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ETALE COHOMOLOGY
FOR NON-ARCHIMEDEAN ANALYTIC SPACES
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INTRODUCTION

The problem of constructing an 6tale cohomology theory for non-Archimedean
analytic spaces has arisen from Drinfeld's work on elliptic modules [Dri]. In his work,
Drinfeld defined (among other things) the first cohomology group HP^X, pj as the set
of pairs (L, <p), where L is an invertible sheaf on X, and <p is an isomorphism 0^ ̂  L0".
He showed that for the one-dimensional j&-adic upper half-plane 02 this group gives
rise to a certain infinite dimensional representation of GL^), where k is the ground
local field. Afterwards, in [Dr2], Drinfeld constructed a certain family of equivariant
coverings of the d-dimensional j&-adic upper half-plane Q^1, and suggested that all
cuspidal representations of the group GL^i(^) are realized in high dimensional ^tale
cohomology groups of this family of coverings.

Since then, as far as I know, the only attempt to construct an Aale cohomology
theory for non-Archimedean analytic spaces was undertaken by 0. Gabber. We under-
stand that 0. Gabber has made progress in the subject, but, unfortunately, he has
written nothing on it. Besides that, in [FrPu] and [ScSt], definitions of an Aale topology
on a non-Archimedean analytic space were given, and in [ScSt] the cohomology
o{£ld+l is calculated for arbitrary d under the hypotheses that this cohomology satisfies
certain reasonable properties. Finally, in [Gar], a conjecture, which is an explicit form
of Drinfeld's suggestion, is proposed. The conjecture predicts the decomposition of
the representations of GL^_n(A) and the Galois group of k {k is a ^-adic field) on the
rf-dimensional cohomology group of the equivariant system of coverings of ^d+l in
terms of the Langlands correspondence.

The purpose of this work is to develop many basic results of dtale cohomology
for non-Archimedean analytic spaces. We define the ftale cohomology and the Aale
cohomology with compact support and calculate the cohomological dimension of an
analytic space. We prove a Comparison Theorem for Gohomology with Compact Sup-
port which states that, for a compactifiable morphism 9 : W -> 3£ between schemes
of locally finite type over the spectrum of a A-affinoid algebra and a torsion sheaf ^
on ^ there is a canonical isomorphism (R3 9, ̂ )"1 ̂ > R® y^ j?'"1, q ^ 0. We also
prove a Poincar^ Duality Theorem, the acyclicity of the canonical projection X X D -^ X,
where D is an open polydisc in the affine space, a Gohomological Purity Theorem,
the invariance of the cohomology under algebraically closed extensions of the ground
field, a Base Change Theorem for Gohomology with Compact Support and a Smooth
Base Change Theorem (all the results are proved for torsion sheaves with torsion orders
prime to the characteristics of the residue field of k). In particular, all the properties
of the (c abstract" cohomology theory from [ScSt] hold. Our main result is a Compa-
rison Theorem which states that, for a morphism of finite type 9 : W -> 3E between
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schemes of locally finite type over k and a constructible sheaf 3F on W with torsion
orders prime to the characteristics of the residue field of k, there is a canonical isomor-
phism (R9 <p, ^^)aD -^ R° 9;11 ̂ ran, ̂  0. We note that the only previous proof of the
Comparison Theorem in the classical situation over C uses Hironaka's Theorem on
resolution of singularities. Our proof of the Comparison Theorem works over C as well
and does not use Hironaka's Theorem.

Qur approach to ^tale cohomology is completely based on the previous work
[Ber]. In that work we introduced analytic spaces which are natural generalizations of
the complex analytic spaces and have the advantage that they allow direct application
of the geometrical intuition. One should say that although the analytic spaces from [Ber]
were considered in a more general setting than that for rigid analytic geometry (for
example, the valuation of the ground field is not assumed to be nontrivial), they don't
give rise to all reasonable rigid spaces. And so our first purpose in this work is to extend
the category of analytic spaces from [Ber] so that the new category gives rise to all
reasonable rigid spaces, for example, to those that are associated with formal schemes
of locally finite type over the ring of integers of k.

We now give a summary of the material which follows. Let k be a non-Archimedean
field, and let k denote its residue field. As in [Ber], we don't assume that the valuation
of k is nontrivial.

In § 1 we introduce a category ofA-analytic spaces more general than those from
[Ber]. These analytic spaces possess nice topological properties. For example, a basis
of topology is formed by open locally compact paracbmpact arcwise connected sets.
One does not need to use Grothendieck topology in the definition of the spaces, but
they are naturally endowed with such a topology called the G-topology (§ 1.3). The
latter is formed by analytic domains of an analytic space. The spaces from [Ber] (they
are said to be " good ") are exactly those in which every point has an affinoid neigh-
borhood. The G-topology on an analytic space is a natural framework for working
with coherent sheaves. (If the space is good, then it is enough to work with the usual
topology as in [Ber].) In § 1.4 we show that the category of analytic spaces introduced
admits fibre products and the ground field extension functor, and we associate with
every point x of an analytic space a non-Archimedean field ^[x) so that any mor-
phism 9 : Y-> X induces, for a point j yeY , a canonical isometric embedding
^(pCjQ) ^^(jQ-I11 § ^ - 5 we define for a morphism <p : Y -> X the relative interior
Int(Y/X) (this is an open subset ofY), and we call the morphism closed ifInt(Y/X) = Y.
In § 1.6 we construct a fully faithful functor from the category of Hausdorff (strictly)
analytic spaces to the category of quasiseparated rigid spaces and show that it induces
an equivalence between the category of paracompact analytic spaces and the category
of quasiseparated rigid spaces that have an admissible affinoid covering of finite type.

In § 2 we establish properties of the local ring 0^ ^ and its residue field K.{x),
where x is a point of a ^-affinoid space X. (The completion ofx(^) is the field J^(x).)
First, we establish those properties which are mentioned without proof in [Ber], § 2.3.
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Furthermore, we prove that the ring 0^^ is Henselian, and the canonical valuation
on K.(x) extends uniquely to any algebraic extension (fields with this property are said
to be quasicomplete). The latter two facts are of crucial importance for the whole story.
The quasicompleteness of K(x) implies, for example, an equivalence between the cate-
gories of finite separable extensions of K{x) and of ^(x) and, in particular, an isomor-
phism of their Galois groups G^^G^,). In § 2.4 we establish properties of quasi-
complete fields (whose proofs are borrowed from [BGR] and [ZaSa]), and in § 2.5 we
show that the ^-cohomological dimension cd({K(x)) of the field K{x) (or, equivalently,
of the field J^{x)) is a most cd^(A) + dim(X), where i is a prime integer. In § 2.6 to
every scheme 3^ of locally finite type over X = Spec(J^), where ^ is an affinoid algebra,
we associate an analytic space ^an over X = JK\^). These objects are very important,
in particular, for the proof of the Poincar^ Duality Theorem. We establish some basic
facts on the correspondence W \-> ̂ an, which are necessary for this work.

In § 3 we introduce and study the classes of dtale and smooth morphisms. The
first basic notion is that of a quasifinite morphism. A morphism 9 : Y -> X is said to
be quasifinite if for any point y e Y there exist open neighborhoods ̂  ofy and ^ of <p(^)
such that 9 induces a finite morphism i^ -> ̂ . It turns out that a morphism is quasi-
finite if and only if it has discrete fibres and is closed (in the sense of§ 1.5). Furthermore,
we define ^tale morphisms. (By definition, they belong to the class of quasifinite mor-
phisms.) For example, the canonical immersion of the closed unit disc in the affine
line is not Aale because it is not a closed morphism. In § 3.4 we introduce the notion
of a germ of an analytic space and prove the very important fact that the category of
germs finite and ^tale over the germ (X, x) of an analytic space X at a point A; is equi-
valent to the category of schemes finite and 6tale over the field J^{x). Furthermore,
in § 3.5 we study smooth morphisms. A mosphism 9 : Y -> X is said to be smooth if
locally it is a composition of an Aale morphism to the affine space A^ = A'̂  X X and
the canonical projection A^ -> X. In particular, any smooth morphism is closed. The
latter property of smooth morphisms is natural if we want to have for them Poincar^
Duality. In § 3.6 and § 3.7 we describe the local structure of a smooth morphism. This
description is very important for the sequel and is actually an analog of the trivial
fact that locally any smooth morphism of complex analytic spaces is isomorphic to the
projection X X D -> X, where D is an open polydisc in the affine space.

In § 4 we define the ^tale topology on a ^-analytic space X (the dtale site X^)
and establish first basic properties of ftale cohomology. In § 4.1 we verify that certain
reasonable presheaves are actually sheaves and give an interpretation of the first coho-
mology group with coefficients in a finite group. In § 4.2 we define the stalk F^ of a
sheaf F at a point x e X. It is a discrete G^^^-set. It turns out that if n is the canonical
morphism of sites X^ -^ | X |, where [ X [ is the site generated by the usual topology of X,
then for any abelian sheaf F on X^, there is an isomorphism (R3 7^ F)^ ̂  H^G^p FJ.
It follows that the sheaf F is flabby if and only if, for any point A; e X, the fibre F^ is
a flabby G^^-module and, for any Aale morphism U -> X, the restriction of F to the
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psu^l topology of U is flabby. This fact reduces the verification of many properties of
the dtale cohomology established in § 4 and § 5 to the verification of certain properties
of, the cohomology of profinite groups and the usual cohomology with coefficients in
sheaves. As first applications of these considerations we prove that if X is good then
the ^tale cohomology of the sheaf induced by a coherent (P^-module coincides with its
usual cohomology and that the ^-cohomological dimension cd^(X) of a paracompact
^-analytic space X is at most cd/(k) + 2dim(X). The latter fact is easily obtained
from the spectral sequence of the morphism of sites n: X^ ->• | X [, using the
facts that the topological dimension of such a space is at most dim(X) and that
cd^(x)) ̂  cdf{k) + dim(X).

In § 4.3 we study quasi-immersions of analytic spaces. A morphism <p : Y -^X
of analytic spaces over k is said to be a quasi-immersion if it induces a homeomorphism
of Y with its image <p(Y) in X and, for any point y eY, the field ^{y) is a purely
inseparable extension of^(<p(j)). For example, the canonical embeddings of analytic
domains in an analytic space and closed immersions are quasi-immersions. We prove
that if q > : Y -> X is a quasi-immersion such that the set <p(Y) has a basis of paracompact
neighborhoods, then for any abelian sheaf F on X one has H^Y, Fjy) == lim H^, F),
where W runs through open neighborhoods of the set <p(Y). Furthermore we construct
a spectral sequence which relates the cohomology of a paracompact ^-analytic space X
to the cohomology of closed analytic domains from a locally finite coverings by such
domains. We use it to show that the group H^X, (AJ has the interpretation given to
it by Drinfeld in [Dri], In § 4.4 we introduce and study quasiconstructible sheaves
which play the role of constructible sheaves on schemes in the sense that any abelian
torsion sheaf is a filtered inductive limit of quasiconstructible sheaves (the word <( cons-
tructible " is reserved for a future development).

In § 5 we introduce and study the Aale cohomology with compact support. All
definitions and constructions are straightforward generalizations of the corresponding
topological notions. In particular, the cohomology groups with compact support are
defined as the right derived functors of the functor of sections with compact support.
Theorem 5.3.1 gives, for an abelian sheaf F, a description of the stalks of the sheaves
R3 <p, F, where <p is a Hausdorff morphism of ^-analytic spaces, in terms of the coho-
mology of the fibres of 9. As an application we show that if F is a torsion sheaf, then
R3 <p, F = 0 for all q> 2d, where d is the dimension of 9. In § 5.4 we construct for
every separated flat quasifinite morphism <p : Y -> X and for every abelian sheaf F on
X a trace mapping Tr<p: 9, y^F) -^ F.

In § 6 we establish various facts on the cohomology of analytic curves. These facts
are a basis for the induction used in the proof of the main theorems from § 7. In § 6.1
we prove the Comparison Theorem for Gohomology with Compact Support for curves.
The proof of this theorem in the general case (§ 7.1) may be read immediately after
§ 6.1. In the rest of § 6 we assume that the ground field k is algebraically
closed. In § 6.2 we construct, for every smooth separated analytic curve X, a trace
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mapping Tr^: H^(X, (JiJ ->-Z/7zZ, where ^ is prime to char (A), and we show that it
is an isomorphism ifX is connected and n is prime to char(A). The central fact of § 6.3
(Theorem 6.3.2) states that any tame finite ftale Galois covering of the one-dimensional
closed disc is trivial (an 6tole morphism 9 : Y -> X is said to be tame if for any point
y eY the degree [^(jQ ;^(<p(j0)] is not divisible by char(^)). We deduce from this,
in particular, a Riemann Existence Theorem which states that, for an algebraic curve SK
of locally finite type over k, the functor W \-> ̂ an defines an equivalence between the

1^1
category of finite dtale Galois coverings of S£ whose degree is prime to char(A) and the
category of similar coverings of ^lan. We deduce also the Comparison Theorem for
curves (the proof of this theorem in the general case (§ 7.5) does not use the particular
case). In § 6.4 we prove that, for a one-dimensional A-affinoid space X and a positivef*^i
integer n which is prime to char (A), the group H^X, Z/wZ) is finite for q = 0, 1 and equal
to zero for q ^ 2. Furthermore, this group is preserved under algebraically closed
extensions of the ground field.

In § 7 we obtain our main results. In § 7.1 we prove the Comparison Theorem for
Cohomology with Compact Support. This result implies that the cohomology groups
with compact support of a scheme of locally finite type over k (recall that k may have
trivial valuation) can be defined as the right derived functors of the functor of sections
with compact support over the associated ^-analytic space. In § 7.2 we construct a
trace mapping Try : R24 <p;(p^x) -> (Z/^)x ^or an arbitrary separated smooth mor-
phism 9 : Y -> X of pure dimension d and for n prime to char(A), and we show that it
is an isomorphism if the geometric fibres of 9 are nonempty and connected and n is^
prime to char(^).

In the rest of § 7 all sheaves considered are torsion with torsion orders prime to/^/ _
char(ft). In § 7.3 we prove the Poincart Duality Theorem, which is actually a central
result of this work. The main ingredients of the proof are our Theorem 3.7.2 and the
Fundamental Lemma ([SGA4], Exp. XVIII, 2.14.2) from the proof of the Poincar^
Duality Theorem for schemes. In § 7.4 we give first applications of Poincard Duality.
In particular, we prove the acyclicity of the canonical projections X X A^^ ->- X and
X X D -> X and the Gohomological Purity Theorem. In § 7.5 we prove the Comparison
Theorem. The proof follows closely the proof of Deligne's "generic" theorem 1.9
from [SGA4^], Th. finitude, and uses it. (I am indebted to D. Kazhdan for suggesting
that Deligne's " Th. finitude " could be useful for the proof of the Comparison Theorem.)
The proof is actually a formal reasoning which works over the field of complex numbers C
as well. In § 7.6 we prove that the cohomology groups H^X, F) and H^(X, F) are
preserved under algebraically closed extensions of the ground field. In § 7.7 we deduce
from this and from Theorem 5.3.1 the Base Change Theorem for Gohomology with
Compact Support. It implies, in particular, a Klinneth Formula. In § 7.8 we prove
the Smooth Base Change Theorem. The proof uses Poincar^ Duality and the Base Change
Theorem for Gohomology with Compact Support.
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§ 1. Analytic spaces

1.1. Underlying topological spaces

In this subsection we introduce some structures on topological spaces that will
be used in the sequel. We also fix general topology terminology.

All compact, locally compact and paracompact spaces are assumed to be Haus-
dorff. (A Hausdorff topological space is called paracompact if any open covering of
it has a locally finite refinement.) Recall that a locally compact space is paracompact
if and only if it is a disjoint union of open and closed subspaces countable at infinity
([Bou], Gh. I, § 10, n° 12, [En], 5.1.27). Recall also that if a Hausdorff topological
space has a locally finite covering by paracompact closed subsets, then the space is para-
compact ([En], 5.1.34). A topological space is said to be locally Hausdorff if each point
of it has an open Hausdorff neighborhood.

Let X be a topological space, and let T be a collection of subsets of X. (All subsets
of X are provided with the induced topology.) For a subset Y C X we set
rL = { V e T | V C Y }. We say that T is dense if, for any V e T, each point of V has a
fundamental system of neighborhoods in V consisting of sets from T J V . Furthermore,
we say that T is a quasinet on X if, for each point A; 6 X, there exist Vi , . . ., V^ e T such
that x e Vi n ... n V^ and the set V^ u . . . u V^ is a neighborhood of x.

I.I.I. Lemma. — Let T be a quasinet on a topological space X.

(i) A subset ^ C X is open if and only if for each V e T the intersection % n V is open
in V.

(ii) Suppose that T consists of compact sets. Then X is Hausdorff if and only if for any
pair U, V e T the intersection U n V is compact.

proof. — The direct implication in both statements is trivial.
(i) Suppose that % n V is open in V for all V er. For a point A: e ̂  we take

Vi, . .., V^ e T such that x e Vi n . . . n V^ and Vi u ... u V^ is a neighborhood
of x in X. By hypothesis, there exist open sets -^CX with % n V, === ̂  n V,.
Then the set ^ := -^ n . .. n Y^ is an open neighborhood of x in X. It follows
that the set ^ n (Vi U . .. U VJ is a neighborhood of x because it contains the inter-
section V^ n (Vi U ... U VJ which is a neighborhood of x. Therefore ^ is open in X.

(ii) Suppose that U n V are compact for all pairs U, V e T. Since

T X T:={U X V | U , V 6 T }
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is a quasinet on X x X, then, by (1), it suffices to verify that the intersection of the
diagonal with any U X V for U, V G T is closed in U X V. But this intersection is
homeomorphic to the compact set U n V, and therefore it is closed in U X V. •

We remark that if X is Hausdorff, then to establish that a collection of compact
subsets T is a quasinet, it suffices to verify that each point of X has a neighborhood of
the form Vi U ... u V^ with V, e T. We remark also that a Hausdorff space admitting
a quasinet of compact subsets is locally compact.

Furthermore, we say that a collection T of subsets of X is a net on X if it is a quasinet
and, for any pair U, V er, r^^y is a quasinet on U n V.

1.1.2. Lemma. — Let T be a net of compact sets on a topological space X. Then
(i) for any pair U, V e T, the intersection U n V is locally closed in U and V$
(ii) z /VCViU ... uV^/or^m^V.Vi, ..., V^ e T, thenthere existV^ . . . ,U^er

such that V = Ui u ... u U^ and each U, is contained in some V,.

Proof. — (i) It suffices to verify that U n V is locally compact in the induced topology.
But this is clear because rj^y is a quasinet on U n V.

(ii) For each point x eV and for each i with x eV,, we take a neighborhood
of x in V n V, of the form V,i u ... u V,̂ ., where V,, e T. Then the union of such
neighborhoods over all i with x e V, is a neighborhood of x in V of the form
Ui u ... u U^ such that each U, belongs to T and is contained in some V,. Since V
is compact, we get the required fact. •

The underlying topological spaces of analytic spaces will be, by Definition 1.2.3
below, locally Hausdorff and provided with a net of compact subsets. It will follow from
the definition (Remark 1.2.4 (iii)) that they admit a basis of open locally compact
paracompact arcwise connected subsets (see also Proposition 1.2.18),

A continuous map of topological spaces 9 : Y -> X is said to be Hausdorff if for
any pair of different points y-s^y^ e Y with 9(^1) == 9(^3) there exist open neighborhoods
^i of^ and ^2 ofj2 with ^0^=0 (i.e., the image of Y in Y x^ Y is closed).
We remark that if 9 : Y -> X is Hausdorff and X is Hausdorff, then Y is also Hausdorff.
Furthermore, let X and Y be topological spaces and suppose that each point of X has
a compact neighborhood. A continuous map 9 : Y -> X is said to be compact if the prei-
mage of a compact subset of X is a compact subset ofY.It is clear that such a map is
Hausdorff, it takes closed subsets of Y to closed subsets of X, and each point of Y has
a compact neighborhood.

1.2. The category of analytic spaces

Throughout the paper we fix a non-Archimedean field k. (We don't assume that
the valuation on k is nontrivial.) The category of A-affinoid spaces is, by definition, the
category dual to the category of ^-affinoid algebras (see [Ber], § 2.1). The yfc-affinoid
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space associated with a A-affinoid algebra ^ is denoted by X, where X==^(j^).
(For properties of ^-affinoid spaces and their affinoid domains/see loc. cit., § 2.) The
notion of a ^-analytic space we are going to introduce is based essentially on the following
two fundamental facts. Let { V^ }̂  ^ be a finite affinoid covering of a ^-affinoid space
X==^(J^).

Tale's Acyclicity Theorem. — For any finite Banach ^/-module M, the Cech complex

0->M ->nM0^^v ->nM®^ja^v -> • • •
i <, 3

is exact and admissible.

KiehVs Theorem. — Suppose we are given, for each i e I, a finite ^^-module M, and, for
each pair i, j e I, an isomorphism of ̂ ynv -modules a^.: M, ®^. j^y-nv- ̂  ̂ 3 ̂ v ^v-nv-
such that a^L. = a^L o a^.Lr, W = V, n V, n V;, for all i, j , le i . Then there exists a
finite ^/-module M that gives rise to the J^y -modules M^ and to the isomorphisms a .̂. •

Both results are originally proved in the case when the valuation on k is nontrivial
and all the spaces considered are strictly ^-affinoid (see [BGR], 8.2.1/5 and 9.4.3/3).
But the general case is reduced to this one by the standard argument from [Ber], §2.1
(2.2.5 and 2.1.11). Tate's Acyclicity Theorem is sufficient to define the category of
^-analytic spaces, and KiehPs Theorem is used to establish their basic properties.

1.2.1. Remarks. — (i) Let V be a subset of a ^-affinoid space X === ̂ (j^) which
is a finite union of affinoid domains { V^ }tgr From Tate's Acyclicity Theorem it follows
that the commutative Banach ^-algebra J^y = Ker(II^v "> n^ynv) does not

i l i,3 * ;

depend (up to a canonical isomorphism) on the covering. Furthermore, V is an affinoid
domain if and only if the Banach algebra j^y is ^-affinoid and the canonical map
V ->^(e^y) is bijective. (In [Ber], 2.2.6 (iii), the latter condition was missed.)

(ii) From Tate's Acyclicity Theorem it follows that in the situation of KiehTs
Theorem the j^-module M is isomorphic to Ker(IIM, -> 11 M,®^. ̂ /y^y)* (Recall

that, by [Ber], 2.1.9, the category of finite Banach ^-modules is equivalent to the
category of finite j^-modules.)

Our purpose is to introduce a category of 0-analytic spaces associated with a
system 0 of the following form. Suppose we are given for each non-Archimedean field K
over k a class of K-affinoid spaces 0^ so that the system $ == { 0^ } satisfies the following
conditions:

(1)^(K)e^;
(2) OK ls stable under isomorphisms and direct products;
(3) if 9 : Y ->X is a finite morphism of K-affinoid spaces and X eO^, then

Y e OK;
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(4) if{V,}^i is a finite affinoid covering of a K-affinoid space X such that
V, G OK for all i e I, then X e 0^

(5) if K ̂  L is an isometric embedding of non-Archimedean fields over k, then
for any X e0^ one has X®^L e0^.

The class Cg: ls ^id to be dense if each point of each X e Og; has a fundamental
system of affinoid neighborhoods V e0^. The system 0 is said to be dense if all Og; are
dense.

The affinoid spaces from O^ (resp. 0) and their algebras will be called OK'^^P- ^")
affinoid. From (2) and (3) it follows that 0^ is stable under fibre products. In particular,
if <p : Y -> X is a morphism of 0^-affinoid spaces, then for any affinoid domain V C X
with V eO^ one has ^~1{'V) eO^.

1.2.2. Remark. — In fact we shall consider in this paper only analytic spaces for
the system of all affinoid spaces. The more general setting is necessary for establishing
connection with rigid analytic geometry in § 1.6 (see also Remark 1.2.16). For this
one takes for 0^ Ae class of strictly K-affinoid spaces. That this 0^ satisfies (4) is shown as
follows. Let X=^(e^). By Tate's Acyclicity Theorem, the algebra ^ is a closed
subalgebra of the direct product II ̂ y,. It follows that for the spectral radius p(/)i
of an element/e^, one has p(/) = max p^.(/). Since pv(/) e V| V \ u { 0 } , then

?(/) e V| ̂  | u {0} , and therefore ^ is strictly K-affinoid, by [Ber], 2.1.6. (Of
course, in § 1.6 one assumes also that the valuation on k is nontrivial. In this case the
system 0 is dense.) Here is one more example of 0. Assume that the valuation on k is
trivial. If the valuation on K is also trivial, then we take for 0^ the class of K-affinoid
spaces X = e^(^) such that p.(/) ^ 1 for all/ej^. Otherwise we take for 0^ the
class of all K-affinoid spaces. The system 0 = { $^ } satisfies the conditions (1)-(5) and
it is dense.

Let X be a locally Hausdorff topological space, and let T be a net of compact
subsets on X.

1.2.3. Definition. — A ^-affinoid atlas ^ on X with the net T is a map which assigns,
to each V e T, a 0^-affinoid algebra s/y and a homeomorphism V ^^(e^y) ^d, to
each pair U, V e T with U C V, a bounded homomorphism of A-affinoid algebras
ocy/u : ̂ y "> ̂ u ^^ identifies (U, J2^j) with an affinoid domain in (V, ^/y).

1.2.4. Remarks. — (i) It follows from the definition that, for any triple U, V, W e T
with U C V C W, one has a^/^j = ocy/n ° ̂ /v *

(ii) The family of 0^-affinoid atlases with the same net forms a category.
(iii) By [Ber], 2.2.8 and 3.2.1, each point of a A-affinoid space has a fundamental

system of open arcwise connected subsets that are countable at infinity. It follows that
a basis of topology of a 0^-analytic space is formed by open locally compact paracompact
arcwise connected subsets.
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A triple (X, j< r) of the above form is said to be a ^-analytic space. To define
morphisms between them, we need a preparatory work. First, we'll define a category
<!>^n whose objects are the 0^-analytic spaces and whose morphisms will be called
strong morphisms. After that the category of C^-analytic spaces O^-e^ will be constructed

r» /̂

as the category of fractions ofO^-ja^z with respect to a certain system of strong morphisms
that admits calculus of right fractions.

Let (X, j^, r) be a ^-analytic space.

1.2.5. Lemma. — If W is a ^-affinoid domain in some U er, then it is a ^-affinoid
domain in any V er that contains W.

Proof. — Since r^y ls a net a"^ W is compact, we can find Ui, . . ., U^ G T ̂ y
with W C Ui u ... u U^. Furthermore, since W and U, are 0-affinoid domains in U,
then W, :== W n U, is a 0-affinoid domain in U,. It follows also that W, and W, n W,
are 0-affinoid domains in V. By Tate's Acyclicity Theorem, applied to the affinoid
covering {W,} of W the Banach algebra ̂  == Ker(rW^. -^II^nw) ^ ^-affinoid

i l i, j l ;

and W^^(^). By Remark 1.2.1 (i), W is a 0-affinoid domain in V. •
Let T denote the family of all W such that W is a Q-affinoid domain in some

V er. I fO^is dense, then T is dense.

1.2.6. Proposition. — The family T is a net on X, and there exists a unique (up to a

canonical isomorphism) ^-affinoid atlas ^ with the net T that extends ^.

Proof. — Let U, V e T and x e U n V. Take U', V e T with U C U' and V C V.
We can find a neighborhood Wi u . .. u W^ of x in U' n V with W, e T and
x e Wi n . . . n W^. Since U (resp. V) and W, are 0-affinoid domains in U' (resp. V),
then U, :== U n W, (resp. V, :== V n W,) is a 0-affinoid domain in W,, and therefore
U, n V, is a 0-affinoid domain in W,, i.e., U, n V, er^y. Since

U,(UnV,) ==(UnV)n(U,WO,

then U,(U, n VJ is a neighborhood of x in U n V with x e fl^U, n VJ. It follows
that T is a net.

Furthermore, for each V er we fix V E T with V C V and assign to V the
algebra ja^y and the homeomorphism V^e^(j^y) arising from (V, <^y/). We have
to construct, for each pair U, V e T with U C V, a canonical bounded homomorphism
J2/v -> ja^. that identifies (U, ja^) with an affinoid domain in (V, ja^y)- Consider first
the case when V e T. Since r^j^y is a quasinet, we can find sets Ui, . . ., U^ that are
0-affinoid domains in U' and V and such that U == Ui u ... u U^. By Tate's Acy-
clicity Theorem, ja^j = Ker(II^n. ->Tl^^.^^.), and therefore the homomorphisms

» * l, 3 l J

ja^y -> ja^. and j^y -> ̂ y^u. induce a bounded homomorphism j^y -> j^j that iden-
tifies (U, ja^j) wlt^ an affinoid domain in (V, e^y). In particular, the homomorphism
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constructed does not depend on the choice of Ui, ..., U^. Assume now that V is arbi-
trary. Then UC V and, by the first case, there is a canonical bounded homomorphism
j^v. ->^^ that identifies (U, ̂ ) with an affinoid domain in (V, ̂ ). It follows
that (U, j^j) is a 0-affinoid domain in (V, ^y)- •

1.2.7. Definition. — A strong morphism of 0 -̂analytic spaces

9:(X,<T)^(X',^T')

is a pair which consists of a continuous map <p : X -> X', such that for each V E T there
exists V e T' with y(V) C V, and of a system of compatible morphisms of ^-affinoid
spaces 9v/v, : (V, ^y) -^ (V, ja^) for all pairs V e T and V e T' with <p(V) C V.

1.2.8. Proposition. — Any strong morphism 9 : (X, ̂ , r) -^ (X', ja '̂, T') ^^^& in a
unique way to a strong morphism 9 : (X, ĵ , r) -> (X, ̂ /, T').

Proo .̂ — Let U and U' be 0-affinoid domains in V e T and V e T', respectively,
and suppose that <p(U) C U'. Take W e T' with y(V) C W. Then <p(U) C Wi u ... u W^
for some W^, ..., W^ er'jy^^. The morphism of A-affinoid spaces 9y/w induces
a morphism V, := yy/w^^i) "">^ Aat induces, in its turn, a morphism
U,:= U nV,->U':== LT nW, (the latter is a 0-affinoid domain in V). Thus,
we have a system of morphisms of A-affinoid spaces U, -> V[ -> U' that are compatible
on intersections. It gives rise to a morphism 9^^ : (U, J^j) -> (u'5 ̂ u')- It clear that

the morphisms q^y are compatible. •
We now define the composition 7 of two strong morphisms

9 : (X, ̂ , T) -> (X', ̂ ', T ) and ^ : (X', ̂ ', r) -> (X", ̂ ', T").

The map ^ that is the composition of the maps 9 and ^ satisfies the necessary condition
of the Definition 1.2.7. Furthermore, by Proposition 1.2.8, we may assume that 9
and ^ are extended to the morphisms 9 and ^. Suppose now that we are given a pair
V e T and V" e T" with ^(V) C V". We have to define a morphism of A-affinoid spaces
^v- : (V. -^v) -^ (v'^ ̂ v-)- ̂ r Ais we take V e T' and U" e T" with 9(V) C V
and 4/(V) C U". Since ^(V) C U" n V" and V is compact, it follows that there exist
<, ..., V^' e T ' |̂ v. with x(V) C V;' u ... u V,'. Then V,' :== ̂ .(V;') and
V,: == 9y/^ (V,') are 0-affinoid domains in V and V, respectively, and V == V\ u ... U V^.
The morphisms 9 and !Ji induce morphisms of^-affinoid spaces V, ->V^, and since V^'
are 0-affinoid domains in V", they induce a system of morphisms V^ -> V" that are
compatible on intersections. It gives rise to the required morphism of A;-affinoid spaces
Xv/v" : (V, ^y) —> (V", ^y")- ^ l!s ea!sy to see ^at the morphisms /v/y7' are compatible.
Hence we get a morphism ^ that is the composition of 9 and ^ and is denoted by ^ o 9

/—«»/
(or simply by ^9). Thus, we get a category 0^-J^n.
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1.2.9. Definition. — A strong morphism 9 : (X, <a/, r) -> {'K\ ̂ ' , T') is said to
be a quasi-isomorphism if 9 induces a homeomorphism between X and X' and, for any pair
V e T and V e T' with <p(V) C V, <py,y, identifies V with an affinoid domain in V.

It is easy to see that if 9 is a quasi-isomorphism, then so is 9.
/•»»»/

1.2.10. Proposition. — The system of quasi-isomorphisms in <S>^-^n admits calculus
of right fractions.

Proof. — We have to verify (see [GaZi], Gh. I, § 2, 2.2) that the system satisfies
the following properties:

a) all identity morphisms are quasi-isomorphisms $
b) the composition of two quasi-isomorphisms is a quasi-isomorphism;
c ) any diagram of the form (X, j^, r) -^ (X', ̂ ', T') <°- (X', J^',?'), where g

is a quasi-isomorphism, can be complemented to a commutative square

(X.e^.T) -̂ > (X',^T')

t' t-
(x^?) ~L> (X'^y)

where y is a quasi-isomorphism;
d) if for two strong morphisms 9, ^ : (X, J^, r) -5- (X', j^', T') and for a quasi-

isomorphism g : (X', ̂ ', T') -^ (X'3 ̂ l^f) one has ^9 = ^^, then there exists a quasi-
isomorphism/: (X, e^,?) -^ (X, ̂  r) with 9/= ^/- (We'll show, in fact, that in this
situation 9 = ^.)

The property a) is obviously valid. To verify b), it suffices to apply the construction
of the composition and Remark 1.2.1 (i). To verify c ) , we need the following fact.

1.2 .11 . Lemma. — Let 9 : (X, e ,̂ r) -^ (X', eS/', T') be a strong morphism. Then
for any pair V er and V GT' the intersection V n P""1^') ^ fl ̂ m^ union of ^-affinoid
domains in V.

Proof. — Take U' er' with 9(V) C U'. Then we can find U[, . . . , V^e^^,^
with 9(V) C Ui U ... U U^, and V n 9-1(V') = U, 9v/n'(U;). •

Suppose that we have a diagram as in c ) . We may assume that X' === X'. Then
y C T'. Let ? denote the family of all V e T for which there exists V' e?' with 9(V) C ̂ '.
From Lemma 1.2.11 it follows that V is a net. The 0^-affinoid atlas ^ defines a

ev

Oj^-affinoid atlas ̂  with the net'?, and the strong morphism 9 induces a strong morphism
/-^/ /^/ _

^: (X, ^/,^) -̂ - (X'3 j^'.y). Then ^ and the canonical quasi-isomorphism

/:(X,^?)->(X,<T)

satisfy the required property cj.
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Finally, we claim that in the situation d) the morphisms 9 and ^ coincide. First
of all, it is clear that they coincide as maps. Furthermore, let V e T and V e T' be such
that cp(V) C V. Take ̂ ' e?' with ^(V) C ̂ '. Then we have two morphisms ofyfe-affinoid
space 9v/v,, ^/^ : V -5. V such that their compositions with g^.^. coincide. Since V
is an affinoid domain in \^', it follows that 9y/y, = ̂ y,. •

The category of ^-analytic spaces O^-J^TZ is, by definition, the category of fractions
of <S>^n with respect to the system of quasi-isomorphisms. By Proposition 1.2.10
morphisms in the category O^-ja^ can be described as follows. Let (X, ̂ , r) be a
0^-analydc space. If (T is a net on X, we write a < T if a C T. Then the 0^-affinoid
atlas ^ defines a O^-affinoid atlas ̂  with the net (T, and there is a canonical quasi-
isomorphism (X, e<, c) -^ (X, ̂ , r). The system of nets { o } with CT -< T is filtered
and, for any O^-analytic space (X', j^', T'), one has

Hom((X, < T), (X', ̂ /, T')) == li^ Hom^((X, c<, a), (X', j^', T')).
0<T

We remark that all the maps in the inductive system are injective.
We now want to construct a maximal 0^-affinoid atlas on a 0^-analytic space

and to describe the set of morphisms between two 0^-analytic spaces in terms of their
maximal atlases. (KiehPs Theorem will be used here for the first time.)

Let (X,j^,r) be a 0^-analytic space. We say that a subset W C X is especial
if it is compact and there exists a covering W = Wi u ... u W^ such that W,,
W , n W , e T and ^.(§>^.->^.^^. is an admissible epimorphism. A covering
of W of the above type will be said to be a especial covering of W.

1.2.12. Lemma. — Let W be a especial subset o/X. IfV, V e r|^, then U n V er
and ^(§)j^y -^^nnv ls an admissible epimorphism.

Proof. — Since the sets U n W, and V n W, are compact, we can find finite
coverings { U,̂  of U n W, and { V,J, of V n W, by sets from T. Furthermore,
since W, n W, —> W, X W, are closed immersions, is follows that U^ n V,^ G T and
^ik n V,; -> U^ x V,, is a closed immersion. Consider now the finite affinoid covering
{vik xv3l}i^,k,l 0{ ^he ^-affinoid space U X V. For each quadruplet i,j\k,l,
^ij^hvy/ is a finite ^^ik x vyy-a^bra, and the System {^u^nv^} satisfies the condi-
tion of KiehPs Theorem. It follows that this system is defined by PL finite ̂  ̂  y-algebra
isomorphic to ^^ := Ker(II ̂ ^ ^ H ^,nv,/nu,^nvy-^), and therefore
the latter algebra is O^-affinoid, U nV^e^(^), and U n V -^ U x V is a closed
immersion. By Remark 1.2.1 (i), U n V is a 0-affinoid domain in U and V,
i.e., U n V GT. •

Let W be a r-special subset of X. From Lemma 1.2.12 it follows that any finite
covering ofW by sets from T is a r-special covering. Furthermore, i f { W , } is a r-special
covering, then from Tate's Acyclicity Theorem it follows that the commutative Banach
^-algebra ̂  :== Ker (11^̂ . ->IWw,^wy) does ^t depend (up to a canonical iso-
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morphism) on the covering, and a continuous map W —>M{^^) is well defined. Let ?
denote the collection of all r-special subsets W such that the algebra ^^ is A-affinoid,
W-^^(J^) and, for some r-special covering {W,} of W, (W^, <^w) are affinoid
domains in (W, ^^)* ̂ e ^mark that from the condition (4) for the class 0^ it follows
that W belongs to 0^. Furthermore, the last property of W does not depend on the
choice of the covering.

1.2.13. Proposition. — (i) The collection ? is a net, and for any net a •< T one has 8 == ?$
(ii) there exists a unique (up to a canonical isomorphism) <S>^-analytic atlas ^ with the

net T that extends the atlas j^$
(iii) T == ?.

Proof. — (i) Let U, V e ̂ . We take r-special coverings { U,} of U and { V, } of V.
Since U n V = U^(U^ n Vj) and r^.^y are quasinets, it follows that ^ L n v ls a

quasinet. Furthermore, let <y is a net with a •< T. By Lemma 1.2.12, to verify the equality
$ = ?, it suffices to show that for any V er there exist Ui, .... U^ ec with
V == Ui u . . . u U^. Since G is a net on X, we can find Wi, ..., W^ e a with
V C Wi U ... u W^. Since V, W, e T and T is a net, then, by Lemma 1.1.2 (ii), we
can find U^, .. ., U^ e T such that V == Ui u ... u U^ and each U, is contained in
some W,. Finally, since W .̂ e (T, it follows that U^ eo.

(ii) For each V e ? we fix a r-special covering { V^ } and assign to V the algebra j^
and the homeomorphism V ̂  ̂ (J^y) arising from the covering. We have to construct
for each pair U, V e ? with U C V a canonical bounded homomorphism j^y -> j^j
that identifies (U, eQ^j) with an affinoid domain in (V, eO^y). Consider first the case
when U GT. By Lemma 1.2.12, U 0 V^ is an affinoid domain in V^ and therefore
in V. It follows that U is an affinoid domain in V. If U is arbitrary, then by the first
case each U^ from some r-special covering of U is an affinoid domain in V. It follows
that U is an affinoid domain in V.

(iii) From Lemma 1,2.12 it follows that T == ?. Let { V, } be a r-special covering
of some V e ^. For each i we take a r-special covering {V,,}, of V^. Then {V^.}^,
is a T-special covering of V, and therefore V e ;?. •

The sets from ? are said to be <S>-affinoid domains in X. The ^-special sets are said
to be ^-special domains in X. They have a canonical O^-analytic space structure. The
following statement follows from Lemma 1.2.11 and Proposition 1.2.13 (i).

1.2.14. Corollary. — If 9 : (X, J3 ,̂ r) -> (X', ̂ ', T') is a morphism of ^-analytic
spaces, then for any pair of <S>-afjinoid domains V C X and V C X' the intersection V n P""1^')
is a ^-special domain in X. •

1.2.15. Proposition. —• Let (X, ja ,̂ r) and (X', ĵ ', T') be ^-analytic spaces.

(i) There is a one-to-one correspondence between the set Hom((X, ĵ , r), (X', ĵ ', T')) and
the set of all pairs consisting of a continuous map 9 : X -> X', such that for each point x e X
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there exist neighborhoods V\ u ... u V^ o/* A; ^ V^ u ... u V^ <?/* (p(;c) with
x e Vi n ... n V^ and <p(V,) C V^, w^r<? V, C X and V,' C X' are <5>-affinoid domains, and
of a system of compatible morphisms of k'afjinoid spaces (py/y' : (V, ̂ v) "> (V', cO^y') /or a^
pairs of <S>-affinoid domains V C X and V C X' with <p(V) C V.

(ii) A morphism 9 : (X, e ,̂ r) ->• (X', < '̂, T') t'j ̂  isomorphism if and only if ̂  induces
a homeomorphism between X and X', cp^) = ̂  <m ,̂ /or fl7y/ V e ?, (V, j^y) -^ (V', ̂ y')?
z^^ V = <p(V).

Proof. — (i) Let a be a net on X with a < T, and let 9 : (X, ̂ , or) ->• (X', j3 '̂, T')
be a strong morphism. It is easy to extend the system of compatible morphisms of^-affinoid
spaces <py/y. : (V, c^y) -> (V, J^y') fbr a11 pa1^ V e $ and V e ? with ^(V) C V. Since
$ == ^^ we get a map (evidently injective) from the first set to the second one. Conversely,
suppose that we have a pair of the above form. To verify that it comes from a morphism
of 0^-analytic spaces, it suffices to show that the collection or of all V 6 ? such that
<p(V) C V for some V e V is a net. For this we take a point A; e X and neighborhoods
Vi u ... u V^ of x and V[ u ... V^ of (?{x) with x e Vi n ... n V^ and <p(V,) C V^,
where V, e ^ and V,' e V. Then V, e or, and we get the required fact.

(ii) follows from (i). •
In practice we don't make a difference between (X, j^, r) and the 0^-analytic

spaces isomorphic to it. In particular, we shall denote it simply by X and assume that
it is endowed with the maximal 0^-affinoid atlas. If it is necessary, we denote the under-
lying topological space by | X |. We remark that the functor that assigns to a 0^-affinoid
space X = Jl[^} the 0^-analytic space (X, eS/, { X }) is fully faithful. A 0^-analytic
space isomorphic to such a space is called a 0^-affinoid space.

Furthermore, if O is the system of all affinoid spaces, then the category O^-^
is denoted by k-^/n, and the corresponding spaces are called k-analytic spaces. In this case
we withdraw the reference to O in the above and future definitions and notations. If 0
is the system of strictly affinoid spaces, then the category <S>^-^n is denoted by st-k'^n,
and the corresponding spaces are called strictly k-analytic spaces. Similarly, instead of
referring to 0, we use the word <( strictly " (strictly affinoid domains and so on).

1.2.16. Remark. — For an arbitrary 0 there is an evident functor O^-J^n ->k-^n.
From Proposition 1.2.15 it follows that this functor is faithful. But we don't know
whether it is fully faithful. (This was another reason for introducing the category of
0^-analytic spaces.) The only fact in this connection is Proposition 1.2.17.

We say that a O^-analytic space is good if each point of it has a 0-affinoid neigh-
borhood.

1.2.17. Proposition. — LetX and Y be ^"analytic spaces, and assume that the class 0^
is dense and X is good. Then any morphism of k-analytic spaces <p :Y ->X is a morphism of
^-analytic spaces.
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Proof. — It suffices to show that the family T of all O-affinoid domains V C Y,
for which there exists a 0-affinoid domain U C X with <p(V) C U, is a net. For an arbi-
trary pointy eY we take a 0-affinoid neighborhood U of <p(j). Since 0^ is dense, we
can find a neighborhood of y in ^~1{V) of the form Vi u ... u V^, where V, are
0-affinoid domains in Y andj? e V\ n ... n V^. We get V, e T, and therefore T is a net. •

The dimension dim(X) of a O^-analytic space X is the supremum of the dimensions
of its 0-affinoid domains. (The dimension of a ^-affinoid space is defined in [Ber],
p. 34.) We remark that the supremum can be taken over 0-affinoid domains from some
net, and, in particular, the dimension of X is the same whether the space is considered
as an object of 0^-j^n or of k-j^n.

1.2.18. Proposition. — The topological dimension of a paracompact <&^-analytic space is at most
the dimension of the space. If the space is strictly k-analytic, both numbers are equal.

Proof. — Suppose first that the space X = jy[^/) is A-affinoid. If X is strictly
^-affinoid, the statement is proved in [Ber], 3.2.6. If X is arbitrary, we take a non-
Archimedean field K of the form Ky y (see [Ber], § 2.1) such that the algebra
^f == ^ (§ K is strictly ^-affinoid, and consider the map o-: X ->• X' == ̂ (^/) which
takes a point x e X to the point x ' e X' that corresponds to the multiplicative seminorm
S^T^" h^ max I a^(x) \ r\ The map CT induces a homeomorphism of X with a closed
subset of X\ Therefore the topological dimension of X is at most dim(X') = dim(X).

If X is an arbitrary paracompact A-analytic (resp. strictly ^-analytic) space, then
it has a locally finite covering by affinoid (resp. strictly affinoid) domains, and there-
fore the statement follows from [En], 7.2.3. •

1.3. Analytic domains and G-topology on an analytic space

1.3.1. Definition. — A subset Y of a O^-analytic space X is said to be a ^-analytic
domain if, for any point j^eY, there exist 0-affinoid domains V^, . . . ,V^ that are
contained in Y and such thatj e V\ n ... n V^ and the set Vi u ... u V^ is a neigh-
borhood ofy in Y (i.e., the restriction of the net ofO-affinoid domains on Y is a net on Y).

We remark that the intersection of two 0-analytic domains is a 0-analytic domain,
and the preimage of a 0-analytic domain with respect to a morphism of a O^-analytic
spaces is a 0-analytic domain. Furthermore, the family of 0-affinoid domains that are
contained in a 0-analytic domain Y C X defines a O^-affinoid atlas on Y, and there is
a canonical morphism of 0^-analytic spaces v : Y -> X. For any morphism 9 : Z -> X
with y(Z) C Y there exists a unique morphism ^ : Z -> Y with 9 = v^- ^ ls clear that
a 0-analytic domain that is isomorphic to a ^-affinoid space is a 0-affinoid domain.
A morphism 9 : Y -> X that induces an isomorphism of Y with an open 0-analytic
domain in X is said to be an open immersion. If the class 0^ is dense, then all open subsets
of X are 0-analytic domains.
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1.3.2. Proposition. — Let {Y^ }^i ̂  a covering of a ̂ -analytic space X Aj/ ^-analytic
domains such that each point of X has a neighborhood of the form Y, u ... n Y, with
y eY^ n ... n Y^ (i.e., {Y^},^ ̂  a quasinet on X). TA^ /^r ̂  ^> ̂ analytic space X'
the following sequence of sets is exact

Hom(X, X') -> IIHom(Y,, X') ̂  IlHom(Y, n Y,, X').
i U

Proof. — Let 9,: Y, —^ X' be a family of morphisms such that, for all pairs
i,j el, <pt[Y,ny = 9j |Y,nY • Then these 9, define a map X -^X' which is continuous,
by Lemma I . I . I (i). Furthermore, let T be the collection of 0-affinoid domains V C X
such that there exist i e I and a 0-affinoid domain V C X' with V C Y, and <p,(V) C V.
It is easy to see that T is a net on X, and therefore there is a morphism 9 : X —^X'
that gives rise to all the morphisms <p^. •

We now consider a process of gluing of analytic spaces. Let { X^ }̂  j be a family
of O^-analytic spaces, and suppose that, for each pair i,j el, we are given a 0-analytic
domain X^.CX^ and an isomorphism of 0^-analytic spaces v^.: X .̂ -5- X^ so that
X,i = X,, v,,(X,, n X^) == X,, n X^ and ^ = v,; o v .̂ on X,, n X,,. We are looking
for a 0^-analytic space X with a family of morphisms ^ : X^ -> X such that:

(1) ^ is an isomorphism of X^ with a O-analytic domain in X;
(2) all ^(X,) cover X;
(3) ^(X,,)==^(X,)nFt,(X,);
(4) ^= ^.ov,, on X,,.

If such X exists, we say that it is obtained by gluing of X^ along X^..

1.3.3. Proposition. — The space X obtained by gluing of X^ along X .̂ exists and is
unique (up to a canonical isomorphism) in each of the following cases:

a) all X .̂ are open in X^;
b) for any i e I, all X .̂ are closed in X^ and the number ofj e I with X .̂ 4= 0 is finite.

Furthermore^ in the case a) all [L^^) are open in X. In the case b) all ^(X^) are closed in X
and, if all X, are Hausdorjf (resp. paracompact), then X is Hausdorjf (resp. paracompact).

Proof. — Let X be the disjoint union II, X,. The system {v, ,} defines an equi-
valence relation R on X. We denote by X the quotient space 5C/R and by ^ the induced
maps X, ->X. In the case a ) , the equivalence relation R is open (see [Bou], Gh. I,
§ 9, n° 6), and therefore all ^,(XJ are open in X. In the case b), the equivalence rela-
tion R is closed (see loc. cit.y n° 7), and therefore all ^(XJ are closed in X and ^ induces
a homeomorphism X, -^ (^(XJ. Moreover, if all X, are Hausdorff, then X is Hausdorff,
by loc. cit., exerc. 6. If all Xjare paracompact, then X is paracompact because it has a
locally finite covering by closed paracompact subsets ([En], 5.1.34).

Furthermore, let T denote the collection of all subsets V C X for which there



fiTALE COHOMOLOGY FOR NON-ARCHIMEDEAN ANALYTIC SPACES 25

exists i el such that VC^(XJ and ^"^(V) is a O-affinoid domain in X^ (in this
case ^^(V) is a 0-affinoid domain in X .̂ for any ^ with VC ^.(X^.)). It is easy to see
that T is a net, and there is an evident 0^-afnnoid atlas ^/ with the net X. In this way
we get a 0^-analytic space (X, ja^, r) that satisfies the properties (1)-(4). That X is
unique up to canonical isomorphism follows from Proposition 1.3.2. •

Let X be a 0^-analytic space. The family of its 0-analytic domains can be considered
as a category, and it gives rise to a Grothendieck topology generated by the pretopology
for which the set of coverings of an analytic domain Y C X is formed by the families
{^i }z e i °^ ^^y^ domains in Y that are quasinets on Y. For brevity, the above
Grothendieck topology is called the G-topology on X, and the corresponding site is
denoted by X^. From Proposition 1.3.2 it follows that any representable presheaf
on XQ is a sheaf. The G-topology on X is a natural framework for working with coherent
sheaves.

Recall ([Ber], 1.5) that the Tz-dimensional affine space A71 is the set of all mul-
tiplicative semi-norm on the ring of polynomials A[T^, . . ., TyJ that extend the valuation
on k endowed with the evident topology. The family of closed polydiscs with center at
zero E(0; r^, . .., rj == { x e A71 | | T^(^)| ^ r^ 1 ̂  i ̂  n} defines a ^-affinoid atlas on A".
(We remark that A71 is a good ^-analytic space.) We remark that the affine line A1 is a ring
object of the category k-^/n. I f X = = e^(j^) is a ^-affinoid space, then Hom(X, A1) = ja^.

We return to 0-analytic spaces. Applying Proposition 1.3.2 to X' = A1 and the
category k-^/n, we get a structural sheaf (9^ on X^ (this is a sheaf of rings). The category
of (P^-modules is denoted by Mod(Xo). An fl^-module is said to be coherent if there
exists a quasinet T of 0-affinoid domains in X such that, for each V e T, fl^o |vo ls lso"
morphic to the cokernel of a homomorphism of free ^vo"1110^11^15 °f finite rank. For
example, suppose that X = e^(J^) is a 0^-affinoid space. Then a finite j^-module M
defines a coherent (P^{M) by Vi-^M®^j^v, and KiehPs Theorem tells that any
coherent O^-module is isomorphic to (P^(M.) for some M. The latter fact enables one
to define for a coherent (P^mod\i\e F the suppvrt Supp(F) of F. Namely, if X = e^(j^)
is ^-affinoid and F = 6^(M), then Supp(F) is the support of the annihilator of M.
IfX is arbitrary, then Supp(F) is the set of point x e X such that for some (and therefore
for any) affinoid domain V that contains x the support ofF|^ contains x. Let Coh(X^)
denote the category of coherent 0^-modvles, and let Pic(X^) denote the Picard group
of invertible (P^-modu\es, (One has Pic(X^) == H^X^, 0^).) From KiehPs Theorem
it follows that Coh(XJ and Pic(X^) are the same whether X is considered as an object
of O^-J^TZ or of k's/n.

We now consider connection of the above objects with their analogs in the usual
topology of X. For this we assume that the class O^ is dense. Then all open subsets of X are
0-analytic domains, and there is a morphism of G-topological spaces TT : X^ -^ X which
induces a morphism of the corresponding topoi (^, TC*) : X^ -> X^. The direct image
functor TC^ is simply the restriction functor. In particular, we have the structural sheaf
0^: == TT^ 0^ on X. The functor TT^ is not fully faithful (see Remark 1.3.8). The inverse

4
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image functor TC* is as follows. For a sheaf F on X and a 0-affinoid (or 0-special) domain,
one has

^ F(V) = lim F(^),
^3V

where ^ runs through open neighborhoods of V. It is easy to see that F -S- 7^ TT* F.
In particular, the functor TT* is fully faithful.

Let Mod(X) denote the category of ^-"^dules. The functor TT^ defines an evident
functor Mod(X^) -> Mod(X). The natural functor in the inverse direction is as follows:

Mod(X) ~> Mod(X^) : F ̂  F^ = TT* F ®,̂  ̂ .

An ^x"1110^̂  is said to be coherent if locally (in the usual topology of X) it is isomorphic
to the cokernel of a homomorphism of free modules of finite rank. (For example, if
X =^(c^) is O^-affinoid, then 0^{M) :== TC* ^xoW is a coherent (P^-module.) The

Picard group Pic(X) is the group ofinvertible (P^-mod\i].es. One has Pic(X) = H^X, (P^).

1.3.4. Proposition. — IfX is a good <£^-analytic space, then

(i) for any 0^-module F one has F -^ TT^ F ;̂ w particular, the functor

Mod(X) -> Mod(XJ : F h-> F^

t^ y^^ faithful',
(ii) ^ functor F h-> F^ induces an equivalence of categories Goh(X) ^> Goh(X^);
(iii) a coherent Q^-module F is locally free if and only if F^ is locally free.

Proof. — (i) It suffices to verify that for any point x e X there is an isomorphism of
stalks F^ -^ (^ Fo)a;. But this easily follows from the definitions because x has an affinoid
neighborhood.

(ii) By (i), it suffices to verify that for a coherent (P^-mod\ile ^ the C}^-mod\ii.e
F = TT^ y is coherent and F^ ̂  y. This also follows easily from the definitions.

(iii) We may assume that X = «^(J^) is ^-affinoid. It suffices to show that a
finite j^-module M is projective if and only if the (P^'module (P^{M) is locally free.
The direct implication is simple. Conversely, suppose that for some finite affinoid cove-
ring { V, },^ i of X the finite J^y, -modules M ®^ c .̂ are free. It suffices to verify that M
is flat over s/. For this we take an injective homomorphism of finite j^-modules P —> Q^.
Then the homomorphisms (M ®^ P) ®^ ̂ ^ -> (M ®^ QJ ®^r J^v, are also mjective.
Applying Tate's Acyclicity Theorem to the finite e^-modules M®^P and M®^Q,
we obtain the injectivity of the homomorphism M ®^ P -> M ®^ Q .̂ •

1.3.5. Corollary. — If X is a good <J)^-analytic space, then there is an isomorphism
Pic(X)^Pic(XJ. •

The structural sheaf 0^ will be used only for good spaces X. The group Pic(X^)
will appear in Corollary 4.3.8. We now compare the cohomology groups in both
topologies.
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1.3.6. Proposition. — (i) For any abelian sheaf F on X, o^ ̂  H^X, F) ̂  IP(X^, TT* F),
y^ 0.

(ii) TJF X is good, then H^X, F) -^ H^X^, FJ, ̂  0, for any coherent Q^module F.
(Hi) IfX is paracompact, then fi^X, F) ^> fi^X^, TT* F)/or any sheaf of groups F 0% X.

Proof. — (i) An open covering of X is a covering in the usual and the G-topology,
and therefore it generates two Leray spectral sequences that are convergent to the
groups H^X, F) and H^X^, TT* F), respectively. Comparing them, we see that it suffices
to verify the statement for sufficiently small X. In particular, we may assume that X is
paracompact. It suffices to verify that if F is injective, then H^X^, TT" F) = 0 for q ^ 1.
Since X is paracompact, it suffices to verify that the Cech cohomology groups of n* F
with respect to a locally finite covering by compact analytic domains are trivial. But
this is clear because they are also the Cech cohomology groups of F with respect to the
same covering.

(ii) The same reasoning reduces the situation to the case when X is an open
paracompact subset of a A-affinoid space. (In particular, the intersection of two affinoid
domains is an affinoid domain.) In this case H^X, F) is an inductive limit of the q-th coho-
mology groups of the Cech complexes associated with locally finite open coverings
{ ̂ i }i e i °^ ̂ - ^n ̂  other hand, since the cohomology groups of a coherent sheaf on
a G-ringed ^-affinoid space are trivial, then H^X^, FJ is the q-th cohomology group
of the Cech complex associated with an arbitrary locally finite affinoid covering { V, }^j
ofX. It remains to remark that for any { ̂  }, g i we can find { V, }̂  j such that each V,
is contained in some ̂  and U^jInt^./X) = X.

(iii) is trivial. •
We remark that a morphism of 0^-analytic spaces 9 : Y -> X induces a morphism

of G-ringed topological spaces 9^: Y^ -^ X^. If the spaces X and Y are good, then for
any coherent ^•"^dule F there is a canonical isomorphism of coherent ^y -modules
(<P'F)o^Fa.

We finish this subsection by introducing several classes of morphisms.

1.3.7. Lemma. — The following properties of a morphism of ^-analytic spaces
<p : Y -> X are equivalent'.

a) for any point x eX there exist ^-affinoid domains Vi, . . . ,V^CX such that
A ^ e V ^ n ... n V^ and ^~1{'V^) ->V^ are finite morphisms (resp. closed immersions) of
k-affinoid spaces,

b) for any <S>-affinoid domain VC X, ^"^V) ->V is a finite morphism (resp. a closed
immersion) of k-qffinoid spaces.

Proof. — Suppose that a) is true. Then the collection T of all 0-affinoid domains
V C X such that y'^V) -> V is a finite morphism (resp. a closed immersion) ofyi-affinoid
spaces is a net. Let V be an arbitrary 0-affinoid domain. Then V C V^ u ... u V^ for some
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Ver . By Lemma 1.1.2 (ii), we can find 0-affinoid domains Ui, . . . , U ^ C X such
that V = L^ u ... u U^ and each U, is contained in some V,. Then U, e T. It remains
to apply KiehPs Theorem. •

A morphism 9 : Y -> X satisfying the equivalent properties of Lemma 1.3.7
is said to be finite (resp. a closed immersion). It is clear that this property of <p is the same
whether we consider it in the category <S>^n or in k-^/n. A finite morphism 9 : Y ->• X
induces a compact map with finite fibres | Y | -> | X |, and po^Yo) ls a coherent
^-module. If 9 is a closed immersion, then it induces a homeomorphism of | Y | with
its image in | X |, and the homomorphism C^o ~^ ^(^Yo) ls surjective. Its kernel is a
coherent sheaf of ideals in fi^o- Furthermore, we say that a subset 2 C X is Zariski closed
if, for any O-affinoid domain V C X, the intersection 2; n V is Zariski closed in V.
The complement to a Zariski closed subset is called Zariski open. For example, the support
of a coherent (P^-mod\ile is Zariski closed in X. If 9 : Y -> X is a closed immersion,
then the image of Y is Zariski closed in X. Conversely, if 2 is Zariski closed in X, then
there is a closed immersion Y -> X that identifies | Y | with 2.

Furthermore, a morphism of O^-analytic spaces 9 : Y -> X is said to be a G-locally
(resp. locally) closed immersion if there exist a quasinet T ofO-analytic (resp. open O-analytic)
domains in Y and, for each V e T, a 0-analytic (resp. an open 0-analytic) domain
U C X such that 9 induces a closed immersion V -> U. (It is clear that this property
of 9 is the same whether we consider it in the category <S>^-^n or in k-^/n.) Of course,
a locally closed immersion is a G-locally closed immersion. If the both spaces are good,
then the converse is also true.

Let now 9 : Y —>• X be a G-locally closed immersion, and let V and U be as above.
If J^ is the sheaf of ideals in fi^ that corresponds to V, then J^/e^2 can be considered as
an fi^-module. All these sheaves are compatible on intersections, and so they define a
coherent (Py^-module that is said to be the conormal sheaf of 9 and is denoted by ^y^/x •
If both spaces are good, then one can also define a similar (P^-module ̂ y/x? ^d one has
(^Y/XJG ~^ ^YG/XG •

1.3.8. Remark. — Here is an example showing that the direct image functor
7^ : X^ -> X^ is not fully faithful. Let X be the closed unit disc

E(0 , l )={A:eAi | |T (^ 1},

and let XQ be the maximal point of X (it corresponds to the norm of the algebra k{ T }).
We construct two sheaves F and F' on X^ as follows. Let Y be an analytic domain in X.
Then F(Y) = Z if XQ e Y, and F(Y) = 0 otherwise. Furthermore, F'(Y) = Z if
{ ^ e X | r < \T{x)\< 1 } u { ̂ }C Y for some 0 < r< 1, and F'(Y) == 0 otherwise. The
sheaves F and F' are not isomorphic, but ^ F == ̂  F' = ^ Z, where i is the embed-
ding { XQ } -> X.
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1.4. Fibre products and the ground field extension functor

1 .4 .1 . Proposition. — The category <S>^-^n admits fibre products.

Proof. — First we shall show the existence of fibre products in the category k-^/n,
and after that we'll use this fact to show that the same is true for the category O^-ja^n.
Let 9 : Y —^ X and f: X7 -> X be morphisms of ^-analytic spaces.

Consider first the case when all three spaces are paracompact. In this case we
may assume that 9 and / are represented by strong morphisms (Y, 3S^ a) -> (X, ja^, r)
and (X', ̂ /, T') -> (X, j^, r), where T, a and T' are locally finite nets. Let S denote
the family of all triples (V, U, U'), where V e (T, U e T, U' e T' and q)(V),/(U') C U.
For a = (V, U, U') e S we denote by W^ the ^-affinoid space V X u U' and by 2^
the topological space | V | X |^j| | U71. The latter is a compact subset of the topological
space S :== | Y | x |x[ | X' [, and the canonical map W^ — 2^ induces a map 7^ : W^ —^ S.
We claim that, for any pair a, (B e S, the set W^p :== TCa"1^ n ^p) ls a special domain
in W^, and there is a canonical isomorphism of A-analytic spaces ^ap : ̂ ap ̂  ^Vpa-
Indeed, let (3 == (V, U, U'). Then U n U = Ui n . . . n U^ for U, e T. Furthermore,
for each 1 ̂  i^ n, one has (pv/uTO n Pv/tjTO = U;LiV^. and

/u^(U,)n/^(U,)=U^,U,

for some V .̂ e CT and U^ e T'. One has W^p == U, , ; V .̂ x^ U^- The right hand
side of the latter equality can also be considered as a subset of Wp^. It follows that W^p
and Wpa are special domains in W^ and Wp, respectively, and we get an isomorphism
^ap : ̂ ap ̂  ̂ pa tllat does not depend on the choice of the above coverings. It is clear
that W ^ = W ^ , Vap(W^p n WJ = Wp, n W?^ and ^=^o^p on W^ n W^.
By Proposition 1.3.3, we can glue all W^ along W^p and get a ^-analytic space (Y', 3S\ a )
which is a fibre product of (Y, SS, o) and (X', j^', T') over (X, j^, r).

Consider now the case when only the space X is paracompact. In this case we take
coverings { Y, }^ j of Y and { X^. }̂  j of X' by open paracompact subsets, and we glue
all the spaces Y, X ^ X ^ along the open subspaces (Y, n Y^) Xx(X^. n X;). We get
a locally Hausdorff space Y'. The collection o' of sets of the forms V X ̂  U', where
VCY^, UC X and U'C X^. are affinoid domains, is a net of compact subsets on Y',
and there is an evident ^-affinoid atlas 3S' with the net CT'. The triple (Y', 88\ a ' ) is a
fibre product of Y and X' over X.

Finally, in the case when all three spaces are arbitrary we take a covering { X, },gi
ofX by open paracompact subsets and construct a fibre product Y' by gluing the spaces
P'W Xx./'^X,) along the open subspaces y-^nX,) Xx.nxy/"1^ n X,).

We remark that the above construction gives also a compact map

TT • V ——^ I V I Y 1 Y' I7C . Y -> | Y [ X|x| | ̂  1.
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In particular, if VC Y, UC X and U' C X' are affinoid domains with y(V),/(U') C U,
then the set TT"^] V | X|u| | U' |) is compact. It follows that the canonical morphism
V :== V X ^ U ' ->Y' identifies V with an affinoid domain in Y'.

Suppose now that 9 : Y -> X and/: X' -> X are morphisms of O^-analytic spaces.
Then the collection a ' of all affinoid domains of the form V X ̂  U', where V C Y,
UC X and U'C X' are 0-affinoid domains with <p(V),/(U') C U, is a net on Y', and
there is an evident 0^-affinoid atlas with the net cr'. It defines a ̂ -analytic space structure
on Y'. It is easy to see that the canonical projections Y' -> Y and Y' -> X' are mor-
phisms of O^-analytic spaces and that Y' is a fibre product of Y and X' over X in the
category O^-ja^z. •

Similarly, one constructs, for a non-Archimedean field K over k, a ground field
extension functor 0^-j^n -> 0^-^n : X }-^ X § K and a compact map X ̂  K -> X. A
^-analytic space is a pair (K, X), where K is a non-Archimedean field K over k and
X e Og-ja^. A morphism (L, Y) -> (K, X) is a pair consisting of an isometric embedding
K <->- L over k and a morphism of 0^-analytic spaces Y -> X ̂ ^ L. The category of
0-analytic spaces is denoted by 0-j^. If O is the family of all affinoid spaces, then
the category is denoted by ^/n^ and its objects are called analytic spaces over k. For brevity
we denote the analytic space (K, X) by X.

We remark that with each point x e X e O^-e^z one can associate a non-Archi-
medean field ^(x) over x so that, for any 0-affinoid domain VC X that contains x,
there is a canonical bounded character e^y ->^{x) that identifies ̂  {x) with the cor-
responding field of the point x with respect to V (see [Ber], 1.2.2 (i)). A morphism
? ; Y —^X induces, for each point y eY, an isometric embedding ^(9(j0) ^^(jO.
Furthermore, let A; be a point of X. If V is a 0-affinoid domain that contains x, then
the caracter ̂  ̂ ^W ->^{x) :/® X ̂  \f{x) defines an ^{x) -point Xy eV^)J^(x).
It is clear that the image x ' of Xy in X®^{x) does not depend on the choice of V. If
now < p : Y - > X is a morphism of 0^-analytic spaces, then the ^[x) -analytic space
(Y(^(A;))(^§^(^(^W), where the morphism c^(Jf(^)) -^X^^{x) corresponds
to the point x\ is denoted by Yp and is said to be the fibre of^at the point x. The canonical
morphism Y^ ->Y induces a homeomorphism Y^ ̂  (p"1^). The dimension of 9, dim(y),
is the supremum of the dimensions dim(YJ over all x e X.

Let 9 : Y -> X be a morphism of 0^-analytic spaces, and consider the diagonal
morphism Ay/x : Y -> Y Xx Y- The collection T of 0-affinoid domains V C Y for which
there exists a 0-affinoid domain U C X with y(V) C U is a net, and, for such V and
U, V X ̂  V is a 0-affinoid domain in Y and Ay,x induces a closed immersion V -> V X y V.
Thus, Ay/x is a G-locally closed immersion. The conormal sheaf of Ay/x is said to be
the sheaf of differentials of^ and is denoted by ^yg/xo* ̂  both spaces are good, then one
can also define a similar coherent (Py-module ^y/x? smd one has (i2y/x)G ̂ ^y /x • The
sheaves ^y^xo and tiy/x will be studied in § 3.3.

A morphism of 0^-analytic spaces 9 : Y -> X is said to be separated (resp. locally
separated) if the diagonal morphism Ay/x is a closed (resp. a locally closed) immersion.
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If the canonical morphism X ^Jt(K} is separated (resp. locally separated), then X
is said to be separated (resp. locally separated.). For example good O^-analytic spaces and
morphisms between them are locally separated. If a morphism 9 : Y ->• X is separated,
then | Y | is closed in | Y Xx Y |. Since the map n : \ Y x^ Y | -> [ Y [ x ̂  \ Y | is
compact, then | Y | is closed also in [ Y [ x ̂  \ Y |, and therefore the map | Y | -> [ X |
is Hausdorff. In particular, if Y is separated, then its underlying topological space [ Y |
is Hausdorff.

1.4.2. Proposition. — A locally separated morphism of ^-analytic spaces <p : Y -> X
is separated if and only if the induced map | Y | — | X | is Hausdorff.

Proof. — Suppose that the map | Y | -> | X | is Hausdorff. Then the complement^
of Y in | Y | X jx | | Y | is open. Since the diagonal morphism A = Ay/x is a composition
of a closed immersion with an open immersion, it suffices to show that A(Y) is closed
in | Y Xx Y |. For this we consider the compact map TT : | Y x^ Y | -> | Y | X i x i | Y |.
Let z e (Y XxY)\A(Y), and let n{z) = (ji,^). Ifj^ ̂ y^ then TT-^T-) is an open
neighborhood of z that does not meet A(Y). Ifj/i =j^, then we take an open neighbor-
hood i^ ofj/i =^2 such that A ^ r ^ - ^ ^ X x ^ i s a closed immersion. Since V Xx ̂
is an open subset of Y X ^ Y and z ^A(Y), then we can find an open neighborhood
of z that does not meet A(Y). The required fact follows. •

It is clear that the classes of closed and locally closed immersions, finite, separated
and locally separated morphisms are preserved under composition, under any base
change functor and under extensions of the ground field.

1.4.3. Remarks. — (i) The converse implication of Proposition 1.4.2 is not true
in general. For example, the space obtained by gluing two copies of the unit one-dimen-
sional disc along the closed annulus of radius one is Hausdorff but is not separated.

(ii) We conjecture that every point of a separated ^-analytic space has an open
neighborhood which is isomorphic to an analytic domain in a ^-affinoid space.

1.5. Analytic spaces from [Ber]

In this subsection we recall the notion of a ^-analytic space from [Ber] (with the
necessary details that were omitted in [Ber]), and we show that the category ofyfe-analydc
spaces from [Ber] is equivalent to the category of good ^-analytic spaces from the previous
subsection.

First of all, recall that a k-quasiaffinoid space is a pair (%', v) consisting of a locally
ringed space % and an open immersion v of ^U in a A-affinoid space X. We remark that
the immersion v induces a net T of all VC W for which v(V) is an affinoid domain in X
and a A-affinoid atlas ^ with the net T for which ja^y = e^yp and therefore we get a
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A-analytic space (^, ̂ , r) from k-^n. We remark also that if V is an affinoid domain
in ^, then for any pair of open subsets V, ̂  C ̂  with -^ C V C ̂  there are canonical
homomorphisms ^(^) -> ja^y ->0(i^).

Furthermore, a morphism of k-quasiaffinoid spaces (^, v) -> (^', v') is a morphism
of locally ringed spaces 9 : ̂  -> W such that for any pair of affinoid domains V C %
and V'C^' with (p^CV = Int(V7^') (the topological interior of V in W\ the
induced homomorphism ̂  -> O^) -^(<p-i(^)) -^ ̂  is bounded. We remark
that from the definition it follows that for any pair of affinoid domains U C V and
U' C V with 9(U) C Int(U'/^') the homomorphisms ̂  -> ̂  and s/y. -> j^y are
compatible.

1 .5 .1 . Lemma. — The system of homomorphism j^y' -> ̂ v extends canonically to the
family of all pairs of afjinoid domains V C °U and V C W with <p(V) C V so that one gets a
well-defined morphism ( ,̂ ĵ , r) -> ( '̂, ĵ ', T').

Proof. — Let V, V be such a pair. Assume first that y(V) C Int(V7^'). We
claim that the two maps from V to V induced by 9 and by the homomorphism
j^y. -> e^y coincide. Let ^ denote the second map, and let x e V. Take affinoid
neighborhoods U of x in ^ and U' of (f{x) in ^' such that (p(U) C Int(U7^). Then
<p(U n V) C Int(U' n V7^'). The homomorphisms j^y, ->j^y and J<^y, ->^^y
are compadble, and therefore ^(U n V) C U' n V. Since U and U' can be taken
sufficiently small, then ^{x) = ̂ (x), and our claim follows. It follows that one can
construct in a canonical way bounded homomorphisms ^/^. —^ ^/^ for every pair of
affinoid domains U C V and U' C V with <p(U) C U', and the two maps from U to U'
induced by 9 and by the homomorphism ^^ -> ja^j coincide.

Assume now that V and V are arbitrary. Then we can find affinoid domains
Vi, . . . .V^C^andV^ , ... , V^C ^' such that VC Vi u ... u V^, V C V; u . . . u ¥„
and 9(V,) C Int^/^'). By the first case, there are canonical bounded homomor-
phisms c^v'^y;. ->^y^v, and ^v'nv;nv; -^vnv,nvy that induce the maps

9 : V n V, -> V n V; and V n V, n V, -> V n V; n V;..

Applying Tate's Acyclicity Theorem to the coverings { V n V,} of V and { V n V,'}
of V, we get a bounded homomorphism ^^, -> ^/y that is compatible with the homo-
morphisms ja^y' n v; "̂  ̂ v n v, and suc!1 ̂ at the maps from V to V induced by 9 and
by the homomorphism ^y. -> j^y coincide. Thus, we get the required morphism
(^,<T) ->(^',^',T'). •

We remark that any morphism (^, c^, r) -> (^^C^ e '̂, T') comes from a unique
morphism (^ v) ->(^',v'). Thus, ^-quasiaffinoid spaces form a category which is
equivalent to a full subcategory of k-^/n. The latter consists of all A-analytic spaces that
admit an open immersion in a ^-affinoid space.
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1.5.2. Corollary. — Let [W, v) and {^f, T') be k-quasiafjinoid spaces, and let 9 : % -> W
he a morphism (resp. an isomorphism) of locally ringed spaces. Then the following are equivalent:

a) 9 induces a morphism (resp. an isomorphism) of k-quasiafjinoid spaces [%, v) -> ( '̂, v');
b) there exist open coverings {^},ei °f ou and {^•),eJ °f <r suc^ ^at, for each

pair z, j , 9 induces a morphism (resp. an isomorphism) of k-quasiaffinoid spaces

Wn9-TO,v)^(^,v')

(resp. (^ n 9-TO, ̂  ̂  (?W ^ ̂ ., v')J;
^ property b) is true for arbitrary open coverings of W and W. •

Let X be a locally ringed space. An (open) k-analytic atlas on X is a collection
of A-quasiaffinoid spaces {(^ovjhel called charts of the atlas such that {^}i^i is
an open covering of X (each ^ is provided with the locally ringed structure induced
from X) and, for each pair t, j e I, the identity morphism induces an isomorphism of
A-quasiaffinoid spaces (^ n .̂, v,) ^> (^ n .̂, v^.). Furthermore, suppose that we
are given an open subset W C X and an open immersion v of ^l in a A-affinoid space.
Then (^, v) is compatible with the atlas {(^o^)hgi if, for each i el, the identity
morphism induces an isomorphism of ^-quasiaffinoid spaces (^ n ̂ , ^) -^ (^ n ̂ , ̂ ).
Two atlases are said to be compatible if every chart of one atlas is compatible with the
other atlas. From Corollary 1.5.2 it follows that the compatibility of atlases is an equi-
valence relation. A A-analytic space from [Ber] is a locally ringed space X provided
with an equivalence class of ^-analytic atlases.

Let X, X' be two ^-analytic spaces defined in the above way, and let 9 : X -^ X'
be a morphism of locally ringed spaces. Then 9 is called a morphism of A-analytic
spaces if there exists an atlas {(^,, ^)}iei °f X ^d an ^l^ {(^5 ^)L'eJ
of X' such that, for each pair z,j, 9 induces a morphism of ^-quasiaffinoid spaces
(^ n 9-l(^.), vj -> (^., ^.). From Corollary 1.5.2 it follows that the same condition
holds for any choice of atlases on X and X' defining the same ^-analytic structure, and
that one can compose morphisms. Thus, one gets a category. This is the category intro-
duced in [Ber] (and denoted there by k-^n).

We now construct a functor from the category of A-analytic spaces from [Ber]
to k-^/n. For each ^-analytic space X from [Ber] we fix an open ^-analytic
atlas {(^,, ̂ Jier Let T be the family of the subsets VC X for which there exists i e I
such that V is an affinoid domain in ̂  (in this case V is an affinoid domain in any ̂
that contains V). Then T is a net on X, and there is an evident A-affinoid atlas ^ with
the net T. The ^-analytic spaces (X, s/, r) obtained in this way is evidently good. Let
now 9 : X ->X' be a morphism of A-analytic spaces from [Ber]. We denote by a the
family of all V e T for which there exists V e T' with 9(V) C V. It is clear that (T is a net
with (T -< T, and the morphism 9 gives rise to a strong morphism (X, ^ / y y a) -> (X', e^/', T').
Therefore we have the required functor, and it is easy to see that it is fully faithful. Let
now X be a good ^-analytic space from k-^/n. For an affinoid domain V C X we denote
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by ^v the topological interior of V in X and by Vy the canonical open immersion of
locally ringed spaces ^y ->V. Then {(^<y, Vy)} is an open ^-analytic atlas on X, and the
^-analytic space from [Ber] obtained in this way gives rise to a ^-analytic space from k-^/n
isomorphic to X. Thus, the correspondence X h-> (X, s /y , a) is an equivalence of the
category of ^-analytic spaces from [Ber] and the category of good ^-analytic spaces.

We now extend to the category k-^/n several classes of morphisms that were intro-
duced in [Ber] for good A-analytic spaces. Let P be a class or morphisms of good ^-analytic
spaces which is preserved under compositions, under any base change and under exten-
sions of the ground field. We say that a morphism 9 : Y—> X in k-^/n is of class ? if
for any morphism X' -> X from a good analytic space over k the space Y X x X' is
good and the induced morphism Y X x X' -> X' is of class P. It follows from the definition
that the class P is also preserved under the same operations. Furthermore, ifP contains
locally closed immersions, then P processes the following property: if Y -> X is a locally
separated morphism, then any morphism Z -> Y, for which the composition Z -> X
is of class P, is of class P.

1.5.3. Examples. — (i) If P is the class of all morphisms of good analytic spaces,
then the morphisms from P are said to be good. For example, finite morphisms and
locally closed immersions are good morphisms.

(ii) If P is the class of closed morphisms of good analytic spaces ([Ber], p. 49),
then the morphisms from P are said to be closed. For example, finite morphisms and
locally closed immersions are closed morphisms.

(iii) IfP is the class of proper morphisms of good analytic spaces ([Ber], p. 50),
then the morphisms from P are said to be proper. It follows from the definitions that a
morphism is proper if and only if it is compact and closed. For example, finite morphisms
are closed. Conversely, if a proper morphism has discrete fibres, then it is finite
([Ber], 3.3.8).

1.5.4. Definition. — The relative interior of a morphism 9 : Y -> X is the set Int(Y/X)
of all points y e Y for which there exists an open neighborhood i^ofjy such that the
induced morphism i^ -> X is closed. The complement of Int(Y/X) is called the relative
boundary of 9 and is denoted by ^(Y/X). IfX ==^(^), these sets are denoted by Int(Y)
and (?(Y) and are called the interior and the boundary of Y, respectively.

It follows from the definition that ^(Y/X) = 0 if and only if the morphism y is
closed. The following properties of the relative interior are easily deduced from the
definition and [Ber], 3.1.3.

1.5.5. Proposition. — (i) If Y is an analytic domain in X, then Int(Y/X) coincides
with the topological interior ofY in X.

u/ <p
(ii) For a sequence of morphisms Z -> Y -> X, one has

Int(Z/Y) n ̂ (In^Y/X)) C Int(Z/X).
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If 9 is locally separated (resp. and good) then

Int(Z/X) C Int(Y/X) (resp. Int(Z/X) = Int(Z/Y) n ^(In^Y/X));.

(iii) For a morphism f: X' -^X, (w? A^/'-'(In^Y/X)) C Int(YyX'), o^?/' ^
Y '^Y x^X'-^Y.

(iv) For fl non-Archimedean field K ozw ,̂ ow? has Tc-^In^Y/X)) C Int(Y §» K/X ® K),
wfer^ TT ^ Y ® K -> Y. •

1.5.6. Remark. — The notion of a strictly ^-analytic space introduced in [Ber],
p. 48, is not consistent with that introduced in the previous subsection. First of all, if
the valuation on k is trivial, the two notions are completely different. (For example,
the affine line A1 is strictly ^-analytic in the sense of [Ber] but is not such a space in the
sense of § 2.2.) Assume now that the valuation on k is nontrivial. In this case the diffe-
rence is that in [Ber] strictly A-analytic spaces were considered as objects of the whole
category of ^-analytic spaces, but here we consider them as objects of their own cate-
gory st-k-^/n because we do not know whether the faithful functor st-k-^/n ,-> k-s/n is
fully faithful.

1.6. Connection with rigid analytic geometry

We work here with the category of rigid ^-analytic spaces which is defined in
[BGR], §9.

Assume that the valuation on k is nontrivial, and let X be a Hausdorff strictly
^-analytic space. The corresponding rigid A-analytic structure will be defined on the
set Xo =={x eX | \^[x) : k] < oo }. (We remark that from [Ber], 2.1.15, it follows
that the set Xo is everywhere dense in X.) First of all, i fX= Ji({^) is strictly A-affinoid,
then the maximal spectrum Xo = Max(^) is endowed with a rigid ^-analytic space
structure as in [BGR], § 9.3.1. Suppose that X is arbitrary. We say that a subset
°U C Xo is admissible open if, for any strictly affinoid domain V C X, the intersection ̂  h Vo
is an admissible open set in the rigid ^-affinoid space Vo. Furthermore, a covering {^•}^r
of an admissible open subset ^C X^ by admissible open subsets is admissible if, for any
strictly affinoid domain V C X, { ̂  n VQ },̂  i is an admissible open covering of % n Vo.
In this way we get a G-topology on the set Xo. The sheaves of rings Q^, where V runs
through the strictly affinoid domains in X, are compatible on intersections, and to they
glue together to form a sheaf of rings (9^ on the G-topological space Xo. The locally
G-ringed space (Xo, (P^) satisfies the conditions of Definition 9.3.1/4 from [BGR],
and so we get a rigid ^-analytic space. We remark that the rigid yfe-analytic space cons-
tructed is quasiseparated. (A rigid A-analytic space is called quasiseparated if the inter-
section of two open affinoid domains is a finite union of open affinoid domains.)

1.6.1. Theorem. —The correspondence X i-> XQ is a fully faithful junctor from the
category of Hausdorff strictly k-analytic spaces to the category of quasiseparated rigid k-andlytic
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spaces. Furthermore, this functor induces an equivalence between, the category of paracompact strictly
k'analytic spaces and the category of quasiseparated rigid k-analytic spaces that have an admissible
affinoid covering of finite type.

A collection of subsets of a set is said to be of finite type if each subset of the col-
lection meets only a finite number of other subsets of the collection.

Proof. — Let X be a Hausdorff strictly A-analytic space. First of all we establish
the following fact.

1.6.2. Lemma. — (i) Any open affinoid domain in the rigid k-analytic space XQ is of the
formVo, where V is a strictly affinoid domain in X.

(ii) Let {VJ^ be a system of strictly affinoid domains in X. Then {V,o}^i is
an admissible covering of XQ if and only if each point ofX has a neighborhood of the form
V^ U ... uV^ (i.e., {VJ^i is a quasinet on X).

Proof. — (i) An open affinoid domain in XQ is an open immersion of rigid ^-analytic
spaces/: Uo -> XQ, where U is a strictly ^-affinoid space. In particular, for any strictly
affinoid domain V C X , /-^(Vo) is a finite union of affinoid domains in UQ, and
{/"^(Vo)}, where V runs through strictly affinoid domains in X, is an affinoid covering.
It follows that we can find strictly affinoid domains Ui, ..., U^ C U and V\, ..., V C X
such that U = Ui U ... u U^ and f\^ ^ comes from a morphism of strictly affinoid
spaces 9,: U, ->V, that identifies U, with an affinoid domain in V,. Moreover, all 9,
are compatible on intersections. Therefore, we get a morphism of strictly ^-analytic
spaces <p : U -> X. Since 9, as a map of topological spaces, is compact and induces an
injection on the everywhere dense subset Uo C U, it follows that 9 induces a homeo-
morphism of U with its image in X. Finally, 9 identifies U, with a strictly affinoid
domain in V,, and therefore 9 identifies U with a strictly analytic domain in X. It is
clear that this is a strictly affinoid domain.

(ii) Suppose first that {V, ohe i ls an admissible covering of XQ. This means
that, for any strictly affinoid domain V C X, { V, o n V^ }, ̂ ; is an admissible covering
of Vo. It follows that V is contained in a finite union V^ U .. . U V^, and therefore
each point of X has a neighborhood of the required form. Conversely, assume that
the latter property is true. Then any strictly affinoid domain is contained in a finite
union V^ U . .. u V^, and therefore { V, ^ n VQ }^ j is an admissible covering of Vo. •

Let 9 : Y -> X be a morphism of strictly A-analytic spaces. First of all we claim
that the induced map 90 : Yg -> XQ is continuous with respect to the G-topologies on XQ
and Yo. Let ^C XQ be an admissible open subset, and let VC Y be a strictly affinoid
domain. By [BGR], 9.1.4/2, and Lemma 1.6.2 (i), the set ^ has an admissible cove-
ring { U ^ p J ^ j , where U^ are strictly affinoid domains in X. By Corollary 1.2.14,
for each i e I one has 9-1(U,) n V = U,gj. V^., where V,, are strictly affinoid domains
in V and J, is finite. We get a covering { V,, o } of the set 9o'lW ^ VQ. To verify that
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the latter set is admissible open in VQ, it suffices to show that for any morphism of
strictly ̂ -affinoid spaces + : W —Vwith^(Wo) C 9o-l(^) n Vg, the covering { ̂  '(V,, o)}
has a finite affinoid covering that refines it. But this follows from the fact that the latter
condition is satisfied by the covering {(9^)0" ̂ U^o her Thus, the set 9o~l(<%^) is admis-
sible open in Yo. In the same way one shows that the preimage of an admissible covering
of an admissible open set is an admissible open covering. Hence the map of G-topological
spaces 90 : Y^ -> X^ is continuous. That 9 induces a morphism of locally G-rmged
spaces easily follows from this.

Let now/: Y() -> X^ be a morphism between the above rigid ^-analytic spaces.
We have to show that it comes from a unique morphism of strictly ^-analytic spaces
9 : Y -> X. First of all, from Proposition 1.3.2 it follows that it suffices to verify the
required fact only in the case when Y is strictly ^-affinoid. For this we remark that the
system { Uo}, where U runs through strictly affinoid domains in X, is an admissible
covering of X^. Therefore {/"^(Uo)} is an admissible covering of Yg by admissible open
subsets. By [BGR], 9.1.4/2, the latter covering has a finite affinoid covering that refines
it. In this way we get strictly affinoid domains V,, . . . , V ^ C Y and Ui, ..., U^C X
such that YQ = V^o U ... u V^ (and therefore Y = V^ u . . . u VJ and/(V^) C U,^.
The induced morphisms of strictly affinoid spaces V, -> U, are obviously compatible
on intersections, and therefore we get a morphism of strictly yfe-analytic spaces 9 : Y -> X.
It is easy to see that 90 ==/and that 9 is a unique morphism satisfying this property.

If X is a paracompact strictly A-analytic space, then it has a strictly A-affinoid
atlas with a locally finite net, and therefore the rigid ^-analytic space X^ has an admis-
sible affinoid covering of finite type. It is also evident that it is quasiseparated. Conversely,
let °K be a quasiseparated rigid ^-analytic space that has an admissible affinoid cove-
^g {^}iei of finite tyP0- First of ^ let ^ = L^o, where the U, are strictly
A-affinoid spaces. Since 3E is quasiseparated, for any pair i,j e I the intersection ̂  n %.
is a finite union of open affinoid domains in SK\ Thus, there are strictly special domains
U,, C U, and U^ C U, that correspond to ^ n ^, under the identifications ^ == U, p
and .̂ = U, o. Let ^ denote the induced isomorphism U^^U^. It is clear that
vii = U? ^(U, n UJ = U,, n U,^ and ^ == v^ o v,, on U^. n U^. By Proposi-
tion 1.3.3, we can glue all U, along U,, and get a paracompact strictly ^-analytic
space X. It is easy to see that XQ is isomorphic to S\ •

Let X be a Hausdorff strictly A-analytic space. From Lemma 1.6.2 it follows
that there is an isomorphism of topoi X^ ̂  X^. In particular, there is a morphism of
topoi (7^,71;*) : X^ -^X^ such that the functor TC* is fully faithful (and TC, is not).
Furthermore, from Proposition 1.3.6 it follows that if F is an abelian sheaf on X, then
H^X, F) ^> H^Xo, TT* F), q ̂  0, and if X is good and F is a coherent 0^ module, then
H^(X,F)^IP(Xo,Fo), q ^ O , where Fo==^F®^^^o- Finally, there are equi-
valences of categories Mod(X^) ̂  Mod(Xo) and Goh(XQ) ̂  Goh(Xo) and an isomor-
phism of groups Pic(X^) ̂  Pic(X^).
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§ 2. Local rings and residue fields of points of affinoid spaces

2.1. The local rings 0^

Throughout the section we consider a A-affinoid space X == ̂ (^). The stalk <9^ ^
of the structural sheaf (9^ at a point x e X is a local ring. Its maximal ideal is denoted
by m^, and its residue field 0^ J^^-sels denoted by K.{x). The field K{x) has a canonical
valuation. The completion ofic(^)is the field ̂ (^.Furthermore, let 2K denote the affine
scheme Spec(<^). There is a morphism of locally ringed spaces n: X -» SC. For a point
x e X we denote by x its image in SK^ by px ̂  corresponding prime ideal of s^ (it is
the kernel of the seminorm on ̂  which corresponds to the point x) and by A(x) the fraction
field of ̂ /^.

2.1.1. Proposition. — The map TT:X->^ is surjective.

Proof. — Suppose that the algebra is strictly ^-affinoid. It suffices to show that if ^/
has no zero divisors, then there exists a point x e X with p^ == 0- By Noether Normaliza-
tion Lemma, there exists a finite injective homomorphism 88 == k{ T^, ..., T^ } -> s/.
By [Ber], 2.1.16, the map e^(j^) —>^{S9) is surjective. So it suffices to consider the
algebra k {Ti, ...,T^}. In this case ^ = 0 for the point x corresponding to the
norm of k [T^ ...,T^}.

2.1.2. Lemma. — For a k-afjinoid algebra ^ and a non-Archimedean field K over k the
algebra ^/f = ̂  ® K is faithfully flat over ^/.

Proof. — First of all we recall that for Banach spaces B and M over k the canonical
map M ® .B -> M ® B is injective and, i f O - > M — ^ N - > P - ^ 0 is an exact admissible
sequence of Banach spaces over k, then the sequence 0 ->M(8>B->N(§)B->P(§ )B->0
is also exact and admissible (see [Gru]). (One assumed in [Gru] that the valuation on k
is nontrivial, but in the case of trivial valuation one obtains the same fact by tensoring
with the field Ky for some 0< r< 1.) Let now M be a finite ja^-module. It can be
regarded as a finite Banach ^/-module and, in particular, as a Banach space over k
(see [Ber], 2.1.9). We have M®^ ̂ f = M^ ^ ' == M^ K. By the above fact, if
M 4= 0, then M ®^ ̂ r + 0. Furthermore, if a homomorphism M -> N of finite ̂ -modules
is injective, the homomorphism of Banach K-spaces M ® K - > N ® K i s injective. This
implies that the homomorphism M®^^' ->N®^^' is injective. Hence, ̂ f is a faith-
fully flat ja^-algebra. •

2.1.3. Corollary. — In the situation of Lemma 2 . 1 . 2 for any pair of points x eX.
x' e X' = jy^') with <f{x') = x^ where 9 is the canonical map X' -̂  X, Q^^' is a faithfully
flat <B^ ̂ algebra.
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Proof. — It suffices to show that for any pair of affinoid subdomains V C X' and
U C X with <p(V) C U, ̂  is a flat ^'algebra. By Lemma 2.1.2, ^-i(u) = ^n® K
is a flat J^-algebra. Since ^y is a flat ja^-i^-algebra ([Ber], 2.2.4 (ii)), then ̂  is

a flat <^j-algebra. •
We now consider an arbitrary A-affinoid algebra ^. We can take a non-Archi-

medean field K over k such that the algebra ^ ' == ^S)K is strictly K-affinoid. By
the previous case, the map X' == e^(j^') - '̂ = Spec(^) is surjective, and, by
Lemma 2.1.2, the map S K ' -> SE is surjective. It follows that the map n is surjective. •

3.1.4. Theorem. — The ring ^x,» ls a Noetherian ring faithfully flat over (9^x = j^ .

Proof. — Suppose first that the valuation of A is nontrivial, the algebra ^ is strictly
A-affinoid and x e Max(J^). In this case 0^ ^ coincides with the algebra of germs of affinoid
functions on Max(^) considered in [BGR], 7.3.2. By [BGR], 7.3.2/7, the ring C^ ̂
Noetherian, and, by [BGR], 7.3.2/3, there is an isomorphism ̂  ^> ̂  ̂  ^ ^x x between
^x? Px ̂ x5 "^^^^^"^P^tionsofthe rings ̂ , ̂  <g>^ ^x,^ respectively. By [Mat], 8.14,
the ring ^ ̂  ^ 0^ ^ is faithfully flat over ^^ and (9^ ^.

We now consider the general case. We can find a non-Archimedean field K over k
with nontrivial valuation such that the algebra ^f = ̂  §) K is strictly K-affinoid,
and there exists a point x ' e Max(ja^') which goes to x under the canonical map
X' = jy{^) ̂  X. By Lemma 2.1.2 (resp. Corollay 2.1.3), the algebra e ,̂ (resp. 0^^.)
is faithfully flat over ^ ̂  (resp. fix,J- Since ^x',sc' ls faithfully flat over s/^ ,, then O^y,
is faithfully flat over <^^. Furthermore, Corollary 2.1.3 implies that a = a^,a;' n ^x,.e
for any finitely generated ideal a e 0^ ̂ . From this it follows easily that 0^ ^ is a Noe-
therian ring. •

2.1.5. Theorem, — The ring 0^^ is Henselian.

Proof. — We use the following criterion for a local ring A to be Henselian (see [Riay],
1.1.5). A is Henselian if and only if any finite free A-algebra B is a direct product of
local rings.

Let B be a finite free O^ ̂ -algebra. We claim that there exist an affinoid neigh-
borhood U of the point x and a finite free j^j-algebra 3S such that B == S8®^ ^x,a;-
Indeed, let b^ . . . , & » be free generators of the 0^ ^-module B and set 1 === SSLi ^ ̂
and ^^.==S^.i^^, where ^, a^ e 0^^. The fact that B is an associative and
commutative ring with identity is equivalent to certain identities between the coeffi-
cients ^ and a^. Take a sufficiently small affinoid neighborhood U of the point x
such that all the a^ a^ come from j^j and all the identities are true in .̂ j. Consider
the free j^j-module 3S == ^/^j b^ + ... + «^u ^» and endow it with the multiplication
^^.==S^i^^. Then SS is a finite free <a^j-algebra, and, by construction,
B=^®^^.



40 VLADIMIR G. BERKOVICH

Furthermore, we may assume that U == X and consider SS as a finite Banach
s/- algebra (see [Ber], 2.1.12). Then we have a finite morphism of A-affinoid spaces
9 : Y = ^fi{88} -> X, and the theorem follows from the following lemma.

2.1.6. Lemma. — Let <p : Y = ̂ [S8) -> X == ̂ {^/) be a finite morphism ofk-affinoid
spaces. Then for any point x e X there is an isomorphism of rings SS®^ Q^^ == FIf̂  ^Y,v wner€

^-l{x} ==0i, ...,J^}.

Proof. — Since 9 is a map of compact spaces, one has y^U) = Uf^i V,, for any
sufficiently small affinoid neighborhood U of x, where V^ are affinoid neighborhoods
of the points y^ such that V, n V, == 0 for i =(= j. Moreover, the domains V^ form a
basis of affinoid neighborhoods ofj^. We have

^^ ̂ x,. == ̂ -i(V)^u ̂ ,. = H 38^^ Q^1 = 1

Here we used the equality 8S^\.^ == SS ®^ s/^ == 3S ®^ j^^ which follows from the fact
that ̂  is a finite Banach e^-module. Therefore, S9®^ 0^^ == IIf^^ ^Y.v,- •

2.2. Comparison of properties of 0^^ and fi^,

Let P be a property of local rings which is preserved under localizations with
respect to the complements to prime ideals. A commutative ring A is said to possess
the property P (or A is a P-ring) if all of the local rings A^ , where p runs through prime
ideals of A, possess the property P. More generally, let Y be a locally ringed space. The
set of points y e Y such that (P^y is a P-ring is denoted by P(Y). If P(Y) == Y, then Y
is said to possess the property P.

2.2.1. Theorem. — Let P be the property of being Red (reduced). Nor (normal), Reg
(regular), CI (complete intersection), Gor (Gorenstein), CM (Cohen-Macauley). Then P(X)
is Zariski open in X and P(X) = Tr-^P^)).

For the definition of these properties and the verification of the fact that P is pre-
served under localizations see Matsumura's book [Mat]. We shall deduce Theorem 2.2.1
from known results which are formulated in the following lemmas.

2.2.2. Lemma. — Let (A, m) -> (B, n) be a faithfully flat homomorphism of local
Noetherian rings.

(i) If^ B is a P-ring, then so is A.
(ii) If A is a P-ring, where P =4= Red, Nor, and n == mB, then B is a P-ring. •

2.2.3. Lemma. -— Strictly k-afjinoid algebras are excellent rings. •



fiTALE COHOMOLOGY FOR NON-ARCHIMEDEAN ANALYTIC SPACES 41

2.2.4. Lemma. — Let A be an excellent ring.

(i) If (p is a prime ideal of A such that Ay is a f-ring, where P = Red or Nor, then the

completion ^p is a 'P-ring.
(ii) The set of prime ideals (p C A such that Ay is a 'P-ring is open in Spec (A), •

For Lemma 2.2.2 and the assertion (ii) of Lemma 2.2.4 in the cases P = GI
or Gor see [Mat], § 23-24. Lemma 2.2.3 is proved in [Kiej. The assertions (i) and (ii)
(for P+ CI, Gor) of Lemma 2.2.4 are proved in [EGAIV], 7.8.3.

Proof of Theorem 2.2.1. — From Theorem 2.1.4 and Lemma 2.2.2 (i) it follows
that P(X) C Tr-^P^)). Let A; be a point of X such that J3^ is a P-ring. We have to
show that (P^ „ ls a P-ring.

Suppose that the valuation ofk is nontrivial and the algebra s/ is strictly A-affinoid.
From Lemmas 2.2 .3 and 2.2.4 it follows that the set P(<^) is open in SO\ Furthermore,
if x e Max(e^), then ja^p == ^x,^ B"^ therefore B^ ^ is a P-ring. Let x be an arbitrary
point. Since P(^) is open in St', then V C ^~1('P{^!')) for any sufficiently small strictly
aiffinoid neighborhood V of x. IS y e Max(J^y) ^ Max(^), then fi^^y) is a P-ring, and
therefore C^, yls a P-ring. Since (9^ y = ffly ̂ , then O^^y) is a P-ring, where i^ = Spec(^y)-
It follows that P(^) == ̂  because P(^r) is open in Y .̂ Thus, the algebras ja^y are P-rings
for all sufficientiy small strictly affinoid neighborhoods V of x. Since fl^a; = limj^y,
then fi^ x ls a P-ring. Indeed, this is evident if P == Red or Nor. If P =1= Red, Nor, we
remark that m^ = ^x v ^x a; ^or a sufficiently small strictly affinoid neighborhood V
of x, where px v ls t^le prime ideal of ^/y corresponding to the point x. From
Lemma 2 .2 .2 (ii) it follows that €^ ^ is a P-ring.

We remark that (under the same assumptions) the fact already verified implies
that the subsheaf of ideals ^x ^ ^x consisting of nilpotent elements is coherent and, in
fact, is generated by the nilradical rad(J^) ofj3^. Furthermore, ifX is reduced, then the
subsheaf ^orm of the sheaf e^x °f meromorphic functions consisting of elements, whose
images in all stalks e^x x are integral over fi^ x^ ls coherent, and there exists a e e^,
which is not a zero divisor, such that ^^orm C fi^ •

We now consider the general case.

2.2.5. Lemma. — Let K be a field of the form Ky ,. (see [Ber], § 2 .1^ and
^' ==. ^(§ K. Consider the map a : X -> X' == Ji^'} which sends a point x eX. to the
point x' e X' corresponding to the multiplicative semi-norm S ,̂ a^ T^ i-» max [ ^(^) | r\ TA^^

,̂ == px^'- Furthermore, if Y' z^ <z Zariski closed subset of X', ^TZ (T'^Y') ij- a Zariski
closed subset of X.

Proo/*. — Letyi, ' - ")fn be generators of px* Since the canonical epimorphism
^w -^ Px : (^i? • • • ? ^n) '-̂  ^=1 ̂ ^ ls admissible (see [Ber], 2.1.9), there exists a
constant G > 0 such that any element a e ̂  can be represented in the form S^i a,f,
with [ I a,\\ < C [ [ a |[, 1 ̂  i^ n. Let a' = S^ ̂  T^ e px" By construction, all the a^
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belong to ^. For every v we take a representation ^ == S^^,/ as above. Then
^ = 2^ ̂  ^T^ are well defined elements of J '̂, and we have a! -==• S^i b^ e ̂  s S ' .
Thus ̂  = ̂  ̂ '.

Let Y' be defined by an ideal a' C ̂ f. Denote by a the ideal of ^ generated
by all of the coefficients a^ from the representations a' == 2^ a^ T^ of elements a1 e a\
We claim that cT^Y') is the closed ^-analytic subset ofX defined by the ideal a. Indeed,
let x e X and x9 == a{x). Then x e (T^Y') ̂  A;' e Y' o a' C ̂  o a C p,, •

Take a field K of the form K^_^, n ̂  1, such that the algebra ^ = ^®K
is strictly K-affinoid (the valuation on K is nontrivial since n^ 1). First we consider
the case when P+ Red, Nor. Since ^ == Px^'? where ^ == <r(^), it follows from
Lemma 2.2.2 (ii) that ja '̂p , is a P-ring. By the strictly affinoid case, <B^!^ is a P-ring.
Therefore 0^ is a P-ring, by Lemma 2.2.2 (i). We have

P(X) == Tt-^P^)) == (T-^PCX')).

From Lemma 2.2.5 it follows that P(X) is Zariski open in X.
Let P == Red. It suffices to verify that the subsheaf of ideals ̂  c ^x consisting

of nilpotent elements is generated by rad(J2/). We may assume that rad(J^) == 0.
Then rad(j^) == 0. Hence ̂  == 0. Since fl^a- ls embedded to 0^^^ where ^' == <r(^),
we have ^x == 0-

Let P == Nor. By the previous case, we may assume that X is reduced. We want
to verify that there exists a e ̂  which is not a zero-divisor such that aC^ C 0^.
Since this is true for the subsheaf of M^ generated by the normalization of ̂  (see [Ber],
2.1.14 (i)), we may assume that ^ is a (normal) integral domain. By the strictly affinoid
case, there exists a non-zero element a; == S^ ̂  T^ e ̂  with a9 ^orm C 0^.. It suffices
to show that ̂  ̂ orm C ^x fo1' any v- Let ̂  be an open subset of X, and let/be an element
from the full ring of fractions of ^xW- Then al f ^ ̂ (^W^ where 9 denotes the
canonical map X'->X. But ^(P^W) consists of the series S^r? such that
/ e ̂ x(^). ^d, tor any affinoid subdomain V C %, ||/, ||v r" -^ 0 as v -> oo. It follows
that a^fe O^U} for any v. •

2.2.6. Corollary. — Let ̂  he one of the properties in Theorem 2.2.1. Then for any good
k'analytic space Y the set P(Y) is Zariski open in Y. Furthermore, ifYis reduced, then the comple-
ment to Reg(Y) is nowhere dense in Y. •

2.2.7. Corollary. — Let P be one of the properties in Theorem 2.2.1. Let W be a scheme of
locally finite type over k, and let n be the canonical map ^an -> W. Then P )̂ == TC-^PW).

Proof. — We may assume that ^ == Spec(B) is an affine scheme, and B is a finitely
generated A-algebra. Suppose first that the valuation on k is trivial. If/i, ..•,/„ gene-
rate B over k, then ^an is a union of affinoid subdomains of the type

V = O/e ̂  11/M | < r, 1 < i ̂  }.

But if r ̂  1, then 88^ = B. Therefore the required statement follows from Theorem 2.2.1.
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SupposenowthatthevaluadononAisnontrivia^andletj/e^^.By^er]^^.!,
fi^any is a faithfully flat ^y-algebra, and if j /e Max(B), then ^^y == Q^y. Since A
is an excellent ring, we get the required statement, by the reasoning from the proof
of Theorem 2.2.1. •

2.2.8. Corollary. —For any affinoid subdomain V C X one has Reg(V) = Reg(X) n V.

Proofs. — If X and V are strictly A-affinoid, this is clear because both sets are
determined by their intersections with X^. The general case is reduced to the strictly
affinoid one by the reasoning from the proof of Theorem 2.2.1. •

2.2.9. Remark. — The maximal ideal m^ of the local ring 0^ ^ can be strictly
larger than px^x,a;« This is related to the fact that the Zariski topology on an
affinoid subdomain V C X can be strictly stronger than that induced by the Zariski
topology on X. Here is an example. Let /(T) == S,°li ^T" be a formal power

r^

series in one variable over the residue field A, which is algebraically independent
of T, and set /(T) ^S^i^T", where a, are representatives of ^ in k°. We
claim that for any non-zero g{T^ T^) e k {T^ T^ } one has g(T,f(T)) + 0. Indeed, let
^(T^T^^S^.o^T^T^. Multiplying g by a constant, we may assume that
1 1 ^ 1 1 = = max |fl,,,| = 1. LetS =={(tj) | |^,| == 1} (it is a finite set) and set

P(T,,T,)==S,,^,^,T1T^

and A(T,, T,) == g(T^ T,) - P(T,, T,).

Since || h \\ < 1, we have || A(T,/(T)) || < 1. If^(T,/(T)) == ^ then || P(T,/(T)) || < I.
It follows that ]P(T,y^T)) == 0. This is impossible because/(T) is algebraically inde-/%/
pendent of T over k. Thus, the Zariski closed subset of the two-dimensional disc V of
radius r< 1, which is defined by the equation Tg —^(Ti) == 0, does not extend to a
Zariski closed subset of the two-dimensional unit disc X. If now x is the point ofX, which
corresponds to the multiplicative seminorm on k{T^ T^} :5(Ti, T^) »-^| 5(T,/(T))|,
then m^ =(= 0 because T^ —/(T^) e m^, but ^ == 0.

2.3. The residue fields K{x)

2.3.1. Definition. — A field K with valuation is said to be quasicomplete if the
valuation extends uniquely to any algebraic extension of K.

For example, if K is complete with respect to its valuation (i.e. K is a valuation
field in the terminology of [Ber], § 1.1), then it is quasicomplete. The following lemma
easily follows from [BGR], § 3.2.
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2.3.2. Lemma. — The following properties of a field K with valuation are equivalent9.

(i) K is quasicomplete\
(ii) for any irreductible polynomial T" + ̂  T1-1 + ... + ̂  eK[T], one has

I^F^ l^nl1^ 1 ^ ̂  n,
(iii) ̂  spectral norm of any finite extension of K. is a valuation. •

2.3.3. Theorem. — The residue field K{x) of a point x e X is quasicomplete.

Proof. — Note that the field K(x) does not change if we replace X by a smaller
affinoid neighborhood of A; or by a closed A-analydc subset which contains x. Since
the ring 0^^ is Noetherian, m^ = ̂  y 0^^ for some affinoid neighborhood V of x,
where ^ y is the prime ideal of j^y which corresponds to x. So we can replace X
by.^(^v/Px,v) ^d assume that m^ = 0. Furthermore, since X is regular at x, we can
decrease X and assume that the algebra ^ is regular and has no zero divisors.

Let L be a finite extension of K == K.{x), It suffices to show that the spectral
norm | [gp of L is a valuation. Recall (see [BGR], 3.2.1/1) that for an element g eL
one has | g \^ = max [/ [l/l, where T* +/ T*"1 + ... +/„ is the minimal poly-

1 ̂  i ̂  in

nomialof.? and | | is the valuation of K (if/comes from e ,̂ then |/| ==\f(x)\). We
may assume that L is separable over K and, in particular, that L is generated by one
element a. Let T"1 + ^iT^"1 + ... + a^ be the minimal polynomial of a over K.
Decreasing X, we may assume that all the ^ and/, belong to ^f. Let Jf be the fraction
field of ^/. Consider the finite extension o§? of Jf which corresponds to the minimal
polynomial of a. We may assume that a, g e jy and L = Ko$f. Let S8 be the integral
closure of^/ in oSf, and let 9 denote the morphism of^-affinoid spaces Y == M[3S"} -> X.
By construction, ^~l(x) =={y} and K(^) = L. It suffices to show that | g |gp = | g{y)\.
One has

\g{^\=m{^{g),

where V runs through a basis of affinoid neighborhoods ofy, and pv(^) is the spectral
norm of g in the Banach algebra js/y. Since cp"1^) =={y}, we have

k(j)l =="^-1(17) (,?).
where U runs through a basis of affinoid neighborhoods of x.

2.3.4. Lemma. — Let ^ —^ 3S he a finite injective homomorphism of regular k-ajfinoid
algebras^ and suppose that 39 has no zero divisors. Then for any element g e 39 one has

p(g)= max p{f^'\
l^i^n

where T" +/i T71"1 + • • • +/» is the minimal polynomial of g over ^/.
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Proof. — Suppose that the valuation of^is nontrivial and the algebra ^ is strictly
A-affinoid. Then for an element / e ̂  (resp. g e SS) the spectral norm p(/) (resp. p(^))
is equal to the supremum semi-norm |/|^p (resp. [ g |^p) on the maximal spectrum
Max(J^) (resp. Max(^)). Hence the required fact follows from [BGR], 3.8.1/7.

In the general case we take a field k' of the form Ky y , n ̂  1, such that the
algebra j^' == ^ ^V is strictly ^'-affinoid; then the rings ^' and ^' = SS^k' are
regular. From Lemma 2.2.5 it follows that S8' has no zero divisors. Since the canonical
homomorphisms ^ -> ^ ' and 88 -> 39' are isometric, it suffices to show that the minimal
polynomial of g over ^ remains to be irreducible over ^ ' . But this is clear because 83'
has no zero divisors. •

Using Lemma 2.3.4, we have

I g{^) I - l̂ -1^ = ̂ l̂ n PuW

= max infp^^)17^ max [ ^ ( ^ l ^ ^ l ^ l .
l ^ i^n u r uv ' /» / l ^ ^ n " 7 ^ 7 1 I ^ I S P *

Theorem 2.3.3 is proved. •

2.4. Quasicomplete fields

In this subsection we establish properties of quasicomplete fields which will be
very useful in the sequel. The Galois group of a normal extension L/K will be denoted
by G(L/K). The Galois group G(KVK) of the separable closure K8 of K will be denoted
by G^. If K is a quasicomplete field, then the valuation on K uniquely extends to its
algebraical closure K". The same, of course, is true for the completion 1C of K.

2.4.1. Proposition. — Let K. be a quasicomplete field. Then for any finite separable
extension L/K one has L^L®^^, and the correspondence L h-> L induces an equivalence
between the categories of finite separable extensions ofK and of^.In particular, there is an iso-
morphism Gg ^> Gg.

Proof. — Since the valuation of L coincides with the spectral norm, L is
weakly K-cartesian ([BGR], 3.5.1/3). By [BGR], 2.3.3/6, one has [L : K] = [L : K],
and therefore L^L^K. Our assertion now follows from Krasner's Lemma (see
[BGR], 3.4.2). •

2.4.2. Corollary. — Let K be a quasicomplete field, and let K' be a bigger quasicomplste
field whose valuation extends the valuation of K. Suppose that the maximal purely inseparable extension
ofK in K' is dense in K'. Then the correspondence L h-> L ®^ K' induces an equivalence between the
categories of finite separable extensions of K and of K', and there is an isomorphism G^, ̂  Gg;. •
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2.4.3. Proposition, — The following properties of a field K with valuation are equivalent:

a) K is quasicomplete;
b) the local ring K° =={a eK| [ a| ̂  1 } is Henselian.

Proof. — a) => b) (see [BGR], 3.3.4). Let F be a polynomial in K°[T] with
[ F | ==?= 1 (the Gauss norm). Suppose that F is a product of two coprime polynomials
g, h eK[TJ. Take a decomposition F == Fi, ..., F^ of F into irreducible polynomials.
We may assume that [ FJ == 1 for all i and that the polynomials F^, • • • ) F W
are monic and the leading coefficients of F^^.i, . . . ,F^ have the norm < 1. Then
F, ==f^ for some irreducible polynomials / eK[T], 1 ̂  i^ m (this follows from
Proposition 2.4.4 (ii)). From Lemma 2.3.2 it follows that F^^.i, ..., F^ are elements
of K*. Since g and h are coprime in K[T], we may assume that g = 2/^, .. .yf^ for
some a e K with [ a \ = 1 and r^ m. Then for the polynomials G = dF^, ..., Fy and
H == a-1 F,^, ..., F^ one has G == g, 6 = h and F = GH.

b) => a). Let L be a finite extension of K, and let B the integral closure o fA= K°
in L. We claim that B is a local ring. Indeed, it suffices to show that the set b == B\B*
is an ideal in B. Suppose that for some elements / g e b one has f + g f b. Consider
the A-subalgebra GofB generated by the elements/, g and (/+ g)~1' Then C is a finite
A-algebra. But any finite algebra over a local Henselian ring is a product of local rings.
Since C is an integral domain, it follows that G is a local ring. We get that the elements/
and g belong to the maximal ideal of C but their sum/+ g is invertible in G. Thus,
B is a local ring.

Furthermore, from the definition of the spectral norm it follows that

B={/6L| | / |^<1) .

Let | |i, ..., [ |n be the valuations on L which extend the valuation on K. One has
[/[^ == max [/I, (see [BGR], § 3.3). Suppose that n > 1. By the Artin-Waples• ' . 1 ̂  i ̂ s ^
Lemma, one can find for each 1 < i^ n an element / eL such that 1/1,== 1 and
|/ [^< 1 forj4= i. The elements/, .. .,/„ are not inverdble in B, and therefore belong
to the maximal ideal of B. But for the element /=/ + ... +/„ one has |/|( = 1,
1 < i< n. It follows that |/~1 |i = I? 1 < i^ ^, and therefore |/~1 |gp === 1, i.e., / is
invertible in B. Hence, n == 1, i.e., the spectral norm on L is a valuation. •

Let K be a quasicomplete field, let L be a Galois extension ofK (finite or infinite).
We set I(L/K) = { a e G(L/K) | a acts trivially on Tl} (L is the residue field of L) and
W(L/K) = { a e G(L/K) | | °a - a | < | a | for all a e L*}. We set p == char(K).

2.4.4. Proposition. — (i) I(L/K) and W(L/K) are normal divisors of G(L/K) and
W(L/K)CI(L/K);

(ii) the extension t/JK is normal fl^G(L/K)/I(L/K) ̂  G(L/£);
(iii) there is a canonical isomorphism I(L/K)/W(L/K) ̂  Hom(| L* |/| K'|, U);
(iv) W(L/K) is a pro-p-grouR,
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Proof. — (i) is trivial.
(ii) Let S' e L. We take a representative a of a' in L° and the minimal polynomial

P(T) = T" + a^ T""1 + ... + ̂  of a over K. Since the valuation of L coincides
with the spectral norm,

[ a | = max | a. P1 < 1,' ' i«^n ' i ' 5

and therefore all ^ belong to K°. The element 0' is a root of the polynomial
?(T) == T~ + % T"-^ ... + % e K[TJ. Hence all the elements of (K)0 conjugated
to S' are also roots of?(T). Since the group G(L/K) acts transitively on the set of roots
of P(T), its image in the automorphism group of£ over S. acts transitively on the set of
roots of?(T). It follows that Tl is normal over K, and the canonical map G(L/K) -> G(T1/JKL)
is surjective.

(iii) For a e I(L/K) and a e L* we denote by ^((T, a) the image of the element °a/a
in t/. The map ^ : I(L/K) x V ->1^ is bilinear because for (T, T eI(L/K) one has

"•a
a a a

< 1.

Furthermore, if | a | = [ (3 |, then

°a °p
"a~i a l°p p; < 1,

i.e., 4/(<r, a) depends only on | a [. If a e K*, then ij;(cr, a) = 1. Therefore ^ induces an
embedding

M(L/K) = I(L/K)/W(L/K) c^ Hom(| V |/| K* |, U).

2.4.5. Lemma. — If K' ^ fl Galois extension of K wz<A KC K'C L, then there are
exact sequences

0 -^I(L/K') -^I(L/K) ->I(K7K) ^0,

0 ~>W(L/K') -^W(L/K) ->W(K'/K) -^0.

Proof. — The only nontrivial fact is the surjectivity of the maps I(L/K) -> I(K7K)
and W(L/K) ->W(K7K). The surjectivity of the first map is equivalent to the sur-
jectivity of the map G(L/K) -> G(H/£.) which is proved in (ii). The surjectivity of the
second map is equivalent to the injectivity of the map M(L/K/) -> M(L/K). The latter
fact follows from the part of (iii) which is already verified. •

Suppose that L is finite over K and set K' = L^^. By Lemma 2.4.5,
W(K'/K) = 0. We claim that E:' is the maximal subfield tl, C £ separable over 1C,
and [I(K7K) : 1] == [Hom(| K'* |/| K* |, K'*) : 1] == [| K'* | : | K* |]. Indeed, since

G(K7K) = G(L/K) = G(L,/K),
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we have Ly C K'. Furthermore,

[K': K] = [G(K'/K) : 1] [I(K7K) : 1]

^ [K': K] [Hom(| K" |/| K% K") : 1]

< [K'.-K] [| K" | : | K* H ^ C K ' : K].

Therefore all the inequalities are actually equalities, and our claim follows. The case
of an arbitrary L is deduced from this, using Lemma 2.4.5.

(iv) As above, it suffices to assume that L is finite over K. Suppose that W contains
an element a of order / which is prime to p. Let K' be the subfield of L, which consists
of elements fixed by CT. Then L is a cyclic extension of K' of degree /. Take an element
a e L with L == K'(a). If a == Tr^^'(a), then replacing a by a — all, we may assume
that Tr^^(a) =0. On the other hand, since cr e W then ^oc == a +(B,, where [ [Bj .< | a [.
We have

i— i
0 = a + °a + . . . + ̂ -'a =: IOL + S [B,.

i=0

This is impossible because | SJZ^ (3j < [ a | = [ /a [. •
The group I(L/K) is said to be the inertia group, and the group

M(L/K) = I(L/K)/W(L/K)

(resp. W(L/K)) is said to be the moderate (resp. wild) ramification group of the
Galois extension L/K. Furthermore, applying Proposition 2.4.3 to the separable
closure K8 of K, one gets the maximal unramified (resp. moderately ramified) extension K^
(resp. K^) of K. We set G^ = G^/K), G^ == G^VK), M^=G{KmT|KaI)
and WK = G(K8/Kmr).

2.4.6. Corollary. — (i) K111' is the separable closure K8 ofK and \'KnT \ = \ K |;
(ii) G^ = Gg; __
(iii) M^ ̂  Horn (V| K* [/ K* |, (K8)*);
(iv) W-^ is a pro-p-group. •

We say that an algebraic extension L/K is unramified (resp. moderately ramified) if
LCK111' (resp. LCK1111').

2.4.7. Proposition. — A finite separable extension L/K is unramified (resp. moderately
ramified) if and only if it satisfies the following conditions:

a) L is K-cartesian, i.e., [L: K] = [i: K] [| L* | : | K* [];
b) L is separable over K;
.; ] L * | = | K * | ( r e s p . p ^ [ \ L - \ : \ K - \ ] } .
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Proof. — The direct implication follows from Proposition 2.4.4 and the fact that
a subfield of a K-cartesian field is K-cartesian.

2.4.8. Lemma. — Any finite extension L/K with p ^[L: K] is moderately ramified.

Proof. — The assertion follows from the fact that the wild ramification group
W(L'/K) is an invariants-subgroup of the Galois group G(I//K.), where L' is the minimal
Galois extension of K which contains L. •

Suppose that L satisfies the conditions a)-c). Let L' be a finite Galois extension
of K which contains L, and let KQ be the maximal subfield of L' which is unramified
over K. We take the field K' C Ko for which K' == £ and claim that K' C L. Indeed,
let a be an element of K'° with K' = K(oQ. Since [K' : K] == [K' : K], we have
K' = K(a). Let P(T) be the (monic) minimal polynomial of a over K. It is clear that
P(T) e K°[T]. The polynomial P(T) is separable and has a root in I. Since L° is Hen-
selian, there exists a root P of P(T) in L with ^ = o?. From this it follows that (3 = a
because that polynomial P(T) is separable.

We have [L: K'] = [| L* | : | K* |]. If | L* | - | K* |, then L - K/. If p does
not divide [| L* | : | K' [], then p ^[L: K'], and, by Lemma 2.4.8, L is moderately
ramified over K\ Since K' is unramified over K, L is moderately ramified over K. •

2.5. The cohomological dimension of the fields K[x)

Recall that the /-cohomological dimension cd^(G) of a profinite group G is the
minimal integer n (or oo) such that H'(G, A) = 0 for all i > n and all /-torsion G-mo-
dules A (/ is a prime integer). The /-cohomological dimension cd^(K) of a field K is, by
definition, the /-cohomological dimension cd,(G^). Recall also that if / === char(K),
then cd,(K) < 1 ([Ser], Ch. II, § 2.2).

2.5.1. Theorem. — For a point x eX, one has cd^K.{x)) ^ cd^k) + dim(X).

Proof. — First of all we remark that the statement is evidently true if dim (X) == 0
and that, by Proposition 2.4.1, one has cd;(K(A;)) == cd^^x)). Consider first the case
when X is a closed disc in A1. If [K{x) : k] < oo, then cd((K(;c)) ^ cd^). Assume there-
fore that [K{x) : k] == oo. Then the field of the rational functions in one variable k{T)
is embedded in K{x) and everywhere dense in it. Fix an embedding k{T)8 <-^ K{x)8 over
the canonical embedding k(T) <^K{x). Since the field K{x) is quasicomplete, it follows
that K{x)8 === k^T)8^). In particular, the Galois group G,̂  can be identified with
a closed subgroup of G^, and therefore one has cd^K^)) < cd^(T)) (loc. cit., Ch. I,
§ 3.3). By Tsen's Theorem {loc. cit., Ch. II, § 4.2), one has cd^(T)) ^ cd^k) + 1,
and hence cd^K^x)) ^ cd^k) + 1-

Suppose now that dim(X) ^ 1 and that the theorem is true for affinoid spaces
whose dimension is at most dim(X) — 1. Take an analytic function/on W which is
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nonconstant at any irreducible component of X and consider the induced morphism
f: X ->A1. The morphism f can be considered as a morphism to a closed disc of a
sufficiently big radius Y. Letj/ ==f{x). The point x is also a point of the ^(j/)-affinoid
space X^, whose dimension is at most dim(X) — 1. By induction,

cd,(J^)) ^ cd^(jQ) + dim(X) - 1,

and, by the first case, cd^^{y)) ^ cd;(A) + 1. The required inequality follows. •
If / is not equal to the characteristic of the residue field of k, then one can get as

follows a more strong inequality for cd^K^x)) (the result will not be used in the sequel).
For this we recall some definitions and facts from [Ber], §9.1.

Let K be an extension of k with a valuation which extends the valuation of k./v <^
We denote by s^K/h) the transcendence degree of K over k and by t(K.lk) the dimension
of the ^-vector space V| K*|/V|^|, and we set d^Kfk) == ^(K/A) + t(Klk) (the
dimension of K over A). It is clear that d(Klk) = d{'Kfk).

2.5.2. Lemma. — For a point A:eX, one has d{K{x)lk) ̂  dim(X). Moreover, the
equality is achieved for some point of X.

Proof. — IfXis strictly A-affinoid, the assertion is proved in [Ber], 9.1.3. The proof
also shows that d(K{x)fk) == dim(X) for some point x from the Shilov boundary of ^
(see [Ber], § 2.4). In the general case we take a field K of the form Ky y for which
the algebra ^f == ^ (§> K is strictly K-affinoid. Let 9 denote the canonical map
X' ==e^(e^') ->X, and let a denote the map X -^X' from Lemma 2.2.5. Since the
fiber of 9 at x coincides with ^{^{x) ®K), it follows that d{K{a{x)) /K(A?)) = n. By
the strictly affinoid case, rf(K(cr(A;))/K) ^ dim(X). Let now x ' be a point from the Shilov
boundary ofj^7 for which rf(K(^')/K) == dim(X). It is easy to see that x ' = a{x) where
x = 9^). Therefore d{K{x)lk) == d^x^/K) = dim(X). •

/^/
2.5.3. Theorem. — Suppose that /=f= char(^). Then for a point A:eX, one has

cd,(K(^)) ^ cd,{k) + d{K(x)lk).

2.5.4. Lemma. — Let K be a quasicomplete field, and lett be a prime integer different from
char(K). Suppose that the numbers cd^(KL) and s^K) = dim (̂ | K* |/| K* |1) are finite.
Then cd;(K) ^ cd,(K) + J,(K).

Proof. — Since W^ is a ^-group, then cd;(K) == cd;(G^'). Furthermore, since
the group M^ is abelian, cd^M^;) coincides with the /-cohomological dimension of
the ^-component of M^. The latter group is isomorphic to Z3^, and therefore
cdj(M^) = ^(K). Since G^ == G^, the required fact follows from the spectral sequence
H^G^H^MK.A)) ^H^G^.A).^

Proof of Theorem 2.5.3. — As in the proof of Theorem 2.5.1 consider first the
case when X is a closed disc in A1. Let x ' be a point of X' = X^^ over A?. Since the
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field K{x) k8 is everywhere dense in K(^') and the both fields are quasicomplete, from
Corollary 2.4.2 it follows that G^')^G^^. Therefore there is an exact sequence

0 -> G ,̂ ̂  G^, -> G(K(^) k8^)) -> 0.

The latter group is a closed subgroup ofG^ and hence its cohomological dimension is at
most cd,{k). It follows that cd,(K^)) ^ cd^k) + cd,(K(^)). Since d^x')^) = d{K(x)lk),
Lemma 2.5.4 implies that cd;(K(A;')) = d(yi{x)jk).

Suppose now that dim(X) ^ 1 and that the theorem is true for affinoid spaces
whose dimension is at most dim(X) — 1. As in the proof of Theorem 2.5.1 we can
find a morphism/: X ->Y, where Y is a closed disc in A1, such that all of the fibres
ofX has dimension at most dim(X) — 1. Letj ==f(x). By induction,

cd^(A:)) ^ cd^(jO) + W^(j/)),

and, by the first case, cd,(^(j/)) ^ cd^) + d^(y)lk). Since

W^)/^)) + d{^^)fk) = d^{x)lk),

the required inequality follows. •

2.6. GAGA over an affinoid space

Let W be a scheme of locally finite type over X, and let F be the functor from the
category of morphisms Z -> X, where Z is a good analytic space over k, to the cate-
gory of sets which associates with Z -> X the set of morphisms of locally ringed
spaces over ^*, Hom^.(Z, W).

2.6.1. Proposition. — The functor F is representable by a closed morphism of k-analytic
spaces ^an -> X and a morphism of locally ringed spaces n: ^an -> W. The correspondence
^ ̂  ̂ an is a functor which commutes with extensions of the ground field and with fibred products.

Proof. — The ^-analytic space ^an is constructed in the same way as in the case
when X ==^(A) (see [Ber], 3.4.1). Namely, one shows that if W is the affine space
over 3;, A^., then ^an = A^ = X x A^. After that one shows that if W^ exists for ,̂
then y exists for any subscheme S C W. In particular, ̂  exists for any affine scheme
of finite type over X and for any its open subscheme. Finally, if W is an arbitrary scheme
of locally finite type over ^, then one takes an open covering {^}^i of W by affine
subschemes of finite type over X. One glues together all of the W^s and obtains the
^-analytic space ^an associated with W. That the correspondence W ̂  ^an is a functor
possessing the necessary properties follows from the universal property of W^. •

2.6.2. Proposition. — The map n: Y = ̂  -> W is surjective, and for any pointy e Y
the ring Q^y is flat over fi^y, where y == n{jy) (i.e., n is a faithfully flat morphism}.
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Proof. — By Proposition 2.1.1, the map X ->S£ is surjective. Therefore to show
that the map TC : Y —> W is surjective, it suffices to verify that for any point x e X the
map Y^ -> W^ is surjective. One has

Y^^^oo^))"1.

Since the morphism of schemes ^ ®kw J^(•v) -^ ^x ls faithfully flat, the situation is
reduced to the case when X ==^(A). In this case it suffices to verify that if W is an
irreducible affine scheme of finite type over k and y is its generic point, then there exists
a point y e Y whose image in W is y. The Noether Normalization Lemma reduces the
problem to the case when W is the affine space A^. In this case, for any point y e Y == A^
associated with a closed polydisc, 7c(j) is the generic point of W = A^.

2.6.3. Lemma. — The map TT : Y == ^an -> W induces a bijection

Yo^o^y^lE^y)^]^}.
J/*j/eYo, then there is an isomorphism of completions ^y-^^y^.

Proof. — Let y e^o. For n^ 1 we set .2T == Spec(^y/m;*). The scheme S
consists of one point z and is finite over k. Therefore Z = ^an consists of one point 2,
and one has ̂  , == ̂  y/n1^ r> ^z,»• Furthermore, there is a canonical closed immersion
S -> ̂  which takes z to y. Therefore Z -> Y is also a closed immersion, and the
point y^ which is the image of z in Y, is the only preimage of y in Y. (In particular,
YQ ̂  ̂ o.) Moreover, one has

^y/my^^-^Jm;^.

If n == 1, we get m.y == niy (Py^y and ^(y) == K(j^). Hence ̂  y r^ ff^y. •
From Lemma 2.6.3 it follows that fi^ y is flat over ̂  y at least in the case when

y eYg. In the general case we take a sufficiently big non-Archimedean field K over k
such that there exists a K-point y ' e Y' = Y <§ K over j/. We set X' == ̂ (^ (§> K) and
3;' == Spec(^K). One has Y' == ^'an, where ^/ == W x ^ y S " . Let y' be the image
of the pointy in W. We know that tfy^ is flat over fl^y- Since ^' is faithfully flat
over 3C (Lemma 2.1.2), it follows that 0<y'^ is flat over ^y, and therefore ^y'.v' ls

flat over ^y. Finally, from Corollary 2.1.3 it follows that 0^,^ is faithfully flat
over ^y. Hence (Py ̂  is flat over fl^y •

2.6.4. Proposition. — Let T be a constructive subset of W. Then TTT^T) === ̂ (T).

2.6.5. Lemma. — Suppose that W is affine of finite type over X. Let y, z ̂  points ofW
with z ey, and let z be a point of°H^ with n{z) == z. TA^ any open neighborhood of z contains
a point y with ^{jy) = y.

Proof. — For a non-Archimedean field K over k, we set ^ ' ==== A (§ K, X' == ̂ (^'),
^' == Spec(^), ^' ==W X y S " . Since ^' is faithfully flat over ^, there exists points
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y', z' e W over y and z, respectively, with z' e y'. Since the tensor product K{z) ®^ A(z')
is nontrivial, the valuation on K{z) extends to a multiplicative seminorm on it. It follows
that there exists a point z ' e ̂ 'an whose image in W is z' and in ^an is z. Thus, we can
extend the field A, and, in particular, we may assume that the valuation on k is nontrivial
and ^ is strictly ^-affinoid. Let W = Spec(B). Replacing B by B/^y, we may assume
that W is reduced and irreducible and that y is its generic point. Since ^an is everywhere
dense in ^an, we may assume that z e ̂ an. Furthermore, since the ring B is excellent
(it is finitely generated over the excellent ring j^), Reg(^) is an everywhere dense
Zariski open subset of W. Shrinking @^, we may assume that W is regular. In this case
the homomorphism B -> (9^ ^ is injective. From Lemma 2.6.3 it follows that the homo-
morphism B —^ fi^an , is injective. Take a sufficiently small connected strictly affinoid
neighborhood V == e^(^y) of the point z. The latter homomorphism goes through 3S^,
therefore the homomorphism B -> ̂ y is injective. Since ̂ an is regular and V is connected,
the ring 8S^ is an integral domain. By Proposition 2.1.1, there exists a point y e V for
which the character 88^ ->^[y) is injective. It follows that the character S8 ->J^(y)
is injective, and therefore ^{y) is the generic point of W. •

Proof of Proposition 2.6.4. — It is clear that TT'^T) C TT-^T). To verify the inverse
inequality, we may assume that T = ̂ . Since T is constructible, it contains an every-
where dense Zariski open subset of W and, in particular, all of the generic points of W.
From Lemma 2.6.5 it follows that TT-^T) = ^an. •

2.6.6. Corollary. — A constructible set T is open (resp. closed^ resp. everywhere dense)
in W if and only z^r^^T) is open (resp. closed, resp. everywhere dense) in ^an. •

2.6.7. Corollary. — A morphism 9 : S —> W between schemes of locally finite type over S£
is separated if and only if (p^ : ̂ an -> ̂ an is separated.

Proof. — Let ^ : S - > S x < y S be the diagonal morphism. If 9 is separated,
then A is a closed immersion, and it follows that so is A"1. Assume that 9^ is separated.
It suffices to verify that the set A(^T) is closed in 3£ X^ 3S. This follows from Corol-
lary 2.6.6 because A(^) is a constructible set and its preimage in ^an x^an ^an

is closed. •

2.6.8. Proposition. — For a morphism 9 : 3£ -> W between schemes of locally finite type
over 3F, one has n~\^{S')) == ̂ S^}.

Proof. — From the construction of the analytification it follows that the statement
is true when 3S is an open subscheme of W and, if{^}^j is Jan open covering of ,̂
then { ^an }^ j is an open covering of ^an. Hence the situation is reduced to the case
when W = Spec(B) and 3S == Spec(G) are affine schemes of finite type over SK. The
inclusion ^(S^) C -n:"1^^)) is evident. To verify the converse inclusion, it suffices



54 VLADIMIR G. BERKOVICH

to show that if q is a prime ideal of G, then any multiplicative norm on B/p, where p
is the preimage of q in B, extends to a multiplicative norm on G/q. But this follows
from the well known fact that a valuation on a field can be extended to a valuation on
any bigger field. •

The following statement is proved in the same way as its particular case when
X =^(K) (see [Ber], 3.4.7).

2.6.9. Proposition. — Let 9 : 3£ -> W be a morphism of finite type between schemes of
locally finite type over °K. Then 9 is proper (resp. finite, resp, a closed immersion) if and only if 9^
possesses the same property. •

2.6.10. Proposition. — Let 9 : 3£ = Spec(G) -^W == Spec(B) be a finite morphism
between affine schemes of finite type over S£. Let z e 2K andy e ̂ an be points with <p(z) = TT(^) == y,
and let ^J^\y) == { ̂  ..., ̂  } and y^'1^) n TT-^Z) == { z^ ..., ̂  }, m ̂  n. Then
there is an isomorphism of rings

m n

°̂, y ®ey „ ̂ , , ̂  n C^, v X . n (^an ,,) ̂ ,
' i == 1 i==w+l

where (^an^.)p is the localization with respect to the complement of the prime ideal of C cor-
responding to the point z.

Proof. — If V is an affinoid domain in ^^ then for its preimage W in ^an one
has (S^=0§^®•QG. Since cp^ is finite, from Lemma 2.1.6 it follows that
^any^sC^ n^ ^an^.. The ring ^any®^ 0^^ is the localization of ^an y0^ G
with respect to the complement of^. IfTr(^) = z, then the ring ^an .̂ does not change
under this localization. The required statement follows. •

§ 3. Etale and smooth morphisms

3.1. Quasifinite morphisms

3.1.1. Definition. — A morphism of^-analytic spaces 9 : Y -> X is said to be finite
at a pointy e Y if there exist open neighborhoods Y^ ofy and ^ofy(j/) such that 9 induces
a finite morphism i^ -> W; 9 is said to be quasifinite if it is finite at any point y e Y.

It follows from the definition that quasifinite morphisms are locally separated
and closed.

3.1.2. Lemma. — If a morphism 9 : Y -> X is finite at a point y e Y, then the neigh-
borhoods V and W from the Definition 3 . 1 . 1 can he found arbitrary small.

Proof. — We may assume that the morphism y is finite. Let x == y(jy) and let
(p-^) == {j/i ===J^25 • • -^A }• Since the map [ Y [ -^ [ X [ is compact, we can find a
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sufficiently small open neighborhood ^ of x such that y"1^) =11^1^, where
y, e ̂  and ^ n ̂ . = 0 for i ̂ j. It follows that all of the morphisms ̂  -> %
are finite, and the neighborhood V^ ofj^ is sufficiently small. •

3.1.3. Corollary. — Quasifinite morphisms are preserved under compositions, under any
base change functor, and under any ground field extension functor. •

We remark that if 9 : Y -> X is a quasifinite morphism and the space X is good,
then Y is also good. Quasifinite morphisms between good ^-analytic spaces can be
characterized as follows.

3.1.4. Proposition. — Let 9 : Y ->X be a morphism of good k-analytic spaces, and let
y eY and x == <p(j/). The following are equivalent:

a) 9 is finite at y\
b) there exist sufficiently small affinoid neighborhoods V ofy and U ofx such that 9 induces

a finite morphism V -> U;
c) the point y is isolated in the fibre ^'~l{x) and y eInt(Y/X).

Proof. — The implications a) => c) and b) => c) are trivial. The implication
b) => a) follows from the following Lemma.

3.1.5. Lemma. — Let 9 : Y -> X be a morphism, and let V C Y and U C X be affinoid
subdomains such that 9 induces a finite morphism ^ : V -> U. Then Int(V/Y) = ^(In^U/X)).
In particular, y induces a finite morphism Int(V/Y) ->Int(U/X).

Proof. — From [Ber], 3.1.3, it follows that

Int(V/X) = Int(V/Y) n Int(Y/X) = Int(V/Y).

On the other hand, Int(V/X) = Int(V/U) n ̂ (In^U/X)) = ̂ (In^U/X)). There-
fore Int(V/Y) = ̂ (In^U/X)). •

To verify the implication c ) => b), it suffices to assume that X==^(j^) and
Y = Jl{SS} are ^-affinoid. Furthermore, since X and Y are compact, we can decrease
them and assume that ^~l(x) ==={j»}. Since y e!nt(Y/X), there exists an admissible
epimorphism

Tr:^^--1^,...^1^}--^

such that | 7r(T,) {y) \ < r,, 1 ̂  i ̂  n. For any affinoid neighborhood U of A?, n induces
an admissible epimorphism

^;^^{^lTl,...,r„-lT„}^^^.

If U is sufficiently small, then y''l(U) is a sufficiently small affinoid neighborhood
of the point j\ Therefore we can find sufficiently small U such that [ 7r(TJ (y)| < r
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for all points y ' ey^U). This means that the induced morphism of^-affinoid spaces
^(U) -^U is closed. By [Ber], 2.5.13, the latter morphism is finite. •

3.1.6. Corollary. — If a morphism of good k-analytic spaces 9 : Y -> X is finite at a point
y e Y, then tf^ y is a finite 0^ ̂ -algebra. •

Recall that a morphism of schemes 9 : W -> S£ is called quasifinite if any point
y eW is isolated in the fibre y'^x) = ̂ , where x = (p(y) (see [SGA1], 1.2).

3.1.7. Corollary. — A morphism 9 : 3£ —^W between schemes of locally finite type over
3E == Spec(J^), where ^ is a k-affinoid algebra^ is quasifinite if and only if the corresponding
morphism ^n: 2£^ -> ̂ an is quasifinite.

Proof. — For any pointy e ̂ an, there is an isomorphism of ^{y) -analydc spaces

(^^^(J))^^.

Therefore our assertion follows from the fact that the morphism 9^ is closed (Pro-
position 2.6.1). •

3.1.8. Proposition. — Let 9 : Y ->• X be a morphism of k-analytic spaces^ and let y e Y
and x = <p(j0. Then the following are equivalent:

a) 9 is finite at y\
b) there exist analytic domains X^, ..., X^C X such that x e X^ n ... n X^,

X^ u . . . u X^ is a neighborhood of x and the morphisms (p'^X^) -> X^ are finite at y\
c) there exist affinoid domains Vi, . . . , V^ C Y and U^, ..., U^ C X such that

y e Vi n . . . n V^, V^ u ... u V^ fl̂  Ui U ... u U^ flr^ neighborhoods of y and x,
respectively^ <p(VJ C U,, and the induced morphisms 9,: V^ —^ U, flwrf <p^ : V, n V, -> U^ n U,
<?r̂  ^TZZ^ ^ j.

We remark that if the spaces X and Y are separated, then the finiteness atj^ of
all the morphisms 9, from c ) implies the same property for the morphisms <p^. Indeed,
in this case U, n U, and V, n V, are affinoid domains and, by Proposition 3.1.4,
it suffices to verify that y e Int(V, n V,/U, n U,). If V,, := y.-^U, n U,), then
y e!nt(V,,/U, n U,), and therefore y e Int(V,, n V,JU, n U,). It remains to note
that V, ,nV, ,=V,nV, .

proof. — The implication a) => b) is trivial. Furthermore, we remark that all
three properties remain true if we replace X and Y by sufficiently small open neigh-
borhoods of the point x andjy, respectively. In particular, we may assume that X and Y
are Hausdorff.

b) => c ) . We may assume that X, == U,' are affinoid domains. Then we can
find affinoid neighborhoods V,' of y in ^~~l(Vf,) such that the induced morphisms
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9,' : V,' -> U,' are finite at j. Furthermore, shrinking X and Y, we may assume that
the morphisms 9,' are finite and ^~\x) ={^}. Thus we get a morphism ^ : V -> U,
where V = V; u ... u V, and U = U, u ... u U, are compact analytic neigh^
borhoods ofy and x, respectively. It follows that we can find on open neighborhood %
of x in X with ^ C U such that ̂  := ^-1^) is an open neighborhood ofy in Y and,
for every 1 ̂  ̂  n, ^(U; n ^) C V;. If now U, is an affinoid neighborhood of x in
U; n^, then V,:== ^(U,) is an affinoid neighborhood of y in V; n ,̂ and the
induced morphism 9,: V, -^ U, is finite. Since V, n V, = (p^W ^ U,), the induced
morphisms 9,, : V, n V, -> U, n U, are finite. Hence, 9 satisfies c).

3.1.9. Lemma. — If Y is an analytic domain in X and the canonical morphism Y -> X
is quasifinite, then Y is open in X.

Proof. — Since quasifinite morphisms are closed, Int(Y/X) = Y. By Proposi-
tion 1.5.5 (ii), Int(Y/X) coincides with the topological interior of Y in X. It follows
that Y is open in X. •

c ) => a). We can shrink all the affinoid domains V, and assume that 9,-1(A:) == {y }.
Then for sufficiently small affinoid neighborhoods U,' of A: in U,, 9^1(^/) and
Pi^W n u^) = Pz'^UQ ^r1^.) are sufficiently small neighborhoods of y in V
and V, n V,, respectively. Thus, we can shrink all the affinoid domains U, and assume
that all of the morphisms 9^ and 9 .̂ are finite.

Furthermore, the morphism 9, induces finite morphisms 9^.: V, n V -> U, n U
and V,,:=9, - l(^nU,.)->^nU,, and therefore the canonical embedding of
special domains V, n V, -> V,, is finite. From Lemma 3.1.9 it follows that V, n V,
is open in V,,, and therefore V,, == (V, n V,) U W,, for some special domain W^CV,!
We get 9-l(^) ==V,UW,, where W,=U,^W,, . Since y e V, n ... n V,, we
have x ^ 9(W,), and therefore we can find, for each 1 ̂  i ̂  n, an affinoid neighborhood U,'
of A; in U, such that U; n 9(W,) = 0. The latter implies that 9~1(U;) == V; := 9^1(U;)t.
Hence, the morphism V^ U . .. u V^ -> U[ u . . . u U^ is finite, and the required
statement follows. •

3.1.10. Corollary. — A morphism of k-analytic spaces 9 : Y -> X is finite at a point
y eY if and only if the point y is isolated in the fibre 9-'l(9(^)) and y e!nt(Y/X).

Proof. — The direct implication is clear. Suppose thatj^ is isolated in 9~ l(9(^))
andjy eInt(Y/X). We can shrink Y and assume that 9 is closed. Let U^, . .., U^ be
affinoid domains in X such that ^{y} e Ui n ... n U^ and Ui u ... u U^ is a neigh-
borhood of 9(j/). From Proposition 3.1.4 is follows that 9-l(^) -> U, are closed
morphisms of good ^-analytic spaces. In particular, the property b ) of Proposition 3.1.8
holds. It follows that 9 is finite at y. •
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3.2. Flat quasifinite morphisms

A morphism of good ^-analytic spaces 9 : Y —»- X is said to be flat at a pointy e Y
if ^Y y is a flat 0^ y^-algebra. 9 is said to be flat if it is flat at all points y e Y.

3.2.1. Proposition. — A finite morphism ofk-affinoid spaces 9 : Y === e^(^) -> X = ̂ (^)
is flat at a pointy e Y if and only if 3S ̂  is a flat ̂  ̂  -algebra^ where x == <p(jQ» In particular,
9 is flat if and only if88 is a flat ^/-algebra.

Proof. — If ^Y,i/ ls ^at over ^x,a;» ^en it is also flat over s/ ^ , by Theorem 2.1.4.
Thus, the ring ^y y is faithfully flat over S8^ and is flat over ^y . It follows
that 89^ is flat over ^/y . Conversely, suppose that 3S ̂  is a flat e^p -algebra.
Then the ring ^x^^^^y is ^t over (9^. If 9-1^) == {ji =^,j^ • • •^nL t^n
^x,rc(x)^ gs == ̂ = i °^,vi (Lemma 2.1.6). But the ring 0^ ®^ 3S^ is the localization
of Q^^^SS with respect to the complement of ^?y, and therefore, is a direct product
of the same localizations of the rings ^Py,^.. Since the ring 0^y does not change under
this localization, it is a direct summand of the flat (9^ ̂ -module ^x,a?®a^ ^y • ^t

follows that ^Y,y ls a flat ^X,a;'"ateebra• •

3.2.2. Corollary. — A morphism of good k-analytic spaces 9 : Y -> X is flat quasifinite if
and only if for any point y e Y there exist affinoid neighborhoods V of y and U of x == ^{y) such
that y(V) C U and 89^ is a flat finite ^/-y-algebra.

Proof. — The converse implication follows from Proposition 3.2. I* Suppose
that 9 is flat quasifinite. By Corollary 3.1.6, YPy y is a finite 0^ ̂ -algebra. Therefore
there is an isomorphism (P^^ •̂  ^y,!/' ^t ls ̂ ^ lhat it comes from a homomorphism
j^r "~^ ̂ v ^or ^me affinoid neighborhoods V ofjy and U of A; such that 9 induces a finite
morphism ^ : V -> U. The homomorphism considered is related to a homomorphism
of sheaves (0^ ->• ^(^y)- The supports of the kernel and cokernel of the latter homo-
morphism are Zariski closed in U and do not contain the point x. It follows that one
can decrease U and V such that ^^-^(^y)? ̂  ^r^^v- Hence ^ : V - > U is
a flat finite morphism. •

3.2.3. Proposition. — Let 9 : Y ->X be a finite morphism of k-analytic spaces, and let
y eY and x = 9(j0. Then the following are equivalent:

a) there exist affinoid domains V\, ..., V^C X such that x e V\ n . . . n V^,
Vi U ... U Vy» ^ a neighborhood of x and 9~1(V^) —»- V, are flat at y\

b) for any affinoid domain A: e V C X, 9-1(V) -> V is flat at y.

Proof. — The implication b) => a) is trivial. Suppose that a) is true. Then b) is
true for any V that is contained in some V,. Assume that V is arbitrary. Replacing V
by a small affinoid neighborhood ofx in V, we may assume that V C V\ u ... u V^. By
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Lemma 1.1.2 (ii), there exist affinoid domains U^, ..., U^ such that V == Ui u ... u U^
and each U, is contained in some V,. By the first remark, if x eV^ then the finite
morphism y'^U,) -^U, is flat atj. Therefore the required fact follows from the fol-
lowing lemma.

3.2.4. Lemma. — A finite morphism of k-affinoid spaces 9 : Y -^ X is flat at a point
y e Y if and. only if there exists a finite affinoid covering {V, }i ̂  ̂  „ of X such that, for each i
with <p(j/) eV,, the induced finite morphism ^(V,) -^V, is flat at y.

Proof. — Shrinking X, we may assume that (^{y} e V\ n ... n V^. Furthermore,
from Proposition 3.2.1 it follows that we can shrink X and Y and assume that all of
the morphisms y""1^) -> V, are flat. It suffices to show that 9 is flat after an extension
of the ground field. Therefore, we may assume that the valuation on k is nontrivial,
and all V, are strictly A-affinoid. (Then X and Y are also strictly ^-affinoid.) If x e Xo,
then 0^^ == 0^ ̂  for any V, that contains x. It follows that 9 is flat at all points of Y,
i.e., 9 is flat. •

Let 9 : Y —> X be a quasifinite morphism of ^-analytic spaces.

3.2.5. Definition. — The morphism 9 is said to be flat at a pointy e Y if there exist
open neighborhoods i^ ofy and % of <^{y) such that 9 induces a finite morphism ̂  -> %
that possesses the equivalent properties of Proposition 3.2.3; 9 is said to be flat if it is
flat at all points of Y.

From Proposition 3.2.3 it follows that if a quasifinite morphism 9 : Y -> X is flat
at a point y e Y, then the neighborhoods Y^ and ^ can be found sufficiently small.

3.2.6. Corollary. — Flat quasifinite morphisms are preserved under compositions^ under
any base change functor^ and under any ground field extension functor. •

3.2.7. Proposition. — A flat quasifinite morphism 9 : Y -> X is an open map.

Proof. — We may assume that X and Y are ^-affinoid. Letj/ eY and x = ^[y).
By the proof of Corollary 3.2.2, there exist affinoid neighborhoods V ofy and U of x
for which there is an isomorphism ^y-^ja^. In particular, the canonical homo-
morphism j^j -> 88^ is injective and finite. By [Ber], 2.1.16, the map

<p:V=^(^) ^U==^(j<j)

is surjective. By Lemma 3.1.5, Int(V/Y) = ^(In^U/X)), and therefore

^(Int(V/Y)) = Int(U/X). •

3.2.8. Proposition. — Let 9 : Y -> X be a quasifinite morphism. Then the set of points
y e Y such that 9 is not flat at y is Zariski closed.
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Proof. — We may assume that 9 is a finite morphism ofA-affinoid spaces. In this
case Proposition 3.2.1 reduces the statement to the corresponding fact for morphisms
of affine schemes. •

3.2.9. Proposition. — Let 9 : Y -> X be a closed morphism of pure one-dimensional
good k-analytic spaces, and suppose that X is regular and Y is reduced. Then 9 is flat quasiflnite
if and only if 9 is nonconstant at any irreducible component of Y.

Proof. — The direct implication is trivial. Suppose that <p is nonconstant at any
irreducible component of Y. Then 9 has discrete fibres, and therefore is quasifinite, by
Proposition 3.1.4. It follows that for any point y eY we can find connected affinoid
neighborhoods V ofy and U of <p(j/) such that 9 induces a finite morphism ofyfe-affinoid
spaces V -> U. Then ̂  is a one-dimensional regular integral domain, the ring 3S^
is reduced, and the canonical homomorphism ̂  -> 88^ is injective. By [Ha2], III. 9.7,
^v is a flat ^-algebra. •

3.2.10. Proposition. — A morphism 9 : 3£ -> W between schemes of locally finite type
over X = Spec(e^), where ^ is a k-affinoid algebra, is flat quasifinite if and only if the corres-
ponding morphism 9^ : 2£^ -> ̂ an is flat quasifinite.

Proof. — Since ^an and ^an are faithfully flat over ^ and ^T, respectively, the
converse implication follows. Assume that 9 is flat quasifinite. Then 9^ is quasifinite,
by Corollary 3.1.7. Let z e ^an, y == 9^), z = 7^), and y = n(y). We may replace ̂
and S by open affine subschemes of finite type over 3;. By Zariski's Main Theorem,
there is an open immersion of ^ in an affine scheme ^ finite over .̂ Then ^an -> ^an

is also an open immersion, and ^an is finite over ^an. By hypothesis, 0^^ is flat over ̂  y.
Therefore ^an^®^ y ̂  , is flat over ^an^. By Proposition 2.6.10,'^an^ is a direct
factor of the above tensor product. It follows that ^an ^ is flat over Q^n . •

3.3. Etale morphisms

We start this subsection with establishing basic properties of the sheaves of dif-
ferentials that were introduced in § 1.4. Of course, the essential case is that ofA-affinoid
spaces.

Let 9 : Y = ^{g§) -> X = ̂ (^) be a morphism of yfe-affinoid spaces. In this
case the sheaf Qy/x is associated with the finite Banach ^-module 0.^ == J/J2, where J
is the kernel of the multiplication pi: S3 ®^ 3S -> 88. Furthermore, let M be a Banach
^-module. An ^-derivation from 88 to M is a bounded map D : 3S -> M such that
B(x ^-y) == Dx + Dy, D{xy) == x Dy +y Dx and D(^) = 0. The set of all e^-derivadons
from 88 to M is a Banach ^-module with respect to the evident norm. It is denoted by
Der^(^, M). For example, the mapping S S - > ] : x } - ^ \ ® x — x®l induces an ^-^en-
vation d: 3S ->n^.



fiTALE COHOMOLOGY FOR NON-ARCHIMEDEAN ANALYTIC SPACES 61

3.3.1. Proposition. — (i) The finite SS-module Q^/^r is generated by the elements dx, x e 35.
(ii) For any Banach St-module M there is a canonical isomorphism of Banach SS-modules

Hom (̂0 ,̂ M) ̂  Der̂ , M)

(the left hand side is the set of all bounded 35-homomorphisms).

Proof. — (i) Let T be the ^-submodule of0^/^ generated by the elements dx, x e S8.
Recall that the ring 38 is Noetherian, and all its ideals are closed. Since tl^/^ is a finite
Banach ^-module, T is closed in it. We claim that for any w e O^/^ and any e > 0 there
exists an element t e T with [ | w — t \ \ < s. Indeed, let v be an inverse image of w in J.
There exists an element S^ i ̂  00 j^ e 38 00^ 3S such that [ [ v — Sf^ i x, 00 j^ 1 1 < e.
Since ̂  == 0, [| SjLi x,y, \\ < e. We have

n n

S ^®j;, == S (^® 1) (1 ®^ —y,® 1) + S ^j/,® 1

Therefore

v — 2 (^® 1) (1 ®^ —Vi® 1)

^ max(|| v - S x^ ||, || S ̂ ® 1 ||) < s.
i=l i=l

The required claim follows.
(ii) It is clear that the homomorphism considered is bounded. From (i) it follows

that it is injective. Therefore it suffices to construct an inverse bounded homomorphism.
Consider the following Banach ^-algebra 36 * M. As a Banach ^-module it is the direct
sum of S§ and M. Its multiplication is defined as follows: (^, m) (j/, n) == {xy, xn -\- ym).
Let now D : 38 —^ M be an e^-derivation. The bounded e^-bilinear mapping

3S x 89 -> 3S * M : (x,y) ̂  (xy, x Dy)

induces a bounded homomorphism of Banach j^-algebras 9 : 35 0^ 35 -> 3S * M. The
reasoning from (i) shows that y(J) C M. Since M2 == 0, the homomorphism 9 induces
a bounded homomorphism of Banach ^-modules /: U^r = J/J2 -> M. We have
DA: ==f(dx) for all x ^S5. That the correspondence D ̂ /is bounded follows from the
construction. •

3.3.2. Proposition. — Suppose we are given a commutative diagram of morphisms of
k-analytic spaces
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(i) There is an exact sequence

P^Xo/So) ^ "To/So -> "Yo/Xo -> °-

(ii) If ̂  is a closed immersion and ^o is the subsheaf of ideals in 0^ that corresponds to Y,
then there is an exact sequence

^G/̂ G -> ?G("Xo/So) -^ "Ye/So -> 0-

Proof. — We may assume that X=e^(^), Y==^(^) and S=^(^) are
^-affinoid.

(i) We have to show that the sequence of finite Banach ^-modules

n^®.̂  ->^ ->"^ ->o
is exact (note that Q^®^ == q^,®^). For this it suffices to show that for any
finite Banach ^-module M the induced sequence

0 -> Hom^(Q^/^, M) -> Hom^((X^y, M) -> Homy(Q^y, M)

is exact. But, by Proposition 3.3.1, the latter sequence coincides with the sequence
0 ->Der^(^, M) ->Der^(^, M) -» Der^(jaf, M) which is exact for trivial reasons.

(ii) LetJ be the ideal of.^ corresponding to ^. We have to show that the sequence
of finite Banach ^-modules J/J2 -i Q.^ ®^ 3S -> Q.gs^ -> 0 is exact, where S(x) = dx ® 1.
As above, it suffices to show that for any finite Banach ^-module M the sequence
0 ->Dery(^, M) ->Der<^(^, M) ->Hom^(J/J2, M) is exact, but this is evident. •

3.3.3. Proposition. — Let 9 : Y -> X be a morphism of k-analytic spaces. Then:

(i) for any morphism of k-analytic spaces f: X' ->X, one has ^y^xo ==.^/*("Yo/xo)'
where f is the induced morphism Y' = Y X^X' ->Y;

(ii) for any non-Archimedean field K over k, one has ^y^ =^i<t("yG/xG)5 w^^ /'
^ ̂  induced morphism Y' = Y ® K -> Y.

Proof. — We may assume that Y = ̂ (^), X = ̂ T(^) and X' = ̂ (^') from (i)
are A-affinoid. In this case Qy/x ls defined by the finite Banach ^-module J/J2, where J
is the kernel of the multiplication € € = 3 S ^ ^ 3 S - > 3 S . Note that the exact admissible
sequence O-^J-^^-^-^O is split.

(i) I f S S ' ^ S S ®^ cfl^, then £1^ is defined by the finite Banach ^'-module J'/J'2,
where J' is the kernel of the multiplication ̂  = SS* §)^ 3S1 -> SS*. We have to show that
J/J^^'^JVJ'2 (since J/J2 is a finite Banach ^-module, J/J2®^' =J/J2^^')-

The exact sequence 0 -»J' -> ̂ ' —^' -> 0 is obtained from the above exact
sequence by tensoring with ^f over ^. It follows that J' = J ̂  j^' = J <§)^ %" = J%"
because J is a finite Banach ^-module. Tensoring the exact sequence

O^J^J^J/J2-^
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with T over ^ we get an exact sequence J2®^ V ->J' --^J/J2®^ T ->0. Since
J/J2 ®^ ̂ ' = J/J2 ®^ ̂ ' and the image ofj2 ®y T in J' = J<^ coincides with J'2 == J2 ̂ ,
we get the required isomorphism.

(ii) If ^f = ^®K and ^' = ^(&K, then Qy^ ^ defined by J'/J'2, where
J' is the kernel of the multiplication ^ = SS' ®^ 35' -> ̂ '. As above we get that
J' == J (§ K = J<T and J'2 = J2 (8 K = J2 ̂ '. Therefore J/J2 (§ K = J'/J'2. It remains
to note that J/J2 ® K = J/J2 ®^ 88'. •

Let 9 : Y -> X be a quasifinite morphism.

3.3.4. Definition. — The morphism 9 is said to be unramified if ^y^ = 0. It
is said to be etale if it is unramified and flat. It is said to be mramified (resp. itale} at a
pointy e Y if there exists an open neighborhood ̂  ofj; such that the induced morphism
^ -> X is unramified (resp. ^tale).

For example, if 9 is a local isomorphism at a pointy e Y (i.e., there exist open neigh-
borhoods V ofj and ^ of (f>{x) such that 9 induces an isomorphism V -^ ^), then y
is ^tale atj^. Therefore if 9 is a local isomorphism (i.e., 9 is a local isomorphism at every
pointy eY), then 9 is ^tale.

3.3.5. Lemma. — If 9 : Y -^ X is a quasifinite morphism of good k-analytic spaces,
then the stalk of Qy^ at a point y eY coincides with the module of differentials ^B/A? w^^
B = 0^ A == 0^ and x = 9(j/).

Proof. — We may assume that 9 is a finite morphism of yfe-affinoid spaces
Y=^(^) ^X==^(^). In this case S8^^S9==g8^^g§, and therefore Qy/x ^
defined by the module of differentials Q^r (regarded as a finite Banach ^-module).
The required statement easily follows from this. •

3.3.6. Corollary. — A quasifinite morphism of good k-analytic spaces 9 :Y ->X is
unramified (resp. etale) at a pointy e Y if and only ifff^Jm^ (P^y is a finite separable extension
of the field K{x) (resp. and (P^y is flat over O^J, where x == ^{jy). •

The following statement is straightforward from the definitions.

3.3.7. Proposition. — Let 9 : Y ->X be a quasifinite morphism and y eY. Then the
following are equivalent:

a) 9 is unramified at y\
b) the support of^y/x ^o€s not contain y\
c) the diagonal morphism A : Y -> Y X x Y is a local isomorphism at y. •

3.3.8. Corollary. — Unramified (resp. ^tale) morphisms are preserved under compositions,
under any hose change functor^ and under any ground field extension functor. •

3.3.9. Corollary. — Let ^ : Z -> Y and 9 : Y -^ X be quasifinite morphisms and suppose
that 9^ is itale and 9 is unramified. Then ^ is Stale.
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Proof. — The morphism <p is a composition of the graph morphism 1̂  : Z -> Z X x Y
with the projection ̂ 3: Z Xx Y —^Y. The first morphism is an open immersion because it
is a base change of the open immersion Y -> Y X x Y with respect to the evident mor-
phism Z x x Y —^ Y X x Y? ^d the second one is ftale because it is a base change of
the Aale morphism 9^ : Z -> X. •

Let Et(X) denote the category ofdtale morphisms U -> X. Corollary 3.3.9 implies
that any morphism in the category £t(X) is ^tale.

3.3.10. Proposition. — Suppose that 9 : Y -> X is a quasifinite morphism or is a closed
morphism of good k-analytic spaces. Then the set of points y e Y such that 9 is not unramified (resp.
etale) at y is Zariski closed.

Proof. — We can replace Y by the complement to the support of the coherent
^Yo-module ^YG/XG an(! ^sume that O.^ixo = °- I11 the second case the latter equality
implies that 9 has discrete fibres, and therefore 9 is quasifinite, by Proposition 3.1.4.
Hence our statement follows from Propositions 3.3.7 and 3.2.8. •

3.3.11. Proposition. — A morphism 9 : 3£ -> W between schemes of locally finite type
over S£ = Spec(e^), where ^ is a k-affinoid algebra, is unramified (resp. etale) if and only if
the corresponding morphism 9an : 2£9^ -> ̂ an is unramified (resp. etale).

Proof. — The unramifiedness statement follows from Corollary 3.3.7 and the
simple fact that Q^an/^an = (^^y^)811- The Paleness statement now follows from Pro-
position 3.2.10. •

3.4. Germs of analytic spaces

A germ of k-analytic space (or simply a k-germ) is a pair (X, S), where X is a ^-analytic
space, and S is a subset of the underlying topological space | X |. (S is said to be the under-
lying topological space of the A-germ (X, S').) IfS == {x }, then (X, S) is denoted by (X, x).
The ̂ -germs form a category in which morphisms from (Y, T) to (X, S) are the morphisms
9 : Y -> X with 9(T) C S. The category k-^erms we are going to work with is
the category of fractions of the latter category with respect to the system of morphisms
9 : (Y, T) -> (X, S) such that 9 induces an isomorphism of Y with an open neigh-
borhood of S in X. This system obviously admits a calculus of right fractions, and so
the set of morphisms Hom((Y, T), (X, S)) in k ^Serms is the inductive limit of the set
of morphisms 9 : V^ -> X with 9(T) C S, where ̂  runs through a fundamental system
of open neighborhoods of T in Y. (Such a morphism 9 : i^ -> X is said to be a repre-
sentative of a morphism (Y, T) -> (X, S).) It is easy to see that a morphism (Y, T) —> (X, S)
is an isomorphism in k-^erms if and only if it induces an isomorphism between some
open neighborhoods of T and S. We remark that the correspondence X »-̂  (X, [ X [)
induces a fully faithful functor k-^n -> k-^erms.
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The category k'^erms admits fibre products. Indeed, let (Y, T) -> (X, S) and
(X', S') -> (X, S) be two morphisms. If 9 : V -> X and /: W -> X are their repre-
sentatives, then ('rXx^Tc-^T XgS ' ) ) is a fibre product of (Y, T) and (X', S')
over (X, S), where TT is the canonical map | ̂  Xx ̂  | -> | ̂  | x^ [ ^' |. Thus, for
any morphism 9 : (Y, T) -> (X, S) and a point ^ e S one can define the fibre of ^ at x
in the category k^erms as the fibre product (Y, T) x<x,s) (X, x) which is actually iso-
morphic to the ^-germ (Y, ^~\x)), where ^~l{x) is the inverse image of A? in T. In par-
ticular, for a morphism of A-analytic spaces 9 : Y -> X and a point x e X, one has the
fibre (Y, ^~\x)) of 9 at A; in the category k^erms. (Recall that in § 1.4 we defined the
fiber Y^ of 9 at x in the category s/n^ of analytic spaces over A.)

Furthermore, for a non-Archimedean field K over k there is a ground field extension
functor k'^erms -^ K'^erms: (X, S) ̂  (X®K, TC-^S)), where TC is the canonical map
X ® K -> X. Similarly to ^/n^ one can define the category ^erms^ of ^wm? of analytic
spaces over k (or simply germs over k). Its objects are pairs (K, (X, S)), where K is a non-
Archimedean field over k and (X, S) is a K-germ. A morphism (L, (Y, T)) ~> (K, (X, S))
is a pair consisting of an isometric embedding K c-> L and a morphism of L-germs
(Y, T) -> (X, S) (§s L. As above, there is a fully faithful functor

^ -> ^erms^: (K, X) ̂  (K, (X, | X |)).

For a A-germ (X, S), let £t(X, S) denote the category of the morphism
(Y, T) -> (X, S) that have an (Stale representative 9 : i^ -> X with T = 9~1(S). It is
clear that for Xek-^/n there is an equivalence of categories £t(X) ^> £t(X, | X |).
For a point x e X, let F<St(X, x) denote the full subcategory of £t(X, x) consisting of
the morphisms (Y, T) -> (X, x) that have an dtale representative 9 : V^ -> X such
that the morphism ^ -> 9(^) is finite. (Equivalently, F^t(X, x) consists of the mor-
phisms (Y, T) -> (X, x) with finite set T that have an ^tale separated representative
9 : V --> X.) For a field K, let F<St(K) denote the category of schemes finite and (Stale
over the spectrum of K.

3.4.1. Theorem. — Let X be a k-analytic space. Then for any point A; e X there is an
equivalence of categories F^t(X, x) ̂  F^t(Jf(^)).

Proof. — Consider first the case when the point x has an affinoid neighborhood.
Let ¥61^ {x)) denote the category of schemes finite and dtale over the affine scheme
^{x) = Spec(^x,J- Then the functor considered is a composition of the three evident
functors

F^t(X, x) -^ Fft(^)) -> F^t(K(A:)) -^ FA(JfM).

The third functor is an equivalence of categories because the field K{x) is quasicomplete.
The second one is an equivalence because the ring 0^ ^ is Henselian. We now verify
that the first functor is faithful. Let 9, ^ : (Y,jQ -> (X, x) be two morphisms that induce

9
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the same homomorphism ^y y -> ̂  (we do not need here the Paleness of (p and ^).
We may assume that X ==^(^) and Y =Jl{88} are Yfe-affinoid, and 9 and ^ are
induced by two homomorphisms of ^-affinoid algebras a, (3 : ja^-^. Consider an
admissible epimorphism y : k{r^1 T^ . , . ,r„ lT„}^^ and set f, =r(TJ. Since the
images ofa(^) and (B(/) in ^y ^ coincide, we can find an affinoid neighborhood V ofy
such that a(/) \y = (B(/) [y. By [Ber], 2.1.5, the induced morphisms <p|^ ̂ : V -^ X
coincide, and therefore the first functor is faithful. Furthermore, we claim that a morphism
in F6t(X, x) that becomes an isomorphism in ¥61^ {x)) is an isomorphism. Indeed, let
9 : Y -> X be an dtale morphism with x = <p(j/) such that (S^y -^ 0^^ is an isomorphism.
We can shrink X and Y and assume that X = M^} and Y = J/{S3) are A-affinoid,
<?~l{x) ={y} an(i ^ is a free j^-module. From Lemma 2.1.6 it follows that
38 ̂ ^^x^ ^Y,^ and therefore the rank of 3S over j^ is one, i.e., ^^>3S. Finally,
that any finite dtale morphism over X[x} comes from an dtale morphism over (X, x)
is obtained by the construction from the proof of Theorem 2.1.5. That the first .functor
is fully faithful now follows from the fact that any morphism in the categories F^t(X, x)
and FA(^(A;)) is ^tale.

Suppose now that the point x is arbitrary. We may assume that the space X
Hausdorff, and we take affinoid domains Ui, ..., U^ such that x e Ui n ... n U^ and
Ui u ... u U^ is a neighborhood of x. First we verify that the functor considered
is faithful. Indeed, let 9 : Y -> X and ^ : Z -> X be two <Stale morphisms with 9" ̂ x) = {y }
and 9-1(A:) = = { ^ } , and suppose that /, g : Z ->• Y are two morphisms over X with
f{2) =<?(^) ==jy Aat give rise to the same embedding of fields ^(j/) <->J^(^), By the
first case, we can find for each 1 < z ^ n an affinoid neighborhood W, of z in ^"^(U,)
such that/(^. = g\^. Then the analytic domain W = Wi u ... u W^ is a neighborhood
of the point z and/j^y == g\^. It follows that the morphism from (Z, z) to (Y,j/) induced
by/and g coincide. In the same way one shows that a morphism in FA(X,^) that
becomes an isomorphism in Fdt(J^(A:)) is an isomorphism. Since any morphism in the
category F^t(X, x) is ^tale, to prove the theorem it remains to show that the functor
considered is essentially surjective.

Let K be a finite separable extension of the field <^{x). By the first case, we can
shrink all U, and find finite ^tale morphism 9,: V, -> U, such that Pt"^^) =={^}
and there are isomorphisms of fields K ̂ ^(^) over ^{x). (We fix such isomorphisms.)
Suppose first that X is separated at x. Then we may assume that X is separated, and
therefore U^ n U, are affinoid domains. Setting V,,. = ̂ ^(U, n U,.), we have two
finite ^tale morphisms V,, — U, n U, and V,, ->• U, n U, and, for the points j^/e V^
and y y eV^, an isomorphism of fields <^(j^) ^^(j^) over ^{x) induced by the
isomorphisms K-^Jf^) and K^^(j/,). By the first case, we can shrink all U,
and assume that there exist isomorphisms v^.: V .̂ -^ V^ over X that give rise to the
above isomorphisms of fields. By construction, V^ = V, and v .̂(V,,. n V,,) = V,, AV^.
We now can shrink all U, and assume that v^ = v^ o ̂  on V,, n V,;. By Proposi-
tion 1.3.3, we can glue all V, along V,, and get a ^-analytic space Y with a morphism
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9 : Y-> X. By Proposition 3.1.8, the morphism <p is finite at the point y (that corres-
ponds to the points j^). It is clear that die point y is not contained in the support
oftiy^xo? 19e^ ? ls unramified atj/. It is flat atj/, by Proposition 3.2.3.

Suppose now that X is arbitrary (and Hausdorff). The intersections U^ n U,
are not affinoid now, but they are separated compact ^-analytic spaces, and therefore
we can apply the above construction using the fact that everything is already verified
for separated spaces. The theorem is proved. •

3.4.2. Corollary. — Let 9 : Y -> X be a morpkism of analytic spaces over k, and let
y eY, x = <p(^). Suppose that the maximal purely inseparable extension of J^(x) in ^[y) is
dense in e^(jy). Then the correspondence U h-> U XxY induces an equivalence of categories
F^t(X^)^Fft(Y^). •

3.5. Smooth morphisms

For a ̂ -analytic spaces X we set A^ = A? X X (the d-dimensional qffine spaces over X).

3.5.1. Definition. — A morphism of ^-analytic spaces 9 : Y -> X is said to be
smooth at a pointy e Y if there exists an open neighborhood i^ ofy such that the induced
morphism i^ -> X can be represented as a composition of an ^tale morphism V -> A^
with the canonical morphism A^ ->X; 9 is said to be smooth if it is smooth at all points
y eY. If the canonical morphism X -^JK(k) is smooth, then X is said to be smooth.

We remark that the number d is equal to the dimension of 9 at the pointy, i.e., to
the dimension of the fibre Y^, where x = 9(^)5 at the point y. If this number is inde-
pendent of y^ we say that <p is of pure dimension d. For example, smooth morphisms of
pure dimension 0 are exactly ^tale morphisms. We remark that smooth morphisms are
locally separated and closed. The following proposition follows easily from the definition
of smooth morphisms and Corollary 3.3.8.

3.5.2. Proposition. — Smooth morphisms are preserved under compositions^ under any
base change functor, and under extensions of the ground field. •

3.5.3. Proposition. — Suppose we are given a commutative diagram of morphisms of
k-analytic spaces

Y ^-> X

(i) If <p is etale, then 9^x0/80) -^ ^Yo/So-
(ii) Iff and g are smooth and yaC^xo/so) ^^YG/SG? t^en V ls eta^'

Since Sl^d ^ is a free O^d -module of rank d and, if X is good, the canonical mor-
phism A^ -> X is flat, then thestatement (i) implies
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3.5.4. Corollary. — Let 9 : Y -> X be a smooth morphism between good k-analytic spaces.
Then 9 is flat, and t2y/x ls ^ locally free (!) ̂ -module whose rank at a point y e Y is equal to the
dimension of 9 at y. •

3.5.5. Lemma. — Suppose we are given a cartesian diagram

Y -^ X
A Ar r
Y' -^ X'

wA^ 9 ^ a G-locally closed immersion and f is flat fuasijinite. Then f^^^V^^) ^^Y'Q/XG'

Proof, — We may assume that all the spaces are A-affinoid, 9 is a closed immersion,
and/is a finite morphism. Let X = ̂ (^), Y = Ji{39}, X' == ̂ (^') and Y' == ^T(^'),
where ^' == S S ^ ^ ^ ' . One has exact admissible sequences 0 ->J -> ̂  -> SS ->0and
0 ->J' -> ̂ f -> 88' -> 0. Since ̂ ' is a flat finite .^-algebra, then the second sequence is
obtained by tensoring of the first one with ^ ' over ̂ /. In particular, J' == J ®^ j^' = J<^'.
It follows that J7F == J/J2 ®^ ̂ ' == J/J2 ®^ ̂ '. •

Proof of Proposition 3.5.3. — (i) Consider the diagram

Y Ax/8 . Y Y Y^^ ————>. ^^ ^ ^^
A Ar r

Y ̂  Y x^Y —> Y X g Y

where Y X x Y is identified with the fibre product of X and Y X g Y over X Xg X.
The morphism ^ is flat quasifinite. By Lemma 3.5.5, the conormal sheaf of the G-locally
closed immersion Y x ^ Y — ^ Y X g Y coincides with ^^(^xo/sa)' Since Ay/x is an open
immersion, then Dy^ == P^xo/so)-

(ii) Consider first the case when the space S is good. (Then X and Y are also good.)
From the exact sequence 3.3.2 (i) it follows that ^y/x = 0, and therefore the mor-
phism 9 has discrete fibres. By Proposition 3.1.4, 9 is quasifinite. Since t2y/x == O? 1<; ls

unramified. Let y eY, x = ̂ {y) and s == g{jy). We have to verify that ffl^y is a flat
<Px,a;-algebra. Suppose first that \^{y) : k] < oo. Since (Py^ and 0^^ are flat ffg^-algebras
(Corollary 3.5.4), then, by Corollary 5.9 from [SGA1], Exp. IV, it suffices to
verify that ^y y/m, ^y y is a flat O^Jm^ 0^^-algebra. Since \^{y) : k) < oo, we have
^y y/m, (Py ̂  == ^y ,v and ^x.as^a ^x,» == ^x ,»• Therefore we may assume that
S ==^(^). In this case the ring tf^a; Is regular and, in pardcular, normal. Since (Py y
is a finite unramified 0^ ^-algebra, it suffices by Theorem 9.5 (ii) from [SGA1], Exp. I,
to verify that the canonical homomorphism Q^^ -> (P^y is injective or, equivalently,
that (P^ ^ and (Py y have the same dimensions. But these dimensions are equal to the
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ranks of Qx/fc ^d ^y/fc at the points x and^, respectively. Since 9*(t2x/jk) ^^Y/*? ^Y
are equal.

Suppose now that the point^ is arbitrary. Let K be a big enough non-Archimedean
field such that there exists a pointy e Y' = Y ® K with [^(V) : K] < oo and 7r(y) ==^,
where n is the canonical mapping Y' -> Y. From Proposition 3.3.3 it follows that
9^(^x78') "̂  ^YW 5 where 9' is the induced morphism Y ' ->X'=X®K. By the
previous case, Q^'^' is a flat fl?x/,a!'"a^?eb^a, where ^ '== y^J'). By Corollary 2.1.3,
^x',»' an<^ ^Y',i/' are faithfully flat over tf^a; ^d ^Y,!/? respectively. It follows that (Py y
is flat over ^x,»*

Consider now the general case. If U is an affinoid domain in S, then, by the first
case, the induced morphism ^"^(U) ->y~l(U) is dtale and, in particular, it is quasifinite.
From Proposition 3.1.8 it follows that the morphism 9 is quasifinite. This implies
immediately that it is ^tale. •

3.5.6. Corollary. — In the situation of Proposition 3.3.2 (i) suppose that 9 is smooth.
Then there is an exact sequence

0->9^Xo/So) -^Yo/So^^Yo/Xo-^O. •

3.5.7. Corollary. — Let 9 : Y ->• X be a smooth morphism^ and let f: Y -> A^ be an
H-morphism defined by some functions f^ .. .,̂  e ̂ (Y). Then f is etale at a pointy e Y if and
only if for some affinoid domain U C X that contains the point x = 9(jQ the elements df^ ..., df^
form a base o/Hp-î /u aty.

Proof. — The direct implication is trivial. Suppose that df^ ..., df^ form a base
of Up-i^/u at y. By Proposition 3.5.3, the induced morphism y'^U) -> A^ is Aale
3ity, In particular, the point y is isolated in the fibre f~l{f{y)). From Proposition 3.1.4
it follows that for any affinoid domain VC X that contains the point x the induced
morphism 9~1(V) -> A^ is finite atj/, and therefore, by Proposition 3.1.8, the morphism/
is finite atj/. It is dtale because the elements df^ ..., df^ form a base of Up-i^yy atj for
any V as above. •

3.5.8. Proposition. — A morphism 9 : S -> W between schemes of locally finite type
over ££ == Spec(^), where ^ is a k-affinoid algebra^ is smooth if and only if the corresponding
morphism 9^ : ̂ an -> ̂ an is smooth.

Proof. — The direct implication follows from Proposition 3.3.11. Suppose that 9^
is smooth. By Corollary 3.5.4, ̂  is flat, and i^an^an is a locally free ff^an-module.
Since the morphisms <3<an -> W and ^an -> S are faithfully flat, it follows that 9 is flat.
Since t^an^an = {0.^1^^ lt follows that £l^y is a locally free ^-module. Therefore 9
is smooth. •



76 VLADIMIR G. BERKOVICH

3.5.9. Proposition. — Suppose we are given a commutative diagram of morphisms of good
k'analytic spaces

where <p is a dosed immersion and f is smooth. Then the following are equivalent'.

a) g is smooth}
b) for any pointy e Y there exist an open neighborhood X^ ofy in X and an ^tale morphism

h: Xi ->A| over S such that Y^ = Y n X^ is the inverse image of the closed k-cmalytic subset
of A^ defined by the equations T^ = ... === Tg == 0 (T\, ..., T^ ar^ ̂  coordinate functions
on A?).

Proof. — The implication b) => <^ is trivial. Suppose that g is smooth. Then the
^modules ^'''(^x/s) = ^x/s ̂ x ^Y and Qy/g from the exact sequence 3.3.3 (ii)
are locally free. We may decrease X and assume that they are free. Since the ele-
ments dh, Ae(P(X) , generate Q^/s over ^x? ^en we can find A^i, . . . , A ^ e ^ ( X )
such that the restrictions of dh^^.^, ..., dh^ to Y form a base ofQy/g. After that we can
decrease Y and find h^ ..., hy e^(X) such that dh^ . .., dh^ form a base of t^x/s?
where ̂  is the subsheaf of ideals in 0^ that corresponds to Y. By Corollary 3.5.7, the
induced morphism h: X -> A| is ^tale. Let Z be the closed ^-analytic subset of A^
defined by the equations T^ = ... = T^ = 0, and let Y' be the inverse image of Z
in X. By construction, Y is a closed ^-analytic subset of Y'. Corollary 3.5.7 implies
that the induced morphism Y -> Z is ^tale. Therefore the closed immersion i: Y -> Y'
is dtaie (Corollary 3.3.9). Since it is an open map (Proposition 3.2.7), it follows that
we can decrease X and assume that i is a homeomorphism. Finally, since the sheaf ^(^y)
is a locally free Oymodule and the homomorphism (Py, —^(^y) ls surjective, we have
Q^^i^^Y It follows that i is an isomorphism. •

3.5.10. Corollary. — In the situation of Proposition^3.3.2 (ii) suppose that f and g are
smooth. Then there is an exact sequence

O^^J^->9^(Q^J ̂ ^y^-O.

Inparticular^ ^o/^ is a locally free Q ̂ -module whose rank is the codimension ofY in X. •

3.6. Smooth elementary curves

In this subsection we recall some results from [Ber] on the structure of the ̂ -analytic
curve X == SC^ associated with a smooth geometrically connected projective curve SE
over h of genus g > 0, and we recall the Stable Reduction Theorem of Bosch and
Lutkehbomert from [BL] which is actually the most important ingredient in the study
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of X. Furthermore, we introduce the notion of an elementary triple (X, Y, A;) where Y is
an open neighborhood of a point x e X. (A A-analytic curve Y and pairs (X, Y) and (Y, x)
for which such a triple exists will be called elementary.) And we show that any point of
a smooth A-analytic curve has, after a finite separable extension of k, an elementary
open neighborhood. First we consider the case of trivial valuation on k because it is
very simple. But we remark that everything considered in the case ofnontrivial valuation
has the same meaning in the trivial valuation case.

Thus, suppose that the valuation on k is trivial. Then points of X are of the following
three types. First, there is a canonical embedding of the set S'Q of closed points of X
in X, ^o -^ Xo = { x e X | [^{x} : k] < oo }. For x e XQ one has fl^ = ^x and
K{x) ==^{x) = &(x) (x is the image of x in S ' ) . Furthermore, there is a generic point
which corresponds to the trivial valuation on the field of rational functions k (^). For
this point x one has ^^ == ^{x) = Jf{x) = A(x) == k{3:}. (The one-element set { x }
is denoted by A(X) and called the skeleton of X.) Finally, for any closed point a there
is an interval which connects a with the generic point and which is parametrized by
the unit interval [0, 1]. Namely, the point x associated with a number 0 < r< 1 corres-
ponds to the valuation on k{S') which takes the value r1^''^ on a local paremeter/at a,
i.e., \f{x) | == r^^. This point x is denoted by j&(E(^, r)). One has ̂  == K^) = ̂ W,
and this field coincides with the fraction field of the ring ^^. We also set
E(<z, r) = {y e X | \f{y) \ ̂  r^^ }, D(^, r) = {y e X | |^(j/) | < r^^ } and

B(a; r, R) = {j^ e X | r^^ < |/(j/) | < R^a):^ }.

The topology of X induces the usual topology on each of the intervals, and a basis of
open neighborhoods of the generic point is formed by sets of the form XN^U^i E(^, y,),
where ^ e X^ and 0 < ^ < 1.

Let Y be an open neighborhood of a point x e X. We say that the triple (X, Y, A:)
is elementary if one of the following is true:

a) g == 0, x = ,a e X(A) and Y == D(<z, r), where ,0< r< 1 $
b) g=0, x==p{E{a,r)), where ^ e X(^) and 0 < r < 1, and Y == B(a;r', r"),

where 0< r'< r< r" < 1;
^ A? is the generic point of X and Y = X\U^ i E(^, rj, m ̂  1, where a, e X^)

and 0< r,< 1.

It is clear that for any open neighborhood Y of an arbitrary point x e X one can
find a finite separable extension K of k and an open subset Y" C Y' = Y S) K such that
the point x has a unique preimage x ' in Y" and the triple (X', Y", ̂ ') is elementary,
where X' =X(§K.

Suppose that the valuation on k is nontrivial. As above, one has ^o-^ Xg and
K(x) ̂ ,^(x) =k(x) for x eXg. But in this case the set X^ is everywhere dense in X.
For a point x.e X\Xg one has ^x,a? = ^^O^
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Consider first the case 3E = P1. Let a eA^ and r> 0. Then the real valued function
on k[T]

/h->max | 8J{a)\r\

where ^(Soc^T^ == S( . j a^^T' (^ is the operator — -„,), is a muldplicative

norm, and therefore it defines a point x e A1 which is denoted by/?(E(a, r)). The notation
tells that the point depends only on the closed disc E(a, r) == {y eA1 | |y(jQ| ^ ^w },
where/ == T" + a^ T'1"1 + ... + a^ is the monic generator of the maximal ideal of^[T]
which corresponds to a. (We also define the open disc D(fl, r) == (j/eA1 | |/(j»)| < r"}
and the open annulus B(fl; r, R) == {j? e A1 [ ̂  < |/(j/)| < R" }. We remark that the
radius r of the disc E(a, r) does not depend on the choice of the center a. If r e V| A* )

(such a point is said to be of type ( 2 ) ) , then the extension ^f{x)fk is finitely generated of
transcendence degree one, and the group \^{xY [/[ k* \ is finite. If r ^ V| k* | (such a

point is said to be of type (3 ) ) , then the extension^ {x) fk is finite and the group | J^(x)* \
is generated by [ K(fl)* | and r.

A more general construction of points of A1 is as follows. Let S = { E } be a
decreasing family of closed discs in A1. Then the real valued function on A[T]

f^^\fW))\

is a multiplicative seminorm, and therefore it defines a point x == p[S) eA1. By
[Ber], 1.4.4, any point of A1 is obtained in this way. We set a == l l gg^ (E n A^)
and r == infg^^ ^(E). Suppose first that (T 4= 0. Then one does not obtain a new point.
Namely, if r == 0, then ^ e A^, and if r > 0, then x == j&(E(fl, r)) for any a e o. Suppose
therefore that (T == 0. Then one obtains a new point. If r = 0, then x is the image of
an element from A0^ under the mapping A^, -> A1. Points with r > 0 (they are said
to be of type ( 4 ) ) exist if and only if the field A0 is not maximally complete. Points with
r == 0 (for arbitrary a) are said to be of type (1 ) . For a point x of type (1) or (4) the

extension ^[x}\k is algebraic and the group [Jf^)* [/[ k* \ is torsion.
A basis of topology on A1 is formed by open sets of the form D(fl, r^U^i E^i? ^i)*

(We recall that any affinoid domain in A1 is a disjoint union of the standard affinoid
domains which have the form E(fl, r^U^i D(^» ^)-) Let Y be an open neighborhood
of a point x e A1. We say that the triple (P1, Y, x) is elementary if one of the following
is true:

a) x is of type (1) or (4) and Y == D(a, r), where a ek and r> 0$
b) x ==^(E(a, r)), where a ek and r ^ V\ k* |, and Y == B(a; r', r"), where

(Xr'^^r";
c ) x == ^(E(a, r)), where a e k and r e | ̂  |, and Y == D(<z, r')\U^ ̂  E(fl,, rj,

m > 0, where 0 < r, < r < r', a^ e k, \ a^ — a [ ^ r and | ^ — a, | == r for ? +j.
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It is clear that if 3C is of genus zero, then for any open neighborhood Y of a point
x e X one can find a finite separable extension K of k and an open subset Y" C Y' = Y (§) K.
such that ^OOK^P^, the point x has a unique preimage x ' in Y", and the triple
(PK, Y", x ' ) is elementary.

Consider now the case of an arbitrary smooth geometrically connected projective curve SK.
Assume that the A-analydc curve X admits a distinguished formal covering W by strictly
affinoid domains with ^-split semistable reduction X = X^, and let TT : X -> X be the
reduction map (see [Ber], § 4.3). Furthermore, let { ^},gi be the irreducible compo-
nents ofX. One has g = b + S,gi^(^), where b is the Betti number of the incidence
graph A(X) ofX. For a point Tc e X one of the following possibilities holds ([Ber], 4.3.1).

(i) If ? is the generic point of 3£^ then there exists a unique point ^ e X with
n{x,) == y. One has J?% = ̂ (^) ([Ber], 2.4.4 (ii)).

(ii) If y is a smooth closed point belonging to 2£^ then n"1^) is a connected
open set which becomes isomorphic, after a finite separable extension of k, to a dis-
joint union of a finite number of copies of the open unit disc with center at zero, and
TT-1^) =7c- l(y) u{^} . I f^eX^), then Tr-1^) -^ D(0, 1).

(iii) If y is a double point belonging to components 3£^ and 2Sy (which may coin-
cide), then Tc-^y) ^> B(0; r, 1), where r e | A* | and r< 1, and TC-^^) == TC- ̂ ^ u { ̂ , .̂}.

One constructs as follows a closed subset A^(X) C X which has the structure of
a finite graph and is isomorphic to the incidence graph A(X) (it is called the skeleton
ofX. with respect to the covering ^). The vertices ofA^(X) are the points ̂ , ie I. The edges
ofA^(X) correspond to the double points ofX as follows. If 3? is a double point belonging
to components ̂  and 3£'j, then the subset ^C^""1^), which is the preimage of the
set {j&(E(0, t)) \ r< t< 1 } under the isomorphism Tr-1^) ̂  B(0; r, 1), does not depend
on the choice of the isomorphism, and the set ^ = ̂  u { x^ Xj} is an edge of A^(X).
There is a canonical (deformational) retraction T:X-^A^(X) .

The reduction is said to be good if X is smooth. In this case A^(X) consists of one

point x (the generic point) for which J^{x) == A(X). The reduction is said to be stable if X
is a stable curve. In this case, if g ^ 2 or if g == 1 and the reduction is good, then any
other distinguished formal covering of X with stable reduction is equivalent to ^, and
therefore the reduction map X -> X and the finite graph A(X) = A^(X) do not depend
on ^. If g == 1 and the reduction is bad, then the set A(X) = A^(X) (without the
structure of a graph) does not depend on (3k. The graph A(X) is called the skeleton o/'X.
The complement X\A(X) is the set of points x e X which have an open neighborhood
such that it becomes isomorphic, after a finite separable extension of k, to a disjoint
union of a finite number of copies of the open unit disc with center at zero.

Assume that g ^ 1, and let Y be an open neighborhood of a point A: e X. We say
that the triple (X, Y, x) is elementary if X has good reduction, x is the generic point of X,
and Y=X\^m^E,, w ^ 1, where E, is an affinoid domain in n~1^), ^eX(^) ,
isomorphic to a closed disc E(0, r,), and the points ^, ...,^ are pairwise different.

10
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The Stable Reduction Theorem asserts that, for every smooth geometrically
connected projective curve 2K over k of genus g > 1, there exists a finite separable exten-
sion K of k such that the K-analytic space (SE ® K)^ has stable reduction.

Finally, we drop any assumptions. A triple (X, Y, x) is said to be elementary if it is iso-
morphic to one of the elementary triples which were defined above. The following Propo-
sition 3.6.1 is a particular case of the main result of the next subsection, Theorem 3.7.2,
on the local structure of a smooth morphism of pure dimension one. The proof of
Theorem 3.7.2 is essentially a generalization of the proof of Proposition 3.6.1.

3.6.1. Proposition. — Let Y he a smooth k-analytic curve. Then for any point y e Y there
exist a finite separable extension K ofk and an open subset Y" C Y' = Y (§> K such that the point
y has a unique preimage y' in Y" and the pair (Y",^') is elementary.

The following statement will be used also in § 7.3.

3.6.2. Lemma. — Let <p : Y -> X be a smooth morphism of pure dimension one with
k-affinoid X = JK[^}. Then for any pointy e Y there exist an open neighborhood Y' of y and a
commutative diagram

Y' c-̂ » ^an

\, ^an
^^ Y

X

where ^ : W ->S£ = Spec(^) is a smooth affine curve of finite type over 9E., and j is an open
immersion.

Proof. — We can shrink Y and find an Aale morphism g : Y —> A^. Let z denote
the image of the point z = g{y) in A^. The field A(z) is everywhere dense in K(^),
and K(j^) is a finite separable extension of K.{z). By Proposition 2.4.1, there exists a
finite separable extension K of^(z) which embeds in K(j^) and is everywhere dense in it.
Take an arbitrary Aale morphism of finite type between affine schemes h: W -> A .̂
for which there exists a point y e W with h(y) == z and k(y) == K.

The embedding of K in K(j^) defines a point y ' e <3<an. Since K is everywhere dense in K(jQ,
we have K[y) = K(V). We get two ^tale morphisms of ^-germs (Y,j/) -> (A^, -2') and
(^.y) -> (Ax, z) such that K(j/) = K(j/'). From Theorem 3.4.1 it follows that the
A-germs (Y,j/) and (^an,^') are isomorphic. •

Proof of Proposition 3.6.1. — By Lemma 3.6.2, we can shrink Y and find an open
embedding of Y in the analytification ^'an of a smooth affine curve S E ' of finite type
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over k. Let S£ be the smooth projecfivization of SK\ Increasing the field k, we may assume
that SK is geometrically connected. If the valuation on k is trivial or if the genus g of SE
is zero, then the statement is clear. Thus, assume that the valuation on k is nontrivial
and g^ 1. By the Stable Reduction Theorem, we can increase the field k and assume
that X = 3E^ has k'split stable reduction. If the point y is not a vertex of the skeleton A(X),
then, after increasing of k, y has an open neighborhood in X (and therefore in Y) iso-
morphic to an open subset of P1. Assume therefore thatj/ is a vertex of A(X).

First, we want to reduce the situation to the case when A(X) =={J /}• Let L
be a connected open neighborhood of the point y in A(X) which does not contain
loops 9,nd other vertices of A(X). One has L = { y } u U^i^, where ^ is homeo-
morphic to an open interval. Furthermore, for each 1 ̂  i ̂  m there is an isomor-
phism T"1^) -^ B(0; 7^5 1), where 0 < ^ < 1. We fix such an isomorphism so that the
point j&(E(0, t)) tends to the pointy for t -> 1. We now glue the open set T'^L) with m
copies of D(0, 1) via the isomorphisms r"1^) ^S-B^; ^, 1) C D(0, 1). We get a new
proper smooth A-analytic curve X which is the analytification of a smooth geometrically
connected projective curve S£ of (new) genus g^- 0. Suppose that g^- 1. Increasing
the field k, we may assume that X has stable reduction. Since any point x =)=j/ has an
open neighborhood such that, after a finite separable extension of A, it becomes iso-
morphic to a disjoint union of open discs, it follows that the reduction ofX is good andj^
is the generic point of X.

Consider the reduction map n : X -> X. Since y is a unique preimage of the generic
point of5c, there exist m ̂  1 closed points ?i, ..., ̂  e X with TT'^X^ 3?i, ..., S^ }) c Y-
Increasing the field A, we may assume that ̂  e X(^), and therefore Ti:"1^) ^> D(0, 1). It
follows that we can replace Y by a smaller open neighborhood o{jy of the form XN^U^ i E,,
where E,C n~1^) and E, ̂  E(0, r,). •

3.6.3. Remark. — (i) Let (Y,j) be an elementary pair. Then Y contains a disjoint
union o f w ^ l open annuli B(r^, R^) such that the set Y^^U^i B(r^, R^) is a connected
compact neighborhood of the pointy (it is actually an affinoid domain).

(ii) Suppose that the field k is algebraically closed. If (Y,j/) is an elementary pair
such that Y is not isomorphic to an open disc, then the open set Y\{j/} is isomorphic
to a disjoint union of a finite number of open annuli and an infinite number of open
discs. From Proposition 3.6.1 it follows that any smooth ^-analytic curve has a covering
by elementary open subsets.

(iii) A broader class of smooth A-analytic curves is that of standard curves which
are isomorphic to an open subset of the analytification of a smooth geometrically
connected projecdve curve such that its complement is a disjoint union of m ̂  1 closed
discs with center at zero. We remark that a standard curve is connected. We remark
also that an elementary (resp. standard) curve remains elementary (resp. standard)
after any extension of the ground field.
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3.7. The local structure of a smooth morphism

3.7.1. Definitions. — (i) A morphism <p : Y -> X is said to be an elementary fibration
of pure dimension one (resp. at a pointy e Y) if it can be included to a commutative diagram

Y c-̂  z <— V = U (X x E,)
»==!

X
such that

a) ^ : Z -> X is a smooth proper morphism whose geometric fibres are irreducible
curves of genus g ^ 0;

b) Y is an open subset of Z, and V = Z\Y;
c ) V is an analytic domain in Z isomorphic to a disjoint union 11*"= i (X X E,),

m ^ 1, where E, are closed discs in A1 with center at zero, andj&r is the canonical projection;
d ) there exists an analytic domain V C V such that the isomorphism

V^U^(XxE, )
from c ) extends to an isomorphism V'^-U^^X X E,'), where E,' is a closed disc
in A1 which contains E, and has a bigger radius;

e ) the pair (Z^, YJ (resp. the triple (Z^, Y^,j/)), where x = 9(^)3 is elementary.

(ii) A morphism is said to be an elementary fibration if it is a composition of ele-
mentary fibrations of pure dimension one.

(iii) A morphism 9 : Y -> X is said to be standard of pure dimension one if everything
from (i), except the property e ) , is true for it. A composition of standard morphisms of
pure dimension one is said to be standard,

We remark that the geometric fibers of a standard morphism are nonempty and
connected. Furthermore, elementary fibrations (resp. standard morphisms) are preserved
under any base change functor and under any ground field extension functor.

3.7.2. Theorem. — Let 9 : Y -> X be a smooth morphism of pure dimension one, and
suppose that X (and therefore V) is good. Then for any pointy e Y there exist an etale morphism
f: X' -> X and an open subset Y" C Y7 = Y x^ X'

Y -^ X
A Ar r
Y' -^ X'

t V
Y"

such that y has a unique preimage y' in Y" and 9" : Y" -> X' is an elementary jibraiion of pure
dimension one at the point y.



fiTALE COHOMOLOGY FOR NON-ARCHIMEDEAN ANALYTIC SPACES 77

3.7.3. Corollary. — Let <p : Y -> X be a smooth morphism of good k-analytic spaces. Then
for any point y e Y there exist ttale morphisms f: X' -> X and g : Y" -> Y' = Y Xx X'

Y ^> X
A Ar I 7
Y' -^ X'

t- -7
Y"

such that y e/'C?(Y")) ̂  9" is an elementary fibration. •

3.7.4. Corollary. — A smooth morphism is an open map. •

Proof of Theorem 3.7.2. — All the analytic spaces considered in the proof are
assumed to be good. For numbers 0 < r' ̂  r" (resp. 0 < r ' < r") we denote by A(r', r " )
(resp. B(r', r")) the closed (resp. open) annulus E(0, r")\D(0, r') (resp. D(0,r")\E(0,r'))
with center at zero.

3.7.5. Proposition. — Let 9 : Y -> X be a separated smooth morphism of pure dimension
one, and let x eX. Suppose that the fibre Y^ is isomorphic to the open annulus B(r, R)^^). Then
there exist numbers r < r' < R' < R, an open neighborhood W ofx and an open subset i^ C (p"1^)
such that

a) Y^ coincides with B(r', R').^,) under the identification of Y^ with B(r, R).^);
b) i^ is isomorphic to the direct product ^ X B(r', R') over W.

3.7.6. Lemma. — Let Y be an open subset of A^, and suppose that

Y, = D(0, r)^\ U E(^, r^ m ̂  0,
i=l

wA^ r, < r aW | T(^) | < r (^T ^ ̂  coordinate function on A1}. Then

(i) if m == 0, ̂  /or ̂  w^w&^r 0 < r' < r ^r^ exists an open neighborhood % of x
such that Y contains the direct product % X D(0, r').

(ii) if m^ 1, then for any numbers max.([ T(aJ |, r,) < r' < r" < r, r̂<? exists an

open neighborhood % of x such that Y contains the direct product % X B(r', r").

proof. — In the case (i) (resp. (ii)) the intersection of all compact sets of the form
U X E(0,r') (resp. U X A(r', r")), where U runs through compact neighborhoods
of the point x, coincides with E(0, r')^ (resp. A(V, r")^), and therefore it is contained
in the open set Y. It follows that there exists a compact neighborhood U of A: with
U X E(0, r') C Y (resp. U X A(r', r") C Y). •
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3.7.7. Lemma. —Suppose we are given a commutative diagram

with smooth <p and ^ of the same pure dimension, and let y e Y and x = y(j^). Suppose that the
induced morphism fy^: Y^ -> Z^ is a local isomorphism at the pointy. Then f is a local isomorphism
at y.

Proof. — Since Y ,̂ is the fibre product of Y and Z^ over Z, the inverse image of
the sheaf of differentials of/on Y^ coincides with that of/. But the latter sheaf is equal
to zero at the point y. Therefore we may decrease Y and assume that f is unramified.
By Proposition 3.3.2 (i), the canonical homomorphism /"(^z/x) ~^^Y/X ls surjective.
Since both ^-modules are locally free and of the same rank, we have/*(Q^x) ^^Y/X-
From Proposition 3.5.3 (ii) it follows that/is dtale at the point y. By hypothesise/induces
an isomorphism of fields J^( z ) ^>^{y). By Proposition 2.4.1, K(^) ^K(j^), and there-
fore / is a local isomorphism at y, by Theorem 3.4.1. •

Proof of Proposition 3.7.5. — We may assume that X ==e^(j^) is ^-affinoid. Take
a number r< t< R and set y ==j^(E(0, t)) <=Y^. Let V be an affinoid neighborhood
ofy in Y. Shrinking X and Y, we may assume that the fibre V ;̂ is connected. Then

V,=E(0,R')^\UD(^,r,)^,

where / < R' < R, r, < R' and | T(ff,) [ < R' (T is the coordinate function on B(r, R)^(J.
Let V =^(^?). Since the image of S9®^K[x) in SS^^{x) is everywhere dense, we
can shrink X and assume that there exists an element f e 38 such that the norm of/— T
in SS^^^^x) is less than min(^, t). It follows that the morphism/: V -^A^ induces
an isomorphism Vg; ^> V^ and f{y) =j&(E(0,^)). Take an open neighborhood i^ of
the pointy such that Y^CV. Then the induced morphism /: i^ -> A^ satisfies the
hypothesis of Lemma 3.7.7, and therefore / is a local isomorphism at the point y. The
required statement now follows from Lemma 3.7.6. •

3.7.8. Proposition. — Let 9 : Y -> X be a smooth morphism of pure dimension one, and let
x e X. Suppose that the fibre Y^ is isomorphic to the open disc D(0, R).̂ ) and that the morphism 9
is a composition of an open immersion Y c-^ Z with a compact morphism ^ : Z -> X. Then for
any 0 < r < R there exist an open neighborhood ̂  of x and an open subset i^ C (p""^^) such that

a) Y^ coincides with D(0, r)^^ under the identification ofl^ with D(0, R)^(^);
b) T is isomorphic to W x D(0, r) over %.

Let P and Q, be Hausdorff topological spaces, and let P^ C P and Q^ C Q be their
open subsets for which there is a homeomorphism/: Pi ̂  Q,r The topological space,
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which is obtained by gluing P and Q via/.will be denoted by P u^Q. The following
statement is trivial.

3.7.9. Lemma. — Suppose that there exists an open subset P'C P such that P^C P' and
the space P' u^Q is Hausdorff. Then the space P u^ is Hausdorff. Furthermore, suppose in
addition that P\Pi is compact and Q,̂  P^ u, Q^is relatively compact in P' u^ Q. Then the space
P u/Q^ is compact. •

Proof of Proposition 3.7.8. — We may assume that X is yfe-affinoid. In particular,
Z is Hausdorff and compact. From Proposition 3.7.5 it follows that we can shrink X
and find an open subset ^C Y such that ^ = B(r', R')^ and -T-^ X X B(r', R/)
for some r < r' < R' < R. Take numbers r' < r " < t < R" < R' and denote by IT
the open subset of V which corresponds to X x B(r", R"). The subset SC-lT, which
corresponds to X x A(^), is compact because X is compact, and therefore Z\S is
an open subset of Z. We apply the above gluing procedure to the spaces P == Z\S,
P == ^\S, P, = ̂ T\S, Q== X x (P^O, r")) U X X D(0, R"),

Q^ == X x B(r", t) U X x B(^, R"),

and to the canonical isomorphism /: P^ ^> Qi. One has

P' u, Q-^ X x (P^O, r')) U X x D(0, R').

From Lemma 3.7.9 it follows that the space T = P u^Q is Hausdorff and compact.
In particular, the morphism ^' : Z' -> X is compact.

Furthermore, the above construction restricted to the fibre at x gives a compact
JT (A;)-analytic space Z^ such that the connected component ofD(0, R)^) is isomorphic
to the projective line P^) . Moreover, the morphism ij/ is smooth at all points of this
connected component. Since ^' is compact, we can shrink X and replace Z' by the
connected component of D(0, R)^) in Z' so that the morphism ^' becomes proper smooth
of pure dimension one. It has a section a : X -> Z' defined by the point infinity of the
disc P^E^, r'). One has dirn^ H°(Z,, ̂ ) == 1 and H^Z;, ̂ ) = 0. By the Semi-
continuity Theorem ([Ber], 3.3.11), we can shrink X and assume that the same is true
for all x ' e X. It follows that all the fibres of ^ are isomorphic to the projective line.

Finally, let L be the invertible sheaf on Z' which corresponds to o(X), and let L^
denote the inverse image of L on the fibre Z^, x ' e X. Then H^Z^LJ ==0 and
dimH°(Z^,L^) == 2. It follows that ^:(L) is a locally free fi^odule of rank two.
Shrinking X, we may assume that ^(L) is free. In this case it defines a morphism Z' -> P^
over X which is evidently an isomorphism. The required statement now follows from
Lemma 3.7.6 (i). •

We are now ready to prove the theorem. First of all we remark that if K is a
finite separable extension of the field K(x), then there exists an dtale morphism/: X' -> X
such that/"1 (x) == { x ' } and K(^') === K. The preimage of the pointy under the morphism
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j f ' : Y ' = Y X x X' -> Y is a nonempty finite set of points. Fixing one of them, say y,
we can replace 9 by a morphism Y" -> X', where Y" is an open neighborhood ofy
which does not contain other points from/'"^j;). If we make the above procedure,
we say for brevity that we increase the field K(x). Furthermore, we may assume that the
space X is A-affinoid.

Step 1. — One can increase the field K{x) so that <p is included in a commutative diagram

Y c-L» z

X
where

a) ^ is a smooth proper morphism of pure dimension one whose geometric fibres are irreducible
curves of genus g^ 0, and j is an open immersion,

^) if 8^ I? ^7Z ^x has good reduction and y is the generic point of Z^..

Let Z be an affinoid neighborhood of the point y. Replacing Y by a small open
neighborhood ofj/ which is contained in Z, we may assume that the morphism 9 : Y -> X
is a composition of an open immersion Y <-> Z with a compact morphism ^ : Z -> X.
By Proposition 3.6.1, we can increase the field K(x) and assume that the pair (Y^,j/)
is elementary. In particular, Y^ contains a disjoint union of m ̂  1 open annuli B(r,, R,)^(^)
such that the set Y^Ll^ B(r,, R,)^) is a connected compact neighborhood of the
pointy (Remark 3.6.3 (i)). By Proposition 3.7.5, we can shrink X, Y and the annuli
and assume that there are pairwise disjoint open subsets ^ C Y, 1 ̂  i ̂  m, such that
^ == B(r,, R,).^) and ^ -^ X X B(r,, R,). We take numbers r, < r\ < t, < R,' < R,
and denote by ̂  the open subset of ^ which corresponds to X X B(r^, R,'). The
set S,C ̂ , which corresponds to X x A(^, ^), is compact because X is compact, and
therefore Z\U^ i S, is an open subset of Z. We apply the gluing procedure to the
spaces p = z\ur^ s,, p' = Ur^(^\s,), p, - U^^A),

Q= U^,(X x (^£(0, r;)) U X x D(0, RQ),

Q^ == U^,(X x B(r;, t,) U X x B(^, R;)),

and to the canonical isomorphism f\ P^ -^ Qr One has

P' u,Q^ U (X x (P^O, rj) U X x D(0, R,)).
1=1

From Lemma 3.7.9 it follows that the space Z' = P u^Q is Hausdorff and compact.
In particular, the morphism ^' : Z' -> X is compact.

Furthermore, the above construction restricted to the fibre at x gives a compact
Jf (^-analytic space Z^ such that the connected component of the point y is a smooth



fiTALE COHOMOLOGY FOR NON-ARCHIMEDEAN ANALYTIC SPACES 81

geometrically connected proper jr (A:)-analytic curve. Moreover, ^ is smooth at all
points of this connected component. Since ̂  is compact, we can shrink X and replace Z'
by the connected component of the point y so that the morphism ^' becomes proper
smooth of pure dimension one and the fibre Z^ becomes a smooth geometrically connected
proper ̂ {x} -analytic curve. The point infinity ofP^E^, r;) or the point zero of E(0, R,')
defines a section a : X -> Z'. From the construction it follows that we can increase the
field K{x) and assume that the curve Z^ has good reduction. Moreover, if the genus g
of Z^ is positive, then jy is the generic point of Z^.

Finally, one has dim^ H°(Z,, ̂ ) = 1 and dirn^ H^Z,, ̂ ) = g. By the
Semicontinuity Theorem, we can shrink X and assume that the above equalities hold
for all points x ' e X. In particular, the fibres of ̂  are connected. They are geometrically
connected because ^' is smooth and has a section.

Step 2. — One can increase the field K{x) and shrink Y so that the morphism 9 : Y -> X
is an elementary fibration at y.

We can increase the field K{x) and assume that the triple (Z,,, Y^,j/) is elementary.
In particular, Y^=Z,\U^,E,, where E,^E(0,R,)^, R,<1, and there are
bigger open subsets E,CD,CZ^ with D,^D(0,R;)^, R, < R,'< 1. From Propo-
sition 3.7.8 it follows that we can shrink X and find pairwise disjoint open subsets
^CZ such that Y^ === D(0, t\}^ and ^ ^ X x D ( 0 , Q , where R , < ^ < R ^ .
Take numbers R, < t, < t[ and set ^ = X x D(0, ^). Since (Z^^i^^CY^,
we can shrink X and assume that Z^^ i ̂  C Y. Finally, we take numbers R, < r, < t,
and set V == ^w=l(X x E(0, r,)). By construction, Z\VC Y. Therefore we can replace Y
by Z\V so that all the conditions of Definition 3.7.1 (i) hold. (The condition d ) holds
for V = IJ^i(X x E(0, r;)), where r, < r[ < ̂ .) The theorem is proved. •

The following remarks will not be used in the sequel.

3.7.10. Remarks. — (i) One can add to the definition of an elementary fibra-
tion 3.7.1 (i) the condition that all the fibres of the morphism ^ have stable reduction.
Indeed, taking an integer n ̂  3 which is prime to char (A), one can increase the field K{x)
and assume that all the points of order n on the Jacobian of the curve Z^ are rational.
One can then shrink X so that, for any x ' e X, all the points of order n on the Jacobian
of Z^ are rational, and therefore Z^ has stable reduction.

(ii) One can show that if X == M{^} is A-affinoid, then the space Z from
Definition 3.7.1 (i) is the analytification ^an of a smooth projective curve 3S over
3; == Spec(^).

(iii) One can give a similar local description of a flat morphism of good ^-analytic
spaces 9 : Y -> X at a point y e Y such that the fibre Y^, x == y(^), is a curve smooth
outside the point y.

(iv) We think that the theorem 3.7.2 is true without the assumption that
the space X (and therefore Y) is good. At least this is so if each point of X has

11
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an open neighborhood which is isomorphic to an analytic domain in a Yfe-affinoid space
(see Remark 1.4.3 (ii)). Indeed, shrinking X and Y, we may assume that X is a special
domain in a ̂ -affinoid space X' and that 9 factorizes through an ^tale morphism Y -> A^.
Since A^ is an analytic domain in A^/, then, by Corollary 3.4.2, we can shrink Y arid
assume that the ^tale morphism Y -^ A^ is a base change of an ^tale morphism Y' ->• A^' 5
i.e., the morphism 9 is the base change of a smooth morphism 9' : Y' -> X' with respect
to X -> X'. Then the validity of the theorem 3.7.2 for 9' implies its validity for 9.

§ 4. Etale cohomology

4.1. Etale topology on an analytic space

The etale topology on a ^-analytic space X is the Grothendieck topology on the
category £t(X) generated by the pretopology for which the set of coverings of
(U -> X) e Et(X) is formed by the families { U, 4. U },̂  such that U = U^i^U).
We denote by X^ the site obtained in this way .(the etale site of X) and by X^ the cate-
gory of sheaves of sets on X^ (the etale topos of X). Furthermore, we denote by S(X)
(resp. S(X,A)) the category of abelian sheaves (resp. sheaves of A-modules) on X^
and by D(X) (resp. D(X,A)) the corresponding derived category. For a sheaf F on
X^ we often say that F is a sheaf on X. The cohomology groups of an abelian sheaf
F e S(X) will be denoted by H^X, F).

Any morphism 9 : Y -> X of analytic spaces over k induces a morphism of sites
Y^ -> X^. If ̂  is a scheme of locally finite type over Spec(J^), where ^ is a yfe-affinoid
algebra, then Propositions 2.6.8 and 3.3.11 imply that there is a morphism of sites
(^^^t ~^6t5 where SE^ is the ftale site of the scheme SK. The inverse image of a
sheaf y e ̂  on ^an will be denoted by ^an.

Our first purpose is to show that certain reasonable presheaves on X^ are actually
sheaves. For this we introduce a (big) flat quasiflnite site X^ of X. This is the site with the
underlying category k-^n^ of^-analytic spaces over X and with the Grothendieck topo-
logy generated by the pretopology for which the set of coverings of (Y -> X) e k-^/n^
is formed by the families {Y^Y},^ such that the /, are flat quasifinite and
Y= U,^i^(Y,). There is an evident morphism of sites X^-^X^. It is clear that
if a presheaf on X^ is a sheaf, then its restriction on X^ is also a sheaf.

4.1 .1 . Lemma. — The following conditions are sufficient/or a presheaf'F on X^ to be
a sheaf:

(1) for any k-analytic space Y over X the restriction of'F to the G-topologv on Y is a sheaf,
(2) for any finite faithfully flat morphism of k-affinoid spaces Z -> Y over X the sequence

F(Y) -^ F(Z)-5- F(Z Xy Z) is exact.
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Proof. — Let W == (U,->Y)^i be a covering in X^. We have to show that
the sequence

(*) F(Y)->nF(H)-^nF(U,XYU,)
i i,3

is exact. For every i e I we take an open covering { V, }^j. of U, such that the induced
morphisms V .̂ -> ^(V^.) are finite. From (1) it follows that if (*) is exact for the cove-
ring {V^.}^j, where J == U^iJ^, then (*) is exact for ^. So we may assume that all
the morphisms U^ ->- y^UJ are finite. Furthermore, since (*) is exact for the open
covering {<pi(U^)}^i of Y, it suffices to show that the sequence

F(Y)-^F(Z)^F(Z X y Z )

is exact for any finite faithfully flat morphism 9 : Z -> Y over X. Finally, if V = { V, } î
is a quasinet ofaffinoid domains on Y, then^ == { y'^V^^gi is a quasinet of affinoid
domains on Z and, by (1), the sequences (*) for the coverings i^ and H^ of Y and Z,
respectively, are exact. Thus, the situation is reduced to the case of A-affinoid spaces.
But the required fact in this case is guaranteed by (2). •

4.1.2. Corollary. — Let F he a coherent sheaf on X^. Then the presheaf F, which assigns
to a k-analytic space Y over X the group of global sections of the inverse image of F on Y^, is a
sheaf on X^ and therefore on X^. •

4.1.3. Proposition. — A presheaf representable by a k-analytic space good over X is a
sheaf on X^ and therefore on X^.

Proof. — Let F be representable by a ^-analytic space X' over X, i.e.,
F(Y) == Homx(Y.X'). The condition (1) holds for F, by Proposition 1.3.2. Let
Y = Jl[3S} and Z == e^^). Then ^ is a faithfully flat ^-algebra. It is well known that
in this situation the sequence 0 -> 8S -> V -^ ^ ®^ ̂  is exact. Since %7 is a finite Banach
^-algebra, we have ^ ®^<^7 = ^ §>^ ^, and the above sequence is admissible. It
follows that the condition (2) holds, at least, for ^-affinoid X'. In the general case we have
to show that for any g : Z -> X' over X with g o p^ = g o p ^ , where ̂  are the canonical
projections Z X y Z, there exists a unique/: Y -> X' over X with g ==fo <p (9 is Z -> Y).

Uniqueness off. (Here the assumption that X' is good over X is not used.) Assume
that we are given f^f^ : Y -> X' with /i o 9 ==/g ° 9- Since 9 is surjective, /i and /g
coincide as maps of topological spaces. Let U be an affinoid domain in X'. Then
jf^^U) =./2-1(U) = UjLi V^ for some affinoid domains V,C Y. Applying the particular
case to the morphisms cp""1^) ->V^ and the ^-affinoid space U, we get fi\y^ ==./2|v,"
Since Y is covered by a finite number of such V^ it follows that/i =/2*

Existence off. We can replace X by Y and X' by Y x x X' and assume that X' is
good. By the uniqueness, it suffices to construct/locally. Letj^ eY, z ey"^), U an
affinoid neighborhood of g{z) in X'. Since 9 is an open map, y^^U)) contains an



84 VLADIMIR G. BERKOVICH

affinoid neighborhood V of the point y. We claim that 9-1(V) C^~1(U). Indeed, if
<p(-?i) == 9(2:2)? ^en there exists 2:' e Z X y Z with p ^ z ' ) = ^i and p^{z') = ^2- If
^ e^'^U), then ^(^) = gp^z') = gp^z') == g(z^ e U. And so the situation is reduced
to the morphism y'^V) ->V and the ^-affinoid space U. •

4.1.4. Corollary. — (i) There is a fully faithful functor £t(X) -^X^. In particular^
the etale topology on £t(X) is weaker than the canonical one.

(ii) If a sheaf F is representable by an X.-space T etale over X, then for any morphism
9 : Y -> X the sheaf 9* F 072 Y is representable by the space T X x Y- •

4.1.5. Remark. — The Proposition 4.1.3 certainly should be true without the
assumption that the space X' is good over X. For this it would be enough to know that
for a finite dtale morphism of ^-affinoid spaces 9 : Y -> X and for any affinoid domain
VC Y the image 9(V) is a finite union of affinoid domains in X. If everything is strictly
A-affinoid, this is a particular case of a result of Raynaud that gives the same fact for
an arbitrary flat morphism.

4.1.6. Example. — (i) Let A be a set. Then the ^-analytic space U^g^X over X
represents the constant sheaf A^.

(ii) The sheaf of abelian groups G^ is defined by G^x(Y) = ^(Y).
(iii) The sheaf of multiplicative groups G^x ls defined by G^xOO == ^(Y)*-
(iv) The sheafofw-th roots of unity ^x is defined by ^^(Y) = {/e ^(Y)* [/n = 1}.

If the field k contains all n-th roots of unity and n is prime to char(^), then the sheaf ̂  x
is isomorphic to the constant sheaf (Z/7zZ)x.

4.1.7. Proposition. — (i) The Rummer sequence

O^^X^G^^Gm.X-^O

is exact in S(X^). If n is prime to char(^), then it is exact also in S(X).
(ii) Ifp = char (A) > 0, then the Artin-Schreier sequence

0 -^ (Z/r Z)^ -> G^ ̂ ^ G^ -> 0

is exact in S(X) (and therefore in S(X^)^).

Proof. — (i) It suffices to show that for a compact ^-analytic space X and
an element fe (P(Y)* there exists a flat quasifinite morphism Y -> X such that
the image of / in ^(Y)* is in ^(Y)^. Let {U,}^i be a finite affinoid covering
of X. Then 3S, :== ̂ .[T]/^ — 1) is a finite Banach ^.-algebra, and the mor-
phism 9,: V, = ^i[3S^ -> U, is finite flat (Aale if n is prime to char(A)). Further-
more, for any pair i,j e I, there is a canonical isomorphism of special domains
Vi,: V,, := 9,^l(^ ^ U,) ̂  V, :== 971(^ n U,), and one has V, = V,,

^(V,nV,,)=V,nV,,
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and v,( = v^ o v^ on V .̂ nV,,. Therefore we can glue all V, along V^., and we get
a compact ^-analytic space Y and a flat (6tale if n is prime to char(^)) finite morphism
Y -^ X. The image of T in each 39^ defines an element g e ^(Y)" with g" ==f. (ii) is
proved in the same way. •

The cohomology groups ofA^ (if A is an abelian group), G^ x, G^ x ^d pi-,» x
will be denoted by IP(X,A), IP(X, GJ, H^X, GJ and IP(X, (xj, respectively. The
first Gech cohomology set H^X, F) can be defined for any sheaf of groups F on X.
This set contains a marked element that corresponds to the trivial cocycle. (If F is
abelian, then fi^X, F) == H^X, F).) The set fi^X, F) has the usual interpretation
as the set of sheaves on X that are principal homogeneous spaces of F over X. On the
other hand, if F is representable by an X-group G (a group object in k-^/n^), then one
has the set PHS(G/X) of isomorphism classes of principal homogeneous spaces of G in
the category k-^/^y and there is an evident mapping PHS(G/X) —"H^X, G).

4.1.8. Proposition. — If G is an X-group etale over X, then PHS(G/X) ̂  fi^X, G).

Proof. — It suffices to verify that a sheaf F, which is a principal homogeneous space
of G over X, is representable by an Aale X-space. Furthermore, by Corollary 4.1.4,
it suffices to show that F is representable locally in the usual topology of X. In particular,
we may assume that X is paracompact and there is a finite ^tale surjecdve morphism
U -> X for which Fj^j is representable. If X is A-affinoid, then U is also A-affinoid and
the representability of F follows from the descent theory of schemes. In the general case
we take a locally finite net T of affinoid domains of X. For V e T, let f^ : Yy -> V be
an ^tale morphism that represents the inverse image ofF on V. For a pair V, W e T, there
is a canonical isomorphism ay ^ : Yy w :==yv-l(V ^ W) -> Y^ y ^y^'^V n W), and
the system of isomorphisms ay w satisfies the necessary conditions for gluing of Yy
along Yy ^y. In this way we get an X-space Y. It is easy to see that the canonical mor-
phism Y -> X is ^tale and that it represents the sheaf F. •

If G is an abstract group, then the principal homogeneous spaces of the constant
X-group Gx are called etale Galois coverings of X with the group G.

4.1.9. Corollary. — Let G be an abstract group. Then there is a bijection between H^X, G)
and the set of isomorphism classes of etale Galois coverings of X with the Galois group G and with
a given action of G. •

We remark that if 9 : Y -> X is an ^tale Galois covering with the Galois group G,
then for any abelian sheaf F on X there is a spectral sequence

IP(G,:EP(Y,F)) ^H^X.F).

The group H^X, G^) can be interpreted as the group of invertible (P^^ -modules,
where 0^ is the sheaf of rings on X^ associated with the structural sheaf 0^ (see
Corollary 4.1.2). In particular, there is an injective homomorphism Pic(X) -> H^X, G^).
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4.1.10. Proposition. — (Hilbert Theorem 90). If'X is good, then Pic(X) -^ H^X, GJ.

Proof. — Let J? be an invertible ^ei"1110^11 -̂ Since the homomorphism considered
is injective (for an arbitrary X), it suffices to show that any point x e X has an open
neighborhood ^ such that JSf|^ comes from Pic(^). Therefore we can shrink X and
assume that there is a finite ftale morphism Y -> X such that JS^L comes from Pic(Y).
IfV is an affinoid neighborhood of x, then S? defines an invertible ^^-module on the
affine scheme i^ = Spec(e^y). By the descent theory for schemes, the latter module
comes from an invertible ^-module. Thus, if ^U is an open neighborhood of x that is
contained in V, then "S^|^ comes from an invertible ^-module. •

For an arbitrary A-analytic spaces X we can prove only the following

4 . 1 . 1 1 . Corollary. — There is a canonical homomorphism IF(X, G )̂ —>• Pic(X.Q)
such that its composition with Pic(X) -> H^X, G )̂ coincides with the canonical homomorphism
Pic(X)-.Pic(X^).

Proof. — Let oSf be an invertible 0^. -module. Then it defines for any affinoid
domain VC X an invertible ^v-module Ly, and these modules are glued together to
an invertible (!}^-mod\ile L. The correspondence J§f h-> L gives the required homo-
morphism. •

The group H^X, {jij (n is prime to char(^)) can be interpreted as the group of
isomorphism classes of the pairs (J6^, <p), where oS? is an invertible 0^, -module and 9 is
an isomorphism 6^' "̂  •'S^®". From Proposition 4.1.10 it follows that if X is good,
then the latter group coincides with the group of isomorphism classes of the pairs (L, 9),
where L e Pic(X) and 9 is an isomorphism C^^L071. In the general case Corol-
lary 4. 1.11 gives a canonical homomorphism from H^X, [jij to the group of isomorphism
classes of the pairs (L, 9), where L e Pic(Xo) and 9 is an isomorphism ^o^^-*0^
(The latter is the group ff(X, (JiJ introduced by Drinfeld in [Dri].) In § 4.3 we'll
show that this is an isomorphism.

4.2. Stalks of a sheaf

For technical reason we consider the etale topology on a ^-germ (X, S). It is the
Grothendieck topology on the category Et(X, S) (see § 3.4) generated by the preto-
pology for which the set of coverings of ((U, T) -> (X, S)) e Et(X, S) is formed by the
families {(U,, T,) 4- (U, T)},^ such that T = U,ei^(T,). We denote by (X, S)^
the corresponding site (the etale site of (X, S)) and by (X, S)^ the category of sheaves
of sets on (X, S)^ (the etale topos of (X, S)). The category of abelian sheaves (resp.
presheaves) on (X, S)^ will be denoted by S(X, S) (resp. P(X, S)). There is an evident
morphism of sites i^ g ) : (X, S)^ -> X^. (If S == | X |, it is an isomorphism.) For a
sheaf F on X we set F(X,S) = ^x.s) F and F(X, S) == F(X,S)(X, S).
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For a field K we denote by K^ the dtale site of the spectrum of K and by K^
the category of sheaves of sets on K^. (The latter is equivalent to the category of dis-
crete G^-sets.) The following statement follows immediately from Theorem 3.4.1.

4.2.1. Proposition. — For any point x of a k-analytic space X there is an equivalence of
categories ^{x)^ ̂  (X,;^. •

Let (X, S) be a k-germ. For a point x e S let ^ denote the canonical morphism of
sites ^{x)^ -> (X, S)^. The inverse image of a sheaf F with respect to ^ is denoted
by F^ and is called the stalk ofFatx. (We identify F^ with the corresponding discrete
^(x)-^') The image of an element/e F(X, S) in F^ is denoted by/;. If F is an abelian
sheaf, then the support of an element / e F(X, S) is the set Supp(/) ={xeS\f^O}
(from the following Proposition 4.2.2 it follows that this is a closed subset of S.) Further-
more, for a subextensionjT(A:) C K C J^{x)8 we denote by F^(K) the subset of G(^(A:)YK)-
invariant elements. (For example, F^JT(^)) == F^) and F^j^)8) = F.,.)

4.2.2. Proposition. — For a sheaf F on (X, S) and a point x e X, o^ A^

F (̂J )̂) = 1m F( ,̂ S n ̂ ),
^9»

where % runs through open neighborhoods of x in X.

Proof. — The set F^J^)) is the inductive limit of the sets F(Y, T) over all
((Y, T) -4. (X, S)) e £t(X, S) with a fixed point j/ e T over x such that J^) ^^(jQ.
By Theorem 3.4.1, the latter implies that the morphism / induces an isomorphism of
A-germs (Y,j/) ^> (X, x), and the required statement follows. •

4.2.3. Corollary. — A morphism of sheaves F -> G on (X, S) is a mono [epi/isomorphism
if and only if for all x e X the induced maps F^ -> G^ possess the same properties. •

Let (X, S) be a A-germ. For each open subset U C S we fix an open subset °U C X
with ^ n S = U. Then the correspondence U i-̂  ̂  defines a functor from the category
of open subsets of S to the category Et(X, S), and this functor does not depend (up to
a canonical isomorphism) on the choice of the sets W. In this way we get a morphism
of sites TC : (X, S)^ ̂  S, where S is the site induced by the usual topology of S.

4.2.4. Proposition. — For an abelian sheaf F on (X, S) and a point x e S, one has
(R^F^H^G^.FJ, q^O.

Proof. — The case q == 0 follows from Proposition 4.2.2. Therefore in the general case
it suffices to verify that if F is a flabby sheaf on (X, S), then F^,^ is a flabby sheaf on (X, x).
For this it suffices to show that IP(^, F^J = 0, q ̂  1, for any covering ->T of (X, x)
of the form ((U, u) -i (X, x)) where/is finite. By Proposition 4.2.2, the Oech complex
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of the covering ̂  is an inductive limit of the Cech complexes of the coverings
((V, T n ^) -> (^, S n ^)), where ^ runs through sufficiently small open neigh-
borhoods of the point x, T =f-\S) and -T ^f-W. Since F is flabby, those Cech
complexes are acyclic. •

In the previous proof and in the sequel, an abelian sheaf F on a site G is called
flabby if its y-dimensional cohomology groups on any object of G are trivial for all q ^ 1.
In [SGA4], Exp. V, 4.1, such a sheaf is called G-acyclic. Recall (loc. cit., 4.3) that F is
flabby if and only if the Cech cohomology groups IP of any object of C (resp. for all
coverings of any object of G) are trivial for q ̂  1. We remark that if G is the site of a
topological space, then the notion of a flabby sheaf is not related to the notion of a
flasque sheaf from [God]. If G is a profinite group, then a discrete G-module M is flabby
if H^H, M) == 0 for all open subgroups H C G and all q ̂  1.

4.2.5. Corollary. — An abelian sheafF on (X, S) is flabby if and only if

(1) for any point x e S, F^ is a flabby G^^-module,
(2) for any ((Y, T) -> (X, S)) e Et(X, S), the restriction of F to the usual topology

of T is a flabby sheaf. •

We now obtain first applications of the above results. They are obtained using
the spectral sequence

(*) E^ = ?(1 X |, Rq ̂  F) => H^X, F)

of the morphism of sites TT : X^ -> [ X |.
Let / be a prime integer. The l-cohomological dimension cd;(X) of a A-analytic

space X is the minimal integer n (or oo) such that H^X, F) = 0 for all q > n and for
all abelian /-torsion sheaves F on X. (F is said to be /-torsion if all its stalks are /-torsion.)
For example, if X ==^(^), then cd^(X) == cd^(A).

4.2.6. Theorem. — Let X be a paracompact k-analytic space, and let I be a prime integer.
Then cd,(X) ^ cd,{k) + 2 dim(X). If / == char(A) then cd,(X) ^ 1 + dim(X).

Proof. — Let F be an abelian /-torsion sheaf. From Proposition 1.2.18 it follows
that the member E^3 of the spectral sequence (*) is zero for ^>dim(X). Since
(R3 TT, F)^ = H°(G^, FJ, then Theorem 2.5.1 implies that Ej^ == 0 for

q > cd^k) + dim(X)

(resp. q > l i f / = = char(A)). The required fact now follows from the spectral sequence. •

4.2.7. Theorem. — If X is a good k-analytic space, then for any coherent (P^-module F
there is a canonical isomorphism

H'dXI^^H^F), q^O.
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4.2.8. Lemma. — Let x e X. Then (G^xL == ^T,^ ^^ .̂a; ^ ̂  •5>^ .?7 -̂
lization of the local Henselian ring 0^ y^.

Proof. — The assertion straightforwardly follows from Proposition 4.2.2. •

Proof of Theorem. — It is clear that TC^(F) == F. It suffices to show that R3 n^(?) = 0
for all y ^ 1. For this it suffices to verify that H^G^, (F)J == 0 for all x eX and
q ̂  1. We set A = ^,a.- From Lemma 4.2.8 it follows that (F^ = F^ ®^ Ash. ^ere F^
is the stalk of the coherent module F at the point x (this is a finitely generated A-module).
We claim that H^G^/K^)), F^B) = 0, q ̂  1, for any finite Galois extension K
ofK(^), where B is the finite extension of A which corresponds to the extension K/K(^).
For this we remark that the cohomology groups considered coincide with the coho-
mology groups of the Gech complex

F^E -^^A^A3 -> • • • -^F^B0^ -> . . .

Since B is a faithfully flat A-algebra, this complex is exact. •

4.3. Quasi-immersions of analytic spaces

Let 9 : (Y, T) —> (X, S) be a morphism of germs over k. Then for any pair of
points j e T and x e S with x == <p(j/) there is an isometric embedding of fields
J^{x) ̂ ^(j^). We always fix for such a pair an extension of the above embedding to
an embedding of separable closures J^{x)8 ̂ <^[y)8. It induces a homomorphism of
Galois groups G^(^ -> G^). The following statement follows straightforwardly from
the definitions and Proposition 4.2.2.

4.3.1. Proposition. — (i) For any sheafF on (X, S) and any pair of points y eT and
x e S with x = 9(^)5 there is a canonical bijection Fg;-^ (9* F)y that is compatible with the
action of the groups G )̂ and G^y^.

(ii) For any sheaf F on (Y, T) and any point x e S, one has

(9. F), (JTM) = lim F^-W, T n 9-W),
^3x

where ^U runs through open neighborhoods of x in X. •

4.3.2. Corollary. — Let 9 : Y -> X be a finite morphism of k-analytic spaces. Then
the functor 9^: S(Y) -> S(X) is exact. In particular, for any abelian sheaf F on Y one has
H^X^F^H^F), q^O.

Proof. — From Proposition 4.3.1 (ii) it follows easily that for any point x e X
the stalk (9^ F)^ is isomorphic to the direct sum over all y G9~^(^) of the induced
G^)-modules Ind^^(Fy). It follows that the functor 9^ is exact. •

12
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4.3.3. Definition. —A morphism 9: (Y, T) -> (X, S) of germs over k is said
to be a quasi-immersion if it induces a homeomorphism of T with its image <p(T) in S
and, for every pair of points y e T and x e S with x = <p(j^), the maximal purely inse-
parable extension of J^{x) in ^{y) is everywhere dense in ^{y).

For example, analytic domains, closed immersions and the morphisms of the
form X §> K -> X, where K is a purely inseparable extension of A, are quasi-immersions.
Furthermore, if 9 : Y -> X is a morphism of A-analydc spaces, then for any point A; e X
the canonical morphism Y^ -> Y is a quasi-immersion. We remark that quasi-immersions
are preserved under compositions and under any base change in the category ^erm^
(when it is well defined).

4.3.4. Proposition (Rigidity Theorem). — Let 9 : (Y, T) -> (X, S) be a quasi-immersion
of germs over k. Then

(i) 9 induces an equivalence of categories (Y, T)^-^ (X, 9(T))^;
(ii) if 9(T) is closed in S, then 9 induces an equivalence between the category S(Y, T) and

the full subcategory o/*S(X, S) which consists of such F that F^ == 0 for all x e S\9(T).

Proof. — (i) We may assume that S = 9(T). Letj^ eT and x = 9(jQ. By hypo-
thesis, there is an isomorphism G^y, ̂  G^(^. We claim that for any sheaf F on (Y, T)
there is a bijecdon of G^y, = G^^-sets (9^ F)^ ^> Fy. It suffices to verify that

(9,F),(^(^)=F,(^(^).

By Proposition 4.3.1 (ii), one has

(9. F), ?1)) = I™ F^-W, T n y-W).
^9a?

Since 9 induces a homeomorphism of T with S, the limit coincides with Fy(^(j/)). It
follows that the functor 9^ is fully faithful.

Let now F be a sheaf on (X, S). Then there is a bijecdon of G ,̂) = G^^-sets
F„==(9< tF)„. We have (9*F),,==(9,9*(F))^ Therefore, F -^ 9, 9^). The required
statement follows.

(ii) By (i), we may assume that T is closed subset of S, and 9 is the canonical
morphism (X, T) -> (X, S). It is clear that for an abelian sheaf F on (X, T) one has
(9^ F)^ = F^ if x e T and (9, F)^ = 0 if x e S\T. If now F is a sheaf on (X, S) such
that F^ ==0 for all x e S\T, then (9, 9*(F)^ == (9* F)^ = K, if x e T, and therefore
F^9,9-(F). •

We remark that from Proposidon 4.3.4 it follows that if 9 : (Y, T) -> (X, S)
is a quasi-immersion of germs over ^, then the cohomology of (Y, T) with coefficients
in an abelian sheaf coincides with the cohomology of (X, 9(T)) with coefficients in the
corresponding sheaf.
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A k-germ (X, S) is said to be paracompact if S has a basis of paracompact neigh-
borhoods (in this case S is evidently paracompact). For example, A-germs of the form (X, x),
where x e X, are paracompact. From this it follows that if X is Hausdorff, then any
k'germ (X, S) with compact S is paracompact. Finally, if X is paracompact and S is
closed, then (X, S) is paracompact.

4.3.5. Proposition (Continuity Theorem). — Let (X, S) be a paracompact k-germ, and
let F be a sheaf of sets on X. Then the following map

llmH f f(^,F)^H f f((X,S),F^^,
<^3 S

where ^l runs through open neighborhoods qfS in X, is bijective in each of the following cases'.

( 1 ) y = 0 ;
(2) F is an abelian sheaf and q > 0;
(3) S is locally closed in X, F is a sheaf of groups, q = 1 and one takes H1 insteadofH1.

Proof. — Consider the following commutative diagram of morphisms of sites

Y Tc . I Y jx^ ———> I x I
A A
P.S) [is

(X, S),, ^> S

From Proposition 4.2.2 (resp. 4.2.4) it follows that in the case (1) (resp. (2)) there is an
isomorphism of sheaves ig (TT, F) ̂  Wg „ (F(X, s)) (^sp. ^ (R0 ̂  F) ̂  R^ Wg „ (F(X, s))) •
Therefore the case (1) (resp. (2)) follows from the corresponding topological fact [God],
II.3.3.1 (resp. [Gro], 3.10.2).

(3) We may assume that S is closed in X. Let a eIP((X, S), F), and let
{(V,,T,) -t (X,S)},gi be an ^tale covering such that a is induced by a cocycle of
this covering. We can refine the covering and assume that the morphisms f^ induce
finite morphisms V, -> ̂ , :=j^(V,), T, ==^-1(S), the sets ^ are paracompact,
and { ^hgi is a locally finite covering of X. The sets S, := S n ̂  and their finite
intersections have a basis of paracompact neighborhoods. It follows that we can find,
for each pair i,j e I, an open neighborhood ^, of S, n S, in ^ n ̂  and, for each
triple ij\ I el, an open neighborhood ̂  of S, n S, n S, in ^ n ,̂, n ̂  such
that a is defined by elements a,, e F^^^)), where j^,: V, XxV^ -» X, that satisfy the
cocycle condition in F^^,^)), where f^ : V, Xx V^ Xx V, -> X. Let now { ̂  }<gi
be an open covering of X with compact ^ and ^'C^. Since S is closed, the sets
S, n ̂  are compact. Therefore there exist open neighborhoods ̂ ' of S, n ̂  in ̂
such that ̂  n ^/C ̂ , and ^' n ̂ .' n ̂ "C^. Then a comes from the group
fi^, F), where ^ == U,gi ̂ '- •
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4.3.6. Corollary. — Let <p : Y-> X be a quasi-immersion of analytic spaces over k.
Suppose that the image y(Y) ofY has a basis of paracompact neighborhoods in X. Then for any
abelian sheaf F on X there is a canonical isomorphism

Hm H ,̂ F) ^> H°(Y, 9' F), q ̂  0,^y^Y)
z^r^ ^ runs through open neighborhoods of <p(Y) in X. •

For a Hausdorff ^-analytic space X, let P(X^ ) denote the category of abelian
presheaves on the category of closed analytic domains in X. Then any abelian presheaf
P (=P(XG ) and any covering i^ ={V,}^i of X by closed analytic domains define
a Cech complex ^(Y^, P). Its cohomology groups are denoted by H^^ P). One has
H°(^P) ==R f fL^(P), where L^-: P(X^) -> ja^ is the left exact functor defined as
follows

L^(P) = Ker(n P(V,) -^ II P(V, n V,)).
i i, 3

4.3.7. Theorem (Leray spectral sequence). — Let X ^ a paracompact k-analytic space.
For F e S(X) and q > 0, /^ ̂ ^F) A^^ the abelian preasheaf V h-> IP(V, F y). Then for
any locally finite covering y^=={V^}^j(9/'X^ cfoj^rf analytic domains there is a spectral sequence

E^^H^JT^F)) ^IP-^X^F).

Proo/*. — We will show that the required spectral sequence is the Grothendieck
spectral sequence ([Gro], 2.4.1) of the composition of functors

S(X) ̂  P(X^) ̂  ̂

where Q^ is the composition of functors

S(X) -^ P(X) ""> P(| X I) ̂  P(X,J,

and the functor ^p is defined as follows

j^P(V) == 1m P(^).
^ 3 V

(Here P(X) and P(| X [) are the categories of abelian presheaves on the dtale and the
usual topologies of X, respectively, and n^ is the restriction functor.)

We have to verify the following three facts:
(1) R^Q/F^J^F);
(2) if F is injective, then the presheaf Q,(F) is L^-acyclic;
(3) (L^oQ)(F)=H°(X,F) .

(1) From Corollary 4.3.6 it follows that for any closed analytic domain VC X
one has

j^(F) (V) == lim IP(^ F).
% ' ^ \
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This means that JT(F) =^(^(^(F))). But the functors ̂  and^ are exact, and the
functors z'and TC^ send injectives to injectives. Therefore R3 Q,(F) =Jf3(F).

(2) Consider the commutative diagram of functors

S(X) -——> P(X)^ ^
S( |X| ) -^ P( |X | )

IfFis injective, then TT,(F) is an injective sheaf on [ X |. By Theorem II. 5.2.3 c ) from
[God], one has

H°(^;^ o i' o TT,(F)) == 0 for q ̂  1.

From the above diagram it follows that Q ̂ p o n^ o i ̂ j^ o i ' o TC,, i.e., the sheaf Q(F)
is L^-acyclic.

(3) follows from the above diagram and Theorem II. 5.2.2 from [God]. •

4.3.8. Corollary. — Let n be an integer prime to char (A). Then for any k-analytic space X
the group H^X, .̂J is canonically isomorphic to the group of isomorphism classes of pairs (L, y),
where L e Pic(X^) and <p is an isomorphism 0^ ^> L071.

Proof. — The homomorphism from the first group to the second one (let us denote
it by 'H^X, (JiJ) was constructed in the end of § 4.1, and we know that it is an iso-
morphism if X is good. Suppose that X is paracompact, and let i^ be a locally finite
affinoid covering of X. The Leray spectral sequence for i^ gives an exact sequence

(*) 0 -> E^° -> H^X, i^J -> E^ -> E^°.

If we set 'H°(X, pij := H°(X, pij and define groups'E^', q = 0, 1, in terms of the
groups 'H^X, pj, i == 0, 1, in the same way as E^, q = 0, 1, are defined in terms of
the groups H'(X, pij, i == 0, 1, then one can show directly that the similar exact
sequence ('*) takes place even in the more general situation when X is arbitrary and V
is a quasinet of analytic domains in X. In particular, the homomorphism considered is
an isomorphism when X is paracompact. IfX is Hausdorff, we use the analogous spectral
sequences (*) and ('*) for a covering ^ of X by open paracompact subsets. If X is
arbitrary, we use the same reasoning for a covering of X by open Hausdorff subsets. •

4.4. Quasiconstructible sheaves

Let (X, S) be a A-germ. A sheaf F on (X, S) is said to be locally constant if there
exists an (Stale covering {(U,,T,) ->(X,S))^i such that the restriction F(U,,T,) of F
to every (U,, T,) is a constant sheaf. A locally constant sheaf F is said to be finite if all
the above sheaves F(^. ^) are defined by finite sets. There is a one-to-one correspondence
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between the set of isomorphism classes of finite locally constant sheaves on (X, S) such
that their stalks consist of n elements and the set fi^X, 2J, where £„ is the symmetric
group of degree n. If F is finite locally constant, then for any sheaf P on (X, S) and any
point x e S one has e^wz(F, F')a, -^J^w^F^, F^). Furthermore, the full subcategory
of S(X, S) consisting of finite locally constant abelian sheaves is abelian and preserved
under extensions. (Everything above holds in any topos.) We remark that if
9 : (Y, T) -> (X, S) is a quasi-immersion of germs over k, then the categories of finite
locally constant sheaves on (Y, T) and (X, <p(Y)) are equivalent.

4.4.1. Proposition. — Let (X, S) be a paracompact k-germ, and suppose that S is locally
closed in X. Then any finite locally constant F on (X, S) comes from a finite locally constant sheaf
on an open neighborhood of S in X.

Proof. — For an integer n > 0, let $„ denote the set of all points x e S such that the
stalk Fg; consists of n elements. Then the sets S^ are disjoint and open in S, and therefore
the A-germs (X, SJ are also paracompact. Replacing S by S^, we may assume that
all stalks of F consist of n elements. In this case the required statement follows from
Proposition 4.3.5 (the case (3)). •

4.4.2. Definition. — A sheaf F on a k»germ (X, S) is said to be quasiconstructible
if there is a finite decreasing sequence of closed subsets S == So 3 S^ 3 ... 3 S^ 3 S^+i == 0
such that for all 0^ i^ n the sheaves F^s^s- ) are fi111^ locally constant.

It is clear that the inverse image of a quasiconstructible sheaf under a morphism
of germs over k is quasiconstructible.

4.4.3. Proposition. — The full subcategory of S(X, S) consisting of quasiconstructible
sheaves is abelian and preserved under extensions. Furthermore, any quotient sheaf (and therefore
any subsheaf) of a quasiconstructible sheaf is quasiconstructible.

Proof. — The first statement follows from the corresponding properties of finite
locally constant sheaves. To verify the second statement, it suffices to show that if
a : F -> G is an epimorphism of abelian sheaves on (X, S) and F is finite locally constant,
then G is quasiconstructible. It suffices to assume that F is locally isomorphic in the ^tale
topology to (Z/^" Z)(x,s)3 where p is a prime integer. The set T of the points x e S such
that a induces an isomorphism F^ ^> Gy, is closed in S. Over the germ (X, S\T), a goes
through the quotient sheaf F^^F. By induction there is a decreasing sequence of
closed subsets S\T == So 3 &[ 3 ... 3 S^ 3 S^+i = 0 such that the sheaves G^s' ^8^l)
are finite locally constant. We get a decreasing sequence of closed subsets

S==So3S,3...3S^3S,,.,==0,

where S, = S,' u T for 0^i^m+ 1. Since S,\S,+i == S<\S;+i for 0< i< m and
S^i == T, the sheaves G(x,s,\8^i) are finite loc^Y constant. •
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Here is an example of a quasiconstructible sheaf. Let T be a locally closed subset
of S, and denote by j the canonical morphism of k-germs (X, T) -> (X, S). Then for
any sheaf G on (X, T) one can define the following subsheaf ofj\ G ofj» G (this is a parti-
cular case of a construction from §5.1). If(X', S') -4. (X, S)) e Et(X, S), thenji G(X', S')
consists of all elements of G(X',/-1(T)) whose support is closed in S'. It is clear that
(ji G)(X,T) == G and (j\ G)(X,S\T) = 0- Therefore if the sheaf G is finite locally constant,
then the sheaf j; G is quasiconstructible. Moreover, if G is quasiconstructible, then
so is j\ G.

4.4.4. Proposition. — Any quasiconstructible abelian sheaf F on (X, S) has a finite
filtration whose subsequent quotients are of the form j, G, where j is the morphism of k-germs
(X, T) -> (X, S) defined by a locally closed subset T C S and G is a finite locally constant abelian
sheaf on (X, T).

Proof. — Let S = So 3 Si 3 ... 3 $„ 3 S^ .̂  = 0 be a decreasing sequence of
closed subsets such that the sheaves F(X,S-\S- ) are ^mlte locally constant. The set
T == S\Si is open in S, and the canonical morphism j : (X, T) -> (X, S) induces a
monomorphism of sheaves j, F(X,T) "̂  F. The required statement is obtained by applying
the induction to the pullback of the quotient sheaf on the germ (X, SjJ. •

4.4.5. Proposition, — Any abelian torsion sheaf F on (X, S) is a filtered inductive limit
of quasiconstructible sheaves.

4.4.6. Lemma. — Let <p : Y -> X be a finite etale morphism of k-analytic spaces. Then
for any finite locally constant sheaf F on Y the sheaf 9, F is finite locally constant.

Proof. — We may assume that X is connected. If V is a connected affinoid domain
in X, then the rank of the finite morphism of A-affinoid spaces ^"^V) ->V does not
depend on V. Let rk(<p) denote this rank. We prove the statement by induction on rk((p).
Ifrk(<p) == 1, then <p is an isomorphism, and the statement is trivial. In the general case
we consider 9 as an ^tale covering of X and reduce the situation to the morphism
Y X x Y -->-X' .:= Y. The latter morphism has a section a which is an open immersion.
Therefore, Y Xx Y == o(X') U Y'. Replacing X' by a connected component, we reduce
the situation to the morphism 9': Y' ->X' whose rank is less than rk(9). •

Proof of Proposition 4.4.5. — To simplify notation, we consider only the case of
a ^-analytic space X (instead of the k-germ (X, S)). If{G,},gi is a finite family of
quasiconstructible subsheaves of F, then the sheaf G:= Im(®^G^~>F) is also quasi-
constructible (Proposition 4.4.3). Therefore it suffices to show that for any point A; e S
and any element feF^ there exists a quasiconstructible subsheaf G C F with jfeGg,.
Shrinking X, we may assume that there is a finite ^tale surjective morphism 9 : U -^ X
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such that/comes from a torsion element ofF(U). Let nf = 0, n ̂  1, and let (Z/yiZ)^ -> F ^
be the homomorphism that takes 1 to/. It induces a homomorphism 9^(Z/^Z)^ -> F.
By Lemma 4.4.6, the first sheaf is finite locally constant, and therefore, by Propo-
sition 4.4.3, its image in F is quasiconstructible. The required statement follows. •

§ 5. Cohomology with compact support

5.1. Cohomology with support

A family 0 of closed subsets of a topological space S is said to be a family of supports
if it is preserved under finite unions and contains all closed subsets of any set from 0.
The family of supports 0 is said to be paracompactifying if any A eO is paracompact
and has a neighborhood B e 0. Furthermore, for a continuous map 9 : T -> S and families
of supports 0 and T in S and T, respectively, we denote by OY the family supports in T
which consists of all closed subsets A C T such that A e Y and y(A) e0. For example,
if Y is the family of all closed subsets of T, then OY = 9-1(0), where y"^) consists
of all closed subsets of the sets (p^B) for B e0.

5.1.1. Example. — Let S be a Hausdorff topological space. Then the family Gg
of all compact subsets of S is a family of supports. If S is locally compact, then Gg is
paracompactifying. More generally, let 9 : T -> S be a Hausdorff continuous map and
assume that each point of S has a compact neighborhood. Then the family C of all
closed subsets A C T such that the induced map A -> S is compact is a family of supports.
If S is paracompact and T is locally compact, then the family G is paracompactifying.

Let (X, S) be a ^-germ, and let 0 be a family of supports in S. Then one can define
the following left exact functor F^ : S(X, S) -> ^b\

IYF)={.eF(X,S)[Supp( . ) eO}.

The values of its right derived functors are denoted by H^((X, S), F), n ̂  0. For example,
ifO is the family of all closed subsets ofS, then we get the groups H"((X, S), F). IfOis
the family of all closed subsets of a fixed closed subset 2 C S, we get the cohomology groups
with support in 2 denoted by H£((X, S), F). If S is Hausdorff and 0 = Cg, then we get
the cohomology groups with compact support H^((X, S), F). We remark that for any family
of supports 0 in S and any F e S(X, S) there is a spectral sequence

H^(S, R3 T^(F)) => H^((X, S), F),

where TT is the morphism of sites (X, S)^ -> S.
Let now <p : (Y, T) -> (X, S) be a morphism of germs over k. For

( (U,R) - i (X,S) )eEt (X,S)
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and a morphism (V, P) 4. (U, R) in £t(X, S) we introduce notations for germs and
morphisms by the following diagram with cartesian squares

(Y,T) -v-> (X,S)
t ^h P

(Y,, T,) -^> (U, R)
A Ah r

(Y^T,,) -^ (V,P)

5.1.2. Definition. — A ^'family of supports is a system 0 of families of supports 0(/)
in T^ for all ((U, R) -4. (X, S)) e £t(X, S) such that it satisfies the following conditions:

(1) for any morphism (V, P) 4. (U, R) in £t(X, S), one has ^W./^Cd)^);
(2) if for a closed subset A C T^ there exists a covering {(V,, P,) -°l (U, R)},gi

m Et(X, S) such that ^(A) e0(^) for all i el, then A e <&(/).
(ii) The (p-family of supports 0 is said to be paracompactifying if, for any

((U, R) -i (X, S)) e £t(X, S), each point of R has a neighborhood (V, P) 4. (U, R)
in £t(X, S) such that the family of supports O(^) is paracompactifying.

For a family of supports 0 in S and a <p-family of supports T, we denote by $Y
the family of supports OY(id) in T. Let now ^ : (Z, P) -^ (Y, T) be a second mor-
phism, and let 0 (resp. Y) be a (p-family (resp. ^-family) of supports. For
((U, R) -^ (X, S)) e £t(X, S), we set (OY) (/) == <D(/) Y(^). Then OY = {(<&Y) (/)}
is a <p^-family of supports. Furthermore, if 0 is a y-family of supports and

( (U,R)^(X,S))e£t (X,S) ,

then, for any A e$(/), each point u e R has an open neighborhood ^ in R such that
the closure of the set/y(A n q^1^)) belongs to 0(id).

5.1.3. Example. — Let 9 : (Y, T) -> (X, S) be a morphism of germs over k such
that the induced map T -> S is Hausdorff. For ((U, R) -4- (X, S)) e £t(X, S), we set
^(/) == C^- Then ^ = { ^(/)) is a y-family of supports. If S and T are locally
closed in X and Y, respectively, then the family ̂  is paracompactifying. Furthermore,
if S is Hausdorff, then ^g ̂  = Gr. If + : (Z, P) -> (Y, T) is a second morphism of
germs such that the induced map P ->T is also Hausdorff, then ̂  ̂  = (g^.

A y-family of supports 0 defines a left exact functor 9^: S(Y, T) -> S(X, S) as
follows. If F e S(Y, T) and ((U, R) -4 (X, S)) e £t(X, S), then

(9<, F) (U, R) == { s e F(Y,, T,) | Supp(^) e <D(/)}.
13
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For example, ifOis the family of all closed subsets, then we get the functor y^. If the map
T -> S is Hausdorff and 0 == <^, then we get a left exact functor S(Y, T) --> S(X, S)
which is denoted by 9,. Furthermore, if Y is a family of supports in S, then there is an
isomorphism of functors Fy o 9^ -^ I\^. If ^ : (Z, P) -> (Y, T) is a second morphism
of germs and T is a ^-family of supports, then there is an isomorphism of functors
900^^(9^)^.

Finally, let (X, S) be a A-germ, and let i be the canonical morphism of A-germs
(X, R) -> (X, S) defined by a closed subset R C S. Then one can define a left exact
functor

r:S(X,S) ^S(X,R)

as follows. Let j denote the canonical morphism (X, T) -> (X, S), where T == S\R,
and let F e S(X, S). The stalks of the sheaf F' = Ker(F ->jJ* F) are equal to zero
outside R. By Proposition 4.3.4 (ii), F' -^(^P). We set r F = f F'. Since there is
an exact sequence 0->^(rF) ->F->^(^F), the functor z' is left exact. Its right
derived functors are denoted by ^f^((X, S), F). It is easy to see that the functor i' is
right adjoint to the functor ^. It follows that the functor i' takes injectives to injectives.

5 •2. Properties of cohomology with support

5.2.1. Proposition. — Let 9 : (Y, T) -> (X, S) be a morphism of germs over k, and let 0
be a ̂ -family of supports. Then for any F e S(Y, T) and any n ̂  0 the sheaf ̂  <p^(F) is associated
with the presheaf ((U, R) 4. (X, S)) ^ H^((Y,, T,), F).

Proof. — Let P71 F denote the presheaf considered. We have an exact ^-functor
{P^o^Y.T) ->P(X,S) (see [Gro], § 2.1). If S71 F denotes the sheaf associated
with the presheaf P71 F, then we get an exact B-functor { S" }^o : S(Y, T) -> S(X, S).
Since 9^ ̂  S° and { R719^ }^o is a universal B-functor that extends 9^, there is a morphism
of ^-functors R" cp^ -> S^ yz ^ 0. It is an isomorphism because the B-functor {S^^o
is exact, and P" F = 0 (and therefore S71 F = 0) for any injective sheaf F eS(Y, T)
and n ̂  1. •

5.2.2. Theorem (Leray spectral sequence). — Let 9 : (Y, T) -> (X, S) be a morphism
of germs over k. Let 0 be a family of supports in S, and let Y Z^ fl ^-family of supports. Suppose
that the family 0 is paracompactifying, or that Y ^ the family of all closed subsets ofT. Then for
any abelian sheafF on (Y, T) there is a spectral sequence

Er= H^((X, S), R^ (^(F)) ^> IW((Y, T), F).

Proo/. — Since 1^(9^ F) = r^y(F), to apply Theorem 2.4.1 from [Gro], it suffices
to verify that the functor 9^ sends injective sheaves to F^-acyclic sheaves. IfYis the family
of all closed subsets of T, then this is evident because 9^ = 9, sends injectives to injectives.
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5.2.3. Lemma. — If 7 is an infective sheaf on (Y, T), then the stalk (<py F)^ of ̂  F at
a point x e S is a flabby G^^-module.

Proof. — Since our statement is local, we can shrink X and assume that it is Haus-
dorff. For a subset QC T we denote by ZQ the analytic space over k which is a disjoint
union of the spaces M{^{y)) over all points y e Q. The category S(ZJ is equivalent
to the category of families { M(jQ}ygQ of discrete G^-modules M(j^). Let ̂  denote
the canonical morphism ZQ -> (Y, T) of germs over k. Furthermore, for every point
y eT we take an embedding ofFy in an injective G^-module M(j/). Let MQ denote
the sheaf on S(ZQ) which corresponds to the family { M(j/)}^Q, and set NQ = ^Q,(MQ).
It is clear that the sheaves MQ and NQ are injective, and there is a canonical embedding
of sheaves F<->Nj. Since F and N^ are injective, F is a direct summand of N^, and
therefore it suffices to verify our statement for the sheaf Nrp.

We claim that the canonical embeddings of sheaves NQ -> Nrp induce an isomorphism

lim 9.(NQ)^9r(NT).
Q G T(id)

Indeed, let s e (q^^r) (U, R), where ((U, R) 4. (X, S)) is a neighborhood of the
point x in £t(X, S), i.e., s eN^Y^, T^) and Supp(.?) eY(/). For a point i/ eR we
take an open neighborhood ̂  such that the closure of^(Supp(^) n 97 ̂ ^Q) in T belongs
to Y. Denoting this closure by Q, we see that the restriction of s to 97 ̂ ^ R n ^)
comes from No^^, R n ^)).

The lemma now follows from the fact that the filtered inductive limit of flabby
G^^-modules is a flabby G^^-module. •

Suppose that the family O is paracompactifying, and let F be an injective sheaf
on (Y, T). From Lemma 5.2.3 and Proposition 4.2.4 it follows that R^Tc^cpyF) = 0
for all q ^ 1, where TT is the morphism of sites (X, S)^ -> S. From the spectral sequence

H^(S, R3 T^ F)) => H^^X, S), 9^ F)

it follows that H^((X, S), 9^ F) = H^(S, 7^(9^ F)). Since the family 0 is paracompac-
tifying, the restriction of the sheaf 9y(F) to the usual topology of S is F^-acyclic, by
Lemma 3.7.1 from [Gro]. The theorem is proved. •

Applying Theorem 5.2.2 and Proposition 5.2.1, we get the following

5.2.4. Corollary. — Let (Z, R) 4. (Y, T) "̂  (X, S) be morphisms of germs over k.
Let 0 be a ^-family of supports, and let Y be a ^-family of supports. Suppose that the family 0 is
paracompactifying, or that Y is the family of all closed subsets ofR. Then for any abelian sheaf F
on (Z, R) there is a spectral sequence

R^(R^(F)) ^R^W^F). •

Let j : (X, T) -> (X, S) be the morphism of ^-germs defined by a locally closed
subset TC S. The functor j^ is exact because the stalk (j\ F)^ coincides with F^ if x e T
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and is equal to zero if x i= T. If T is closed in S, then j, ==^. If T is open in S, then
the functor j\ is left adjoint toj\ We remark that for any family of supports 0 in S, one
has0^,=0^:=0^.

5.2.5. Corollary. — Let j: (X, T) -> (X, S) be the morphism of k-germs defined by a
locally closed subset TC S, and let 0 be a paracompactifying family of supports in S. Then for any
abelian sheaf ¥ on (X, T) and any q ^ 0 there is a canonical isomorphism

H^((X, S)J. F) ̂  H^((X, T), F). •

If T is the family of all closed subsets of T, then OY = 0 n T, where
0 n T = { A n T | A e $ }.

5.2.6. Proposition. — Let (X, S) be a k-germ, F an abelian sheaf on (X, S), 0 a family
of supports in S, T an open subset of S, and R == S\T.

(i) TA^ z'j- an exact sequence

. . . -> HSr^X, S), F) -> H^((X, T), F^) -^

-> H^((X, S), F) -> H^((X, S), F) -> H^((X, T), F^) ^ . . .

(ii) IfQ> is paracompactifying, then there is an exact sequence

. . . ^H^X^F) -^H^aX^F^) -.

->H^((X, T),F^) -^H^((X, S), F) ^H^((X,R), F^) ̂  . . .

Proo/'. — Consider the following morphisms of y^-germs

(X,T)^(X,S)^- (X,R) .

(ii) The long exact sequence is obtained from the following exact sequence of
sheaves on (X, S)

0 -^ ^T) -> F -> ^ F^, R) -> 0,

using the isomorphisms

H^((X, S)J, F^,T)) - H^((X, T), F^^),
H^((X, S), ^ F^,^) = H^((X, R), F^^).

(i) Recall that for any abelian category ^ the category oS?(^) of covariant left
exact functors ^ -^ ^b is abelian (see, for example, [Mit]). Namely, a morphism of
functors F -> G is surjective if for any A e ̂  and an element a e G(A) there exist a
monomorphism A -> B and an element (B e F(B) such that the images of the elements a
and (B in G(B) coincide. We claim that there is the following short exact sequence of
left exact functors on S(X, S)

o->r^->r^-^r^^oj*->o.



fiTALE COHOMOLOGY FOR NON-ARCHIMEDEAN ANALYTIC SPACES 101

For this we use the construction from the proof of Lemma 5.2.3. Let F ->Ng be the
monomorphism constructed there. It suffices to show that the canonical mapping

^(Ng) ->• r'onT(Ns|(x,T))
is surjective. By the proof of Lemma 5.2.3, the first (resp. second) group coincides
with the inductive limit over A e<D of the groups I\(Ng) (resp. I\^(Ng[(x,T)))- But
^(Ng) == Mg(A), I\^(Ng (X,T)) == Mg(A n T), and the mapping Mg(A) -> Mg(A n T)
is evidently surjective.

The required exact sequence is induced by the above short exact sequence. •

5.2.7. Corollary. — Suppose that (X, S) is a k-germ, R is a closed subset o/S, T = S\R,
i : (X, R) -^ (X, S) and j : (X, T) -> (X, S) are the canonical morphisms, and F e S(X, S).
Then

(i) there is an exact sequence

0 -^(r F) ->F -^jj- F ->z^((X, S), F) ->0;

(ii) yor any q ^ 1 ^r^ zj a canonical isomorphism

RW'F^^-WS^F).
Proof. — Let ((U, Q) -i (X, S)) e £t(X, S). Applying the exact sequence 5.2.6 (i)

to the A-germs (U, Q), (U^-^R)), (U^-^T)), and to the family of all closed subsets
of S, we get a long exact sequence of presheaves on (X, S). It induces a long exact
sequence of the associated sheaves. It remains to remark that the sheaf associated with
the presheaf (U, Q) ^ ̂ ((U, Q), F), q ̂  1, is equal to zero, and the sheaf associated
with the presheaf(U, Q) ^ H^((U, Q), F), y^ 0, coincides with t,J^((X, S), F). •

5.2.8. Proposition. — Let (X, S) ^ a k-germ, and let 0 be a paracompactifying family
of supports in S. Then for any abelian sheaf V on (X, S) a%rf wy/ q ^ 0 ^?r<? ^ a canonical iso-
morphism

lin^ H^((X, T), F^) -^ H^((X, S), F),

where the limit is taken over the family of all open subsets TC S whose closure belong to 0.

Prooof. — The assertion is evidently true for q == 0. The general case is obtained
using Proposition 3.10.1 from [Gro]. •

5.2.9. Proposition. — Let (X, S) be a k-germ with Hausdorff X and locally closed S,
and let F be an abelian sheaf on (X, S) which is a filtered inductive limit of abelian sheaves^
i.e., F = lim F,. Then for any q ^ 0 there is a canonical isomorphism

limH^(X,S),FJ^H^((X,S),F).
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Proof. — The statement is evidently true for q = 0. Since an inductive system of
sheaves has a resolution by inductive systems of injective sheaves, it suffices to verify
that if all the sheaves F, are injective, then H^((X, S), F) == 0 for all q ̂  1. But this
follows from Proposition 4.2.4 and the corresponding fact for the usual cohomology
with compact supports (see [God], II. 4.12.1). •

5.3. The stalks of the sheaf R3 <pi F

5.3.1. Theorem (Weak Base Change Theorem). — Let <p : Y -> X be a Hausdorff
morphism of k-analytic spaces, and let F e S(Y) and x e X. We set Y^ = Y^^^^W and
denote by F^ (resp. F^ the inverse image ofF on Y^ (resp. Y^>. Then for any q ^ 0 there is an
isomorphism G^^-modules

(R^FL^H^-.F,).

Proof. — Since our statement is local, we can decrease X and assume that X and Y
are Hausdorff.

5.3.2. Lemma. — There is an isomorphism (9. F)^ {^{x)) ̂  H^(Y^, FJ.

Proof. — From Proposition 4.2.2 it follows that

(9, F)^jf^)) = lim^er^-^)) | the map Supp(^) ->^ is compact}.
^3x

Furthermore, since any compact subset of Y has a basis of paracompact open neigh-
borhoods, from Propositions 4.3.4 and 4.3.5 it follows that

H^(Y^, FJ= lir^ { s e F(^) [ the set Supp(^) n (p-1^) is compact}.
iT^^-Hx)

Therefore our statement follows from the well-known topological fact. •

5.3.3. Corollary. — One has

(9,F),= lin^ H°,(Y,®^K,FJ,
K/jna;)

where K runs through finite extensions of^{x) in ^{x)8. •

5.3.4. Lemma. — Let X be a Hausdorff k-analytic space, and let F eS(X). We set
X' = X^^ and denote by F' the inverse image ofF on X'. Then

ImH^X^K.^^H^X'.F'),
K/fc

where K runs through finite extensions of k in k9.
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Proof. — Let x ' e X'. For a finite extension K of kin k8 we denote by x^ the image
ofx' in X (§> K. We set ^ = ̂  and fix an embedding of fields ^{x)8 c^jf^ over the
embedding ^{x) c-̂  ̂ (A;') . Since ̂ {x) k0 is everywhere dense in J^')0, G^^ ̂  G^^ .
Therefore there is an exact sequence of Galois groups

0 -> G^w -> G^ -^ G^(x) k8!^)) -> 0.

We remark that G(^T{x) k8^^)) is a closed subgroup of G .̂ It follows that

F^^(A;'))==HmF,(^(^)).
K/fc

We now claim that for any open neighborhood W of x ' there exist a finite extension K
of k in A8 and an open neighborhood ^ of the point x^ such that the preimage of % in X'
is contained in W. Indeed, since the point x has a neighborhood which is a finite union
of affinoid domains, the situation is reduced to the case when X = ̂ (jaf) is A-affinoid.
Shrinking W, we may assume that

W ={y eX' | |^(j0| <<z,, |^0)| > 6,, 1^^,1^^},

where j^,^. e^®K' for some finite extension K' of k in ^a. Let K be the maximal
subextension ofK/ separable over k. Ifp = char(A) > 0, then (K'^C K for some I ̂  0,
and therefore replacing f,, g^ ^, b, by/,< ̂ /, ̂ /, if, respectively, we may assume
that f^ g y e ja^® K. Then the same inequalities define an open neighborhood ^ of x^
in X (§) K whose preimage in X' is W.

Finally, let s e H^X', F'). Then for any point x ' e Supp(^) there exist a finite
subextension kCKCk8 and an open neighborhood W of the point x^ such that the
restriction ofs to the preimage of ̂  is induced by an element ofH°(^, F). Since Supp(^)
is compact, we can find a finite extension K of k in k8 such that s is induced by an element
ofH°,(X®K,F). •

5.3.5. Corollary. —In the situation of Lemma 5.3.4, for any q^ 0 there is a canonical
isomorphism

lim Hj!(X ® K, F) ̂  H^X\ P).
K/fe1

Pro^. — It suffices to show that ifF is an injective sheaf on X, then H^(X', F') == 0
for all q ^ 1.

First of all, for any point x ' e X7, F^ is a flabby G^^-module. Indeed, if x is
the image of x ' in X, then F^ is a flabby G^^-module. It follows that F^ is a flabby
H-module for any closed subgroup HCG^). Since G^(^ is a closed subgroup of G^)
and F^, = F^ F^ is a flabby G^^-module.

Consider now the morphism of sites X^ -> | X' |. From the previous fact it follows
that R3 TT: F == 0 for all q ̂  1, and therefore H^X', F') = H^(| X' |, < F'). To verify
that the latter group is trivial, it suffices to show that for any compact subset 2' C X'
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and any element s ' eF'(S') there exists an element t' eF^X') which induces s\ By
the reasoning from the proof of Lemma 5.3.4, we can find a finite extension K of k
in k8 and an element s e F(S), where S is the image of S' in X ® K, which give rise to s\
Since F is injective, there exists an element t e F(X ® K) that induces j, and the required
fact follows. •

The case q = 0 of our theorem follows from Corollary 5.3.3 and Lemma 5.3.4.
So it suffices to show that if F is an injective sheaf on Y, then H^(Y^, F^) == 0 for all
q ̂  1 and x e X. By Corollary 5.3.5, it suffices to show that H^(Y^ F) == 0. This is
proved, using the reasoning from the proof of Corollary 5.3.5. •

We say that a morphism of analytic spaces over k,f: X' -> X, is restricted if for
any pair of points x ' e X' and x e X with f[x') == x the canonical embedding of fields
^{x) <-»^(^') extends to an embedding ^W c-> ^{x'Y whose image is everywhere
dense. For example, quasi-immersions and morphisms of the form X ̂  k" -> X are
restricted.

5.3.6. Corollary. — Let 9 : Y -> X be a Hausdorjf morphism of k-analytic spaces, and
let f: X' —>• X be a restricted morphism of analytic spaces over k, which give rise to a cartesian
diagram

Y -̂  X
A Ar r
Y' -'-> X'

Then for any abelian sheaf F on Y and any q ̂  0 there is a canonical isomorphism

/-(R^.F^R^CrF). •

The following is a consequence of Corollary 5.3.5.

5.3.7. Corollary (Hochschild-Serre Spectral Sequence). — Let X be a Hausdorjf k-analytic
space, and let F e S(X). We set X' == X®^ and denote by F' the inverse image ofF on X'.
Then there is a spectral sequence

E^ = IP(G,, H^(X', F')) => H^(X, F). •

5.3.8. Corollary, — Let 9 : Y -> X be a Hausdorjf morphism of k-analytic spaces, and
let F be an abelian torsion sheaf on Y. Then R3 9, F = Ofor all q > 2d, where d is the dimension
°f^

Proof. — By Theorem 5.3.1, it suffices to show that if the field k is algebraically
closed, and X is a HausdorfT A-analytic space of dimension rf, then H^(X, F) == 0 for
all q > 2d. By Proposition 5.2.8 and Corollary 5.2.5, one has

H^(X, F) = ̂  H^((X, ^), (j,(F|^)^),
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where ^ runs through open subsets with compact closure,^ is the canonical embedding
^<->X. By Proposition 4.3.5, the latter group coincides with the inductive limit of
the groups H^^j, F[^) over all open paracompact neighborhoods ^ of the compact
set °U. The required fact follows from Theorem 4.2.6. •

Let n be a positive integer, and let 9 : Y -> X be a Hausdorff morphism of finite
dimension. By Corollary 5.3.8, the derived functor R<p,: D-^Y, Z/yzZ) -^ D+(X, Z/nZ)
takes D^Y, Z/nZ) to D^X, Z/yzZ) and extends to an exact functor

R<p. : D(Y, Z/TzZ) -^ D(X, Z/TzZ)

which takes D-(Y, Z/wZ) to D-(X, Z/yzZ).

5.3.9. Theorem. — Suppose that F- e D-(X, Z/yzZ) and G* (=D-(Y,Z/72Z) or ̂
F- e D^X, Z/TzZ) Aflj ̂ ^ Tor-dimension and G9 e D(Y, Z/yzZ). T^ /A^ z'j a canonical
isomorphism

F-1) R<p.(G-) ̂  R9.(9*(F-) I) G-).

Proo/'. — First of all, for arbitrary abelian sheaves F on X and G on Y there is a
canonical homomorphism F®9.(G) -> ^(cp^F) ® G). From Theorem 5.3.1 it follows
easily that it is an isomorphism. We claim that if F is flat and G is 9; -acyclic, then the
sheaf (p^F) ® G is also <p,-acyclic. Indeed, by Theorem 5.3.1, we may assume that
X = jy[k), where k is algebraically closed. In this case F is a constant sheaf associated
with a flat Z/yzZ-module M. If M is free of finite rank, then for any q ^ 1

H^(Y, <p*(F) ® G) = H^(Y, My ® G) = H^(Y, G) ® M = 0.

It follows that the same is true if M is projective of finite rank. Our claim now follows
from the facts that any flat module is a filtered inductive limit of projective modules
of finite rank, and the functor G i-̂  H^(Y, G) commutes with filtered inductive limits
(Proposition 5.2.9).

In the situation of the theorem we take a flat resolution P* -> F* of F* and a 9,-acyclic
resolution G* —> I' of G\ In the second case we may assume that P* is bounded.
Then (p^P') -> 9*(F') is a flat resolution of cp^F'). By the previous claim, the complex
cp*(P') ® I" is 9, -acyclic, and therefore

F-1 R9.(G-) = P- ® 9.(P) ^> 9,,(9*(P') ® P)

= R9.(9*(F-)1)G-).

The required statement follows. •

5.3.10. Corollary. — If G* e D^Y, ZfnZ) is of finite Tor-dimension, then R9,(G')
is alsoof finite Tor-dimension, and for any F" e D(X, Z/nZ) there is a canonical isomorphism

F-1) R9.(G-) ̂  R9.(9*(F-) t) G-).

14
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Proof. — Suppose that H-^G' d G-) = 0 for all i> m and G'eS(Y, Z/yzZ).

It follows thatH-^F)®^) =0 and therefore R-^.^F^G^^O for all

z > w and FeS(X,Z/7zZ). By Theorem 4.3.9, H-^-F^ R<p.(G-)) =0. The second
assertion follows from this. •

If n is prime to char(A), we define for m eZ a sheaf ^^ as follows. If m ̂  0,
then ^x-^,1. I f w < 0 , then ̂  = (pn,S)\ where F7 =J^m(F, Z/wZ). For
F- eD(X,Z/^Z) we set T(m) == F-(i^- Since ̂  is a locally free Z/wZ-module,
P(m) = F- ® ̂ x- One has F-(w) (m') == F-^ + m') and 9'(F-(m)) == (9* P) (772).

5.3.11. Corollary. — Suppose that n is prime to char(A). Then for F' eD(X, Z[nZ),
G' e D(Y, Z/^Z) ^^? m e Z there are canonical isomorphisms

R<p,(G-(m)) ̂  (Ry, G-) (m) aW R(p,(<p* P(w)) ̂  P I) Ry^y). •

5.4. The trace mapping for flat quasifinite morphisms

In this subsection, for every separated flat quasifinite morphism < p : Y - > X of
analytic spaces over k and every abelian sheaf F on X, we construct a trace mapping

Tr^y^F)-^.

Suppose that such mappings are already constructed. We say that Tr<p are compa-
tible with base change if for any separated flat quasifinite morphism ofyfe-analytic spaces
9 : Y ̂  X and any morphism/: X' -> X of analytic spaces over k which give rise to
a cartesian diagram

Y ~^-> X
A Ar v
Y' -^ X'

the following diagram is commutative

y; y'*(/* F) == y;/'* y* F = /*(y, <p* F)

/•F

where Tr, is the evident homomorphism induced by Tr,: 9, y*F->F (here we use
the canonical isomorphism/* <P( G ^> <p^/'* G, G 6 S(Y), which is easily obtained from
the proof of Corollary 4.3.2).
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Furthermore, we say that the Tr<p are compatible with composition if for any separated
<L <p

flat quasifinite morphisms Z ~> Y -> X the following diagram is commutative

(9^(9+rF = 9i(^)9W^
Tr^\ 9l9W

h
F

where Tr^ is the evident homomorphism induced by Tr^ : ̂  ^'(9* F) -> 9* F.

5.4.1. Theorem. — To every separated flat quasifinite morphism 9 : Y -> X <wrf ^ry
abelian sheaf on X <w cflTz fl.mg» a trace mapping

Tr,:<p,9*(F)^F.

TA^ mappings have the following properties and are uniquely determined by them9.

a) the Tr<p are functional on F;
b) the Tr<p are compatible with base change \
c) the Tr<p are compatible with composition'^
d) if 9 is finite of constant rank d, then the composition homomorphism

F-^9.<p*(F)=y,<p*(F)^F

is the multiplication by d.

Proof. — 1) Suppose that X = ̂ (K), where K is a non-Archimedean field over k.
Then Y == ̂ (L), where L is a finite product Il,gi L, of finite local Artinien K-algebras.
Let K^ be the maximal separable extension of K in L^. We set Y^==^(Li) and
Y^ ==^(K^). The categories S(Y^) and S(Y^) are canonically equivalent. Let 9, denote
the morphism Y^ -> X. From b)-d) it follows that the following equality should hold

Tr^S[^:KJT^.

If now L is a finite separable extension of K, then F can be regarded as a G^-module,
and 9^ 9*(F) is the induced module Ind^(F) which is the set of all continuous maps
f: GK -^F such that f{hx) == hf{x) for h e G^ with the action {gf) {x) =f{xg) for
g e GK. In this case from b) it follows that Tr^p should coincide with the homomorphism
of G^-modules

Ind^(F)^F:/^ S xf{x-1).
a?6GK/GL

We remark that if 9 is arbitrary and some mapping T: 9, 9*(F) -> F induces on
stalks the above homomorphisms, then T should coincide with Tr<p.



108 VLADIMIR G. BERKOVICH

2) Suppose that 9 is finite. For (U 4- X) e £t(X), let { VJ,^ be the connected
components of Y^ = Y X^ U. Then the induced morphisms 9,: V, -> V are finite.
We set P(U) == (D^i F(U). The correspondence U h-> P(U) defines an abelian presheaf
on X. Furthermore, the canonical homomorphisms

P(U) = C^i F(U) -. ©,ei(9i. 9: F) (U) = (9. 9' F) (U)

define a homomorphism of presheaves P -> 9, 9* F. We claim that it induces an iso-
morphism of sheaves aP ̂  9^ 9* F. Indeed, it suffices to verify that it induces an iso-
morphism on stalks, but this is evident.

Let now d, be the rank of 9, (recall that V, is connected). For

we set

NieI e ®iEI F (U)=P(U)

Tu((^ei) =S^eF(U) .*ei

It is easy to see that the mappings T^ define a homomorphism of presheaves P -^ F,
and therefore a mapping 9. 9*(F) -^ F. Considering its stalks, we see that it should
coincide with Tr^.

3) If 9 is an open embedding, then the functor 9, is left adjoint to ̂ . It is clear
that Tr^ should coincide with the adjunction mapping 9; 9*(F) -> F. More generally,
suppose that 9 can be represented as a composition

Y 4. Y' -^ X'4. X,

where j and / are open embeddings and 9' is finite. Then we define Tr<p as the unique
mappingwhich satisfies c ) . Considering the stalks, we see that Try does not depend onj,
j' and 9'.

4) Let 9 be arbitrary. Take an open covering { ̂  },^i of Y such that 9 induces
finite morphisms ^i->9(^). We denote by 9, the morphism ^ -^ X and by v,
the canonical embedding ̂  <-> Y. There is an exact sequence of sheaves on Y

^^i^/^^l^^^ei^C^^I^^^F^O^

where Y^, = y^n/^. and v^. is the canonical embedding y^.c-^Y. Since the
functor 9, is exact, there is an exact sequence

®i. ,ei 9^ 9:,(F) -> ®.ei,9i! 9:(F) -> 9. ^(F) -> 0,

where 9̂ . are the. induced morphisms Y^, -> X. From 3) it follows that the mapping

©ieiT^^e^i^^^^F - -
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is zero on the image of ®i,,gi 9i,, 9^(F). Therefore it induces a mapping
Tr<p: 9, <p*(F) -> F. Considering its stalks, we see that it does not depend on the choice
of the covering. Moreover, the mapping constructed has all the properties a ) - d ) . •

All the mappings which are induced by the trace mapping Tr<p will also be denoted
by Tr^. For example, the induced homomorphisms

H^(Y, 9* F) == H^(X, 9, 9*(F)) -. H^(X, F)

are examples of such mappings.

5.4.2. Remarks, — (i) Let 9 : Y-> X be a flat finite morphism. Then ^{(Py)
is a locally free sheaf of (P^-StlgehrsiS. Therefore one can define in a standard way the
norm homomorphism

N:9,(^)^^.

This homomorphism extends naturally to a homomorphism of sheaves on the dtale
site of X

N:9.(G^)^G^.

From Theorem 5.4.1 it follows easily that, for any n ̂  1 prime to char(^), there is a
commutative diagram of abelian sheaves on X

0 -^ 9,(^y) -^ 9*(Gm,y) —> ?*(Gm,Y) —> 0

î  ^ [N

0 ————> ^x ——————> ^X ——————> °m,X ————> °

(ii) If 9 : Y —> X is an ftale morphism, then 9, is left adjoint to the functor 9*.
In this case the trace mapping Tr^ coincides with the adjunction mapping 9, 911t(F) -> F.

§ 6. Calculation of cohomology for curves

6.1. The Comparison Theorem for projective curves

Recall that a scheme SC over k is called compactifiable if there exists an open immersion
j ' : 3£ <-> X of S£ in a proper scheme SK over k. For such a scheme °£ and an abelian
sheaf y on 3£ one defines the ^tale cohomology groups with compact support as follows:

H^, ̂ ) == H^^j, y} .
(this definition does not depend on the choice ofj). Recall also that, by Nagata's Theorem,
any separated scheme of finite type over k is compactifiable. The following statement
is the starting point for the induction in the proof of the Comparison Theorem for
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Cohomology with Compact Support 7.1.1 (The proof of the latter theorem may be
read immediately after the proof of 6.1.1.)

6.1 .1 . Theorem. — Let X he a separated algebraic curve of finite type over k, and let ^
he an abelian torsion sheaf on X. Then for any q ̂  0 there is a canonical isomorphism

HW y} ̂  H^a^, ̂ ran).
Proof. — Denote the homomorphism considered by 9^. First we want to reduce

the situation to the case when k is algebraically closed, 3K is projective, and ^ is finite
constant.

1) We may assume that ^ is projective. — Indeed, if; : 3C ̂  3: is an open embedding
in a projective curve, then H^, ̂ ) == H^J. ̂ ), H^^, ^•an) = W{3^j^y^)
and (j, yy^j^y^.

2) We may assume that ^ is constructive. — This is because any abelian torsion sheaf
on 39 is a filtered inductive limit of constructible sheaves and the cohomology of X
and SK^ commutes with filtered inductive limits (Proposition 5.2.9).

3) We may assume that ̂  is finite constant. — Indeed, assume that 6s are isomorphisms
for such sheaves. Then 6s are isomorphisms for any sheaf of the form ^ == y^Z/yzZ)^)
for some finite morphism 9 : W -> X because in this case H^, ̂ ) == W{W, Z/^Z)
and W{a^\ ̂ ) == W(W^ ZfnZ) (Corollary 4.3.2). Furthermore, an arbitrary
constructible sheaf ^ can be embedded in a finite direct sum of sheaves of the above
form. It follows that there is an exact sequence 0 -> ̂  -> SF^ -> SF^ -> ... such that 6^
are isomorphisms for each ̂ , i ̂  0. Therefore 68 are isomorphisms for y.

4) We may assume thatk is algebraically closed. — Indeed, let X' == X ® k8 and X" = X 0 k^
and let ^ and y " denote the pullbacks of ^ on X' and S;", respectively. Then
H^'.^^H^'',^'') because the fields k8 and ^ are separably closed. Since
^an ̂  ^an (g ̂  ̂  required fact follows from the homomorphism of Hochschield-
Serre spectral sequences

H^G,, H '̂, ̂ )) ===^ H^^,^)i i
H^G^ H^^^, ^//an)) ===^ H^^11,̂ "1)

We remark that since the cohomological dimension of^* and 3^ is at most two,
then the 6s are isomorphisms for q > 2.

If y == (Z/^Z)^., where p = char(A), then the Artin-Schreier exact sequences
for X and ^an, the coincidence of the dtale cohomology with the usual cohomology for
coherent sheaves (Theorem 4.2.7) and GAGA ([Ber], 3.4.10) imply that the Q9 are
isomorphisms.

Suppose that ^ == (Z/yiZ)^., where n is prime to char (A). This sheaf is isomorphic
to P-n.^- Then 60 ̂  an isomorphism because TC^) == 7^o(^an), by [Ber], 3.4.8 and 3.5.1.
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Furthermore, the Kummer exact sequences for SK and ^an, the Hilbert Theorem 90
(Proposition 4.1.10) and GAGA imply that 61 is an isomorphism and that for the veri-
fication of the fact that 62 is an isomorphism it suffices to show that the 71-torsion of the
group H .̂̂ '11, G^) is trivial. This follows from the following lemma.

6.1.2. Lemma. — Suppose that k is algebraically closed. Let X be a paracompact good
one-dimensional k-analytic space. Then the torsion of the group H^X, G )̂ is p-forsion, where
p == char(^). If char(yfe) = 0, then H^X, GJ = 0.

Proof. — The spectral sequence of the morphism of sites TT : X^ -> \ X |,
Lemma 4.2.8 and Proposition 1.2.18 imply that IP(X, GJ == H°(| X |, R2 TT, G^J.
Thus, to prove the lemma it suffices to show that the sheaf R2 TT, G^ x ls ^-torsion. By
Proposition 4.2.4 and Lemma 4.2.8, for a point x eX one has

(^^G^^H^G^^Y).

The latter is the Brauer group of the local Henselian ring ^x,a? ^d is isomorphic to the
Brauer group of K(x) (see [Gro2]). It is equal to zero, by Theorem 2.5.1. •

The following fact is a corollary of Lemma 6.1.2. It will be used in § 6.2 and
§ 6.3 and will be proved in § 6.4 for arbitrary one-dimensional affinoid spaces and for

/^w>

integers n prime to char(A).

6.1.3. Corollary. — Suppose that k is algebraically closed. Let X be an affinoid domain in
the analytification 9^ of a projective curve 9E. Then for any integer n prime to char(A) one has
IP(X,ptJ=0.

Proof. — The group H^X, pj does not change if we replace X by its inverse
image in the normalization of the reduction of 3C. Therefore we may assume that SK is
smooth connected and X is connected. By Lemma 6.1.2 and the Kummer exact sequence,
one has H^X, [JLJ == Pic(X)/^ Pic(X). We claim that the group Pic(X) is divisible.
Since X is connected, there exists a point x e ̂ {k) = .y"1 )̂ which does not belong
to X. Then S E ' == SC\{ x} is an irreducible affine curve, and it is known that the group
Pic(^) is divisible. Therefore it suffices to show that the canonical map Pic(^) -> Pic(X)
is surjecdve. One has

Pic(^') = DnOT/Divo^'),

where Div(^') (resp. Divo(^)) is the group of divisors (resp. principal divisors) on SC*.
Similarly, if W == Spec(J^), where X==^(^), then Pic(X) = Pic(^), by KiehTs
Theorem, and one has

Pic(^) = Div(«Q/DivoW.

Our claim follows from the evident fact that the canonical map Div(^') -^Div(^)
is surjective. •
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6.2. The trace mapping for curves

For brevity a separated ^-analytic space of pure dimension one will be called a
k'analytic curve.

6.2.1. Theorem. — Suppose that k is algebraically closed, and let n be an integer prime
to char(^). Then one can assign to every smooth k-analytic curve X a trace mapping

Tr^H^X^J-^Z.

These mappings have the following properties and are uniquely determined by them:

a) for any flat quasifinite morphism <p : Y-> X the following diagram is commutative

H^Y, ptj ̂  H^(X, ̂ )

Try\ Y^X

Z/TZZ

b) Trpi is the canonical mapping H^P^ .̂J -^ Z/yzZ which is induced by the degree homo-
morphism deg : Pic(P1) ̂  Z.

Furthermore^ the Tr^ are compatible with algebraically closed extensions of the ground field/^»
and are surjective. If n is prime to char(^) and X is connected^ then Tr^ is an isomorphism.

Proof. — Let A be the closed annulus A(a; r, r) == { x e A1 | |(T — a) {x}\ === r},
and let/== S^_^ a,(T - a)' e ^(A).

6.2.2. Lemma. —fe (P{Ay if and only if there exists m with \a^\rm> [ aj r' for
all i + m.

Proof. — If r ^ | k* |, then ^(A) is a field, and our statement is evident. Suppose
that r e [ k* |. In this case we may assume that r == 1, ]|/|| =1 and a == 0. Since

[|/-i|| = 1, then the element /G^TT-I is invertible. It follows that/== aT"1 for

some a e k, m e Z, and we are done. •
The complement of A in P1 is a disjoint union of the open discs D(a, r) and P^E^, r)

which are called the complementary open discs of A. Let D be one of these discs. For
/e^A)' we setdeg^(/) = m, ifD = D(^r), and deg^Q/) = - m , i f D ^ P^E^, T:),
where m is from Lemma 6.2.2. We get a homomorphism

degp:6W->Z.

The notation can be motivated as follows. There is a rational function ^ with
] ] y _ ^ ] | < | [ y [ [ . For such a g one has ̂  e ^(A)*, and therefore the divisor {g) is concen-
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trated outside A. If (^)p denotes the part of the divisor which is concentrated on D,
then degp(/) = deg(^)p. We remark that if D' is the second complementary disc,
then degp(/) + degp.(/) = 0.

6.2.3. Lemma. — Letfe <P(A). Then f'(A) is an annulus if and only if there exists b e k"
such that /— b e ̂ (A)' and dego(/~ b) 4= 0.

Proof. — Assume that/(A) == A(6; R, R). Then the function/— b is invertible
and, by Lemma 6.2.2, one has /— b == a^{T — aY (1 + <p), where 9 e ^(A) with
|| 9 || < 1 and R = | a^\rm = [ | /— 6||. I f w = = 0 , then/—^ = ^(1 + <p) and that is
impossible because in this case/(A) C D(6, R). Conversely, if/ = b + fl^(T — a)"* (1 +9),
where || 9 || < 1 and m =f= 0, then /(A) = A(6, | ̂  | r"*). •

Let/e ^P(A) and assume that A' ==/(A) is an annulus. For a complementary open
disc D o f A we denote by/(D) the complementary open disc of A' which is of the same
type as D if m > 0 (resp. of the opposite type if m < 0), where m is from Lemma 6.2.2.
(We say that two open discs in P1 are of the same type if they contain or do not contain
the infinity simultaneously.) For example, if/ comes from ^(E), where E == D u A,
then /(D) is the usual image of D under /. We remark that the induced morphism
/: A -> A' is Hat and finite. Let N be the norm homomorphism (P(A)* -> ^(A')*.

6.2.4. Lemma. — For any g e ^(A)* one has

deg^(NQrt) = deg^).

Proof. — Since both sides of the equality do not change under extensions of the
ground field, we may assume that r = 1 and ||/|| = 1. Of course, we may also assume
that a = b == 0 and || g [| == 1. The morphism/induces a flat finite morphism of reduc-

tions /y: A = Spec [k FT, _1 \ -> A' == Spec ("k FT', _;1 ], and the following diag
is commutative

•ram

^(A)0' -N^ ^(A')0' ^

ff(A)* -N-> O^Y

If degp^) == 0, then 'g is constant on A. This implies that N(^) == N(^) is constant
on A', and therefore degy(p)(N(^)) == 0. Since both sides of the equality are additive
with respect to ^, we may assume that g = T. One has T' = o^T^l + 9)5 where
[ ̂  | == 1, || 9 I ) < 1 and m + 0. If m > 0, then /(D) = D and ^T) = ^-1 T'. If

m< 0, then/(D) is the second complementary disc and N(T) == S^T'"1. In both
cases we have the required equality. •

15
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Let YD denote the composition of the following surjective homomorphisms
Trpi

flW -> ff(A, ̂ ) -> H^(D, (xj ~> H^P1, ^) -^> Z/nZ.

The first homomorphism is obtained from the Kummer exact sequence (it is surjective
because Pic (A) = 0). The second one is obtained from the cohomological exact
sequence associated with the embeddings D <->- E == D U A <- A (it is surjective because
H^E, pij = 0, by Gorollary6.1.3). The third one is surjective because H^P^D, pj =0.
We remark that if n is prime to char(^), then ^(A^/^A)'18" ̂ ZfnZ.

6.2.5. Lemma. — For any g e fl?(A)* one has

ToC?) = - degi)C?) (modw).

Proof. — It suffices to consider the case D == D(fl, r). First we claim that it suffices
to verify the equality only for the function g == T — a. Indeed, take a rational function h
with sufficiently small || g — h || so that g s= A(mod ^(A)*") and degp(^) = degn(A).
Then YD^) == ToW? ^d therefore we may assume that g is a rational function. Since
Yp(^) and degp(^) are additive with respect to g, it suffices to assume that g === T —- a for
some a 6 k. If a ^ D, then g comes from ^(E)*. Therefore the image of T — a in H^A, [jij
comes from H1(E3 p.J in the exact sequence H^E, pi^) -> H^A, (JL^) -> H^(D, (JL^) asso-
ciated with the embeddings D <-^ E ^- A. It follows that YD(T —- a) == 0. Thus, we may
assume that^ == T — a. We remark that this function belongs to (P^A)* == H°(A, i* G^ ^).

Consider the commutadve diagram

0 0 0i i i
0 ——> Jl .̂D ———> ^n.E ———> ^ P-n,A —————> °

I I [
» -^ J, O-.B —* G,, ̂  (.•'G.,, —> 0

Y y y

0 —* Ji G.,. -^ G^, -^ i.i-G.,, ̂  0

I \ \
0 0 0

whose columns are Kummer exact sequences. It induces the anticommutative diagram

^(A)--^-^ H^(D,GJ

I i
H^A, ̂ ) ̂  H^(D, ^)
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Therefore it suffices to verify that the image of the element 8(T — a) in

Pic(Pi) == Hi(P\ GJ

has degree one.
The group H^(D, GJ has the following two descriptions. It is the group of equi-

valences classes of pairs (L, 9), where L is an invertible sheaf on E (resp. P1) and <p is
an isomorphism ^ -> L in a neighborhood of A (resp. an isomorphism fi^pi ->• L in
a neighborhood of P^D). If h e fi^A)*, then 8(A) = {0^ 0^ 4. 6^). On the other
hand one has a commutative diagram

H^(D, ̂ ) ——> H^(D, GJi i
H°(P\ Qiv^ -^ W(P\ GJ

where Qiv^ and ^%ypi are the sheaves of Carder divisors. If d = S^(^) eH^D, Qiv^),
then v(rf) = (^E(^)?^E -> ^E(^)) (^e latter is an isomorphism in a neighborhood of A
which does not meet the support ofd). Thus we have 8(T ~ a) == (fl^ ^E T~ a> ^s) and
v(fl) = (^EC^)? ^E -> ^E^))- These pairs are equivalent because there is a commutative
diagram

O.^Q,
1

T-a

^ —> w
The lemma is proved. •

Let now B be the open annulus B(fl; r, R) = { x eA11 r< |(T — a) {x)\< R}.
We set A == A{a; r, R), Ai == A(fl; R, R) and A2 = A(<z; r, r). Let YB denote the compo-
sition of the following surjective homomorphisms

O(A,Y e <p{A,y -^ ff(Ai, (xj e HI(A,, (.„) ̂  H2(B, (xj ^ ^
-̂  H2(P1, (Xj ̂  Z/BZ.

The first homomorphism is obtained from the Rummer exact sequence. The second
one is obtained from the cohomological exact sequence associated with the embeddings
B '-> A <- Ai U AZ (it is surjecdve because H^A, (AJ = 0, by Corollary 6.1.3). The
third one is surjecdve because H^P^B, ^J = 0. We also set D^ == D(a, R) and
Dg = Pl\E(a, r). One has B = Di n Dg.

6.2.6. ZmOTa. — For (^,^) e fl7(Ai)* ® ^(Ag)* ow has

fs(gi,g'i) = -degDi( î) —degD,(^2)(modn).
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Proof. — We set Ei == E(a, R), £3 = Pl\D(a, r). A1 = Ei\E(a, r), and
A2=Di\D(a,r).

For t = 1, 2 one has a commutative diagram of embeddings

B -̂5. A <— AiIIAa

II t t
B <—^ A* •<——— A,

I I I I
D, c-^ E. •«——— A,

It induces a commutative diagram of homomorphisms

(P(A,)*®(P(A,)* —> H^A,,^)®^^,^) -^ H^(B,^) -^ H^P1,^)

t t I II
W ————————^ H^A,,^) —————> H^B,^) -^ H^P1,^,)

(P(A,)* ————————> H^A,,^) —————^ H^(D,,(xJ —^ H^P1,^)

The required statement now follows from Lemma 6.2.5. •
For an open subset X C A1 we define

Tr^ == Trp. o Tr,: H^X, ̂ ) -> Z/^Z,

where 7 is the embedding X ̂  P1.

6.2.7. Lemma. — Let X be an open disc or an open annulus in A1. Then for any nonconstant
function f e ̂ (X) the following diagram is commutative

H^(X, ptj ^> H^P^ ^)

T^^ ^/Trpi

Z/wZ

Proo/: — Consider first the case X == D = D(fl,r). Then /= S,°°,o^(T — a)\
Since the group H^(D, ̂ ) is an inductive limit of the groups H^(D(fl, r'), (JiJ, it suffices
to verify the statement for D(a, r') instead ofD, where r ' is sufficiently close to r. Therefore
we may assume that the function / satisfies the following conditions:

a) | fl, | r1 -> 0 for z ->• oo $
^J there exists m ̂  1 with [ ̂  | r*" > [ ^ [ r1 for all i > 1 with z =(= m.

The property ̂  means that^* extends to the closed disc E == E^ r), and b) means
that, for A == A(<z; r, r), A' ===y*(A) is an annulus and D' =f(D) is a complementary
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open disc of A'. Since the homomorphism (P(A)* -> H^(D, ̂ ) is surjective, it suffices
to verify the commutativity of the diagram

(P(A)* -^ 0(A'y
YD'

z/»z
For g e (P(A)* one has

YD'(NC?)) = - degiy(N^)) = - deg^g) s y^) (modn).

Consider now the case X = B == B(a; r, R). Then /= S^._, a,(T - a)'. As
above we may assume that / extends to the closed annulus A = A(a; r, R) and, if
AI = A(a; R, R) and A^ = A(a; r, r), then A[ =/(Ai) and A, ^/(Ag) are annuli.' It
follows that one can find r < t^ < ... < t, < R, / ^ 0, such that for each 0 <y< /
there is m with | aj r" > | a. \ f for all t e]t,, t^,[ and !• + m (we set <o = '• and
^1+1 = R). Let a-, =/»(E(a, f,)) and S = {A;i, ..., A-,}. Then the open set °U = X\S
is a disjoint union of the open annuli B, = B(a; f,, t^,), 0 <y< /, and of an infinite
number of open discs. By Theorem 2.5.1, one has

IP((B, S), (xj = ®',., H^G^,, ̂ ) = 0.

Therefore the embeddings ^ <-). B <- (B, S) induce a surjecdon H^, (xj -^H^(B, (AJ.
Since the lemma is true for open discs, it suffices to verify it for the annuli B.*

Thus, we may assume in addition that for some m e Z one has
/= aJT - a)-" (1 + y),

where <p e 0(A) and || <p ||̂  < 1. In particular, B' =/(B) and A' ==/(A) are also annuli.
Furthermore, if D^ = D(a, R) and Dg = P1^^ r), then B' = D[ n D,, where
D.'=/(D<). Since the homomorphism (P(Ai)*® <P(A^ ^ H^(B, ^) is surjecdve, it
suffices to verify the commutadvity of the diagram

<W ® ^(Ag)* ^> (P(A^)* ® (P(A,)*

1rB\ ^•TB'

Z/nZ

For {gi,gs) e (P(Ai)* ® (P(Aa)* one has

YB'(N(^), N(^)) =. YDI(N(^)) + YD;(N(^))
= YD/.?i) + YD/^) = Ts{gi, gt)-

The lemma is proved. •
Suppose that X is an elementary As-analydc curve (see § 3.6), and let/be a non-

constant analydc funcdon on it. It gives rise to a flat quasifinite morphism /: X -^ PI
We set Tr^ = Trpi o Tr/: H^(X, (A,) -^ Z/nZ.
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6.2.8. Corollary. — The mapping Tr^ does not depend on the choice off.

Proof. — Assume that X is not isomorphic to an open disc or an open annulus.
Then one can find a point x e X such that the open set W = X\{ x } is a disjoint union
of a finite number of open annuli and of an infinite number of open discs (see
Remark 3.6.3 (ii)). Since the homomorphism H^(^, p.J -> H^(X, ^J is surjective,
the required statement follows from Lemma 6.2.7. •

Let now X be an arbitrary smooth ^-analytic curve. By Proposition 3.6.1, we
can find an open covering { %, },giofXby elementary open subsets and, for each pair,
?,jel, an open covering {^hei, °^ ^z^^j also by elementary open subsets.
If v^ and v^ denote the open embeddings ^ <-^ X and .̂, <-> X, then one has an
exact sequence

®»,.»,l ̂ (P-n,^) -> ®i \\{^n^ -> ̂ X-^ 0

which induces a commutative diagram with exact rows

e,,,H2^,,,^) —> ©,H2^,^) —> H^X,^) -^ 0

Trx

©^,^Z/^Z —————> ©,Z^Z —————^ Z/yzZ ———> 0

The right verdcal arrow is the definition ofTr^. By Corollary 6.2.8, it does not depend
on the choice of the coverings. Thus, the trace mappings are defined. The verification
of the necessary properties of Tr^ is now trivial. •

6.2.9. Corollary. — TjfX === 3^, where SK is a separated smooth algebraic curve of finite
type over A, then the diagram

H^ar, (xj ^> H^(X, ptj
^^ j/Trx

ZInZ

is commutative. •

6.2.10. Remark. — The last statement of the theorem is not true without ther^
assumption that n is prime to char(^). For example, assume that char(A) =0 and

r^/

p = char(A) > 0, and let X == D be the open unit disc in A1. Then the embeddings
D <-» P1 <- E = P^D induce an exact sequence

0 -> H^E, (x,) -. H^(D, (^) ~> H^P1, ^) -^ 0.

The group H^E, (Xp) is huge, its cardinality is at least the cardinality of k (see
Remark 6.4.2).
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6.3. Tame etale coverings of curves

In this subsection the ground field k is assumed to be algebraically closed, and the/^/
characteristic of the residue field k of k is denoted by p.

Let 9 : Y -> X be an ^tale morphism. The geometric ramification index of 9 at a point
y e Y is the number

^(A-WjO^WL
where x == <p(j/). The morphism 9 is said to be tame at y if v<p(jy) is not divisible by p.
It is said to be tame if it is tame at all points ofY. We remark that ifX (and therefore Y)
is good, then, by Proposition 2.4.1, one has Vq,(j^) = [ic(^) :K{x)].

6.3.1. Remarks. — (i) It follows from the definition that \£y belongs to an analytic
subdomain X' C X, then ̂ {y) = ̂ (j/), where 9' is the induced morphism 9-~1(X/) -> X'.
We note also that if 9 is tame at j/, then

^(jo= [<% :̂ (?] u^w i: i^w i]
(Proposition 2.4.7 and Lemma 2.4.8).

(ii) If 9 is an ^tale Galois covering with Galois group G, then v^(j/) is equal to
the order of the stabilizer ofjy in G. In particular, if the order of G is not divisible by p,
then 9 is tame.

(iii) Suppose that X is connected and 9 is finite. Then the sheaf 9,(<Py) is a locally
free (P^-modnle. Its rank is said to be the degree deg(9) of 9. In this case for any x e X
one has

deg(9)= S v,(j0.
vev-^x)

(iv) The use of the word " geometric " can be explained as follows. Suppose
that the set of ̂ -points X(A) is everywhere dense in X (this is so, for example, if the valua-
tion of k is nontrivial and X is strictly A-analytic). Then Vy(j/) is equal to the maximal
integer n such that for any open neighborhood ̂  ofjy there exists a point x e X having
at least n inverse images in Y .̂

6.3.2. Theorem. — Any tame finite etale Galois covering of the one-dimensional disc is
trivial.

Proof. — If the valuation of k is trivial, the statement is easily verified. So we
assume that the valuation of k is nontrivial.

Let 9: Y -> X = E(0, r) be a tame finite ^tale Galois covering. We assume
that Y is connected and the number n == deg(9) is bigger than one. Since X is simply
connected (and even contractible), it suffices to show that any point x e X has exactly
n inverse images. Suppose that this is not so, and let S denote the set of points x e X
having at most n — 1 inverse images. It is clear that S is closed. We now use the classi-
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fication of points ofE(0, r) from [Ber], 1.4.4 (see § 3.6). If a point x is of type (1) or (4),
then the field J^{x) == k is algebraically closed, and the group \^{xY\ =\k*\ is
divisible. From Remark 6.3.1 (i) it follows that x ^S. Hence, S may consists only of
points of types (2) or (3).

Consider the following partial ordering on X:x^jy if |/(A;)|^ |/(^)| for all
fek[T]. The restriction of this ordering to S satisfies the conditions ofZorn's Lemma,
and therefore there exists a minimal point x e S. Let x ==j&(E(a, r')) for some a e k
and r' > 0. Since E(a, r') == { x ' e X | x ' ^ x }, we may replace X by E(a, r') and assume
that x is the maximal point of X and S = { x}.

We claim that the preimage of x in Y consists of one point. Indeed, the set X\{A:}
is a disjoint union of open discs. Let D be such an open disc. Since D is simply connected,
(p^D) is a disjoint unionJU^i D,, where all D, are isomorphic to D. For the closure D,
of D, in Y one has D , = D , u { ^ } (see Remark 6.3.4 (i)). It is clear that
(p"1^) ={y^ .. .,j^}. Since Y is arcwise connected, it follows thatj^i == ... ==j^ ==j.
One has

n = pf(jQ : ̂ {x)] == [.%) :%] [| jf(^ | : |jf(^ |j.

Suppose first that x is of type (3), i.e., r ^ \ k* |. In this case X = D u{x}, where

D = D(a, r), and the group | Jf{xY [ is generated by | k* | and r. Since J?(^) = A, we
have [| ̂ {yY \: | ^{x^ |] == ^. We now remark that the group | ̂ (j)' | is generated
by the values of the spectral norm on 3S, where Y == M{3t\ because y is the maximal
point of Y. But for any / e S8 one has

P(/)- sup |/(y)|,
y ' G <P-1(D)

and we know that cp'^D) is a disjoint union of n copies of D == D(a, r). Since a non-
zero analytic function on Y has at most a finite number of zeroes, it follows that the
number in the right hand side of the equality belongs to the group generated by | k* \
and r. This contradicts to the equality [\^{yY \: \^W |] == n-

Suppose now that x is of type (2), i.e., r e \k* |. We then may assume that r = 1.
In this case X = Spec(^), where ̂  = k { T }, is the affine line over ̂ , and J?(^) = ̂ (T).

By Remark 6.3.1 (i), [.%) :%)] = n. The field e%) is the field of rational func-
tions of the affine curve Y = Spec(^) (see [Ber], 2.4.4). We claim that the induced
morphism $': Y -> X is ^tale. For this it suffices to show that the any ^-point yeX(A)
has exactly n inverse images in ^(k). Let TT (resp. TT') denote the reduction map X -> X
(resp. Y ->Y). Then n'1^) is the unit open disc D, and (p'^D) is a disjoint union of
n copies ofD. But y-^D) = n-1^-1^)).^ a result of Bosch ([Bos]), all the sets TC'-1^),
where JeY(^), are connected. It follows that ^has exactly n inverse images. Thus we
get a nontrivial finite 6tale Galois covering of the affine line over k whose degree is prime
to p. This is impossible. •
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6.3.3. Corollary. — Any finite etale Galois covering of the one-dimensional disc, whose
degree is prime to p, is trivial. •

6.3.4. Remarks. — (i) The following fact was used in the proof of 6.3.2 and will
be used in the proof of 6.3.9. Let ^ be an open subset of a ft-affinoid space X, and
assume that there is an isomorphism 9 : ̂  -^ D = D(0, r) C A1. Then W == ^ u { x },
where x ^ X(ft), and for any open neighborhood i^ of the point x the set (p(^ n i^)
contains the annulus B(r', r) = D\E(<z, r') for some 0 < r' < r. This fact easily follows
from the description of ^-analytic curves in [Ber], § 4, but here is its simple explanation.
Let x e <JU\OU. A basis of open neighborhoods of the point x is formed by the sets of the
form ̂  = [y e X | \f^y) \ < a,, \ gj(y) \ > b y , 1 ̂  i ̂  n, 1 < j ̂  m }. But it/is a nonzero
analytic function on X, it has at most a finite number of zeroes on %. It follows that
the set 9({j e ̂  | \f{y) \<- ^}) is a disjoint union of open discs in D, and the set
cp({j e ̂  [ \f{y) \ > a}) is the complement of a disjoint union of closed discs in D. The
first set is relatively compact in D, and the second one contains the annulus B(r', r)
for some 0 < r' < r. It follows that the set <p(^ n Y^) contains the annulus B(r', r) for
some 0 < r' < r. The point x does not belong to X(ft) because a basis of open neigh-
borhoods of a ft-point is formed by sets of the form { j / e X | \f(y) \ < a }. The required
fact follows.

(ii) A morphism of ^-analytic spaces 9 : Y -> X is said to be a covering if every
point x G X has an open neighborhood °U such that (p"1^) is a disjoint union of non-
empty spaces Y^ such that the induced morphisms ^ -> W are finite. It is easy to
deduce from Theorem 6.3.2 and its proof that any tame ^tale Galois covering of the
one-dimensional disc is trivial.

For 0 < r ^ R < oo we denote by A(r, R) the annulus { x e A1 | r ^ | T{x) | ̂  R }.
Let 9^ denote the finite morphism A^1771, R17") -> A(r, R) : z \-> z " . If n is prime to
char(A), then cp^ is a finite (Stale Galois covering. A finite (Stale covering ofA(r, R) is said
to be standard if it is isomorphic to <?„ for some n. If n is prime to p, then <?„ is tame.

6.3.5. Theorem. — Any tame finite etale Galois covering 9 : Y -^ X == A(r, R) with
connected Y is standard.

Proof. — We set n == deg(9). Suppose first that r == R and set x ==^(E(0, r)).
I f r ^ l ^ l , then X == { x }, and our statement follows from Proposition 2.4.4. If r e [ ft* [,

we may assume that r == 1. In this case X = J^{^), where ^ == k ^ T, — ^ and the
rw ^reduction X is the complement to zero in the affine line over k. The set X\{A,} is a

disjoint union of open unit discs. By Theorem 6.3.2, for such a disc D the space cp'^D)
is a disjoint union of n spaces isomorphic to D. Since Y is arcwise connected, we have
^~~l[x} =={j^}. Let Y==^(<^). We claim that VT e SS. Indeed, as in the proof of
Theorem 6.3.2 one shows that the induced morphism 9': Y -> X is ^tale and

16
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deg(^) == n. Therefore 88 == ^[VTj, and there exists an element / e ̂  with [|/|| == 1
and H/" — T || < 1. The element/is inverdble in 86 because T is invertible. We have

' T-r}T=fn^l+ 7^-
Since || (T —f^lf [| < 1 and p )(n, V^T e 88. From this it follows that 9 is isomorphic
to <?„.

In the general case we denote by m the product of all integers between 1 and n
which are prime to p, and set X' === A^^, R17"1). It suffices to show that there exists
a finite morphism ^ : X' —^Y such that 9^ = <p^. For this we consider the induced
morphism 9': Y' == Y x x X' ->• X'. Since X' is simply connected (and even contrac-
tible), it suffices to show that \'(V) = 1 for any point j/eY'. We set

^={j&(E((U))|r^<R}CX.

Ifjy ^ (9^ 9')"'1 (^)? then the required fact follows from Theorem 6.3.2 because X\/ is a
disjoint union of open discs. Let x ' == <p'(y) and suppose that the point x == <p^(A;')
belongs to ̂  i.e., x = ̂ (E(0, ^)), r ̂  t^ R. By Remark 6.3.1 (i), v(V) does not change
if we replace X by the annulus A{t, t). But for such annuli the required fact is already
established. •

6.3.6. Corollary. — Let D be an open disc with center at zero, and set D* = D\E(0, r),
where 0 ̂  r< ^(D). Then any tame finite etale Galois covering 9* : Y* -> D* extends to a finite
flat covering 9 : Y -> D, which is etale outside zero. •

6.3.7. Theorem (Riemann Existence Theorem). — Let SK be an algebraic curve of locally finite
type over k. Then the functor W h-̂  ̂ an defines an equivalence between the category of finite etale
Galois coverings of SK^ whose degree is prime to p^ and the category of similar coverings of SK^.

6.3.8. Remark. — If the valuation on k is trivial, then the Riemann Existence
Theorem is true for arbitrary schemes of locally finite type over k and for arbitrary finite
dtale coverings. This follows from [Ber], 3.5.1 (iii).

Proof. — 1) The functor is fully faithful (this is true for schemes of arbitrary dimension
and for arbitrary finite ^tale coverings). Let W -> SC and W -> SC be finite dtale cove-
rings of SE. We may assume that W is connected. Then the set Hom^.(^', W) corres-
ponds bijectively to the set of connected components @^ of W Xy W such that the
canonical morphism ^ —>(3/t is an isomorphism. The similar fact is true for the
set Hom^an '̂"1, ^"an). Therefore the bijectivity of the map

Hom '̂, ̂ ") -> Hom^an '̂1"1, ̂ "an)

follows from [Ber], 3.4.6 (9) and 3.4.8 (iii).
2) The functor is essentially surjective. — We may assume that SC is separated, reduced

and irreducible. If 3^ is projective, the assertion follows from GAGA (see [Ber], 3.4.14).
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In the general case, let X <-> ̂  be an open immersion of 2K in a projective curve Sf
such that all the points x^ ..., x^ from the complement to 3C are smooth. Then we can
find sufficiently small open neighborhoods D, of ^, which are isomorphic to open discs
and disjoint. Let Y ->^>an be a tame finite (Stale covering of ^an. Applying Corol-
lary 6.3.6, we can construct a finite flat covering 9': Y' -> SE1^. By GAGA, 9' comes from
a finite flat covering ^ : W -> Tf. Hence 9 comes from the covering ^~l{3r) ->3E. •

6.3.9. Theorem. — Let SC be a projective curve over k, and let X be an affinoid subdomain
of SK^ such that 3ra'a\'X. is a disjoint union U î D^, where each D^ is isomorphic to an open
disc. Pick points x, eD,(A?), 1 < i^ n, and set T = X\{x^ ..., x^}. Then the functor
W !-> ̂ /an x^-'an X defines an equivalence between the category of finite etale Galois coverings
of SC'\ whose degree is prime to p, and the category of similar coverings of X.

6.3.10. Remark. — It is very likely that any pure one-dimensional reduced
^-affinoid space X can be identified with an affinoid subdomain of the analytificadon ^an

of a projective curve S£ such that the condition of Theorem 6.3.9 holds. This is true
at least in the following cases:

1) the valuation on k is nontrivial, and X is a normal strictly A-affinoid space
(M. Van der Put [Put]);

2) the valuation on k is trivial, and X is irreducible and contains a point x for
which the field ^{x) is bigger than k and has trivial valuation (see the proof of
Theorem 6.4.1).

Proof. — For a fixed z, take a point x e SK{K) which does not belong to D, (such
a point evidently exists). If/is a nonconstant rational function on 9£ regular outside x,
then the set { z e ̂ an | \f{z) | < a} is an affinoid domain in ^an and, for a sufficiently
large a, contains D,. Therefore we can apply Remark 6.3.4 (i) to D,. It follows
that D^ = D^ u { ^ }, where ^ e X\X(&), and for a sufficiently small open neighborhood
of the point ^ its intersection with D^ is the annulus D,\E^, where E^ is a closed disc
in D, with center at ^. (We remark that some of the points ^ may coincide.) Let now
<p : Y -> X be a finite ^tale Galois covering, whose degree is prime to p. By Corollary 3.4.2
applied to the points ^, <p can be extended to a finite ^tale Galois covering <p' : Y' -> X',
where X' = X u U^i(D,\E,) and E, is a closed disc in D, with center at x,. From
Corollary 6.3.6 it follows that 9' extends to a finite ^tale Galois covering of '̂"1. The
required statement now follows from Theorem 6.3.7. •

The following statement is a particular case of the Comparison Theorem 7.5.1
(it will not be used in the sequel).

6.3.11. Corollary. (Comparison Theorem/or curves). — Let S£ he an algebraic curve
of locally finite type over A, and let 3^ be an abelian constructible sheaf on SE with torsion orders
prime to p. Then for any q ̂  0 there is a canonical isomorphism

H<^ y} ̂  H "̂1, ̂ ran).
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Proof. — Using the spectral sequences of an open affine covering { ̂  }̂  g j of SK
and of the corresponding open covering { 3^ }zei °^ ^an? we ^duce the statement to
the case when °K is affine of finite type over k. Furthermore, we may assume that 3C
is reduced. Finally, we may assume that 3^ == (Z/yzZ)^., p )(n (see the proof of
Theorem 6.1.1). The homomorphism considered is an isomorphism for q = 0, because
70^(3^) = Tro^^), and for ^ == 1, by the Riemann Existence Theorem 6.3.7. Since
H°(^, Z/TzZ) = 0 for q^ 2, it remains to show that H2^, Z/wZ) =0. Let ^<-^
be an open embedding of S£ in a projective curve ̂  such that 2£\a£ == { ^, .. ., A:̂  } are
smooth ^-points. Then the ^-analytic space ^an is a union of an increasing sequence of
affinoid domains X^, i ̂  1, whose complements in ^'an are disjoint unions of m open discs
with centers at the point ^, . . ., x^ By Theorem 6.3.9, H^, Z/TzZ) -^ H^X,, Z/yzZ)
and, by Corollary 6.1.3, H2(X,,Z|nZ) = 0 for all i^ 1. Therefore the required fact
follows from the following lemma which is an analog of Proposition 3.10.2 from [Gro]
(the field k is not assumed to be algebraically closed).

6.3.12. Lemma. — Let X be a paracompact k-analytic space, and suppose that X is a
union of an increasing sequence of closed or open analytic domains X^, i ̂  1. Let F be an abelian
sheaf on X, and let q ^ 1. Assume that for each i ̂  1 the image of the group H^^X,.^, F)
in H^'^X^F) under the restriction homomorphism coincides with the image of the group
IP^X^^, F). Then there is a canonical isomorphism

H f f(X,F)^^ml^P(X,,F).

Proof. — First of all we remark that ifj is an injective abelian sheaf on X and Y
is a closed or open analytic domain in X, then the pullback of J on Y is acyclic
and the homomorphism J(X) ->J(Y) is surjective. Take an injective resolution of F,
0 -> F ->J° ->J1 ->. . . , and consider, for i ̂  1, the commutative diagram

0 —> J°(X) -^ J^X) —> J^X) —> . . .

\ \ \
o —> j°(x,) -^ jw —> jw —> ...

The first row gives the cohomology groups of X, and from the above remark it follows
that the second row gives the cohomology groups of X, and the vertical arrows are
surjections. That the homomorphism considered is surjective is easy. Suppose that
a eJ^X) is such that Ac == 0 and the image of a in each H^X,, F) is zero. We have
to construct an element p eJ^^X) with ^ == a. Since J^-^X) == HmJ^-^X,),
it suffices to construct a system of elements (B, eJ^^XJ, i^ 1, such that oc|^. = rfpi
and Pi+i jx = = P z - Suppose that, for some i^ 1, we already constructed elements
(B.e^-^X,), l^z, and (3;,.i eJ^-^X^) with ^+^==^forj^i and
alx^-^+r Take an element (3;̂  ^.P"^-^) with a|^, = ^'+2- Then the
element (B^lx^i — l^+i S^ rise to an ekment of K^^i+i? F)- SY hypothesis,
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we can find elements y^ eJ^-^X^) with ^.^==0 and 8, ej0-^) (we set
J-1 =0) such that

^i+2\Xi == Pi+2 X» — Pz + A*

Furthermore, since the homomorphism J^'^X^) -.J^-^X,) is surjective, there exists
an element 8^, eJ^X^,) with 8^^-Si. Setting P:^^ == P^2 - Tz+2 + A+2
and (3^i = P,;+2|x^, we get a|x^ == ^+3 and (3;.̂  x = P, for all^ z + 1. •

6.4. Cohomology of affinoid curves

In this subsection we continue to assume that k is algebraically closed, and we
set p = char(A).

6.4.1. Theorem. — Let X be a one-dimensional k-affinoid space, and let n he an integer
prime to p. Then

(i) the group IP(X, Z/nZ) is finite for q == 0, 1 and equal to zero for q ̂  2;
(ii) for any algebraically closed non-Archimedean field K over k one has

IP(X, Z[nZ) ^> H°(X §) K, Z/^Z), q ̂  0.

Proo/'. — We may assume that X is pure one-dimensional, connected and
reduced. Furthermore, we may assume that X is normal. Indeed, let 9 : Y -> X
be the normalization of X. Then there is an exact sequence of sheaves

0 -^ WnZ)^ -> 9.(Z/^Z)Y -> F -^ 0,

where F is a sky-scraper sheaf. Since H°(X, (p^Z/^y) == H^Y, Z/yzZ) for ^ ^ 0,
H°(X, F) == 0 for q ̂  1, and the group H°(X, F) is finite and does not change under
extensions of the ground field, it suffices to prove the theorem for Y instead of X.

Consider first the case when X can be identified with an affinoid subdomain of
the analytification ̂ an of a projective curve 9C such that ̂ ^X is a disjoint union U^ i D,,
where all the D, are isomorphic to open discs. (For example, by the result of Van der
Put mentioned in Remark 6.3.10 this is the case when X is strictly yfe-affinoid.) The
curve SK is evidently connected. Therefore for any algebraically closed non-Archimedean
field K over A the curve X ® K is connected. It follows that X ® K is connected, and
hence

H°(X, Z/nZ) ̂  H°(X ® K, ZfnZ) ̂  Z/^Z.

Furthermore, pick points x, e D,(^), 1 ̂  i ̂  m, and set X' == ^\{ x^ . .., x^ }.
Theorem 6.3.9 implies that

H^X, z/^z) ̂  ip^r, z/77Z).
From this it follows that the statements (i) and (ii) are true for q = 1. They are true
for q ̂  2, by Corollary 6.1.3.
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Consider now the general case. Let K be a bigger algebraically closed non-Archi-
medean field K over k, and let TC denote the canonical morphism X' = X ® K -> X,
To prove the theorem, it suffices to show that for any point x e X the following property
holds

(*) (^(Z/TzZ)^), = 0 and (R1 ̂ (ZfnZ)^ = 0.

We remark that if, for any (Stale morphism g : Y -> X with g~\x) = {y}, the point y
has a basis of affinoid neighborhoods such that the theorem is true for them, then the
property (*) holds for the point x. For example, this is the case when the valuation on k
is nontrivial and X is strictly ^-affinoid. Furthermore, we remark that if Y is an affinoid
domain in X and ^eY, then (R0 ^(Z/^Z)^), ̂  (R3 7^(Z/wZ)y),. Therefore the
validity of the property (*) does not change if we replace X by a smaller or a bigger
^-affinoid space.

There are the following two possibilities:
(1) |^(^|=|y|;

(2) ^{x) == A, and the group | ^(x)* | is generated by | k* \ and a number
r i \ 1€ |.

1) If x eX(^), then (*) evidently holds. Suppose that x (f:X(k). Take an admis-
sible epimorphism

y:^-1^,...,^1^}^,
where X =^(^), and self, == 9(T,). We assume that/, 4= 0.

Suppose first that the valuation on k is nontrivial. In this case we can find
numbers r, e | V \ with \f,{x) | < r[ < r,, l ^ i ^ m . Then the Weierstrass domain
X^"1/!? •••^m'Vm) ls strictly ^-affinoid and contains the point x. By the above
remark, the property (*) holds for the point x.

Suppose now that the valuation on k is trivial. Then the valuation on ^{x) is
also trivial, and therefore \f,{x) \ ̂  1. In particular, r, ^ 1 and the algebra ^ is finitely
generated over k. We replace X by the Weierstrass domain X(/, .. .,/J. If^is the
projectivization of the affine curve Spec(^), then X is an affinoid domain in ^lan and
the complement of X is a finite disjoint union of open discs. Moreover, the point x has
a basis of affinoid neighborhoods of the same type. Finally, if g : Y -> X is an ^tale mor-
phism with ^(A;) = {j }, then the similar facts are true for the point y. By the above
remark, the property (*) holds for the point x.

2) Shrinking X, we can find/ e ̂  with \f{x) \ = r. Consider the induced morphism
/:X~>A1. The image of the point x is the point y ==^(E(0, r)) because r ^ \ k* |.
Since the fibres of X are discrete, we may shrink X and assume that/"^) = { x }. But
Y == {y } is an affinoid domain in A1 (it is the annulus A(r, r)). Therefore { x} ==/-l(^)
is an affinoid domain in X. Thus, replacing X by the reduction of{ x }, we get a morphism
/: X = { x } -> Y = {y}. The field ^(x) is a zero-dimensional Jf(^)-affinoid algebra.
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It follows that the extension ^[x)^{y) is finite, and therefore/is a finite morphism.
One hasJf(j/) = { S^-oo ^ T11 | aj r1 -^0 as z -> oo } and |J^(jO*| = 1^W|.

Suppose first that the valuation on k is trivial. Then | ^{yY \ is a discrete subgroup
ofR*p3 and from this it follows thatJ^(j/) ^>^{x). This means that/is an isomorphism
X-^A(r,r). Moreover, any finite ^tale covering of X is of the same type. Therefore
the property (*) holds for the point x.

Suppose now that the valuation on k is nontrivial. Then the extension ^(x)l^{y)
is separable. Indeed, suppose that <p == S^_^ a, T e^{jy) and ^llp e^[x)\^{y}.
We may assume that ^ == 0 for i divisible by p. Then | 9 | = | a^ \ r^ for some n prime
top. We get | ̂  | = (| ̂  1 r)119 ^ \^W I = 1-W I. Thus,/: X ->Y is_a finite ^tale
morphism. By Corollary 3.4.2,/extends to a finite ftale morphism/: X -> Y = A(r', r")
for some r9 < r< r" with r', r" e | k* |. Since Y is strictly A-affinoid, then so is X, and
we are done. •

6.4.2. Remark. — Both statements of Theorem 6.4.1 are not true without the/^/
assumption that n is prime to char(A). For example, assume that char(A) = 0 and
p == char(A) > 0, and let X be the closed unit disc in A1. Since Pic(X) = 0, the Rummer
exact sequence implies that

H^X.^^Tr/^T}^

One has k{ T}* = {fek{ T} | ||/~/(0) || < ||/|| }. Therefore the correspondence
f^f'WlfW gives a surjective homomorphism from A{T}* to the maximal ideal k00

of the ring of integers A°. It induces a surjective homomorphism
IP(X,^) ^k^lpk^.

If now K is an algebraically closed non-Archimedean field over k for which K00/^00

is bigger than k^fpk00, then the group H^X^ K, ^) does not coincide with H^X, (Ay).
By the way, in Drinfeld's calculation of the group H^X, pij for a standard affinoid
domain in A1 ([Dr], 10.1) one also should assume that n is prime to char(yfe), otherwise
the result stated is not true. (The same is repeated in [FrPu], V. 3.7.)

§ 7. Main Theorems

7.1. The Comparison Theorem for Cohomology with Compact Support

Recall that a morphism of schemes 9 : W ~> SC is called compactifiable if there is
a commutative diagram

oy cJ^ (y

<p\ /^

sr



128 VLADIMIR G. BERKOVICH

where 9 is a proper morphism and j is an open immersion. For a sheaf ^ on ^ one
defines

R^^R^^).

By Nagata's Theorem, any separated morphism of finite type is compactifiable.

7 .1 .1 . Theorem. — Let S£ be a compactifiable scheme over k, and let 3^ he an abelian
torsion sheaf on St'. Then for any q ̂  0 there is a canonical isomorphism

H ,̂ y} ̂  ny, ̂ an).

Proof. — Let 9 : W -> !C be a compactifiable morphism between schemes of locally
finite type over Spec(e^), where ^ is a A-affinoid algebra (the situation is slightly more
general for a further use). For a point x e SE we denote by ̂  ^e fibre of 9 at x and
set ̂  == ̂  ® ̂ (x)8? and for an abelian torsion sheaf ^ on ^, we denote by ^ an(! ^x
the pullbacks of ^ on ̂  ̂ d ^x? respectively. By the Base Change Theorem for Coho-
mology with Compact Support for schemes, one has

(R<^,^=H^,^).

Furthermore, for a point x e ̂ an over x, we fix an embedding of fields A(x)8 <->^{x)\
It gives rise to an isomorphism

(^x^^T^^T.

Since the cohomology with compact support of schemes are preserved under separably
closed extensions of the ground field, one has

H^x, ^x) ̂ H^®^^?)°, ^).

Finally, the Weak Base Change Theorem 5.3.1 tells that

R^ 9an(^aI% == H^( |̂11, ̂ n).

We use the above remarks to establish the following two facts.

7.1.2. Lemma. — In the above situation assume that the dimension of y is at most one.
Then for any q ̂  0 one has

(R3 9. ̂  -^ R3 9T" ^an.

Furthermore, if in addition °K and. W are compactifiable over k and the theorem is true for SK^ then
it is also true for W.
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Proof. — The first statement follows from Theorem 6.1.1 and the above remarks,
and the homomorphism of Leray spectral sequences

H^, R^y. ^) ==> H^^, ^)i i
H^^, R3 9^ ^an) ==> H^0^, ^an)

shows that the second statement is also true. •

7.1.3. Lemma. — In the above situation assume that the morphism 9 is finite and surjective.
Then if 2^ and W are compactifiable over k and the theorem is true for @<, then it is also true for SC.

Proof. — Let ^ be an abelian torsion sheaf on 3C. Since 9 is finite and surjecdve,
the canonical homomorphism y -> 9^(9* ̂ ") is injective. Furthermore, by Corol-
lary 4.3.2, for an abelian sheaf ^ on W one has H .̂̂ , 9^ ^an) ̂  H^®^, ^an).
In particular, the hypothesis implies that the theorem is true for all sheaves of the
form 9^ ^S. Thus, one can construct a resolution of "̂, 0 -> 3F -> ̂ ro ->^"1 ->. . . ,
such that the theorem is true for all ^ri. The homomorphism of spectral sequences

H^H^^,^-)) ———> H^^,^)i i
^(H^^0, ̂ ran')) ==> H^4-0^"1,^"1)

shows that the theorem is also true for ^r. •
We are now ready to prove the theorem.
1) The theorem is true for the direct product (P1)", where P1 is a the projective line over k.

— This follows from Lemma 7.1.2.
2) The theorem is true for the projective space P^ over k. — Indeed, there exists a finite

surjecdve morphism (P1)" -> P71, and we can use Lemma 7.1.3.
3) The theorem is true for any projective scheme over k. — This follows from Lemma 7.1.2.
4) The theorem is true for any affine scheme of finite type over k. —- This is so because

such a scheme is isomorphic to an open subscheme of a projective scheme.
5) The theorem is true for any proper scheme over k. — For a proper scheme SC we can

find an open everywhere dense affine subscheme ^, and so the dimension of the closed
subscheme W == 3E\^U is strictly less than the dimension of^*. Therefore the statement
is obtained by induction using the exact cohomological sequences associated with the
embeddings W ̂  X <- W and ^an <-^ ̂ an <- ^an and the five-lemma.

6) The theorem is true for any compactifiable scheme. — This is already clear. •

7.1.4. Corollary. — Let 9 : W -> 3C be a compactifiable morphism between schemes of
locally finite type over Spec(J^), where ̂  is a k-affinoid algebra^ and let ^S be an abelian torsion
sheaf on W. Then for any q ̂  0 there is a canonical isomorphism

(R^. ̂  ̂  R3 9^ ^an.
17
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Proof. — The statement is obtained from Theorem 7.1.1, using the remarks from
the beginning of its proof. •

Let 9 : Y -> X be a morphism of A-analytic spaces, and let G be a sheaf on Y.
We say that the pair (9, G) is quasialgebraic if, for each point x e X, one has Y^ = ^an

and G^ = ^an, where 3£ is a compactifiable scheme over the field J^{x) and ^ is a
sheaf on S. For example, for the canonical projection pr : Y = X X ^an -> X, where W
is a compactifiable scheme over k, the pair (pr, ̂  y) is quasialgebraic.

7.1.5. Corollary. — Let 9 : Y -> X ^ a Hausdorjf morphism of k-analytic spaces, and
letf: X' -> X ̂  a morphism of analytic spaces over k, which give rise to a cartesian diagram

Y -̂ -> X
r Tr' r
Y' -̂ > X'

Furthermore, let G be an abelian torsion sheaf on Y and assume that the pair (<p, G) is quasialgebraic.
Then for any q > 0 there is a canonical isomorphism

/*(R^G)^R^;(/-G).

Proof. — Let ^ e X and x ' e X' be a pair of points with x ==/(^'). By hypothesis,
one can find a compactifiable scheme 3£ over ̂ {x) and a sheaf ^ on 3£ with Y^ = ^aD

and G^ == ^an. One has Y^ = (^(^^^(A;'))^. The statement follows from the Weak
Base Change Theorem 5.3.1, Theorem 7.1.1 and the fact that the cohomology with
compact support of schemes are preserved under separably closed extensions of the
ground field. •

7.2. The trace mapping

In this subsection we fix an integer n which is prime to the characteristic of the field k.
Our goal is to extend the construction of the trace mapping from § 5.4 and § 6.2

to any separated smooth morphism <p : Y -^ X of pure dimension d, i.e., to construct a
canonical homomorphism of sheaves

Tr^R^^-^ZWx.

As in the Theorems 5.4.1 and 6.2.1, we will characterize the trace mapping by certain
properties.

Let <p : Y -> X be a Hausdorff morphism of ^-analytic spaces, and let,/: X' -> X
be a morphism of analytic spaces over k. They give rise to a cartesian diagram

Y -̂  X

t- t-
Y' -^ X'
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Suppose we are given two mappings a: R^y^^y)-> (Z/nZ)x and

a':R2d<p;«^)-.(Z/^Z)^.

We say that a and a' are compatible with base change if the following diagram is
commutative

f^^i^)) -^ R^K^y)
/"•(a) y.'

V ^

/-((Z^Z)x) —^ (Z/TZZ)^

Here the upper arrow is the base change morphism, and the lower isomorphism is the
canonical one.

Furthermore, let 9 : Y -^ X and ^ : Z —^ Y be Hausdorff morphisms whose dimen-
sions are at most d and e, respectively. Suppose we are given three homomorphisms
a : R^ 9,«y) -^ (Z/^, (3 : R26 +,(^^) -> (Z^Z)y and

Y:R2^e^),«Y)^(Z^Z)^.

Using the Leray spectral sequence 5.2.2 and Corollary 5.3.8, we get an isomorphism

R^WL (^) ̂  R2' ^.(R26 ^.(^-z')).
Corollary 5.3.11 gives an isomorphism

R'^i^^^R'^.^z)®^^.
We get a mapping

R^W). (t^) ̂  R2' p^R2' ̂ «z) ® <Y)
^R2d9I«Y)->(Z^Z)^

The composition mapping is denoted by a n P. We remark that if a and (3 are isomor-
phisms (resp. epimorphisms), then a n (B is also an isomorphism (resp. epimorphism).
We say that the mappings a, (B and y are compatible with composition if y == a D (3.
Note that the operation D is transitive.

7.2.1. Theorem. — One can assign to every separated smooth morphism 9 : Y -> X of
pure dimension d a trace mapping

Tr,:R2d9,(^y)->(Z/7^Z^.

These mappings have the following properties and are uniquely determined by them:

a) Tr<p are compatible with base change;
b) Try are compatible with composition^



132 VLADIMIR G. BERKOVICH

c) if d ==0 (i.e., 9 is etale), then Tr<p is the trace mapping 9,(Z/nZ)y -> (Z/nZ)x
from § 5.4;

d) if X ==^(A), ^ z^ algebraically closed and </===!, then T^v^ is the trace mapping
Try : H^(Y, (JLJ ̂  Z/nZ /r^ §6.2.

Furthermore^ if the fibres of 9 <zr^ nonempty, then Tr z'j flw epimorphism. If in additionr^/
the geometric fibres of 9 are nonempty and connected and n is prime to char(^), then Tr^ is an
isomorphism.

Proof. — First of all, let 9 be the morphism r^ : Ad ->^{K). It is the ana-
lytification of the morphism of schemes ^ : ̂  ->Spec{k). One has a trace mapping
Tr^ : R^^p^rf) -> (Z/7zZ)sp^) (which is an isomorphism). Its analytification (Corol-
lary 7.1.4) gives rise to a trace mapping Tr^</: R^ Tcf(^Arf)-> (Z/wZ)^.^ (which
is also an isomorphism). Furthermore, if 9 is the morphism TT^ : A^ == X x A? -> X,
then we define Tr^rf as the base change of Tr^rf (Corollary 7.1.5).

7.2.2. Lemma. — Let 9 : Y —> X be a separated smooth morphism which can be repre-
sented as a composition of an etale morphism f: Y -> A^ with the projection rc^: A^ -> X. Then
the mapping

Tr, = Tr^ o Tr/ : R2" y,« ̂  -> (Z/nZ)^

A^ no^ depend on the representation.

Proof. — We may increase the field k and assume that its valuation is nontrivial.
If d == 1, the statement is obtained from the case of curves (Theorem 6.2.1), using
the Weak Base Change Theorem 5.3.1. Suppose that d^ 2. The Weak Base Change
Theorem 5.3.1 reduces the situation to the case when we are given a separated connected
smooth ^-analytic space X for algebraically closed k and elements /i, .. .,^ e ^(X)
such that the morphism/: X -> A? that they define is ^tale. We have to verify that the
mapping

Tr^' • - ̂ ) = Tr^ o Tr/: H^(X, ^) ^ H^A^, ^)-^ Z/^Z

does not depend on the choice of the elements/i, .. .,^.
First of all, this mapping is independent of the ordering of the elements f^ ...,/,

since the group GL^) acts trivially on H2,̂ , ̂ ) = H^A4, ^).
Let ^i, . . . , g^ be another system of elements in <P(X) for which the corresponding

morphism g : X -> A^ is ftale. Take an arbitrary point A; e X(A) (such a point exists
because the field k is algebraically closed, and its valuation is nontrivial). Replacing/
^fi —fiW and gi ̂  gi — &(^)» we may assume that the elements/i, ...,/, g^ ..., ̂
are contained in the maximal ideal m^ of the local ring ^x,a?* But then (/i, ..../,)
and (^i, • • •?^d) are regular systems of parameters for ^x,a;? l•e•? ^^ f01'111 two bases
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of the A-vector space m^/m^. Applying Steinitz Exchange Theorem for these bases,
we can find a finite chain of systems of elements

( f f\ _ f f(l) f(m / f(2) f(2)\ i f(m} r(w)\
\Jl9 • • ' ) J d ) — \Jl ? • • •5J<i )f \Jl ? • • •9Jd / ) • • • ? Ul 3 • • •?Jd ^

= (^n •• • .&)

such that

flj each/^ is one of the elements/i, .. .,,/p^i, . . . ?&;
^ each system gives rise to a basis of mjrn^;
c ) each system (/i^^, .. .,/J1"^) arises from (/^), .. .,/J^) by the replacement

of just one element.

By Proposition 3.3.10, each of the systems {f^\ .. .yf^) gives rise to an ^tale
morphism y^ : X' -> A^, where X' is a nonempty Zariski open subset of X. We remark
now that ifY = X\X', then dim(Y) ^ d — 1, and therefore the canonical homomorphism
H^(X', pij ->H^(X, pij is bijective. Thus it suffices to show that if/i, .. .,/d-i,<?
andYi, .. ',fci-i9 h are two systems of elements in <P(X) which give rise to ^tale mor-
phisms ( p r X - ^ A ^ and ^ :X->A d , respectively, then Tr^'-'-'^-r^ = Tr^-'-'^-r^.

Let TT be the projection A? -> Ad~l on the first d — 1 coordinates. Since TT o 9 == TT o ^,
it follows, by the case rf == 1, that Tr^oTr^p == Tr^oTr^. We have

Tr î- -^-i^) = (Tr^-i D TrJ o Tr, == Tr^-i D (Tr, o Tr,)

== TrArf-i a (Tr^ o Tr^) = (TrA</-i D TrJ o Tr^

^Tr^'-'^-r^

The lemma is proved. •
The construction of the trace mapping for arbitrary 9 is obtained from Lemma 7.2.2

in the same way as the corresponding construction in Theorem 6.2.1 is obtained from
Corollary 6.2.8.

It remains to show that if the geometric fibres of <p are nonempty and connected
cv

and n is prime to char (A), then Tr^p is an isomorphism. By the Weak Base Change
Theorem 5.3.1, it suffices to show that if^is algebraically closed and X is a separated
connected smooth ^-analytic space of dimension d, then Tr^ : H^(X, ^) -^ Z/wZ. We
remark that it suffices to find for such a space X an dtale covering (U, -> X),gi with
separated U^ such that all Tr^j. are isomorphisms. This is verified by induction. To use
the induction, it suffices to show that for any point x e X there exists a separated ^tale
morphism/: U -> X and a smooth morphism 9 : U-> V of pure dimension 6ne to a
separated smooth ^'analytic space V such that x e/(U) and the geometric fibres of <p
are nonempty and connected. For this we shrink X and take an dtale morphism X -> A^.
Let ^ be the composition of the latter morphism with the projection Ad -^A1"1. The
morphism ^ : X -^A1""1 is smooth of pure dimension one. Applying Theorem 3.7.2,
we get the required morphisms f and 9. •
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7.2.3. Corollary. —Let 9 : W ->SK be a separated, smooth morphism of pure dimension d
between schemes of locally finite type over Spec(j^), where ^ is a k-affinoid algebra. Then the
diagram

(î vM^ -^ R^W^n)
(Trq,)*"^

(Z/%Z)^.an

^ commutative.

Let <p : Y -> X be a separated smooth morphism of pure dimension d. By Corol-
lary 5.3.11, for any P eD(X,Z/%Z) there is a canonical isomorphism

Ry.^P^) [2^]) ^PI)R9,«Y) [2</].

Theorem 7 . 2 . 1 gives a morphism (in D(X, Z/yzZ))

R9.«y)[2^^(Z^Z^.

Therefore we get a morphism

Tr,:R9,(9-PW[2^])->F-

which will also be called a trace mapping. For F eS(X,Z/yiZ) the latter morphism
is induced by a homomorphism of sheaves R2^ y^y* F(rf)) ->F. It is an isomorphism
if the geometric fibres of 9 are nonempty and connected and n is prime to char(^) because
R^y-F^^F-SR^,^).

7.3. Poincare Duality

First of all we want to fix notation. Let X be a ^-analytic space, and let A be a
ring (in practice, A = Z/raZ). The functors of homomorphisms Horn and of germs of
homomorphisms 3€'om (between Ax-modules) have derived functors

Horn : D(X, A)0 x D^X, A) -> D(A)

and .sforo : D(X, A)0 x D+(X,A) ^D(X,A),

where D(A) is the derived category ofA-modules. Recall that if G* is bounded below
and G* ->]' is an injective resolution of G', then Hom(F', G') =Hom'(F*,J') and
.?foOT(F',G')=.3f(MK'(P,J'). One sets

Ext^F', G') = H^HomCF', G'))

and '̂(F', G*) == H^Jfcw^F*, G")).
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For sheaves F, G eS(X,A) these are the usual functors Ext and Sxt, and <?^(F, G)
is the sheaf associated with the presheaf (U -^ X) H+ Ext^F^, Gjj. We remark that
if a A-module G is injective, then the sheaf ^fow(F, G) is flabby.

Let now 9 : Y -> X be a separated smooth morphism of pure dimension d, and
let n be an integer. By functoriality of Rep,, for any complexes G' and G" of sheaves
of (Z/7zZ)y-modules which are bounded above and below, respectively, there is a cano-
nical morphism of complexes

9,(JfW(G-, G'-)) ->j^W(R(p. G-, R9. G'-).

Let G" ->J* be an injective resolution of G". Then the complexes ^W(G",J") on Y
and y, J" on X consist of flabby sheaves. Therefore there is the following canonical
morphisms in D^X, Z/T?Z)

R9,(^m(G-, G'-)) = 9,(JfW(G-,J-))
-.jrow-(R(p. G", R(p. J') = jrom(R<p, G', R<p. G").

Assume now that n is prime to char (A). Then applying this morphism to complexes G"
of the form 9* F*(^) [2d] and using the trace mapping R<p, (9* F'(rf) [2d]) -> F\ we obtain
for any G- eD-(Y, Z/%Z) and F- 6D+(X, Z/yzZ) a duality morphism

R^(^om{G\ 9* F-(^) [2d])) ->^m(R9. G-, F-).

7.3.1. Theorem (Poincare Duality Theorem). — Suppose that n is prime to char(^).
Then the duality morphism is an isomorphism.

We remark that the theorem is equivalent to the fact that, for all q e Z, the duality
morphism induces isomorphisms

Ext^G-, 9* F{d) [2d]) ̂  Ext°(R9, G-, F-).

By Remark 6.2.10, the theorem is not true without the assumption that n is prime
to char(A).

Proof. — Fixing one of the complexes G' or F-, one gets an exact functor with
respect to the second complex which is way out right (see [Hal], §1.7). Therefore it suf-
fices to verify the theorem only for complexes of the form G' = G, where G e S(Y, Z/T^Z),
and F = F(— d) [— 2d], where F e S(X, Z/yzZ). Thus it suffices to show that for all
q ^ 0 the canonical mappings

O^G, F) :== Ext^G, 9* F) -> ^(G, F) := Hom(R9, G, F(- d) [q - 2d])

are isomorphisms. For example, in the case d == 0 the theorem follows from the fact
that the functor 9, is left adjoint to the functor 9*.

First of all we reduce the situation to the case when the space X (and therefore Y)
is good. Indeed, assume that our statement is true in this case. Since the statement is
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local with respect to X, we can shrink X and assume that X == U,"L i X,, where X, are closed
analytic domains isomorphic to open subsets ofA-affinoid spaces (in particular, the X, are
good). Since any F has an embedding in the direct sum (BfLi v^ F^ where F^ = ̂  F
and v, is the canonical embedding X, -> X, it suffices to verify that

^(G.^F^Y^G,^), q^Q.

If v,' and 9,' are defined by the cartesian diagram

Y -^> X

Y, ̂  X,

there is a canonical isomorphism of sheaves 9* v^ F, -^ v^ 9^ F, (the stalks of these
sheaves are isomorphic). Therefore, O^G, ̂  F,) = (D^v;* G, FJ. Furthermore, the
morphism ^: X,-> X satisfies the condition of Corollary 5.3.6, and therefore
v;(R9,G)^R9;,(v^G). It follows that Y^G, ̂  FJ - Y^;* G, F,), and since the
space X, is good, the assumption gives an isomorphism O^G, v^ FJ ̂  Y^G, v^ F,).

Thus, we may assume that the spaces X and Y are good. Suppose that d^ 1.
We fix the sheaf F and set O^G) = O^G, F) and Y^G) = Y^G, F). Then {O3}^
and {V}^o are exact contravariant B-functors from S(Y, ZfnZ) to ^b, the functors

0°(G) = Hom(G, 9* F) and Y°(G) == Hom(R2d 9, G, F(- d))

are left exact, and 0s are right satellites of the functor 0°. Thus to prove the theorem
it suffices (and is necessary) to show that

a) <D°-^Y0, and
b) the functors Y0, q^ 1, are right satellites of the functor Y°.

The statement b) is equivalent to the fact that the functors Y3, q ^ 1, are effaceable,
i.e., for any G e S(Y, Z/yzZ) and oceY^G) there exists an epimorphism of sheaves
G' ->G such that a goes to zero under the induced homomorphism Y^G) -^Y^G').

Step 1. — $° ̂  Y°. Since the functors 0° and Y° are left exact, it suffices to find
a family of sheaves ̂  C S(Y, ZInZ) such that for any G e S(Y, Z/nZ) there exists an
epimorphism (D^i M, -^ G with M, eJif and, for any M e^, one has (I)°(M) ̂  Y°(M).
We take for c^ the class of sheaves of the form g,(ZlnZ)y, where g : V -> Y is a separated
etale morphism for which there exists a commutative diagram

Y -̂  X
A A •r r
v -^ u

such that/is a separated ^tale morphism and ^ is a smooth morphism whose geometric
fibres are nonempty and connected. From Corollary 3.7.3 (see also the proof of Pro-
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position 4.4.5) it follows that any G is the epimorphic image of a direct sum of some
sheaves from ̂ . Let M == ^(Z/7zZ)v. Then in the above notation we have

(D°(M) - Hom(^(Z/^Z)v, 9* F) = Hom((Z/7iZ)y, 9* F[^) = V F(V)
and Y°(M) = Hon^ 9,(^(Z/^Z)v), F(~ rf))

== Hom^R^ WW^ F(- rf))
=Hom(R^(Z/nZ)^F(-^)

== Hom((Z/^ (- d), F(- d) |J == F(U)

because the geometric fibres of ^ are nonempty and connected and n is prime to char (A)
(Theorem 7.2.1). Thus, it suffices to show that if <p : Y ->X is a separated smooth
morphism of pure dimension d with nonempty and connected geometric fibres, then for
F e S(X, ZInZ) the mapping

^:^F(Y)=Hom{WnZ)^^F)

-^ Hon^ 9,Q<^ R2' 9. 9' FW) = F(X)

is an isomorphism. Since R^ 9, 9* F(rf) r?-F® R24 9,(p.^ y), the composition of the
canonical mapping F(X) -> 9* F(Y) with ^ is the identity on F(X). Therefore the
required fact follows from the following statement.

7.3.2. Proposition. — Let 9 : Y ->X be a morphism of k-analytic spaces, and suppose
that any {tale base change of 9 is an open map with nonempty and connected fibres. Then for any
sheaf of sets F on X one has F ̂ > 9^ 9* F.

7.3.3. Lemma. — Any k-analytic space X contains a point x such that, for some embedding
of fields k8 ̂ ^{x)8, the image of the induced homomorphism of Galois groups G^(^ -> Gj, has
finite index in Gj^.

Proof. — We may assume that X is A-affinoid. If X is strictly A-affinoid, then we
take an arbitrary point x with [^{x) : k] < oo (i.e., x eXg). Therefore it suffices to
show that if K == Ky, where r f\/\k* |, and the statement is true for the K-affinoid
space X' = X §) K, then it is also true for X. For this we take a point x ' e X' such that,
for some embedding of fields K5 c-^^f(A;')8, the image of the induced homomorphism
G^(X') ~^ G^ has finite index. Furthermore, we fix an embedding of fields k8 c-̂  K8.
(We remark that the induced homomorphism G^ —^ G^ is surjective.) Let x be the image
of the point x ' in X. The above embeddings of fields induce an embedding k8 <-^J^(^)8,
and we get a commutative diagram of homomorphisms

G^) —> ^t t
G^ix') —> GK

where the right homomorphism is surjective and the image of the lower homomorphism
has finite index. The required statement follows. •

18
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Proof of Proposition 7.3.2. — For a sheaf of sets G on Y and two elements/,^ e G(Y)
we set Supp(/— g) == {y eY| /^=(=^}. It is a closed subset of Y.

We claim that if/, g e (p* F(Y), then Supp(/— g) = 9~1(S) for some set 2 C X.
(From this it follows that the set 2 is closed because 9 is an open map.) Indeed, it suffices
to show that if X == Jsf{k) and/=)= g, then Supp(/— g) == Y. Assume that fy + gy at
some pointj^ e Y. By the definition of 9* F, there is an dtale neighborhood h: V -> Y
of the point y such that V is a K-analytic space, where K is a finite separable extension
of k, and the elements j^L and g y come from some elements ofF(K). Clearly, the latter
elements are not equal. It follows that/ly and g\y do not coincide at all points of V, and
therefore fy, + g y ' for all j /eA(V). Since h is an open map, it follows that the set
Supp(y—^) is open, and therefore it coincides with Y because Y is connected.

Let now f e 9* F(Y). It suffices to show that every point x e X ha6 an ftale
neighborhood X' -> X such that the restriction of y on Y X x X' comes from an
element ^eF(X'). By Lemma 7.3.3, we can replace X by an ^tale neighborhood
of the point x and assume that there exists a point^ e <p~ l(^) for which the homomorphism
G^(y) -> Gjr(a-) ? induced by an embedding jf {x)' ^^(j/)8, is surjective. It follows that
F^Jf^)) ̂  (9* F)y (^f(j/)). Therefore we can shrink X and find an element g e F(X)
whose image in (9* F)y (J^(^)) coincides with fy. We have Supp(y—g) === 9-'1(S)
for some closed set S C X. Since x ^ S, we can find an open neighborhood ^ of x such
that /^-^ == ^. •

Step 2. — The functors Y5, y ^ 1, fl^ ejfaceablefor d == 1. To show this we need the
following fact which is an analog of the Fundamental Lemma 1.6.9 from [SGA4],
Exp. XVIII.

7.3.4. Fundamental Lemma. — Let 9 : Y -> X be a separated smooth morphism of pure
dimension one, and suppose that X is good. Then for any point y e Y there exist separated etale
morphismsf: X' -> X and g : Y" -> Y' == Y Xx X'

such that jy e/'W')) and

(i) the homomorphism R^'^y-) ->R1 9[(^y/) is zero;
(ii) ̂  geometric fibres of 9" flr^ nonempty, noncompact and connected.

Proof. —We replace X by an affinoid neighborhood of the point x = 9(j/). Let
X=^(^).
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1) One can shrink Y and assume that there is a commutative diagram

Y r 3 > ^an

\ d/a"v\ y

X

wA^ 4' •* ̂  "> ̂  == Spec(J^) ^ fl smooth afjine curve of finite type over X^ and j is an open
immersion. This is Lemma 3.6.2.

We remark that from 1) it follows that <p,((^ y) == 0 and the same is true for any
dtale open subset of Y. Let W == Spec(B).

2) One can shrink Y and W and assume that there existj^, . .. ,f^ e B and s^, ..., e^ > 0
such that

y=={ye^\\f,(y)\<^i^i^m}.

For this we remark that a basis of open sets in ^an is formed by sets of the form

<y e ̂ an i |/^y) | < ̂  [ &(Y) | > &,, i < z ^ ^ i < j^ m},
where ̂ ,^-eB and ^ ,6^>0 . Replacing B by the localization Bg g , the second
inequality can be rewritten as \g^^{y'}\ < b'j'1, and we are done.

3) In the situation of 2) the canonical homomorphism

R^^y) -^R1^^.^") : :

is injective. (We remark that, by Corollary 7.1.4, the latter sheaf coincides with
(R1 ^. pi^)^.) By the Weak Base Change Theorem 5.3.1, it suffices to verify the fol-
lowing fact. Suppose that Sf is an affine curve of finite type over k^f^ .. .,y^ e 0(S£\
and ^ == { x e 3^ \ \f^x) \ < e,, 1 ̂  i ̂  m} for some s, > 0. Then the canonical homo-
morphism H^, pL^) -> H^^", ̂ ) is injective. We may assume that the set S = ̂ an\^
is nonempty. By Proposition 5.2.6 (ii), there is an exact sequence

W^ S), pLj ^ H^^, (xj -> H^^, (xj.

We claim that H^^"1, S), pi^) = 0. Indeed, it suffices to verify that if S is contained
in a disjoint union of open sets ^ and i^ and the set S n V is nonempty, then it is
noncompact. Suppose that S n ̂  is nonempty and compact. Then we can find its
affinoid neighborhood V in V^ (see [Ber], 2.6.3). By the Maximum Modulus Principle
[Ber], 2.5.20, every of the functions f^ takes its maximum at the topological boundary
B(V/^) of the set V in V. Since ^V/V) n S = 0, then a(V/V) C ̂ . From this it
follows that \fi{x) | < e^ for all x eV and \ ̂  i^ m. This contradicts to the supposition
that S n V 4= 0.
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We are now ready to prove the lemma. By the Fundamental Lemma 1.6.9 from
[SGA4], Exp. XVIII, one can find a separated ^tale morphism of finite type g : W -> W

such that yG^(^') (y is the image of the point y in W) and the homomorphism
R1 ̂ (^^) -> R1 ^(P-n <s/) ls zer0' Let Y' be the inverse image of Y in ^f91a, and let 9'
denote the restriction of ^'an to Y'. Consider the commutative diagram

R'P.^n.Y) ——> (R1^,^)1"1

t t
R^^Y') -^ (R1^.^)1"1

By 3), the upper arrow is injecdve. Since the right arrow is zero, it follows that the left
arrow is also zero. Finally, to satisfy the condition (ii), it suffices to apply Theorem 3.7.2
to the morphism 9': Y' --> Y. The Fundamental Lemma is proved. •

The following is Lemma 2.14.2 from [SGA4J, Exp. XVIII.

7.3.5. Lemma. — Suppose that ̂  is an abelian category^ m ̂  0, { F^ }o^»^2w are ^J6^
of D )̂ suck that H^F;) == 0 for q ^ [0, w], f,: F; -> F;.̂  (O^^^w-1) are
morphisms^ and f is their composition F^ -^F^. Assume that Hc(^) = 0 for q< m. Then
there exists in D^J )̂ a morphism 9 : H^F;) [~ m] —^ F^ such that the diagram

H-(F;) [- m]

is commutative. •

7.3.6. Corollary. — Let ^ : Y —>-X be a separated smooth morphism of pure dimension
one, and suppose that X is good. Then/or any point y eY there exist separated etale morphisms
J:X'->X^5.•Y"->Y /==:Y XxX'
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such thaty e/'Cg^Y")) and there is a factorization

iW^y") —> Ry:(^,r)

wZ^ / ^ induced by the trace mapping.

Proof (see [SGA4], Exp. XVIII, 2.14.4). — We set 90 = 9 : Yo = Y ~> Xo = X
and construct by induction four diagrams

Y. —»-< X.

t , t
V '̂•'•l v
^i+l ——^ ^+1

Y,^

which satisfy the conclusion of the Fundamental Lemma. Furthermore, we set X' = X^
and Y," === Y, Xx, X'. If^ denotes the canonical morphism Y," -^ X', then the mappings

R^i-.l,(^.Y,"J->R3^(^Y,')

are zeroes for q = 0, 1 and the mapping
Tr:R2^(^^)->(Z/;zZ)^

is an isomorphism. By Lemma 7.3.5, the required statement is true for Y" = Y^'. •
We now prove the statement of Step 2. Let Ji be the family of sheaves on Y of

the form A.(Z^Z)v, where A : V - > Y is a separated <Stale morphism. Since any
G eS(Y, ZfnZ) is the epimorphic image of a direct sum of some sheaves from ̂ , it
suffices to show that for any M = A,(Z/7iZ)y and a e Y^M) there exists an epimorphism
(B^jM,-^M with M,e^ such that the image of a in all Y^MJ is zero. Let ^
denote the morphism h o 9 : V -> X. One has

Y^M) = Hom(R9, M, F(- 1) [q - 2]) = Hom(R^ ^ ,̂ F[q - 2J).

We apply Corollary 7.3.6 to the morphism ^ and an arbitrary pointy eV. It follows
that one can find separated dtale morphisms /: X' -^ X and g : V" -> V == V Xx X'
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such thatjy e/'(^(V")) and there is a factorization

W(^v-) —> R+;(^.v-)\ /
(Z/^[-2J

We set M' = {hf g), (Z/^Z)^. The image of a in

Y^M') = Hom(R^(^^).F|^[y - 2])

is a morphism which goes through a morphism (Z/^Z)x' [— 2] -> F[^ [? — 2]. The latter
morphism is represented by an element (3 e Ext^Z/nZ)^, FL) = H^X', F). Let
^' === <KV), where y ' e V and /'(V) =j/. Since q ̂  1, we can find a separated dtale
neighborhood X" -> X' of the point ^' such that the element (B goes to zero under the
canonical homomorphism

I-P(X',F) -.H^X",?).

Thus, if we replace the above objects by their base change under the morphism
X" -> X', the image of a in Y^M') will be zero.

We remark that from Steps 1 and 2 it follows that the theorem is true for d == 1.

Step 3. — The functors Y3, q ^ 1, are effaceable for d ̂  2. First of all we remark
that to verify the statement for a morphism 9 : Y -> X it suffices to find an ftale

Q'
covering { Y, -> Y },^i such that it is true for all of the morphisms 9, =^ 9 o ̂  : Y, -> X.
Indeed, suppose we have G e S(Y, Z/^Z), q ̂  1 and a e Y^G). Let G, be the pullback
ofG on Y, and let a, be the image of a in Y?(G,) == Hom(R9,; G,, F(— d) [q — 2d]).
By hypothesis, for any i e I there exists an epimorphism G,' -> G, such that the image
of a, in Y?(G^) is zero. Then we get an epimorphism of sheaves ©iei&'(^) "̂  G
such that the image of a in any ^(^.(G;)) = Y^O is zero.

We prove our statement by induction. Assume that it is true for d — 1. By the
above remark it suffices to verify the statement for a morphism ^ : Z -> X which is a
composition of separated smooth morphisms ^ : Z -^Y of pure dimension d — 1 and
9 : Y -> X of pure dimension one. Since the theorem is true for d = 1, we have

Y^G) = Hom(Ra, G, F(- d) [q ^ 2d])
= Hom(R<p,(R^ G(^ 1) [2d - 2]), F(- 1) [q - 2])

= ExtW. G{d - 1) [2rf-2], 9* F)
= Hom(R^. G, 9* F(~- d + 1) [q - 2d + 2])

== ^^.(pT^0')

where the latter denotes the analogous functor for the morphi§m ^ and the sheaf 9* F. By
induction, there exists an epimorphism G' -> G such that the image of a in Y^ <p,p)(G')
is zero. Since the latter group coincides with Y^G'), we get the required statement.
The theorem is proved. •
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7.4. Applications of Poincare Duality

Let n be an integer prime to char(^).

7.4.1. Theorem. — Let 9 : Y -> X be a separated smooth morphism of pure dimension d.
Then for any F e S(X, Z/T^Z) there is a canonical isomorphism

R9,(9* F) ^^m(R9,(Z/%Z)y, F(- d} [- 2d]).

proof. — Since ZfnZ is a free Z/^Z-module, then <^((Z/7zZ)y, 9* F) == 0 for
all q ^ 1, and therefore ^om^Z.InZ,)^, 9* F) -^ 9* F. The required statement is obtained
by applying Poincare Duality to the complexes G' = (Z/^Z)y and F' == F(— d) [— 2<]. •

We say that a morphism of ^-analytic spaces 9 : Y ->• X is acyclic if for any
FeS(X,Z/^Z) one has F ̂ 9, (9* F) and R°(p,((p*F) == 0, ?^ 1.

7.4.2. Corollary. — Let 9 : Y -^ X be a separated smooth morphism of pure dimension d,
and suppose that the geometric fibres of 9 are nonempty and connected and have trivial cohomology
groups H^ with coefficients in ZInZfor q < 2d. Then the morphism 9 is acyclic. For example, the
morphisms X X jf^ —^ X and X X D —^ X, where D is an open disc in A^ are acyclic. •

The following is a straightforward consequence of Poincare Duality.

7.4.3. Theorem. — Suppose that k is algebraically closed^ and let X be a separated smooth
k-analytic space of pure dimension d. Then for any F e S(X, Z/^Z) and q ̂  0 there is a canonical
isomorphism

Ext^^^H2/--^^.

In particular, if F is finite locally constant, then one has

H^F^^^H^-^X,^. •

7.4.4. Corollary. — Suppose that k is algebraically closed, and let X be a proper smooth
k-analytic space. Then for any finite locally constant sheaf'F eS(X, Z/yzZ) the groups H^X, F)
are finite. •

Let S be a ^-analytic space. A smooth S-pair (Y, X) is a commutative diagram of
morphisms of ^-analytic spaces

Y —> X
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where / and g are smooth, and i is a closed immersion. The codimension of (Y, X) at a
pointy e Y is the codimension at y of the fibre Y, in X,, where s == g{jy). One can asso-
ciate with a smooth S-pair (Y, X) the following commutative diagram

S

where U === X\Y, and j is the canonical open immersion.

7.4.5. Theorem (Cohomological Purity Theorem). — Let (Y, X) be a smooth S-pair of
codimension c, and let F be an abelian sheaf on X which is locally isomorphic (in the itale topology) to
a sheaf of the form /* F', where F' eS(S,Z/7zZ) (for example, F is a locally constant
(Z I^nZi) ̂ -module). Then

(i) ^(X, F) = 0 for q + 2c;
(ii) there is a canonical isomorphism J^^(X, F) -^ i* F(— c).

Proof. — We remark that if we are given a cartesian diagram

Y -^ Xt t-
Y' —> X'

with ^tale <p, then for any q ^ 0 there is a canonical isomorphism

^(X,F)|^^^,(X',F|^).
Therefore we may assume that F ==f* F' for some F' e S(S, Z/nZ).

Let/be of pure dimension d. Then g is of pure dimension e :== d — c. By Poincar^
Duality, for any GeS(Y,Z/7iZ) there is a canonical isomorphism

Hom(G, g- F{e) [2e]) ̂  Hom(R^ G, F').

Since Rg^ G = R/*,(^ G), it follows by Poincart Duality applied to the morphism /
that one has

Hom(R^ G, F') ̂  Hom(^ G,/* F'(rf) [2d]).

Furthermore, since the functor ^ is left adjoint to the functor i', the latter group is
isomorphic to Hom(G, Rr(/* F') {d) [2d]). Thus, we get an isomorphism

Hom(G,^ F'(<0 [2e]) ^Hom(G, RzV* F') {d) [2d]),

and this isomorphism is functorial on G. It follows that it is induced by an isomorphism
of complexes in D(Y, Z/^Z)

g'F{e)[2e]^Ri^f-F)(d)[2d].

Hence, Ri^F) ̂ F(- c) [- 2c], and the theorem follows. •
In the following three corollaries, the situation is the same as in Theorem 7.4.5.
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7.4.6. Corollary. — H^(X, F) = Ofor 0 ̂  q ̂  2c - 1 and

H^(X, F) ̂  IP-^Y, i* F(- c})
for q ^ 2c. •

7.4.7. Qm .̂ - F-^(F^), R^-^Flu) ̂  i^ F(- .)), ̂  R^(FL) == 0
/or y + 0, 2c ~ 1. •

Applying the spectral sequence R^(R^(F|J) => R^A^F^), we get

7.4.8. Corollary (Gysin sequence). — Suppose that the relative dimension of f is equal
to d.

(i) R^ F ̂  R3 ̂ (F[u) for Q^q^ 2c - 2, <W ̂  ^ ^ ^f/ ^y^^

O^R^-i/F^R2--^^) ->^(z-F(~.)) ->
^ R26/ F -> R26 A,(F |J -> R1 ̂ (z- F(- . ) ) -> . . .

(ii) Suppose that k is algebraically closed and S == ^(AQ. Then H°(X, F) -^ H^U, F)
for 0 ̂  y ̂  2c — 2, a^rf ^r^ u a^ ^ac^ sequence

O-^H^-^F) -^H^-^^F) ^^(^^^(-r)) ->
-> H^X, F) -> H^U, F) ^ H^Y, ^ F(- ^)) -^ ...
-> H2^- ̂ (Y, ^ F(- c)) -> H^X, F) ^ H2d(U, F) -> 0. •

The following statement will be used in the proof of the Comparison Theorem 7.5.1.

7.4.9. Theorem. — Let 9 : Y -> X be a separated smooth morphism of pure dimension d,
and suppose that F is a finite locally constant {ZlnZ)^module such that all the sheaves R9 ̂ .(F^,
q ^ 0, are finite locally constant. Then for any q ̂  0 there is a canonical isomorphism

R^F^R^-^F^ (-^).

7.4.10. Lemma. — Let X be a k-analytic space. Suppose that the cohomology sheaves of
a complex F e D-(X, Z/T^Z) are finite locally constant, and let G be a locally free sheaf of
(Z/%Z) ̂ -modules of finite rank. Then for any q d there is a canonical isomorphism

(§>xtq(F\G)^>^om{H-9{'F9),G).

Proof. — If F is finite locally constant, then <2?^(F, G) = 0 for all q ^ 1 because
Z/yzZ is an injective Z/yzZ-module. Our statement now follows from the spectral sequence
(see [Gro], 2.4.2)

^^(H-^F-^G) ^ ^^(P.G). •

Proof of Theorem 7.4.9. — Since G^ is also finite locally constant, Lemma 7.4.10
gives an isomorphism

^rn^\ <y) = ̂ om{F\ ̂ ) = G(d).

19
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By Poincar^ Duality and Lemma 7.4.10, we have

(R^ 9. F) {d) == E- ̂ {^om{F\ <^))
- ̂ -^.(F^, (Z^Z)x) = (R2^ 9^))'.

The required statement follows. •

7.5. The Comparison Theorem

7.5.1. Theorem. — Suppose that y is a scheme of finite type over Spec(J^), where ̂  is a
k-affinoid algebra, f\S£->y and 9 : W —> S£ are morphisms of finite type, and 3^ is a cons-

' • ! /^
tructible abelian sheaf on W with torsion orders prime to char(^). Then there exists an everywhere
dense open subset ^CV such that the following properties hold.

(i) The sheaves R0 9^ ̂  L-W) are constructible and equal to zero except a finite number
of them.

(ii) The formation of the sheaves R8 9^ ̂  is compatible with any base change V —> V
such that the image of V is contained in W.

(iii) In (ii) assume that y is a scheme of locally finite type over Spec(^), where SS is an
affinoid ^/-algebra^ and that the morphism y -> y is a composition V -> V®^ 38 -> V.
Let 9' he the morphism W 1 = W Xy y -> X' == X Xy y, and let ̂  be the inverse image
of 3^ on W. Then for any q ̂  0 there is a canonical isomorphism

(R^ 9^/)an ̂  R0 9^ ̂ "an.

The condition on the morphism y -> y implies that for any scheme S of locally
finite type over y one has

(^ Xy y'V ^ y X^an ̂ /an.

The existence of an everywhere dense open subset ^U C y which possesses the
properties (i) and (ii) is guaranteed by Deligne's " generic ?? theorem 1.9 from [SGA4y,
Th. finitude. In fact the proof of Theorem 7.5.1 follows closely the proof of Deligne's
theorem and uses it. Moreover, the proof is a purely formal reasoning which works over
the field of complex numbers C as well (of course, in this case one should assume that
^ == 3S = C). The other main ingredients of the proof are the Comparison Theorem
for Cohomology with Compact Support, Poincart Duality for schemes and analytic
spaces, and the constructibility of the sheaves R0 9, ^ ([SGA4], Exp. XVII, 5.3.6).

Proof. — By Deligne's theorem, we can shrink V and assume that the properties (i)
and (ii) hold for ^ = V. And so it remains to show that there exists an everywhere
dense open subset ^ C y for which the property (iii) holds.

Since the property (iii) is local with respect to y and S ' , we may assume that
Q'

they are separated. Furthermore, if (^, -^ ^)iei ls a fi^ ^tale covering of^, then it
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suffices to verify (iii) for all of the morphisms 9^ : ̂  —^SE. Therefore we may assume
that W is also separated. Finally, since the scheme W is Noetherian, we can find an

/V/

integer n prime to char(^) with ny == 0. Therefore we can work with the categories of
sheaves of Z/yzZ-modules.

7.5.2. Lemma. — The property (iii) holds when °E == y^ 9 is smooth, and ^ is locally
constant.

Proof. — We may assume that 9 is smooth of pure dimension d. Since the sheaf ̂ v

is also locally constant, all the sheaves R3 (p^.^), q ^ 0, are constructible. Furthermore,
since they are equal to zero for q > 2d, we can shrink y and assume that all the sheaves
R8 cp^.^7), q ^ 0, are actually locajly constant. Theorem 7.4.9 and its analog for
schemes give isomorphisms

^^(^^(R^-^,^))^-^,

R'7 ̂ ^w) ̂  (R^-0 9an(^•anv))v (- d).

The required statement now follows from the Comparison Theorem for Cohomology
with Compact Support (Corollaries 7.1.4 and 7.1.5). •

We remark that it suffices to prove the theorem in the case when 9 is an open
immersion with everywhere dense image. Indeed, we may assume that W is affine.
Then there is a factorization 9 == 4y, where j : ̂  <->- 3£ is an open immersion, and
^ : S -> 3T is a proper morphism. Hence R9, == R^, R;, and R^ = R^ Rj^, and
the required statement follows from the Comparison Theorem for Cohomology with
Compact Support.

We remark also that it suffices to assume that y is the spectrum of an integral
domain. Let Y] be the generic point of V. We prove the following statement by induction.

(*)^ The property (iii) holds when dim(@^) ^ d and 9 is an open immersion with every-
where dense image.

1) (*)o is true. It suffices to show that there exists an everywhere dense open
subset ^ C y with/"1^) C W. For this we may assume that °C is affine, and we can
find an open immersion with everywhere dense image SK c-^ °£m a proper e^-scheme SE.
It follows that ^ is everywhere dense in .3T, and therefore S£^ == ̂ . The latter means
that the point r^ is not contained in the closed set { s e V \ dim(^) ^ 1 }. Thus, we can
shrink y and assume that 2C is finite over y. Finally, since °E^ = ̂ , the image of the
closed set ^r\3/ is closed and nowhere dense in V. Therefore, shrinking ^, we get
^ = 3: = X.

Suppose now that d^- 1 and assume that (*)d-i is true.
2) One can shrink y and find an open subset S C S£ such that its complement S£^ is finite

over y and the property (iii) holds for the open immersion W n 3£ -> 3£.
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Since the statement is local with respect to SK', we may assume that 3C is a closed
subscheme of the affine space A^. Let TT, denote the i-th projecdon 3£ ->Ay. The
induction hypotheses applied to the diagrams

gives open subsets ^ C Ay such that the property (iii) holds for the open immersions
W n Tr,"1 ,̂) -> T^r^^i) and the sets ^,. It follows that if we set 2£ = U,"Li T^W?
then it also holds for the open immersion W n 3£ -> S and the set y. Finally, the reaso-
ning from 1) shows that we can shrink y and assume that the morphism A^\^ -> y
are finite. It follows that the morphism 3£^ == ^m^^^l[Aly\^^) -> V is also finite.

3) (*)^ is true if W is smooth over y and y is locally constant.
Since the statement is local with respect to SE^ we may assume that 3£ is a closed

subscheme of the affine space A^. After that we can replace SC by its closure in the pro-
jective space P^. In particular, we may assume that the morphism f: SC ->• y is proper.

We shrink y and take the open immersion j : 3£ ̂  3K and the closed immersion
i\3£^->3£ which are guaranteed by 2). Consider the commutative diagram

ay c^> gr ^_ ^

\ l/ A
y

By construction, / is proper, /i is finite, and the property (iii) holds for the open
immersion W n 3£ -> 3£ and the set ^ = y. By hypotheses, g is smooth, and there-
fore, by Lemma 7.5.2, we can shrink y and assume that the property (iii) holds for
the morphism g : W -> y.

To verify (iii), we may assume that the base change is already done. (The only thing
we should take care of is that our further manipulations do not change the scheme y.)

Consider the exact sequence
(1) 0 ->jJ^ Rep, y -> Ry, y -> i^ i^ R<p, ̂  -> 0

and the induced morphisms of exact sequences (1)^ -> (l^)

0 —> jWR?^)'" —> (R?^)" —> WRy..^ ——> 0
I \^ \

0 —> j^U^R^^) —> R^^ —> i^^R^^) —> 0

Since the first vertical arrow is an isomorphism, then to show that 6(^p') is an isomorphism,
it suffices to verify that

(^ Ry, ̂ ')an ̂  i^ Ry:0 ̂ an.
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For this we apply R/. and R/"1 to the sequences (1) and (I"1), respectively. We obtain
a morphism of exact triangles

———»• (WJ'R^^ ———> (R^.^T ——> f^ Ry. j?-)" __>

I i I
—^ RfrjrU^W^) —^ Rg^^ —^fy{i-R^^) —>

The first and the second vertical arrows are isomorphisms. Therefore the third arrow is
also an isomorphism. Since /i is finite, it follows that (z* R(p, ^')an -^ ̂  R<p;11 ̂ •an.

4) (*)^ ̂  ̂ ? in the general case. Decreasing y, we can find a finite radicial surjective
morphism ^ -> y such that the scheme (W Xy y')^ has an everywhere dense open
subset which is smooth over y. Since such a manipulation does not change the (Stale
cohomology, we may assume that W has an everywhere dense subset S which is smooth
over y. Shrinking 3£, we may assume that ^ is locally constant over 3£. Letj denote
the open immersion 3£ ̂  W. By 3), we can shrink y and assume that the theorem is true
for the pairs of morphisms (/: X -> y, ̂  = y : S -> X} and (g : W -> yj : ^ -> W)
and the sheaf j* y. It follows that if we define ^ by the exact triangle

(2) -> ̂  -> RjJ" ^ -> ̂  ->

then there is an exact triangle

(2"1) -> ̂  -> Rj^j^ y^ -> ^an* ->

Furthermore, the sheaves H3^*) are construcdble and equal to zero except a finite
number of them, and the formation of H0^-) is compatible with any base change.
Finally, the sheaves H3^) have support in the closed subset IT =. W\S, and one
has dim(^) ^ d — 1. Since the canonical morphism IT ->3: is a composition of the
open immersion iT<-^ ^T, where IT is the Zariski closure of IT in X, and the closed
immersion ̂  -> X, it follows, by inductional hypotheses, that we can shrink y and
assume that the property (iii) holds for the morphism 9 : W ->• SC and the sheaves HW^).

As in the proof of 3), to verify (iii) we may assume that the base change is already
done. Applying R<p, and Ry^ to the triangles (2) and (2^), respectively, we obtain a
morphism of triangles

—> (R^)^ —^ (R^r^ —> (R^r" —>
l6^ 1 I^ ^ ^

—> R^ ̂ an —> R^j^* < '̂an —> R^ ̂  —>

Since the second vertical arrow is an isomorphism, to show that Q(^) is an isomorphism,
it suffices to verify that

(R<p, ̂ B0 -^ R^ y^\
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But this follows from the homomorphism of spectral sequences

(R^cp^H^^-)))^ ^> (R^+^gr)^i i
RP^n^(^an.^ ^^ RP 4-a ̂ n ^m.

because the left arrows are isomorphisms. The theorem is proved. •

7.5.3. Corollary. — Let 9 : W -> SK he a morphism ofjinite type between schemes of locally
finite type over k, and let S^ be a constructible abelian sheaf on W with torsion orders prime to char (A).
Then for any q ^ 0 there is a canonical isomorphism

(R3cp, ^)a•n ^> R3 9^ ̂ m.

Proof. —Since the statement is local with respect to 3C^ we may assume that °K
(and therefore W) is of finite type over k, and therefore we can apply Theorem 7.5.1
for ^ === k and y = Spec (A). •

7.5.4. Corollary. — Let 2K he a scheme of locally finite type over k, and let 3F he a cons-
' ' ^/ ' '

tructible abelian sheaf on SE with torsion orders prime to char(^). Then for any q^ 0 there is a
canonical isomorphism

H^(^, ^-) ̂  H8^, ̂ an).

Proof. — First of all we remark that it suffices to consider the case when the scheme
is affine and of finite type over k. Indeed, if this is so, then in the general case we can take
a covering % == { U, }^i of SE by open affine subschemes of finite type over k and use
the homomorphism of spectral sequences

HW^jT^)) > IP-^^,^)i i
H^^l^,^^^)) ==.> H^^^,^)

Thus, we may assume that 9£ is affine and of finite type over k. In this case we
apply Corollary 7.5.3, the homomorphism of the Leray spectral sequences associated
with the morphisms S£ —> Spec(^) and ^'an —^^{k), and the fact that the required state-
ment is true for SK == Spec(^). •

7.6. The invariance of cohomology under extensions of the ground field

7.6.1. Theorem.— Let K/A he an extension of algebraically closed non-Archimedean
fields. Let X be a k-analytic space, and let F be an abelian torsion sheaf on X with torsion orders
prime to char(&). We set X' = X ® K and denote by F' the inverse image of F on X'. Then for
any q^ 0 there is a canonical isomorphism

H^X.F^H^X',?).
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Proof. —All the sheaves considered below are supposed to be abelian torsion with/"^/
torsion orders prime to char(^).

We remark that if the theorem is true for ^-affinoid spaces, it is also true for arbitrary
^-analytic spaces. Indeed, if X is separated paracompact, we can find a locally finite
affinoid covering ^ = {V/^ }^; of X and apply the homomorphism of the spectral
sequences 4.3.7

tP^j^F)) ==> H^X.F)i i
H^'.jr^F')) =-> IP^X'.F')

where Y^' === { V ^ ® K }^i. If X is arbitrary paracompact, we use the same reasoning
and the fact that the intersection of two affinoid domains is a compact analytic domain.
If X is Hausdorff, we use the similar reasoning for a covering of X by open paracompact
subsets and the fact that the intersection of two open paracompact subsets in a locally
compact space is paracompact. IfX is arbitrary, we use the same reasoning for a covering
of X by open Hausdorff subsets.

Furthermore, we remark that it suffices to prove the theorem for one-dimensional
A-affinoid spaces. Indeed, let Y == ^(SS) be a ^-affinoid space of dimension d ^ 2, and
suppose that the theorem is true for A-affinoid spaces of smaller dimension. Take an
element f e 38 which is not constant at any irreducible component of Y, and consider
the induced morphismy: Y -> A1. Let X = ̂ {^/) be a closed disc in A1 which contains
the image ofY. We get a morphism offc-affinoid spaces <p : Y -> X such that dim(X) = 1
and dim(YJ < d for all points x e X. Consider the following commutative diagram

Y -̂ > Xt- t-
Y' -^ X'

where X' = X ® K and Y' = Y® K == Y Xx X'. To prove the theorem for Y, it
suffices to show that for any sheaf F on Y and any q ^ 0 there is a canonical isomorphism

(R^FV^R^F'.

But this is obtained, by induction, from the Weak Base Change Theorem 5.3.1. Indeed,
if x e X and x ' e X' is a pair of points with x == 7i(^'), then a fixed embedding of fields
^(.y)"0-^^^')® induces an isomorphism of analytic spaces

Y^^^^r^Y,,.
Thus, we may assume that X in the theorem is a one-dimensional ^-affinoid space.

To prove the theorem for X, we consider the following more general situation. Let S
be a locally closed subset of X, and F be a sheaf on the A-germ (X, S). We set
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(X', S') == (X, S) ®K and denote by P the inverse image of F on (X', S'). Further-
more we denote by 6°((X, S), F) and 6^((X, S), F), respectively, the canonical homo-
morphisms

H^X.S^F^H^X^S'),?)
and H^X.S^F^H^X'.S'),?).

Our starting point is Theorem 6.4.1 (ii) which implies that O^X, F) is an isomorphism
if the sheaf F is finite constant. And here is a continuation.

1) O^X, F) is an isomorphism, when F is finite locally constant. — Indeed, one can
find a finite Aale covering Y ->• X such that the sheaf Fjy is constant, and there-
fore one can use the spectral sequences associated with the ^tale coverings (Y -> X) and
(Y®K -^X').

2) O^X, S), F) is an isomorphism, when S is closed and F is finite locally constant. —
Indeed, by Proposition 4.4.1, the sheaf F extends to a finite locally constant sheaf on an
open neighborhood of S. Our statement now follows from Proposition 4.3.5 because
affinoid neighborhoods of S form a basis of its neighborhoods.

3) 6^((X, S), F) is an isomorphism when F extends to a finite locally constant sheaf
on (X, S) (S is the closure ofS in X). Indeed, we can apply 2), the exact cohomological
sequences associated with the embeddings

(X,S)^(X,S)^-(X,S\S)

and (X', S') ci> (X', (S)') t (X', (S)'\S'),

where (X', (S)') == (X,S)(§)K, and the five-lemma.
4) 6^((X, S), F) is an isomorphism/or an arbitrary finite locally constant sheaf F. Indeed,

by Proposition 5.2.8, one has

H^(X,S),F)=lmH^((X,T),F)
and H?((X', S7), F') == 1m H?((X', T), F'),

where T runs through open subsets ofS with compact closure. Therefore we can apply 3).
5) O^X, F) is an isomorphism, when F is of the form j\ G, where j is the morphism of

germs (X, S) -> X determined be a locally closed subset S C X, and G is a finite locally constant
sheaf on (X, S). From Corollary 5.2.5 it follows that

IP(XJ, G) == H^((X, S), G)
and ^(^.^^^^((X'.S'),^).

Since j\ G' == (j^ G)', we can apply 4).
6) O^X, F) is an isomorphism^ when F is quasiconstructible. This is obtained from 5),

by induction, using Proposition 4.4.4 and the five-lemma.
7) e^X, F) is an isomorphism for arbitrary F. This follows from 6) and Proposi-

tions 4.4.5 and 5.2.9. •
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7.6.2. Corollary. —In the situation of Theorem 7.6.1 assume that X is Hausdorjf.
Then for any q > 0 there is a canonical isomorphism

H^X,F)^H^(X',F').

Proof. — From Proposition 5.2.8 and Corollary 5.2.5 it follows that

H^(X,F)=lmH^XJ^(Fp)

and H^(X', F') = hr^ IP(X,^.(F' ^)),

where the limit is taken over all open subset ^U C X with compact closure, W == ^ ® K,
andj^ (resp. j^) denotes the canonical open immersion ^c-^ X (resp. W c-»• X'). The
required statement follows from Theorem 7.6.1. •

7.7. The Base Change Theorem for Cohomology with Compact Support

7.7.1. Theorem. — Let <p : Y ->X be a Hausdorjf morphism of k-analytic spaces and
let y: X' ->-X 6^ ^ morphism of analytic spaces over k which give rise to a cartesian
diagram

Y -̂ > X

Y' -̂  X'

Then for any abelian torsion sheafF on Y with torsion orders prime to char(^) and any q ^ 0
there is a canonical isomorphism

/*(R^,F)^R^;(/'F).

proof. — The Weak Base Change Theorem 5.3.1 reduces the situation to the case
when X ==^{k) and X' ==^f(K), where K/A is an extension of algebraically closed
fields. In this case our statement follows from Corollary 7.6.2. •

7.7.2. Corollary. — In the situation of Theorem 7 .7 .1 suppose that 9 is of finite dimension,
and let n be an integer prime to char(^). Then for any F" e D-(X', Z/^Z) and G- e D-(Y, Z/yzZ)
there is a canonical isomorphism

F'- 1)/*(R9, G-) ̂  R9:(<p" F'- (V G-).

Proof. — From Theorem 7.7.1 it follows that there is a canonical isomorphism

nR^G^RyiCrG-).

Therefore our statement is obtained by applying Theorem 5.3.9 to/':Y'->X'. •
20
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7.7.3. Corollary (Kunneth Formula). —Given a cartesian diagram of Hausdorff morphisms
of k-analytic spaces

X X o Y

suppose that/and g are of finite dimensions, and let n be an integer prime to char(^). Then for
any P eD-(X, ZfnZ) and G" eD-(Y, Z[nZ) there is a canonical isomorphism

Rf, P 1) Rg, G- ̂  RW* F-1)/'* G-).

Proo/. — Applying Theorem 5.3.9 to the morphism/and Corollary 7.7.2, one has

R/ P (t R^, G- ̂  R/,(P l)/^, G-)) ̂  R/; R^;^- F- ̂ /- G-)

RA.(^P®/-G-.).

7.8. The Smooth Base Change Theorem

We say that a morphism of A-analytic spaces 9 : Y -^ X is almost smooth if, for
any point x e X, there exist an open Hausdorff neighborhood ̂  of x and affinoid domains
Vi, .. ., V^C % such that Vi u . . . u V^ is a neighborhood of x and all the induced
morphisms y'^V,) -^V, are smooth. Or course, smooth morphisms are almost smooth.
(And we believe that the converse implication is also true.)

7.8.1. Theorem. — Let f\ X' -> X be an almost smooth morphism of k-analytic spaces,
and let 9 : Y -> X be a morphism of analytic spaces over k, which give rise to a cartesian diagram

Y -^ X

/' /

Y' -̂  X'

Then for any (Z/^Z) ̂ -module F, where n is an integer prime to char(^), and for any q ̂  0 there
is a canonical isomorphism

/-(R^F)^R^:CTF).

Proof. — First of all, the reasoning from the beginning of the proof of Theorem 7.3.1
reduces the situation to the case when/is a smooth morphism of good ^-analytic spaces.
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Furthermore, since the statement is local with respect to X' and is evidently true when/
is Aale, it suffices to assume that/is of pure dimension one.

Let x ' be a point of X', and set x = <p(A:'). One has
(/*(R^ <p, F)),, = (R^ 9, F), = lin^ IP(Y x,, U, F),

where the limit is taken over all 6tale morphisms U -> X with a fixed point u e U over x
and with a fixed embedding of fields ^(u) <^^{x)8 over ^f(;v). Similarly, one has

(R° 9:(/" F))^ = I™ H^(Y' Xx- W,/" F),

where the limit is taken over all ftale morphisms W -> X' with a fixed point w e W
over x ' and with a fixed embedding of fields J^{w) ̂ ^{x')8 over Jf(^'). Therefore,
it suffices to show that for any ^tale morphism (W, w) -> (X', x ' ) there exist ^tale mor-
phisms g : U -^ X and A : U" -^ U' = W X x U such that the point w is contained in
the image of U" and for any q > 0 one has

Im^V',/" F) -> H^V",/" F)) C Im^V, F) -> H^V",/'- F)),

where V = Y X^U, V = Y x^U' and V" = Y X^U". We can shrink W and
assume that W -> X is a separated smooth morphism of pure dimension one.

By Corollary 7.3.6, there exist separated ftale morphisms g : U -> X and
A : U " ->U' = W X x U

W —> X
t t
I I'

U' -^> U

t^
u"

such that the point w is contained in the image of U" and there is a factorization

Rxtd^n.u") —^ R+.(^,v)
\ ^
<\ /

(Z/»Z)^ [- 2]

where < is induced by the trace mapping. Consider the fibre product of the previous
diagram with Y over X

Y X x W —> Y
f t ,
I I"

V —"-> V

t- y
V"
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We claim that for any q > 0 there is a factorization

IP(VV*F) —^ H^V'V^F)

\ /
H'(V,F)

where the homomorphism H^V, F) —>- W ^ M " , / ' * F) is the canonical one.
Indeed, by the Base Change Theorem for Cohomology with Compact Sup-

port 7.7.1, there is a factorization

Rx^»,v") —^ R^»,v)
\ /

(Z/nZ)^ [- 2]

where t' is induced by the trace mapping. By Theorem 7.4.1, we have

R«K(r(F|v)) ^^"(R+;(^,r), F|v[- 2]),
Rx:(r(F|y)) ^.^m(Rx:(^,y),F|^[- 2]).

Since ^foOT((Z/HZ)y [— 2], F|v[— 2]) ̂  F[v, then there is a commutative diagram

R4-:(r(F|v)) —^ Rx:(x*(F|v))

F|v

where the morphism F[y -^ Rx^X'^Fjv)) is the canonical one.
We now apply to the latter commutative diagram the derived functor RFy,

where Fy : S(V, Z/yzZ) -> s/b is the functor of global sections on V. Since Fy o ̂  == Fy
and Fy o ̂  = 1^5 we get a commutative diagram

RIV(r(F|^)) -^ Rr^,(x"(F|^))

RFv(F|v)

which gives, for any q > 0, a commutative diagram

H»(V',/"F) —^ H^V'VF)

\ /
H'(V, F)

in which the homomorphism H^V, F) -> H<(V",/'• F) is the canonical one. The
theorem is proved. •
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^-Affinoid domain : 1.2 (21).
0-Analytic domain : 1.3 (23).
Analytic space : 1.2 (17),

^-analytic space : 1 .2 (22),
analytic space over k : 1.4 (30),
strictly ^-analytic space : 1.2 (22).

Boundary of an analytic space : 1.5.4 (34).
Closed immersion : 1.3 (28).
Coherent sheaf : 1.3 (25, 26).
Compact map : 1.1 (14).
Conormal sheaf : 1.3 (28).
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Dense collection of subsets : 1.1 (13).
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Dimension of a morphism : 1.4 (30).
Duality morphism : 7.3 (135).
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fitale topology on an analytic space : 4.1 (82).
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(p-Family of supports : 5.1.2 (97).
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almost smooth : 7.8 (154),
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good : 1 . 5 . 3 (34),
locally separated : 1.4 (30),
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Net : 1 . 1 (14).
Open immersion : 1.3 (24).
Paracompact germ : 4.3 (91).
Paracompactifying (p-family of supports : 5.1.2 (97).
Picard group : 1.3 (25, 26).
Quasicomplete field : 2.3.1 (43).
Quasiconstructible sheaf : 4.4.2 (94).
Quasi-immersion : 4.3.3 (90).
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Quasinet : 1 . 1 (13).
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Sheaf of differentials : 1.4 (30).
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T-Special covering : 1.2 (20).
0-Special domain : 1.2 (21).
T-Special set : 1.2 (20).
Stalk of a sheaf : 4.2 (87).
Strong morphism : 1.2.7 (18).
Structural sheaf of an analytic space : 1.3 (25).
Support of a coherent sheaf : 1.3 (25).
Support of a section of a sheaf : 4.2 (87).
G-Topology on an analytic space : 1.3 (25).
Trace mapping : 5.4 (106), 6.2 (112), 7.2 (130).
Zariski closed (open) subset : 1.3 (28).
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