. Our assertion now follows from Krasner’s Lemma (‘see
[BGR], 3.4.2). m

2.4.2. Corollary. — Let K be a quasicomplete field, and let K' be a bigger quasicomplete
Sield whose valuation extends the valuation of K. Suppose that the maximal purely inseparable extension
of K in R is dense in K’. Then the correspondence L — L ® K' induces an equivalence. between the
categories of finite separable extensions of K and of K', and there is an isomorphism Gg. = Gg. m
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2.4.3. Proposition. — The following properties of a field K with valuation are equwalent

a) K is quasicomplete;
b) the local ring K® ={a eK||a|< 1} is Henselian.

Proof. — a) = b) (see [BGR], 3.3.4). Let F be a polynomial in K°[T] with
| F| =1 (the Gauss norm). Suppose that F is a product of two coprime polynomials
g ke K[T]. Take a decomposition F = F,, ..., F, of F into irreducible polynomials.
We may assume that |F;| =1 for all ¢ and that the polynomials F,, ..., F,
are monic and the leading coefficients of F,, +1, -+, F, have the norm < 1. Then
F = f% for some irreducible polynomials f; e K[T], < i< m (this follows from
Proposition 2.4.4 (ii)). From Lemma 2.3.2 it follows that F, F1r ee s F, are elemcms
of K*. Since g and % are coprime in K[T], we may assume that g = af, ..., fr for
some @ € K with |a| =1 and r< m. Then for the polynomials G = aF,, ..., F, and
H=4"'F, ,,...,F, one has G=g H=~rand F=GH.

b) = a). Let L be a finite extension of K, and let B the integral closure of A = K9
in L. We claim that B is a local ring. Indeed, it suffices to show that the set b = B\B*
is an ideal in B. Suppose that for some elements f; g € b one has f + g ¢ b. Consider
the A-subalgebra C of B generated by the elements f, g and (f + g)~*. Then C is a finite
A-algebra. But any finite algebra over a local Henselian ring is a product of local rings.
Since C is an integral domain, it follows that C is a local ring. We get that the elements f
and g belong to the maximal ideal of C but their sum f + g is invertible in C. Thus,
B is ‘a local ring.

Furthermore, from the definition of the spectral norm it follows that

B={feL||flp<1}

Let | |35 ..., | |, be the valuations on L which extend the valuation on K. One has
|flp = max |f]; (see [BGR], § 3.3). Suppose that n> 1. By the Artin-Waples

1<i<n

Lemma, one can find for each 1< i< n an element f; €L such that |f|; =1 and
|fi]; < 1 for j + i. The elements f;, ..., f, are not invertible in B, and therefore belong
to the maximal ideal of B. But for the element f=f; + ... + f, one has | f|, =1,
1< i< n It follows that |f~'|; =1, 1< i< n, and therefore |f!|, =1, ie., fis
invertible in B. Hence, n = 1, i.e., the spectral norm on L is a valuation. m

Let K be a quasicomplete field, let L be a Galois extension of K (finite or infinite).
We set I(L/K) ={ ¢ € G(LJK) | ¢ acts trivially on L} (L is the residue field of L) and
W(L/K) ={ceG(L/K) | |« — a|<|a| for all x eL*}. We set p = char(ﬁ).

2.4.4. Proposition. — (i) I(L/K) and W(L/K) are normal divisors of G(L/K) and
W(L/K) CI(L/K); :

(ii) the extension TJK is normal and G(L/K)/I(L/K) > G(T/K);

(ili) there is a canonical isomorphism I(L/K)/W(L/K) S Hom(| L*|/] K* |, T°);

(iv) W(L/K) s a pro-p-group. :
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Proof. — (i) is trivial. -

(ii) Let @ € .. We take a representative « of @ in L° and the minimal polynomial
P(T)=T" 44, T* '+ ... + a4, of « over K. Since the valuation of L coincides
with the spectral norm,

|«| = max |q "< 1,
1<i<n

and - therefore all a; belong to K° The element & is a root of the polynomial
?(T) T + a; T*? e+ a, e IN([T] Hence all the elements of (K)e conjugated
to « are also roots of P(T) Smce the group G(L/K) acts transmvcly on the set of roots
of P(T), its image in the automorphlsm group of T over K acts transitively on the set of
roots of P(T). It follows that L. is normal over K, and the canonical map G(L/K) — G(L/K)
is surjective.

(iii) For ¢ e I(L/K) and « € L* we denote by {(s, «) the image of the element %/«
in I*. The map ¢ : I(L/K) x L* — L* is bilinear because for o, * e I(L/K) one has

oa O‘l’a 1a . O‘fa Td,
2\ T T\ T

Furthermore, if |« | = |8 |, then
‘@ B °¥3(__5) _ °(z)_z
s g/| |\ B

« B
i.e., Y(o, «) depends only on | « |. If « € K*, then (s, «) = 1. Therefore ¢ induces an
embedding

e %a "

[+4 o oL

<1,

M(L/K) = I(L/K)/W(L/K) - Hom(| L* |/| K* |, ).

2.4.5. Lemma. — If K' is a Galois extension of K with KCK'CL, then there are
exact sequences

0 - I(L/K') - I(L/K) - I(K’'/K) -0,
0 - W(L/K') - W(L/K) > W(K'/K) - 0.

Proof. — The only nontrivial fact is the surjectivity of the maps I(L/K) — I(K'/K)
and W(L/K) - W(K'/K). The surjectivity of the first map is equivalent to the sur-
jectivity of the map G(L/K) — G(TJ/K) which is proved in (ii). The surjectivity of the
second map is equivalent to the injectivity of the map M(L/K’) - M(L/K). The latter
fact follows from the part of (iii) which is already verified. m

Suppose that L is finite over K and set K' = LW‘I"K’ By Lemma 2.4.5,
W(K'/K) = 0. We claim that K’ is the maximal subfield L cL separable over K,
and [I(K'/K):1] = [Hom(| K™ |/| K*|, K*:11= [| K*|:|K*|]. Indeed, since

G(K'/K) = G(L/K) = G(I,K),
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we have L, C K’. Furthermore,
[K’ :’K] = [G(K//K) : 1] [I(K'/K) : 1]
< [K': K] [Hom(| K™ |)| K |, K™ : 1]
<K :KJ[K"|:| K] < [K':K].

Therefore all the inequalities are actually equalities, and our claim follows. The case
of an arbitrary L is deduced from this, using Lemma 2.4.5.

(iv) As above, it suffices to assume that L is finite over K. Suppose that W contains
an element ¢ of order / which is prime to p. Let K’ be the subfield of L, which consists
of elements fixed by 6. Then L is a cyclic extension of K’ of degree /. Take an element
« € L with L = K'(«). If @ = Try (), then replacing « by a — a/l, we may assume.
that Tryx () = 0. On the other hand, since ¢ € W then %o = o + B, where | B, | < | a|.
We have

1—1

0=o + %% + ... + %o = la + i&;-
i=0

This is impossible because | 2288, | < |a| = |le]|. ®
The group I(L/K) is said to be the inertia group, and the group

M(L/K) = I(L/K)/W(L/K)

(resp. W(L/K)) is said to be the moderate (resp. wild) ramification group of the
Galois extension L/K. Furthermore, applying Proposition 2.4.3 to the separable
closure K* of K, one gets the maximal unramified (resp. moderately ramified) extension K™
(resp. K™) of K. We set G= = G(K™/K), G¥ = G(K*/K), My = G(K™/K™)
and W¢ = G(K*/K™).

2.4.6. Corollary. — (i) K™ is the separable closure R* of K and | K™ | = | K |;
(ii) Gx = Gg;

(iii) Mg ™ Hom (VK |/| K* |, (K)");

(iv) Wg is a pro-p-group. m

We say that an algebraic extension L/K is unramified (resp. moderately ramified) if
LC K™ (resp. LCK™).

2.4.7. Proposition. — A finite separable extension L[K is unramified (resp. moderately
ramified) if and only if it satisfies the following conditions:

a) L is K-cartesian, i, [L:K] = [L:K][|L*]:| K" |];

b) T is separable over K;

¢) |[L| = K| (resp. p 4[| 1| :| K []).
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Proof. — The direct implication follows from Proposition 2.4.4 and the fact that
a subfield of a K-cartesian field is K-cartesian.

2.4.8. Lemma. — Any finite extension LK with p ¥[L : K] is moderately ramified.

Proof. — The assertion follows from the fact that the wild ramification group
W(L'/K) is an invariant p-subgroup of the Galois group G(L'/K), where L’ is the minimal
Galois extension of K which contains L. m

Suppose that L satisfies the conditions a)-c). Let L’ be a finite Galois extension
of K which contains L, and let K, be the maximal subfield of L’ which is unramified
over K. We take the field K’ C K, for which K’ = T. and claim that K’C L. Indeed,
let « be an element of K'® with K’ = R(%). Since [K':K] = [K':K], we have
K’ = K(a). Let P(T) be the (monic) minimal polynomial of « over K. It is clear that
P(T) e K[T]. The polynomial P(T) is separable and has a root in 1. Since L? is Hen-
selian, there exists a root B of P(T) in L with § = &. From this it follows that B = «
because that polynomial B(T) is separable.

We have [L: K] =[|L*|:|K"[]. If |L*| =|K*|, then L =K. If p does
not divide [| L*|:|K*|], then p /[L:K'], and, by Lemma 2.4.8, L is moderately
ramified over K’. Since K’ is unramified over K, L is moderately ramified over K. m

2.5. The cohomological dimension of the fields x(x)

Recall that the /-cohomological dimension cd,(G) of a profinite group G is the
minimal integer n (or o) such that HY(G, A) = 0 for all : > »n and all /-torsion G-mo-
dules A (! is a prime integer). The /-cohomological dimension cd,(K) of a field K is, by
definition, the /-cohomological dimension cd;(Gg). Recall also that if / = char(K),
then cd,(K) < 1 ([Ser], Ch. II, § 2.2).

2.5.1. Theorem. — For a point x € X, one has cd,(x(x)) < cd,(k) + dim(X).

Proof. — First of all we remark that the statement is evidently true if dim(X) = 0
and that, by Proposition 2.4.1, one has cd,(x(x)) = cd,(5#(x)). Consider first the case
when X is a closed disc in AL If [x(x) : ] < oo, then cd,(k(x)) < cd,(k). Assume there-
fore that [x(x) : £] = . Then the field of the rational functions in one variable %(T)
is embedded in x(x) and everywhere dense in it. Fix an embedding %(T)* < x(x)* over
the canonical embedding %(T) < k(x). Since the field k(x) is quasicomplete, it follows
that x(x)* = £(T)* k(x). In particular, the Galois group G,,, can be identified with
a closed subgroup of Gy, and therefore one has cd,(x(x)) < cdy(k(T)) (loc. cit., Ch. I,
§ 3.3). By Tsen’s Theorem (loc. cit., Ch. II, § 4.2), one has cd,(k(T)) < cd,(k) + 1,
and hence cd;(x(x)) < cd,(k) + 1.

Suppose now that dim(X) > 1 and that the theorem is true for affinoid spaces
whose dimension is at most dim(X) — 1. Take an analytic function f on W which is

7
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nonconstant at any irreducible component of X and consider the induced morphism
S:X — A, The morphism f can be considered as a morphism to a closed disc of a
sufficiently big radius Y. Let y = f(x). The point x is also a point of the 5#( y)-affinoid
space X, whose dimension is at most dim(X) — 1. By induction,

cdy(H#(x)) < cd)(#(y)) + dim(X) — 1,

and, by the first case, cd;(#(»)) < cd,(k) + 1. The required inequality follows. m

If [ is not equal to the characteristic of the residue field of %, then one can get as
follows a more strong inequality for cd,(k(x)) (the result will not be used in the sequel).
For this we recall some definitions and facts from [Ber], § 9.1.

Let K be an extension of 2 with a valuation which extends the valuation of %.
We denote by s(K/k) the transcendence degree of K over % and by ¢(K/k) the dimension
of the Q:vector space V|K*|[V|k|, and we set d(KJk) = s(K/k) + {(K/k) (the
dimension of K over k). It is clear that d(K/k) = d(K[k).

2.5.2. Lemma. — For a point x € X, one has d(x(x)[k) < dim(X). Moreover, the
equality is achieved for some point of X.

Proof. — If X is strictly k-affinoid, the assertion is proved in [Ber], 9.1.3. The proof
also shows that d(x(x)/k) = dim(X) for some point x from the Shilov boundary of &/
(see [Ber], § 2.4). In the general case we take a field K of the form K, ', for which
the algebra &' = o ® K is strictly K-affinoid. Let ¢ denote the canonical map
X'=M(L') - X, and let ¢ denote the map X — X' from Lemma 2.2.5. Since the
fiber of ¢ at x coincides with #(#(x) ® K), it follows that d(x(c(x))/k(x)) = n. By
the strictly affinoid case, d(k(s(x))/K) < dim(X). Let now %’ be a point from the Shilov
boundary of &/’ for which d(x(x')/K) = dim(X). It is easy to see that x’ = o(x) where
x = ¢(x'). Therefore d(x(x)[k) = d(x(x)[K) = dim(X). m

~

2.5.8. Theorem. — Suppose that [ char(k). Then for a point x € X, one has
cd;(x(x)) < cdy(k) + d(x(x) /).

2.5.4. Lemma. — Let K be a quasicomplete field, and let £ be a prime integer different from
char(K). Suppose tﬁat the numbers cd,(K) and 5,(K) = dimg (| K*|[| K*[') are finite.
Then cd,(K) < cd;)(K) + 5(K).

Proof. — Since Wy is a p-group, then cd,(K) = cd,(G¥). Furthermore, since
the group My is abelian, cd,(Mg) coincides with the /-cohomological dimension of
the l-component of Mg. The latter group is isomorphic to Z}™, and therefore
cd;(Mg) = 5,(K). Since G¥ = Gg, the required fact follows from the spectral sequence
H?(Gg, H'(Mg, A)) = H?*%(GE, A). =

Proof of Theorem 2.5.3. — As in the proof of Theorem 2.5.1 consider first the
case when X is a closed disc in AL Let ' be a point of X’ = X ® & over x. Since the
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field x(x) &* is everywhere dense in k(x’) and the both fields are quasicomplete, from
Corollary 2.4.2 it follows that G, G- Therefore there is an exact sequence

0 = Gyy = Gy > G(k(#) £°[x(x)) — 0.

The latter group is a closed subgroup of G, and hence its cohomological dimension is at
most cd, (k). It follows that cd,(k(x)) < cd,(k) + cd;(k(x’)). Since d(k(x')[k*) = d(x(x)[k),
Lemma 2.5.4 implies that cd,(x(x")) = d(x(x)/k).

Suppose now that dim(X) > 1 and that the theorem is true for affinoid spaces
whose dimension is at most dim(X) — 1. As in the proof of Theorem 2.5.1 we can
find a morphism f: X — Y, where Y is a closed disc in A, such that all of the fibres
of X has dimension at most dim(X) — 1. Let y = f(x). By induction,

cd,(# (%)) < cdy(#(y)) + d(H#(x)[#()),
and, by the first case, cd,(o#(y)) < cd,(k) + d(5£(»)[k). Since
d(H (x)[H (9)) + A ())[k) = d(F# (%) [R),

the required inequality follows. m

2.6. GAGA over an affinoid space

Let % be a scheme of locally finite type over £, and let F be the functor from the
category of morphisms Z — X, where Z is a good analytic space over %, to the cate-
gory of sets which associates with Z — X the set of morphisms of locally ringed
spaces over &, Homy(Z, %).

2.6.1. Proposition. — The functor F is representable by a closed morphism of k-analytic
spaces H*™ —~ X and a morphism of locally ringed spaces w: %™ — . The correspondence
% > Y™ is a funcior which commutes with extensions of the ground field and with fibred products.

Proof. — The k-analytic space #*" is constructed in the same way as in the case
when X = #(k) (see [Ber], 3.4.1). Namely, one shows that if % is the affine space
over &, A%, then #*™ = A% = X X A® After that one shows that if #* exists for &,
then 2*" exists for any subscheme Z C #. In particular, #*" exists for any affine scheme
of finite type over £ and for any its open subscheme. Finally, if % is an arbitrary scheme
of locally finite type over &, then one takes an open covering { %, },o; of % by affine
subschemes of finite type over Z. One glues together all of the #®s and obtains the
k-analytic space #*" associated with #. That the correspondence & — %* is a functor
possessing the necessary properties follows from the universal property of #**. m

2.6.2. Proposition. — The map = :Y = ¥*™ — ¥ is surjective, and for any point y € Y
the ring Oy , ts flat over O ,, where y = () (i.e., = is a faithfully flat morphism).
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Proof. — By Proposition 2.1.1, the map X — & is surjective. Therefore to show

that the map = :Y — & is surjective, it suffices to verify that for any point x € X the
map Y, — %, is surjective. One has

Y, = (¥ ®un (%)™

Since the morphism of schemes %, ®, ., #(x) — %, is faithfully flat, the situation is
reduced to the case when X = .#(%). In this case it suffices to verify that if % is an
irreducible affine scheme of finite type over 2 and y is its generic point, then there exists
a point » € Y whose image in % is y. The Noether Normalization Lemma reduces the
problem to the case when % is the affine space A% In this case, for any point y e Y = A¢
associated with a closed polydisc, w( ») is the generic point of # = A‘.

2.6.3. Lemma. — The map = : Y = %* — ¥ induces a bijection
Yo 5%, ={ye¥|[k(y) :k] < o}
If yeY,, then there is an isomorphism of completions (D;: et (D/Y:,.

Proof. — Let ye%,. For n> 1 we set Z = Spec(Cy ,/m}). The scheme Z
consists of one point z and is finite over k. Therefore Z = 2™ consists of one point z,
and one has Oy , = Oy ,/m7 = 0, ,. Furthermore, there is a canonical closed immersion
% — % which takes z to y. Therefore Z Y is also a closed immersion, and the
point y, which is the image of z in Y, is the only preimage of y in Y. (In particular,
Y, > %,) Moreover, one has

Og,y/m'; = 02,2 = @Y,u/m;’ (Dvi'

If n=1, we get m, = m, Oy , and k(y) = k(). Hence (D,,],/,\y - (9/;,, n

From Lemma 2.6.3 it follows that Oy , is flat over Oy , at least in the case when
7 €Y,. In the general case we take a sufficiently big non-Archimedean field K over %
such that there exists a K-point 3’ € Y/ = Y®K over 5. We set X’ = #(«/ ®K) and
&’ = Spec(o/ ®K). One has Y’ = @™ where #' = ¥ X4 %'. Let y’ be the image
of the point »' in #’. We know that Oy, , is flat over 0. ... Since Z” is faithfully flat
over & (Lemma 2.1.2), it follows that 0. , is flat over Og ;, and therefore Oy. . is

flat over O ,. Finally, from Corollary 2.1.3 it follows that Oy . is faithfully flat
over Oy ,. Hence Oy , is flat over Oy ;. W

2.6.4. Proposition. — Let T be a constructible subset of %. Then == *(T) = n~*(T).

2.6.5. Lemma. — Suppose that ¥ is affine of finite type over X. Let 'y, z be points of ¥
with z €y, and let z be a point of ¥*® with n(z) = z. Then any open neighborhood of z contains
a point y with n(y) =y.

Proof. — For a non-Archimedean field K over k£, we set &' = A® K, X' = ("),
Z' = Spec(H'), U' =¥ X4, Z'. Since ¥’ is faithfully flat over %, there exists points
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y', ' € %’ over y and z, respectively, with z’ € §'. Since the tensor product k(2) ®,,, k(z’)
is nontrivial, the valuation on k(z) extends to a multiplicative seminorm on it. It follows
that there exists a point z’ € #"*® whose image in %’ is z’ and in #*" is z. Thus, we can
extend the field %, and, in particular, we may assume that the valuation on % is nontrivial
and & is strictly k-affinoid. Let # = Spec(B). Replacing B by B/p,, we may assume
that % is reduced and irreducible and that y is its generic point. Since #3" is everywhere
dense in #*", we may assume that z € #¢". Furthermore, since the ring B is excellent
(it is finitely generated over the excellent ring &), Reg(%) is an everywhere dense
Zariski open subset of #. Shrinking %, we may assume that % is regular. In this case
the homomorphism B — @ , is injective. From Lemma 2.6.3 it follows that the homo-
morphism B — @gan , is injective. Take a sufficiently small connected strictly affinoid
neighborhood V = (%) of the point 2. The latter homomorphism goes through %,
therefore the homomorphism B — %, is injective. Since #*" is regular and V is connected,
the ring %y is an integral domain. By Proposition 2.1.1, there exists a point y € V for
which the character #, — 5#( ») is injective. It follows that the character Z — #( y)
is injective, and therefore =( ) is the generic point of #. m

Proof of Proposition 2.6.4. — It is clear that =~ (T) C =~ }(T). To verify the inverse
inequality, we may assume that T = #. Since T is constructible, it contains an every-
where dense Zariski open subset of % and, in particular, all of the generic points of #.

From Lemma 2.6.5 it follows that =~ }(T) = #**. m

2.6.6. Corollary. — A constructible set T is open (resp. closed, resp. everywhere dense)
in % if and only if =~ (T) is open (resp. closed, resp. everywhere dense) in @*". m

2.6.7. Corollary. — A morphism ¢ : & — ¥ between schemes of locally finite type over &
is separated if and only if ™ : Z*™ — ¥ is separated.

Proof. — Let A: Z — Z Xg Z be the diagonal morphism. If ¢ is separated,
then A is a closed immersion, and it follows that so is A*. Assume that ¢* is separated.
It suffices to verify that the set A(Z) is closed in & Xg Z. This follows from Corol-
lary 2.6.6 because A(Z) is a constructible set and its preimage in 2™ Xgan Z*
is closed. m

2.6.8. Proposition. — For a morphism ¢ : & — ¥ between schemes of locally finite type
over X, one has n Y (p(Z)) = @™ (Z™).

Proof. — From the construction of the analytification it follows that the statement
is true when 2 is an open subscheme of % and, if { ¥}, is lan open covering of %,
then { #2 }; ., is an open covering of #*. Hence the situation is reduced to the case
when % = Spec(B) and £ = Spec(C) are affine schemes of finite type over Z. The
inclusion ¢**(Z*") Cn~(p(Z)) is evident. To verify the converse inclusion, it suffices
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to show that if q is a prime ideal of C, then any multiplicative norm on B/p, where p
is the preimage of q in B, extends to a multiplicative norm on C/q. But this follows
from the well known fact that a valuation on a field can be extended to a valuation on
any bigger field. m

The following statement is proved in the same way as its particular case when
Z = M(k) (see [Ber], 3.4.7).

2.6.9. Proposition. — Let ¢ : Z — ¥ be a morphism of finite type between schemes of
locally finite type over Z'. Then ¢ is proper (resp. finite, resp. a closed immersion) if and only if ¢
possesses the same property. m

2.6.10. Proposition. — Let ¢ : & = Spec(C) — % = Spec(B) be a finite morphism
between afffine schemes of finite type over Z'. Let z € & and y € U™ be points with ¢(z) = n(y) =y,
and let o™ () ={2, ..., 2,} and @™ () " Nz) ={2z,...,2,}, m<n Then
there is an isomorphism of rings

Ogan,, ®oq , Oz, s iI;I1 Ogan . X s=£[+1 (Ogan, ),
where (Ogan ), is the localization with respect to the complement of the prime ideal of G cor-
responding to the point z.

Progof. — If V is an affinoid domain in #**, then for its preimage W in 2™ one
has ¥y = #,®3 C. Since ¢* is finite, from Lemma 2.1.6 it follows that
Ogan ,®5 C S II7_, Opan ,.. The ring Ggan , ®og,, Oz,s is the localization of Oyan ,©3 C
with respect to the complement of @,. If 7(z;) = z, then the ring Ogan ,, does not change
under this localization. The required statement follows. m

§ 3. Etale and smooth morphisms

3.1. Quasifinite morphisms

3.1.1. Definition. — A morphism of k-analytic spaces ¢ : Y — X is said to be finite
at a point y € Y if there exist open neighborhoods ¥~ of y and % of ¢( ) such that ¢ induces
a finite morphism ¥~ — %; ¢ is said to be quasifinite if it is finite at any point y € Y.

It follows from the definition that quasifinite morphisms are locally separated
and closed.

3.1.2. Lemma. — If a morphism ¢ :Y — X is finite at a point y € Y, then the neigh-
borhoods ¥~ and U from the Definition 3.1.1 can be found arbitrary small.

Progf. — We may assume that the morphism ¢ is finite. Let x = ¢(») and let
o () = {1 =I,%2 ---r 9, }. Since the map |Y | — | X | is compact, we can find a
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sufficiently small open neighborhood % of x such that ¢~ *(%) = II_, ¥;, where
€, and ¥;N¥, =0 for i+j. It follows that all of the morphisms ¥; - %
are finite, and the neighborhood #] of y is sufficiently small. m

3.1.3. Corollary. — Quasifinite morphisms are preserved under compositions, under any
base change functor, and under any ground field extension functor. m

We remark that if ¢ : Y — X is a quasifinite morphism and the space X is good,
then Y is also good. Quasifinite morphisms between good k-analytic spaces can be
characterized as follows.

3.1.4. Proposition. — Let ¢ : Y — X be a morphism of good k-analytic spaces, and let
y€Y and x = o(9). The following are equivalent:

a) ¢ is finite at y;

b) there exist sufficiently small affinoid neighborhoods V of y and U of x suck that ¢ induces
a finite morphism V — U;

c) the point y is isolated in the fibre ¢~ '(x) and y € Int(Y/X).

Proof. — The implications a) =>¢) and b) =¢) are trivial. The implication
b) = a) follows from the following Lemma.

3.1.5. Lemma. — Let ¢ : Y — X be a morphism, and let VCY and U C X be affinoid
subdomains such that ¢ induces a finite morphism § : V — U. Then Int(V]Y) = ¢~ (Int(U/X)).
In particular, ¢ induces a finite morphism Int(V]Y) — Int(U/[X).

Proof. — From [Ber], 3.1.3, it follows that
Int(V/X) = Int(V]Y) N Int(Y/X) = Int(V/Y).

On the other hand, Int(V/X) = Int(V/U) n ¢~ !(Int(U/X)) = ¢~ (Int(U/X)). There-
fore Int(V[Y) = ¢7!(Int(U/X)). m
To verify the implication ¢) = 4), it suffices to assume that X = .#(&f) and
Y = # (%) are k-affinoid. Furthermore, since X and Y are compact, we can decrease
them and assume that ¢~ !(x) ={y}. Since y e Int(Y/X), there exists an admissible
epimorphism
.l {7 Ty, ..., ' T, } > &

ey Ty

such that | =(T,) (»)]| <7, 1< i< n For any affinoid neighborhood U of », = induces
an admissible epimorphism

. -1 ~1
gt Fg{r T, . 1T, > B vy,

If U is sufficiently small, then ¢~*(U) is a sufficiently small affinoid neighborhood
of the point y. Therefore we can find sufficiently small U such that | =(T;) (»')|<r
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for all points " € ¢~ *(U). This means that the induced morphism of k-affinoid spaces
9 }(U) - U is closed. By [Ber], 2.5.13, the latter morphism is finite. m

3.1.6. Corollary. — If a morphism of good k-analytic spaces ¢ : Y — X is finite at a point
V€Y, then Oy , is a finite Og ., -algebra. W

?(v)

Recall that a morphism of schemes ¢ : % — & is called quasifinite if any point
y €% is isolated in the fibre ¢~ '(x) = #%,, where x = ¢(y) (see [SGAl], I.2).

3.1.7. Corollary. — A morphism ¢ : & — ¥ between schemes of locally finite type over
X = Spec(H), where o is a k-affinoid algebra, is quasifinite if and only if the corresponding
morphism @ : Z* — ¥ is quasifinite.

Proof. — For any point y € #**, there is an isomorphism of J#( y)-analytic spaces

(gy ®k(y)”()’))w = zy.

Therefore our assertion follows from the fact that the morphism ¢* is closed (Pro-
position 2.6.1). m

3.1.8. Proposition. — Let ¢ : Y — X be a morphism of k-analytic spaces, and let y € Y
and x = ¢( ). Then the following are equivalent:

a) ¢ is finite at y;

b) there exist analytic domains X,, ..., X,CX such that xeX;, n... NnX,,
X,V ... UX, is a neighborhood of x and the morphisms ¢~ (X,) — X, are finite at y;

¢) there exist affinoid domains Vi, ...,V,CY and Uy, ..., U, CX such that
yevin...nV,, Viu...UV, and Uy v ... UU, are neighborhoods of y and x,
respectively, @(V,;) C U,, and the induced morphisms @,: V, - U, and ¢,,: V, "V, ->U, N U,
are finite at y.

We remark that if the spaces X and Y are separated, then the finiteness at » of
all the morphisms ¢, from ¢) implies the same property for the morphisms ¢,;. Indeed,
in this case U, N U; and V, NV, are affinoid domains and, by Proposition 3.1.4,
it suffices to verify that y eInt(V,nV,/U nU)). If V,;:=¢7'(U, nU,;), then
»€Int(V;;/U, nU,), and therefore y e Int(V;; nV;/U;, N U,;). It remains to note
that V; nV,; =V, nV,,

Proof. — The implication a) = b) is trivial. Furthermore, we remark that all
three properties remain true if we replace X and Y by sufficiently small open neigh-
borhoods of the point x and y, respectively. In particular, we may assume that X and Y
are Hausdorff.

b) =c). We may assume that X, = U, are affinoid domains. Then we can
find affinoid neighborhoods V; of y in ¢~ !(U;) such that the induced morphisms
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@; : V{ = U, are finite at y. Furthermore, shrinking X and Y, we may assume that
the morphisms ¢; are finite and ¢; ~'(x) ={y}. Thus we get a morphism ¢ : V — U,
where V=Vju ... UV, and U=U;u... uU, are compact analytic neigh-
borhoods of y and x, respectively. It follows that we can find on open neighborhood #
of x in X with % C U such that ¥" := ¢~ (%) is an open neighborhood of y in Y and,
for every 1< i< n, 7' (U; N %) CV,. If now U; is an affinoid neighborhood of x in
U; N %, then V,:= ¢~ '(U,) is an affinoid neighborhood of y in V; N ¥] and the
induced morphism ¢, :V; - U, is finite. Since V; "V, = ¢;}(U; n U,), the induced
morphisms ¢;;: V, "NV, > U, N U, are finite. Hence, ¢ satisfies ¢).

3.1.9. Lemma. — If Y is an analytic domain in X and the canonical morphism Y — X
is quasifinite, then Y is open in X.

Proof. — Since quasifinite morphisms are closed, Int(Y/X) =Y. By Proposi-
tion 1.5.5 (ii), Int(Y/X) coincides with the topological interior of Y in X. It follows
that Y is open in X. m

¢) = a). We can shrink all the affinoid domains V; and assume that ¢; *(x) ={» }.
Then for sufficiently small affinoid neighborhoods U; of x in U, ¢;'(U;) and
0;; (U, nU)) = o7 1(U;) Nn¢;(U;) are sufficiently small neighborhoods of y in V
and V; N V,, respectively. Thus, we can shrink all the affinoid domains U, and assume
that all of the morphisms ¢, and ¢,; are finite.

Furthermore, the morphism ¢, induces finite morphisms ¢,;: V, "V, - U, n U,
and V;;:=¢;(U,nU;) >U,NnU,;, and therefore the canonical embedding of
special domains V; "V, - V,, is finite. From Lemma 3.1.9 it follows that V, NV,
is open in V;;, and therefore V;; = (V; " V;) LI W;; for some special domain W,;CV,.
We get ¢ Y(U;) = V,IIW,, where W, =U,,,W,. Since yeV,n...nV,, we
have x ¢ (W,), and therefore we can find, for each 1 < 7 < 7, an affinoid neighborhood U]
of x in U, such that U] N ¢(W,) = Q. The latter implies that ¢~ (U;) = V| := ¢;}(U]).
Hence, the morphism V;u ... uV, ->U;u ... uU, is finite, and the required
statement follows. m

3.1.10. Corollary. — A morphism of k-analytic spaces ¢ :Y — X is finite at a point
y €Y if and only if the point y is isolated in the fibre o~ '(¢(y)) and y € Int(Y/[X).

Progf. — The direct implication is clear. Suppose that y is isolated in ¢~ '(¢( »))
and y € Int(Y/X). We can shrink Y and assume that ¢ is closed. Let Uy, ..., U, be
affinoid domains in X such that ¢(y) eU;n ... nU, and U, U ... U U, is a neigh-
borhood of ¢(y). From Proposition 3.1.4 is follows that ¢~ (U,) - U, are closed
morphisms of good k-analytic spaces. In particular, the property 4) of Proposition 3.1.8
holds. It follows that ¢ is finite at . m
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3.2. Flat quasifinite morphisms

A morphism of good k-analytic spaces ¢ : Y — X is said to be flat at a point y € Y
if Oy , is a flat Ox ,-algebra. ¢ is said to be flat if it is flat at all points y € Y.

3.2.1. Proposition. — A finite morphism of k-affinoid spaces ¢ : Y = M(B) - X = M (L)
is flat at a point y €Y if and only if '@Py is a flat o, -algebra, where x = ¢( y). In particular,
o ts flat if and only if B is a flat <f-algebra.

Proof. — If Oy , is flat over Oy ,, then it is also flat over &/, , by Theorem 2.1.4.
Thus, the ring Oy , is faithfully flat over .%py and is flat over &/, . It follows
that .@@,y is flat over &/, . Conversely, suppose that .@py is a flat &/ -algebra.
Then the ring @X,z®dpx &y, is flat over Ox ,. If o7'(x%) ={y, =9,92, >, }» then
Ox,®, B=11"_,0y y; (Lemma 2.1.6). But the ring Oy , ® oy %’Py is the localization

of O ,®, # with respect to the complement of g;, and therefore, is a direct product
of the same localizations of the rings Oy ,.. Since the ring Oy , does not change under
this localization, it is a direct summand of the flat Oy ,-module Oy ,®,, %, . It

Py
follows that Oy , is a flat O ,-algebra. m

3.2.2. Corollary. — A morphism of good k-analytic spaces ¢ : Y — X is flat quasifinite if
and only if for any point y € Y there exist affinoid neighborhoods V of y and U of x = ¢( p) such
that 9(V)CU and B is a flat finite o y-algebra.

Proof. — The converse implication follows from Proposition 3.2.1. Suppose
that ¢ is flat quasifinite. By Corollary 3.1.6, Oy , is a finite Oy ,-algebra. Therefore
there is an isomorphism 0% , = Oy ,. It is clear that it comes from a homomorphism
Ly — #y, for some affinoid neighborhoods V of y and U of x such that ¢ induces a finite
morphism ¢ : V — U. The homomorphism considered is related to a homomorphism
of sheaves O0f — {,(0y). The supports of the kernel and cokernel of the latter homo-
morphism are Zariski closed in U and do not contain the point x. It follows that one
can decrease U and V such that 0F = {,(0y), ie., LS5 HBy. Hence ¢:V ->U is
a flat finite morphism. m

3.2.3. Proposition. — Let ¢ : Y — X be a finite morphism of k-analytic spaces, and let
y€Y and x = (). Then the following are equivalent:

a) there exist affinoid domains V., ...,V,CX such that xeV,n...NV
ViU ... UV, is a neighborhood of x and ¢~ *(V,) = V; are flat at y;
b) for any affinoid domain x € VC X, o~ (V) — V is flat at y.

n

Progf. — The implication 4) = a) is trivial. Suppose that a) is true. Then 54) is
true for any V that is contained in some V,. Assume that V is arbitrary. Replacing V
by a small affinoid neighborhood of x in V, we may assume that VCV, u ... UV, . By
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Lemma 1.1.2 (ii), there exist affinoid domains U,, ..., U,suchthatV=U,u ... uU,
and each Uj; is contained in some V;. By the first remark, if x € U;, then the finite

morphism ¢~*(U,) — U, is flat at y. Therefore the required fact follows from the fol-
lowing lemma.

3.2.4. Lemma. — A finite morphism of k-affinoid spaces ¢ : Y — X is flat at a point
> €Y if and only if there exists a finite affinoid covering { V. }, <<, of X such that, for eack i
with ¢(y) €V,, the induced finite morphism o~ *(V,) — V, is flat at y.

Proof. — Shrinking X, we may assume that ¢(») e V; n ... n'V,. Furthermore,
from Proposition 3.2.1 it follows that we can shrink X and Y and assume that all of
the morphisms ¢~ (V,) — V;, are flat. It suffices to show that ¢ is flat after an extension
of the ground field. Therefore, we may assume that the valuation on % is nontrivial,
and all V; are strictly k-affinoid. (Then X and Y are also strictly %-affinoid.) If x € X,
then O , = 0Oy, , for any V; that contains . It follows that ¢ is flat at all points of Y,
ie., ¢ is flat. m

Let ¢ : Y — X be a quasifinite morphism of Z-analytic spaces.

3.2.5. Definition. — The morphism ¢ is said to be flat at a point y € Y if there exist
open neighborhoods ¥~ of y and % of ¢( ») such that ¢ induces a finite morphism ¥~ — %
that possesses the equivalent properties of Proposition 3.2.3; ¢ is said to be flat if it is
flat at all points of Y.

From Proposition 3.2.3 it follows that if a quasifinite morphism ¢ : Y — X is flat
at a point y € Y, then the neighborhoods ¥~ and % can be found sufficiently small.

3.2.6. Corollary. — Flat quasifinite morphisms are preserved under compositions, under
any base change functor, and under any ground field extension functor. m

3.2.7. Proposition. — A flat quasifinite morphism ¢ :Y — X is an open map.

Progof. — We may assume that X and Y are k-affinoid. Let » € Y and x = ¢( ).
By the proof of Corollary 3.2.2, there exist affinoid neighborhoods V of y and U of x
for which there is an isomorphism %, > &/f. In particular, the canonical homo-
morphism &/ — %y is injective and finite. By [Ber], 2.1.16, the map

$:V=M(By) > U =MLy
is surjective. By Lemma 3.1.5, Int(V/Y) = ¢~ !(Int(U/X)), and therefore
¢(Int(V[Y)) = Int(U/X). =

3.2.8. Proposition. — Let @ : Y — X be a quasifinite morphism. Then the set of points
y €Y such that ¢ is not flat at y is Zariski closed.
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Proof. — We may assume that ¢ is a finite morphism of %-affinoid spaces. In this
case Proposition 3.2.1 reduces the statement to the corresponding fact for morphisms
of affine schemes. m

3.2.9. Proposition. — Let ¢ :Y — X be a closed morphism of pure one-dimensional
good k-analytic spaces, and suppose that X is regular and Y is reduced. Then ¢ is flat quasifinite
if and only if ¢ is nonconstant at any irreducible component of Y.

Proof. — The direct implication is trivial. Suppose that ¢ is nonconstant at any
irreducible component of Y. Then ¢ has discrete fibres, and therefore is quasifinite, by
Proposition 3.1.4. It follows that for any point y € Y we can find connected affinoid
neighborhoods V of y and U of ¢( ») such that ¢ induces a finite morphism of k-affinoid
spaces V — U. Then &7y is a one-dimensional regular integral domain, the ring %,
is reduced, and the canonical homomorphism &/, — %, is injective. By [Ha2], II1.9.7,
Ay is a flat o/ ;-algebra. m

3.2.10. Proposition. — A morphism ¢ : & — ¥ between schemes of locally finite type
over & = Spec(), where o is a k-affinoid algebra, is flat quasifinite if and only if the corres-
ponding morphism @** 1 X — X* is flat quasifinite.

Proof. — Since #** and Z*" are faithfully flat over # and %, respectively, the
converse implication follows. Assume that ¢ is flat quasifinite. Then ¢* is quasifinite,
by Corollary 3.1.7. Let z € Z*, y = ¢**(2), z = =n(z), and y = =(_»). We may replace %
and £ by open affine subschemes of finite type over #. By Zariski’s Main Theorem,
there is an open immersion of & in an affine scheme Z finite over #. Then Z* — Z®
is also an open immersion, and Z*" is finite over #*". By hypothesis, Oy, ,is flatover O .
Therefore agan‘v®@@‘y Oy, ,is flat over Oyan ,. By Proposition 2.6.10, Ogyan , is a direct
factor of the above tensor product. It follows that Ogan , is flat over Oyan ,. B

2

3.3. Etale morphisms

We start this subsection with establishing basic properties of the sheaves of dif-
ferentials that were introduced in § 1.4. Of course, the essential case is that of k-affinoid
spaces.

Let 0:Y =AM (#) - X =M () be a morphism of k-affinoid spaces. In this
case the sheaf Qg is associated with the finite Banach #-module Qg , = J/J?, where J
is the kernel of the multiplication u: #®,, # — #. Furthermore, let M be a Banach
Z#-module. An &7-derivation from % to M is a bounded map D:# — M such that
D(x + y) = Dx + Dy, D(xy) = x Dy + y Dx and D(«/) = 0. The set of all &7-derivations
from # to M is a Banach #-module with respect to the evident norm. It is denoted by
Der,,(#, M). For example, the mapping & - J: x> 1®x — x® 1 induces an /-deri-
vation d: % — Qg ,.
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3.3.1. Proposition. — (i) The finite B-module Qg , is generated by the elements dx, x € 4.
(ii) For any Banach #B-module M there is a canonical isomorphism of Banach %B-modules

Homg(Qg,, M) = Der, (%, M)
(the left hand side is the set of all bounded &B-homomorphisms).

Proof. — (i) Let T be the #-submodule of Qg4 , generated by the elements dx, x € 4.
Recall that the ring % is Noetherian, and all its ideals are closed. Since Qg , is a finite
Banach #-module, T is closed in it. We claim that for any w € Qg4 , and any € > 0 there
exists an element ¢ € T with || w — ¢ || < . Indeed, let » be an inverse image of w in J.
There exists an element X' x,®y € #®,% such that |[|[v — 2!, x,®y || <e.
Since w(v) =0, || Zi_, %, || < e We have

2 x®y = ‘Z (,®1) (1®y, —3,®1) + X x,2,®1.
i=1 =1 J

i=1

Therefore
o — El (x®1) (1@y, —y®1)|
< max(|| v — X x,®y, Il 1] _lei)’i@l ) <e.
i=1 i=

The required claim follows.

(ii) It is clear that the homomorphism considered is bounded. From (i) it follows
that it is injective. Therefore it suffices to construct an inverse bounded homomorphism.
Consider the following Banach %-algebra # x M. As a Banach #-module it is the direct
sum of # and M. Its multiplication is defined as follows: (x, m) (1, n) = (%9, #n + ym).
Let now D: % — M be an &/-derivation. The bounded /-bilinear mapping

B XRB—~HBxM:(x9) — (x9, x Dy)

induces a bounded homomorphism of Banach «/-algebras ¢: #® , # — # *+ M. The
reasoning from (i) shows that ¢(J) C M. Since M2 = 0, the homomorphism ¢ induces
a bounded homomorphism of Banach %-modules f:Qg , = J/J* — M. We have
Dx = f(dx) for all x € #. That the correspondence D  f is bounded follows from the
construction. m

3.3.2. Proposition. — Suppose we are given a commulative diagram of morphisms of
k-analytic spaces
Yy % X
NS

S
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(1) There is an exact sequence
26(Qxarsa) > Crase > Croxg > 0-

(ii) If ¢ is a closed immersion and S, is the subsheaf of ideals in Og_ that corresponds to Y,
then there is an exact sequence

Il Fe —~ ‘Pa(onlsG) — QYq/Se — 0.

Proof. — We may assume that X = #(), Y =#(#B) and S = #(¥) are
k-affinoid.

(i) We have to show that the sequence of finite Banach #-modules

Qe®y B —>Que Qg >0

is exact (note that Q,® % = Q_ &, %). For this it suffices to show that for any
finite Banach #-module M the induced sequence

is exact. But, by Proposition 3.3.1, the latter sequence coincides with the sequence
0 — Der (%, M) — Dery(#, M) — Dery (&, M) which is exact for trivial reasons.
(ii) LetJ be the ideal of &/ corresponding to #. We have to show that the sequence

of finite Banach #-modules J/J? S0 w16 Oy B — Qg — 0 is exact, where 3(x) = dx® 1.
As above, it suffices to show that for any finite Banach #-module M the sequence
0 — Dery(%#, M) — Dery (&, M) — Homg(J/J2, M) is exact, but this is evident. m

3.3.3. Proposition. — Let ¢ : Y — X be a morphism of k-analytic spaces. Then:

(i) for any morphism of k-analytic spaces f: X' — X, one has Qg . = f5" (Qyyxe)
where f' is the induced morphism Y' =Y Xy X' > Y;

(ii) for any non-Archimedean field K over k, one has Qg x. = f&'(Qy,x,), where [
is the induced morphism Y' = Y ® K - Y.

Progf. — We may assume that Y = (%), X = () and X' = A (") from (i)
are k-affinoid. In this case Qyx is defined by the finite Banach #-module J/J?, where J
is the kernel of the multiplication ¥ = #&_, # — #. Note that the exact admissible
sequence 0 >J -~ % - B — 0 is split.

() If# = #8, o', then Qy, %, is defined by the finite Banach %’-module J'(J'2,
where ] is the kernel of the multiplication ¥’ = #’' ® ,, #' — #'. We have to show that
JJ2®4 B 3 J'[]'? (since J/J? is a finite Banach #-module, J[J2®4 B = J[J2 @4 &').

The exact sequence 0 - J' — %' — %’ — 0 is obtained from the above exact
sequence by tensoring with &’ over &. It follows that J' = J& , o' = J8, €' = J¥'
because J is a finite Banach %-module. Tensoring the exact sequence

0-J2>J—->JJ2 >0
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with €’ over ¥, we get an exact sequence J?®, €' —]J — J/J2®, €' — 0. Since
JJ?®, €' = J[J2®4 #’ and the image of J2®, €’ in J' = J¥ coincides with J'2 = J2 &,
we get the required isomorphism.

(i) If ' = L OK and &' = #OK, then Qy . is defined by J’[]J’2, where
J’ is the kernel of the multiplication ¢’ = %' &, #' — #'. As above we get that
J=J8K =]J% and J?=J2®K = J2 ¢". Therefore J[J2® K = J'/]J’2. It remains
to note that J[J2Q K = J/J2®,%'. m

Let ¢: Y — X be a quasifinite morphism.

3.3.4. Definition. — The morphism ¢ is said to be unramified if Qg r = 0. It
is said to be édtale if it is unramified and flat. It is said to be unramified (resp. étale) at a
point y €'Y if there exists an open neighborhood ¥ of y such that the induced morphism
¥ — X is unramified (resp. étale).

For example, if ¢ is a local isomorphism at a point y € Y (i.e., there exist open neigh-
borhoods 7~ of y and % of ¢(x) such that ¢ induces an isomorphism ¥~ 5 %), then ¢
is étale at y. Therefore if ¢ is a local isomorphism (i.e., ¢ is a local isomorphism at every
point y € Y), then ¢ is étale.

3.3.5. Lemma. — If ¢:Y — X is a quasifinite morphism of good k-analytic spaces,
then the stalk of Qyx at a point y € Y coincides with the module of differentials Qg,,, where
B=0y,, A=0g, and x = ¢()).

Proof. — We may assume that ¢ is a finite morphism of k-affinoid spaces
Y=MB) >X=ML). In this case ZO, B =B, B, and therefore Qyy is
defined by the module of differentials Qg (regarded as a finite Banach %-module).
The required statement easily follows from this. m

8.3.6. Corollary. — A quasifinite morphism of good k-analytic spaces ¢ : Y — X is
unramified (resp. étale) at a point y € Y if and only if Oy Jm, Oy , is a finite separable extension
of the field x(x) (resp. and Oy , is flat over Og ,), where x = ¢(y). W

The following statement is straightforward from the definitions.
3.8.7. Proposition. — Let ¢:Y — X be a quasifinite morphism and y € Y. Then the
JSollowing are equivalent:

a) ¢ is unramified at y;
b) the support of Qyx does not contain y;
¢) the diagonal morphism A:Y —Y Xx Y is a local isomorphism at y. m

3.3.8. Corollary. — Unramified (resp. étale) morphisms are preserved under compositions,
under any base change functor, and under any ground field extension funcior. m

3.3.9. Corollary. — Let $:Z - Y and ¢: Y — X be quasifinite morphisms and suppose
that @y is étale and ¢ is unramified. Then ¢ s étale.
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Proof. — The morphism ¢ is a composition of the graph morphism I',: Z —Z x; Y
with the projection p, : Z X Y — Y. The first morphism is an open immersion because it
is a base change of the open immersion Y — Y Xy Y with respect to the evident mor-
phism Z X3y Y —Y X4 Y, and the second one is étale because it is a base change of
the étale morphism ¢¢:Z —>X. m

Let Et(X) denote the category of étale morphisms U — X. Corollary 3.3.9 implies
that any morphism in the category Et(X) is étale.

3.3.10. Proposition. — Suppose that ¢ : Y — X is a quasifinite morphism or is a closed
morphism of good k-analytic spaces. Then the set of points y € Y such that ¢ is not unramified (resp.
étale) at y is Zariski closed.

Proof. — We can replace Y by the complement to the support of the coherent
Oy,-module Qy . and assume that Qy <. = 0. In the second case the latter equality
implies that ¢ has discrete fibres, and therefore ¢ is quasifinite, by Proposition 3.1.4.
Hence our statement follows from Propositions 3.3.7 and 3.2.8. m

3.3.11. Proposition. — A morphism @ : X — U between schemes of locally finite type
over & = Spec(F), where L is a k-affinoid algebra, is unramified (resp. étale) if and only if
the corresponding morphism @ : Z*® — %*® is unramified (resp. étale).

Proof. — The unramifiedness statement follows from Corollary 3.3.7 and the
simple fact that Qgangan = (Qg/e)™. The étaleness statement now follows from Pro-

position 3.2.10. m

3.4. Germs of analytic spaces

A germ of k-analytic space (or simply a k-germ) is a pair (X, S), where X is a k-analytic
space, and S1is a subset of the underlying topological space | X |. (S is said to be the under-
lying topological space of the k-germ (X, S).) If S = {x}, then (X, S) is denoted by (X, x).
The k-germs form a category in which morphisms from (Y, T) to (X, S) are the morphisms
9:Y —X with ¢(T)CS. The category k-%erms we are going to work with is
the category of fractions of the latter category with respect to the system of morphisms
¢: (Y, T) - (X,S) such that ¢ induces an isomorphism of Y with an open neigh-
borhood of S in X. This system obviously admits a calculus of right fractions, and so
the set of morphisms Hom((Y, T), (X, S)) in & @erms is the inductive limit of the set
of morphisms ¢ : ¥ — X with ¢(T)CS, where 7" runs through a fundamental system
of open neighborhoods of T in Y. (Such a morphism ¢ : ¥ — X is said to be a repre-
sentative of a morphism (Y, T) — (X, S).) Itis easy to see thata morphism (Y, T) — (X, S)
is an isomorphism in k-&erms if and only if it induces an isomorphism between some
open neighborhoods of T and S. We remark that the correspondence X +— (X, | X |)
induces a fully faithful functor k-2/n — k-%erms. :
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The category k-%erms admits fibre products. Indeed, let (Y, T) — (X, S) and
(X', §8") - (X, 8) be two morphisms. If ¢: %" —X and f: %' — X are their repre-
sentatives, then (¥ Xy %', = (T X48')) is a fibre product of (Y, T) and (X', S’)
over (X, S), where = is the canonical map | ¥ Xx %' | - | ¥"| X x| %’ |. Thus, for
any morphism ¢ : (Y, T) - (X, S) and a point x €S one can define the fibre of ¢ at x
in the category k-%erms as the fibre product (Y, T) X x g (X, #) which is actually iso-
morphic to the 2-germ (Y, ¢~ '(x)), where ¢~ '(x) is the inverse image of x in T. In par-
ticular, for a morphism of k-analytic spaces ¢ : Y — X and a point x € X, one has the
fibre (Y, ¢~ (%)) of ¢ at x in the category k-%Zerms. (Recall that in § 1.4 we defined the
fiber Y, of ¢ at x in the category /n, of analytic spaces over Z.)

Furthermore, for a non-Archimedean field K over % there is a ground field extension
Sunctor k-%erms — K-Germs : (X, S) - (X O K, n~1(S)), where = is the canonical map
X ®K - X. Similarly to &/n, one can define the category Yerms, of germs of analytic
spaces over k (or simply germs over k). Its objects are pairs (K, (X, S)), where K is a non-
Archimedean field over % and (X, S) is a K-germ. A morphism (L, (Y, T)) — (K, (X, S))
is a pair consisting of an isometric embedding K < L. and a morphism of L-germs
(Y, T) = (X, S) ®& L. As above, there is a fully faithful functor

o, — Germs, : (K, X) o (K, (X, | X |))-

For a k-germ (X,S), let Et(X,S) denote the category of the morphism
(Y, T) - (X, S) that have an étale representative ¢ : ¥~ — X with T = ¢~ !(S). It is
clear that for X ek-o/n there is an equivalence of categories Et(X) 3 Et(X, | X |).
For a point x € X, let Fét(X, x) denote the full subcategory of Et(X, x) consisting of
the morphisms (Y, T) - (X, x) that have an étale representative ¢: ¥ — X such
that the morphism ¥ — ¢(¥") is finite. (Equivalently, Fét(X, x) consists of the mor-
phisms (Y, T) — (X, x) with finite set T that have an étale separated representative
¢: ¥ — X.) For a field K, let Fét(K) denote the category of schemes finite and étale
over the spectrum of K.

3.4.1. Theorem. — Let X be a k-analytic space. Then for any point x € X there is an
equivalence of categories Fét(X, x) = Fét((x)).

Proof. — Consider first the case when the point x has an affinoid neighborhood.
Let Fét(Z'(x)) denote the category of schemes finite and étale over the affine scheme

Z(x) = Spec(0x ,). Then the functor considered is a composition of the three evident
functors

Fét(X, x) — Fét(Z (x)) — Fét((x)) — Fét(#(x)).

The third functor is an equivalence of categories because the field k(x) is quasicomplete.
The second one is an equivalence because the ring Oy , is Henselian. We now verify
that the first functor is faithful. Let ¢, ¢ : (Y, ) — (X, x) be two morphisms that induce

9
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the same homomorphism @y , — Oy , (we do not need here the étaleness of ¢ and {).
We may assume that X = #(&/) and Y = #(#) are k-affinoid, and ¢ and ¢ are
induced by two homomorphisms of k-affinoid algebras «, p: o — %. Consider an
admissible epimorphism y:k{r;* Ty, ..., 7, ' T, } - & and set f, = y(T,). Since the
images of «( f;) and B(f) in Oy , coincide, we can find an affinoid neighborhood V of y
such that a(f)|y = B(f) |y By [Ber], 2.1.5, the induced morphisms ol, ¢|y: V —X
coincide, and therefore the first functor is faithful. Furthermore, we claim that a morphism
in Fét(X, x) that becomes an isomorphism in Fét(%'(x)) is an isomorphism. Indeed, let
¢ : Y — X be an étale morphism with x = ¢( y) such that Oy , - 0O , is an isomorphism.
We can shrink X and Y and assume that X = .# (/) and Y = #(&#) are k-affinoid,
o '(x) ={»} and # is a free /-module. From Lemma 2.1.6 it follows that
BR, 0k, Oy ,, and therefore the rank of # over o is one, i.e., & > #. Finally,
that any finite étale morphism over £'(x) comes from an étale morphism over (X, x)
is obtained by the construction from the proof of Theorem 2.1.5. That the first functor
is fully faithful now follows from the fact that any morphism in the categories Fét(X x)
and Fét(Z'(x)) is étale.

Suppose now that the point x is arbitrary. We may assume that the space X
Hausdorff, and we take affinoid domains Uy, ..., U, such that x e U; n ... n U, and
U, U ... UU, is a neighborhood of x. First we verify that the functor considered
is faithful. Indeed, let ¢ : Y — X and ¢ : Z — X be two étale morphisms with ¢~ *(x) ={y}
and ¢ !(x) ={ 2}, and suppose that f,g:Z — Y are two morphisms over X with
f(2) = g(z) = that give rise to the same embedding of fields 5#( y) <> 5#(z). By the
first case, we can find for each 1< i< n an affinoid neighborhood W; of z in ¢~(U,)
such that f|. = g|w,- Then the analytic domain W = W, U ... U W, is a neighborhood
of the point z and fly = glw. It follows that the morphism from (Z, z) to (Y, y) induced
by f and g coincide. In the same way one shows that a morphism in Fét(X, x) that
becomes an isomorphism in Fét(#°(x)) is an isomorphism. Since any morphism in the
category Fét(X, x) is étale, to prove the theorem it remains to show that the functor
considered is essentially surjective.

Let K be a finite separable extension of the field 5#(x). By the first case, we can
shrink all U; and find finite étale morphism ¢,:V, - U, such that ¢;'(x) ={y}
and there are isomorphisms of fields K = 5#( y;) over 5 (x). (We fix such isomorphisrils.)
Suppose first that X is separated at x. Then we may assume that X is separated, and
therefore U; N U, are affinoid domains. Setting V,; = ¢;*(U; N U,), we have two
finite étale morphlsms V,; =~ U,nU,; and V; - U, n U, and, for the points y,€V,;
and y; €V, an isomorphism of fields J#(y;) = #(y) over #(x) induced by the
isomorphisms K 5 5#( ») and K 5 5(y;). By the first case, we can shrink all U,
and assume that there exist isomorphisms v;;: V;; 5V, over X that give rise to the
above isomorphisms. of fields. By construction, V;; = V; and v;;(V,; " V;) =V, n'V,.
We now can shrink all U; and assume that v; =v;0v; on V;,; nV,. By Proposi-
tion 1.3.3, we can glue all V; along V;; and get a k-analytic space Y with a morphism
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¢ : Y .— X, By Proposition 3.1.8, the morphism ¢ is finite at the point y (that corres-
ponds to the points y;). It is clear that the point y is not contained in the support
of Qy x,s 1.€., @ is unramified at y. It is flat at », by Proposition 3.2.3.

Suppose now that X is arbitrary (and Hausdorff). The intersections U, n U;
are not affinoid now, but they are separated compact k-analytic spaces, and therefore
we can apply the above construction using the fact that everything is already verified
for separated spaces. The theorem is proved. m

3.4.2. Corollary. — Let ¢:Y — X be a morphism of analytic spaces over k, and let
YeY, x = (). Suppose that the maximal purely inseparable extension of S (x) in H () is
dense in H(y). Then the correspondence U +— U X5 Y induces an equivalence of categories
Fét(X, x) 3 Fét(Y, 7). m '

3.5. Smooth morphisms
o For a k-analytic spaces X we set Ay = A? X X (the d-dimensional affine spaces over X).

3.5.1. Definition. — A morphism of k-analytic spaces ¢:Y — X is said to be
smooth at a point y €Y if there exists an open neighborhood 7~ of » such that the induced
morphism ¥~ — X can be represented as a composition of an étale morphism ¥~ — A%
with the canonical morphism A% — X; ¢ is said to be smootk if it is smooth at all points
y €Y. If the canonical morphism X —.#(k) is smooth, then X is said to be smooth.

We remark that the number d is equal to the dimension of ¢ at the point y, i.e., to
the dimension of the fibre Y,, where x = ¢( »), at the point y. If this number is inde-
pendent of y, we say that ¢ is of pure dimension d. For example, smooth morphisms of
pure dimension 0 are exactly étale morphisms. We remark that smooth morphisms are
locally separated and closed. The following proposition follows easily from the definition
of smooth morphisms and Corollary 3.3.8.

3.5.2. Proposition. — Smooth morphisms are preserved under compositions, under any
base change functor, and under extensions of the ground field. m

3.5.3. Proposition. — Suppose we are given a commutative diagram of morpkisms of
k-analytic spaces

Y % X
N
S

(i) If o is étale, then @5(Qxys,) > Qyey/sg-
- (ii) If f and g are smooth and @f(Qxyg,) = Qyys,s then @ is étale.

Since QAiolXo is a free @Age-module of rank 4 and, if X is good, the canonical mor-
phism A% — X is flat, then the statement (i) implies
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3.5.4. Corollary. — Let ¢ : Y — X be a smooth morphism between good k-analytic spaces.

Then ¢ is flat, and Qy x is a locally free Oy-module whose rank at a point y €'Y is equal to the
dimension of @ at y. m

3.5.5. Lemma. — Suppose we are given a cartesian diagram
Y % X
T
y 2 X
where @ is a G-locally closed immersion and f is flat quasifinite. Then f"™*( ANy x,) = N yuxs-

Proof. — We may assume that all the spaces are k-affinoid, ¢ is a closed immersion,
and f'is a finite morphism. Let X = # (), Y = #H(B), X' = M (L') and Y' = M (F'),
where #' = #8&,, o/’. One has exact admissible sequences 0 - J — &/ - % — 0and
0] - >% —0. Since &' is a flat finite o7-algebra, then the second sequence is
obtained by tensoring of the first one with &/’ over &. In particular, J' = J &, &' = Jo".
It follows that J'[J"2 = J/]2®, o' = J[]2 8, o/'. m

Proof of Proposition 3.5.8. — (i) Consider the diagram

X 2L X x X

o

Y 25 Yy Y — Y XY

where Y X4 Y is identified with the fibre product of X and Y X4 Y over X X4 X.
The morphism ¢ is flat quasifinite. By Lemma 3.5.5, the conormal sheaf of the G-locally
closed immersion Y X4 Y — Y XY coincides with ¢"*(Qy_,)- Since A,i.,X is an open
immersion, then Q. = ¢5(Qx s,)-

(ii) Consider first the case when the space S is good. (Then X and Y are also good.)
From the exact sequence 3.3.2 (i) it follows that Q¢ = 0, and therefore the mor-
phism ¢ has discrete fibres. By Proposition 3.1.4, ¢ is quasifinite. Since Qg = 0, it is
unramified. Let y € Y, x = ¢(») and s = g(y). We have to verify that Oy , is a flat
Oy ,-algebra. Suppose first that [ ( ») : k] < co. Since Oy , and O , are flat O ,-algebras
(Corollary 3.5.4), then, by Corollary 5.9 from [SGAl], Exp. IV, it suffices to
verify that @y ,/m, Oy , is a flat Ox ,/m, Oy ,-algebra. Since [#(y) : k) < oo, we have
Oy, ,/m, 0y , = Oy , and Oy ,m, 0Oy ,= Ox ,. Therefore we may assume that
S = #(k). In this case the ring O , is regular and, in particular, normal. Since Oy ,
is a finite unramified Oy ,-algebra, it suffices by Theorem 9.5 (ii) from [SGA1], Exp. I,
to verify that the canonical homomorphism @y , — Oy , is injective or, equivalently,
that Oy , and Oy , have the same dimensions. But these dimensions are equal to the
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ranks of Qy, and Qy, at the points x and ), respectively. Since ¢*(Qy,) > Qy,, they
are equal.

Suppose now that the point y is arbitrary. Let K be a big enough non-Archimedean
field such that there exists a point )’ € Y’ = Y ® K with [5#( ') : K] < o0 and =( ') =,
where = is the canonical mapping Y’ — Y. From Proposition 3.3.3 it follows that
9" (Qgg) > Qyg, where ¢’ is the induced morphism Y’ - X' = X ® K. By the
previous case, Oy, is a flat Oy ,-algebra, where x’ = ¢’(y'). By Corollary 2.1.3,
Oy, and Oy. , are faithfully flat over Oy , and Oy ,, respectively. It follows that Oy ,
is flat over Oy ,.

Consider now the general case. If U is an affinoid domain in S, then, by the first
case, the induced morphism g~*(U) —f~(U) is étale and, in particular, it is quasifinite.
From Proposition 3.1.8 it follows that the morphism ¢ is quasifinite. This implies
immediately that it is étale. m

3.5.8. Corollary. — In the situation of Proposition 3.3.2 (i) suppose that ¢ is smooth.
Then there is an exact sequence

0 — 95(Qxqs0) > Qygse > Qygx, >0. W

3.5.7. Corollary. — Let ¢:Y — X be a smooth morphism, and let f:Y — A% be an
X-morphism defined by some functions f,, ..., f; € O(Y). Then f is étale at a point y € Y if and
only if for some affinoid domain U C X that contains the point x = @(p) the elements dfy, . . ., df;
JSorm a base of Q1 ,p at y.

Progf. — The direct implication is trivial. Suppose that df;, ..., df; form a base
of Q_ 1yyy at . By Proposition 3.5.3, the induced morphism ¢~ *(U) — A} is étale
at . In particular, the point y is isolated in the fibre f~*(f(»)). From Proposition 3.1.4
it follows that for any affinoid domain V C X that contains the point x the induced
morphism ¢~ (V) — A{ is finite at y, and therefore, by Proposition 3.1.8, the morphism f
is finite at y. It is étale because the elements dfj, ..., df; form a base of Q_ .,y at y for
any V as above. m

3.5.8. Proposition. — A morphism ¢ : Z — ¥ between schemes of locally finite type
over = Spec(F), where o is a k-affinoid algebra, is smooth if and only if the corresponding
morphism @™ : 2 — F* is smooth.

Proof. — The direct implication follows from Proposition 3.3.11. Suppose that ¢**
is smooth. By Corollary 3.5.4, ¢* is flat, and Qgangan is a locally free @gan-module.
Since the morphisms #*® — @ and 2® — % are faithfully flat, it follows that ¢ is flat.
Since Qgangan = (Qgg)™, it follows that Qg4 is a locally free Op-module. Therefore ¢
is smooth. m
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3.5.9. Proposition. — Suppose we are given-a commutative diagram of morphisms of good
k-analytic spaces L
Y 5 X
N\
AN
S E

where ¢ is a closed immersion and f is smooth. Then the following are equivalent:
" a) g is smooth; V v
b) for any point y € Y there exist an open neighborhood X, of y in X and an étale morphism
kX, — A§ over S such that Y, =Y N X, is the inverse image of the closed k-analytic subset
of AL defined by the equations T, = ... =T, =0 (T,, ..., T, are the coordinate functions
on Ad). S '

Proof. — The implication 4) = a) is trivial. Suppose that g is smooth. Then the
Oy-modules ¢*(Qyx) = Qg3 ®p Oy and Qyg from the exact sequence 3.3.2 (ii)
are locally free. We may decrease X and assume that they are free. Since the ele-
ments dh, k € O(X), generate Qg over Of, then we can find %, ,, ..., & € O(X)
such that the restrictions of dk,, ,, ..., dh; to Y form a base of Qy,q. After that we can
decrease Y and find %, ..., k, € #(X) such that dk,, ..., dk; form a base of Qyg,
where £ is the subsheaf of ideals in @y that corresponds to Y. By Corollary 3.5.7, the
induced morphism %: X — A¢ is étale. Let Z be the closed k-analytic subset of Al
defined by the equations T; = ... = T, =0, and let Y’ be the inverse image of Z
in X. By construction, Y is a closed k-analytic subset of Y’. Corollary 3.5.7 implies
that the induced morphism Y — Z is étale. Therefore the closed immersion z: Y — Y’
is étale (Corollary 3.3.9). Since it is an open map (Proposition 3.2.7), it follows that
we can decrease X and assume that i is a homeomorphism. Finally, since the sheaf i,(0y)
is a locally free @y.-module and the homomorphism @y, — ¢,(0y) is surjective, we have
Oy 31,(0y). It follows that 7 is an isomorphism. m

3.5.10. Corollary. — In the situation of Proposition 3.3.2 (ii) suppose that f and g are
smooth. Then there is an exact sequence

0 - F5/FE —> 06(Qxgmg) = Lygise = 0-

In particular, #4| 5% is a locally free Oy -module whose rank is the codimension of Y in X. m

3.6. Smooth elementary curves

In this subsection we recall some results from [Ber] on the structure of the 2-analytic
curve X = 2™ associated with a smooth geometrically connected projective curve &
over k of genus g> 0, and we recall the Stable Reduction Theorem of Bosch and
Liitkehbomert from [BL] which is actually the most important ingredient in the study
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of X. Furthermore, we introduce the notion of an elementary triple (X, Y, x)-where Y is
an open neighborhood of a point ¥ € X. (A k-analytic curve Y and pairs (X, Y) and (Y, x)
for which such a triple exists will be called elementary.) And we show that any point of
a smooth k-analytic curve has, after a finite separable extension of %, an elementary
open neighborhood. First we consider the case of trivial valuation on %k because it is
very simple. But we remark that everything considered in the case of nontrivial valuation
has the same meaning in the trivial valuation case.

Thus, suppose tha