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I n t r o d u c t i o n  

Let k be a non-Archimedean field, and let X be a formal scheme locally finitely 
presented over the ring of integers k ~ (see w In this work we construct and study 
the vanishing cycles functor from the category of 6tale sheaves on the generic fibre 
X~ of ff (which is a k-analytic space) to the category of 6tale sheaves on the closed 
fibre 3~ of Y (which is a scheme over the residue field of k). We prove that if ff is 

the formal completion ~'  of a scheme X finitely presented over k ~ along the closed 

fibre, then the vanishing cycles sheaves of ~" are canonically isomorphic to those 
of P( (as defined in [SGA7], Exp. XIII). In particular, the vanishing cycles sheaves 

of A" depend only on ,~, and any morphism ~ : ~ -~ A' induces a homomorphism 
from the pullback of the vanishing cycles sheaves of A2 under ~ : y~ --~ X~ to 

those of Y. Furthermore, we prove that, for each ~', one can find a nontrivial ideal 

of k ~ such that if two morphisms ~, ~ : ~ ~ ,~ coincide modulo this ideal, then the 
homomorphisms between the vanishing cycles sheaves induced by ~ and g) coincide. 
These facts were conjectured by P. Deligne. 

In w we associate with a formal scheme Y locally finitely presented over k ~ 
a k-analytic space X,j (in the sense of [Berl] and [Ber2]). In w we find that the 
morphism ~n : ~,~ --~ 3Z,7, which is induced by an 6tale morphism of formal schemes 

: ~ ---, 3L possesses a certain property. Morphisms of k-analytic spaces with this 
property are called quasi-6tale, and they give rise to a quasi-6tale site Xq~t of a k- 
analytic space X.  There is a canonical morphism of sites Xq~t ~ X~t, where X~t is 
the 6tale site introduced in [Ber2]. We show that the inverse image functor identifies 
the category of 6tale sheaves X ~  with a full subcategory of Xq~t and preserves the 
cohomology groups. In w the quasi-6tale topology is used to define, for a formal 
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scheme X, a left exact functor O : ~ 6 t  --~ ~ 6 t  (the analog of the specialization 
functor i ' j ,  for schemes) and the vanishing cycles functor ~v,~ : ~ t  -~ ~e t .  It 
is worthwhile to note that a spectral sequence connecting the &ale cohomology of 
the generic fibre with that of the closed fibre exists for arbitrary formal schemes in 
contrast to the algebraic geometry situation when the similar spectral sequence exists 
only for proper schemes. At the end of w we prove that the formation of the vanishing 
cycles sheaves is compatible with extensions of the ground field. In w we prove our 
first main result. It is a comparison theorem which states that if 2( is a scheme locally 
finitely presented over k ~ .7- is an 6tale abelian torsion sheaf on the generic fibre A', 7 

of A', and ,~ is the induced 6tale sheaf on the generic fibre X,~ of ,Y, then there are 

canonical isomorphisms i*(Rqj .5~)~RqO(f f  -) and t~q~(Yr)U~Rqqz,7(ff:). At the end 
of w we use this result to calculate the vanishing cycles sheaves for smooth formal 
schemes and to show that the cohomology groups for a certain class of compact k- 
analytic spaces are finite. In w we endow with a uniform space structure (see [Kel], 
Ch. 6) the sets of morphisms of analytic spaces Mor(Y, X). In a sense this structure 
depends uniformly on X. In w we prove our second main result. Its particular case 
states the following. Let X = A4(A) be a k-affinoid space, and let f l , . . . ,  f,~ be 
a k-affinoid generating system of elements of A. Then for any discrete Gal(k~/k) - 
module A and any element a E H q ( x ,  A )  there exist t ~ , . . . , t n  > 0 such that, for 
any pair of morphisms ~;, ~b : Y ---, X over k with max I(~;*f, - ~r < t~, 

y E Y  ' - -  " 

1 < i < n, one has ~*(c0 = '~b*(a) in Hq(Y, A). The essential ingredient of the proof 
is a generalization of the classical Krasner's Lemma. The result implies, in particular, 
the following fact. If a k-analytic group G acts on a k-analytic space X,  then the 
6tale cohomology groups of X with compact support are discrete G(k)-modules. In 
w we apply the main result from w to the study of the action of the set of morphisms 
between the formal completions of schemes on their vanishing cycles sheaves. 

In our paper [Ber3], we develop a formalism of vanishing cycles for non- 
Archimedean analytic spaces, which is an analog of the classical formalism over 
C from [SGA7], Exp. XIV, and we apply Theorem 7.1 of the present paper to estab- 
lish results, similar to those established here, for the action of the set of morphisms 
between the formal completions of schemes (of finite type over an equicharacteristic 
Henselian discrete valuation ring) along closed points of the closed fibres on the stalks 
of the vanishing cycles sheaves at these points. 

This work arose, on one hand, from a suggestion of V. Drinfeld to construct a 
vanishing cycles functor for formal schemes and, on the other hand, from a suggestion 
of P. Deligne to apply the 6tale cohomology theory for non-Archimedean analytic 
spaces developed in [Ber2] to his conjecture. I am very grateful to them for this. 1 
would also like to thank V. Hinich for useful discussions. 

1. Analytic spaces associated with formal schemes 

Let k be a non-Archimedean field, k ~ the ring of integers of k, k ~176 the maximal 

ideal of k ~ k = k ~  ~176 the residue field of k. If the valuation on k is nontrivial, 

we fix a non-zero element a E k ~176 If the valuation on k is trivial (then k = k ~ = k 
and k ~176 = 0), we set a = O. Recall that the ring of restricted power series over 
k ~ in n variables is the ring k~ = k ~  of the formal power series 
f = ~ ,  a , T  ~" over k ~ such that for any m _> 0 the number of u 's  with a ~ ~'a, is 
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finite. One has k~  = li_m k~ (The ring k~ and the a-adic topology on 

it don' t  depend on the choice of  a.) We remark that the Artin-Rees Lemma holds for 
any finitely generated ideal a C k~ i.e., there exists no such that aC~a'~k~ C 
a'~-'~0a for all n > no. It follows that the quotient ring k ~  is separated and 
complete in the a-adic topology. A topologically finitely presented ring over k ~ is a 
ring of the form k ~  for some finitely generated ideal a C k~ We remark 
that if A is such a ring, then the quotient ring A / k ~ 1 7 6  is finitely generated over the 

field k. It follows that any open subset of the formal scheme Spf(A) is a finite union 
of open affine formal subschemes of the form Spf(A{f}). f c A. 

Let k~ denote the category of formal schemes locally finitely presented 
over 1{ ~ i.e., the formal schemes over Spf(k ~ that are locally isomorphic to a formal 
scheme of the form Spf(A), where A is topologically finitely presented over k ~ A 
formal scheme from k~ which is a finite union of open affine formal subschemes 
of the above form is said to be finitely presented over k ~ (If the valuation on k is 
trivial, then k~ coincides with the category of  schemes of locally finite type 
over k.) If 3[ E k~ then the ringed space (X, 02~/k~176 is a scheme of 

locally finite type over k. It is called the closed fibre of  3[ and is denoted by 3[~. 
We will define a functor k~ H k -An  that associates with a formal scheme 
3[ C k~  its generic fibre 3[,7 E k-An,  and we will construct a reduction map 
7r : 3[v ~ 3[.~" 

If  3[ = Spf(A), where A is topologically finitely presented over k ~ then A = 
A ~)~:o k is a (strictly) k-affinoid algebra and 3[v is the k-affinoid space M ( A ) .  (It 
is clear that 3[ v-~ 3[,~ is a functor.) The image of A in ,,4 is contained in A ~ = 
{ f  E A l l f ( x )  I < 1 for all x E M ( A ) } ,  and therefore a point x E X, 1 gives rise to 

a character Xx : A := A / k  ~176 -~ ~(~)-  The kernel of ~:~. (it is a prime ideal of 

A) is, by definition, the point 7r(x) E 3[~ = Spec(A). The composition of 7r with the 
canonical map 3[~ --* Spec(J~) is the reduction map 7r' : 3[ = M( .A)  ~ Spec(Jt) from 

IBerl] ,  ~2.4. (Recall that A = A ~  ~176 where A ~176 = { f  E Allf(z)l < 1 for all x E 
AA(A)}.) By [Berll ,  2.4.4(i), the map 7r' is surjective. We take an epimorphism 

k ~  --+ A. It induces epimorphisms k iT]  ~ A and k{T}  ~ A. By [BGR], 

6.3.5/1, the epimorphism k{T}  --~ A induces a finite homomorphism kiT1 --+ Jl. It is 

clear that the latter homomorphism coincides with the composition k[T] ---* A -+ Jl. 
It follows that the homomorphism A --~ A is finite, and therefore the image of 7r is a 
closed subset of  3[~. Furthermore, if 32 is a closed subset of 3[~, then it is defined by an 

ideal ( f i , . - .  ,f,~) for some fi  E A and 7 r - ' ( y )  = {x c 3[,~llf.,.(x)l < 1, 1 < i < n}. 
Let 32 be an open subset of 3[~, and let ~ be the open formal subscheme of 3[ with 

the underlying space y .  If 32= Spec(A I f ] ) f o r  some . r E  A, then ~ =  Spf(A/f}) ,  

,'r J(32) = {,r E 3[,;ll.f(x)l -- 1} (it is a rational domain in 3[,;) and ~ ; ~ T r - I ( y ) .  
It follows that 7r 1(32) is always a closed analytic domain in 3[,7 for an arbitrary 3;. 
Suppose that the formal scheme ~ is affine, and let {~;}~et  be a finite covering of 

with ~ = Spf(A{f,}), f ;  E A. Then the canonical morphism 20 --~ 3[ identifies 

with 7r-'(32;), where 32~= Spec(A [~-1), and therefore, by Tate's Acyclicity 

Theorem, it identifies 20~ with an affinoid domain in 3[,i which evidently coincides 

with 7r- 1 (32). 
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If3C is arbitrary, we fix a locally finite covering {X~}~I  by open affine subschemes 
of  the form Spf(A), where A is topologically finitely presented over  k ~ Suppose first 
that 3E is separated. Then for any pair i, j E [ the intersection 37~j = 3~, N ~ is also 
of the same form, 2~.7,, 7 is an affinoid domain in X~,, 7, and the canonical  morphism 
3~ij,, --+ 3~,, 1 • 3~a,, 7 is a closed immersion. By [Ber2], 1.3.3, we can glue all 3~,,~ 
along 3~a,, ~, and we get a paracompact  separated k-analytic space ~ .  We remark 
that the correspondence 3~ ~-~ ff:,7 is a functor that extends the functor constructed for 
the affine formal schemes, and if 20 is an open formal  subscheme of 3~, then 20,7 is a 
closed analytic domain in 3C, 7. Furthermore,  the reduction maps ~ , , t  --+ ~ , ,  induce 
a reduction map rr : 3~,~ --+ Y:,. Finally, if ~ is arbitrary, then 3~, a = X, N 3E a are 
separated formal schemes, and ~*a,,J is a compact  analytic domain in the k-affinoid 
space 2~,,,~. Therefore we can glue all 3~,~ along X~a, ~ and get a paracompact  k- 
analytic space 3~ .  We remark that the correspondence 3~ ~ 3~, 7 is a fanctor  to the 
category of paracompact  strictly k-analytic spaces and this functor commutes  with 
fibre products. We remark also that if 3~ is finitely presented, then 3~,~ is compact.  
The reduction maps 3~,,~ --+ 5E,,.~ induce a reduction map :r : 3~,~ --+ 3~,. From the 
affine case it follows that the image of  rc is a closed subset of ~.~. Moreover,  if 3; is 
a closed subset of ~ ,  then 7 r - l ( y )  is an open subset of 3~,~. If  3; is an open subset 
of 3~.~, then r c - I ( y )  is a closed analytic domain in 3~  and, if 20 is the open formal 

subscheme of  3~ with the underlying space 3;, then ~ , ~ r c - ~ ( Y ) .  

For a morphism ~ : 20 --+ 5E in k ~  we denote by ~ ,  and ~2~ the induced 
morphisms 20,~ -+ 3~ and 20~ ---+ ~ ,  respectively. We remark that if ~ : 20 --+ 3~ is 
finite (resp. fiat finite), then the morphisms ~ ,  and ~o~ are also finite (resp. fiat finite). 

2. l~tale morphisms of formal schemes 

Let Y E k~ For n >_ 1, let ~, ,  denote the scheme (X, O3C/a '~Oy) .  (It is a 
scheme locally finitely presented over k~ A morphism of formal schemes over 
k ~ ~ : 20 --~ X, is said to be gtale if 2 0 E k~ and for all n _> 1 the induced 
morphisms of  schemes qo,, : 20n -+ ~ n  are 6tale. The following two lemmas are 
consequences of  the local description of  6tale morphisms of schemes.  

Lemma 2.1. Let 2r E k~ Then the correspondence 20 ~ 90, induces an 
equivalence between the category of Jbrmal schemes dtale over X and the category of 
schemes dtale over 3Cs. 

Proof. It is c lear  that the functor is fully faithful. Therefore to show that it is essentially 
surjective, it suffices to construct  a lifting of  an 6tale morphism y ---+ 5E, locally. Thus, 
we may assume that X = Spf(A), where  A is topologically finitely presented over 
k ~ and, by the local description of 6tale morphisms of schemes, that y = Spec(C-~), 

where  C = 74[TI/(P), P is a monic polynomial ,  f is an element  of C such that 

the image of  the derivative P '  in C~ is invertible. Let P be a monic polynomial  

in A[T] whose image in A[T]  is F'. Then  B := A[T]/(P)Z+A{T}/(P), i.e., B is 

topologically finitely presented over k ~ and is free of finite rank over  A, and B ~ C .  

Furthermore,  let f be an e lement  of B whose image in B is f ,  and let 20 = Spf(B{f}) .  

Since B{fl~+B~I,  then y_7+20,~. Moreover,  since B { f } / a ~ B { f } ~ ( B / a ~ B ) f ,  then the 
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image of the derivative P '  in B{f}/~zrzt3{$} is invertible, and therefore the morphism 
20~ ~ 32n is 6tale. It follows that the morphism 20 --~ 3? is 6tale. [ ]  

The  statement of L e m m a  2.1 for the class of  f inite 6tale morphisms follows from 
[SGA1], Exp. I, 8.4. (Of  course, the above proof  uses the argument f rom [SGA1].) 

L e m m a  2.2. Let  g) : 20 ---+ 32 be an (tale morphism. Then cp,/(20r~ ) = rr-1(g~s(20s)). In 
particular, g~,l(20v) is a closed analytic domain in ~v.  

P r o o f .  Since the statement is true when 20 is an open formal subscheme of  YT, we 
can shrink 31 and 23 and assume that 32 = Spf(A), where A is topologically finitely 
presented over k ~ and 20 = Spf(Bt$}) ,  where B is a finite free A-module  and f C B.  
Let T ~ + g j T  n - t  + . . .  +9.~ be the characteristic polynomial  of f over A. It is easy to 
see that ~.+(20.+) = U ~ t { x  E s~.+19~(x) : / 0 }  and ~pv(~2),~) = W~L~{a" E X,~IIg+(x) I = 1}. 
This gives the required equality. [ ]  

Proposition 2.3. Let ~ : 20 -+ ~ be an (tale morphism. Then f o r  every point  y E 90,7 
there exist affinoid domains V l , . . . ,  Vr~ C 20+1 such that I/j U. . . U V,+ is a neighborhood 
o f  y and each ~ can be identified with an affinoid domain in a k-analytic space (tale 
over 32rl. 

P r o o f .  Consider first the case when W is of the form 2~ = Spf(B{$}) ~ 3? = Spf(A), 

where B = A [ T ] / ( P ) ~ A { T } / ( P ) ,  P is a monic polynomial  and f is an element  of 

B such that the image of P '  in B-~ = (_A[T]/( .P)~ is invertible. If  9 is the image 

of P '  in B, then the latter implies that 19(z)] = I for all z E 20~. Furthermore, the 
formal scheme 3 = Spf(B)  is finite flat over X, and the k-analytic space 3~ is finite 
fiat over  X, I. One has 20,7 = {z E s = 1}. The morphism 3~/ ~ ~,1 is 6tale 
at a point z E 3,/ if and only if 9(z) ~ O. Since 19(z) I = 1 for all z E 20,1' then 

ffAo C {z E 3~119(z) ~' 0}, i.e., 20,~ can be identified with an affinoid domain in a 
k-analytic space 6tale over  32,r 

Consider now the general case. We can find open affine formal subschemes 
f f l , . - .  ,Y,~ C ~ and 201, .- .  ,20,~ C 2) such that ,z/ E 201.,~ N . . .  n 20,,,,~, 20~,~, u 
. . .  u 20,~,,~ is a neighborhood of y and ~p induces 6tale morphisms 20, --+ 32+ of the 
above form. By the first case, each 20+,,7 can be identified with an affinoid domain 
in a k-analytic space 6tale over  ~+,,> From [Bet2], 3.4.2, it follows that we can find, 
for each i, an affinoid neighborhood V+ of 9 in 20.,. 7 such that ~ can be identified 
with an aMnoid domain in a Manatytic space 6tale over Y,~. Since V~ U . . .  U V,~ is a 
neighborhood of  y in 20.~, the required statement tbllows. [ ]  

3. Quasi-~tale topology on an analytic space 

Let ~ : Y --+ X be a morphism of k-analytic spaces. We say that ~ is quasi-( tale if for 
every point y E Y there exist affinoid domains VI . . . .  , V,, C Y such that Vl U . . .  U V,+ 
is a neighborhood of y and each V, can be identified with an affinoid domain in 
a k-analytic space 6tale over X .  For example, 6tale morphisms and the canonical  
embeddings of  analytic domains in a k-analytic space are quasi-6tale. Furthermore, 
by Proposit ion 2.3, if 20 ~ Y is an 6tale morphism of formal schemes in k~ 
then the induced morphism of  their generic fibres 207 --+ Y,7 is quasi-6tale. We remark 
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that if a morphism ~9 : Y ---+ X is quasi-6tale, then for every point y c Y there exist 
affinoid domains V i , . . . ,  V~ C Y such that V1 tO . . .  U V~ is a neighborhood of y and 
each ~ can be identified over X with an affinoid domain in a paracompact le-analytic 
space separated and 6tale over X.  

Lemrna 3.1. (i) Quasi-(tale morphisms are preserved under compositions, under any 
base change functor and under any ground field extension functor. 

(ii) I f  Y and Z are quasi-dtale over X ,  then any X-morphism Z --+ Y is quasi- 
dtale. 

Proof. All the statements easily follow from the corresponding properties of 6tale 
morphisms and Theorem 3.4.1 from [Ber2]. [] 

For a le-analytic space X ,  let Q6t(X) denote the category of quasi-6tale morphisms 
U -+ X.  The quasi-dtale topology on X is the Grothendieck topology on the category 
Q6t(X) generated by the pretopology for which the set of coverings of (U --+ X )  c 

Qdt(X) is formed by the families {U~ ~ U}~ez such that each point of U has a 
neighborhood of the form f n ( � 8 9  U . . .  tO fi~(V~) for some affinoid domains Vl C 
U n , . . . ,  V,, C U~,~. (It is easy to verify that the latter really defines a pretopology on 
Qdt(X).) We denote by Xq6 t the site obtained in this way (the quasi-dtale site of X)  
and by Xq~t the category of sheaves of sets on Xq6 t (the quasi-dtale topos of X) .  It 
is clear that there is a morphism of sites p : Xqet --+ Xet. We remark that there is also 
a morphism of sites Xqet ---+ Xc;, where X c  is defined in [Ber2], w We are going 
to establish the relationship between the topoi X ~ t  and X ~  similar to that between 
the topoi X ~  and X -  established in [Ber2]. 

Recall ([God], w that a sheaf F on a topological space T is called soft if 
for any closed subset S C T the map F ( T )  --+ F ( S )  is surjective. If T is locally 
compact and paracompact, then F is soft if and only if the above map is surjective 
for any compact subset :_7 C T. We say that an 6tale abelian sheaf F on a le-analytic 
space X is soft if, for each point x E X,  F~ is a flabby Gn(x)-module and, for each 
paracompact U 6tale over X ,  the restriction of F to the usual topology ]U[ of U is 
a soft sheaf. For example, any injective sheaf on X is soft ([Ber2], 4.2.5). 

Lemma 3.2. Let F be an 6tale abelian soft sheaf on a le-analytic space X.  Then 
(i) i f  X is paracompact, then Hq(X,  F)  = O for q >_ 1; 
(ii) i f  ~p : Y --~ X is a morphism of analytic spaces over le, then the sheaf ~ * F  is 

soft in any of the following cases." 
(a) q~ is a quasi-dtale morphism," 
(b) qD is a quasi-immersion (see [Ber2], w 

(c) cp is the canonical morphism -X = X@~'3 --+ X .  

Here le a denotes the algebraic closure of le. If the valuation on le is nontrivial, 

then the separable closure le ~ of le is everywhere dense in le '~ (i.e., le ." = lea). 

Proof (i) Consider the spectral sequence E~ 'q = HP(IX[, Rqrr, F) ==:ee HP+q(x, F)  of 
the morphism of sites rr : X a  --+ [XI (see [Ber2l, w By [Ber2], 4.2.4, for a point 
x E X one has (Rqrr, F):r = Hq(G~(or), F~,) It follows that Rqrr, F = 0 for q _> 1, 
and therefore H q ( x ,  F) = Hq(Ix],  rr, F). The latter group is equal to zero for q _> 1 
because 7r, F is a soft sheaf on the paracompact space X. 

(ii) First of all, if y E Y and x = ~o(y), then in all the cases G~(y) is a closed 
subgroup of GT~(x), and therefore (c?*F) u = F,,. is a flabby G~r 
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To verify the statement in the cases (a) and (b), it suffices to show that the 
restriction of ~ * F  to IYI is a soft sheaf when  cy : V -~  X is a morphism of analytic 
spaces over k, Y is paracompact  and each point y c Y has a neighborhood of the 
form Vi U . . .  U V,,, where V~ are affinoid domains in Y, such that for each i there 
exists a quasi- immersion of  V~ in a paracompact  k-analytic space/g~ 6tale over  X.  
Since the property of a sheaf to be soft is a local one ([God], 11.3.4.1), we may assume 
that Y = V~ U . . .  U V,~, where �88 are as above. The restriction of F to ]/g,j is a soft 
sheaf. Since IVd is a closed subset of I/g~l, then, by [God], II.3.4.2, the restriction of 
~ * F  to [HI is a soft sheaf. It follows that the restriction of ~ * F  to lYl is a soft sheaf. 

Let Z ~ X be an 6tale morphism. Since the property of a sheaf  to be soft is local 
and Z can be defined locally over a finite separable extension of k, we may assume 
that Z = Y, where Y is a paracompact  k-analytic space 0tale over X .  Since the space 
Y is locally compact,  it suffices to verify that for any compact  subset ~ C Y the 
map F ( Y )  ~ F ( ~ ' )  is surjective. This is established in the proof  of Corollary 5.3.5 
from [Ber2]. 

T h e o r e m  3.3. Let f : U --+ X be a quasi-dtale morphism, and F an dtale shec~f on 
X.  Then 

(i) (f*F)(U)~+(#*F)(U), where f* is the inverse image functor XVet ~ U~t; 
(ii) ~f F is an abelian sheaf then Hq(u, f* F ) ~  Hq(Uqet, # * F) for all q > O. 

Proof. (i) The map  ( f*F)(U) ~ (#*F)(U) is a composi t ion of the evident  maps 

( f *F) (U) -~  (# f F) (U)~  ( ~ F)(U) Y ./qet# (t/,* F ) ( U )  , 

where # y  and .fqet are the morphisms of sites Yqe~ -~ Yet and Yq~t ~ Xqet, respectively. 
Thus, to prove (i), it suffices to verify the following two facts: 

(1) the presheaf  U ~ ( f*F)(U) is a sheaf  on Xqet; 

(2) for  any (U  - ~ f  X )  E Q6t(X),  there is a covering {U~ ~ U}~cj in Xqet such 

that ((fgO*F)(U~)~(#*F)(U,)) for all i E I .  

(1) Let  {U~ ~ U}~cl be a covering in Xqe~. We have to verify that there is an 
exact sequence 

(*) ( f*F)(U) ~ I - I ( f ;  F)(U~) ~ +  IVl(f,*~F)(U,,) 

where f~ and f~j are the morphisms U, --* U --, X and U,j := U, x t7 U~ ~ U -+ X,  
respectively. Consider  first the case when U is k-affinoid. In this case we can replace 
the covering by a finite ref inement  and assume that each U~ is k-affinoid and can be 
identified with an affinoid domain in a k-analytic space g~ separated and 6tale over 
U. If/g,  are arbitrary open neighborhoods of U~ in V~, then {/g, ---+ U}~<I is a finite 
~tale covering of U, and therefore there is an exact sequence 

(**) ( f*F)(U) ~ ~ ( . f *  Fl(Lt~) - ~  1-I(f*F)(/g~j) 

where /g~a = b/~ x u  b/a. By [Ber2], g4.3, one has ( f[F)(U,)  = l im(. f*F)( /g0 and 

(f,*~F)(U,j) = l im(f*F)( /g ,3)  when all g/~ tend to U,. Hence, the sequence ( . )  being 

a filtered inductive limit of  the exact sequences (**) is exact. 
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By the first case and the fact that a basis of topology of a k-analytic space is 
formed by open paracompact sets, it remains to verify the exactness of (*) when U 
is paracompact and (U~}~c1 is a locally finite covering of U by affinoid domains. In 
this case the exactness of (*) follows from [Ber2], w and [God], II.1.3.1. 

Lemma 3.4. Let ~ : Y -+ X be an ~tale morphism with Hausdorff X ,  and let S be a 
compact subset of Y.  Suppose that ~ is injective on ~ and, .for each point y C S,  one 
has 7-/(~(y))~7-/(y). Then there is an open neighborhood ); of S such that ~ induces 
an isomorphism ); Z+~O; ). 

Proof .  By Theorem 3.4.1 from [Ber2], T is a local isomorphism at every point 
y c S. Therefore we can shrink Y and assume that ~ is a local isomorphism at all 
points V. In particular, it suffices to find an open neighborhood V of Z' such that 

is injective on );. One has X C 1;1 U . . .  U );,~, where V~ and ~();.~) are open and 
);~-%~();~). By induction, to construct ); it suffices to consider the case n = 2. Since 
X is Hausdorff, then the image of X in X x X is closed. It follows that the image 
of Y x x  Y in Y x Y is closed. Furthermore, since the map IY x YI --+ JYI x lYl is 
compact, then the image of IY x x  VI in [YI x IYI, that coincides with IYI Xlx I IYI, 
is closed. It follows that one can find open neighborhoods s C Wl C V1 and 
L'\);1 C 14;2 C );z such that I1/ViI x Iw21 has empty intersection with IYI • IYI. 
The open set ); = 1/Vi U ]/~2 U (Jill N );2) contains S and ~ is injective on );. E3 

(2) We remark that the sheaf # * F  is associated with the presheaf #PF for which 
(ItPF)(U) = lim F(Y) ,  where the limit is taken over all morphisms over X from U 

to k-analytic spaces 6tale over X.  Let (U ~ f  X )  E Qrt(X).  To prove (2), it siffices 
to show that ( f*F)(U)~(IzPF)(U) under the assumption that U is k-affinoid and is 
identified with an affinoid domain in a Hausdorff k-analytic space V 6tale over X.  
We know that ( f*F)(U) = l imF() ; ) ,  where ); runs through open neighborhoods of 

U in V. It suffices to show that any morphism over X from U to Y, which is 6tale 
over X,  extends to a morphism over X from an open neighborhood of U in V to Y. 

For this we remark that the morphism U ~ Y • x V P ~  V satisfies the conditions 
of Lemma 3.4. Therefore there exists an open neighborhood ]/V of U in Y •  V for 
which ~/V~V := prO/V). It follows that the morphism U ---, Y extends to a morphism 
V -~ Y over X. 

(ii) Since an open covering of U is a covering in the 6tale and the quasi-6tale 
topologies, then the Leray spectral sequences generated by it in the both topologies 
show that it suffices to prove the statement for sufficiently small U. In particular, we 
may assume that U is paracompact. Furthermore, consider a locally finite covering 
of U by affinoid domains. It is a covering of U in the quasi-6tale topology, and 
therefore it induces a Leray spectral sequence which is convergent to H*(Uq~t, #*F). 
By IBer2], 4.3.7, it induces also a similar Leray spectral sequence which is convergent 
to H*(U, f ' F ) .  Therefore it suffices to prove the statement when U is k-affinoid and 
can be identified with an affinoid domain in a paracompact k-analytic space V 6tale 
over X. Finally, by (i), the statement is true for q -- 0. Therefore, by Lemma 3.2, 
it suffices to show that if F is in]ective, then Hq(Uq6t,/~*F) = 0 for all q > 1. We 
remark that any quasi-6tale covering of U can be refined to a finite covering of the 
form/.g = {U~ ---+ U } ~ I ,  where each U, is k-affinoid and can be identified with an 
affinoid domain in a paracompact k-analytic space 17/ 6tale over X.  It follows that it 
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suffices to show that the 12ech cohomology groups f/q(b/, J/*F) associated with such 
a covering are equal to zero for all q _> 1. These groups are the cohomology groups 
of  the (~ech complex C ( H , / z ' F )  associated with H. If  12~ are open neighborhoods 
of  U~ in V,,, then shrinking V we may assume that V = {12~ ~ V}~ei is an &ale 
covering of  V. The sheaf F l y  is injective, and therefore the 12ech complex C ( V ,  F )  
associated with the covering V is exact. Since the complex C ( H ,  It*F) is a filtered 
inductive limit of the complexes C ( V ,  F )  (when all H~ tend to U~), it follows that 
the complex C(H,  tz*F) is exact. The theorem is proved. 

Corol la ry  3.5. For any F C X~,  one has F ~ F , t t * F .  In particular, the functor 
t~* : X ~  --~ X ~ t  is.fully faithful. [] 

For a morphism f : Y --+ X and an 6tale (resp. 6tale abelian) sheaf F on X we 
use the notation F ( Y )  (rasp. Hq(Y, F)  ) instead of  ( f*F) (Y )  (resp. Hq(Y~ f 'F) ) .  
The following is a generalization of  the Leray spectral sequence 4.3.7 from lBer2] 
(which was used in the proof  of  the Theorem 3.3). 

Corol la ry  3.6. For an dtale abelian sheaf F on X and q > O, let ~q(F)  denote the 
presheaf V ~ Hq( v, F) on Xq6 t. Then for any quasi-dtale covering V = { V~ ~ X }~c1 
there is a spectral sequence t3~ 'q = [tP(V, 7-[q(F)) ~ HP+q(x, F)  . [] 

The quasi-6tale cohomology groups of a quasi-6tale abelian sheaf F will be de- 
noted by H q ( x ,  F). Due to Theorem 3.3, this is consistent with the notation of  6tale 
cohomology groups if F comes from an 6tale sheaf. 

Coro l la ry  3.7. Let ~ : Y --+ X be a compact morphism, and let F be an dtale (resp. 
dtale abelian) sheaf on Y. Then # * ( ~ p . F ) ~ . ( # * F )  (resp. lz*(Rq)9. F) ~+ Rq~.(tl,*F), 
q>O).  

Proof Let f : U ---+ X be a quasi-6tale morphism. By Theorem 3.3(i), ( # * ~ . F ) ( U )  

= (f*qo.F)(U). Since ~ is compact,  then (f*~.F)(U)~+(~'.f~*F)(U), where ~p' and 
f '  are the induced morphisms Y x x  U --+ U and Y •  U ~ Y. Therefore, we 
get ( # * ~ . F ) ( U ) Z ( f ' * F ) ( Y  Xx U)~(t~*F)(Y x x  U) = (~.IL*F)(U). To prove the 
statement, it suffices to verify that if F is abelian injective, then Rq~. (#*F)  = 0 for 
q > I. This follows from Theorem 3.3(ii). E] 

We note that the above statement is not true without the assumption that the 
morphism is compact, lndeed, let j be the open immersion D = D(0, 1) ~ E = 
E(0,  1) and let F be a non-zero constant sheaf on D. Then the restriction of  l**(j.F) 
to the annulus A = E \ D  is a non-zero sheaf but the restriction of  j .(l~*F) to A is 
zero. 

4. The vanishing cycles functor 

Let 3[ C k~ We fix a functor g).~ ~ 2) from the category of  schemes 6tale over 
32, to the category of  formal schemes 6tale over  Y which is inverse to the functor 
from Lemma 2.1. By Lemma 2.2 and Proposition 2.3, the composition of  the functor 
~.~ ~-, 2) with the functor 2) ~ 2), 7 induces a morphism of  sites u : .t2~ t --~ Y~t.  We 
get a left exact functor 
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(The similar functor for a bigger field K will be denoted by OK.) 

Proposition 4.1. Let F be an (tale sheaf on 9~,. 
(i) l f  ~.~ is (tale over ~ ,  then O(F)(~,~) = f ( ~ o ) .  
(ii) If  F is an abel(an sheaf then RqO(F) is associated with the presheaf ~s  ~-+ 

Hq(~,1, F). 
(iii) l f  F is a soft abel(an sheaf then the sheaf O(F) is flabby. 

Proof. (i) and (ii) follow directly from Lemma 3.2 and Theorem 3.3. To prove (iii), it 
suffices to verify that the 0ech cohomology groups f-/q(~.~, @(F)) of an 6tale covering 
~ = {~,,~ ~ 20,~}:~z in Y~.~t are trivial for q > 1. By (i), these groups coincide 

with the (~ech cohomology groups / / q ( ~ , , F ) ,  where ~ = {flOrin - -~  ~n}  ~U is 
the quasi-dtale covering of 20,~ induced by ~.~. From Corollary 3.6 and Lemma 3.2 

it follows that Hq(~3,~, F)-%Hq(2on , F). The latter group is trivial for q >_ 1, by the 
same Lemma 3.2. [] 

Corollary 4.2. (i) For an gtale morphism fO -~ 2~ in k ~ f sch and F E S(~,),  one 

has RqO(F) 29 2+RqO(Flfo ), q >_ O. 

(ii) For a morphism ~ : fO --* ~ in k~ and F ~ D+(2~r~), one has 

R@(R~, 7. F )&R~.~. ( R O ( F ) )  . 

(iii) For 3E C k~ and F E S(Xn), there is a spectral sequence 

E~ 'q = HP(Y.~, RqO(F))  ~ HP+q(3~n, F) . 

For 3[ C k ~  let X.v (resp. ff~) denote the closed (resp. generic) fibre of the 

formal scheme ~ := ~2~:o (s176 over (k%) ~ One has ~,v = 3:~ | k-" and 3~ = 5 ~ k  '%. 
The vanishing o, clesfunctor L/' n : Ne t  ~ :k~a is defined by ~ , (F )  = O ~ ( F ) ,  where 

F is the pullback of F on Yg. It is clear that there is a canonical action of the Galois 

group G v := G(b~/k) on ~,7(F) compatible with the action of G~ := G(k'~/k) on Y~. 
We shall see that this action is continuous (see [SGA7], Exp. XIII, w For this 
(mad for further use) we introduce the following notations. Let / (  be a field over k 
with a valuation that extends the valuation on k. We denote by 3~ K and YnK the 

closed and the generic fibres of the formal scheme XK := X| K ~ over R'~ (One 
has -~.~c = ~.~ | ~ and 3~,K = Y,@E.)  For an 6tale sheaf F on 3E v, let F~; denote 
the pullback of F on 3~, m . 

Lemma 4.3. For an (tale shee( F on Y',7, one has kv, l(F) = hmzK(OK(FK)), where 

t (  runs through finite extensions of k in k "~ and iK denotes the canonical morphism 
~:~ ---' Y'."tc" In particular, the action of  G ,  on LO,(F) is continuous. 

Proof.  Let ~.~ be a quasicompact scheme 6tale over ff:~. Then the k-analytic space 

~n  is compact and, by [Ber2], 5.3.4, one has F(TQ~@k s) = lim F(~, j@K) ,  where K 

runs through finite extensions of k in k '~. This gives the required statement because 
any scheme 6tale over if:, has an 6tale covering by schemes of the form ffO.~, where 
~ is affine and 6tale over s~.  
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Thus, ko, 7 is actually a functor from ~ e t  to the category of 6tale sheaves of sets 
on Y:+ endowed with a continuous action of G,  1 compatible with the action of G~ 
on 3[~ (G~-sheaves). Let Sa,7(3[~-) denote the category of 6tale abelian G,7-sheaves 
on 3[,v. Then ~P~/ defines a left exact functor S(3[~) --+ Sc.+~(3[~). Therefore it defines 
right exact functors lg, qqz,~ : S(3[,~) --+ Sa+7(3[~) and an exact functor between the 
corresponding derived categories R ~  : D+(3[~) -~ D~+~(3[x). 

L e m m a  4.4. Let F be an dtale abelian sheq[ on 3[~1" Then 

(i) tgq~P~7(F) = lira ~K(R 01c(~K)),  where K runs through finite extensions o f  k 

in k'+ ; 
(ii) if F is soft, then the sheaf f/~(F) is flabby. 

Proo f .  (i) follows from Lemma 4.3. (ii) follows from Lemma 3.2 and Proposit ion 
4.1(iii). O 

Corollary 4.5. 
has R q ~ , , ( F ) I ~ + ~ R q c z , , ( F I ~ , ) ,  q >_ O. 

(ii) For a morphism ~ : 2~ --+ 3[ in k ~  and F E D+(~7) ,  one has 

R~,~ ( R ~ .  F ) ~'Rq&r (RkO, 7 ( F ) ) .  

(iii) For 3[ C k~ and F C S(3[~), there is a spectral sequence 

E~ ''q = HP(3[:+, E[ql~rl( F)) ~ [su)+q( 3[yi, F ) .  

(i) For an dtale morphism 90 --+ 3[ in k ~ and F C S(3[,), one 

V2 

The fact we are going to establish allows one to use induction reasoning in the 
calculation of  the vanishing cycles sheaves. 

Let  3[ c k~ and suppose that the canonical morphism 3[ -~ Spf(k ~ goes 
through a morphism 2E --+ ff := Spf(k ~ {T}).  We remark that ff is the formal comple- 
tion of  the affine line over k ~ and q2,~ is the one dimensional  unit disc over k. Let 

be the maximal  point  of a2+~ (it corresponds to the norm of the k-affinoid algebra 
k{T}) .  Then the image s' of t under the reduction map rr : 5g, 7 --+ 5g~ is the generic 

point of 5g.,, r c - J ( J )  = {t} and ~(~--) = k(~') = ~:(T). We set 3[' = Y xq 2 Spf(7-l(t)~ 
This is a formal scheme in ~(O~ Let 3[.'~, and 3['~7' denote the closed and the 

generic fibres of  3[', and let O '  and ~P,7' denote the corresponding vanishing cycles 
functors. The canonical morphism of formal schemes A : 3[' --+ 3[ induces morphisms 
A+ : 2E'+,-%(3[+)j --+ 3[.~ and A v : 3[ ' , /~(3[ , ih  -+ 3[~, where (3[+),~, (resp. (3[+7)0 is the 
fibre of  the morphism 3[+ ~ if+ (resp. 3[~j ~ if,l) at the point  s '  (resp. t). The pullback 
of an 6tale sheaf  F on 3[~ with respect to A,/ is denoted by F ' .  Furthermore,  we fix 

an embedding  of  fields k ~ ~ ~ ( t )  +. It induces a morphism A:+ : 317---+(3[~)7r -+ 3[~. 

Proposition 4.6. (i) For any dtale abelian sheq[ F on 3[,7 and any q >_ O, there is a 
canonical isomorphism 

/~ ~ ( RqO( F )  )Z+ Rq(~)t ( F ') . 

(ii) For any dtale abelian torsion sheaf F on 3[,7 with torsion orders prime to 

p = char(E) and any q > O, there is a canonical isomorphism 
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where P = G(7~(tF /~(t)n~k +) (it is a pro-p-group). 
! 

Proo f .  (i) Since the morphism A,~ : 3~,/ --+ 3Z, 7 is a quasi-immersion, from Lemma 
3.2 it follows that if F is a soft sheaf, then the sheaf A~F is also soft. Therefore it 

suffices to verify that A~(O(F))Z~(O~(F'). Furthermore, since the statement is local 
with respect to Y, we may assume that 3~ is affine. We remark that any affine scheme 
6tale over 3~, is of the form ~ , ,  where 2) is an affine formal scheme 6tale over 
Y, and the sheaf A~(O(F)) is associated with the presheaf A~(O(F)) whose value at 
20~+, as above coincides with the inductive limit lim 69 (F) (~  xff.+ 11.~), where ll~ runs 

p t through open neighborhoods of the generic point s t in if'+. We have A+(O(F))(~+,) = 
l i m F ( ~  xSE,~ ~,7)" The k-analytic spaces 20~ xff, 7 11+ 7 are identified with analytic 

! 
domains in ~,~ and their intersection coincides with ~+7' = ( ~ ) t .  It follows that the 

set considered coincides with F ( ( ~ ) t )  = A~F(2)~/)* ' = O'(F')(2)~,). 
(ii) Let K be a Galois extension of k in k "+ that contains k "~, the maximal unrami- 

fled extension k. The residue field h" is a purely inseparable extension of k'+, and there 
is a surjective continuous homomorphism G ( K / k )  --+ G+. Therefore one can define, 
for 3: E k~ a left exact functor ko,~,/~ from ~ a  to the category of 6tale G ( K / k ) -  
sheaves on Y+K. It induces a left exact functor OV,K : S(X+/) --+ Sa(K/~)(3:+ K) 
and the right derived functors Rqqz,~,K : S(3~n) ~ SG(K/~)(3:~:). (For exam- 
ple, from Corollary 4.5(i) it follows that RqkP+~,~n~(F) coincides with the pullback 

of  t~q(9(F) on ~,s @ "~s.) For a closed subgroup I of G~ which is contained 
in the inertia group of k, the values of the right derived functors of the functor 
Sa+~(Y~) --~ Sa,~/t(3~v) : F ~-+ F I are denoted by 7-/(1, F). 

Lemma 4.7. For F ~ S(s~r~) there is a spectral sequence 

E;v',q ..,_ "}~(G(k'~ / K) ,  [{q~,7( F))  ~ [*K(RP+q~',,,K( F)  ) . 

P r o o f .  Let ~+ be a quasicompact scheme 6tale over X~. Then F(90~) c(k+/K) : 
F ( ~ ,  m) and, if F is injective, then F(20~) is a flabby G~7-module. The required fact 
follows. [] 

Corollary 4.8. Let I be the inertia group of  k. Then for  F ~ S(Y~ l) there is a spectral 
sequence E p'q = 7-(P(I, Rq~+I(F)) ==> ~(RP+q(:-)(F)) . 

First of all we verify that P is a pro-p-group. For this it suffices to show that 
~ ( t )  mr = 7-[(t)"rk mr, where k m~ and 7~(t) mr are the maximal moderately ramified 
extensions of k and 7-/(t), respectively. By [Bet2], 2.4.4, the group G(kmr/k  nr) (resp. 

G(']'[(t)mr/7-((t) nr) ) is isomorphic to Hom( ] V / ~ / t k * [ , k  "+*) (resp. Hom(x/[7-t(t)*]/ 

17-t(t)*l, 7-/(t--) '~*) ). Since [~(t)* I = Ik*[, then ~ = [x/T~, and the required fact 
follows. 

From (i) and Lemma 4.4(i) it follows that A*(Rqq~I(F))~z%,(Rqq]~/,K,(F')),  
w! i where K ~ = ~(t)n~k '+ and z K, is the canonical morphism X~, --+ 3f~:,. The required 

isomorphism is obtained from Lemma 4.7 using the facts that P is a pro-p-group and 
F is a torsion sheaf with torsion orders prime to p. 
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We will show now that the formation of  vanishing cycles is compatible with 
extensions of  the ground field. 

Let 2E E k~ Let K be a non-Archimedean field over k, and let ~:'TK denote 
the vanishing cycles functor corresponding to the formal schemes 32K over K ~ We 
fix an embedding of  fields k ~ ~ K ~ and denote by g the canonical morphism 

:E:~ K -~ 3C~-. 

T h e o r e m  4.9. Let F be an Ftale abelian torsion sheaf on 2E~j with torsion orders prime 

to p = char(k). Then.for any q > 0 there is a canonical isomorphism 

g*(Rq#~7(F))~Rq~TK (FIe) . 

Proof.  We may assume that X = Spf(A), where A is topologically finitely presented 
over k ~ The statement is proved by induction on d = dim(2EJ. Suppose first that 

d = 0. Since the homomorphism A ~ Jl, where .A = A | k, is finite (see ~1), 

then dim(JD = 0. Therefore dim(2E,i) = 0, and the statement easily follows. Suppose 
now that d _> 1 and that the statement is true for formal schemes whose closed fibres 
have dimension at most d - 1. We remark that since the statement is true if K is the 
completion of  the algebraic closure of  k, we may assume that the fields k and K are 
algebraically closed. 

Step 1. The homomorphism g * ( R q ~ l ( F ) )  --~ F~qkO,qK(f~'p( ) induces an isomorphism 
at geometric points over any nonclosed point :r E ;E.s. 

We can find a morphism Y -+ q2 = Spf(k~ such that the image s '  of the 
point :c is the generic point of  ff'.~. Let Yz,- --~ %K = S p f ( K ~  be the induced 
morphism, and let s k. '~ be the generic point of  %~K'. Furthermore, let t and tK be 

the maximal points of  qZn and a2~ m,  respectively. We set y r  = 2E xq 2 Spf (~( t )  ~ 
t 

and 2E~; = 2EK •  Spf(7~(tK)~ Finally, let 3~, and 2E~n, (resp. 321~ and X,,}<) 

denote the closed and the generic fibres of  3C r (resp 3 ~ ) .  We fix a embedding of  
fields ~(t)  "~ ~ 7-{(tK)" over the canonical embedding 7-{(t) ~ ~ ( t K ) .  It induces a 
commutative diagram 

---+ .~s 
Tg 

,, A* K 

To prove the statement of  Step l, it suffices to show that M, K g * ( R q ~ ( F ) ) &  
A~1r(Rq~qK(FK) ). By Proposition 4.6(ii), we have 

A*K g*(Rq~zrl( Y)) = ~* A~(Rq~P,~(F))~,~*(Rqg'n,(F')) P , 

where P = G(7~(t)'~/~(t)"r), and 

A ]I( ( Rq ffJtlK ( FK ) )~+ RqlfJ,/K ( F }  ) Q , 

where Q = G(~(tkO~/7~(tK)"r). On the other hand, by the induction hypothesis, we 
have 

--* q ! ~ q t 

Therefore our statement follows from the following lemma. 
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Lemma 4.10. The canonical homomorphism Q ---+ P is surjective. 

Proof. It suffices to show that for any finite extension L of ~ ( t )  "r in 7-L(t) ~ one has 
[L'  : 7-fftK) "r] = [L : 7-L(t)"r], where L '  = L ~ ( t K )  "r. We remark that the fields ~ ( t )  
and ~ ( t K )  are the complet ions of the fraction fields of k{T} and K { T } ,  respectively. 
By Grauer t -Remmert-Gruson Theorem ([BGR], 5.3.2/1), the latter fields are stable 
(see [BGRI, w Therefore the fields 7-/(t) and ~ ( t K )  are stable. It follows that the 

fields " ~ ( t K )  nr and 7-/(t~) "~ are also stable. Since ~ ( f )  = k(T) and ~(t~'K) = K(T) ,  it 
follows that 

[L; : 7-{(tK) nr] = [L '  : K ( T )  ~1 and [L : 7-{(t) at] = [L : k (T )  s] . 

The field/~; contains the composi tum L ~ / ( T )  s, and therefore 

[L t: ' ~ ( t K )  nr] ~ [ L ~ ' ( T )  ~ : K ( T )  s] . 

Since the field k - (T)  "~ is separable over  k (T)  8, the latter number  is equal to [L : 

k ( T F I  = [L : 7-{(t)"q. The required statement follows. [ ]  

Step 2. g*(l~qkOrl(F)) ---+ RqtPrlK(FK) is an isomorphism. 
Let A be defined by the exact triangle in D(Y~ K) 

g*(R~,,(F)) ----+ Rr ~ A" 

We have to show that  A is quasi- isomorphic to zero. By Step 1, the cohomology 
sheaves of A are concentrated at closed points of  32~ K. Therefore it suffices to show 

that RF(Y.~K, A )  = 0, i.e., that RF(Y.~K, g*(Rgvn(F)))~ RF(Y,K, RtP,u~(FK)). By 
the invariance of 6tale cohomology of schemes under separably closed extensions of  
the ground field, the first complex is isomorphic to RF(Y.~, Rg',~(F)). By Corollary 
4.5(ii), we have 

[{F(3~.~, Rgt,I(F)) = [{F(3~n, F) and RF(~sK, Rk~rlK(FK)) = RF(~vK, FK) �9 

Therefore the required statement follows from the invariance of 6tale cohomology 
of analytic spaces under  algebraically closed extensions of  the ground field ([Ber2], 
7.6.1). [ ]  

5. The comparison theorem for vanishing cycles 

First of  all we recall the definition of the vanishing cycles functor for schemes (see 
[SGA7],  Exp. XIII). Let  S be the spectrum of a local Henselian ring which is the ring 
of integers k ~ of a field k with a valuation. (Usually one considers the case when 
the valuation is discrete and nontrivial,  but everything works in the more general 

situation.) The scheme S consists  of the closed point s = Spec(k) and the generic 
point  zl = Spec(k). (If  the valuation is trivial, then s = 71.) Since the ring k ~ is 
Henselian, then the field k is quasicomplete (see [Ber2], w This  means that the 
valuation on k extends uniquely to the separable closure k '~, and therefore the integral 
closure of k ~ in k ~ is also a local Henselian ring that coincides with (k'~) ~ We set 

= Spec((k~) ~ = {g,~}.  For a scheme 2( over S,  let ~ and X~ (resp. Xzr and A'~) 
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be the closed and the generic 
morphisms 

fibres of 2( (resp. X := 2( •  S).  One has canonical 

2(,7 ~ 2( ~- 2(+ 

T T T 

The vanishing cycles functor ko~ : 2(rj6t + '~.v+t is defined by ~,7(f ')  = z (3,.U), 

where 5 v is the pullback of a sheaf f c 2(he t on 2(~. The functor ~ l  takes values 
in the category of 6tale sheaves on 2G that are endowed with a continuous action of 

G~ := G(k'+/k) compatible with the action of G~ := G(k~/k) on 2(7. (If the valuation 
on k is trivial, then g'+7(.T)= ~ . )  

Furthermore,  if the valuation on k is nontrivial,  we fix a non-zero element a in 
the maximal  ideal k ~176 of k ~ If  the valuation on k is trivial, we set a = 0. The 
comp.pletion ~ of k with respect to the valuation is a non-Archimedean field, and one 
has k ~ := (~)o = lim k~ 

Let now 2( be a scheme locally finitely presented over  k ~ Then the formal 
completion A' of 2( along the subscheme (2(, Ox/aOx) is a formal scheme from 

~~ and one has the generic fibre '~',7. One the other hand,  one can consider the 

E-analytic space 2(~ n := (2(+ / @k ~)a~. From the construction of these two spaces it 

follows that there is a canonical  morphism '~,7 -+ X~ ". We claim that if 2( is separated 

and finitely presented over  k ~ then this morphism identifies "~'+l with a closed analytic 
domain in X+~ ~. Indeed, if 2( = Spec(A), where A is finitely presented over k ~ 

and f t , . . . ,  f,+ generate A over  k ~ then , ~  is identified with the affinoid domain 
{x c ,-Y~"][f+(x) I _< 1, 1 _< i < n}.  If 2( is arbitrary, we take a finite covering {2(+}+cz 
of 2( by open affine subschemes of the above form. Then for any pair i , j  E I the 
intersection 2(~ = 2(, n 2 (  a is also an affine scheme and the canonical morphism 2(, o --+ 
2(~ • 2( 0 is a closed immersion.  It follows that if . f~ , . . . ,  f,,, and gl, �9 �9  .ct~, generate 
the rings 0(2(+) and O ( X j )  over k ~ respectively, then f l , . . . ,  f,,,  g l , . . . ,  g~+ generate 

O(2(,a) over k ~ It follows that "~',.,,,7 is identified with the intersection ~,+~, N ~,,~,  

and therefore ,~,~ is identified with a closed analytic domain in 2( a" We claim that r I �9 

a proper  morphism ~ : 3 2 -+ 2( induces an isomorphism y~l--~y~" • ~'+~. (In 

particular, the induced morphism ~,~ : ~,7 ---+ A',l is proper, and if 2( is proper over 

k ~ then 2(~ 2(~ .) Indeed, since the statement is local with respect to 2(, we may 

assume that 2( = Spec(A), where A is finitely presented over k ~ Then ~,7 and 

Y~" xx2  X,7 are closed analytic domains in y,]n. Therefore it suffices to verify that 
the morphism considered is surjective. This is easily seen if  Y is the projective space 
over 2( or a closed subscheme of  2( and, therefore, if g) is a projective morphism. If  

is arbitrary, this is obtained by applying Chow ' s  Lemma that tells that there exist 
a projective 2(-scheme Z and a projective surjective 2(-morphism Z -+ y .  

We remark that there are canonical  morphisms of sites 2(,++ t - +  ,)l~ndt ----+ 2(r/e t. 

The pullbacks of a shear  5 c C 2(~et on 2r and "~',7 will be denoted by .T a" and .~, 
respectively. For any 6tale sheaf  5 v on 2(, 1 there is a canonical  morphism of sheaves 

on 2(+, i*( j , .U)  --~ (-)(ifJ. Indeed, the first sheaf  is associated with the presheaf  
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i P ( j . f )  that assigns to a scheme Z 6tale over  X~ the inductive limit ~ 5 c ( 3 ; n )  

over all morphisms Z -~ y.~ over 2Q, where J) is a scheme 6tale over X. If  :3 

is the formal scheme 6tale over ,~' with 3~ = Z,  then such a morphism Z -~ y~ 
induces a morphism of formal schemes 3 --~ Y over  A', and therefore it induces 

a map )C(yn) --, ff'(3~/) = O(.~)(Z). These maps define a morphism of presheaves 

i P ( j . f )  ~ 6-)(if-) that, in its turn, defines the required morphism of sheaves. It follows 

that there is a canonical  morphism of  sheaves ~ ( 5  c) --~ ~vv(~). 

T h e o r e m  5.1. Let .T be an dtale abetian torsion sheaf on 2Q 7. Then for  any q _> 0 
there is a canonical isomorphism 

i* ( Rq j . .T ' )~  l~.q o(  ff:') . 

Proof. We prove the statement by induction on d = dim(Xn).  (Since the statement is 
local with respect to A', we may assume that 2( is finitely presented and, in particular, 
that d < oc.) Suppose that d _> 1 and that the theorem is true for schemes whose 
generic fibre has dimension at most d - 1. 

Step 1. The homomorphism i*(Rq. j . f )  ---+ R q O ( f  -) induces an isomorphism at 
geometric points over any nonclosed point x C 2(s. 

We may assume that X is a closed subscheme of  the affine scheme A~ ~ over  
S. Then there exists a projection A" ~ T := A~ such that the image of the point  
:r in T~ is the generic point s '  of ~ .  To prove the statement, it suffices to show 

that the homomorphism i*(I~qj.J :) ---+ Hqo(ff  =) induces an isomorphism between the 
pullbacks of  the sheaves on (X~).9. 

Let S '  = {s t , r / }  be the spectrum of the Henselization O h ,  of the local 

ring 07,,~,, and we set X '  = X •  S t �9 The  canonical  morphism A : X '  --~ X 
, 

induces morphisms A, : X~,Z+(XQ,~, --+ X.~ and A n : X~/ ---+ 2(, I. One has 

A* "* q " ~, i /*  q " * .~(~ (R 3.5=)) " (R j.(A,~Sc)). By induction, the latter sheaf is canonically iso- 

morphic to RqO'(A~jf). Therefore there is a canonical  isomorphism 

�9 ,*  q /  ~ q _ !  
A~(~ (R ; . ~ ) ) - ~ R  O (AnSC). 

On the other hand,  let us consider the similar procedure for formal schemes. Let  t 

be the maximal  point  of ~ .  There is a canonical embedding of rings O T - j  ~ 7-/(t) ~ 
and it induces an i somorphism of the completion of OT-s, with 7~(t) ~ In particular, 

it gives rise to a canonical embedding  of r ings 0~-,,,, ~ ~( t )  ~ and one has S '  = 

Spf(7-/(t)~ Furthermore, there is an isomorphism of formal schemes X ' & X  x-g S'.  

If  A denotes the induced morphism ,~ '  + ~ ' ,  then, by Proposition 4.6(i), there is a 
canonical  isomorphism 

~ *  q ~ ~ q t ~ *  A~(R O(.T))---+R 0 (ANY). 

Since As = A., and A,~5 c = A,"~.T', the required statement follows. 

Step 2. i * ( ! ~ q j . ~  ") --+ R q o ( ~  -) is an isomorphism. 
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Since the statement is local with respect to X, we may assume that 2( is affine, 
and after that we may assume that X is projective over S. Let B be defined by the 
exact triangle in D(X~) 

- - - , ~ * ( R j . ~ ) - - - ~ R O ( ~ ) - - - ~ A  - - ,  

We have to show that A is quasi-isomorphic to zero. By Step 1, the cohomol- 
ogy sheaves of A are concentrated at closed points of X~. Therefore it suffices to 

show that Rf'(X~ ~ ~r, A )  = 0 for any finite unramified extension U of k. Re- 
placing k by U, we see that our problem is to show that RF(2(~, A )  = 0, i.e., that 

R F (  X~, i* ( R j . .~)  )& RF(  2(,, RO(  ffc) ). 
Since X is proper over $,  there are canonical isomorphisms RF(X~, i*(Rj . .T))  

&[~F(X,7, .T) and RF(X~, R(-)(fc))~RF(2(;~ ", f a , ) .  Thus, the required fact follows 
from the following lemma. 

Lemma 5.2. Let X be a compactifiable scheme over a quasicomplete field lc, and 
let f" be an abelian torsion sheaf on X.  Then fi)r any q > 0 there is a canonical 
isomorphism 

H~q(x, . T ) ~  H q ( X  " ,  f ~ ' )  . 

Proof.  By the Comparison Theorem 7.1.1 from [Bet2], the statement is true if k is 

complete. Therefore it suffices to verify that H:t.(X, U)Z,H,~(2( | k, 5c). We know 

that this is true if k is separably closed (in this case k is also separably closed). The 
general case is obtained using the Hochschield-Serre spectral sequence and the fact 

that the Galois groups of k and k are isomorphic ([Ber2], 2.4.2). E] 

Corollary 5.3. For any dtale abelian torsion sheaf f on 2(~1 and any q > 0 there is 
a canonical isomorphism 

R~,,( S ) ~  R ~ (  ~) . [] 

Let k be a non-Archimedean field. A morphism ~p : ~2) -~ 32 in k ~  is said 
to be smooth if locally it goes through an 6tale morphism from ~ to the formal 
affine space A ~  over 32. A formal scheme 32 E k ~  is said to be smooth if the 

canonical morphism 32 --+ Spf(k ~ is smooth. 

Corollary 5.4. Let 32 be a smooth formal scheme in k ~ and let n be an integer 
prime to char(E). Then ~v(Z/nZ)32,~ = ( Z / n Z ) x ~  and Rqk~,~(Z/nZ)32,~ = O for q > 1. 

Proof. Corollary 4.5(i) reduces a situation to the case when 32 is the formal completion 
of the affine space A~o. Therefore the statement follows from Corollary 5.3 and the 
known fact on the triviality of the vanishing cycles sheaves for smooth schemes. []  

Corollary 5.5. Suppose that k is algebraically closed, and let X be a scheme of finite 
~.'pe over k and .T a constructible sheaf on 2( with torsion orders prime to char(k). 
Then for any compact analytic domain X in ,.V an the groups Hq(X,f 'an) ,  q >_ O, are 
finite. 
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Proof .  If {~}~cz is a finite covering of X by closed analytic domains, then the 
spectral sequence of Corollary 3.6 implies that to prove the statement it suffices 
to show that all of the groups Hq(Wzl N . . .  D) Vzm,. T'an) are finite. Therefore we 
may assume that ,V = Spec(A) is affine and X is affinoid. Furthermore, since the 
cohomology groups are preserved under algebraically closed extensions of the ground 
field ([Ber2], 7.6.1), we can increase the field k and assume that the valuation on k is 
nontrivial and X is strictly k-affinoid. Furthermore, let f , , . . . ,  f~ be generators of A 
over k such that X C V, := {x E xa~[IL(z)l _< 1, l < i _< n}. By Gerritzen-Grauert 
Theorem ([BGR], 7.3.5/1"), X is a finite union of rational domains in V. Therefore we 
may assume that X is a ~'ational domain in V, i.e., there exist elements h, g~, �9 - �9 g~,~ c 
A without common zeros in V such that X = {x E vl]g~(x)l <_ Ih(x)l, 1 < i < m}. 
Replacing A by A[�88 we may assume that X is a Weierstrass domain in V. Thus, 

we can find generators f j , . . .  ,.f~ of A over k such that X = {x E xa"llf (x)l _< 
1,1 < i < n } .  

Let a be the kernel of the surjective homomorphism k [ T j , . . . ,  T~] --~ A : T ~  ~ f,.  
It is an ideal of k [ T I , . . . ,  T,~] generated by polynomials g l , . . . ,  g .... Multiplying all 
g~ by a constant, we moy assume that g~ E k~  ,T,,]. Let b be the ideal of 
k ~  T~,.] generated by g l , - . .  ,g~ ,  and we set B = k ~  T,~]/b. We get 

an affine scheme 3; = Spec(B) finitely presented over k ~ with 3;.~1 = X and ~ , I ~ X .  
By Deligne's Theorem 3.2 from [SGA41], Th. finitude, the vanishing cycles sheaves 
Rqffsn(U) are constructible. (In the proof of Deligne's Theorem one assumed that k ~ 
is a discrete valuation ring, but the proof works for arbitrary k ~ Furthermore, by loc. 
cir., 1.10, the cohomology groups of 3;.~ with coefficients in a constructible sheaf are 
finite. Applying Corollary 5.3 and the spectral sequence 4.5(iii), we get the required 
statement. []  

Corollary 5.6. Suppose that k is algebraically closed, and let X be a compact k- 
analytic space such that each point of X has a neighborhood of the form Vl U. . . tO ~,., 
where each ~ is a closed analytic domain admitting a quasi-gtale morphism to the 
analytification of a scheme of  finite type over k. Then .for any finite locally constant 
sheaf F on X with torsion orders prime to char(k) the groups H q ( x ,  F), q > O, are 
finite. 

Proof. By the reasoning from the beginning of the proof of Corollary 5.5, the situation 
is reduced to the case when X is k-affinoid and connected. Furthermore, we can find a 
finite 6tale Galois covering ~ : Y ~ X such that the sheaf ~,*F is constant. Applying 
the Hochschield-Serre spectral sequence for this covering, we see that the situation 

is reduced to the case when F = (Z/nZ);~- for some n prime to char(k). Finally, 
shrinking X,  we may assume that X is an affinoid domain in a k-analytic space Y 
for which there exists a separated 6tale morphism ~ : Y --~ X an, where 2( is an affine 
scheme of finite type over k. 

Let y E X and let x be the image of the point x = ~(y) in A'. The field k(x) is 
everywhere dense in 7-/(x), and ~ (y )  is a finite separable extension of 7-[(x). Therefore 
we can find a finite separable extension K of k(x) which embeds in ~ ( y )  and is 
everywhere dense in it. Take an arbitrary 6tale morphism of finite type between affine 
schemes g : Y ~ A" for which there exists a point y E Y with g(Y) = x and k(y) = K.  
The embedding o f / (  in ~ (y )  defines a point y/ E ya,. Since K is everywhere dense 
in 7-/(y), then ~(y)  = 7-/(yt). By Theorem 3.4.1 from [Ber2], the k-germs (Y,y) and 
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(Y~", y') are isomorphic. Thus, we may assume that X is an affinoid domain in 2(~, 
where 2( = Spec(A) is an affine scheme of finite type over k. In this case the statement 
follows from Corollary 5.5. [] 

Remark 5.7. The natural conjecture is that, for any formal scheme if: E k~ 
and any finite locally constant sheaf F on Y~l with torsion orders prime to char(k), 
the vanishing cycles sheaves Rq~P,7(F) are constructible. To prove this, it would be 
enough to show that the statement of Corollary 5.6 is true for any compact k-analytic 
space X.  

6. A uniform topology on the set of  morphisms of analytic spaces 

All the analytic spaces considered in this section are assumed to be Hausdorff. 
Let F be a prime non-Archimedean field. (This means that the subfield generated 

by the image of Z is everywhere dense in F, i.e., F is the field Qp with the p-adic 
valuation or the field Q or Fp with the trivial valuation.) Recall that an analytic space 
over F is a pair (k, X),  where k is a non-Archimedean field over F and X is a k- 
analytic space, and a morphism (K, Y) --~ (k, X)  is a pair consisting of an isometric 
embedding k ~-~ K and a morphism of / f -ana ly t ic  spaces Y ---+ X % k K  (see [Ber2], 
w For brevity the pair ( k , X )  is denoted by X and is called an analytic space. 
Given an analytic function f on an analytic space X,  we set p(f )  = :max If(x)l. For a 

morphism ~ : Y -+ X,  we denote by ~* the induced homomorphism O(X)  -+ O(Y).  
Furthermore, given analytic spaces X and Y, we denote by Mor(Y, X)  the set of mor- 
phisms Y ~ X.  If X and Y are over an analytic space T, then MorT(Y, X )  denotes 
the subset of T-morphisms. Finally, let G(X) denote the group of automorphisms of 
X.  (If X is k-analytic, then such an automorphism induces an isometric automor- 
phism of the field k.) If X is over T, then ~T(X) := gT(X) A MorT(X,X) .  Our 
purpose is to endow the set Mor(Y, X)  with a uniform space structure. 

Let X be an analytic space. We introduce a set ~ (X)  as follows. An element c 
of ~ (X)  consists of a finite family s(c) = {U~}~E• of compact analytic domains in 
X and, for each / E I, of finite sets of analytic functions {f~3}jcA on U,. and of 
positive numbers { t~} jE j  ~. Such an element e defines, for each analytic space Y, 
a relation on the set Mor(Y, X )  as follows. Given two morphisms 4, ~ : Y ---0 X,  
we write d (~ ,~ )  < s if c;-l(U~) = ~-I(U~)  and P(~*f~3 - 0~*fu) -< t~ for all 
i E I and j E J~, where ~ and ~b~ are the induced morphisms ~-I(U~) ~ U~ (if 
4 -  J (U~) is empty, the above inequality is assumed to hold). The relations d(~, ~/~) < r 
define a uniform space structure and, in particular, a topology on Mor(Y, X).  (If Y is 
reduced, then Mor(Y, X)  is Hausdorff.) We endow the group G(X) with the topology 
induced from Mor(X, X). It is easy to see that ~ (X)  is really a topological group (not 
necessarily Hausdorff), and its topology is defined by the system of the subgroups 
G~(X) = {~7 E G ( x ) l t r ( u 0  = U~,p(cr*fu - f , j )  < t~j} for e E ~ ( X )  as above. 

For example, if K / k  is an extension of non-Archimedean fields, then we get a 

topological group ~k(K) (= GMCkl(.M(K))). If K = k",  it is canonically isomorphic 
to the Galois group Gal(k'~/k). 

Furthermore, we introduce a partial ordering on ~ (X)  as follows. Given r 6 E 
~(X) ,  we write c _< 6 if, for any pair of morphisms 4, ~P : Y ~ X,  the relation 
d(~, ~b) < c implies d((y, ~L') < 6. For example, given r b E ~(X) ,  let inf(c, ~5) denote 
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the element of  ~ ( X )  for which the families of  analytic domains, of  analytic functions 
and of  positive numbers are unions of  those for e and b. Then inf(e, 6) < e, 6 and 
3' < inf(e, 6) for any 3' E ~ ( X )  with 3' < e, & We remark also that for each e E ~ ( X )  
there exists ~5 < e such that 6 is the infimum of  elements defined by the triples 
(U, f ,  O, where U is an affinoid domain in X ,  f E O(U) and t > 0. Finally, for a 
finite fami ly /g  = {U,}~Et of  compact  analytic domains in X ,  we set lul  = u ~ , .  

Propos i t ion  6.1. Let L / =  {U~}~EI be a finite family of affinoid domains in X .  Then 
.for any e E ~(X)  with Is(c)l c lUl there exists 6 E ~ (X)  with 6 < e and s(6) =/1/. 

Proof. The situation is easily reduced to the case when X = Jk4(A) is affinoid and 
L /=  {X}.  We may also assume that e is defined by a triple (U, h, t) with pc(h) 5~0. 

Suppose first that U is a rational domain, i.e., U = X ( r ~ l ~ )  = {z E xllf,(.)l _< 

r~[9(z)[}, where f l , . . . ,  f~ ,9  are elements of  A without common zeroes in X and 
r l , . .  �9 r~ > 0. It is easy to see that if a pair ~?, ~ : Y ~ X satisfies the conditions 
p(~*f~ - ~*f~) < c~r~, P(~*9 - ~ ' 9 )  -< ~ /2 ,  where c~ = rain 19(z) I, then ~p-I(U) = 

'~-J(U). Furthermore, we can replace the element h by a sufficiently close element 
of  the form h ' / 9 " ,  where tg E A and m > 0. If the pair ~, ~ satisfies, in addition, 
the conditions p( ~ * h' -~b*h,') < ted  ~ and p( ~9 * 9 . . . . .  0 " 9"  ) <- t~ p u  ( h t ) -  l , then 
p(T*h - ~*h) <_ ~, i.e., d(~,  lb) < e. 

If U is a finite union of  rational domains, then the statement easily follows from 
the first case. Suppose now that U is arbitrary, and let X be k-affinoid. Then we 
can find a field of  the form K~ = { ~ A ~ T ~ I A .  c F, IA.Ir ~ --+ 0 a s  ]u] --+ oc} 

t~ 

such that k.,. := k@FK,, is a field and the spaces X~k.,. = X ~ F K T  and U~k,. 
are strictly k<affinoid (see [Berl],  ~2). There are canonical maps M o r ( Y , X )  
Mor(Y@~/,5,., X@k,,) : ~9 ~ cf and ~ (X)  ~ ~(X@k~) : e ~-+ e' .  We remark that 
if d(~a', '~b') < e ' ,  then d(~,  ,/)) < e. By Gerritzen-Grauert Theorem ([BGR],7.3.5/3), 
U| is a finite union of  rational domains in X~k, . .  Applying the previous case, we 
can find an element  7 E ~,(X~k,-) with .s(7) = {X~k , . }  and 7 -< g'. Therefore the 
required statement follows from the following lemma. 

L e m m a  6.2. For an)' "7 r ~(X~k , . )  with s(7) = {X~k, -}  there exists 6 E ~(X)  
with s(b) = {X} such that, for an3' pair ~, ~ E Mor(Y, X )  with d(~, ~) < 6, one has 
d(v2', 'r < % 

Proof.  We may assume that 3' is defined by a function 9 = ~ .  f~ T~ C A@l,:r, 
f .  E .A, and a positive number t. If ~, f~ E Mor(Y, X) ,  then P(~'*9 - *//'9) = 
m a x p ( ~ * f .  - ~* f . ) r  ~. Since I I f ~ l l <  ~ o as lul --" oo, we can find N such that, 

for any u with lul > N,  one has p( f , . ) r "  < t. It follows that if the pair ~,  ~ satisfies 
the conditions p(~* f~ - ~* f~) <_ tr -~ for It,[ _< N ,  then P(~'*9 - 0 " 9 )  <- t. 

Corol la ry  6.3. Suppose that X = M ( A )  is k-affinoid, and let f l , . . . ,  f,~ be a k- 
affinoid generating system of elements of ,,4. Then for any ~ E ~(X)  there exist 
fn+l . . . .  , f ro E k and t l , . . . , t m  > 0 such that, for the element t5 E ~ (X)  defined 
by ( X,  {f ,} ,  {t~}), one has 6 <_ c. 

Proof.  By Proposition 6.1, we may assume that e is defined by a triple of  the form 
(X,  9, 0, 9 E .,4. Let P E k[Tl . . . . .  T~] be a polynomial with p ( g -  P ( f  l . . . .  , f . ) )  <_ 
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t, and let f ~ + l ,  �9 �9 - , f~r~ be the nonzero coefficients of P .  It is clear that we can find 
t t , . . . , t m  > 0 such that, for any pair ~,~p : Y --+ X with p (~*f ,  - ~b*f~) < L, 
1 < i < m, one has PCP*(P(fl  . . . . .  f,~)) ~b*(P(fl . . . . .  f~)))  <_ t. For such a pair 
(~, ~b), one has P(~* 9 - ~"  9) <- t. 

Propos i t ion  6.4. Let a k-analytic group G act on a h-analytic space X ,  and let X = 

X @ h  ~. Then the canonical homomorphisms G(k) ~ Gk(X)  and G(k) x Gal(k'~ / k )  
~ k ( X )  are continuous. 

L e m m a  6.5. A k-point  x o f  a k-analytic space X is contained in the topological 
interior o f  any affinoid domain U that contains x. 

Proof .  We may assume that X is compact  and there are affinoid domains U1, �9 �9 �9 U,~ C 
X such that x E U1 A . . . N  U~ and X = Ui t O . . . t 0  U~. For each i, one has 
U f3 U, = VI tO . . .  U V~ for some affinoid domains V 3 C U,. Since x is contained in 
the topological interior in U., of each V 3 that contains x, then x is contained in the 
topological interior of U N U, in U,. It follows that x is contained in the topological 
interior of U in X .  [ ]  

L e m m a  6.6. (i) I f  X is h-analytic, then the space Mork(k,  X )  is homeomorphic to its 
image X ( k )  in X .  

(ii) Let  99 : Y ---+ X be a compact  morphism. Then f o r  any ~ C ~ ( X )  there exists 
6 ~ ~ ( Y )  such that, f o r  any analytic space Z and any pair  o fmorph i sms  ~/~, ~// : Z ---+ 
Y with d(O, ~//) < ~, one has d ( ~ ,  ~ / / )  < e. 

(iii) Let .~ : Z ---+ Y be a morphism. Then f o r  an), analytic space X ,  an), e ~ ~ ( X )  
and any pair  ~?f morphisms ~, ~ : Y --+ X with d(~, ~ )  < e, one has d(~O, ~ ~)  < e. 

(iv) Suppose that ei ther X and  Y are k-analytic and Z is over k or X and  Y 
are over k and Z is k-analytic. Then the canonical map Mork(Y, X )  -+ Mor~(Y xk 
Z, X x ~ Z)  induces a uniform homeomorphism between the f irs t  space and its image 
in the second one. 

P r o o f .  (i) From Lemma 6.5 it follows that a basis of topology on X ( k )  is formed 
by sets of the form U(k)  for affinoid domains U C X.  Therefore the bijection 
Morh.(k, X )  -+ X ( k )  is continuous. On the other hand, a basis of  the topology on X ( k )  
induced from Mork(k,  X )  is formed by sets of  the form {3: C U ( k ) l l f ( x )  - ~rl -< t}, 
where f C O(O) ,  c~ C k and t > 0. The latter set is V(k)  for the affinoid domain 
V = { z  E U t [ ( f  - ~)(z)[  _< t}, and the required statement follows. 

(ii) For c E ~ ( X )  defined by a triple (U, f ,  t), we define 6 C s  by the triple 
( ~ - t ( U ) ,  ~* f ,  ~). It is easy to see that if d(~,  ~r)  < 6, then d ( ~ ,  ~ 1 )  < c. 

(iii) is trivial. 
(iv) By Proposition 6.1, to show that the map is uniformly continuous,  it suffices to 

verify that for any e lement  c C ~ ( X  • k Z)  defined by a triple of  the form (U • kW, 9, t), 
where U C X and W C Z are affinoid domains,  there exists 6 E ~ ( X )  such that if 
d (% r  < 6, then d(~ • id, ~) x id) < c. We may assume that  .q = ~ ' z ~ = l  f~ | h~ for 
.f~ E O(U)  and h~ E O ( W ) ,  h.~ 5~ 0. Then the necessary property is satisfied for 5 
defined by the affinoid domain U and the systems of functions {f ,}  and of positive 
numbers  { t / I ihd[  }. 

Furthermore,  if 6 E ~ ( X )  is defined by a triple (U, f ,  t), then we take an arbitrary 
compact  analytic domain W C Z and define c E ~ ( X  • k Z )  by the triple (U x k 
VV; f | 1, t). It is easy to see that if d(~, • id, ~ • id) < e, then d(~, ~b) < 6. [ ]  
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Proof of Proposition 6.4. Since ~k(X) and Gk(X) are homeomorphic to their images 
in Mork(X, X)  and Mor~.(X, X),  respectively, and a basis of topology on G(k) is 
formed by the sets V(k), where V is a compact analytic domain in G, then it suffices 
to verify that the maps V(k)  --~ Mork(X, X )  and V(k)  • Gal(k~/k) ~ Mork(X, X )  
are continuous. The first map is the composition of continuous maps 

V(k)  = Mork(k, X )  ~ Mork(X, V x X)  ~ Mork(X, X )  . 

(The latter map is induced by the action morphism G • X --+ X,  and the morphism 
V • X ~ X is evidently compact.) From Lemma 6.6(iv) it follows now that the 
maps V(k)  ~ Mork(X, X)  and Gal(k~/k) --+ Mork(X, X )  are continuous. [] 

Corollary 6.7. Let G be a k-analytic group. Then for  any compact analytic domain 
U C G the subgroup G(k)u := {g E G(k)IgU = U} is open in G(k). Furthermore, the 
topology on G(k) is defined by the system of  subgroups G(k)u, where U runs through 
affinoid neighborhoods of  the unity. Finally, the homomorphism G( k ) --~ ~k( G) defined 
by the left action o f  G on itself  induces a topological isomorphism of  G(k) with its 
image in Gk(G). [] 

7. The action of the set of morphisms on the ~tale cohomology groups 

As in w all the analytic spaces considered are assumed to be Hausdorff. 

Theorem 7.1. Let T be an analytic space, and let F be a quasi-dtale abelian sheaf 
on T. Then for  any compact analytic space X over T and any element ce E H q ( x ,  F)  
there exists e C ~ ( X )  such that, for  any analytic space Y over T and any pair o f  
T-morphisms ~, ~ : Y ~ X with d(~, ~)  < e, one has qo*(cO = ~*(cO in Hq(Y,  F). 

Key Lemma 7.2. Let X be an analytic space, and let f : U --~ X be a quasi-dtale 
morphism with compact U. Then there exists eo E ~(U) with the following property. 
For any e <_ ~o there exists b E ~ (X)  such that, for  any cartesian (resp. commutative) 
diagram 

Y ~-~ X 

(,) Tg Tf 
v ~ u 

and an), morphism ~ : Y --~ X with d(~, ~ ' )  < 6, there exists a unique morphism 
zb' : V --~ U with d(~b, ~') < c for  which the following diagram is also cartesian (resp. 
commutative) 

Y - - ~  X 

(*') Tg Tf 
V ----* U 

Proof. First of all we remark that the validity of the statement for commutative 
diagrams is easily deduced (using Lemma 6.6(iii)) from its validity for cartesian 
diagrams. And so we assume that the diagram ( , )  is cartesian. 
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Step 1. The statement is true i f  the spaces X = A.4(,4) and U = ./~(B) are affinoid, 
the morphism f is finite dtale and 13 = ,4[T]/(P), where P = T~ + a LT ~-I + . . .  + a~ ff 
AFT]. 

L e m m a  7.3. (Generalized Krasner's Lemma) Let f : U = M(13) --+ M ( A )  be a finite 
dtale morphism qf affinoid spaces such that 13 = ,4[T]/(P), where P = T ~ + (HT ~-i  + 
�9 �9 + an E ,4[T], and let ~ be the image of  T in 13. Then there exist positive numbers 
r l , . . . , r ~ , t  and a series ~ C 13{r ~1S l , . . .  ,r~ l S~} with ~(0) = ~ such that, for any 
cartesian diagram (*) with aJfinoid Y = .All(C) and V = .Ad(D) and Jot any polynomial 
Q, = T n + c l T  n 1 + . . . + o n  E C[T] with p(e~ -9~*a~) < r~, 1 < i < ~, the element 
fl = (~*~)(cl  - ~ * a l , . . . ,  c~ - ~*an)  is a unique root of  Q in 79 with p(fl - ~ * o0 < t 
and the homomorphism C[T] --+ 79 : T w-~ fl induces an isomorphism C[T]/(Q,)-~+79. 

Recall (see [Ray], Ch. XI) that if I is an ideal in a commutative ring A, then 
the pair (A, I )  is called Henselian if it satisfies to any of  the following equivalent 
conditions: 

(a) I C rad(A) (the Jacobson radical o f  A) and for any monic polynomial P E 
AfT] such that its image P in AfT] (A = A / I )  is of the form QR, where Q and 
are relatively prime monic polynomials in AFT], one has P = Q R  for some monic 
polynomials Q, R c AfT] whose images in AfT]  are Q and R,  respectively; 

(b) i f / 3  is a finite free A-algebra, then Idem(B)&Idem(B / IB ) ,  where Idem(B) 
is the Boolean algebra of idempotent elements o f / 3 .  

The following lemma is a generalization of  Theorem 2.1.5 from [Ber2]. 

L e m m a  7.4. Let ~ be a closed subset of  a paracompact analytic space X ,  and let 
0 ( ~ )  be the algebra of  functions analytic in a neighborhood of Z.  We set I ( S )  = 
{ f  E O ( S ) ] f ( z )  = 0 for all 3: G S} .  Then the pair (O(S) ,  I ( S ) )  is Henselian. 

Proof .  Let I de m ( S)  denote the Boolean algebra of  open-closed subsets o f  S .  We 
claim that for any ideal I C I ( S )  there are canonical isomorphisms 

ldem( O( S )  )Z, Idem( O( S )  / I )Z+Idem( ~)  , 

where the second map takes an idempotent f E O ( S ) / I  to the set of  z E S with 
f ( z )  = 1. Since a paracompact space is normal, it follows that the map from the first 
set to the third one is surjective. Therefore it suffices to verify that the both maps are 
injective. For this it suffices to show that I ( ~ )  C rad(O(S)) .  Suppose that an element 
f E I(Z ' )  is not contained in a maximal ideal m C O(Z').  Then 1 = f f~  + 99 ~ for 
some 9 E m and i f ,  9 ~ E O(~') .  This implies that 9(:e) 5/0 for all z E ZT, i.e., 9 is 
invertible in O ( ~ ) .  

To prove the lemma, we verify the condition (b). Let B be a finite free O ( S ) -  
algebra. Then we can shrink X and assume that there is a finite free (.9(X)-algebra C 
such that B = C|  The algebra C gives rise to a finite morphism of  analytic 
space qo : Y --~ X with C = O(Y) .  The space Y is also paracompact,  and one has /3  = 

O(Tr-I(S)) .  Since I/3 C [(Tr-~ (S)) ,  then Idem(/3)&Idem(B/IB)~Idem~ 7r-I(S)), 
and therefore the condition (b) is satisfied. []  

Proof of  Lemma 7.3. Of course, we may assume that n > 1. Let D ( S I , . . ,  Sn) = 
~ v  dv S~ be the discriminant of  the polynomial P = T '~ + (al + SOT n-1 + . . .  + 
( %  + Sn) E `4[$1 . . . .  , Sn][T].  Since do = D(0) is the discriminant of  P ,  then do is 
invertible in ,4. Let t be a positive number with 
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~2[P1~2-'~-2 < min  Ido(z)l, 
x ~ X  

where IPkp = m a x p ( a d ~  (the spectral norm of  P) .  Then we can find r l , . . .  , r n  > 0 

such that l id ,  l i t" < t for all v 5g0 and r~ < IPl~p for all 1 < i < n. 
Furthermore, let Z x E (0 ;  r l , . .  �9 rn )  C A ~, where E(0;  r l , . . . ,  r~)  is the closed 

disc in A '~, i.e., Z = . M ( / 3 { r (  l &  . . . .  , rXl&~}) ,  let ~ = U x {0} C Z, and let I be 
the ideal of  (.9(L') generated by the coordinate functions $ 1 , . . . ,  5'~. Then [ C I(~W), 
and  therefore the pair  (O(~w), I )  is Henselian. We ap_ply the condition (a) to the 
polynomial  P E O ( ~ ) [ T ] .  One has O ( ~ ) / I  = 13 and P = P = (T  - a ) R  for some 
monic  polynomial  R c B[T]. Since 13 = A[T] / (P)  is finite 6tale over ..4, then the 
polynomials  T - c~ and R are relatively prime in B[T]. Therefore P = (T  - ~ )R ,  
where ~/' C O ( ~  w) with ~(0)  = a and R is a monic polynomial  in O(~W)[T] with 
R = R. We now can  replace r l , . . . , r ,  by smaller positive numbers  and assume 
that  �9 E 13{r/1SI  . . . .  , r ~  j S~},  R C 13{r/1SI . . . .  , r,~ I S~}[T] ,  and the norm of the 

element � 9  a in 1 3 { r l l S i , . . . ,  r~ l&~} is strictly less than t. We claim that the 
required properties hold for the constructed r l , . . . ,  rn ,  ~ and ~. 

Suppose we have a diagram (*) and  a polynomial  Q as in the formulation. By the 
construction,  the element  3 is a root of  Q with p (3  - '(~*a) < t and the discr iminant  
of  Q is invertible in C. In particular, the homomorphism C[T] --* D : T ~ / 3  induces 
a finite 6tale homomorphism C[T]/(Q) ~ D over  C. Since the both  algebras are free 
C-modules of  the same rank n,  it follows that C[T]/(Q)~Z).  It remains to show that 
if  3' is a root  of Q different f rom [], then P(7 - ~ * a )  _> t. For this we take an arbitrary 
bounded character  X : 7? -+ K to an algebraically closed non-Archimedean field K .  
The  discriminant of  the polynomial  x(Q) is equal to l-[ (7~ - %)2,  where the product 

z < 3  

is taken over  all pairs of roots of x ( Q )  in K.  Since [%] _< IQIs~ -< IPI~p, our choice 
of  t guarantees that 13`~ -3` j ]  > t for all i 4 J .  Since IX(3 - ~*c~)l < t, it follows that 
[X('Y - ~*c~)[ > t. Lemma 7.3 is proved. [ ]  

We apply Lemma 7.3 to the morphism f : U ~ X .  Let r l , . . . , r n ,  t and ~b be 
given by the lemma, and let a be the image of  T in /3. Replacing r~ by smaller 
numbers,  we may assume that the norm of ~ -  a in / 3 { r ~ l & , . . .  ,r~lS,~} is less 
than t. We claim that  the statement is true for e0 = (U, a ,  t). Indeed, by Proposit ion 
6.1, it suffices to assume that e is the infimum of s0 and of an element  sl  of  the form 
(U, h, q), where  h E / 3  and q > 0. The  required element  6 is defined as the infimum 
of  the following families (1)-(3) of elements of  if(X).  

(l) 6~ =(X,a , , r~) ,  1 < i < n. 
Before cont inuing we remark that  the condit ions ~ < ~,, 1 < i < n,  are enough 

to construct, for any cartesian diagram ( ,)  and any morphism ~y : Y --. X with 
d (~ ,  ~ ' )  < 6, a unique morphism ~ : V --~ U with d(0 ,  0 ' )  < s0 for which the 
diagram ( # )  is also cartesian. Indeed, to see this it suffices to assume that Y = .M(C) 

I* and  V = Ad(7?) are affinoid. If  d(q), ~o') < 6, then p(~ ai - ~*ai) <_ r,, 1 < i < n, 
and  therefore the e lement  ~ '  := (0*~)(~y*al  - ~ * a l  . . . .  , ~y*a~-~p*a~)  is a root of the 
polynomial  ~ ' * P .  The  homomorph i sm ~'* : /3 -~ D that extends ~'* : ..4 ~ C and 
takes a to /3  ~ is well defined and is a unique extension of  ~'* with p ( ~ ' * a - 0 * a )  < t. 
It is also c lear  that the diagram ( # )  is cartesian. 

Furthermore, let h = b~c~ n-~ + . . .  + b,~, where  b, ~ ..4. 
(2) 6~ = (X,  bi,qp(a)~-n), 1 < i < n. 
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Finally, we can find 0 < r~ < r~, 1 < i < n,  such that the norm of the series ~ -  o~ 

in B { r ' I ~ S 1 , . . . ,  r ' .~l&~} is at most  qmax{p (bO-~p(a )  ~ . . . .  }, where the maximum 
is taken over  all 1 < i < n with p(bi )  ~ O. 

(3) 6~' = (X,a~,r~) ,  1 < i < n. 
Let (5 be the infimum of all the elements from (1)-(3). It suffices to verify that if 

d ( ~ , ~ )  < 6, then d(~p', '(/) < sl ,  i.e., p(~ '*h  - (~'*h) < q. One has 

p(~ '*h  - ~l~*h) <_ max (p(a) ..... p(~'*b, - ~*bO, p(b~)p(~/*(c~) n -~  - '~*(~)  . . . .  )) �9 

By (2), the first number  under the maximum is at most  q. Since p ( ~ ' * ( a )  . . . .  
'0*(a)  '~- ' )  < p(0'*c~ - g~*c~)p(~) '~-~-1, then (3) implies that the second number  is 
also at most  q. 

Step 2. The statement is true i f  f identifies U with an analytic domain in X .  
In this case the statement is true even for arbitrary ~ ~ ~(U).  Indeed, let ~ be the 

infimum of the two elements of ~ ( X )  defined by the triple (U, 0, 1) and by the same 
families of  affinoid domains,  analytic functions and positive numbers  as c. It is easy 
to see that the necessary properties are satisfied for 6 = g. 

Step 3. The statement is true in the general case. 

L e m m a  7.5. (i) ~[[ the statement is true.for U ---+ X and U ~ --+ U, then it is also true 
f o r  the composit ion U ~ ~ X .  

(ii) Let  {X.,},r  and {Uz},~, be .finite systems o f  closed analytic domains in X 
and U with U = Uz~zU, and f(U,.) C X~. l f  the statement is true f o r  all the induced 
morphisms f~ : U~. ---+ X~, then it is also true f o r  f .  

Proo f .  (i) is trivial. 
(ii) By (i) and Step 2, we may assume that X is compact  and X,  = X for 

all i E I .  It follows also that the statement is true for all the induced morphisms 
f~j : U~rqU a ~ X .  Let s~,0 and su,0 be the elements of  ~.(U~) and ~(U, NU~) Ior the 
morphisms f~ and .f,j. We claim that the statement is true for s0 := inf{~,o, su,0 }, 
where g~,o is the extension of c~,0 to U (as in Step 2). Indeed, let s < co, and let 
ti~ and 6~3 be the elements of ~ ( X )  which correspond to the pairs ( f ~ , c I u )  and 

( f u , e l u ,  n u  ), where r is the restriction of s to U, (defined in the evident way). 

Suppose we are given a cartesian diagram ( , )  and a morphism ~b : Y ---+ X with 
d(c2, cp) < 6 := inf{6~,~5~a }. Then (*) induces diagrams (*~) and (*u)  with (f~, t/~,, ~ )  
and ( f u ,  ~ u ,  VJqV~ ), respectively, instead of ( f ,  tJ~, V). By the assumptions,  there exist 
unique morphisms O~ : ~ U, and /,' --~ ~.~j : V~ A ~ U~ N U~ with ~ ' 

and d(~/.,~a , ~b~j) < slu~n~j 3 for which the corresponding diagrams (*I) and (.r j )  are 

cartesian. It fol lows that 'O~a coincide with the restrictions of '~  and ~h~ to ~ n Vj, 
and therefore the morphisms O~ are glued together to a morphism 0 t : V -~ U for 
which d (0 ,  0 ' )  < c and the diagram (*')  is cartesian. [ ]  

We can find finite systems of affinoid domains  {X,}~r in X and {U~}~I  in U 
such that U = U~e1U~ and, for each i E I,  U.~ is identified with an affinoid domain in an 
affinoid space finite and 6tale over X~. Applying Lemma 7.5, we reduce the situation 
to the case when f : U = .A//(B) --~ X = . h i (A)  is a finite 6tale morphism of affinoid 
spaces. Then  f induces a finite &ale morphism of  affine schemes Spec(/3) ---+ Spec(.A). 
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From the local description of &ale morphisms of schemes it follows that we can find, 
for each point u E U, affinoid neighborhoods U ~ of u and X r of f(u) such that f 
induces a finite 6tale morphism U ~ -+ X ~ for which Bu, = Ax,[T]/(P) ,  where P is 
a monic polynomial in Ax ,  [T]. Applying Step 1 and Lemma 7.5, we get the required 
fact. [] 

Proof of Theorem 7.1. First of all we verify the statement for q = 0. Let c~ C F(X).  

Then there is a finite quasi-6tale covering {U~ ~ X}~EI with compact U~ and, for 
each i, a commutative diagram 

X ~ T 

Ts, 
ISz 

with quasi-6tale th and compact St such that f~(a) = #*(30 for some ~ E F(SO. 
We apply Key Lemma 7.2 to the morphisms f~ : U~ ---+ X (for cartesian diagrams) 

! 
and h~ : S~ -~ T (for commutative diagram). Let e~ E ~(U~) and c~ E ~(S~) be 
given by the theorem. Furthermore, applying Lemma 6.6(ii) to the compact morphism 

I jz~ : U~ ---+ St and the element e~ E ~(S0,  we get an element 6~ E ~(U~). By Key 
Lemma 7.2, we can find r E ~(X)  such that for any system of cartesian diagrams 

Y ~ X 
T,q  

and any morphism ~h : Y -+  X with d(% ~ )  < c there exists a unique system of 
morphisms ~p~ : V~ ~ U~ with d ( ~ ,  ~ )  < inf{c~, 6~} for which the diagrams 

Y ~ X 

are also cartesian. We claim that ~o*(~) = ~*(~) in F(Y). Indeed, since {V~ ~z> Y } ~ s  
is a quasi-6tale covering, it suffices to verify that 9~(~o*(a)) = 9~<(~b*(~)) for all 
i E I. One has 9~ (c; ( ) = ~ (f~ (~x)) ~;~ (#~ (f:~0) = u~ (30, where u~ = # ~  : 
Vi ~ S~. Similarly, one has 9~'(~*(c0) = u~ (/30, where u~ = 

Since d ( ~ , ~ )  < 6, then, by Lemma Therefore it suffices to verify that u~ = u~. 
Key Lemma 7.2 applied to the morphism h~ : T~ S~ and the 6.6(ii), d(v~, v~) < e~. --~ 

! 
canonical morphism Y ~ T implies that v~ = v~. 

To verify the statement for q _> 1, we use the modified (~ech procedure for 
calculation of the cohomology groups from [SGA4], Exp. V, w By loc. cit., 7.4.1, 
the group Hq(X, F) is isomorphic to the inductive limit of the cohomology groups 
Hq(K. ,F)  over the category HRq+ I of hypercoverings of X of type q + 1 up to 
homotopy. 

L e m m a  7.6. The family of  the hypercoverings K., such that all the components K~, 
n > O, are representable by compact analytic spaces quasi-~tale over X, is cofinal in 
HRq+I. 

Proof. Let L. be a hypercovering of X from H~R+I. We construct K that refines L. 
inductively. First of all, since L0 ~ X is a quasi-6tale covering and X is compact, 
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we can find a quasi-6tale covering K0 ---, X that refines L0 and such that K0 is 
representable by an affinoid space quasi-6tale over X.  Suppose now that, for some 

0 < n < q, we have already constructed a morphism K! ~) --~ i~L., where t(! '~) 
is an object of  A~ (we use the notations from loc.cit.; X~ t  is the category 
of  presheaves of  sets on Xqa) such that all r,-m) 0 < p < n, are representable by l x p  , - -  _ _  

rz(n) affinoid spaces quasi-6tale over X and the canonical morphisms • - - +  (Ip.K!n))p+l, 

0 < p < n -  1, and ~t 0 ~ X are quasi-6tale coverings. The morphism K[ '~l 

induces a morphism (i~.K!~))~+~ --* (cosk,~(L.))~+~. Consider the cartesian diagram 
in Xq~t 

L~,+I ~ (cosk~(L.))~+, 

T T 
t(~z+l ---+ (zn* K!n)),~+l 

We remark that the category of  compact  analytic spaces quasi-dtale over X admits 

finite projective limits. In particular, ( in ,K!~))~. l  is representable by a compact an- 
alytic space quasi-Etale over X .  Furthermore, since the upper arrow is a quasi-6tale 
covering, the lower arrow is a quasi-Etale covering too. Therefore, we can find a 
commutative diagram in X ~ t  

K}+l - -~  (i~*K!~)),~+l 
/ 

Kn+l 

where K~+I is representable by an affinoid space quasi-6tale over X and K,~+l -~ 
(n) (in,K. )n+l is a quasi-&ale covering. We define an object K! '~+l) E A ~  + 1]Xq~t 

~("+~) = K,~+~ In this way we get a morphism by __pK~ : Kp(,~) for 0 _< p _< n and ~,~+1 - 

K!  q+l) -~ i*q+lL., where K! q+l) E A ~  llXq~r is such that all K~, q+t), 0 _< p _< q+ 1, 
are representable by affinoid spaces quasi-6tale over X and the canonical morphisms 
A4q+l) ~ (ip,K}q+l))p+l 0 < p < q, and I(~ q+i) ---+ X are quasi-6tale coverings. This 

p + l  ' - -  - -  

morphism induces a morphism K. := iq+l,K! q+l) ~ cOSkq+l(L.)~L.. It remains to 
note that all the components  K ,  of  K.  are representable by compact  analytic spaces 
quasi-6tale over X .  [-3 

Let K. be a hypercovering as in Lemma 7.6 such that c~ comes from the group 
Hq(K. ,F) ,  i.e., c~ comes from an element 3 6 F(Kq). By Key Lemma 7.2 and 
the case q = 0, we can find s E ~ ( X )  such that for any pair of T-morphisms 
cp, "r : Y ~ X with d (% r  < e there is a canonical isomorphism of  hypercoverings 

�9 Y &  L ~+~ �9 �9 of  Y, O. : L (~~ := K, xx ,~  . := K. xx.,/ ,  Y with tp;([~) = Oq(l/)q(k~)) , where 

99q : L~ ~p) ~ Nq and 9q : L~ ~/') ~ Kq. It follows that ~p*(a) = ~O*(a,) in Hq(Y, F) .  
The theorem is proved. 

Corol lary  "/.7. Let T be an analytic space, and let F be an dtale abelian sheaf on 
T. Then .for any k-analytic space X over T and any element a E Hqc(X, F) there 
exists c E ~(X)  such that, for any pair of proper T-morphisms of k-analytic spaces 
g~, ~ : Y --~ X with d(~, O) < c, one has ~y*(cO = ~*(c~) in H~!(Y, F). 

Proof. By [Ber2], 5.2.8, one has 

H~(X, F )  = lim H~q(b/, F ) ,  
? 7  



5 6 6  V . G .  B e r k o v i c h  

where U runs through compact analytic domains in X and b/ is  the topological interior 
of U in X.  Suppose that c~ comes from an element/3 E H~(b/, F )  for some U. We 
remark that, for any proper morphism ~ : Y --+ X,  4-1(H)  is the topological interior 
of 4 -1 (U)  in Y ([Ber2], 1.5.5). Let cl C ~ (X)  be defined by the triple (U, 0, 1). 
Then for any pair of proper morphisms 4, 0 : Y --+ X with d(4, ~)  < el one has 
4 -1 (U)  = 0 I(U) and, by the above remark, 4 - t (b / )  = ~/)-I(b/). Furthermore, by 
[Ber2], 5.2.5, one has H,~J(Lt, F)~Hq(U,j!(Flu)),  where j is the open embedding 
71/~-~ U. Let K. be a hypercovering of U as in Lemma 7.6 such that fl comes from the 
group Hq(K., j~(Flu)), i.e., /3 comes from an element 7 E (j~(FIu))(K q) C F(Kq). 
By Key Lemma 7.2 and the case q = 0 of Theorem 7.1, we can find e _< cl such 
that for any pair of proper T-morphisms 4, 0 : Y ~ X with d(~, '0) < s there is a 
canonical isomorphism 0. : L! ~) := K. • x , ~ Y ~ L !  ~') := K. • x,~, Y of hypercoverings 
of V := 4 - 1 ( U )  = 0 I(U) with 4q(q) = 0q(~q(7)) in F(L~ ~)) (4q and ~q are the 

morphisms L~ ~) --+ K~ and L~q v~ ~ Kq, respectively). Since V := 4-1(H)  = ~b*(H), 

then the latter equality is in fact an equality in the subgroup (j((Flu))(L~q~)), where 
j t  is the open embedding ~' ~ V. It follows that 4*(/3) = 2p*(/3) in Hq(]Y, F),  and 
therefore 4"(c~) = 0"(o0 in Hq(Y, F). [] 

Corollary 7.8. Let a k-analytic group G act on a k-analytic space X, and let A be a 
discrete Gal(k'~/k)-module. Then the cohomology groups Hq(x  A) (resp. Hq(x ,  A)) 
are discrete G(k) (resp. G(k) • Gal(k'~/k)) modules. [] 

m 
Remark 7.9. (i) The fact that Hq(x,  F) are discrete Gal(h'~/k)-modules for arbitrary 
6tale abelian sheaves F on X follows from [Ber2], 5.3.5. 

(ii) Given an analytic space X and an abelian quasi-6tale sheaf F on X,  one can 
endow the cobomology groups Hq(x, F) with the topology with respect to which a 
basis of open subgroups is formed by the kernels of the homomorphisms Hq(x,  F) --~ 
Hq(u, F), where U runs through compact analytic domains in X.  From Theorem 7.1 
it follows that in the situation of Corollary 7.8 the group G(k) (resp. G(k) x Gal(k~/k)) 
acts continuously on the cohomology groups Hq(x, A) (resp. Hq(X, A)). 

(iii) Using the same reasoning as in the proof of Theorem 7.1 and Corollary 7.7, 
one can prove the following fact. Let F be an 6tale abelian sheaf on an analytic space 
T, and let X and Y be analytic spaces over T. Then for any element a' C Hq(Y, F )  
and any finite fiat T-morphism ~2 : Y --' X there exists e C ~ ( X )  such that, for any 
finite flat T-morphism ~'~ : Y -~ X with d(4, '~) < s, one has Tr~((~) = Tr~((t) in 
Hq(x,  F). 

8. The action of the set of morphisms of formal schemes on vanishing cycles 

Let k be a quasicomplete field with nontrivial valuation, and let a be a fixed non- 
zero element of the maximal ideal k ~176 of the ring of integers k ~ All the schemes 
considered below are assumed to be finitely presented over k ~ We fix such a scheme 
7- (for example, 7- = Spec(k~ and let .F be an 6tale abelian torsion sheaf on %r 
From Comparison Theorem 5.1 it follows that if 2( and y are schemes over "T, then 

any morphism of formal schemes 4 : Y ~ ~" over 7- induces homomorphisms of 
sheaves on y,~ and y.~, respectively, 
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, . ,  q . . ,  q . ~ :~) : ~,~('~ (~  ~*(~lx.,))) - ~  ~ (R ~.(~-Iy.,)) ,  

* q 

For a prime integer l, we set st(k) = dimv~(lk*l/Ik*l~). 

Theorem 8.1. Let ~ be a constructible sheaf on T~t with torsion orders prime to 

char(k), and suppose that s~(l~) < co for each prime l dividing a torsion order o f F .  
Given 2(, where 2( is a scheme over T,  there exists 'rt >_ 1 such that, ,for any scheme 
3) over T and any pair o( T-morphisms ~, ~ : ~ -+ 2( that coincide modulo a' ,  one 
has oq(~2, .U) = oq(~, F),for all q >_ O. 

Proof. First of all we verify that the sheaves considered are constructible. 

Lemma 8.2. Let 1 be a prime integer with l ~ char(k) and 8z(k) < oc. Then for 
any constructible 1-torsion sheaf ~ on 2d~ I the sheaves" i*( Rq j ,G) are constructible and 
equal to zero for q > st(k) + 2 dim(Xv). 

Proof. By Deligne's Theorem 3.2 from [SGA4�89 Th. finitude, the vanishing cycles 
sheaves /~qk~tT(~ ) are constructible. (In the proof of Deligne's Theorem one assumed 
that k ~ is a discrete valuation ring, but the proof works for arbitrary k ~ It is clear 
that Rqg%(G) = 0 for q > 2dim(X,7). Let I be the inertia group of k:. Then there is a 

spectral sequence 7 ~ ( I ,  RqqsT(~)) ~ ~*(/~:t~+qj.~), where ~ : X;- --~ A'~, and therefore 
it suffices to show that the sheaves 7-[P(I, t~q~P77(~)) are constructible and are equal to 
zero forp  > 8 := st(k). Let Q be the minimal closed invariant subgroup of I such that 
M := I / Q  is a pro-l-group. Then the indices of all open subgroups of Q are prime to 1 
and M~,Z~  (see [Bet2], 2.4.4). It follows that 7-{t~(I, t~qko~l(~)) = 7-{P(M, t ~ q ~ r l ( ~ ) Q ) .  

Thus, our statement is reduced to the verification of the following simple fact. Let 
G be a constructible sheaf (on a scheme) endowed with a continuous action of the 
group MU+Z~. Then all the groups ~ P ( M ,  G) are constructible and are equal to zero 
for p > s. By induction, it suffices to consider the case ,s = I. Let cr be a generator of 

Zl. Then 7-/~ ~) = Ker(G Z2~ G), ~ t ( Z i , G )  = Coker(G Z2~ G) and ~P(Zt ,G)  = 0 
f o r p >  1. []  

We fix a functor ~1~ ~-, g from the category of schemes 6tale over X, to the 

category of formal schemes 6tale over ~'  which is inverse to the functor from Lemma 
2.1. 

Corollary 8.3. In the situation of Lemma 8.2 suppose that the residue field ~ is 
separab~, closed. Then for any dtale morphism of finite type ~1~ --~ ,~  the groups 
Hq(~l,7, G) are finite. 

Proof.  By Comparison Theorem 5.1 and Corollary 4.2, there is a spectral sequence 

E~ ''q = HP(~.s,i*(Rqj.~)) ~ HP+q(.~l,t, ~). By Lemma 8.2 and [SGA4�89 Th. fini- 
tude, 1.10, the groups E~ ~'q are fnite. The required statement follows. F2 

Lemma 8.4. Let 3~ be a formal scheme fnitely presented over "k~ Then .for any 
E ~(3~) there exists rt > 1 such that, for any formal scheme ~) locally finitely 
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presented over k~ and any pair of morphisms ~, ~ : 2fl ~ 3~ that coincide modulo a n, 
one has d(g~zt, ~n) < ~" 

Proof. Suppose first that X = Spf(A), where A is topologically finitely presented over 

~o, and let elements f l , .  �9 . . f ,~ be the images of the coordinate functions under some 

surjective homomorphism k~  T,~} --~ A. By Corollary 6.3, we may assume 
that c is defined by the triple (Yn, {f~), {t~}) for some t l , . . . ,  t,,~ > 0. We claim that 
any ~z >_ 1 such that lal" < t~ for all 1 < ~ < rn possesses the necessary property. 
Indeed, let 99, ~b : ~ ~ 3~ be a pair of morphisms that coincide modulo a ~. We may 

assume that ~ = Spf(B), where t3 is topologically finitely presented over k,~ Then 

~P*f~ - ~b*fz = a~g~ for some gz ~ /3. Since the image o f / 3  in /3 := B ~ o  k is 
contained in/3~ it follows that p ( ~ f ,  - ~nL) <- lal n <- t~, 1 < i < rn. 

If 3~ is arbitrary, we take a finite covering { : E , } ~  of 3~ by open affine formal 
subschemes of the above form. Then (3~,n}~z is a finite affinoid covering Yn. By 
Proposition 6.1, we may assume that e is the infimum of e~ with s(e~) = {3~,,~}. The 
previous case applied to 5E, and e~ gives integers zz, > 1, i ~ I. It is easy to see that 
n := max z~,~ satisfies the necessary property. ~3 

z~ l  

We are now ready to prove the theorem. First of all, we can replace k by its 

maximal unramified extension and assume that the residue field k is separably closed. 
Let 0 <_ q << st(k)+ 2dim(P(~). Since the sheaf i*(Rqj.(Yrlx,7)) is constructible 

and is associated with the presheaf Lt~ ~ Hq(LLo,~), we can find a finite 6tale 

covering {g,,., /g  X~} by separated schemes of finite type over k such that if G~ 

denotes the constant sheaf on Lt,,s associated with the finite group Hq(Ltv,,l,~), 
then the canonical fiomomorphism O~f~!(~,)  --~ i*(Rqj.(-~lx,)) is surjective. By 

Theorem 7.1 and Lemma 8.4, we can find n > 1 such that, for each u and any 
pair of morphisms of formal schemes ~, ~ : ~) --~ g ,  that coincide modulo a n, the 

homomorphisms Hq(g~,,1, if-) -~ Hq(~O,7, ~ )  induced by ~ and ~ coincide. We claim 
that this n satisfies the required property (for the chosen q). 

Indeed, let ~p, ~ : ~ ~ A" be a pair of 'T-morphisms that coincide modulo 

a".  We set ~3,, = y x~ ,~  ~t,, and denote by c?~, and g~ the induced morphisms 

~,~ --~ ~I.. and ~ .  ~ ~ ,  respectively. Since ~p and z/~ coincide modulo a ~, there 

is a canonical isomorphism ~ , , ~ ( y  • H.),~. By Lemma 2.1, it induces an 

isomorphism ~ , ~ y  • Sv,~, 2t.. Let ~ .  denote the composition of the latter isomor- 

phism with the canonical morphism y •  Lt~ ~ ~ . .  Thus, we get two morphisms 

~ , ,  r : ~ ,  ---* Lt~, that coincide modulo a ~* and extend the morphisms ~, ~ : ~ ~ ~', 

respectively. By our choice of n, the homomorphisms Hq(L[u rt if") ~ Hq(~'23u,~l, if') 
induced by ~y~, and ~/;~ coincide. If 7-(~ denotes the constant sheaf on ~.,.~ associ- 

ated with the group Hq(~'2Ju,~,/,.~), then the latter means that the homomorphisms of 
sheaves ~* ~(~7,~) = ~,.~(G~) ~ ~ induced by ~p~, and ~ coincide. Furthermore, for 
each u there is a commutative diagram 
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. . . . . .  ~ Ix,,))) = * . *  q '  Ix~,))) ~ ( f ~ ! ( 0 ~ , ) ) -  ~ s ( f ~ ( ~ ) )  ~ ~ ( ~  (JR 3.( -T ~s(z (R 3.(.T 

9,!(7-{,) ~ i*(JRqj.(.Uly~ )) 

where 0~,,~ : ~ ( f , ! ( ~ ) )  = 9~,!(g~*,~G~.) -+ g~,!(~,~) and 0~,,~, : ~.~(f , ! (~))  = 
g~.~(~b*,~) --~ 9~,!(7~,). Since 0~,~ = 0,,,e for all u, it follows that oq(cy,.T) = 
oq(@, .~). The theorem is proved. [ ]  

Coro l l a ry  8.5. Let .T be a constructible sheaf on T, 7 with torsion orders prime to 

char(k). Given 2(, where 2( is a scheme over 7", there exists r~ > 1 such that, for any 
scheme y over 7- and any pair of T-morphisms g) , ~ : ~ ---* 2( that coincide modulo 
a '~, one has oqo?,~ ) = oq(~ , f ' ) for  all q >_ O. [] 

For a scheme 2( over 7-, we denote by G(~ ' / 'T )  the group of 7"-automorphisms 

of ,~ and by Gn(A' / 'T)  its subgroup consisting of the automorphisms trivial modulo 
a 'L Furthermore, recall that a Z t - sheaf  on a Noetherian scheme is a projective system 
of  6tale constructible Z / lm+lZ-modu le s  .T,~, m > 0, such that, for each m > 1, 
the canonical  homomorphism 5~,,~ --+ 5rm_l induces an isomorphism 5cm | 

Z /U~ZZ~Sc~_I  (see [SGA41],  Rapport, w 

T h e o r e m  8.6. Let .T be a Zl-sheaf on Trl, 1 7 L char(k), and suppose that st(k) < oo. 

Given 2(, where 2( is a scheme over 7-, there exists n >_ 1 such that the group ~ ( 2 (  / 'T) 
acts trivially on all of the sheaves i*(Rqj.Fm), q > O, rrz > O. 

L e m m a  8.7. Let R be a commutative ring, A a commutative JR-algebra complete in 
the a-adic topology for some ideal a C A, G(A/R)  the group of the automorphisms cr 
of A over JR with ~r(a) = a, ~(A /JR)  the subgroup of automorphisms trivial modulo 
a ~. If  a prime number 1 is invertible in A, then for any n > 2 (resp. 7~ > 1 if a is 
generated by elements of R) the group G~(A/ R) is uniquely 1-divisible. 

Proof. Let E be the ring of the endomorphisms ~ of the R-module A with ~ (a  "~) C 
a m for all m, > 0, For ~, 4 0 ,  let w(~)  denote the maximal integer u such that ~ ( a  "~) C 
a . . . . .  for all m _> 0. We also set w(0) = oo. One has w ( ~  + '(0 >_ inf{w(~) ,  w(~)}  
and w(~/;) >_ w(~) + w(~), i.e., w is a filtration on E.  In particular, E,~ := {~ E 
E l w ( ~ )  > m }  are two sided ideals in E. Since A is a-adic, the ring E is separated 
and complete in the topology defined by the ideals E,L. It follows that Um := 1 +Era ,  
m > 1, are subgroups of E*. One has ~ ( A / R )  C U,~_l (resp. ~ ( A / R )  C U,O. 

We claim that, for any n >_ 1, the group U,~ is uniquely /-divisible. Indeed, if 

~ E E,~, then the series l l ~ =  ~ = o (  ~ ) ~ q  isconvergent in E, andtherefore 

U,~ is /-divisible. Suppose that (1 + ~)z = (1 + ~)z for some ~ ~' g) in El .  Then 
w(~)  = w(~p) and l(qo - ~p) = l ( / 2 1 ) ( f f 3 2  - ~2) "k" . . .  + ( f f ) l  - -  ~91). For each i > 2, one 

has w(~  ~ - ~p~) >_ (i - 1)w0p) + w0p - g)) > w(~2 - ~).  The  latter contradicts to the 
above equality. 

It remains to verify that if cr E Ui A 9 (A /R) ,  then ~- := ~ E G(A/R),  i.e., 
r ( ab )  = r(a)~-(b) for all a, b E A. If  cr = 1 + ~,  where cp E E l ,  then the latter is 
equivalent  to the equality 
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(?) 
1 1 1 

7 ) ~(a)~3(b) 
q=0 z,3=0 

Since um(ab) = cr"~(a)crm(b), m > O, then there are equalities 

(*) 
q=O "1,,.2 =0 

We introduce inductively by m _> 0 polynomials  f~,~ C Z [ X 0 , . . . ,  Xm,  Y 0 , . . . ,  ~ ]  
by the equalities 

( , ' )  
q=0 ~ ,3 =0 

Then ~'r~(ab) = fro(a , . . . ,  ~m(a), b , . . . ,  ~'~(b)). Let B be the ring of polynomials  
Z[~l [X0,  X 1 , . . . ,  Y0, Y l . . . ]  graduated by d e g ( X 0  = deg(Y0 = i. For a polynomial  
f C B,  let e(f)  denote the minimal  degree of a monomial  that enters in f .  For 

. . . . . . .  ( ? )  
example,  e(f~,) = m (since f,~ = ~ = o  ~a=0  j 

the completion lira B / b , ,  where bm is the ideal { f  E Bte( f )  >_ rn,}. The equality 

(?) follows from the fol lowing equality in 

(?') 
q=0 z,3=0 

Let p be a prime number  different from l, and let m be the integer with ml -- l (modp)  
I 

a n d l < m < _ p - l .  Then ( T i ) - ( ~ i Z ) ( m o d p ) f o r a l l O < i < p - l ,  andtherefore 

the equality (?1) is congruent  to the equality ( . i )  modulo the ideal generated by p and 

b,~+l. Note that m _> [ ~ ] ,  and therefore m --~ oc when  p ~ oc. It follows that (?') 

is true. [ ]  

Proof of Theorem 8.6. There is an exact sequence of  Zvsheaves  0 --* 7 ~ 5 c -+ 
5 c"  ---* 0 such t h a t / " 7  = 0 for some u >_ 0 and 5 c"  is without torsion (see [SGA4�89 
Rapport,  2.8). It induces, for each m _> 0, an exact sequence 0 ~ 5,~, -+ Fr,~ 
5c~, --~ 0. We also remark that 5 c ~ 5 c ~  for m _> u and that, for each m > 1, there 
exists an exact sequence 0 --~ 5c~_t  --~ 5c,~(~ --, 5c~ ~ ---* 0. By Theorem 8.1, we can find 

n > I such that the group G~(X/T)  acts trivially on all of the sheaves i*(t'~qj.~[r~), 
0 < m < u, and i*(Rqj.u~l). By Lemma 8.7, this group is uniquely /-divisible. It 
follows that it acts trivially on all of the sheaves i*(Rqj.Jr~,.), q >_ O, m > O. �89 

Corollary 8.8. Let .~ be a Zt-sheaf on T,~, l ~ char(E). Given A', where 2( is a scheme 
A A 

over 7-, there exists" n > 1 such that the group Gn(?(/T) acts trivially on all of  the 
sheaves Rqgt~(.Tm), q >_ O, m >_ O. D 
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