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Introduction

Letk be a complete discrete valuation field dedts ring of integers. In this work

we extend the construction of the vanishing cycles functor for formal schemes of
locally finite type overk® from [Ber3] to a more broad class of formal schemes
that includes, for example, formal completions of the above formal schemes along
arbitrary subschemes of their closed fibres. We prove that'ifis a scheme of
finite type over a Henselian discrete valuation ring with the compldtiband

%/ is a subscheme of the closed fibg#&s, then the vanishing cycles sheaves

of the formal completion@%/ of .2 along %/ are canonically isomorphic to
the restrictions of the vanishing cycles sheaves#fto the subschemeg/. In
parucular the restrictions of the vanlshlng cycles sheavegtoto %/ depend

only on 1/ »» and any morphisnp : Z Ty = 1// induces a homomorphism
from the pullback of the restrlctlons of the vanishing cycles sheavesfof
to {// to those of. 2" to %/’. Furthermore, we prove that, g|vei%(// and

X/ y» ONe can find an ideal of definition 037’/, such that if two morphisms

o, 27 Ty = ./5// coincide modulo this ideal, then the homomorphisms
between the vanishing cycles sheaves induceg laynd+ coincide. These facts
generalize results from [Ber3], where the case whghis open in.Zs was
considered, as well as results of G. Laumon, J.-L. Brylinski and the author from
[Lau], [Bry] and [Ber5], respectively, where certain cases whghis a closed
point of .%¢ were considered (see Remarks 4.2 and 4.6). Finally, we prove a
vanishing theorem which states that tpelimensionaktale cohomology groups

of certain analytic spaces of dimensiom are trivial forq > m. This class

of analytic spaces includes, for example, the firGitale coveringsZ?" of the
Drinfeld half-planef2? constructed by V. Drinfeld in [Dr]. (The vanishing result
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for 29 follows from the work of P. Schneider and U. Stuhler [ScSt] where all
the cohomology groups a?? are calculated.)

In §1 we recall a construction of P. Berthelot ([Bert]) that associates with
a formal schemex over k° of a certain type (called special in this paper) its
generic fibreX,, (which is ak-analytic space), a reduction map: X, — X
and, for subschemey C X5, a canonical isomorphisnﬁ(/y)nlw—l(f/).
(The analytic domainr—1(%/) is called the tube 0%/ in X.) In §2 we construct
for a special formal schem#& the nearby cycles and vanishing cycles functors
O Xy — Xser and¥,, © X — Xsgr In §3 we prove the comparison theorem
which states that if2" is a scheme of locally finite type ovée®, %/ is a

—

subscheme of¥s, .77 is an abelian constructible sheaf o#, with torsion
orders prime to chalfo, and ?/\,/ is its pullback on Q@A}/,/),,, then there are
canonical isomorphism&E.7)| ,/lRe(f/,/) and RY,.7)| ,/LR@,(J?/\,/).

The proof uses the recent stable reduction theorem of A. J. de Jong from [deJ].
The comparison theorem implies that4# is a subscheme of the closed fibre of

a smooth formal schem® overk® and A = Z/nZ, wheren is prime to charlZ),
thenH (%, A)SHY(m—1( %), A), and if, in addition, the closure of/ in X

is proper thenHCq(jg/,A)%Hjil(///)(xn,/l). This means that the construction

of P. Berthelot ofp-adic cohomology ofZ/ in terms of certain cohomology of

the tuber—1(%/) makes sense also foradic cohomology] # p = char@). In

84 we prove the continuity theorem. §b we prove a more general version of

the Generalized Krasner Lemma 7.3 from [Ber3], introduce a class of analytic
spaces called quasi-affine and show that any analytic space that admits a finite
étale morphism to a quasi-affine analytic space is quasi-affingé Wwe prove

the vanishing theorem for paracompact quasi-affine analytic spaces. Here the
comparison theorem (in the form of [Ber3]) is used to reduce the statement to
the affine Lefschetz theorem.

The problem of proving the properties of the vanishing cycles sheaves es-
tablished in this paper has arisen in P. Deligne’s work [Del]. In that work he
constructed a certain representation of the group(Q},) x BZQP x Wg, in terms
of cohomology of the vanishing cycles sheaves of modular curves, vilagsg
is the skew field with centeQ, and invariant th. The non-evident fact was
that the representation constructed is smooth for the gB;g&%. In [Carl], a
similar representation for a finite extension @ was constructed in terms of
cohomology of the vanishing cycles sheaves of certain Shimura curves (using the
properties of the vanishing cycles sheaves of relative curves established in [Bry]).
In [Car2], H. Carayol generalized that construction to obtain for every local field
F and for everyh > 1 a representatios, - of the group Gla(F) x By ¢ x Wk,
and conjectured a description of it in terms of the local Langlands and Jacquet-
Langlands correspondences. That the representaipp is smooth for the group
By ¢ follows from the results of this paper.

Like [Ber3] and [Ber5], this work arose from a suggestion of P. Deligne to
apply theétale cohomology theory from [Ber2] to the study of the vanishing
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cycles sheaves of schemes. | am very grateful to him for this and to A. J. de
Jong who explained me his results from [deJ]. | am also grateful to the referee
for useful remarks. | gratefully appreciate the hospitality and support of Harvard
University where this work was done.

1. Special formal schemes and their generic fibres

Let R be a topological adic Noetherian ring whose Jacobson radical is an ideal
of definition (see [EGA1] Ch. 0§7). We say that a topologic&-algebraA is
specialif A is an adic ring and, for some ideal of definitianC A, the quotient
rings A/a", n > 1, are finitely generated oveR. The following lemma lists
properties of specidR-algebras which follow easily from [Bou], Ch. Il and V.

Lemma 1.1. Let A be ara-adic special R-algebra. Then

(i) A is a Noetherian ring and its Jacobson radical is an ideal of definition;

(i) every idealb C A is closed, and the quotient ring B A/b is anaB-adic
special R-algebra;

(i) if A — B is a continuous surjective homomorphism between special R-
algebras and is its kernel, then Ab is topologically isomorphic to B;

(iv) if an idealb C Ais open, then the completion:B AofAin theb-topology
is abB-adic special R-algebra;

(v) if B is a special R-algebra, then so iSoAB;

(vi) the algebra of restricted power series:B A{Ty,..., Ty} is anaB-adic
special R-algebra;

(vii) the algebra of formal power series B= A[[Ty,..., Ty]] is a b-adic
special R-algebra, where is generated bp and Ty, ..., T,.

An adic R-algebraA is said to betopologically finitely generated over R
A is topologicallyR-isomorphic to a quotient algebra of the algebra of restricted
power serieR{Ty, ..., Tn}. By [EGAL], Ch. 0, 7.5.3, the latter is equivalent to
the fact thatJA is an ideal of definition oA andA/JA is finitely generated over
R, whereJ is an ideal of definition olR. By Lemma 1.1, any adi®k-algebra
topologically finitely generated oveR is special.

Lemma 1.2. Let A be ama-adic R-algebra. Then the following are equivalent:
(a) A is a special R-algebra;
(b) A/a? is finitely generated over R;
(c) A is topologically R-isomorphic to a quotient of the special R-algebra
R{TL....Tw}[St. ... S]]

We remark thaR{Ty, ..., Tn}H[S, .., S = RIS, .-, SN{Ts, ..., Tm}-

Proof . The implication (c)=-(a) follows from Lemma 1.1, and (a3<(b) is
trivial. We have to prove (b}s(c). Letfy, ..., fm (resp.gs, ..., gn) generateéd/a
(resp.a/a®) overR (resp.A/a), and lety : B :=R{Ty,..., Tn}[S, ..., S —
A be the continuou&-homomorphism that takeg to fi and§ to g;. It suffices
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to show thaty is surjective. By Lemma 1.1, the idélalc B generated by and
S, ..., S, whereld is an ideal of definition oR, is an ideal of definition 0B,
and one has(b) C a. Therefore, by [Bou], Ch. llI§2, Prop. 14, it suffices to
show that all the induced homomorphisimg' — a/a’, i > 1, are surjective.
The latter is easily verified by induction.

A formal schemeX overR (i.e., over SpfR)) is said to bespecial(resp. of
locally finite typ@ if if it is a locally finite union of affine formal schemes of
the form Spf@), whereA is an adic algebra special (resp. topologically finitely
generated) oveR. The category of formal schemes special (resp. of locally
finite type) overR will be denoted byR-.%7 sch (resp.R-.7 sch). This category
admits fibre products. (Of coursB;.7 schis a full subcategory oR-.%7 sch.)

A morphism®2) — X in R-.%%7 schis said to be ofocally finite typef locally it is
isomorphic to a morphism of the form SBf( — Spf(A), whereB is topologically
finitely generated oveh. The latter is equivalent to the fact that, & is an ideal

of definition of X, then 7%, is an ideal of definition of). A quasicompact
morphism of locally finite type is said to be fifite type We remark that any
open subscheme of a formal scheme special (resp. of locally finite type) over
R is of the same type and that, if SBj(e R-.%7 sch, thenA is special (resp.
topologically finitely generated) oveR.

Let k be a non-Archimedean field with a discrete valuation (which is not
assumed to be nontrivialk® the ring of integers ok, k°° the maximal ideal
of k°, k = k°/k°° the residue field ok. If X € k°-.%% sch, then the ringed
space &, @y / 7), where 7 is an ideal of definition ofX that contains®°,
is a scheme of locally finite type ovér. It is called theclosed fibreof X and
is denoted byXs. The schemeXs depends on the choice of the ide@ but
the underlying reduced scheme and &iale topos offs do not. (ForX € k°-

7 sch, one can takeZ = k°°“y and then one gets the closed fibre defined in
[Ber3].) We remark that for a subschemgg’ C Xs the formal completioriX, .,

of X along %/ is a special formal scheme ovkf. We will define a functor
k°-.%7 sch — k-._-n that associates with a special formal scheigés generic
fibre X,, € k-_4n, and we will construct aeduction mapr : X, — Xs.

If X = Sp{A), where A = k°{Ty,..., Tm}[SL,- .., S]l, we setX, =
E™(0;1) x D"(0; 1), whereE™(0;1) andD"(0;1) are the closed and the open
polydiscs of radius 1 with center at zeroA™ and A", respectively. The space
X, is exhausted by a sequence of affinoid domafasC X, C ... such that
eachX, is a Weierstrass domain K., (i.e., X is a Stein space). The canonical
homomorphism® — .2y, are continuous, and the image Afyo k in each
.x, is everywhere dense. (If the valuation loris trivial, thenA=¢(X,,).) Any
morphisme : Q) — X, whereg) is of the same form, induces in the evident way
a morphism ofk-analytic spaces,, : 9, — X,.

Suppose now that = Spf(A), whereA is an arbitrary specidd°-algebra. We
fix a surjective homomorphism : A ;= k°{Ty,..., Tm}H[S, ..., S]] — A Let
a be the kernel ofv. We setX’ = Spf(A’) and definex,, as the closedt-analytic
subspace of9€;7 defined by the subsheaf of idea:hz%e/. In particular, X,, is

n
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identified with the set of continuous multiplicative seminorms/Aothat extend
the valuation ork® and whose values are at most 1, and it is exhausted by a
sequence of affinoid domain§ C X, C ... such that eaclX, is a Weierstrass
domain in X,+1. Furthermore, the canonical homomorphiss— .4y, are
continuous, and the image Afo k in each 2y, is everywhere dense. It follows
that a compact subs&t C X, is an affinoid domain if and only if there exist
a k-affinoid algebra 2y and a continuous homomorphisth— .45 such that
the image Z4(.4v) in X,, is contained irV and any continuous homomorphism
A — .2°, where.Z is an affinoidk-algebra, for which the image o¥2(.2) in
X, is contained iV, is extended in a unique way to a boundedomomorphism
4y — .#3. This implies easily that the corresponderie— X, is a functor,
and ifQ) is an open affine formal subscheme3fthen the canonical morphism
2, — X, identifiesQ),, with a closed analytic domain i,

If X is arbitrary, we fix a locally finite coveringX; }ic; by open affine
subschemes of the form SpJ( whereA is a speciak®-algebra. Suppose first
that X is separated. Then for any pairj € | the intersectior;; = X; N Xj is
also of the same forn¥;;; ,, is a closed analytic domain & ,,, and the canonical
morphismX; ,, — Xj , x Xj, is a closed immersion. By [Ber2], 1.3.3, we can
glue all X; , along Xj ,,, and we get a paracompact separdteghalytic space
X,. We remark that the corresponderte— X, is a functor that extends the
functor constructed for the affine formal schemes, an®) ifts an open formal
subscheme of, then?), is a closed analytic domain iff,. If X is arbitrary,
thenXj = X; N X; are separated formal schemes, aiid, is a closed analytic
domain in thek-analytic spaceX; ,,. Therefore we can glue alt; ,, along Xj ,
and get a paracompaktanalytic spacex,,. We remark that the correspondence
X — X, is a functor to the category of paracomp&eanalytic spaces, and this
functor commutes with fibre products. f : 9 — X is a morphism of finite
type, then the induced morphisp, : 9, — X, is compact. We also remark
that if ¢ : 9 — X is finite (resp. flat finite), then so is,, : 9, — X,.

The reduction map : X,, — Xs is constructed as follows. Supposed first that
X = Spf(A). Then a poink € X,, defines a continuous characigr: A — .72(x).
The latter defines a charactgg : As = A/a — 7766() wherea is an ideal of
definition of A that containgk°®°. The kernel ofyyx, which is a prime ideal oA,
is, by definition, the pointr(x) € X5 = Spechs). We remark that if}) is an open
formal subscheme ak, then the reduction maps fo¢ andg) are compatible
and Q_),]inr—l@s). (This is reduced t@) of the form SpfA,), and is easily
verified for suchg).) This remark allows one to extend the construction of the
reduction map for arbitrary special formal schemes dwer

Proposition 1.3. Let X € k%7 sch. Then for any subscheng¢ C X, there
is a canonical isomorphisn{x, ,//)nlyrfl(f;/) .

Proof . We may assume tha/ is closed inXs and X = Spf(A). Letfq,...,f,
be elements oA such that their images iAs generate the ideal 0f/. Then the
canonical morphisnp : (X,), — 7 4(%/) = {x € X,|[fi(x)] < 1,1 <i <n}
is a homeomorphism. And so it suffices to verify thaVifis an affinoid domain
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in (X,,)y, thenp(V) is an affinoid domain ink, and. Z,y)—. 4y. This is
easily obtained from the description of affinoid domainstin

2. The vanishing cycles functor

A morphisme : 2 — X in k°-. %7 sch is said to beétaleif it is of locally
finite type and for any ideal of definitior7 of X the morphism of schemes
), & /7/ ) — (X, / 7) is étale. The following is a straightforward gen-
erallzat|on ogf)Lemmas 2.1-2.2 and Proposition 2.3 from [Ber3].

Proposition 2.1. (i) The correspondencg) — %) induces an equivalence be-
tween the category of formal schenetalé overX and the category of schemes
étale overXs.

(i) If ¢ : Y — X is an étale morphism, thew,(2,) = 7 Hps(Ds)). In
particular, ¢,(9),) is a closed analytic domain ift,,.

(i) If ¢ : P — X is an étale morphism, then the induced morphism of
k-analytic spaceg, : 2), — X, is quasi€tale (see [Ber3]§3).

More generally, letK be a subfield of a separable clos®of k, and let
X € k°-¥7 sch We denote byXs, and X, the closed and generic fibres of
the formal scheméy := X&y-K°, i.e., Xg =% ® K and X = 367,@2. We
also set¥s = X5 ® ks and X,, = X,,@ks. A morphismg : ) — X of formal
schemes oveK ° is said to beétaleif locally it comes from arétale morphism
P’ — X in k'°-%7 sch for some finite extensiok’ of k in K. It follows
from Proposition 2.1 that for suc) the closed fibred),, the generic fibre)),
and the reduction map : ), — 9 are well defined, and all the statements
of Proposition 2.1 also hold fokk instead ofX. We fix a functor®), — 9
from the category of schemésale overXs, to the category of formal schemes
étale overXx which is inverse to the functor from that more general Proposition
2.1(i). The composition of the latter functor with the func®r— 2, induces
a morphism of sites/ : Xy o — Xy If 4 denotes the morphism of sites

X — X we get a left exact functor

K gét 7K &

oX = vept :{77T<'et—> x”;qét_) xs??ét .
The following is a straightforward generalization of Proposition 4.1 and Corollary
4.2 from [Ber3].

Proposition 2.2. Let F be anetale sheaf orX,, .

(i) If Y is étale overXy,, thenoX (F)(Q,) = F©,).

(ii) If F is an abelian sheaf, then X (F) is associated with the presheaf
s — HYD,, F).

(iii) If F is a soft abelian sheaf, then the she@f (F) is flabby.

We denote byox the functorX; — Xg, 1 F — OKX(Fk), whereFg is
the pullback ofF on X,, . We remark that a shed¥ is soft then, by [Ber3],
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Lemma 3.2, the she#i is also soft, and therefore for afythere is a canonical
isomorphismRI6y (F)=>RIOK (Fk), g > 0. We are especially interested in the
nearby cycles functo® = 6y : X, — Xs& and thevanishing cycles functor
¥, = Oxs : X, — Xsar But to save place (at least in this section) we consider
the functor©x for an arbitrary extensioi of k in k5.

Corollary 2.3. (i) For an étale morphisn®) — X in k°-.% sch and Fe S(X,),
one has(Rq@KF)@ SRqQK(F@ ), q>0.
. X K
(i) For a morphismy : 9 — X in k°-%7sch and F € D*(9),)), one has
ROk (Rpyy ,F)=Rps (ROKF) .
In particular, if F* € D*(X,), then R(Xs , ROk F ) =RI(X,, ,F).
Proposition 2.4. Let 4/ be a closed subset d¢s and F € D*(X,). Then

there is a canonical isomorphism/B,.(Xs , ROk F ')QRFW_l(%K (X5, F). In
K

particular, if X is of locally finite type over k and %/ is quasicompact, then
RIT,/,KV(%SK ,ROKF)SRI(m YY)k, F).

Proof . It suffices to verify the following two facts foZ = 7=%(%/)« and
F e S(X,,):

1) HS/,}Z(XSK ,ON(F)) = HY, (X, F);

(2) if F is soft, thenH B/?(xSK,@K(F)) =0forp > 1.

(1) One haH Qd(x,,K,F) = Ker(F (X, ) — F(X,\?%2)). By the definition
of OK(F), one has (X, ) = OX (F)(X,,) andF (X, \?2¢) = @K(F)(I{Sz\j'? )
and therefore the group considered coincides \M@N(XSK , 6K (F)).

K

(2) If F is soft, then the homomorphisr@K(F)(%sK) = FXy) —
— @K(F)(xs‘\;%z) = F (X, \7¢) is surjective and, by Proposition 2.2(iii),
the sheaioX (F) is flabby. The required fact follows.

For ak-analytic space (resp. a schemg/ overE), we setX = X&ks (resp.
Y =Y k).
Corollary 2.5. Let X be of locally finite type over k¥ %/ a quasicompact
closed subset afs, and F € D*(X,)). Then there is a canonical isomorphism
RF,,/(BES, RY,F)SRIG(r—Y(%/), F). In particular, if all of the irreducible com-
ponents ofXs are proper, then Ry (Xs, R%,F ) SRIL(X,, F).

Remark 2.6. (i) There is a canonical action of the Galois grogp := G(k3/k)

on ¥, (F) compatible with the action oBs := G(ES/E) on Xs. But for arbitrary
special formal schemes ovk?, this action is not necessarily continuous because
the generic fibrex,; is not necessarily compact even for a quasicomgasee
Remark 3.8(iii)). For the same reason, the statement of Proposition 4.6 from
[Ber3] is not true for arbitrary special formal schemes. But | don’t know if the
statement of Theorem 4.9 from [Ber3] is true.
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(i) One can define as follows a version of the above fune@ar which
possesses the properties mentioned in (i) (and coincides &gthfor formal
schemes of locally finite type). Namely, for &tale abelian shed on X,, and
anétale morphisni : 4 — Xk let Ok (F)(Lls) be the subgroup of ad € F (LL,)
such that for any open quasicompact subsch&ime 4 the set Supfs) N'J,, is
compact. Then the correspondente— Ok ¢(F)(Ls) is a sheaf or¥g, , and one
gets a left exact functa®. x : S(X,) — S(Xs). From [Ber2], Corollary 5.3.5, it
follows that the canonical action of the Galois graBpon¥; ,(F) = O¢xs(F) is
continuous anderq@C7k,(F)1>Rq90,K(F), where the limit is taken over finite

extensionk’ of k in K. Furthermore, the proofs of Proposition 4.6 and Theorem
4.9 from [Ber3] are applicable to the functags = Ok and¥., and arbitrary
special formal schemes, and therefore their statements hoté.fand . ,. We
also remark that Proposition 2.4 implies the following fact. Eebe of locally
finite type, ¥/ a closed subset ok, i the canonical morphisnk,,, — X,

F e D¥(X,), andF/',,/ the pullback ofF* on (X, ),. Then there is a canonical

isomorphismRig (ROkF') ROk (F) ).

3. The comparison theorem

Let.¥ be the spectrum of a local Henselian ring which is the ring of intekers
of a fieldk with a discrete valuation (which is not assumed to be nontrivial), and
let 2" be a scheme of locally finite type ovéf’. For a subscheme/ C X, let

}?/,/ denote the formal completion o along%/. Sinceeﬁ??/,/ coincides with
the formal ccA)mpIetion of 2" along %7, it follows that this is a special formal
scheme ovek®. Its closed fibre can be identified with/, and for the generic
fibre one has, by Proposition 1.3, a canonical isomorphi%///()ngwfl({g/),
where is the reduction mapﬁ?f, — .#s. Furthermore, for a shea¥” c .27,
let.7 and.ﬂ77,/ denote the pullbacks o on x/y:] and (;’a,/),,,, respectively.
The nearby cycles and vanishing cycles functors.fras well as for.2" and
(.327,/),, will be denoted in the same way l&y and¥,,.

Theorem 3.1. Let.77 be anétale abelian constructible sheaf o#;, with torsion
orders prime tochark). Then for any g> 0 there are canonical isomorphisms

(RIO.7)| ,SRI6(7] ) and R, 7)|, RW,(7,) .

Remark 3.2.By the comparison theorem 5.1 from [Ber3],4¥ is open in. 2,

then the above isomorphisms take place for arbitrary abelian torsion sheaves. If
%/ is arbitrary, the assumption on constructibility is necessary even for torsion
sheaves with torsion orders prime to oy and the assumption on torsion
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orders is necessary even for constructible sheaves and the cade eh@r(see
Remark 3.8(iii) and (iv)).

Proof of Theorem 3.1We consider only the case when the valuationkoris
nontrivial, and at the end of the proof we indicate the changes that should be done
in the trivial valuation case. Since the formation of vanishing cycles sheaves of
schemes is compatible with any base change ([SQA‘ZIh. finitude, 3.7), these

sheaves don't change if we replace the fikldby its completionﬁ. It follows
that the same is true for the nearby cycles sheaves because the Galois groups of
k andk are isomorphic. Thus, we may assume that the feisl complete.

Step 1.The theorem is true if%" is semi-stable ovet”, %/ is a union of
irreducible components of%s, and.”7 = A, , whereA = Z/nZ and n is prime

to chark).

Since the statement is local in tiale topology ofZ°, we may assume
that all of the irreducible components of¢ are smooth. Furthermore, for a
pointx € .Zs let v(x) denote the number of irreducible components that contain
X. We prove by induction om(y) that the homomorphisms of the theorem are
isomorphisms at aétale neighborhood of the poipte %47. If v(y) = 1, theny/
contains an open neighborhoodyfn .2, and therefore the required statement
follows from the comparison theorem 5.1 from [Ber3]. Assume thatv(y) —

1 > 1 and that the statement is true for all poigtse %/ with v(y’) < d.
Shrinking.%", we may assume that there is atale morphism#?™ — .27 =
Speck®[Ta, ..., Ta+1, S, -+, S1/(T1- - . . - Ty+1 — w)), wherew is a uniformizing
element ofk°, such that the irreducible components.@f are the preimages of
the irreducible components o®.. Therefore we may assume that" = . 2.

In this case%s is a union ofd + 1 irreducible componentX, ..., Xq4+1, where
eachX; is defined by the equatiof; = 0. Consider the canonical projection
X — 7 = Speck®[S,...,S]). Let & =X U...UXn, 1 <m<d+1,
and letf andg denote the induced morphisms of formal schems— .7 and
) = ;E;,/ — f respectively. By the induction, the cohomology sheaves of
the complex% " defined by the exact triangle

— (ROA.4;)

v R@(A@n) — G —

(resp — (R¥, Ay, — an(/l@n) G )

)|,
are concentrated oX; N ... N Xg+1 (resp. X1 N ... N Xg+1). Sinceg induces
an isomorphism of the intersection with (resp..%), to prove the statement it
suffices to verify that

Rys.((ROA;)| ) — Rys.(ROAg) ) = RO(Ry, Ay )

)|,

(resp Rgs*((Rw,,A_%)| ///) - Rgs*(RW,]A@n) = Rw,,(Rgn*/lQ)n) )
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is an isomorphism. Sindé@(/l_%)ﬁRQ(Af) (resp.RLDn(A,%)QRJ/n(Af)),

on on
it follows that the above homomorphism is an isomorphism rfor= d + 1.
Thus, to prove our statement, it suffices to verify the following two facts for all
p,q > 0.

(1) RPfs, (RIOA4;) = RPys, (RIOA;,
RPgs. (R, A 4;)| )

2 qun*(A_@)Hngn*(A@n)-

(1) Recall the description of the nearby cycles and vanishing cycles sheaves
of .2 due to M. Rapoport and T. Zink ([RapZi], see also [lll], 3.2). For a subset
J C [1,d + 1], we setX; = NigyX and, forqg > 0, we denote by? the

canonical morphisnX9 — .Zs, where X is the disjoint union of allX; with
cardd) = g+1, and byf 9 the compositiorfsoa® : X9 — .Zs — .Z. (Notice that

)| ,) and R (R, 4.5;) >

X9 is a disjoint union ofrq := (3 I i) affine spaces of dimensiah over.7;.)

ThenRIO(A.2;) =ad H(Axe-1)(—0) for g > 1, O(A;,) = A4 and this sheaf
has an exact resolution (tfech resolution defined by the coveriX§ — .2:)

00— A»‘s —_— ag(AXO) — Oéi(/lxl) — ...

and for eachg > 0 the sheaR%, (A.,;) has an exact resolution (induced by
the sameCech resolution)

0 — R, (45;) — ad(440)(—q) — a3 (A @1)(-q) — ...

We setYd = %/ x 4. X9, and denote by9 and g9 the induced morphisms
Y% - %/ andY? — .Z. SinceYY is a disjoint union of the same number
rq of affine spaces ovetz, the universal acyclicity of affine spaces implies that
R (Axa)=Rgd(Aya) = /1”‘7S The latter gives the isomorphism (1) for the functor
© andg > 1. We now remark that a shea¥ on.Zg (resp..2:) possesses the
property R, (7)>Rgs,. (7 | y) (resp.R%, (7)) >Rys, (7 y)) if it admits a
resolution 0— .7 — % such that each¢9, q > 0, possesses the same
property. The isomorphism (1) in all other cases is obtained by applying this
remark and the universal acyclicity of affine spaces to the above resolutions of
the sheave®)(A ;) = A4, andRIV, (A »; ).

(2) We may assume thah < d. One has.Z; >{x € .7 x Alljw| <
ITL(X)]-...-[Ta(x)| < 1} and,={x € || Ti(x)] < 1 for some 1< i < m}.
Therefore our statement follows from the following lemma (where the valuation
on k is not necessarily discrete or nontrivial).

Lemma 3.3. Let S be a k-analytic spac@,< a < 1areal numberl <m<d

integers. We set X= {x € S x Al < |Ti(x)] < 1forall 1 <i < d},

Y = {x € X|a < [Ta(X)|-...-[Ta(X)| < 1} and Z= {x € Y|[Ti(x)| < 1 for some
1<i <m}. Iff, g and h denote the canonical projectionsX S, Y — S and
Z — S, respectively, then for anyXx 0 there are canonical isomorphisms
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‘)
qu*(Ax)qug*(/lv)gRqh*(/lz)l(/ls(—q»<q :

Proof . The isomorphism between the first and the last sheaves is obtained from
the base change theorem 7.7.1 and tliméth formula 7.7.3 from [Ber2]. The
isomorphismRf, (Ax)~Rg.(Ay) is verified by induction ord. If d = 1, then
Y = X. Ford > 2, consider the projections to the ficst- 1 coordinates : X —
X'={xeSxA"a<|Ti(x)| <lforall1<i <d-1}andy:Y —Y'=
{x € X/|ow < |[Tu(¥)|- . ..-[Ta—1(x)| < 1}. Fory’ € Y, one hasp~*(y’) = {x €
AL hle < [Ta()| < 1} andy=(y’) = {x € AL, n|a’ <[Ta(x)| < 1}, where
o = a/(Toy)| ... | Ta—1(y')]). It follows that R¢*AX)|Y,1>R¢*(AY). Since
the cohomology sheaves Bip. (Ax) are Ay: in dimension zero and,(—1) in
dimension one, we can apply induction.

To establish the isomorphisRy, (Ay)>Rh,(Az), consider the projections to
the firstm coordinatesp : Y — Y’ = {x € SxA™|a < [Ty(X)|-... | Tm(X)| < 1}
andy 1 Z — Z' = {x € Y'||Ti(x)| < 1 for some 1< i < m}. We haveZ =
¢~ }Z’), and thereforeRy. Ay)|,, —Ru.(4z). SinceRIyp,(Ay) is isomorphic
to (Ay/(—q))", wherer = (d ; m), the situation is reduced to the case= d.

We setW = Y\Z = {x € Y|[Ti(x)| = 1 for all 1 < i < d} and denote
by @ the g-family of supports ([Ber2]$5.1) such that, for argtale morphism
p:U — S, &(p) consists of the closed subsetsYifxs U that are contained in
W xgs U. Then there is an exact triangle

— Rgs.,(Ay) — Rg.(Ady) — Rh.(Az) —

Thus, our problem is to show th&gs,(Ay) = 0. We now sety’ = {x €
SxAYTi(x)| <1foralll1<i<d}andz’ ={x € Y|Ti(x)| < 1 for
some 1< i < d}. SinceW =Y’\Z’ andY is a neighborhood o# in Y’, our
problem is to verify thaRg’ (Ay,)—RHN.(A;/), whereg’ andh’ are the canonical
projectionsY’ — S andZ’ — S. But As—Rg.(Ay-), and therefore we have to
verify that As—RN.(Az/).

Consider the covering o’ by the open set& = {x € Z'||Ti(x)| < 1},
1<i <d. For asubsef C [1,d], the intersectior?; = Nj¢3Z is isomorphic
to a direct product ofS with the m-dimensional open unit disB™ and the
(d — m)-dimensional closed unit dise?~™, wherem = cardJ). From [Ber2],
7.4.2, it follows thatAs = Rp.(Az,), wherep is the projectionZ; — S. The
spectral sequence of the covering now implies that™ RK.(Az/).

Step 2.The theorem is true in the general case.

Since the reasoning is completely the same for the nearby cycles and van-
ishing cycles functors, we consider only the latter ones. We also remark that the
validity of the theorem for sheaves is equivalent to its validity for the corre-
sponding complexes of sheaves. (In the following lemma the valuatidk isn
not necessarily nontrivial.)
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Lemma 3.4. Let K be a finite extension of k" a scheme ovet”’ = Speck’°),
f .. 2" — .2 aproper morphism ovet, 7/’ the preimage of/ in .4, and
.7 abounded complex of constructible sheaveg'fb;]h with torsion orders prime
to char@). If the theorem is true for the triple2”, %/’,.7 *) and the functo#,,,
then it is also true for the tripl¢. %", %/, Rf, (7)) and the functow,,.

Proof . The situation is easily reduced to the cdse= k. Let g denote the
induced morphism of the formal schen®$:= /{///, — 9 =.4),. We have

o g
RZ,(RE,, 7)), = RE(RZ, 7)), = Res (RE, 7))
v — 6 -
— Rgs*(R!pn&(/ //’) - Rg/n(Rgn*&(/ //’) )

whereq is an isomorphism becauges proper,3 is an isomorphism by the proper
base change theorem for schemegs an isomorphism by the assumption, and

is an isomorphism by Corollary 2.3. The she%{)"///, is.7an ’@/ , and we have
4 n

a Jé] -
Ry, (7" |y ) = RERF ™y = RE7 )y =RE.7),,

whereqa is an isomorphism by the weak base change theorem [Ber2], 5.3.6, and
0 is an isomorphism by the comparison theorem for cohomology with compact
support [Ber2], 7.1.1. The lemma follows.

We prove the statement by induction dr= dim(2#;). Since the statement
is local with respect to%", we may assume tha#" is affine. Ifj is an open
immersion of.%" in a projective¥”-scheme%”, then replacing®" by . %", ¥/
by its closure in%y and.7 by Rj, (7 ), we may assume tha#’" is projective
over.#.

2.1.1f .77 is concentrated on a closed subscheme of dimensidn then the
theorem is true for7 . Indeed, this follows from the induction hypothesis and
Lemma 3.4 applied to the scheme theoretic closure of the suppor i 2"

2.2.1f Z¢ is an open dense subset.of, and j is the canonical open em-
bedding?¢ — %, then the theorem is true fo¥ if and only if it is true for
j!(.~7| ,,)- Indeed, ifi denotes the closed immersio#, \ 24 — .#,, then there
is an exact sequence-6 j!(.?] ) — 7 — 1.(i".7) — 0, and the statement
follows from 2.1.

2.3.To prove the theorem, it suffices to find for eaghan open dense subset
?¢ C ., and an embedding of7 |, in a similar constructible shea” on
?¢ such that the theorem is true for the sheéfj). Indeed, if this is true, then
by 2.2 we can find for eacin > 1 an open dense subsetr C ., and an
exact sequence of constructible sheaves with torsion orders prime tk)char
0— 7| y = %% — ... — &M such that the theorem is true for all of the



Vanishing cycles for formal schemes. I 379

sheaveg (¢"'). Then the theorem is true fgr(77 | ) and, again by 2.2, the
theorem is true for7 .

2.4. It suffices to verify the condition from 2.3 for the case wh#&his irre-
ducible, reduced and flat ove¥”, and the sheaf7 is constantindeed, we can
find an embedding of7 in a finite direct sum of sheaves of the fofiy{Az),
wheref .| & — .2, is a finite morphism. We may assume that all su¢hare
reduced, and therefore we can replace them by their normalizations and assume
that they are irreducible. Furthermore, we can find for e&la flat model. %™
over.¥” projective over#'. It follows now from Lemma 3.4 that if the condition
from 2.3 holds for each#™ and the sheaﬂ_%;;, then it also holds forZ" and
7.

2.5. From the stable reduction theorem of de Jong ([deJ], 4.5) it follows
that there exist a finite extensidd of k, a scheme# ™ projective and strictly
semi-stable over”’ = SpecK’o), and a proper, dominant and genericly finite
morphismf : .27 — .2 over.”” such that the preimage of/ in .%/ is
a union of irreducible components of_. Let .7’ be the pullback of7 on
2, (it is also a constant sheaf). By Step 1 and Lemma 3.4, the theorem is
true for the complexRf, (7). Furthermore, le?Z be a nonempty open subset
of .#, such that the induced morphispn: 22’ := fn—l(f%) — 2¢ is finite.
Theng.(7”'| )R, 7")| . From 2.2 it follows that the theorem is true for
the sheaﬂ!(g*(.7’| ), wherej is the open immersior? — .2Z;. Thus, the
condition from 2.3 is satisfied by the subséf and the sheag*(.7’| ), and
the theorem is proved in the nontrivial valuation case.

If the valuation onk is trivial, then in Step 1 one should consider the case
when.2Z" is smooth andZ/ is a strict normal crossing divisor its = .2~ (see
[deJ], 2.4) and use the cohomological purity theorem (instead of the description
of the vanishing cycles sheaves), and in Step 2.5 one should use Theorem 3.1
(instead of Theorem 4.5) from [deJ].

Corollary 3.5. Let.Z" be a scheme of locally finite type ovet, k : JZ; — A
the reduction map, and a constructible sheaf o, with torsion orders prime
to chark). Then for any subschemg C .25 there are canonical isomorphisms

RI(¢/,RO.7Z)SRI(nY(%/),. 72" and

RI(%/ ,RU, 7 ) SR (YY), 7 .

If, in addition, the closure of/ in .2Zs is proper, then there are canonical iso-
morphisms

RIW(Y/,RY,7)SRE L, (#2.7%) and

n )"~

)
R.Z—‘c((///, R@-/}?):)Rpﬂ_fl( ///)(!%;’anwyan) .

Proof . The first two isomorphisms immediately follow from Theorem 3.1 and
Corollary 2.3. Assume that the closu#” of %/ in .%Zs is proper. LetZ be
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the complement of// in 77", and letj andi denote the canonical morphisms
Y — 77" andZ — 7/”. Then there is an exact triangle

— (R 7)]) — RET)|,, — (R8T ) —

)’z/ )5

Applying the functorRI'(77", -), we get an exact triangle
— RI(¥Y/,RY,,7) — R[ (=Y, 7 %) — R[(r~YX), 7 ") —

It remains to notice that ~1(77") is an open neighborhood af1(%/) in A
and to apply [Ber2], 5.2.6.

In the following corollaries the fielék is complete.

Corollary 3.6. Let.Z be a scheme of locally finite type ovet, K a special
formal scheme ove?” which is locally isomorphic to the formal completion of
a scheme of finite type ove¥” along a subscheme of the closed fibre, F an
étale sheaf ork,, locally in the étale topology oft isomorphic to the pullback
of a constructible sheaf o, with torsion orders prime ta:har@). Then the
cohomology sheaves of the complex#s(R) and R9(F) are constructible and,
for any subschemegy/ C .%;, there are canonical isomorphisms

RI(%/,R¥,F)SRI(n=Y%/),F) and RI'(%/,ROF)SRI(n~(#),F) .

If, in addition, the closure of// in X is proper, then there are canonical iso-
morphisms

RIL(Y/ RV,F)SRE L, (%,,F) and

“Ly)
RFC((/%7 R@F)QRFWA(,}/)(XW F) .

Corollary 3.7. Let X be a smooth formal scheme ovet, k/ a subscheme of
Xs, and A = Z/nZ, where n is prime t@hark). Then for any g> 0 there is a
canonical isomorphism

HY(%, A=HE (), 4) .

If, in addition, the closure of// in X is proper, then there is a canonical iso-
morphism

@ ~H4
(L PR, (% 4)
Remark 3.8(i) In the case whery/ is proper, the first isomorphism of Corollary
3.5 for the vanishing cycles sheaves can be deduced from the comparison theorem
5.1 from [Ber3] in the way indicated by G. Faltings in [Fal]. Namely, in this
case the set~1(%/) is open in.2,2" This implies that the dualizing complex of
7 Y(¥) (see [Berd]§1) is the restriction of the dualizing complex of ", and
therefore one can use the local biduality ([SC%A4Th. finitude, 4.3), the fact
that the vanishing cycles functor commutes with duality ([Ill], 4.2), Proposition
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2.4 above, and the comparison statement for the duality functor ([Ber4], 3.3-3.4).
If .#, is smooth, as in [Fal], then instead of the latter fact it is enough to use
the Poincag Duality for schemes and analytic spaces.

(ii) Assume that the valuation ok is trivial. Thenk = k°® = K, oy =
X = s, and thereforeRO(7) = .77 and RY,(7#) = .7 . Theorem 3.1
implies that for any subschemegs < .#° one hasR@(,ﬁy/) = 7],/
and RZ, (7 ) = .7 | - It follows that H(%/,.7) = HA(x (), 7,
HYY,7) = Hi(m~ (%), 72 and if, in addition, the closure of/ in
A" is proper thenHd(¢/,.7) = H?fl(y/)(.%,a”,.ia”) and H(¥/,.7) =
H:_ 1(%(%"5‘“, Fan,

(iii) Let .2Z" be the affine line ovet””, %/ the zero point of the closed fibre,
{X }i>1 a sequence of closed points &%, with |T(x)| <1 and|T(x)| — 1 as
i — oo, and.7 = @; Ay the sky-scraper sheaf o, whereA =Z/nZ. Then
(u77,.;7)| % is the direct sum oft’s taken over all points fronA(k?) = k2 that
lie over the pointsq, i > 1, andzpn(.;ﬁy/) is the corresponding direct product.
In particular, they don't coincide. By the way, if the field¢x) are separable
overk zigd k(%) : k] — 0 asi — oo, then the action of the Galois group lof
on ¥, (.7 4) is not continuous.

(iv) Assume that chgk) = 0 and cha(&) =p > 0, and let.Z" =
Speck®[T1, T2]/(TiT2 — w)), ¥/ = Xi (as in Step 1), andl = Z/pZ. Then
(R%A_%)| v~ R%(A% ), where®) = //57,/ is not an isomorphism. Indeed,
the reasoning from Step 1 shows that it is an isomorphism if and only if for
the canonical morphisms : X T andg : 9 — .7 the conditions Q)
and (2) hold. But ifX = ;3; andY =9),, thenH(X, A) — H(Y, A) is not
an isomorphism (i.e., (2) does not hold). To see this, we mayuysgastead of
A. One hasX = {x € Al|jw| < [T(X)| < 1} andY = {x € X||T(X)| < 1}.

The function 1_1T = 1+T+T?+ ... is invertible onY, but its image in
OY)*/OY)*® c HY(Y, yp) does not come fron? (X)* /7 (X)*" = H(X, up).

4. The continuity theorem

Let. be the spectrum of the same local Henselian ring f6@n7 a scheme
of finite type over.””, and.”7 an étale abelian constructible sheaf &) with

torsion orders prime to ch@. Furthermore, let#” and.#?" be schemes of finite
type over.7, and lety/ C .Zs and %/’ C . % be subschemes. From Theorem

3.1 it follows that any morphism of formal schemes Z;/y, — 27,/ over

.7 induces homomorphisms of sheaves#ff and )2/ respectively,

0. 7) s (RUO.7)| ) — (R©T,0)] .
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030, 7) : s (R, 7)) ) (R, 7| v

Theorem 4.1. Given.7, .7, ;/57,/ and.‘;?;?’,// as above, there exists an ideal of
d/eiinition?’ of .%//,/, such that for any pair of7-morphismsp, v : %/’//, —
A} that coincide modulgZ’, one has)%(y,.7) = 09(y,.7) and 0} (v,.7) =
09, 7).

’r] b

Remark 4.2.(i) If one considers only open subschemes of the closed fibres then,
by Theorem 8.1 from [Ber3], giverv”, .7 and.% ,,, there existsr > 1 such

that the statement of Theorem 4.1 holds for any,/, with 7’ generated by
the n-th power of the maximal ideal d€°.

(i) In [Ber5], §7, the statement of Theorem 4.1 was proved in the case when
k° is equicharacteristic ang/ and %/’ are closed points. This was done using
a formalism of vanishing cycles for non-Archimedean analytic spaces (similar to
that from [SGA7], Exp. XIV, for complex analytic spaces) and the same results
from [Ber3] used in the proof of Theorem 4.1.

Before proving Theorem 4.1, we will prove a finiteness result which general-
izes Corollaries 5.5 and 5.6 from [Ber3] and, in fact, is deduced from them. Let
k be a non-Archimedean field (whose valuation is not assumed to be discrete),
and let.7" be a scheme of finite type ovér

Definition 4.3. A k-analytic space X ove¥ "is said to bequasi-algebraic over
.7 if each point of X has a neighborhood of the formV. .UV,, where each V

is isomorphic over7 2" to an affinoid domain in the analytification of a scheme
of finite type over7 . (If .7~ = Speck®), the indication ta7~ will be omited.)

It is easy to show (see the proof of Corollary 5.6 from [Ber3]) thaX ifs
quasi-algebraic ove7, then anyk-analytic spaceY that admits a quagtale
morphismY — X is also quasi-algebraic over . For example, any analytic
domain in ak-analytic space smooth over 2" is quasi-algebraic ove? .

Proposition 4.4.Let X be a compact k-analytic space quasi-algebraic o¥er
and let F be aretale sheaf on X which locally in the quastiale topology is iso-
morphic to the pullback of an abelian constructible sheafgmwith torsion orders
prime tochaik). Assume that the residue figkds separably closed and that for
any prime | dividing a torsion order of F one hagls) := dimg, (|k*|/|k*|") < oc.
Then the groups FI(X,F), g > 0, are finite.

Proof . The reasoning from the proof of Corollary 5.6 from [Ber3] reduces the
situation to the case wheK is an analytic domain in the analytification of

a scheme of finite type ove¥” and F is the pullback of a sheaf o;,. In

this case Corollary 5.5 from [Ber3] implies that the group8(X,F), where

X = X®ks, are finite. By the Hochschield-Serre spectral sequence, it suffices to
show that the groupsiP(G,H(X,F)), whereG = Galk®/k), are finite. For

this we may assume thé&t is | -torsion for some primé. Let Q be the minimal
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closed invariant subgroup @ such thatM := G/Q is a prot-group. Then the
indices of all open subgroups @ are prime tol andM =Z$, wheres = 5 (k)
(see [Ber2], 2.4.4). It follows that P(G,HY(X,F)) = HP(M,HY9(X, F)?). Thus,
our statement follows from the simple fact that the cohomology groupe of
with coefficients in a finite discretietorsion module are finite.

Proof of Theorem 4.1First of all, all of the sheaves are constructible and equal

to zero forq > 1+2dim(#,) (see [Ber3], Lemma 8.2). In particular, it suffices

to find such 7’ separately for eachy. Furthermore, the both vanishing cycles
sheaves are epimorphic images of the pullbacks of the nearby cycles sheaves
defined for a certain finite extension lofin k3. Therefore it is enough to consider

the nearby cycles sheaves and, of course, we may assume that the residue field
of k is separable closed. Let us fix a functids — & (resp.4; — ') which

is inverse to the functor from Proposition 2.1(i). From Corollary 3.5 it follows
that for anyétale morphism of finite typéls — 4/ (resp.tly — %/’) the groups
Ha(LU,, 7)) (resp.H Y, 7)) are finite. Since the spagk, (resp.4l;) is quasi-
algebraic over7, Proposmon 4.4 implies that for any compact & analyt|c domain

V C 4, (resp.V’ C 4 ») the groupsH9(V, /) (resp.HY(V’, /)) are finite.
Finally, we may assume that the schem#&sand.#" are affine.

As in the proof of Theorem 8.1 from [Ber3], everything is now reduced to
the verification of the following fact. Lefl = Spi(A) andU = Spf(B) be special
affine formal schemes ove? s/u\ch that their gggeric fibres are quasi-algebraic
over.7 and the groupsl 4(4L,,.77) andH 9(,,,.77) are finite. Then there exists
an ideal of definition ofl such that, for any pair of morphisms vy : UG — 4
that coin/c\ide modulo ttti\s ideal, the induced homomorphisms of finite groups
HA(,,.7) — H9Y(W,,.7) coincide.

Let a (resp.b) be the maximal ideal of definition ok (resp.B). Then for
each O<r < 1 the setU(r) (resp.V(r)) of the pointsx € i, (resp.2,) with
[f(x)] <r forall f € a(resp.b) is an affinoid domain, andl, (resp.J,) is
exhausted by (r) (resp.V (r)). From [Ber2], Lemma 6.3.12, it follows that there
exists 0< r < 1 such that the homomorphishth(itn,f) — HYU (r),ﬁ\)
(resp.Hq(‘lI,,,.,u/%\) — HYV (r),.ﬂ%\)) is injective. By Theorem 7.1 from [Ber3],
there existse € €(U(r)) with the property that for any pair of morphisms
f,g:Y — U(r) between analytlc spaces 0\1(53';7 with d(f, g) < ¢, the induced

homomorphismd19(U (r), 7) — HY, 7) coincide. But we can finah > 1
such that, for the morphisms of formal schemesnd+) that coincide moduld",
one hagl(¢’, ') < ¢, wherey’ andy)’ are the induced morphisnvs(r) — U (r).
Theorem 4.1 follows.

Let (9(527,//5'\) denote the group of?—automorphisms o,fj?};)/ and, for

an ideal of definition7 of jf?,/ let fé’;(.ﬁfﬁ,//,f) denote its subgroup con-
sisting of the automorphisms that are trivial modyta The following corollary
is obtained from Theorem 4.1 using Lemma 8.7 from [Ber3].
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Corollary 4.5. Given.7 and. 1// as above and &-sheal” = (Zm)m>0 ON

T, where | is prlme ta:har(() there exists an ideal of definitiofZ such that the
group - > (. 1/// /) acts trivially on all of the sheave®IV,. 7, 4,
(Rq@*/m,,%n)’ ,//! q 2 01 m 2 0

Remark 4.6. Assume that7 = .¥” and %/ is a closed poink in .%s. Then
(R, 7 ) = lim HI(Z) @emye K, 7)), where. 2 = Spec3,) is the strict
Henselization of %" at a geometric poink over x, andK runs through finite
extensions ok™ in kS. Laumon proved the statement similar to that of Corollary
4.5 for the action of the automorphism group.@fy, over k™)° on (R%,.7),
under the assumptions thiat is equicharacteristic and the morphis#h’ — .

is smooth outsidex (see [Lau], p. 34, 6.3.1). Furthermore, assume Rfafs

of mixed characteristic, the morphism” — . is of relative dimension one,
and .%,, is smooth. Under these assumptions, Brylinski proved that, for any

K as above, one hald 9(Z ) ®@xme K,.7)=H q(.,%A(X) B i K,.7), where

%A(X) = Spec@;ﬁx), and the statement similar to that of Corollary 4.5 holds for
the action of the automorphism group,éf(\x) overk™ onH YAy @y K. 77)
(see [Bry)).

5. The Generalized Krasner Lemma and quasi-affine analytic spaces

In this subsection the valuation of the ground non-Archimedean kel not
assumed to be discrete. Recall that, for an elerherfta commutative Banach
ring . ¢, p(f) denotes the spectral radius bf i.e., p(f) = max, \f(x)| (see

el
[Ber1], §1.3).

Theorem 5.1. Let. 4 a k-affinoid algebra, p...,p, > 0, fi,...,fy elements
in.4{p; T1,...,py Tn} for which the algebra

B = P T, P T}/ (e )

is finite étale over. 4, andq; the image of Tin .72, 1 <j < n. Then there exist
positive numbersit ..., rm, ti,...,t, and seriesd; € .,%&{r;lsl, N e S
with p(®;) < pj, 1 <j < n, such that, for any homomorphism of affinoid algebras
o :.¢ — ¢ that defines a homomorphisst : .2 — & =. 8% _,¢ , and, for
any system of elemens, . . ., gm in 2 {p; *T1, ..., Py *Tn} With p(gi — o(f)) <
ri, the system of elements; = o’'(%;)(91 — o(f1), ..., gm — o(fm)) }1<j<n IN &
is a unique one with the properties

(1) g{pflTL ) pn_lTn}/(gla s 7gm):>g : TJ =%,

(2) p(yj —'(ey)) < tjforall 1 <j <n.
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Proof . Step 1. LetX = .Z/(.4) andU = .Z4(7%). Forry,...,rm > 0 we
setX, = .Z( 4) and U, = (%), where. 4, = .%{rl_lsl,...,rrglsn}
and .7z, = .%’{rl_lsl,...,rrglsn}. We also setZ; = .Z(%;), where & =
Ay {pl_lTl, e P AT}/ (14, - - -, T+ Si). We claim that for sufficiently small
ri,...,rm the canonical morphism,Z— X; is finite étale. Indeed, the canoni-
cal morphismU — X; is a composition of the finite morphistd — X and
the closed immersiorX — X;, and therefore Int{ /X;) = U. On the other
hand, it is a composition of the closed immersibh — Z and the mor-
phismZ, — X;. From [Berl], 2.5.8(iii), it follows that the image df in Z

is contained in In®%, /X;). It follows that we may decreass,...,ry so that
Int(Z; /%) = Z.. Then Corollary 2.5.13(i) from [Berl] implies that, — X

is a finite morphism. Furthermore, let,,..., Ay, be the 6 x n)-minors of
the matrix (g%) = (a(g;js)) By the assumption, the images of these ele-
ments in.%7 generate the unit ideal, i.ezi”ll i Aj + Zi“ll ¥ifi = 1 for some
O, € AP T, .., Py Ta ) It follows that 30 i A + 30 Wi (fi +S) =

1 +Zi”;lz/;is. We can decrease, ..., Iy, and assume that(yS) < 1 for all

1 < i < m, and therefore the right hand side of the latter equality is invert-
ibletz{ér{p;lTl, ..., Py IT,}. This means that the images df;, ..., An in &
generate the unit ideal, i.e., the morphiZm— X; is finite étale.

Step 2. Leth = ¢, (U) and % = 4, (U) be the algebras of functions
analytic in a neighborhood of the image dfin Z. andU,, respectively, and let
I, C ¢ andl, C % be the ideals generated by the functids. .., Sy. The
both algebras” and ¢ are finite étale overcx, (X), and there are canonical
isomorphisms? /1;~.72 and (% /1,~.72. From [Ber3], Lemma 7.4, it follows
that the pairs €’1,1;) and (%, 1,) are Henselian, and therefore the canonical
isomorphismc? /1:=¢% /1, is induced by a unique isomorphistfy —¢% over
. (X). We claim that for sufficiently smally...,ry the latter comes from an
isomorphism W=Z, over X%. For this we need the following proposition.

Proposition 5.2.Let X and Y be k-affinoid spaces, X X and Y C Y Zariski
closed subsets, and assume thatXint(X). Then

Hom((Y,Y"), (X, X"))=Hom( (X"), (% (Y")) .

Here the left hand side is the set of morphisms of germs of k-analytic spaces (see
[Ber2], §3.4), and the right hand side is the set of homomorphisms of k-algebras
that induce, for each n> 1, a bounded homomorphism of k-affinoid algebras
Ox (XN /T (XY — A (Y)/1(Y")", where I(X") and I(Y’) are the ideals of the
functions that vanish on ’Xand Y’, respectively.

Lemma 5.3. Let X = .74(. ) be a k-affinoid space, ’XC X a Zariski closed
subset, and | the ideal of elements of that vanish on X Then

(i) 1 (X)) =1 (X") and. 4/1 "5 (X7) /1 (X)) for all n > 1; in particular,
there is an isomorphism of completia@!(@(’);

(i) the ring % (X’) is Noetherian and flat over#, and the homomorphism
4 (X') — ¢ (X') is injective.
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Proof . First of all we remark that affinoid neighborhoods Xf in X form a
fundamental system of neighborhoods.I(if generated by elementts. .., f, €
¢, then these are the Weierstrass domains of the fdrm {x € X||fi X)) <
ri,1<i <n}forry,...,rn > 0.) In particular (X’) is flat over. 4. LetV be
an affinoid neighborhood of’. Then the close#i-analytic subspace of defined
by the ideall " is contained irvV. This implies that the ideal of elements.ofy
that vanish orX’ coincides withl. 2y and.2/I"=. 2y /I". 4y . Furthermore,
letf be a non-zero element 6% (X’). Thenf comes from 2y for some affinoid
neighborhood/ of X’ and its image in-4y /1 ". 4y is non-zero for some > 1.
Since the latter coincides wittix (X’) /I (X’)", it follows that the homomorphism
% (X") — Cx(X’) is injective. This implies thaa = ¢ (X’) N acx (X’) for any
finitely generated idea of % (X’), and therefore the latter ring is Noetherian.

Proof of Proposition 5.2That the map considered is injective is easy. ket
% (X") — %(Y') be a homomorphism with the required property. et=
A( ) andY = (%), andl C .4 andJ C .7 the ideals of elements
that vanish onX’ and Y’, respectively. SinceX’ C Int(X), we can find an
admissible surjective epimorphism : k{rflTl, 7T = 2 T
with rrg(txm X)| <ri, 1 <i < n. We may also assume that the $ét,...,f,}

X !

contains a set of generators lofWe have malax(fi)(y)| < ri, and therefore we
yey’

can shrinkY and assume that eaeltf;) comes from an element € .2 and the
spectral radius of; in .72 is at mostr;. Therefore there is a well defined bounded
homomorphismy : k{r{lTl, .., I7ITh} — .72 that takesT; to g;. Furthermore,
the ideal Kerf) is generated by a finite number of elemehts. .., Fn. Since
a(n(F;)) = 0, we can shrinky and assume thai(F;) = 0. Thereforey induces

a bounded homomorphisii : .4 — .. Since the seff,...,f,} contains
generators of, it follows that3(1) C J, i.e., the morphisn¥ — X induced by

(3 takesY’ to X’. Thus,3 induces a homomorphisad : % (X') — & (Y’), and
we have to verify that'’ = «. By Lemma 5.3, it suffices to verify that, for each
n > 1, the induced homomorphisnag (X")I (X')" — & (Y’)/1 (Y')" coincide.
But these are bounded homomorphisms between kvadfinoid algebras that
coincide on a set dk-affinoid generators of the first algebra. It follows that they
coincide.

Remark 5.4.1f the spaces< andY in Proposition 5.2 are strictlig-affinoid, then
the boundness assumption is automatically satisfied becaus&-hognomor-
phism between stricthk-affinoid algebras is bounded. But this is not true for
arbitrary k-affinoid algebras (see [Berl], 2.1.13).

To apply Proposition 5.2, we have to verify that the homomorphigifi ! —
/17, n > 1, induced by the isomorphismf;—¢7% is bounded. For this we
remark that this is a homomorphism between finite Banach modules over the
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k-affinoid algebrar? /1", where@ = % (X) and the ideal is generated by
S, ..., Sy By [Berl], 2.1.9, such a homomorphism is always bounded.

Step 3. By the previous step, there is an isomorphisméfaffinoid algebras
gr = =—7¥/r{p;lT17 sy pnilTn}/(fl-'-Slv ce »fm+Sm):’-%)r = ,%’{rfl&, ey rrﬁlsm}

Let &; be the image of; under this isomorphism. (We remark th&t?;) < p;.)
Furthermore, by Corollary 6.3 and Key Lemma 7.3 from [Ber3], we can find
positive numbers;, ..., t, such that, given a cartesian diagram

Y= 7)) — X
T T

V=) % U

any morphismy’ : V. — U with p(¢/ "o — ¢*qj) < t 1 < j < n, that
makes the previous diagram (with’ instead of+)) cartesian coincides with

. Finally, since®;(0) = ¢;, we can decrease,,...,In and assume that
P — o) < tj. We claim that the numbers,r... ry, t1,...,t, and the se-
ries &4, ..., P satisfy the conditions of our theorerimdeed, leto : .4 — &

be a homomorphism of affinoid algebras and. . ., gm a system of elements of
Z{py T, ...,y tTa} with p(g; — o(fi)) < ri. Theno extends to a well defined
homomorphism 4, =. 4{r;'S;,..., 7Sy} — ¢ that takesS to gi — o(f;).
The isomorphisn#; =.7, gives rise to an isomorphisi & PR ®. R
But the left hand side i¥2 {p; 'T1,...,p7*T1}/(g1, - -, gm), the right hand
side (B8 4. 4)2. 4, ¢ = BS ., = &, the isomorphism constructed
takesT; t0 9;(S,...,Sn) ® 1 = o'(®5)(91 — o(fr), ..., gm — o(fm)) = 7;, and
one hasp(y; — o'(ey)) < p(®; — oj) < tj. Thus, the conditions (1) and
(2) are satisfied. Assume now thaf, ..., v, is a system of elements with
%'{pl‘lTl, s P T (91 gm) D T 7{- Then this system gives rise
to an automorphisny of V = .Z4(Z) overY = .Z4(7") that takesy; to 4. But

if p(y — o’(qy)) < j, thenp(x*o'(oy) — o’(qy)) < tj, and therefore)x should
coincide withi. This implies thaty = 1y, i.e.,7/ =~; forall 1 <j <n. The
theorem is proved.

Let .2 = Spech) be an affine scheme of finite type ovier An affinoid
domainV C .2 is said to be\Neierstrassf there exist elementf, ..., f, € A
and numbersy, ..., r, > 0 such thatv = {x € Z"[fi(x)| <r,1<i <n}.
Furthermore, an affinoid domaivi C .2™@" is said to berational if there exist
elementsfy,... f,,g € A and numbergy,... r, > 0 such thatg does not
vanish onV andV = {x € ,,%"a”Hfi X)| <rilg(x)],1<i <n}. We remark that
suchV is a Weierstrass domain ig/2", where ¢/ = SpecA[cll]). For a subset
X C .2 let Az denote the localization o with respect to the elements
that do not vanish or’. From [Berl], 2.2.10, it follows easily that an affinoid
domainV = .Z4(_4y) C .23 is Weierstrass (resp. rational) if and only if the
image of A (resp.Awv)) in .2y is everywhere dense. In particular,\f is a
Weierstrass (resp. rational) domain.#1'@", then any Weierstrass (resp. rational)
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subdomain ofV is a Weierstrass (resp. rational) domain.d@". Let.7 be a
scheme of finite type ovek. (For example7 = Speck).)

Definition 5.5. A k-analytic space X ove? 2" is said to bequasi-affine over

.7 if every compact subset of X is contained in an affinoid domain which is
isomorphic over.7 2" to a rational domain in the analytification of an affine
scheme of finite type over .

Corollary 5.6. Any k-analytic space over 2" that admits a finitetale morphism
to a k-analytic space quasi-affine over is quasi-affine over7 .

Proof . It suffices to prove that ifp : Y = (A) — X = Z4(4)is a
finite étale morphism ok-affinoid spaces an& is a Weierstrass domain in
A where. %" = Specf) is an affine scheme of finite type ovér, then
Y is isomorphic to a Weierstrass domain ig¢®" for some affine scheme
%/ = SpecB) of finite type over.#". For this we represent”? is the form
AP T, P T}/ (fr, - ., fm). By Theorem 5.1, the latter algebra does not
change if we replace the elemefits. . . , f,, by sufficiently close elements. There-
fore, sinceX is a Weierstrass domain iz@", we may assume thdt, ..., f,
are polynomials fromA[Ty, ..., Ty]. Consider the affine schemg/ = SpecB),
whereB = A[Tq,..., Ta]l/(f1,...,Tm). If g; is the image ofT; in B, thenY is
isomorphic to the Weierstrass domajig € 272"[g;(y)| < pj,1 <j < m} in

.

For example, any finiteetale covering of the analytification of an affine
scheme of finite type ovek is quasi-affine. Furthermore, 1& be a local non-
Archimedean field. Then the Drinfeld half-plati¢! associated withF is quasi-
affine. It follows that the finiteetale coveringsz®" of Q9QF ™ constructed by
Drinfeld in [Dr] are quasi-affindﬁf-analytic spaces.

Remark 5.7.1f one restricts oneself with strictlig-analytic spaces and the case
of nontrivial valuation onk, then a version of Theorem 5.1 and the statement
of Corollary 5.6 follow from results of R. Elkik ([EIK], Lemma 6 and Theorem
7). In this case it is not necessary to assume that the algebiia finite over

.4 (if one uses the usual rigid analytic notion &fleness which in this case is
equivalent to the notion of quaétaleness from [Ber3]).

6. A vanishing theorem for quasi-affine analytic spaces
In this subsection we assume that the ground non-Archimedeankfisliclge-
braically closed.

Theorem 6.1. Let.”7 be a scheme of finite type over .k, an abelian con-
structible sheaf o7~ with torsion orders prime tahark), and X a paracompact
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k-analytic space quasi-affine over and of dimension d. Then for anyg d
one has H(X,.7 2" = 0.

Proof . First of all, if the valuation ork is trivial, then using the invariance
of the étale cohomology groups under algebraically closed extensions of the
ground field ([Ber2], 7.6.1), we can increakeand assume that its valuation
is nontrivial. Furthermore, we may assume tbatis connected. TheiX is a
union of an increasing sequence of affinoid domains quasi-affine.@vetf V

is such a domain then, by Proposition 4.4, the grodpggV,.7 2" are finite
and, by [Ber2], Lemma 6.3.129(X,.7 2" is a projective limit of the groups
HAV,.72) over all V's. Hence, we may assume thAt = V, i.e., thatX

is a rational domain inZ@", where.Z" = Spech) is an affine scheme of fi-
nite type overk and of dimensiord, and that?" =.7 . Replacing.2" by an
open subscheme, we may assume ¥as a Weierstrass domain ", i.e.,

X =V, = {x e Z¥[fi(x)] <r,1<i<n} for somefy,...,f, € Aand
ri,...,rn > 0, and we can complement the 4éf,...,f,} to a system of gen-
erators ofA overk. One hasX =N,/ V,,, where the intersection is taken over
all r/ > ri withr/ € |k*|, 1 <i < n. By the Continuity Theorem 4.3.5 from
[Ber2], one ha#H9(X,.7 2" = hﬂ HY(V,,,.72), and therefore we may assume

that allr; are contained ik*|. In this case we can multiplfy’s by elements of
k and assume thaf =1 forall 1<i <n.

Let a be the kernel of the surjective homomorphisfiy,..., T,] — A :
T; — fj. It is an ideal ofk[Ty,...,Ty] generated by polynomialgs,. .., gm.
Multiplying eachg; by an element ok, we may assume thagt € k°[Ty,..., Ts].
We setb = {g € k°[Ty,..., Tql|ag € (91, .., gm) for some non-zera < k°}
andB = Kk°[Ty,...,Ty]/b. Then %/ = SpecB) is an affine scheme flat and of
finite type overk® with %7, = .2 and ?j;ix. By a result of M. Raynaud
and L. Gruson ([RayGr], Corollary 3.4.7), the schergé is finitely presented
overk®, and therefore from [EGA4], 12.1.1, it follows that the closed filg
is of dimensiond. By [Ber3], Corollaries 4.5(iii) and 5.3, there is a spectral
sequenceEy"? = HP (%, R%W,.7) = HP*I(X,.7 23", and therefore to prove
the theorem it suffices to show thBf" = 0 for p + q > d. For this we use
the results from [SGA4], Exp. XIV, on the cohomological dimension of affine
schemes. First of all, these results imply tH§R,.7) < d — g, whered(:%)
denotes the maximum of diffy}) taken over all pointy € 44 with ‘4 70
(see [SGAT], Exp. |, Theorem 4.2). Furthermore4f is an abelian sheaf on
Ys, thenHP(%4, %) = 0 for p > d(¢) ([SGA4], Exp. XIV, Theorem 3.1).
The both facts imply thaE}"@ = 0 for p+q > d. The theorem is proved.

Corollary 6.2. Let X be a paracompact smooth quasi-affine k-analytic space of
pure dimension d, and a finite abelian group of order prime tochalk). Then
for any q< d one has (X, 4) = 0.

Proof. The statement follows from Theorem 6.1 and PoiacBuality ([Ber2],
7.4.3).
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