Invent math. 115, 539-571 (1994) Wm——é}m
mathematicae

© Springer-Verlag 1994

Vanishing cycles for formal schemes

Viadimir G. Berkovich *

Department of Theoretical Mathematics, The Weizmann Institute of Science, P.O.B. 26, 76100 Rehovot,
Israel

Oblatum 4-VI-1993 & 6-VIII-1993

Introduction

Let £ be a non-Archimedean field, and let X be a formal scheme locally finitely
presented over the ring of integers k° (see §1). In this work we construct and study
the vanishing cycles functor from the category of étale sheaves on the generic fibre
X, of X (which is a k-analytic space) to the category of étale sheaves on the closed
fibre X, of X (which is a scheme over the residue field of k). We prove that if X is
the formal completion X of a scheme X finitely presented over k° along the closed
fibre, then the vanishing cycles sheaves of X are canonically isomorphic to those
of X' (as defined in [SGA7], Exp. XIII). In particular, the vanishing cycles sheaves
of A depend only on X, and any morphism ¢ : Y — X induces a homomorphism
from the pullback of the vanishing cycles sheaves of X under ¢, : JV, — X; to
those of ). Furthermore, we prove that, for each X, one can find a nontrivial ideal

of k° such that if two morphisms ¢, 1 : JA) —+ X coincide modulo this ideal, then the
homomorphisms between the vanishing cycles sheaves induced by ¢ and % coincide.
These facts were conjectured by P. Deligne.

In §1 we associate with a formal scheme X locally finitely presented over k°
a k-analytic space X, (in the sense of [Berl] and [Ber2]). In §2 we find that the
morphism ¢, : P, — X, which is induced by an étale morphism of formal schemes
v 1P — X, possesses a certain property. Morphisms of k-analytic spaces with this
property are called quasi-étale, and they give rise to a quasi-étale site X4 of a k-
analytic space X. There is a canonical morphism of sites X — Xg, where Xg is
the étale site introduced in [Ber2]. We show that the inverse image functor identifies
the category of étale sheaves X with a full subcategory of X and preserves the
cohomology groups. In §4 the quasi-étale topology is used to define, for a formal

* Incumbent of the Reiter Family Career Development Chair



540 V. G. Berkovich

scheme X, a left exact functor © : X7, — X7 (the analog of the specialization
functor i*j, for schemes) and the vanishing cycles functor ¥, : X7, — X5 It
is worthwhile to note that a spectral sequence connecting the étale cohomology of
the generic fibre with that of the closed fibre exists for arbitrary formal schemes in
contrast to the algebraic geometry situation when the similar spectral sequence exists
only for proper schemes. At the end of §4 we prove that the formation of the vanishing
cycles sheaves is compatible with extensions of the ground field. In §5 we prove our
first main result. It is a comparison theorern which states that if X’ is a scheme locally
finitely presented over £°, F is an €tale abelian torsion sheaf on the generic fibre X,
of X, and F is the induced étale sheaf on the generic fibre A, of X , then there are
canonical isomorphisms é*(R‘?j*J’:)lR‘?Q(.%) and RQWU(F)AN»RQLDH(.%). At the end
of §5 we use this result to calculate the vanishing cycles sheaves for smooth formal
schemes and to show that the cohomology groups for a certain class of compact k-
analytic spaces are finite. In §6 we endow with a uniform space structure (see {Kel],
Ch. 6) the sets of morphisms of analytic spaces Mor(Y, X). In a sense this structure
depends uniformly on X. In §7 we prove our second main result. Its particular case
states the following. Let X = M(A) be a k-affinoid space, and let f,..., f, be
a k-affinoid generating system of elements of A. Then for any discrete Gal(k®/k)-
module A and any element o € HY(X, A) there exist t1,...,%, > 0 such that, for
any pair of morphisms p,% : Y — X over k with mea))/(|(go*f, — W) < ¢,
Yy

1 <4 < n,one has p*(a) =¥’ () in HU(Y, A). The essential ingredient of the proof
is a generalization of the classical Krasner’s Lemma. The result implies, in particular,
the following fact. If a k-analytic group G acts on a k-analytic space X, then the
étale cohomology groups of X with compact support are discrete G(k)-modules. In
§8 we apply the main result from §7 to the study of the action of the set of morphisms
between the formal completions of schemes on their vanishing cycles sheaves.

In our paper [Ber3}, we develop a formalism of vanishing cycles for non-
Archimedean analytic spaces, which is an analog of the classical formalism over
C from [SGAT], Exp. XIV, and we apply Theorem 7.1 of the present paper to estab-
lish results, similar to those established here, for the action of the set of morphisms
between the formal completions of schemes (of finite type over an equicharacteristic
Henselian discrete valuation ring) along closed points of the closed fibres on the stalks
of the vanishing cycles sheaves at these points.

This work arose, on one hand, from a suggestion of V. Drinfeld to construct a
vanishing cycles functor for formal schemes and, on the other hand, from a suggestion
of P. Deligne to apply the étale cohomology theory for non-Archimedean analytic
spaces developed in [Ber2] to his conjecture. I am very grateful to them for this. |
would also like to thank V. Hinich for useful discussions.

1. Analytic spaces associated with formal schemes

Let k£ be a non-Archimedean field, k° the ring of integers of k, k°° the maximal
ideal of k°, k = k°/k°° the residue field of k. If the valuation on k is nontrivial,
we fix a non-zero element a € k°°. If the valuation on k is trivial (then k = k° = k
and k°° = 0), we set a = 0. Recall that the ring of restricted power series over
k° in n variables is the ring k°{T} = k°{T},...,T,,} of the formal power series
J =3, a,T" over k° such that for any m > 0 the number of v’s with a® fa, is
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finite. One has k°{T'} = lim k° /(a™)[T]. (The ring k°{T'} and the a-adic topology on
it don’t depend on the choice of a.) We remark that the Artin-Rees Lemma holds for
any finitely generated ideal a C k°{T'}, i.e., there exists ng such thatana™k°{T} C
a™ "oa for all n > ng. It follows that the quotient ring k°{T'}/a is separated and
complete in the a-adic topology. A topologically finitely presented ring over k° is a
ring of the form k°{T}/a for some finitely generated ideal a C k°{T"}. We remark
that if A is such a ring, then the quotient ring A/k°° A is finitely generated over the
field k. 1t follows that any open subset of the formal scheme Spf(A) is a finite union
of open affine formal subschemes of the form Spf(A ). f € A.

Let k°-Fsch denote the category of formal schemes locally finitely presented
over k°, i.e., the formal schemes over Spf(k°) that are locally isomorphic to a formal
scheme of the form Spf(A), where A is topologically finitely presented over k°. A
formal scheme from k°-Fsch which is a finite union of open affine formal subschemes
of the above form is said to be finitely presented over k°. (If the valuation on k is
trivial, then £°-Fsch coincides with the category of schemes of locally finite type
over k) If X € k°-Fsch, then the ringed space (I,Ox/k""(?x) is a scheme of
locally finite type over k. It is called the closed fibre of X and is denoted by X,.
We will define a functor k°-Fsch — k-An that associates with a formal scheme

X € k°-Fsch its generic fibre X,, € k-An, and we will construct a reduction map
m X, — X,

If X = Spf(A), where A is topologically finitely presented over £°, then A =
A Qo k is a (strictly) k-affinoid algebra and X,; is the k-affinoid space M(A). (It
is clear that X — X, is a functor.) The image of A in A is contained in A° =
{f € Allf(@)] < 1 forall z € /\A(A)} and therefore a point € X, gives rise to
a character X, : = AJkCA — H(w) The kernel of x, (it is a prime ideal of
A) is, by deﬁnmon the point 7(x) € X = Spec(A) The composition of m with the
canonical map X; — Spec(A) is the reduction map 7' : X = M(A) — Spec(A) from
[Berl], §2.4. (Recall that A = A°/ A%, where A = {f € Al|f(@)] < 1 forall z €
M(A)}.) By [Berl], 2.4.4(i), the map =’ is surjectlve We take an epimorphism
kE°{T} — A. It induces epimorphisms KIT] — A and k{T} — A. By {BGR],
6.3.5/1, the epimorphism k{7T'} — A induces a finite homomorphism . E[T) — A ltis
clear that the latter homomorphmm coincides with the composition k[T] —A— A
It follows that the homomorphism A — A is finite, and therefore the i image of 7w is a
closed subset of X . Furthermore, if V is a closed subset of X, then it is defined by an
ideal (},,...jn) forsome f, € Aand 7 (W)= {z € Xn’|f7,(m)i <11 <i<n}
Let ) be an open subset of X, and let ) be the open formal subscheme of X with
the underlying space Y. If JV = Spec(;l [L}) for some f € A, then ) = Spf(Ay),

') ={z ¢ %,,1]f(r)| = 1} (it is a rational domain in X;) and Q) ,,—»w"(y)
It follows that 7~ () is always a closed analytic domain in X,, for an arbitrary ).
Suppose that the formal scheme 9) is affine, and tet {,}.er be a finite covering of
2 with Y, = Spf(A;,}). f. € A. Then the canonical morphism ) — X identifies
2)”, with 77 1(),), where Y, = Spec(;l [ ]) and therefore, by Tate’s Acyclicity

Theorem, it identifies 2}, with an affinoid domam in X,, which evidently coincides
with 771()).
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If X is arbitrary, we fix a locally finite covering {¥, },<; by open affine subschemes
of the form Spf(A), where A is topologically finitely presented over £°. Suppose first
that X is separated. Then for any pair 4, j € I the intersection X,; = X, N X, is also
of the same form, X,; , is an affinoid domain in X, ;;, and the canonical morphism
Xijm — Xy x X, is a closed immersion. By [Ber2], 1.3.3, we can glue all X,
along X,,,, and we get a paracompact separated k-analytic space X,. We remark
that the correspondence X > X, is a functor that extends the functor constructed for
the affine formal schemes, and if ) is an open formal subscheme of X, then ), is a
closed analytic domain in X,,. Furthermore, the reduction maps X, ,, — X, s induce
a reduction map 7 : X, — X,. Finally, if X is arbitrary, then X,; = X, N X, are
separated formal schemes, and X,, ,, is a compact analytic domain in the k-affinoid
space X,,. Therefore we can glue all X, , along X,,, and get a paracompact k-
analytic space X,. We remark that the correspondence X — X, is a functor to the
category of paracompact strictly k-analytic spaces and this functor commutes with
fibre products. We remark also that if X is finitely presented, then X, is compact.
The reduction maps X,, — X, induce a reduction map 7 : X, — X,. From the
affine case it follows that the image of 7 is a closed subset of X;. Moreover, if ) is
a closed subset of X, then 77 !()) is an open subset of X,,. If  is an open subset
of X, then 7~'(}) is a closed analytic domain in X,, and, if 9) is the open formal
subscheme of X with the underlying space ), then @niwr'l(y).

For a morphism ¢ : ) — X in k°-Fsch we denote by ¢, and ¢, the induced
morphisms ), — X, and ), — X, respectively. We remark that if ¢ : ) — X is
finite (resp. flat finite), then the morphisms ¢, and ,, are also finite (resp. flat finite).

2. Etale morphisms of formal schemes

Let X € k°-Fsch. For n > 1, let X, denote the scheme (X, Og/a"Og). (It is a
scheme locally finitely presented over k°/(a™).) A morphism of formal schemes over
k°, @Y — X, is said to be étale if Y € k°-Fsch and for all n > 1 the induced
morphisms of schemes ¢, : 9, — X, are étale. The following two lemmas are
consequences of the local description of étale morphisms of schemes.

Lemma 2.1. Let X € k°-Fsch. Then the correspondence Y — ), induces an
equivalence berween the category of formal schemes étale over X and the category of
schemes étale over X .

Proof .1t is clear that the functor is fully faithful. Therefore to show that it is essentially
surjective, it suffices to construct a lifting of an étale morphism Y — X, locally. Thus,
we may assume that X = Spf(A), where A is topologically finitely presented over
k°, and, by the local description of étale morphisms of schemes, that J = Spec(Cy),
where C = ZX[T]/(IB), P is a monic polynomial, f is an element of C such that
the image of the derivative P’ in C’? is invertible. Let P be a monic polynomial
in A[T] whose image in E[T] is P. Then B := AT1/(PYSA{TY/(P), ie., B is
topologically finitely presented over k° and is free of finite rank over A, and B5C.
Furthermore, let f be an element of B whose image in B is f, and let ) = Spf(B})-
Since é;}ivf%fv, then Y59),. Moreover, since By sy /a™Bys3—(B/a"B)y, then the
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image of the derivative P’ in Byyy/a"™Byy is invertible, and therefore the morphism
,, — Xy, is étale. It follows that the morphism 2} — X is étale. O

The statement of Lemma 2.1 for the class of finite étale morphisms follows from
[SGAL], Exp. I, 8.4. (Of course, the above proof uses the argument from [SGA1].)

Lemma 2.2. Let p:2) — X be an étale morphism. Then ©,(,) = 7 W ps(D ). In
particular, on(Y,) is a closed analytic domain in X,

Proof . Since the statement is true when ) is an open formal subscheme of X, we
can shrink X and 2) and assume that X = Spf(A), where A is topologically finitely
presented over k°, and §) = Spf(By}), where B is a finite free A-module and f € B.
Let T+ ¢, T™ ' +.. .+ g, be the characteristic polynomial of f over A. It is easy to
see that (D)) = UL, {X € X,]g,(x) # 0} and ¢,,(D,) = U™ {z € X, |ig.(x)] = 1}
This gives the requlred equality.

Proposition 2.3. Let ¢ : 9 — X be an étale morphism. Then for every point y € 9,
there exist affinoid domains Vi, ..., V,, C 9, such that ViU.. .UV, is a neighborhood
of y and each V, can be identified with an affinoid domain in a k-analytic space étale
over X,.

Proof . Consider first the case when ¢ is of the form 2) = Spf(By ) — X = Spf(4),
where B = A[T]/(P)—*A{T}/(P) P is a monic polynomial and f is an element of
B such that the image of P’ in B~ = (A[T]/(P))~ is invertible. If g is the image

of P’ in B, then the latter implies that lg(2)] =1 for all = € 9),,. Furthermore, the
formal scheme 3 = Spf(B) is finite flat over X, and the k-analytic space 3,, is finite
flat over X,. One has P, = {z € 3,7‘|f(z)[ = 1}. The morphism 3, — X,, is étale
at a point 2 € 3, if and only if g(2) # 0. Since |g(2)| = 1 for all z € Y, then
9, C{z¢€ 3,,7]g(z) # 0}, ie., 2),, can be identified with an affinoid domain in a
k-analytic space étale over X,,.

Consider now the general case. We can find open affine formal subschemes
X,... . X, CXad Qy,...,9, C Ysuch thaty € Py, N...NY,, ., Dy, U
..U%), , is a neighborhood of y and p induces étale morphisms g), — X, of the
above form. By the first case, each ), can be identified with an affinoid domain
in a k-analytic space étale over X, ,,. From [Ber2], 3.4.2, it follows that we can find,
for each i, an affinoid neighborhood V, of y in ), , such that V, can be identified
with an affinoid domain in a k-analytic space étale over X,,. Since ViU ... UV, isa
neighborhood of y in ), the required statement foliows. O

7

3. Quasi-étale topology on an analytic space

Let ¢ : Y — X be a morphism of k-analytic spaces. We say that  is quasi-étale if for
every point y € Y there exist affinoid domains V|, ..., V,, C Y such that ViU...UV,
is a neighborhood of y and each V, can be identified with an affinoid domam in
a k-analytic space étale over X. For example, étale morphisms and the canonical
embeddings of analytic domains in a k-analytic space are quasi-étale. Furthermore,
by Proposition 2.3, if 9) — X is an étale morphism of formal schemes in k°-Fsch,
then the induced morphism of their generic fibres 9),, — X, is quasi-étale. We remark
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that if a morphism ¢ : Y — X is quasi-étale, then for every point y € Y there exist
affinoid domains Vi,...,V,, C Y such that V; U...UV,, is a neighborhood of y and
each V, can be identified over X with an affinoid domain in a paracompact k-analytic
space separated and étale over X.

Lemma 3.1. (i) Quasi-étale morphisms are preserved under compositions, under any
base change functor and under any ground field extension functor.

(i) If Y and Z are quasi-étale over X, then any X-morphism Z — Y is quasi-
étale.

Proof . All the statements easily follow from the corresponding properties of étale
morphisms and Theorem 3.4.1 from [Ber2]. O

For a k-analytic space X, let Qét(X) denote the category of quasi-étale morphisms
U — X. The quasi-étale topology on X is the Grothendieck topology on the category
Qét(X) generated by the pretopology for wh1ch the set of coverings of (U — X) €

Qét(X) is formed by the families {U, LN U}ier such that each point of U has a
neighborhood of the form f, (Vi) U ... U f, (V) for some affinoid domains V| C
Uy -, Vi C U, (Itis easy to verify that the latter really defines a pretopology on
Qét(X).) We denote by X the site obtained in this way (the quasi-étale site of X)
and by X 4 the category of sheaves of sets on Xy (the quasi-étale topos of X). It
is clear that there is a morphism of sites 1 : Xq — Xg. We remark that there is also
a morphism of sites Xq — X, where X is defined in {Ber2], §1.3. We are going
to establish the relationship between the topoi X e and X similar to that between
the topoi X¢ and X ™ established in [Ber2].

Recall ([God], §11.3.4) that a sheaf F' on a topological space 7" is called soft if
for any closed subset X C T the map F(T) — F(X) is surjective. If T is locally
compact and paracompact, then F is soft if and only if the above map is surjective
for any compact subset X C T'. We say that an étale abelian sheaf I on a k-analytic
space X is soft if, for each point & € X, F, is a flabby G)-module and, for each
paracompact U étale over X, the restriction of F' to the usual topology U] of U is
a soft sheaf. For example, any injective sheaf on X is soft ([Ber2], 4.2.5).

Lemma 3.2. Let F be an étale abelian soft sheaf on a k-analytic space X. Then

(i) if X is paracompact, then H1( X, F) =0 for ¢ > 1;

(ii) if ¢ : Y — X is a morphism of analytic spaces over k, then the sheaf p* F is
soft in any of the following cases:

(a) @ is a quasi-étale morphism;

(b) p is a quasi-immersion (see [Ber2], §4.3);

(c) @ is the canonical morphism X = X Rkt — X.

Here k° denotes the algebraic closure of k. If the valuation on k is nontrivial,
then the separable closure k° of k is everywhere dense in k£ (i.e., k% = k).

Proof (i) Consider the spectral sequence EY? = HP(|X|, Rim, F) => HPY(X, F) of
the morphism of sites 7 : — | X1 (see [Ber2l §4.2). By [Ber2], 4.2.4, for a point
z € X one has (quF)\,? = H (Griry, Fr). 1t follows that Rim, F = 0 for ¢ > 1,
and therefore HY(X, F) = H4(|X|. 7. F). The latter group is equal to zero for g > 1
because , F' is a soft sheaf on the paracompact space X.

(ii) First of all, if y € Y and = (y), then in all the cases Gy is a closed
subgroup of Gy, and therefore (¢*F), = F, is a flabby Gy)-module.
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To verify the statement in the cases (a) and (b), it suffices to show that the
restriction of ¢* F' to |Y| is a soft sheaf when ¢ : ¥ — X is a morphism of analytic
spaces over k, Y is paracompact and each point y¥ € Y has a neighborhood of the
form Vy U... UV, where V, are affinoid domains in Y, such that for each 7 there
exists a quasi-immersion of V, in a paracompact k-analytic space U, étale over X.
Since the property of a sheaf to be soft is a local one ([God], 11.3.4.1), we may assume
that Y = Vy U... UV, where V, are as above. The restriction of F to |I4,| is a soft
sheaf. Since [V,] is a closed subset of |I4,|, then, by [God], 11.3.4.2, the restriction of
@*F to |V,| is a soft sheaf. 1t follows that the restriction of ¢* F' to is a soft sheaf.

Let Z — X be an étale morphism. Since the property of a sheaf to be soft is local
and Z can be defined locally over a finite separable extension of k£, we may assume
that Z = Y, where Y is a paracompact k-analytic space étale over X. Since the space
Y is locally compact, it suffices to verify that for any compact subset X' C Y the
map F(Y) — F(X) is surjective. This is established in the proof of Corollary 5.3.5
from [Ber2]. O

Theorem 3.3. Let f : U — X be a quasi-étale morphism, and F' an étale sheaf on
X. Then

(i) (F*FYO)S(urFYU), where f* is the inverse image functor Xg — Uz
(ii) if F' is an abelian sheaf, then HY(U, f*F)QH"(Uqému*F)for all ¢ > 0.

Proof . (i) The map (f*F)U) — (pu* F)(U) is a composition of the evident maps

(J* YUY = (py f*EYO) S faatt™ FYU) = (" F)U)

where i1y and fgg are the morphisms of sites Yy — Y and Yy — Xga, respectively.
Thus, to prove (i), it suffices to verify the following two facts:

(1) the presheaf U +— (f*F)(U) is a sheaf on Xq;

(2) for any (U =R X) € Qét(X), there is a covering {U, I U}ser in Xqe such
that ((fg,)* F)XU)=(u* FXU)) for all i € 1.

() Let {U, LN U}.er be a covering in Xqq. We have to verify that there is an
exact sequence

(+) (S R — [ BHwy = [P
? 1.7

where f, and f,, are the morphisms U, - U — X and Uy, :=U, xy U, = U — X,
respectively. Consider first the case when U is k-affinoid. In this case we can replace
the covering by a finite refinement and assume that each U, is k-affinoid and can be
identified with an affinoid domain in a k-analytic space V, separated and étale over
U. If U, are arbitrary open neighborhoods of U, in V;, then {U, — U},¢; is a finite
éiale covering of U, and therefore there is an exact sequence

() (W) — [ B = [la P
7 2.7
where U,, = U, xy U,. By [Ber2], 4.3, one has (f; F)U,) = l_iLn(,f*F)(Ul) and

(f,*JF)(UU) = hm(f* F)(4,,) when all i, tend to U,. Hence, the sequence (*) being
a filtered inductive limit of the exact sequences (xx) is exact.
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By the first case and the fact that a basis of topology of a k-analytic space is
formed by open paracompact sets, it remains to verify the exactness of (*) when U
is paracompact and {U, },c; is a locally finite covering of U by affinoid domains. In
this case the exactness of () follows from [Ber2], §4.3, and [God], 11.1.3.1.

Lemma 3.4. Let ¢ : Y — X be an étale morphism with Hausdorff X, and let X be a
compact subset of Y . Suppose that ¢ is injective on X and, for each point y € X, one
has H(p(y))~H(y). Then there is an open neighborhood V of 5 such that @ induces
an isomorphism V=o(V).

Proof . By Theorem 3.4.1 from [Ber2}, ¢ is a local isomorphism at every point
y € X. Therefore we can shrink Y and assume that ¢ is a local isomorphism at all
points Y. In particular, it suffices to find an open neighborhood V of 3 such that
@ is injective on V. One has X' C V; U ... U V,, where V, and ¢(V,) are open and
V,:up(Vz). By induction, to construct V it suffices to consider the case n = 2. Since
X is Hausdorff, then the image of X in X x X is closed. It follows that the image
of Y xx Y in Y x Y is closed. Furthermore, since the map |Y x Y| — |Y| x |Y] is
compact, then the image of |Y xx Y1 in |[Y] x |V], that coincides with |Y| x,x[|Y],
is closed. It follows that one can find open neighborhoods X\V, ¢ W, C V; and
Z\Vi C Wy C V; such that Wi x [W;| has empty intersection with |Y| < [V].
The open set V =W, UW, U (V, N V,) contains X and ¢ is injective on V. D

(2) We remark that the sheaf * F' is associated with the presheaf p? F' for which
(WP FYU) = lim F(Y'), where the limit is taken over all morphisms over X from U

to k-analytic spaces étale over X. Let (U R X) € Qét(X). To prove (2), it siffices
to show that (f*F)(U):»(;LPF)(U) under the assumption that U is k-affinoid and is
identified with an affinoid domain in a Hausdorff k-analytic space V étale over X.
We know that (f*F)U) = lim F(V), where V runs through open neighborhoods of

U in V. It suffices to show that any morphism over X from U to Y, which is étale
over X, extends to a morphism over X from an open neighborhood of U in V to Y.

For this we remark that the morphism U - Y xx V P, v satisfies the conditions
of Lemma 3.4. Therefore there exists an open neighborhood W of U in Y x x V for
which W3V := pr(W). 1t follows that the morphism U — Y extends to a morphism
Y —Y over X.

(ii) Since an open covering of U is a covering in the étale and the quasi-étale
topologies, then the Leray spectral sequences generated by it in the both topologies
show that it suffices to prove the statement for sufficiently small U. In particular, we
may assume that U is paracompact. Furthermore, consider a locally finite covering
of U by affinoid domains. It is a covering of U in the quasi-étale topology, and
therefore it induces a Leray spectral sequence which is convergent to H*(Uye, ™ F).
By [Ber2), 4.3.7, it induces also a similar Leray spectral sequence which is convergent
to H*(U, f*F). Therefore it suffices to prove the statement when U is k-affinoid and
can be identified with an affinoid domain in a paracompact k-analytic space V' étale
over X. Finally, by (i), the statement is true for ¢ = 0. Therefore, by Lemma 3.2,
it suffices to show that if F' is injective, then H9(Uyg, p*F) = 0 for all ¢ > 1. We
remark that any quasi-étale covering of U can be refined to a finite covering of the
form U = {U, — U},er, where each U, is k-affinoid and can be identified with an
affinoid domain in a paracompact k-analytic space V; étale over X. It follows that it
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suffices to show that the Cech cohomology groups 94U, u* F') associated with such
a covering are equal to zero for all g > 1. These groups are the cohomology groups
of the Cech complex C"(U, u*F) associated with . If V, are open neighborhoods
of U, in V,, then shrinking V we may assume that V = {V, — V},¢; is an étale
covering of V. The sheaf I |v is injective, and therefore the Cech complex C"(V, I)
associated with the covering V is exact. Since the complex C"(U, u* F) is a filtered
inductive limit of the complexes C"(V, F)) (when all U, tend to U,), it follows that
the complex C"(U, u* F) is exact. The theorem is proved. ]

Corollary 3.5. For any F € Xg, one has F>p p*F. In particular, the functor
1 Xo — Xqa is fully faithful. O

For a morphism f : Y — X and an étale (resp. étale abelian) sheaf F' on X we
use the notation F(Y) (resp. HY(Y, F) ) instead of (f*F)Y) (resp. HI(Y, f*F)).
The following is a generalization of the Leray spectral sequence 4.3.7 from [Ber2]
(which was used in the proof of the Theorem 3.3).

Corollary 3.6. For an étale abelian sheaf F on X and q > 0, let HI(F) denote the
presheaf V — HY(V, F) on Xy Then for any quasi-étale covering V = {V, — X}.¢;
there is a spectral sequence F3'9 = HP(V, HI(F)) == HPY(X,F) . O

The quasi-étale cohomology groups of a quasi-étale abelian sheaf F' will be de-
noted by HY(X, F). Due to Theorem 3.3, this is consistent with the notation of étale
cohomology groups if F' comes from an étale sheaf.

Corollary 3.7. Let ¢ : Y — X be a compact morphism, and let F' be an étale (resp.

étale abelian) sheafon Y. Then p* (0, F) @, (u* F) (resp. 1* (R9p, F)= R, (u* F),
q=>0)

Proof Let f : U — X be a quasi-étale morphism. By Theorem 3.3(1), (u*p. F)U)
= (f*p F)U). Since ¢ is compact, then (f*p, FYU)S (0L f* F)XU), where ¢’ and
f’ are the induced morphisms ¥ xx U — U and Y xx U — Y. Therefore, we
get (o FYAU)S(fFYY xx S FXY xx U) = (g, 0" F)(U). To prove the
statement, it suffices to verify that if F' is abelian injective, then R, (" F) =0 for
q > 1. This follows from Theorem 3.3(ii). 0

We note that the above statement is not true without the assumption that the
morphism is compact. Indeed, let j be the open immersion D = D(0,1) — E =
E(0, 1) and let F be a non-zero constant sheaf on D. Then the restriction of p*(j, F)
to the annulus A = F\D is a non-zero sheaf but the restriction of j.(u*F) to A is
zero.

4. The vanishing cycles functor

Let X € k°-Fsch. We fix a functor ), — ) from the category of schemes étale over
X, to the category of formal schemes étale over X which is inverse to the functor
from Lemma 2.1. By Lemma 2.2 and Proposition 2.3, the composition of the functor
2, = P with the functor 9 ~— 9),, induces a morphism of sites v/ : Xy, — Xy We
get a left exact functor

O=vpu Xy, — Xy, — Xoa -

Tyét
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(The similar functor for a bigger field K will be denoted by O g.)

Proposition 4.1. Let F' be an étale sheaf on X,,.

(i) If Y, is étale over X, then O(F)Q),) = F(],).

(ii) If F is an abelian sheaf, then R1G(F) is associated with the presheaf Y, —
HYY,, F).

(iii) If F' is a soft abelian sheaf, then the sheaf O(F) is flabby.

Proof . (1) and (ii) follow directly from Lemma 3.2 and Theorem 3.3. To prove (iii), it

sufﬁces to verify that the Cech cohomology groups WY, O(F)) of an étale covering

s = {D,, — Ysher In Xy are trivial for ¢ > 1. By (i), these groups coincide
w1th the Cech cohomology groups H‘l(‘lln,F) where 0, = {@ — Y, her is
the quasi-étale covering of 2),, induced by ;. From Corollary 3. 6 and Lemma 32

it follows that qun, F)-»Hq(ﬁjn, F). The latter group is trivial for ¢ > 1, by the
same Lemma 3.2. O

Corollary 4.2. (i) For an érale morphism 9) — X in k°-Fsch and F € S(X,), one
has Rq@(F)bj —N»R‘IQ(F|@ ) q>0.
5 7

(ii) For a morphism ¢ : ) — X in k°-Fsch and F" € D*(),)), one has

RO(Rgy, F) >R (ROF)) .
(iii) For X € k°-Fsch and F' € S(Xy), there is a spectral sequence
EP?= HY(X,, R1IO(F)) = HP"U(X,, F) . O

For X € k°-Fsch, let X5 (resp. X5 ) denote the closed (resp. generlc) fibre of the
formal scheme ¥ := X®ko(k )° over (Ic )°. One has X3 = X, ®k* and X5=X, k"
The vanishing cycles functor ¥, : X, — X34 is defined by ¥, (F) = @ks(F) where

Tét
F is the pullback of F on X5. Itis clear that there is a canonical action of the Galois
group G,, := G(k*/k) on ¥, (F) compatible with the action of G, := Gk /k) on X5
We shall see that this action is continuous (see [SGA7], Exp. XIII, §1.1). For this
(and for further use) we introduce the following notations. Let K be a field over k
with a valuation that extends the valuation on k. We denote by X, and X,,

closed and the gener;c fibres of the formal scheme Xy = X®yeo K° over K°. (One

has X, =X, ® K and X, = .’{}?®K .) For an étale sheaf I on X, let Fix denote
the pullback of F' on X, .
Lemma 4.3. For an étale sheaf F on X, one has ¥, (F) = limi;((@K(FK)), where
K runs through finite extensions of k in k* and i denotes the canonical morphism
X5 — Xqp. In particular, the action of G, on W, (F) is continuous.

Proof . Let ), be a quasicompact scheme étale over X,. Then the k-analytic space
2),, is compact and, by [Ber2], 5.3.4, one has F(@n@@ks) = lim F(i})n@K), where K
runs through finite extensions of & in k®°. This gives the required statement because

any scheme étale over Xz has an étale covering by schemes of the form 2);, where
), is affine and étale over X. &
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Thus, ¥, is actually a functor from X, to the category of étale sheaves of sets
on Xz endowed with a continuous action of G, compatible with the action of G
on X, (G,-sheaves). Let SGW(.'{;) denote the category of étale abelian G;-sheaves
on Xs. Then ¥, defines a left exact functor S(X,) — S¢, (X5). Therefore it defines
right exact functors R, : S(X;) — S¢,(X5) and an exact fanctor between the
corresponding derived categories R, : D*(X,) — Dgn (X3).

Lemma 4.4. Let F be an étale abelian sheaf on X,,. Then

(i) R1,(F) = lim z’;{(RQQK(FK)), where K runs through finite extensions of k
in k°;

(ii) if F is soft, then the sheaf W,(F) is flabby.

Proof . (i) follows from Lemma 4.3. (ii) follows from Lemma 3.2 and Proposition
4.1(ii). )

Corollary 4.5. (i) For an étale morphism Q) — X in k°-Fsch and F' € 8(X,), one
has Rq!I/n(F)}QJ quQ/"(FlQJ ), ¢ > 0.
s n

(ii) For a morphism ¢ © ) — X in k°-Fsch and F" € D*(Q)n), one has
R, (R, FHY= Rz, (RE(F)) .
(iii) For X € k°-Fsch and F € S(Xy), there is a spectral sequence

BT = HP (X5, R (F)) = H"(¥%y, F) . H

The fact we are going to establish allows one to use induction reasoning in the
calculation of the vanishing cycles sheaves.

Let X € k°-Fsch, and suppose that the canonical morphism X — Spf(k°) goes
through a morphism X — ¥ := Spf(k°{7'}). We remark that T is the formal comple-
tion of the affine line over £°, and T, is the one dimensional unit disc over k. Let
t be the maximal point of ¥, (it corresponds to the norm of the k-affinoid algebra
E{T}). Then the image s’ of ¢ under the reduction map 7 : T, — T, is the generic
point of T, 7 '(s") = {t} and H(t) = k(s) = k(T). We set X’ = X xq Spf(H(t)°).
This is a formal scheme in H(t)°-Fsch. Let X, and x;/ denote the closed and the
generic fibres of X', and let ©' and ¥, denote the corresponding vanishing cycles
functors. The canonical morphism of formal schemes ) : X' — X induces morphisms
As 1 XX )y — Xy and Ay, 0 XX — Xy, where (X5), (resp. (X)) is the
fibre of the morphism X, — ¥, (resp. X, — ¥,;) at the point s’ (resp. ¢). The pullback
of an étale sheaf F on X, with respect to A, is denoted by F'. Furthermore, we fix
an embedding of fields k° — H(#)*. It induces a morphism Az : 36;—,1«3{;)5—, — X5

Proposition 4.6. (i) For any étale abelian sheaf F on X, and any q > 0O, there is a
canonical isomorphism

ANRIG(F)SRIONF) .

(ii) For any étale abelian torsion sheaf F' on X, with torsion orders prime to
p = char(k) and any q > 0, there is a canonical isomorphism
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AR, (F) S RW,, (FHY
where P = GCH(t)® /H@®)™k*®) (it is a pro-p-group).

Proof . (i) Since the morphism X, : x;,, — X, is a quasi-immersion, from Lemma
3.2 it follows that if F' is a soft sheaf, then the sheaf /\;;F is also soft. Therefore it
suffices to verify that AX(G(F))>@'(F'). Furthermore, since the statement is local
with respect to X, we may assume that X is affine. We remark that any affine scheme
étale over X, is of the form 9./, where ) is an affine formal scheme étale over
X, and the sheaf A\ (©(F)) is associated with the presheaf A2(©(F)) whose value at
2);/ as above coincides with the inductive limit lim ©@(F)XQ), X i), where 4, runs

through open neighborhoods of the generic point s’ in 5. We have M\(O(F ))(2)'5,) =
liLnF(an xXg, Uy). The k-analytic spaces Y, Xz Uy, are identified with analytic
domains in Qj,] and their intersection coincides with @:’/ = (SDT,),, . It follows that the
set considered coincides with F((2),):) = Ay F(D;) = O/ (F XD y).

(ii) Let K be a Galois extensiorl of k in k® that contains k™, the maxilnal unrami-
fied extension k. The residue field K is a purely inseparable extension of £°, and there
is a surjective continuous homomorphism G(K/k) — G,. Therefore one can define,
for X € k°-Fsch, aleft exact functor ¥, g from X, to the category of étale G(K/k)-
sheaves on X, . It induces a left exact functor ¥, x : 8(X;) — Sgx/u(Xsg)
and the right derived functors R, @ S(X;) — Sqx/x)(Xsy). (For exam-
ple, from Corollary 4.5(i) it follows that RIW, ,n(F) coincides with the pullback
of RIG(F) on X, ® k°.) For a closed subgroup I of (, which is contained
in the inertia group of k, the values of the right derived functors of the functor
8¢, (X5) — S¢,/1(X5) : F > F! are denoted by H(I, F).

Lemma 4.7. For I’ € S(X,)) there is a spectral sequence

E}? = Gk [ K), BIW,(F)) = 11 (RP* 1, s (F)) .

Proof . Let 9), be a quasicompact scheme étale over X,. Then F()* /%) =
F(9),,) and, if F is injective, then F(2);) is a flabby G, -module. The required fact
follows. O

Corollary 4.8. Let I be the inertia group of k. Then for I € S8(X,)) there is a spectral
sequence ED" = HP(I, RUW, (F)) = i, (RPHO(F)) . 0
First of all we verify that P is a pro-p-group. For this it suffices to show that
HEO™ = HE™E™, where k™ and H()™ are the maximal moderately ramified
extensions of k and H(t), respectively. By [Ber2], 2.4.4, the group G(k™ /k") (resp.
GHE™ /H®)™) ) is isomorphic to Hom(y/|k*|/|k*|, k* ) (resp. Hom(y/|H(®)*|/
TH(EY |, H(®)® ) ). Since [H(t)*| = |k*[, then \/|H(®)*| = \/|k*}, and the required fact
follows.
From (i) and Lemma 4.4(i) it follows that AZ(RIW,(F)) 57 (R, 1 (F")).
where K’ = H()"k* and 7y is the canonical morphism XL — X', . The required
KI
isomorphism is obtained from Lemma 4.7 using the facts that P is a pro-p-group and
F' is a torsion sheaf with torsion orders prime to p.
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We will show now that the formation of vanishing cycles is compatible with
extensions of the ground field.

Let X € k°-Fsch. Let K be a non-Archimedean field over k, and let ¥,,,. denote
the vanishing cycles functor corresponding to the formal schemes Xy over K°. We
fix an embedding of fields k* — K* and denote by ¢ the canonical morphism
X5, — %g

Sk
Theorem 4.9. Let F' be an étale abelian torsion sheaf on X, with torsion orders prime
to p = char(k). Then for any q > O there is a canonical isomorphism

9 (R (FN SRy, (F) -

Proof . We may assume that X = Spf(A), where A is topologically finitely presented
over k°. The statement is proved by induction on d = dim(X,). Suppose first that

= 0. Since the homomorphism A — A, where A = A ®o k, is finite (see 1),
then d]m(A) = 0. Therefore dim(X,)) = 0, and the statement easily follows. Suppose
now that d > 1 and that the statement is true for formal schemes whose closed fibres
have dimension at most d — 1. We remark that since the statement is true if K is the
completion of the algebraic closure of &, we may assume that the fields k and K are
algebraically closed.

Step 1. The homomorphism g* (R, (F)) — RY¥,  (Fi) induces an isomorphism
at geometric points over any nonclosed point x € X .

We can find a morphism X — T = Spf(k°{T'}) such that the image s’ of the
point x is the generic point of T,. Let Xx — Tk = Spf(K°{T}) be the induced
morphism, and let s%- be the generic point of ¥, . Furthermore, let ¢ and tx be
the maximal points of ¥, and %, ., respectively. We set X =2 Xz Spi(H(#)?)
and Xy = Xg e, Spf(H(t)°). Finally, let X, and X, (resp. I:,l and x;],r)
denote the closed and the generic fibres of X' (resp X’). We fix a embedding of
fields H(t)* — H(tx)® over the canonical embedding H(t) — H(tx). It induces a
commutative diagram

2z,

19 Ty
A e

X5 N

To prove the statement of Step I, it suffices to show that )\:K g*(R‘@,}(F)):»
Ay AR, (Fk)). By Proposition 4.6(ii), we have

8K
G (RIV(F)) = G AR, (FNSG (R, (F')

*K
where P = G(H(t)® /H(t)™), and
Al (R (Fic) SR, (Fi)®
where Q = G(H(tx)* /H(tx)™). On the other hand, by the induction hypothesis, we
have
g*(qupn’(Fl)):;ngpn}{(F},{) .

Therefore our statement follows from the following lemma.



552 V. G. Berkovich

Lemma 4.10. The canonical homomorphism Q — P is surjective.

Proof . 1t suffices to show that for any finite extension L of H()™ in H({)* one has
[L s HiEx)™ = [L : H®™], where L' = LH(tx)™. We remark that the fields H(t)
and H(tx) are the completions of the fraction fields of {7} and K{T'}, respectively.
By Grauert-Remmert-Gruson Theorem ([BGR], 5.3.2/1), the latter fields are stable
(see [BGR], §3.6). Therefore the fields H(t) and H({x) are stable. It follows that the
fields H(tx)™ and H(tx )™ are also stable. Since H(t) = k(T) and H(tx) = K(T), it
follows that

(L Hit )™ =L : K(T)*] and [L:H®O™ =L : KT)].
The field I’ contains the compositum LK (1), and therefore
(L H(tx)™l < (LKD) : K(T)Y .

§ince the field K (T)® is separable over E(T)S, the latter number is equal to [E :
k(T)*}=[L : H(H)™]. The required statement follows. 0O

Step 2. g*(RY,(F)) — R, (Fk) is an isomorphism.
Let A" be defined by the exact triangle in D(X,,.)

— g*(an(F)) — RWHK(FK) — A —

We have to show that A" is quasi-isomorphic to zero. By Step 1, the cohomology
sheaves of A" are concentrated at closed points of X,,.. Therefore it suffices to show
that RI(X,, , A7) =0, ie., that RI(X, ., g* (RO, (F))= RI (X, , R¥,, (Fk)). By
the invariance of étale cohomology of schemes under separably closed extensions of
the ground field, the first complex is isomorphic to RI'(X,, R¥,(F)). By Corollary
4.5(i1), we have

RI(X,, R¥U,(F)) = R[(X,, F) and RI'(X,,,R¥,, (Fx))= R[(%,,, Fx) .

Therefore the required statement follows from the invariance of étale cohomology
of analytic spaces under algebraically closed extensions of the ground field ([Ber2],
7.6.1). U

5. The comparison theorem for vanishing cycles

First of all we recall the definition of the vanishing cycles functor for schemes (see
[SGAT7], Exp. XIII). Let S be the spectrum of a local Henselian ring which is the ring
of integers k° of a field k with a valuation. (Usually one considers the case when
the valuation is discrete and nontrivial, but everything works in the more general
situation.) The scheme S consists of the closed point s = Spec(k) and the generic
point 77 = Spec(k). (If the valuation is trivial, then s = 7.) Since the ring £° is
Henselian, then the field & is quasicomplete (see [Ber2], §2.4). This means that the
valuation on k extends uniquely to the separable closure k°, and therefore the integral
closure of k° in k? is also a local Henselian ring that coincides with (k°)°. We set

S = Spec((k*)°) = {3,77}. For a scheme X over S, let X and X, (resp. X5 and &%)
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be the closed and the generic fibres of X (resp. X := X xs &). One has canonical
morphisms
M 2

XWQ%X4—X5
A B
A L X x

The vanishing cycles functor ¥, : X5, — X34 is defined by ¥, (F) = G,
where F is the pullback of a sheaf F & A On Ay The functor ¥, takes values
in the category of étale sheaves on A% that are endowed with a continuous action of
G, = G(k*/k) compatible with the action of G := G(ES/E) on A5. (If the valuation
on k is trivial, then ¥, (F) = F.)

Furthermore, if the valuation on k is nontrivial, we fix a non-zero element a in
the maximal ideal £°° of k°. If the valuation on k is trivial, we set a = 0. The
completion k of k with respect to the valuation is a non-Archimedean field, and one
has k° := (k)° = lim k° /(a™).

Let now X be a scheme locally finitely presented over k°. Then the formal
completion X of X along the subscheme (X, Oy /aOyx) is a formal scheme from
k°-Fsch, and one has the generic fibre /%n. One the other hand, one can consider the
@—analytic space Xg“ = (X, E)"’“‘. From the construction of these two spaces it
follows that there is a canonical morphism 1’,, — A" We claim that if A is separated
and finitely presented over k°, then this morphism identifies /'T,’n with a closed analytic
domain in A" Indeed, if X' = Spec(A), where A is finitely presented over £°,
and f,...,f, generate A over k°, then /’At'n is identified with the affinoid domain
{z € X,’“;“Hfl(z)! < 1,1 <i<n} If X is arbitrary, we take a finite covering {X, },er
of X by open affine subschemes of the above form. Then for any pair i,j € I the
intersection &,; = X,NA is also an affine scheme and the canonical morphism X;, —
X, x X, is a closed immersion. It follows that if f;,..., f, and gy, ..., g, generate
the rings O(X,) and O(X,) over k°, respectively, then fi,.... fn,g1,. .., gm generate
O(X,,) over k°. It follows that /'Al’,J_n is identified with the intersection 2’”, N z’T.’J_,,.
and therefore X’,, is identified with a closed analytic domain in A7". We claim that
a proper morphism ¢ : JY — A induces an isomorphism JA),,—N»)}';‘," X g /ffn. (In
particular, the induced morphism &, : JA),, — i}n is proper, and if X’ is proper over
k°, then 2,7:»2‘(7';‘".) Indeed, since the statement is local with respect to X', we may
assume that X = Spec(A4), where A is finitely presented over k°. Then JA/n and
yg" X xan X’n are closed analytic domains in y;;“. Therefore it suffices to verify that
the morphism considered is surjective. This is easily seen if ) is the projective space
over X or a closed subscheme of X and, therefore, if ¢ is a projective morphism. If
@ is arbitrary, this is obtained by applying Chow’s Lemma that tells that there exist
a projective X'-scheme Z and a projective surjective X-morphism Z — ).

We remark that there are canonical morphisms of sites /'At'nél - AP = Ay
The pullbacks of a sheaf F € X7, on A" and j.’,, will be denoted by 72" and f',
respectively. For any étale sheaf 7 on A, there is a canonical morphism of sheaves

on X, i*(juF) — (-9(.%). Indeed, the first sheaf is associated with the presheaf
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iP(j.F) that assigns to a scheme Z étale over X the inductive limit @f(yn)
over all morphisms Z — Y, over X, where ) is a scheme étale over X. If 3
is the formal scheme étale over X' with 3, = Z, then such a morphism Z — Y
induces a morphlsm of formal schemes 3 — y over X and therefore it induces
a map F(y) — f(3,,) = Q(T)(Z). These maps define a morphism of presheaves
P F) — (—)(ﬁ') that, in its turn, defines the required morphism of sheaves. It follows
that there is a canonical morphism of sheaves ¥, (F) — ,}(% ).

Theorem 5.1. Let F be an étale abelian torsion sheaf on X,. Then for any ¢ > 0
there is a canonical isomorphism

(R, F)SRIOF) .

Proof . We prove the statement by induction on d = dim(-X;). (Since the statement is
local with respect to X', we may assume that X’ is finitely presented and, in particular,
that d < oc.) Suppose that d > 1 and that the theorem is true for schemes whose
generic fibre has dimension at most d — 1.

Step 1. The homomorphism i*(R7j.F) — Rq@(/}\') induces an isomorphism at
geometric points over any nonclosed point x € X.

We may assume that X' is a closed subscheme of the affine scheme AT over
S. Then there exists a projection X — 7 := AL such that the image of the point
x in 7, is the generic point s’ of 7;. To prove the statement, it suffices to show

that the homomorphism i*(R%j,F) — R?O(F) induces an isomorphism between the
pullbacks of the sheaves on (Xs),.

Let &' = {s’,n'} be the spectrum of the Henselization Oi}‘s, of the local
ring Or o, and we set X' = X x4 8. The canonical morphism A : X' — X
induces morphisms A, : ’:»(X )y — Xy and A, X' — X,. One has
AL@* (R‘I}*}"))-ﬂ’*(li’q]*()\ F)). By induction, the latter sheaf is canonically iso-
morphic to R0’ ()\ F). Therefore there is a canonical isomorphism

AL (R F) S RIO (VG F)

On the other hand, let us consider the similar procedure for formal schemes. Let ¢

be the maximal point of ’?,7 There is a canonical embedding of rings O  — H(2)°,
and if induces an isomorphism of the completion of Or o with H(¢)°. In particular,

% o = H(®)°, and one has S =

Spf(H(t)°). Furthermore, there is an isomorphism of formal schemes X5y X5 S

it gives rise to a canonical embedding of rings O"

If \ denotes the induced morphism XX , then, by Proposition 4.6(i), there is a
canonical isomorphism

N(RIOFNSRIONF) .
Since A, = A, and )\*}" )\*f the required statement follows.

Step 2. i*(R9j, F) — R‘?(~)(]-‘) is an isomorphism.
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Since the statement is local with respect to X', we may assume that X is affine,
and after that we may assume that X' is projective over S. Let A° be defined by the
exact triangle in D(X;)

— i*(Rj.F) — RO(F) — A —>

We have to show that A’ is quasi-isomorphic to zero. By Step 1, the cohomol-
ogy sheaves of A" are concentrated at closed points of Xs. Therefore it suffices to
show that RI'(X, ®z E’,A') = O for any finite unramified extension &’ of k. Re-
placing k by &/, we see that our problem is to show that RI'(X,, A) = 0, i.e., that
RI(X,,i*(Rj. F)SRI(X,, RO(F)).

Since X is proper over S, there are canonical isomorphisms RI'(X;, i*(Rj.JF))

—~+RF(XW,.7:) and RI'(X;, R(—)(ﬁ))-N»RF(X;“,F““). Thus, the required fact follows
from the following lemma.

Lemma 5.2. Let X be a compactifiable scheme over a quasicomplete field k, and
let F be an abelian torsion sheaf on X. Then for any q > 0 there is a canonical
isomorphism

HIX, S HIX™, 7).

Proof . By the Comparison Theorem 7.1.1 from [Ber2], the statement is true if k is
complete. Therefore it suffices to verify that HI(X, f'):»Hg(X Rk %,]—'). We know
that this is true if & is separably closed (in this case % is also separably closed). The
general case is obtained using the Hochschield-Serre spectral sequence and the fact
that the Galois groups of k£ and k are isomorphic ([Ber2], 2.4.2). O

Corollary 5.3. For any étale abelian torsion sheaf F on X, and any q > 0 there is
a canonical isomorphism

R, (F)SRIW(F) - 0

Let k be a non-Archimedean field. A morphism ¢ : Q) — X in k°-Fsch is said
to be smooth if locally it goes through an étale morphism from 9) to the formal
affine space A‘é over X. A formal scheme X € k°-Fsch is said to be smooth if the
canonical morphism X — Spf(£°) is smooth.

Corollary 5.4.~ Let X be a smooth formal scheme in k°-F sch, and let n be an integer
prime to char(k). Then LUU(Z/'H,Z)%” =(Z/nl)y_and R"Ll'/,,(Z/nZ)}:77 =0forqg> 1.

Proof . Corollary 4.5(i) reduces a situation to the case when X is the formal completion
of the affine space Aﬁc,. Therefore the statement follows from Corollary 5.3 and the
known fact on the triviality of the vanishing cycles sheaves for smooth schemes. [

Corollary 5.5. Suppose that k is algebraically closed, and let X be a scheme of finite
type over k and F a constructible sheaf on X with torsion orders prime to char(k).
Then for any compact analytic domain X in X™ the groups HY(X,F™), ¢ > 0, are
finite.
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Proof . If {V,},c1 is a finite covering of X by closed analytic domains, then the
spectral sequence of Corollary 3.6 implies that to prove the statement it suffices
to show that all of the groups HY(V, n... NV, ,F*) are finite. Therefore we
may assume that X = Spec(A) is affine and X is affinoid. Furthermore, since the
cohomology groups are preserved under algebraically closed extensions of the ground
field ([Ber2], 7.6.1), we can increase the field k£ and assume that the valuation on k is
nontrivial and X is strictly k-affinoid. Furthermore, let fy, ..., f, be generators of A
over k such that X C V. := {z € X™||f(z)| < 1,1 < i < n}. By Gerritzen-Grauert
Theorem ([BGR], 7.3.5/1), X is a finite union of rational domains in V. Therefore we
may assume that X is a rational domain in V, i.e., there exist elements &, g1, ..., Gm €
A without common zeros in V such that X = {z € V||g,()| < |h(z)|,! < i < m}.
Replacing A by A[%], we may assume that X is a Weierstrass domain in V. Thus,
we can find generators fi,..., f, of A over k such that X = {z € X“"]]fz(a:)| <
I,1 <i<n}

Let a be the kernel of the surjective homomorphism k[Ty,..., 7,1 — A: T, — f,.
It is an ideal of k[T1,...,T,] generated by polynomials g1, ..., g,. Multiplying all
g, by a constant, we may assume that g, € k°{T],...,T,]. Let b be the ideal of
k°[Ty,...,T,] generated by gi,...,gm, and we set B = k°[T},...,T,]1/b. We get
an affine scheme Y = Spec(B) finitely presented over k° with J, = X’ and y,,lx .
By Deligne’s Theorem 3.2 from {SGA4%], Th. finitude, the vanishing cycles sheaves
R, (F) are constructible. (In the proof of Deligne’s Theorem one assumed that £°
is a discrete valuation ring, but the proof works for arbitrary k°.) Furthermore, by loc.
cit., 1.10, the cohomology groups of ), with coefficients in a constructible sheaf are
finite. Applying Corollary 5.3 and the spectral sequence 4.5(iii), we get the required
statement. J

Corollary 5.6. Suppose that k is algebraically closed, and let X be a compact k-
analytic space such that each point of X has a neighborhood of the form Vi U.. .UV,
where each V, is a closed analytic domain admitting a quasi-étale morphism to the
analytification of a scheme of finite type over k. Then for any finite locally constant
sheaf F on X with torsion orders prime to char(k) the groups HY(X, F), ¢ > 0, are
finite.

Proof . By the reasoning from the beginning of the proof of Corollary 5.5, the situation
is reduced to the case when X is k-affinoid and connected. Furthermore, we can find a
finite étale Galois covering ¢ : Y — X such that the sheaf ¢* £ is constant. Applying
the Hochschield-Serre spectral sequence for this covering, we see that the situation

is reduced to the case when F' = (Z/nZ)x for some n prime to char(k). Finally,
shrinking X, we may assume that X is an affinoid domain in a k-analytic space ¥
for which there exists a separated étale morphism ¢ : Y — A™, where X' is an affine
scheme of finite type over k.

Let y € X and let x be the image of the point x = ¢(y) in X. The field k(x) is
everywhere dense in H(z), and H(y) is a finite separable extension of H(x). Therefore
we can find a finite separable extension K of k(x) which embeds in H(y) and is
everywhere dense in it. Take an arbitrary étale morphism of finite type between affine
schemes g : Y — X for which there exists a point y € ) with g(y) = x and k(y) = K.
The embedding of K in H(y) defines a point y € Y*. Since K is everywhere dense
in H(y), then H(y) = H(y'). By Theorem 3.4.1 from [Ber2], the k-germs (Y,y) and
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(Y™, /) are isomorphic. Thus, we may assume that X is an affinoid domain in X",
where X' = Spec(A) is an affine scheme of finite type over k. In this case the statement
follows from Corollary 5.5. |

Remark 5.7. The natural conjecture is that, for any formal scheme X € k°-Fsch
and any finite locally constant sheaf F' on X, with torsion orders prime to char(k),
the vanishing cycles sheaves RY¥, (F) are constructible. To prove this, it would be
enough to show that the statement of Corollary 5.6 is true for any compact k-analytic
space X.

6. A uniform topology on the set of morphisms of analytic spaces

All the analytic spaces considered in this section are assumed to be Hausdorff.

Let F be a prime non-Archimedean field. (This means that the subfield generated
by the image of Z is everywhere dense in F, ie., F is the field Q, with the p-adic
valuation or the field Q or F,, with the trivial valuation.) Recall that an analytic space
over F is a pair (k, X), where k is a non-Archimedean field over F and X is a k-
analytic space, and a morphism (K,Y) — (k, X) is a pair consisting of an isometric
embedding k — K and a morphism of K-analytic spaces ¥ — X &, K (see [Ber2),
§1.4). For brevity the pair (k, X) is denoted by X and is called an analytic space.
Given an analytic function f on an analytic space X, we set p(f) = meax | f(x)|. For a

morphism ¢ : Y — X, we denote by ¢* the induced homomorphism O(X) — O(Y).
Furthermore, given analytic spaces X and Y, we denote by Mor(Y, X) the set of mor-
phisms Y — X. If X and Y are over an analytic space T', then Morz (Y, X)) denotes
the subset of T-morphisms. Finally, let G(X) denote the group of automorphisms of
X. (If X is k-analytic, then such an automorphism induces an isometric automor-
phism of the field &.) If X is over T, then Gr(X) := G(X) N Morp(X, X). Our
purpose is to endow the set Mor(Y, X) with a uniform space structure.

Let X be an analytic space. We introduce a set (X) as follows. An element ¢
of &(X) consists of a finite family s(e) = {U, },er of compact analytic domains in
X and, for each 4 € I, of finite sets of analytic functions {f,,},es, on U, and of
positive numbers {t,,},cs,. Such an element ¢ defines, for each analytic space Y,
a relation on the set Mor(Y, X) as follows. Given two morphisms ,9 : ¥ — X,
we write d(p,¥) < ¢ if 7 '(U,) = v~ "(U,) and p(p} foy ~ U7 fr)) < t, for all
i€l and j € J,, where , and ¢, are the induced morphisms go“‘(UZ) — U, (if
e~ (U,) is empty, the above inequality is assumed to hold). The relations d(p, ) < e
define a uniform space structure and, in particular, a topology on Mor(Y, X). (If Y is
reduced, then Mor(Y, X) is Hausdorff.) We endow the group G(X) with the topology
induced from Mor(X, X). It is easy to see that G(X) is really a topological group (not
necessarily Hausdorff), and its topology is defined by the system of the subgroups
G(X) = {0 € GX)|o(U) = Uy, p07] fiy — fry) < 1y} for € € €(X) as above.

For example, if K/k is an extension of non-Archimedean fields, then we get a
topological group Gi(K) (= Gae(M(K))). If K = k%, it is canonically isomorphic
to the Galois group Gal(k®/k).

Furthermore, we introduce a partial ordering on &(X) as follows. Given ¢,6 €
E(X), we write ¢ < § if, for any pair of morphisms ,9 : Y — X, the relation
d(p, 1) < € implies d(p,¥) < 8. For example, given €, € €(X), let inf(e, §) denote
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the element of €(X) for which the families of analytic domains, of analytic functions
and of positive numbers are unions of those for £ and 6. Then inf(e, ) < ¢,6 and
~ < inf(e, §) for any v € E(X) with v < ¢, . We remark also that for each ¢ € E(X)
there exists § < e such that § is the infimum of elements defined by the triples
(U, f,t), where U is an affinoid domain in X, f € O(U) and ¢t > 0. Finally, for a
finite family U = {U, },er of compact analytic domains in X, we set || = U, U,.

Proposition 6.1. Ler U = {U, },e1 be a finite family of affinoid domains in X. Then
Sfor any € € €&(X) with |s(e)| C [U| there exists § € E(X) with § < € and s(8) =

Proof . The situation is easily reduced to the case when X = M(A) is affinoid and
U = {X}. We may also assume that ¢ is defined by a triple (U, h,t) with py(h) #0.
Suppose first that U is a rational domain, ie., U = X(rz‘l%) ={zr € X||f7,(:c)| <
r.lg(x)|}, where fi,..., f.,g are elements of A without common zeroes in X and
Tiy-..,7n > 0. It is easy to see that if a pair p,1 : Y — X satisfies the conditions
plp" i = U f) < ary, plgg —¥7g) < /2, where a = min |g(z)], then e () =

3~ 1(U). Furthermore, we can replace the element i by a sufficiently close element
of the form h’/¢™, where b’ € A and m > 0. If the pair ¢, ¢ satisfies, in addition,
the conditions p(@*h' — ¥*h') < ta™ and p(p* g™ — P*g™) < ta®™py(h')~1, then
plp*h —Y*h) < t, ie., dlg, ) <e.

If U is a finite union of rational domains, then the statement easily follows from
the first case. Suppose now that U is arbitrary, and let X be k-affinoid. Then we
can find a field of the form K, = {{ AT¥|\, € F,|A,Jr" — Oas [v] — oo}

such that k, := k®pK, is a field and the spaces X®k, = X@rK, and URk,
are strlctly k. afﬁnond (see [Berl] §2). There are canomca] maps Mor(Y, X) —
Mor(Y &p K, X®kr) @ +— ¢ and E(X) E(XRk,) : £ > &'. We remark that
if d(ga Y'Yy < €', then d(y, ) < €. By Gerritzen-Grauert Theorem ([BGR],7.3.5/3),
U®&k, is a finite union of rational domains in X ®k,.. . Applying the prev1ous case, we
can find an element v € E(X&®k,) with s(v) = {X®k } and v < &'. Therefore the
required statement follows from the following lemma.

Lemma 6.2. For any v € &(X®k,) with s(v) = {X®k,} there exists § € E(X)
with s(8) = { X'} such that, for any pair o, € Mor(Y, X) with d(p,¢¥) < 6, one has
die’ ') <.

Proof . We may assume that v is defined by a function g = Y_, f,T" € ARk,

f. € A, and a positive number . If ,1» € Mor(Y, X), then p(¢’"g — ¢'"g) =

max p(* f, — ¥* f,)r*. Since ||f,||r¥ — 0 as |v] — oo, we can find N such that,
124

for any v with |v| > N, one has p(f,)r” < t. It follows that if the pair ¢, 1) satisfies
the conditions p(¢* f, — ¥* f,) <tr~" for [v| < N, then p(' g — ¢ " g) <t. O

Corollary 6.3. Suppose that X = M(A) is k-affinoid, and let fi,..., f, be a k-
affinoid generating system of elements of A. Then for any € € &(X) there exist
frstre-osfm € kand ty,... tm > 0 such that, for the element § € €(X) defined
by (X.{f,}.{t:}), one has 6 < <.

Proof . By Proposition 6.1, we may assume that ¢ is defined by a triple of the form
(X,g,1), g€ A. Let P € k[T\....,T,] be a polynomial with p(g— P(fj,..., N )
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t, and let f,1,..., fm be the nonzero coefficients of P. It is clear that we can find
ti,...,tm > 0 such that, for any pair ¢, ¢ : ¥ — X with p(o*f, — ¢*f) < t,,
1 < i < m, one has p(o*(P(fi,..., fa)) — V*(P(fi,. .., fn))) < t. For such a pair
(¢, %), one has p(y*g — ¥*g) < t. O

Proposition 6.4. Let a k-analytic group G act on a k-analytic space X, and let X =
X &k®. Then the canonical homomorphisms G(k) — Gi(X) and G(k) x Gal(k® /k) —
Gr(X) are continuous.

Lemma 6.5. A k-point x of a k-analytic space X is contained in the topological
interior of any affinoid domain U that contains x.

Proof . We may assume that X is compact and there are affinoid domains Uy, ...,U, €
X suchthat z €« UyN...NU, and X = U, U... U U,. For each i, one has
unU,=V;U...UV, for some affinoid domains V, C U,. Since x is contained in
the topological interior in U, of each V) that contains x, then x is contained in the
topological interior of U N U, in U,. It follows that z is contained in the topological
interior of U in X. 0

Lemma 6.6. (i) If X is k-analytic, then the space Mor(k, X) is homeomorphic to its
image X (k) in X.

(ii) Let o : Y — X be a compact morphism. Then for any ¢ € €(X) there exists
& € &(Y) such that, for any analytic space Z and any pair of morphisms .,/ : Z —
Y with d(3, ') < 6, one has d(py, oy') < e.

(iii) Let vy © Z — Y be a morphism. Then for any analytic space X, any € € &(X)
and any pair of morphisms o, ¢ 1 Y — X with d(p, ©') < &, one has d(ey, ') < €.

(iv) Suppose that either X and Y are k-analytic and Z is over k or X and Y
are over k and Z is k-analytic. Then the canonical map Mori (Y, X) — Morg(Y Xy
Z, X Xy Z) induces a uniform homeomorphism between the first space and its image
in the second one.

Proof . (i) From Lemma 6.5 it follows that a basis of topology on X (k) is formed
by sets of the form U(k) for affinoid domains U/ C X. Therefore the bijection
Morg(k, X) — X (k) is continuous. On the other hand, a basis of the topology on X (k)
induced from Mor(k, X) is formed by sets of the form {z € U(k)“f(a:) —al <t}
where f € O(0), a € k and t > 0. The latter set is V(k) for the affinoid domain
V={ze¢ U{I(f — a)(x)| < t}, and the required statement follows.

(ii) For ¢ € €(X) defined by a triple (U, f,t), we define 6 € E(Y) by the triple
(o~ W), * f, 1). It is easy to see that if d(p,¢) < 8, then d(py, py’) < e.

(iii) is trivial.

(iv) By Proposition 6.1, to show that the map is uniformly continuous, it suffices to
verify that for any element ¢ € &(X x ;2Z) defined by a triple of the form (U x,;W, g, 1),
where U C X and W C Z are affinoid domains, there exists 6 € &(X) such that if
d(p, ) < 8, then d(p x id, ¢ x id) < . We may assume that g = > f, ® h, for
fi € OU) and h, € O(W), h, # 0. Then the necessary property is satisfied for é
defined by the affinoid domain U and the systems of functions {f,} and of positive
numbers {t/||h.||}.

Furthermore, if 6 € €(X) is defined by a triple (U, f, t), then we take an arbitrary
compact analytic domain W C Z and define ¢ € (X x; Z) by the triple (U xi
W, f ® 1,t). It is easy to see that if d(p x id, x id) < ¢, then d(p, ) < 6. )
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Proof of Proposition 6.4. Since Gx(X) and G,(X) are homeomorphic to their images
in Mor(X, X) and Mor(X, X), respectively, and a basis of topology on G(k) is
formed by the sets V(k), where V' is a compact analytic domain in G, then it suffices
to verify that the maps V (k) — Mor,(X, X) and V (k) x Gal(k®/k) — Morr(X, X)
are continuous. The first map is the composition of continuous maps

V(k) = Morg(k, X) — Morg(X,V x X) — Mori(X, X) .

(The latter map is induced by the action morphism G x X — X, and the morphism
V x X — X is evidently compact.) From Lemma 6.6(iv) it follows now that the
maps V (k) — Morg(X, X) and Gal(k®/k) — Mor,(X, X) are continuous. |

Corollary 6.7. Let G be a k-analytic group. Then for any compact analytic domain
U C G the subgroup G(k)yy :={g € G(k)[gU = U} is open in G(k). Furthermore, the
topology on G(k) is defined by the system of subgroups G(k)y, where U runs through
dffinoid neighborhoods of the unity. Finally, the homomorphism G(k) — Gi(G) defined
by the left action of G on itself induces a topological isomorphism of G(k) with its
image in Gi(G). O

7. The action of the set of morphisms on the étale cohomology groups

As in §6, all the analytic spaces considered are assumed to be Hausdorff.

Theorem 7.1. Let T be an analytic space, and let F' be a quasi-étale abelian sheaf
on T. Then for any compact analytic space X over T and any element « € HY(X, F)
there exists € € €(X) such that, for any analytic space Y over T and any pair of
T-morphisms ¢, 1 Y — X with d(p, V) < ¢, one has p*(a) = ¢Y*(a) in HI(Y, F).

Key Lemma 7.2. Let X be an analytic space, and let f : U — X be a quasi-étale
morphism with compact U. Then there exists ¢y € €(U) with the following property.
For any € < gy there exists 6 € €(X) such that, for any cartesian (resp. commutative)
diagram

y L
*) Tg Tf
v XU

and any morphism ¢’ : Y — X with d(p,¢") < 8, there exists a unique morphism
¥ 1V — U with d(i, ") < € for which the following diagram is also cartesian (resp.
commutative)

’

Yy £
*) Tg 1f
v YU

Proof . First of all we remark that the validity of the statement for commutative
diagrams is easily deduced (using Lemma 6.6(iii)) from its validity for cartesian
diagrams. And so we assume that the diagram (x) is cartesian.
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Step 1. The statement is true if the spaces X = M(A) and U = M(B) are affinoid,
the morphism [ is finite étale and B = A[T1/(P), where P = T+, T 1+, +a, €
A[T].

Lemma 7.3. (Generalized Krasner’s Lemma) Let f : U = M(B) — M(A) be a finite
étale morphism of affinoid spaces such that B = A[T1/(P), where P = T" +a;T" ' +
.. +a, € A[T], and let o be the image of T m B. Then there exist positive numbers
Tly--.,Tn,t and a series @ € B{rf'Sh oo, 18} with @(0) = « such that, for any
cartesian diagram (x) with affinoid Y = M(C) and V' = M(D) and for any polynomial
Q=T+, T ' +... +¢, € C[T] with ple, — ¢*a,) <7, 1 <1 < n, the element
= (W*PYc) —p*al, ..., cn— @ ay,) is a unique root of QQ in D with p(3 — ¥ o) < t
and the homomorphism C[T] — D : T ~ [ induces an isomorphism C[T]/ (Q)SD.

Recall (see [Ray], Ch. XI) that if I is an ideal in a commutative ring A, then
the pair (A, ) is called Henselian if it satisfies to any of the following equivalent
conditions:

(a) I C rad(A) (the Jacobson radical of A) and for any monic polynomial P €
A[T7] such that its image P in A[T] (A = A/I) is of the form QR, where Q and R
are relatively prime monic polynomials in A[T] one has P = QR for some monic
polynomials Q, R € A[T'] whose images in A[T"] are Q) and R, respectively;

(b if B is a finite free A-algebra, then Idem(B)>Idem(B/I B), where Idem(B)
is the Boolean algebra of idempotent elements of B.

The following lemma is a generalization of Theorem 2.1.5 from [Ber2].

Lemma 7.4. Let 3 be a closed subset of a paracompact analytic space X, and let
O(X) be the algebra of functions analytic in a neighborhood of X. We set I(X) =
{fe O(Z)’f(z) =0 for all x € X'}. Then the pair (O(X), I(X)) is Henselian.

Proof . Let Idem(X)) denote the Boolean algebra of open-closed subsets of 3. We
claim that for any ideal I C I(X) there are canonical isomorphisms

Tdem(O(2) > 1dem(O(X)/ )= 1dem(X) |

where the second map takes an idempotent f € O(X)/I to the set of z € X with
f(z) = 1. Since a paracompact space is normal, it follows that the map from the first
set to the third one is surjective. Therefore it suffices to verify that the both maps are
injective. For this it suffices to show that I(X) C rad(O(X)). Suppose that an element
f € I(X) is not contained in a maximal ideal m C O(X). Then 1 = ff' + g¢' for
some g € m and f', ¢’ € O(X). This implies that g(x) #0 for all z € X, ie., g is
invertible in O(X).

To prove the lemma, we verify the condition (b). Let B be a finite free O(X)-
algebra. Then we can shrink X and assume that there is a finite free O(X)-algebra C
such that B = C®ox)O(X). The algebra C gives rise to a finite morphism of analytic
space ¢ : Y — X with C = O(Y). The space Y is also paracompact, and one has B =
O@='(%)). Since IB ¢ I(x~ (X)), then Idem(B)>Idem(B/IB)>ldem(n (X)),
and therefore the condition (b) is satisfied. O

Proof of Lemma 7.3. Of course, we may assume that n > 1. Let D(S),...,S,) =
3=, 4,5 be the discriminant of the polynomial P = T" + (a; + SOT™ ' + ... +
(an + Sp) € ALS,...,S,][T1. Since dy = D(0) is the discriminant of P, then dj is
invertible in 4. Let ¢ be a positive number with
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2‘ —_ .
tzlPlg, =2 < min Ido()] ,

where | P|s, = max p(al)% (the spectral norm of P). Then we can find ry,...,r, >0
such that ||d, |[r” <t for all ¥ #0 and r, < [P}, for all 1 <i <n.
Furthermore, let Z x E(0;ry,...,r,) C A™, where E(0;ry,...,7,) is the closed

disc in A", ie., Z = MB{r'Si,...,r7 Sy}, let ¥ =U x {0} C Z, and let I be
the ideal of O(X) generated by the coordinate functions Sy,...,S,. Then I C I(X),
and therefore the pair (O(X), ) is Henselian. We apply the condition (a) to the
polynomial P € O(X)[T]. One has O(X)/I = B and P =P = (T - a)R for some
monic polynomial R € B[T]. Since B = A[T]/(P) is finite étale over A, then the
polynomials T — o and R are relatively prime in B[7']. Therefore P = (T' — §)R,
where ¢ € O(X) with #(0) = « and R is a monic polynomial in O(X)[T] with
R = R. We now can replace 7y,...,7, by smaller positive numbers and assume
that # € B{r['Sy,...,r;'S,}, R€ B{r;'Sy,...,r;' S, HTI, and the norm of the
element & — « in B{r;'S,,...,r;'8,} is strictly less than t. We claim that the
required properties hold for the constructed 7y, ... r,,t and 9.

Suppose we have a diagram () and a polynomial () as in the formulation. By the
construction, the element 3 is a root of @ with p(3 — ¥*a) < t and the discriminant
of @ is invertible in C. In particular, the homomorphism C[T] — D : T — 3 induces
a finite étale homomorphism C[T]/(Q) — D over C. Since the both algebras are free
C-modules of the same rank n, it follows that C[T']/{(Q)>D. It remains to show that
if -y is a root of () different from (3, then p(y —1*«) > t. For this we take an arbitrary
bounded character x : D — K to an algebraically closed non-Archimedean field K.
The discriminant of the polynomial x(Q) is equal to [] (., —, )2, where the product

1<
is taken over all pairs of roots of x(Q) in K. Since |v,| < |Q|sp < {Plsp, our choice
of ¢ guarantees that |y, — ;| > ¢ for all i # j. Since |x(8 — ¢¥* )| < ¢, it follows that
|x(y — ¥*a)| > t. Lemma 7.3 is proved. |

We apply Lemma 7.3 to the morphism f : U — X. Let ry,...,7,,t and @ be
given by the lemma, and let a be the image of T in B. Replacing r, by smaller
numbers, we may assume that the norm of & — o in B{rl’lS],...,r;lSn} is less
than ¢. We claim that the statement is true for 9 = (U, «, t). Indeed, by Proposition
6.1, it suffices to assume that ¢ is the infimum of £ and of an element £, of the form
(U, h,q), where h € B and ¢ > 0. The required element § is defined as the infimum
of the following families (1)-(3) of elements of €(X).

n 51 =(X,a,7), 1 <i<n

Before continuing we remark that the conditions § < §,, 1 < i < n, are enough
to construct, for any cartesian diagram (x) and any morphism ¢’ : Y — X with
d(p,¢’) < 4, a unique morphism ¥’ : V — U with d(x),¥’) < &¢ for which the
diagram (*') is also cartesian. Indeed, to see this it suffices to assume that Y = M(C)
and V = M(D) are affinoid. If d(p, ¢') < 6, then p(y' a; — ¢*a;)) <1, 1 <i<m,
and therefore the element 3’ := (¥* @)@ a1 —w*al, ...,  an—p*ay) is a root of the
polynomial '* P. The homomorphism ¢'* : B — D that extends ¢’* : A — C and
takes c to (3’ is well defined and is a unique extension of ¢~ with p(y"" o —~1*a) < t.
It is also clear that the diagram («) is cartesian.

Furthermore, let A = bja™" ' + ...+ b, where b; € A.

(2) 6 = (X,bi, gp(a) "), 1 < i < .
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Finally, we can find 0 < r] < r,, 1 < i < n, such that the norm of the series & -«
in B{r’flsl, e r’,;lSn} is at most gmax{p(b,)~} p(a)!**~"}, where the maximum
is taken over all 1 <14 < n with p(b;) #0.

38 =(X,a,,r) 1<i<n

Let 6 be the infimum of all the elements from (1)-(3). It suffices to verify that if
d(p,¥) < 6, then d(¢,¢') < g1, i.e., p(¥'"h — 1p*h) < g. One has

PO R = h) < max (p()" (" b — @b, pbp( (@) = @)™ )

By (2), the first number under the maximum is at most g. Since p(w/*(a)’“Z -
()™ < p( "o — Pra)p(e)™ 7L, then (3) implies that the second number is
also at most q.

Step 2. The statement is true if f identifies U with an analytic domain in X.

In this case the statement is true even for arbitrary ¢ € E(U). Indeed, let £ be the
infimum of the two elements of €(X) defined by the triple (U, 0, 1) and by the same
families of affinoid domains, analytic functions and positive numbers as ¢. It is easy
to see that the necessary properties are satisfied for § = €.

Step 3. The statement is true in the general case.

Lemma 7.5. (i) If the statement is true for U — X and U’ — U, then it is also true
for the composition U’ — X.

(ii) Let {X, }oer and {U, }c1 be finite systems of closed analytic domains in X
and U with U = U,c1U, and f(U,) C X,. If the statement is true for all the induced
morphisms f, . U, — X,, then it is also true for f.

Proof . (1) is trivial.

(ii) By (i) and Step 2, we may assume that X is compact and X, = X for
all ¢ € I. It follows also that the statement is true for all the induced morphisms
fo, 1 U,NU, — X. Let e, and ¢, ¢ be the elements of &(U,) and €U, NU,) for the
morphisms f, and f,;. We claim that the statement is true for g = inf{Z,4,%,,0}.
where &, is the extension of €, to U (as in Step 2). Indeed, let ¢ < £¢, and let
6, and §,;, be the elements of €(X) which correspond to the pairs (f1,6|U) and
(fL],slU nu )» where 5}U is the restriction of £ to U, (defined in the evident way).

z 7 3
Suppose we are given a cartesian diagram (*) and a morphism ¥ : ¥ — X with
d(p,0) < 6 := inf{éi.ﬁ”}‘ Then (x) induces diagrams (x,) and (x,,) with (f,,¥,, V})
and (f,,, 1., ViNV)), respectively, instead of (f, 1>, V). By the assumptions, there exist
unique morphisms ¢} : V, — U, and w;] VNV, = U, NU, with d(v,, ;) < e‘U
and d(y,,9;,) < a]U . for which the corresponding diagrams (%) and (x],) are

15
cartesian. It follows that v, coincide with the restrictions of 1, and ¥ to V. NV},

and therefore the morphisms 1, are glued together to a morphism ¢’ : V. — U for
which d(,¢') < € and the diagram () is cartesian. 0

We can find finite systems of affinoid domains {X,},cy in X and {U,}.cr in U
such that U = U,¢ U, and, foreach i € I, U, is identified with an affinoid domain in an
affinoid space finite and étale over X,. Applying Lemma 7.5, we reduce the situation
to the case when f : U = M(B) — X = M(A) is a finite étale morphism of affinoid
spaces. Then f induces a finite étale morphism of affine schemes Spec(B) — Spec(.A).
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From the local description of étale morphisms of schemes it follows that we can find,
for each point u € U, affinoid neighborhoods U’ of u and X’ of f(u) such that f
induces a finite étale morphism U’ — X’ for which By = Ax/[T1/(P), where P is
a monic polynomial in Ax-[T]. Applying Step 1 and Lemma 7.5, we get the required
fact. L]

Proof of Theorem 7.1. First of all we verify the statement for ¢ = 0. Let o € F(X).

Then there is a finite quasi-étale covering {U, hox }er with compact U, and, for
each ¢, a commutative diagram

X — T
T.fl Thl
u, o5,

with quasi-étale h, and compact S, such that f(a) = p}(8,) for some 3, € F(S,).
We apply Key Lemma 7.2 to the morphisms f, : U, — X (for cartesian diagrams)
and h, : S, — T (for commutative diagram). Let ¢, € €(U,) and &, € &(S,) be
given by the theorem. Furthermore, applying Lemma 6.6(ii) to the compact morphism
i, 1 U, — S, and the element ¢, € &(S,), we get an element §, € €(U,). By Key
Lemma 7.2, we can find € € €(X) such that for any system of cartesian diagrams

y % X
19, £
v, &0

and any morphism ¢ : ¥ — X with d(yp,¥) < e there exists a unique system of
morphisms ¥, : V, — U, with d(¢,,v,) < inf{e,, §,} for which the diagrams

y =
1. 11
v, oy,

are also cartesian. We claim that ¢*(a) = ¥*(a) in F(Y"). Indeed, since {V, RN Yher
is a quasi-étale covering, it suffices to verify that ¢ (¢*(a)) = ¢/ (¥*(a)) for all
¢ € I. One has g} (¢* (@) = @I (fi () = @} (p(B.) = v}(3,), where v, = [, :
V; — S,. Similarly, one has g (¢*()) = v["(8,), where v/ = p3p, : V, — S,.
Therefore it suffices to verify that v, = v]. Since d(yp,,4,) < 8, then, by Lemma
6.6(ii), d(v,,v]) < ). Key Lemma 7.2 applied to the morphism h, : T, — S, and the
canonical morphism Y — T implies that v, = v].

To verify the statement for ¢ > 1, we use the modified Cech procedure for
calculation of the cohomology groups from [SGA4], Exp. V, §7. By loc. cit., 7.4.1,
the group H4(X, F') is isomorphic to the inductive limit of the cohomology groups
HY(K., F) over the category HR,,, of hypercoverings of X of type ¢+ 1 up to
homotopy.

Lemma 7.6. The family of the hypercoverings K., such that all the components K.,
n > 0, are representable by compact analytic spaces quasi-étale over X, is cofinal in
HR

2222g4+10

Proof . Let L. be a hypercovering of X from HR_,,. We construct K. that refines L.
inductively. First of all, since Ly — X is a quasi-étale covering and X is compact,
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we can find a quasi-étale covering Ky — X that refines Lo and such that Ky is
representable by an affinoid space quasi-étale over X. Suppose now that, for some
0 < n < ¢, we have already constructed a morphism K™ — i* L., where K™
is an object of A°[n]Xq (we use the notations from loc.cit.; X qg is the category
of presheaves of sets on Xy¢) such that all K;,"), 0 < p < n, are representable by
affinoid spaces quasi-étale over X and the canonical morphisms K ;'1)1 — (ip, K .‘”’)p,,],
0<p<n-—1,and K(()") — X are quasi-étale coverings. The morphism K™ — i* L.
induces a morphism (i,,, K f"’),m — (cosky, (L. ))ns1- Consider the cartesian diagram
in Xga

Lpa —  (coskn(L)ns

1(7,1,+1 - (in*K-(n))nH
We remark that the category of compact analytic spaces quasi-étale over X admits
finite projective limits. In particular, (¢, K ")y Ly is representable by a compact an-
alytic space quasi-étale over X. Furthermore, since the upper arrow is a quasi-étale

covering, the lower arrow is a quasi-étale covering too. Therefore, we can find a
commutative diagram in X g

. (n)
K;H.l i (Zn*K-n )n+1

K7L+1

where K, is representable by an affinoid space quasi-étale over X and K, —
(brs K™ )net is a quasi-étale covering. We define an object K™Y e Acln + 11X g
by K™D = KiV for 0 < p < n and KD = K. In this way we get a morphism
KD | L., where K7V € A°[q+1]X g is such that all K{7*V,0 < p < g+1,
are representable by affinoid spaces quasi-étale over X and the canonical morphisms
K;ﬂl) — (ip, K'T*),01, 0 < p < ¢, and K" — X are quasi-étale coverings. This

morphism induces a morphism K. := qu*K,(q*“ — coskye (L)L, Tt remains to
note that all the components K, of K. are representable by compact analytic spaces
quasi-étale over X. J

Let K. be a hypercovering as in Lemma 7.6 such that « comes from the group
HYK.,F), ie, o comes from an element 3 € F(K,). By Key Lemma 7.2 and
the case ¢ = 0, we can find ¢ € &(X) such that for any pair of T-morphisms
@, %Y — X with d(p,9) < € there is a canonical isomorphism of hypercoverings
of Y, 0 : L = K xx, YSLY = K xx 4 Y with 3(8) = 0:(1;(8)), where
Pq LE;P) — K, and ¢, : Lf;/’) — K. It follows that p*(a) = ¥*() in HY(Y, F).
The theorem is proved. O

Corollary 7.7. Let T be an analytic space, and let F' be an étale abelian sheaf on
T. Then for any k-analytic space X over T and any element o € HI(X, F) there
exists € € &(X) such that, for any pair of proper T-morphisms of k-analytic spaces
@, Y — X with d(p,¥) < ¢, one has ¢*(a) = ¥*(a) in HI(Y, F).

Proof . By [Ber2], 5.2.8, one has
HI(X,F)= li_rg HIU,F),

Ir
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where U runs through compact analytic domains in X and I is the topological interior
of U in X. Suppose that & comes from an element 5 € HI(U, F) for some U. We
remark that, for any proper morphism ¢ : Y — X, »p~!({f) is the topological interior
of o NU) in Y ([Ber2], 1.5.5). Let ; € &(X) be defined by the triple (U0, ).
Then for any pair of proper morphisms ¢,¥ : ¥ — X with d(¢,9) < &; one has
@ ' (U) = ¥~ Y(U) and, by the above remark, ¢~ ') = ¥~ '(). Furthermore, by
[Ber2], 5.2.5, one has HE(U,F):>H‘1(U,jy(F’u)), where j is the open embedding
U — U. Let K. be a hypercovering of U as in Lemma 7.6 such that 3 comes from the
group Hq(K.,jg(F’u)), i.e., 3 comes from an element v € (j!(F|u))(Kq) C F(Ky).
By Key Lemma 7.2 and the case ¢ = O of Theorem 7.1, we can find ¢ < ¢ such
that for any pair of proper T-morphisms ¢, ¢ : Y — X with d(g, ) < ¢ there is a
canonical isomorphism 6. : L¥ =K XX,SDY:»L@) = K. xx 4 Y of hypercoverings
of V = o~ (U) = ¢ '(U) with @}(7) = 653 () in F(LY) (@, and ¢, are the
morphisms L\ — K, and Lf;/’) — K, respectively). Since V := o™ '(U) = ¢*U),
then the latter equality is in fact an equality in the subgroup (j{(F }u))(L(f)), where
7’ is the open embedding V < V. It follows that ¢*(3) = ¥*(3) in HI(V, F), and
therefore ¢*(a) = ¢" () in HI(Y, F). O

Corollary 7.8. Let a k-analytic group G act on a k-analytic space X, and let A be a
discrete Gal(k® [ k)-module. Then the cohomology groups HI(X, A) (resp. H1(X, A))
are discrete G(k) (resp. G(k) x Gal(k® /k)) modules. O

Remark 7.9. (i) The fact that H;?(Y7 F) are discrete Gal(k*®/k)-modules for arbitrary
étale abelian sheaves F' on X follows from {Ber2], 5.3.5.

(ii) Given an analytic space X and an abelian quasi-étale sheaf F' on X, one can
endow the cohomology groups H9(X, F) with the topology with respect to which a
basis of open subgroups is formed by the kernels of the homomorphisms H7(X, F) —
HY(U, F), where U runs through compact analytic domains in X. From Theorem 7.1
it follows that in the situation of Corollary 7.8 the group G(k) (resp. G(k)x Gal(k*/k))
acts continuously on the cohomology groups HI(X, A) (resp. H1(X, A)).

(iii) Using the same reasoning as in the proof of Theorem 7.1 and Corollary 7.7,
one can prove the following fact. Let F' be an étale abelian sheaf on an analytic space
T, and let X and Y be analytic spaces over 7. Then for any element o« € H(Y, I)
and any finite flat 7-morphism ¢ : Y — X there exists ¢ € €(X) such that, for any
finite flat T-morphism ¢ : ¥ — X with d(p,¢) < €, one has Tr () = Try(a) in
HYX,F).

8. The action of the set of morphisms of formal schemes on vanishing cycles

Let k be a quasicomplete field with nontrivial valuation, and let a be a fixed non-
zero element of the maximal ideal £°° of the ring of integers k°. All the schemes
considered below are assumed to be finitely presented over k°. We fix such a scheme
T (for example, 7 = Spec(k®)), and let F be an étale abelian torsion sheaf on 7.
From Comparison Theorem 5.1 it follows that if X and Y are schemes over 7, then
any morphism of formal schemes ¢ : YV — X over 7 induces homomorphisms of
sheaves on Y, and Vs, respectively,
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0, F) : 930" (R1ju(F| y, ) —— " (R1j(F|, )

Oip, ) 2 o3 (RI(F |, ) — ROy (F] ), )

For a prime integer [, we set s;(k) = dimg, (|k*|/|k*]).

Theorem 8.1. Let F be a constructible sheaf on T, with torsion orders prime to
char(k) and suppose that s;(k) < oo for each prime | dividing a torsion order of F.
Given X, where X is a scheme over T, there extcts n > 1 such that, for any scheme

Y over T and any pair of T-morphisms 0,1 : Y — X that coincide modulo a”, one
has 0%, F) =090y, F) for all ¢ > 0.

Proof . First of all we verify that the sheaves considered are constructible.

Lemma 8.2. Let [ be a prime integer with | & char(%) and si(k) < oc. Then for
any constructible l-torsion sheaf G on X, the sheaves t*(1R9§.G) are constructible and
equal to zero for ¢ > si(k) +2dim(&).

Proof . By Deligne’s Theorem 3.2 from [SGA4%], Th. finitude, the vanishing cycles
sheaves R7W,(G) are constructible. (In the proof of Deligne’s Theorem one assumed
that k° is a discrete valuation ring, but the proof works for arbitrary £°.) It is clear
that R, (G) = 0 for g > 2dim(X;). Let I be the inertia group of k. Then there is a
spectral sequence HP(I, RW,(G)) = i *(Rr+e 7.G), where 7 : X5 — X, and therefore
it suffices to show that the sheaves HP(I, R?W,(G)) are constructlble and are equal to
zero for p > s = s;(k). Let ) be the minimal closed invariant subgroup of I such that
M =1/Q is a pro-I-group. Then the indices of all open subgroups of () are prime to
and M—NéZf (see [Ber2], 2.4.4). It follows that HP(J, R1¥,(G)) = HP(M, R”%(Q)Q).
Thus, our statement is reduced to the verification of the following simple fact. Let
G be a constructible sheaf (on a scheme) endowed with a continuous action of the
group MZ?. Then all the groups HP(M, G) are constructible and are equal to zero
for p > s. By induction, it qufﬁcee to consider the case s = 1. Let ¢ be a generator of
Z;. Then H°(Z;,6) = Ker(¢ T Q) HYZ;,G) = Coker(G ! G) and HP(Z,,G) =

for p > 1. O

We fix a functor 4, — if from the category of schemes étale over X, to the

category of formal schemes étale over X which is inverse to the functor from Lemma
2.1.

Corollary 8.3. In the situation of Lemma 8.2 suppose that the residue field k is
separably closed. Then for any étale morphism of finite type U, — X, the groups
H‘l(il,,, Q) are finite.

Proof . By Comparison Theorem 5.1 and Corollary 4.2, there is a spectral sequence
EP? = HP(,,i*(R75,G)) = HP*9(4,,G). By Lemma 8.2 and [SGA4}], Th. fini-
tude, 1.10, the groups EJ'? are finite. The required statement follows. J

Lemma 84. Let X be a formal scheme finitely presented over k°. Then for any
€ € &(X,) there exists n > | such that, for any formal scheme ) locally finitely
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presented over k° and any pair of morphisms @, 1Y) — X that coincide modulo a™,
one has d(y, Yy) < €.

Proof . Suppose first that X = Spf(4), where A is topologically finitely presented over
EO, and let elements fy, ..., f,, be the images of the coordinate functions under some
surjective homomorphism E°{T| s 2 Tm} — A. By Corollary 6.3, we may assume
that ¢ is defined by the triple (X, {f.}, {t.}) for some ¢,,...,t,, > 0. We claim that
any n > 1 such that |a[™ < ¢, for all 1 <4 < m possesses the necessary property.
Indeed, let p,7 : 9 — X be a pair of morphisms that coincide modulo a™. We may
assume that Y = Spf(B), where B is topologically finitely presented over %°. Then
@*f. — " fi = a”g, for some g, € B. Since the image of B in B := B ®, k is
contained in B°, it follows that p(y} f, — ¥5 f) < la[” <1, | <i <m.

If X is arbitrary, we take a finite covering {X, },c; of X by open affine formal
subschemes of the above form. Then {X,,}.c; is a finite affinoid covering X,,. By
Proposition 6.1, we may assume that ¢ is the infimum of ¢, with s(e,) = {¥X, ,}. The
previous case applied to X, and ¢, gives integers n, > [, i € I. It is easy to see that

n = maxn, satisfies the necessary property. O
1€

We are now ready to prove the theorem. First of all, we can replace k by its

maximal unramified extension and assume that the residue field & is separably closed.
Let 0 < g < s(k) + 2dim(A7). Since the sheaf i*(qu*(f‘X )) is constructible
n

and is associated with the presheaf U, — Hq(LL,,,.%), we can find a finite étale

covering {l, s ELA X5} by separated schemes of finite type over k such that if G,
denotes the constant sheaf on 4, ; associated with the finite group H q(i,l,m,,%),
then the canonical homomorphism @, f,(G,) — i*(qu*(}'ixn)) is surjective. By
Theorem 7.1 and Lemma 8.4, we can find » > 1 such that, for each v and any
pair of morphisms of formal schemes ¢, v : 9§ — 4, that coincide modulo a”, the
homomorphisms H(4, ,, F ) — HUY,, .’7}) induced by ¢ and v coincide. We claim
that this n satisfies the required property (for the chosen g).

Indeed, let ¢,y : Yy - X bea pair of ?—morphisms that coincide modulo

a”. We set U, = Y x R 4, and denote by ¢, and g, the induced morphisms
¥, — 4, and Y, — I, respectively. Since ¢ and 9 coincide modulo a”, there
is a canonical isomorphism ‘II,,‘,,S(J/ X2 o U, ). By Lemma 2.1, it induces an

isomorphism 2,5 X%y #,. Let ¥, denote the composition of the latter isomor-
phism with the canonical morphism 5) X% w i, — Y,. Thus, we get two morphisms

@u, ¥, 1 Y, — U, that coincide modulo a™ and extend the morphisms ¢, 9 : j\) — /A?,

respectively. By our choice of n, the homomorphisms H q(ii,,,n,i-') — HI(B, 5. F)
induced by ¢, and 1, coincide. If H, denotes the constant sheaf on U, , associ-
ated with the group H9(%, ,,, F), then the latter means that the homomorphisms of
sheaves ¢}, ((G,) = ¥}, (G.) — H, induced by v, and 1, coincide. Furthermore, for
each v there is a commutative diagram
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PiEn@) = (@) — QU RIGAF ] D) = VLE RG], )

eu,«pl J{eu,d) 9q(<ﬁf)l J]eq(ww}—)
gur(M,) — i*(R1j.(F|}, )
where 9V,kp . ‘p:(fu'(gl/)) = gw(‘p;,sgr/) - gu!(HV) and eu,w : w:(fw(GV))

g} G.) — gu(H,). Since 8, , = 8,4 for all v, it follows that 09(p, F)
#4(+p, F). The theorem is proved.

Chion

Corollary 8.5, Let F be a constructible sheaf on T, with torsion orders prime to
char(k). Given X, where X is a scheme over T, there exists n > 1 such that, for any

scheme Y over T and any pair of ’?—morphisms 0 Y — X that coincide modulo
a”, one has 03, F) = 0%, F) for all ¢ > 0. O

For a scheme X" over 7, we denote by Q(z’? /’? ) the group of T -automorphisms
of X and by gn(/? /’?) its subgroup consisting of the automorphisms trivial modulo
a™. Furthermore, recall that a Z;-sheaf on a Noetherian scheme is a projective system
of étale constructible Z/l”"*'Z-modules Fm, m > 0, such that, for each m > 1,
the canonical homomorphism F,, — F,,- induces an isomorphism F,, ®zpimeiz

Z/ImZ> Fpy—y (see [SGA4%], Rapport, §2).

Theorem 8.6. Let F be a Z;-sheaf on T,, | # char(E), and suppose that si(k) < oc.

Given X , where X is a scheme over T, there exists n > | such that the group gn(ff / ’?)
acts trivially on all of the sheaves 1" (R, Fy,), ¢ > 0, m > 0.

Lemma 8.7. Let R be a commutative ring, A a commutative R-algebra complete in
the a-adic topology for some ideal a C A, G(A/ R) the group of the automorphisms o
of A over R with o(a) = a, G,,(A/R) the subgroup of automorphisms trivial modulo
a”. If a prime number | is invertible in A, then for any n > 2 (resp. n > 1 ifais
generated by elements of R) the group G, (A/ R) is uniquely l-divisible.

Proof . Let E be the ring of the endomorphisms ¢ of the R-module A with p(a™) C
a™ for all m > 0. For p # 0, let w(y) denote the maximal integer v such that p(a™) C
a™* for all m > 0. We also set w(0) = co. One has w(y + ) > inf{w(p), w()}
and w(py) > wlp) + w(z), ie., w is a filration on E. In particular, £, = {¢ €
E]w(w) > m} are two sided ideals in E. Since A is a-adic, the ring E is separated
and complete in the topology defined by the ideals E,,. It follows that Uy, = 1+ Ep,,
m > 1, are subgroups of E*. One has G,(A/R) C U,,— (resp. G,,(A/R) C Uy).

We claim that, for any n > 1, the group U, is uniquely [-divisible. Indeed, if
¢ € E,, then the series V1 + ¢ = ZZZO ((71) 7 is convergent in £, and therefore
U, is l-divisible. Suppose that (1 + @) = (I + ¢)' for some ¢ ¥ ¥ in E). Then
w(p) = w(p) and W — ¥) = G2 — @?) + ... + (@' ~ ¢'). For each i > 2, one
has w(y' — p*) > (i — Dw(p) + w(p — ) > wlp — ). The latter contradicts to the
above equality.

It remains to verify that if ¢ € U NG(A/R), then 7 := o € G(A/R), ie.,
7(ab) = T(a)T(b) for all a,b € A. If ¢ = 1 + ¢, where p € Ej, then the latter is
equivalent to the equality
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™ > (1) woan = > (D) (D e@en.
9=0 1,7=0

Since o™ (ab) = c™(a)o™(b), m > 0, then there are equalities

ki

*) > () #htanr = > (") (1) e@e .
q=0 0

7=

We introduce inductively by 7 > 0 polynomials f,, € Z[Xy,..., Xm; Y0, .., Yl
by the equalities

S ()= S (1) () 0

q=0 2,7=0

Then ¢™(ab) = fm(a,...,¢™(@),b,...,©"™(b)). Let B be the ring of polynomials
Z[%][XO, Xy,..., Yy, Y. ..} graduated by deg(X,) = deg(Y;) = 7. For a polynomial
f € B, let e(f) denote the minimal degree of a monomial that enters in f. For

example, e(f,) = m (since f,, =3 % Z;ZO_’ (T) (mj— Z) Xy Yo—y). Let B be

the completion lim B/b,,, where by, is the ideal {f € Ble(f) > m}. The equality

m
(?7) follows from the following equality in B

> (HaeS ()

q=0 2,7=0

Let p be a prime number diffelrent from l\, and let m be the integer with m{ = 1(mod p)
and 1 <m < p— 1. Then (I) = (T) (mod p) for all 0 <7 < p— 1, and therefore
the equality (?’) is congruent to the equality (') modulo the ideal generated by p and
b,.+1. Note that m > [ﬂ;ﬂ] and therefore m — oo when p — oo. It follows that (?')
is true. I

Proof of Theorem 8.6. There is an exact sequence of Z;-sheaves 0 — F' — F —
F'" — 0 such that [ F' = 0 for some v > 0 and F” is without torsion (see [SGA4%J,
Rapport, 2.8). It induces, for each m > 0, an exact sequence 0 — F, — F,, —
F!' — 0. We also remark that 7/, =, for m > v and that, for each m > 1, there
exists an exact sequence 0 — F/. | — F]! — F{' — 0. By Theorem 8.1, we can find
n > 1 such that the group Qn(é?/'?) acts trivially on all of the sheaves i*(R7j. F;,),
0 < m < v, and ©*(R95,F]). By Lemma 8.7, this group is uniquely I-divisible. It
follows that it acts triviaily on all of the sheaves i*(R%j.F), ¢ > 0, m > 0. ]

Corollary 8.8. Let F be a Z;-sheaf on T,, | # char(%). Given X , where X is a scheme

over T, there exists n > 1 such that the group Qn(i’ / ’?) acts trivially on all of the
sheaves RV, (F ), ¢ >0, m > 0. 0
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