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Introduction

Recall that a topological spadeis called contractible if there exist a contin-
uous mapping : Xx[0, 1] — Xandapoinkg € X suchthatb(x, 0) = x,
@d(X,1) = xgandd(xg,t) = Xg for all x € X and 0<'t < 1. A topological
space is called locally contractible if each point of it has a fundamental sys-
tem of contractible open neighborhoods. A trivial example of such a space is
a topological manifold. A non-trivial example is a complex analytic space.
Local contractibility implies important properties of a topological space. For
example, such a space has a universal covering and, if it is connected, the
universal covering is a Galois one with the Galois group isomorphic to the
fundamental group of the space [Spa, Ch. 2]. Furthermore, if such a space
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2 V. G. Berkovich

is paracompact, its conomology groups with coefficients in a constant sheaf
coincide with the singular cohomology groups [Spa, Ch. 6]. The statement
on local contractibility of smoottp-adic analytic spaces formulated in the
title is one of the main results of this paper. What is the meaning of the
statement?

First of all, the statement does not make sense for rigid analytic spaces,
introduced by J. Tate in [Tate] gsadic analogs of complex analytic spaces,
since the topology on rigid spaces is totally disconnected. The statement
is about the analytic spaces introduced by the author in [Berl] and [Ber2].
They are closely related to rigid spaces. Namely, the category of analytic
spaces has a full subcategory of so called Hausdorff strictly analytic spaces
which admits a fully faithful functor to the category of quasiseparated rigid
spaces, and this functor induces an equivalence between the category of
paracompact strictly analytic spaces and that of quasiseparated rigid spaces
that have an admissible affinoid covering of finite type. (Actually both
equivalent categories include all of the spaces needed in practice.) More-
over, the above functor preserves the cohomology groups of abelian sheaves
and the categories of coherent sheaves. But the advantage of the new spaces
is in their nice topology. For example, each point has a fundamental system
of open neighborhoods which are locally compact, countable at infinity and
arcwise connected. The topological dimension of a paracompact analytic
space is at most its (algebraic) dimension and is equal to it if the space is
strictly analytic. Furthermore, a scherieof locally finite type is separated
(resp. proper, resp. connected) if and only if the associated analytic space
X2"is Hausdorff (resp. compact, resp. arcwise connected), and the topo-
logical dimension of?"is equal to the dimension 6€. Such spaces as the
projective spac@, the affine spaca&?, open and closed polydiscs in it and
the Drinfeld upper half-space? [Dr1] are contractible, and the Tate elliptic
curve is homotopy equivalent to the circle. In [Berl] we also proved that
analytic curves are locally contractible. The nice topology of the analytic
spaces was essentially used in their various applications ([Berl]-[Ber7],
[Che], [deJ1]). Of course, local contractibility of the analytic spaces proven
in this paper for smooth spaces is one of the most desirable properties of
them. Besides the consequences mentioned at the beginning of the intro-
duction, it provides an evidence of the existence of integrationp-ailic
analytic spaces. What is the difficulty in proving this property?

Recall that a smooth complex analytic space is locally isomorphic to
an open polydisc and, therefore, it is contractible for trivial reasons. Al-
though contractibility ofp-adic open polydiscs was established in [Berl],
the difficulty of the p-adic case is in the fact that a smog#adic analytic
space is not in general locally isomorphic to an open polydisc. The simplest
example is an open annulus in the affine line. (In the language of rigid
analytic geometry, this means that the open annulus has no an admissible
covering by open or closed discs.) In the proof of local contractibility of
analytic curves, a key ingredient was the semi-stable reduction theorem for
curves. It was used to show that a smooth curve minus a certain discrete
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subset of points is a disjoint union of open discs and annuli. Of course, after
A.J. de Jong proved his remarkable results in [deJ2] and [deJ3], the author
started thinking of applying them to the problem of local contractibility of
p-adic analytic spaces. What is done in this paper is a higher dimensional
generalization of the one-dimensional case from [Berl, Ch. 4], obtained
with the use of constructions from [Berl], [Ber3] and [Ber5] together with
the results of de Jong. But even for curves, the picture obtained is more
precise. As for local contractibility of the analytic spaces with singularities,
one probably needs new ideas. We now give a brief summary of the material
which follows.

Let k be a field complete with respect to a non-Archimedean valu-
ation (which is not assumed to be nontrivial). The main body of the paper
(88 1-8) is devoted to a description of the homotopy type of the generic
fibre x, of a formal schemex locally finitely presented over the ring of
integersk® in terms of a combinatorial object associated with the closed
fibre Xs. Notice that in general the closed fibkg does not determine the
homotopy type of the generic fibge,. But, it turns out, thats does de-
termine the homotopy type of, for a class of formal schemes, called
poly-stable fibrations and related €-pluri nodal fibrations from [deJ3].

In 81 we introduce this class. It consists of the formal schemegso-

vided with a decomposition of the canonical morphisniaf(k°®) in the

form X = X f'—’f X1 f'—32 e B Xo = Spf(k°), where f; are poly-stable

morphisms. The latter are natural generalizations of fibre products of semi-
stable morphisms. For technical reasons we also introduce a broader class
of pluri-nodal morphisms. In 82 we provide a pluri-nodal schexhever

a field with a stratification. The latter defines a simplicial NéX) which

is, more or less, the nerve of the partially ordered set of the strata.

In 83 we introduce a category of polysimplicial sets. It is a symmetric
strict monoidal category which is better adapted to a combinatorial descrip-
tion of poly-stable fibrations than the category of simplicial sets. We asso-
ciate with a poly-stable schen? over a field a polysimplicial seE(X).

We also construct functors from the category of polysimplicial sets to those
of partially ordered sets and of simplicial sets. The former t&kex) to

the partially ordered set of strata &f, and the latter preserves geometric
realizations and takeS(X) to N(X). In 84 we provide the polysimplicial
setC(Xs) associated with the closed fibre of a poly-stable formal schieme
overk® with an extra structure. For this we introduce a category of colored
polysimplicial sets and a geometric realization functor from it to the cate-
gory of topological spaces endowed with a sheaf of monoids of continuous
functions with values in the unit intervgd, 1]. (The colored polysimplicial

sets are precisely the combinatorial objects that give rise to the the Bruhat-
Tits buildings of semi-simple algebraic groups from [BrTi].) We associate
with X a colored polysimplicial sdt (X). The underlying topological space

of |[L(X)| is homeomorphic t¢C(Xs)|. In 85 we construct a proper defor-
mation retraction ofk, to a closed subse¥(X), called the skeleton af.
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This retraction possesses nice properties. In particular, it commutes with all
automorphisms of and induces a deformation retraction of each Zariski
open subset of, to its intersection withS(X). Furthermore, we provide

the closed fibre ok with anétale sheaf of monoids which is closely related
to the logarithmic structures of Fontaine-Illusie (see Remark 5.12(ii)). It is
used to endow the skelet&@ix) with a sheaf of monoids of continuous func-
tions with values in0, 1]. Finally, we construct a functorial isomorphism

IL (X)|]— S(X). The simplest consequence of the results of §5 tells that the
analytification of a scheme, isomorphic to an open subscheme of a proper
scheme with good reduction, is contractible.

We want to emphasize that there is a strong similarity between the results
of 85 and the Fontaine-Jannsen conjecture (already proven) which relates
p-adic étale cohomology of the generic fibfe, of a proper semi-stable
schemeX over k°, wherek is a finite extension o, and crystalline
cohomology of the closed fibi&s endowed with the logarithmic structure
induced fromX (see [Tsu]).

In 88 6-8 we extend the results of 85 to poly-stable fibrations. Namely,

in 86 we associate with a poly-stable fibrat@n= (X - X1 — --- —

Xo = SpecK)) over afieldK a polysimplicial se€C(X) so that the partially
ordered set associated wil{X) is isomorphic to the set of strata &f;.

In 87 we construct for a poly-stable morphism of formal schethes x

a lifting of a homotopy of certain type from, to 9),. In 88 we construct

for a poly-stable fibratio® = (X} > X_1 — --- — Xo = Spf(k°)) of
formal schemes ovee® a strong deformation retraction af ,, to a closed
subsetS(X), called the skeleton af, and a functorial homeomorphism

|C(§s)|l> S(X). The latter possesses the same nice properties as the re-
traction for poly-stable formal schemes. The results of 88 suggest that
a generalization of the Fontaine-Jannsen conjecture for compositions of
proper semi-stable morphisms might exist.

In 89 the valuation on the ground fieldis assumed to be nontriv-
ial. (In all other sections this is not assumed.) First of all, the notion
of smoothness we work with is that introduced in [Ber2, 83]. It corres-
ponds better to the complex analytic smoothness but is more restrictive
than the rigid analytic one. Namely, a strictly analytic space is smooth
if and only if it is rigid analytically smooth and has no boundary (in
the sense of [Ber2, §1.5]). We prove local contractibility of the analytic
spaces locally embeddable in a smooth space. This class is broader than
that of smooth spaces. It contains all strictly analytic domains in smooth
spaces and all rigid analytically smooth affinoid spaces. As we mentioned
at the beginning of the introduction, the result implies that any analytic
space locally embeddable in a smooth space has a universal covering.
Finally, in 810, we use the same methods to prove the following result.
Let X be a separated scheme of finite type okeand X = X2". Then
the abelian group$19(|X|, Z) and HZ (| X|, Z) are finitely generated, and
there exists a finite separable extensidnof k such that for any non-
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Archimedean fiel& overk’ one hasH9(|X®K|, Z)— HI(|X&K|, Z) and
HI(IX®K|, Z)= HJ(IX®K |, Z). What is proven in §10 and the results
from 88 give strong evidence for the following conjecture. Xdbe a com-
pact analytic space and a Zariski closed subset of. Then (a) the pair
(IX], IY] is homotopy equivalent to a compact polyhedral gair B) with
dim(A) < dim(X) and dim(B) < dim(Y), and (b) there exists a finite
separable extensiok of k such that for any non-Archimedean fiekl
overk’ the canonical map of pairg XK |, [YRK|) — (IXQK|, [YRK)

is a homotopy equivalence.

Asis clear from the above, this work is very much stimulated by the work
of A.J. de Jong, and | am very grateful to him for the help in understanding
his results. | am very grateful to V. Hinich for many useful discussions and,
especially, for his help in my search for appropriate simplicial tools.

1. Pluri-nodal and poly-stable morphisms and poly-stable fibrations of
formal schemes

In this section we introduce several classes of morphisms of formal schemes
which will be objects of study in this paper. The definitions are given for
arbitrary formal schemes in order to apply them to usual schemes (which
are a particular case of formal schemes).

First of all, recall that a covering of a topological spaXeby subsets
{Xilie| is called locally finite if each point oK has an open neighborhood
which has a non-empty intersection with at most finite numbex¢. If
all of the subsets are open, this is equivalent to the fact that each point of
is contained in at most finite number Xf’s.

Let ¢ : 9 — X be a morphism of formal schemes. It is said to be
locally finitely presentedf the preimage of every open affine subscheme
Spf(A) is a locally finite union of open affine subschemes of the form
Spf(A{To, ..., Ta}/(f1, ..., fm)). All of the morphisms we consider will
be assumed to be locally finitely presented. Furthermpris, said to be
étaleif, for each ideal of definitiorg C ©x, the induced morphism of
schemeg), O9/30y) — (X,0x/F) is étale. Finally,¢ is said to be
smoothif, for every pointy € 9), there exist an open affine neighborhood
X' = Spf(A) of ¢(y) and an open neighborho® ¢ ¢~%(x") of y such
that the induced morphis)’ — X’ goes through argtale morphism
D" — Spf(A{To, ..., Ta}).

Definition 1.1. Lety : 9 — X be a locally finitely presented morphism of
formal schemes.

(i) ¢ is said to bestrictly pluri-nodalif locally in the Zariski top-
ology it is a composition oétale morphisms and morphisms of the form
Spf(A{u, v}/(uv — a)) — Spf(A),ae A.

(i) ¢ is said to bepluri-nodalif there exists a surjectivetale morphism
2’ — 92 such that the induced morphishi — X is strictly pluri-nodal.
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The following definition introduces an important class of pluri-nodal
morphisms.

Definition 1.2. Lety : 9 — X be a locally finitely presented morphism of
formal schemes.

(i) ¢ is said to bestrictly poly-stableif, for every pointy € %), there
exist an open affine neighborhoad = Spf(A) of ¢(y) and an open neigh-
borhood®)’ C ¢~1(x') of x such that the induced morphishi — %’ goes
through arétale morphisn®)’ — Spf(Bg) x - - - x y» Spf(Bp), where each
B; is of the formA{To, ... , Th}/(To-... - Ty — @) witha € Aandn > 0.

(i) ¢ : P — X is said to bepoly-stableif there exists a surjectivéetale
morphismQ)’ — 92 for which the induced morphis®)’ — X is strictly
poly-stable.

For example, any smooth morphismiis strictly poly-stable. To see that any

(strictly) poly-stable morphismiis (strictly) pluri-nodal, it suffices to consider

a morphism of the fornSpf(B) — Spf(A) with B = A{To, ..., Ta}/
(To-...-Thy—a) andn > 2, and to notice thaB = C{To, T1}/(ToT1 — u) for
C=AuT,,..., T,}/WUT, ... T, — a). For a formal schem&, a locally
finitely presented morphism of formal schemes oggrwhich is locally
isomorphic in theétale topology to the projectio x g 9 — X where®) is
poly-stable oves, will be calledtrivially poly-stable(with respect tas).

Definition 1.3. Let & be a formal scheme. @&trictly) poly-stable fibration
over & of lengthl is a sequence of (strictly) poly-stable morphisms

fi_ f f
E=( = ... -5 X —>%=06).

Amorphismg : X' — X is a family of morphismg; : X{ — %;,0<i <|,
such thatyg = 1g and fi_1o ¢ = ¢gj_10 f/_;forall 1 <i <. If the
morphismsy;, 1 < i < |, possess a propertp, ¢ is said to possess the
property P.

An example of a pluri-stable fibration of schemes i&aluri nodal
fibration from [deJ3, 5.8].

We now specify schemes and formal schemes which will be considered
in the paper. First of all, most of the schemes we consider are locally finitely
presented over a field in the above sense. It is more natural to call them
schemes of locally finite type ovir. Note that these are schemes of locally
finite type overK in the usual sense with the above additional property, and
the latter is automatically satisfied by those of them which are separated.

Furthermore, lek be a non-Archimedean field, i.e., a field complete with
respect to a non-Archimedean valuation with valueRin (The valuation
onk is not assumed to be nontrivial). Lkt be the ring of integers df,
ke the maximal ideal ok, andk = k°/k°° the residue field ok. The
category of formal schemes locally finitely presented dkfeis denoted
by k°-Fsch A formal schemex from k°-#sch has the closed fibr&y,
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which is a scheme of locally finite type ovkr and the generic fibre,,
which is a paracompact strictl-analytic space, and there is a reduction
mapr : X, — Xs (see [Ber3, 81]). Ifx = Spf(A), thenXxs = SpecA),
where A = A/K”A, andx, = M(A), whereA = A ® k. One also
setsA° = {f € A||flsyp< 1}, where|flsyp = sup |f(X)], A% =

- XEM(A)
{f € A|lflsup< 1} andA = A°/A°. We remark that the image ok
in A is contained inA° and that4° is integral over this image. We also
remark that the ring#\ and A° are separated and complete in #radic
topology, wherea is an element ok®® non-zero if the valuation oR is
nontrivial. Notice that, if the valuation dkis trivial, the correspondences
X — X, andX — X, are equivalences between the catedornF schand
the categories of paracompact stridthanalytic spaces and of schemes of
locally finite type ovelk, respectively.

We shall use in the sequel the following fact that follows from the local
description ofetale morphisms of schemes (see [Ber3, §2]): giveatale
morphismQ) — X = Spf(A), each point of)) has an open neighborhood
isomorphic overx to Spf(B) with B = Cg, C = A[T]/(P) andc € C,
where P(T) is a monic polynomial inA[T] such that the image of the
derivative P’(T) in Bis invertible.

A formal schemex from k°-F schis said to besmooth(resp.(strictly)
pluri-nodal, resp. (strictly) poly-stable resp.trivially poly-stablg if the
canonical morphisn¥ — Spf(k°) possesses the corresponding property.
Notice that if a schemé&C overk® possesses one of the above properties,
then its formal completior¥ along the closed fibr&Cs possesses the same
property.

Forn > 1 anda € k°, we set%(n,a) = Spfk’{To, ..., Tn}/(To-...Th — @)
and, form > 0, we seté(m) = Spfk’{S,,... Smé ,é}). If

la] = 1, thenT(n, a)—&(n). Given two tuplen = (g, ... ,Np) € Zrtt
anda = (ag, ... ,ap) € kPt with n; > 1 and|a| < 1, we setg(n, a) =
T(Ng, &) X - - - X T(Np, ap). Aformal scheme of the forr (m) or T(n, a) x
&(m) will be calledstandard To consider the above formal schemes sim-
ultaneously, we allow the pair of tuples wifh= no = 0 andap = 1 and
set%(0, 1) = Spf(k°).

To have the possibility to consider automorphisms of formal schemes
which act nontrivially on the ground ring, we introduce a categgisch
whose objects are pai(k, X), wherek is a non-Archimedean field ardis
from k°-F sch, and morphismsK, 9)) — (k, X) are pairs consisting of an
isometric embedding — K and a morphisn)) — X® K° in K°-#sch
The category¥ schis a fibred one over the category of non-Archimedean
fields, and the correspondenge— X, gives rise to a functor fronf'sch
to the similar categorysn of analytic spaces. Furthermore, we denote by
Fsch! (resp. Fsch™, resp. FscHPS) the category with the same family
of objects asF sch but with the morphismgK, 9)) — (k, X) for which
the morphism)) — X®-K° is étale (resp. smooth, resp. trivially poly-
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stable). We also denote by-Pstf, Pstf, J’st}fé‘, Pst ™M and Pst fPS
the full subcategories df°-Fsch Fsch Fsch!, FschH™ and £ schs,
respectively, consisting of poly-stable formal schemes. For brevity the pair
(k, X) will be denoted byx.

The category of poly-stable fibrations owerof lengthl will be denoted
by k°-#st f,. For any bigger non-Archimedean fiekdthere is the evident
ground field extension functar — X®K. We denote by st f, the category
of the pairgk, X) with X € Ob(k°>-#st f;) and whose morphism, 2)) —
(k, X) are the pairs consisting of an isometric embedding-> K and
a morphism® — X®K in K°-Pstf,. We also denote byPst ! (resp.

Pst 5™, resp.Pst f{™) the category with the same family of objectsst f
but whose morphisms are the pairs for which the morphism X¥QK is
étale (resp. smooth, resp. trivially poly-stable). For brevity, the (iaix)
will be denoted by.

Finally, we introduce similar categories of poly-stable schemes and
of poly-stable fibrations of schemes over fields and use for them similar
notationsPst, Pstt, Pst and so on.

Proposition 1.4. Let X = Spf(A) be a pluri-nodal affine formal scheme
overk®. ThenA—= A°, A= A and|Alsyp = [K|.

Proof. We remark that the proper@%% trivially follows from the other
two properties. Furthermore, if the valuation lois trivial, then all of the
properties are evidently true for an arbitraty Assume therefore that the
valuation ork is nontrivial, and letx be a fixed non-zero element ki .
Firstof all, it suffices to prove the statement for strictly pluri-nodal formal
schemes. Indeed, assume that it is true for those formal schemes, and let
Spf(B) — Spf(A) be a surjectiveéetale morphism with strictly pluri-nodal
Spf(B). ThenSpf(BRB) is also strictly pluri-nodal, and the necessary
properties ofA are deduced from those & and B® 4B using the exact
sequences > A — B — BaBand 0— A° — B° — (BR.4B)°.
Thus, assume that is strictly pluri-nodal. We prove the statement
by induction on dinixs). If dim(Xs) = 0, then A is a direct product
of a finite number of the ring of integers of finite unramified extensions
of k and, therefore, it evidently possesses the required properties. Further-
more, letB = A{Ty, T1}/(To-T1 — @), a € A, and assume thai— A° and
[Alsup = [K|. Then B> B° and|8|sup = |K|. Indeed, each elemerite B
has a unique representation in the foyii- ___ anun, wherea, — 0in the
a-adic topology ofA andu, = T, " for n < 0 andu, = T;' for n > 0,
and one hasf sy, = mr:axlanlsup Furthermore, each elemefite 8 has
a unigue representation in the above form vaithe 4 such that there exists
B € k° with Ba, € Aandpa, — 0 inthex-adic topology ofA. Thisimplies
the required properties d3.

Assume now thag) = Spf(B) is étale overx = Spf(A) and that the
statement is true fok and for the formal schemes of smaller dimension.
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The claim is thaB— 8° and |Blsup = |K|. We prove this in several steps
by induction on the number of irreducible components pt= M (A).

Step 1.If %, is irreducible, thenA is integrally closedlt suffices to
verify that is integrally closed. Indeed, Idtbe an element of the fraction
field of A integral overA. Since« is integrally closed,f € . If f" +
af"1 4+ ... +a, = 0is an integral equation of over A, then| f|g‘up <
. r_naxl(| f |‘Supp 1) and, therefore| f|syp< 1,i.e.,f € A° = A.

<i<n—

Sincex, is irreducible, the integral closeness«fis equivalent to the
fact that the local rin@x , of each poink € Max(A) C X, is integrally
closed. The latter fact is local with respect to thiale topology ofx.
Thus, it suffices to prove that if a strictkraffinoid spaceX = M (A) is
irreducible and normal, then the stricttyaffinoid spacey = M (8B) with
B = A{u, v}/(Uv—a) anda # Ois also irreducible and normal. For this we
need the following simple fact which will also be used in the next section.

Lemma 1.5. Let XX = SpecA) andY = SpecB), whereA is an excellent
ring and B = Alu, v]/(uv — a). Then¥ is normal at a pointy if and only
if (a) X is normal at the poink = ¢(y) and (b)u(y) # 0O, or v(y) # 0, or

the image o& in O x x iS not zero.

Proof. Assume first thay is contained in the normality locigor(Y) of Y.
Thenx e Nor(X) because the local rin@y  is faithfully flat over® .
Suppose thati(y) = v(y) = 0 and that the image @fin O x is zero. We
can shrinkX and assume that= 0. In this caseB = A[u, v]/(uv) and the
point y belongs to at least two irreducible componentg/of

Assume now that (a) and (b) are trueulfy) # 0 orv(y) # 0, theng
is smooth aty and, thereforey € Nor(Y). Assume that the image afin
O .x is not zero. Then we can shrirnK and assume thaA is integrally
closed anch # 0. Each element e B has a unique representation in the
form Yo au' +Y 2, bjvl. Onehasi f = Y= au™+ 352 abjl -,
and sincea # 0 the element is not a zero-divisor irB. In particular,B is
embedded irB[%]l>A[u, 11,1t follows that B is integral. Furthermore,
sinceB[ﬁ] is smooth ove, it is integrally closed, and to prove the lemma
it suffices to verify that any elemerft € B[é] integral overA and of the

form 2, b € B, is contained inB. Let f" + b, f"1 + ... + b, = 0 be an
integral equation off over B. The equation implies thdi” € uB. Since

B/uB— A[v] is reduced, it follows thab € uB. O

We apply the lemmatd¢ = SpecA) andy = SpecAlu, v]/(uv—a)).
It follows that Y is normal. Then from [Ber7, Lemma 3.6], it follows that
the strictlyk-analytic spacé/®" is normal. Since¥ = M (B) is an affinoid
domain iny2", it follows thatY is normal. Since all of the fibres of the
morphismY — X are connected, it follows that is also connected and,
therefore, it is irreducible because it is normal.
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Step 2.The claim is true ifx, is irreducible andB = Ci, C =
A[T]/(P), c € C, where P is a monic polynomial inA[T] for which
the image ofP’(T) in B is invertible. By Step 1, A is integrally closed.
Furthermore, we may assume tisgtec B) is connected and that the degree
of P is minimal over all representations Bfin such a form.

(1) The polynomialP is irreducible over the fraction field oA. Let
P = P, P, be a representation ¢ as a product of monic polynomials of
smaller degrees over the fraction field Af Since A is integrally closed,
it follows that P;, P, € A[T]. Let b denote the |mqge of in B. Then
Pl(b) Pz(b) = 0andthe elemerff/(b) Pz(b) + Pl(b) P;(b) isinvertible inB.
SinceB is étale over the reduced rlng it is also reduced. It follows that,
glven an irreducible componeivt of Spea:B) one has elthePl(b)|Y =0

or Pz(b)lY = 0. Assume, for example, thﬁi(b)|y = 0. Then the elements
Pi(b)lY and Pz(b)|y are invertible. Sinc&ped B) is connected, it follows

that the eIementE’/(b) and Pz(b) are invertible inB and, thereforeP; (b)
and P,(b) are |nvert|ble inB. In particular,P;(b) = 0. If D = A[T]/(Py),

then the canonical epimorphisth— D induces an isomorphism{d}; B,
whered is the image ot in D, and we can replace by the polynomialP,

of smaller degree. The claim follows. We remark that since the image of
P’(T) in B is invertible, it follows that the polynomialP(T) is separable
over the fraction field ofA.

(2) The homomorphisnB — B° is bijective. First of all, sinceB
is flat over A, the homomorphism considered is injective. Furthermore,
since the both rings are separated and complete in{hdic topology, to
prove the surjectivity, it suffices to verify th@ is dense inB°. A dense
subset inB is provided by elements of the formi( f)/o(c)", whereo
is the canonical homomorphis®® = C @ k — B and f € C. Let
o(f)/o(c)" besuchanelementd®,i.e.,|o(f)/o(C)"|syp < 1.We claim that
a(f)/o(c)" € B.Indeed, sincéo(c)(y)| = 1forall pointsy € 9, it follows
that [o(f)|suyp < 1. By [BGR, 7.2.6/2], one halr(f)|syp = [C" f|syp fOr
a sufficiently largem. Replacingf by ¢c™ f, we may assume thaf [s,p < 1,
i.e. f € €°, and sincer(c) € B* it suffices to show thai(f) € B = Cig
By [BGR, 6.3.5/1], the ringe” is integral overA = A°. It follows thatC®
is contained in the integral closure #&fin L = C ® K, whereK is the
fraction field of A. SinceL is separable ove(, it follows that f = g/P’(y)
for someg € C, wherey is the image ofl in C. Since the image oP’(y)
in B is invertible, it follows thatr( f) € B.

(3) The homomorphisr§ — Bis bijective.By (2), it suffices to verify
thatthe homomorphismisinjective. Lggbe an element d with |g|syp < 1.
We have to verify thay € k°°B. For this we can replacg by an element
of the formo(f)/o(c)". As above, replacing by c™f for a sufficiently
largem, we may assume thaf s, < 1, i.e., f € ¢°°. Let f9 +a f9-1 +

.-+ ag = 0 be the minimal equation df over 4. By [BGR, 3.8.1/7], one
has| f |syp = miin la;|Y/'. It follows thata; € A°° = k*° A. The latter implies
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that f9 € k°°C, and thereforer( f)4 € k°°B. Since the ring is reduced, it
follows thato( f) € k°°B and thereforey € k°°B.
(4) One hag 8B|syp = |K|. For this we use the following observation.

Lemma 1.6. Let)) — X be anétale morphism of formal schemes locally
finitely presented ovek°. Then for any pointy € 9, the field #(y) is
a finite unramified extension & (x), wherex is the image o in X,,.

The statement and its proof work also for special formal schemes as
defined in [Ber6, 81] ovek® with a discrete valuation (not necessarily
nontrivial).

Proof. We may assume that = Spf(A) andy) = Spf(B), whereB = Cg,

C = A[T]/(P), andP € A[T] is a monic polynomial such that the image
of P'(T) in B is invertible. Since the morphism, — X, is quasiétale,
F(y) is a finite separable extension @&f(x) generated by the image
of T in #(y). Let Q(B) = 0 be the minimal monic equation ¢f over
FH(X). One haQ € F(x)°[T]. SinceP(B8) = 0, it follows thatP = QR
for someR € #(x)°[T], and therefore’(B) is invertible in #(y)°. This
immediately implies that#(y)° = #(x)°[8] and that#(y)° is étale over
H(X)°, i.e., H(y) is unramified over (X). O

By [Berl, 2.4.4], for everyf € 8B one has|fls,p = max |f(X)],
yel(8B)

where I'(8) is the Shilov boundary of8, and I'(8) coincides with the
preimage of the set of generic points of the irreducible components of
2s = SpecB) under the reduction map, = M(B) — 2. Recall also

that the preimage of such a generic point consists of one point. By (3),
B = 8, and therefore the generic points Df are the preimages of the
generic points ofty = SpecA). It follows that I'(B) is the preimage of
I'(A) under the map), — X, = M(A). Since|H(X)| = |K| for all

X € I'(A), Lemma 1.6 implies that#(y)| = |k| for all y € I(8), and
therefore|B|sup = |K|.

Step 3.The claim is true ift, is irreducible.Indeed, we can find a finite
covering ofY) by open affine subschem8gf(B;), whereB; are of the form
from Step 2, and for each pairj afinite open covering &pf(B;) NSpf(B;)
by open affine subschem&pf(By; ), whereB;; are also of the form from
Step 2. Then the necessary propertieB@re established using the exact
sequences 6> B — [[; B — [] By and 0— B° — [[; B —
[Ty B3 -

Step 4.The claim is true i) is an open subscheme ®f Indeed, by
the reasoning from Step 3, it suffices to consider the BaseA;, where
f € A\k**A. Inthis case we use the argument from the substep (2) of Step 2.
Namely, it suffices to verify thaB is dense inB°. Leto denote the canonical
homomorphism4 — 8, and leto(a)/o(f)", a € A be an element o8
with |o(a)/o()"|suyp < 1. Since|o(f)(y)| = 1 for all y € 9,, it follows
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that [o(a)|syp < 1. By [BGR, 7.2.6/2], one hafr(a)|suyp = | f™alsyp for
a sufficiently largem, i.e., fMa € A° = A. It follows thato(a)/o(f)" € B.

Step 5.The claim is true in the general cas®y Step 4, the claim is local
with respect tax. Hence, we can shrink and assume that the morphism
X — Spf(k°) is a composition ofetale morphisms with morphisms of
the form Spf(D) — Spf(C) with D = C{u, v}/(uv — ¢). If all of the
elementsc from the latter morphisms are not zero, then Step 1 implies
that X, is normal, i.e., we are in the situation of that step. Assumexhat
is not normal. Then for some intermediate morphiSpf(D) — Spf(C)
one hasD = C{u, v}/(uv). We setx; = Spf(A/uh), X, = Spf(A/vA)
andXx3 = Spf(A/(UA+ vA)). These are strictly pluri-nodal affine formal
schemes ovek°. The numbers of irreducible componentsiaf, andx»,,
are strictly less than that of,, and the dimension af3 is strictly less
than that ofXs. By induction, the ringsB; = B/uB, B, = B/vB and
Bs; = B/(uB+ vB) possess the required properties. SiBds flat overD,
it follows that there is an exact sequence-0B — B; x B, — Bs. The
required properties oB are now deduced using it and the exact sequence
0— B —> B x By — Bs. O

Corollary 1.7. Let X be a pluri-nodal formal scheme ovée, and let
gen(xs) denote the set of generic points of the irreducible components
of Xs. Then

(i) the reduction magx, — Xs is surjective;

(i) foranyx e gen(Xs), there exists a unique poirte X, with 7(x) = X,
and one hak(x)— #(X);

(iii) if xis affine, then the set~1(gen(Xs)) is the Shilov boundary of,,.

Proof. Everything follows from Proposition 1.4 and [Berl, Propos. 2.2.4].
]

Corollary 1.8. The generic fibre of a pluri-nodal formal scheme okfeis
connected if and only if its closed fibre is connected. O

2. A stratification of a pluri-nodal scheme

Let X be a scheme of locally finite type over a fiekl Recall again
that it is a scheme which admits a locally finite covering by open affine
subschemes of finite type ovir, It follows that any irreducible component

of X is quasi-compact and has a non-empty intersection with at most finite
number of other irreducible components, and the intersection of any family
of irreducible components has a finite number of irreducible components.
(Of course, if the above intersection is non-empty, the family is finite.)
Moreover, any locally closed subsetXf considered as a reduced scheme,
is of locally finite type ovelK. The set of irreducible componentsXfwill

be denoted byrr (X).
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Assume thafX is reduced. Sinc& is an excellent scheme [EGAIV, §87],
the normality locusNor(X) of X is open and dense . We setX© = X
and XY = x®\Nor(x"), i > 0. The irreducible components of the
locally closed subsets™\ x%+D = Nor(x") will be called thestrata
of X. (Note thaNor(X ") is a disjoint union of its irreducible components.)
The stratification ofX, constructed in this way is evidently locally finite.
A subset which is a union of strata is calledteata subset ofC.

Furthermore, we define another filtratioh = X D X1 D ... by
the property thafX ;1) consists of the points dk, which are contained
in at least two irreducible components ;. We say thatX is quasi-
normalif all of the irreducible components of eatty;, are normal. Notice
that the property to be quasi-normal is local with respect to the Zariski
topology and, for arétale morphisnty — X with quasi-normalX, Y is
also quasi-normal. Notice also thatXf is quasi-normal thetd® = X
for all i > 0. Indeed, since the irreducible componentsXofire normal,
thenNor(X) = X\X ), i.e., XY = X, and the statement fdx is
reduced to that fofC ).

Proposition 2.1. Let X be a pluri-nodal scheme ovét. Then
(i) the closure of every stratum &€ is a strata subset dk;
(i) if X is strictly pluri-nodal, it is quasi-normal.

Lemma2.2.Letgp : Y — X be anétale morphism between reduced
schemes of locally finite type ovir. Then

() ¢ induces arétale morphism from each stratum #fto a stratum
of X; in particular, the preimage of each stratum &f is a strata subset
of Y;

(i) if ¢ is quasi-normal and possesses the property (i) of Proposition 2.1,
theny possesses the same property;

Assume thap is surjective. Then

(iii) if, for a locally closed subsefX’ c X, ¢~1(X) is a strata subset
of Y, thenX' is a strata subset dk;

(iv) if Y possesses the property (i) of Proposition 2.1, thepossesses
the same property.

Proof. (i) SinceNor(Y) = ¢~1(Nor(X)), the statement is evidently true for
the strata ofYf in Nor(Y), and is reduced to that for the induced morphism

y(l) — (pfl(x(l)) — xD,

(ii) Let Y be a stratum of with Y C %\ % .1, > 0. ThenY is an
irreducible component df ;. If X is the stratum ofX that containgy(Y),
then X is an irreducible component dk ;. Since X is normal and the
induced morphism~(X) — Xis étale, it follows thaty(X) is a disjoint
union of its irreducible components. One of thenYisand the statement
follows.

(i) Since ¢ is surjective, it suffices to verify that, for each stratum
Y of Y in ¢~1(X'), one hasX C X/, where X is the stratum ofX that
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containsp(Y). By (i), ¢ induces amtale morphisnY — X and, in particular,
@(Y) is open inX. It follows that, for each straturd’ of Y with o(Y’) C X,
the intersectionp(Y’) N ¢(Y) is non-empty. The latter implies that N
o H(X) # ¢ and, thereforeY’ c ¢ 1(X') becausey~1(X') is a union
of strata. It follows thatp(Y’) c X' and, thereforeX C X’ becausey is
surjective.

(iv) Let X be a stratum ofX. The assumption implies that1(X) is
a union of strata. Since is an open map, one hasl(X) = ¢~ %(X) and,
by (iii), X is a union of strata. O

Lemma 2.3. Letg : Y = Spe¢B) — X = SpecA) with B = Au, v]/(uv — a).
Assume tha¥( possesses the property (i) of Proposition 2.1. Then

(i) Y possesses the same property;
(i) given a stratumX of X, one has
(1) if aly # 0, thengp~1(X) is a stratum ofY, and the induced mor-
phisme~1(X) — Xis flat and generically smooth;
(2) if aly = 0, thenp~1(X) is a union of the two irreducible com-
ponentsY'— X x Spe¢K[v]) and Y= X x Spe¢K[u]), and
Z :=Y'NY’= X; moreoverY'\Z, Y’\Z and Z are strata ofY;
(iii) if X is quasi-normal, then so 4.

Proof. Assume first thalX is an irreducible component Mor(X). In the
case (1), Lemma 1.5 implies that*(X) is irreducible and normal, and

all points from its complement ip—1(X) = ¢~1(X) are not normal, i.e.,
¢~ (X) is anirreducible component dlor(Y). (The above equality follows
from the fact that is an open map.) In the case (2), one has(X) = Y' U

Y” U@~ 1(X\ X) and, thereforeY’\ Z andY”\ Z are irreducible components
in Nor(Y), i.e., they are strata d§. Since Z> X, the setZ is open in
irreducible components ®dor(Y,;,) and ofNor(¥?). We claim that each
point from Z\Z is contained in at least two irreducible components of
e 1 (%), (Note thatZ\Z ¢ ¢~1(X\X).) Indeed, letX’ be an irreducible
component ofX® that contains the image of a point fram Z. SinceX is

a strata set, it follows that’ ¢ X\ X and, thereforeg|y, = 0. This implies
that o~(X’) has two irreducible components whose intersection contains
the point and which are also irreducible componenis df X?). It follows
that Z is an irreducible component dfor(Y ,)) and ofNor(y™) and, in
particular,Z is a stratum of{. It follows also that YY) = (o= 1(XDV))D,
and if XV = Xy, theny™ = Y ,,. Thus the statements (i) and (iii) for
are reduced to those for the morphigmt(X®) — X®. The statement (i)
follows from (i) and the equality—1(X) = ¢~(X). O

Proof of Proposition 2.1Both statements follow straightforwardly from
Lemmas 2.2 and 2.3. O
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Let str(X) denote the set of the generic points of strat&Gof

Corollary 2.4. Let X be a pluri-nodal scheme ovek. Then for each
stratumX of X one hasX = X\ (Uy), wherex is the generic point oK and
the union is taken over all pointg e str(X) withx € y. O

The set of strata of a strictly poly-stable scheme can be described as
follows.

Proposition 2.5. Let X be a strictly poly-stable scheme ovér Then the
intersection of any set of irreducible componentsxbfs smooth, and the
family of strata coincides with the family of irreducible components of sets
of the form(NxcaX)\ (UygaY), WhereA is a finite subset afr ().

Proof. Both statements are easily verified for direct products of schemes
of the form SpecK|[Ty, ..., Th]/(To-...-Ty)) and SpecK [Ty, ..., Ty,
Tfl, e T,;l]), and easily follow from this in the general case. ]

Corollary 2.6. All of the strata of a poly-stable scheme are smooth.o

Proposition 2.7. Let ¢ : Y — X be a pluri-nodal morphism to a pluri-
nodal schemé overK. Then

(i) the image of a stratuny of Y is contained in a stratunxX of X, and
the induced morphisni — X is flat and generically smooth;

(i) Str(Y) = Uxestrix)Str(Y,).

Proof. Lemmas 2.2(i) and 2.3 imply that the statements are tryeisfof

fo_ f i
the formy 9 Xy 53X, N X, whereg andh areétale,X; are

affine, andf; areétale or of the form considered in Lemma 2.3. It follows
that in the general case we can find a surje@bate morphismy : Y’ — Y
such that the statements are true for the morphkigm Y’ — X. LetY be

a stratum ofY, and letX be stratum ofX; with ¢(Y) N X # @. It suffices

to verify thate(Y) C X. For this it suffices to check that 1(X) is a strata
subset ofY. But the latter follows from Lemma 2.2(iii) applied to the subset
¢~ 1(X) and the morphisny. i

Notice that, for a pluri-nodal schen® over K and a bigger field’,
the morphismX ® K" — X gives rise to a surjective morphism from each
stratum ofX ® K’ to a stratum ofX and to a surjective magir(X @ K') —
Str(X).

We introduce a partial ordering on the stt(X) as follows:x < vy if
y € X. For a pointx € str(X), we setstrx(X) ={yestr(X)|y < x}. Notice
that the mapstr(Y) — str(X) from Proposition 2.7 andtr(X ® K’) —
str(X) from the previous paragraph are maps of partially ordered sets.

Corollary 2.8. In the situation of Proposition 2.7, if the morphismis
surjective therCokenr(str(Y x %) = str(y))l>str(X).
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Proof. It suffices to check that each pair< x’ in str(X) comes from a pair
y < Y in str(Y). One hasX’ c X for the corresponding strata 6§ and,
thereforep=1(X') C ¢~ 1(X) = ¢~1(X). It follows that for each stratury’
of Y over X’ there exists a stratuimover X with Y'NY # @ and, therefore,
Y’ CY,ie.,y <y for their generic points. O

Proposition 2.9. Lety : Y — X be a strictly pluri-nodal morphism with
strictly pluri-nodal X, and letx, X’ € str(X) be a pair of points witlx’ < x.
Then

(i) for each pointy e str(Y) with ¢(y) = X, the set of pointy’ € str(Y)
with ¢(y) = X andy < vy is non-empty and has a unique maximal
element; in particular, there is a well defined morphism of partially ordered
setsstr(Y,) — St(Y,.);

(ii) the above map takes minimal points to minimal points; in particular,
there is a well defined map (%,) — irr(Y,.);

(iii) for a point x” € str(X) with x” < x/, the following diagram is
commutative

str(yY,) —>  str(Y,)

NS
Str(yx“)

Lemma 2.10. Lety : Y — X be anétale morphism with strictly pluri-
nodal X, and lety € Y and x = ¢(y). Then there is an isomorphism of

partially ordered setstr-(Y)—>Stroy(X).

Proof. The minimal elements of both sets are exactly the generic points
of the irreducible components @¢f and X passing througly and x, re-

spectively. It follows thatstr-,(Y) N Nor(y)l>str§x(9<}) N Nor(X) and,
therefore, the bijectivity statement fpiis reduced to that for the morphism
YD = o 1(xD) - XD, It remains to verify that ifp(y”’) < (y) for
two pointsy’, y” € str-y(Y) theny” < y'. Let X" and X” be the strata of
X whose generic points akg(y’) and¢(y”). The assumption means that
X' ¢ X". sinceX” is normal,g=1(X") = ¢~1(X") is a disjoint union of
irreducible components, and is the only one of them that contairys It
follows thaty” < y'. O

Proof of Proposition 2.9We remark that if the statement is true for the
morphismg and a morphismy : Z — Y then it is also true for their
compositiong o . Thus, since the statement is local with respect to the
Zariski topology ofY, it suffices to consider the two cases wheris
étale or of the formSpe¢B) — SpecA) with B = A[u, v]/(uv — a).

In both cases everything follows straightforwardly from Lemmas 2.10
and 2.3. O
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Corollary 2.11. In the situation of Proposition 2.9, lef : Z — Y be
a second strictly pluri-nodal morphism. Then the following diagram is

commutative
StH(Zy) —> Sti(Y,)

\ X
St(Zy) —> St(Y,)

Proof. Let Z andy be the images of a poirtt € str(Zy) in str(Zy) and
str(Y,), respectively, and lef’ andy’ be the images af andy in str(Y,.).
It is clear thaty’ < ¥. On the other hand, I& be the image of under
the mapstr(Z,) — str(Zy). One hag’ < zandy(Z) = Yy and, therefore,
Z € str(Zy). It follows thatZ < Z. This implies thaly <y, i.e.,y =Y.
]

We say that a strictly pluri-nodal schedeis elementaryf the partially
ordered settr(X) has a uniqgue maximal element. Notice that, given a strictly
pluri-nodal schemeX and a pointx € X, any sufficiently small open
neighborhood ok is elementary. Indeed, lat be the generic point of the
stratum ofX that contain, and letU = X\ (Uy), where the union is taken
over all pointsy € str(X) with x € y. ThenU is an open neighborhood
of x in X andstr(U") = str—,(X) for any smaller open neighborhoad
of x.

Corollary 2.12. In the situation of Proposition 2.9, ¥ is elementary then
all of the fibresy, of ¢ at the pointsx € str(X) are also elementary. O

We are now going to associate with each pluri-nodal sch&ireesim-
plicial setN(X’).

Recall that a simplicial set is an object of the categafgns of con-
travariant functors fronz to the category of setsns, whereA is the cate-
gory whose objects are the sgt$ = {0, 1, ... , n},n > 0, and morphisms
are all nondecreasing maps (see [GaZi, Ch. Il]). Recall also that the nerve
of a small categon is the simplicial setN(D) for which N, (D) consists
of functors[p] — £, where the ordered sgp] considered as a category.
For a morphisny : [q] — [p], the corresponding mald,(D) — Ng(D)
takes a functofp] — D to its composition withy.

Proposition 2.13. There is a functoX — N(X), unique up to a unique
isomorphism, from the category of pluri-nodal schemes with pluri-nodal
morphisms between them to the category of simplicial seg&nssuch that

(a) if X is strictly pluri-nodal, thenN(X) is the nerve of the partially
ordered sestr(X);

(b) for a surjectiveétale morphisn®’ — X one hasCokerN(X' x x

X = N(X) = N(X).

Proof. We fix for each pluri-nodal schen® a surjectiveétale morphism
X' — X with strictly pluri-nodal X’ so that, if X is strictly pluri-nodal,
then X’ = X, and defineN(X) as the cokernel of the pair of morphisms
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N(str(X”)) = N(str(X')), where X” = X' xx X'. To see that we get

a functor, it suffices to verify that the condition (b) is satisfied wtén
and X' are strictly pluri-nodal. In this case the required fact easily follows
from Lemma 2.10. O

Recall also that the geometric realization functor is a fun¢®pr:
A°Ens — Keto the category of Kelley spaceke. (Recall that a Kelley
space is a Hausdorff topological spagepossessing the property that
a subset oiX is closed whenever its intersection with each compact sub-
set of X is closed.) The functof?] commutes with direct limits and ex-
tends the functo : A — XKe that takes the standardsimplex A[n]
to X" = {(Ug,...,uy) € [0, 1" ug + --- + u, = 1} (see [GaZi,
Ch. lll]). If C € Ob(A°Ensg), then|C| is the direct limit of the functor
(A[n] - C) — X" from the categoryA/C to Ke. (For a categoryD
and a functoiC € D°é&ns, H/C denotes the category of morphisms from
representable functors ©.) A subset of|C| which is the image of the
interior X" of someX™" in the above direct limit is called aimplicial) cell
of |C|. It follows from [GaZi, Ch. IIl, 81.8-1.9] tha€ is a Hausdorff locally
contractible space. I€ is locally finite (as, for exampleN(X)), then|C]
is locally compact. For suc@, any subset ofC| which is a union of cells
is locally contractible. Notice that for an elementary strictly pluri-nodal
schemeX the spacegN(X’)| is contractible.

Remark 2.14.(i) The canonical mapN(X) — N(str(X)) is not an iso-
morphism in general. An example is the nodal curve defined by the equation
Y2 = x2(x + 1).

(i) Let k be a non-Archimedean field. What is done in this section is
applied to the closed fibres of a pluri-nodal schemg& overk®. One can, in
fact, introduce in the similar way a stratification on the generic firef x
for which the properties of Proposition 2.1 are also true, and in the case,
whenX is strictly pluri-nodal, one can define a map of partially ordered sets
from the set of strata of; to the set of strata of,,.

3. A polysimplicial set associated with a poly-stable scheme

In this section we introduce a categody which gives rise to a category of
polysimplicial setsA°&ns, and construct a commutative diagram of functors

PstiPs
str / JC NN
Or 2 A°€ns LN A°ENS

where©r is the category of partially ordered sets. We also show that the
functor B preserves geometric realizations, and introduce a categyarniyh
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the same family of objects a% but with smaller sets of morphisms which
is enough for constructing a funct@r: £stt™ — A°&ns.

For a tuplen = (ng, ..., np) with eitherp = ng = 0 orp > 0 and
ng > 1forall0<i < p, let[n] denote the seng] x --- x [Np]. (The
numberp for [n] as above will be denoted hy(n).) Objects of the category
A are the setgn] for the tuplesn as above, and the set of morphisms
Hom([m], [n]) is the set of the mapBn] — [n] associated with triples
(J, f, o) as follows. Letqg = w(m). ThenJ is a subset ofq], assumed to
be empty iffm] = [Q], f is an injective map) — [p], anda = {0 }o<i<p,
whereq; is an injective magms-14,] — [n] for | € Im(f), ando, is
a map[0] — [n/] for | ¢ Im(f). The mapy : [m] — [n] associated
with the triple (J, f, o) takes an elemernjt= (jo,..., jq) € [m] to the
elementi = (ig,...,ip) € [n] with i} = e (js-14)) for | € Im(f), and
i = a1 (0) for I ¢ Im(f). (Note that different triples give rise to different
maps.) It follows from the definition that the composition of two maps of
the above form has of the same form, and/Ads really a category. For
a subsetl c [q], assumed to be empty[in] = [0], letm; denote the tuple
(Mjgs ..., M), if I ={jo, ..., jtJisnon-empty andp < --- < j;, and the
zero tuple 0, otherwise. It follows that the above morphjsm[m] — [n]
is a composition of the projectiam, : [m] — [m3] (which is a morphism
in A) with an injective morphisno : [m3] — [n]. If y is surjective, then
o is an isomorphism and, therefone has a right inverse, i.e., there exists
a morphismg : [n] — [m] with y o 8 = 1. In particular, a morphism
y : [m] — [n] is an isomorphism if and only if it is bijective. Notice
that the automorphism grouput([n]) for n of the form(n, ..., n) is the
wreath product (see [Hall, 85.9]) of the symmetric grogp, with the
symmetric groub, 1, wherep = w(n). This easily describe&ut([n]) for
an arbitrary{n].

We now give an alternative description of injective morphism4 iifrirst
of all, any sefn] € Ob(A) is endowed with a metric. Namely, the distance
between two elements= (ip, ... ,ip) € [n] andj = (jo, ..., jp) € [n]
is the number of distinct coordinates iondj. Note that each injective
morphism inA is an isometric map.

Lemma 3.1. Each isometric mafm] — [n]is an injective morphism iA.

Proof. We may assume thaitn] # [0]. Let p = w(n) andg = w(m). We
have to verify that each isometric map: [m] — [n] is associated with
a triple of the form([q], f, ).

Caseg = 0. Inthis case the required fact follows from the simple remark
that if | is a subset ofn] with the property that the distance between any
two distinct elements of is equal to 1, then there exists=0l < p such
that, forany O< i < pwithi # [, thei-th coordinates of all of the elements
of | are equal.

Casem = (1, 1). In this case the s¢in] consists of four elements. It is
easy to describe all of the possible isometric mapand this description
shows the required fact.
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Caseg > 1. FixO<k<gqg,andlem'=(mo, ... ,, M1, Miy1, ..., Mgy).
Forj" e [m'], let vy be the magm,] — [m] associated with the triple
([0], f, ), wheref : [0] — [q] takes O tk and« is defined bywk = 1y,
ande; (0) = j/ fori # k. We getanisometric magﬁf = yoyy : [mg] — [n].

By the caseq = 0, yj',‘ is associated with a tripl€[0], fj',‘, ajk,), where
f¥: [0] — [p] is defined by the numbef¥ = £¥(0), andaf; is defined
by the mapa® = O{jk/,|(k) : [me] = [Mw] and the number@j“,’i(O) with
0<i < pandi #1®.We claim that the numbé&¥ and the map® do not
depend of. Indeed, let” anda” be the number and the map corresponding

to an elemen}” € [m’]. To show that” =" := |®¥ anda” = o« := a®,
it suffices to assume that the distance betwgendj” in [m’] is equal
to 1. But if so, the equality” = I’ follows easily from the case = (1, 1).

Furthermore, forj e [my] the elements) (j) and v/ (j) are distinct at
only one coordinat&’ # k, and therefore the elemer;t]é(j) andyj‘,‘/(j) are

distinct at only one coordinaté<’. To prove the equalitg/(j) = «”(j),
it suffices to verify thal®) = | But this also easily follows from the
casem = (1, 1). Thus, we get an injective mdg] — [p] : k — ¥ and,
for eachk e [q], an injective mam® : [m,] — [N ] such that for every
j € [m] thel®'th coordinate ofy(j) is «™(j,) and all of the coordinates
of y(j) outside the placeK?, ... , 1@ do not depend op. This gives the
required fact. O

The category opolysimplicial setss the categoryl°&ns. Thestandard
n-polysimplexA[n] is the object representable by]. If C € Ob(A°&ny),
the image ofn] underC is denoted byC, (the set ofh-polysimplices ofC)
and, forf : [m] — [n], the corresponding map, — C, will be denoted
by C(f). One evidently haslom(A[n], C)—C, and, in particular, there is
a canonical bijection between the $¢C,, of all polysimplices ofC and the
setOb(A/C) of objects of the categoryi/C. Then-polysimplex of A[n]
corresponding to the identity morphistin] — A[n]is calledfundamental
and is denoted bg,. A polysimplexx € C, is said to bedegeneratdf
there exists a non-isomorphic surjective morphi$m [n] — [m] with
x € Im(C(f)). Let C'“ denote the subset of nondegenerate polysimplices
of C,.

Lemma 3.2 (Eilenberg-Zilber Lemma).Letx € C, and p = w(n). Then
(i) there exist a unique pai(l, y), consisting of a subsdt C [p] and
a polysimplexy € C2¢, such thaix = C(m))y;
(i) given a surjective morphisnf : [n] — [m] and z € C, with
x = C(f)z, there exists a unique surjective morphigm[m] — [n;] with
z=C(g)yandgo f = m.

Proof. (i) That such a pairl, y) exists is trivial. Let(I" C [p], Yy € Cy,))
be another pair with the same property. Take an arbitrary right inverse to
o : [n] — [n]. Theny = C(;s o 0)Yy' and, sincey is nondegenerate, it
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follows thatm,r o o : [n;] — [ny/] is injective. This implies that c I'.
For the same reasoh, C | and, therefore] = I’. It follows also that
oo = 1, and, thereforey = y'.

(i) The morphismf can be represented in a unique way as a composition
of the projectionsz; : [n] — [nj] with an isomorphism : [nj]=[m].
By (i), there exist a unique subs&t C Jand a unique polysimplex e C,?f,
with C(h)z = C(x")y/, wherex’ is the canonical projectiom;] — [ny].
We getC(ry)y = C(rr3)(C(h)z) = C(f)z = x and, by (i) again,)’ =
andy’ = y. If w is the canonical projectigm;] — [n; ], thenforg = moh™!
one hasC(g)y = zandgo f = 7. The unicity ofg follows from (i) applied
to the polysimplexC(h)z € C,,. O

Lemma 3.2 implies that there is a bijecti@ﬁcg‘?%cn, wherel runs

through subsets dfp] and each map?{l‘ld — C, is C(sr). It also implies
that a morphism of polysimplicial sets — C is injective (resp. bijective)
if and only if, for everyn, the image ofE" in C, is contained irC and
the induced majl? — CN4is injective (resp. bijective).

For a polysimplicial seC, let O(C) denote the partially ordered set
associated with the category/C (see [GaZi, Ch. II, 85.1]). Namely, it is
the partially ordered set associated with the®latA/C) of polysimplices
of C endowed with the following partial preorder structure: ¥o& C, and
y € Cn, X < yif there exists a morphisnii : [n] — [m] with x = C(f)y.
As a set,O(C) is the set of equivalence classes of polysimplice<Cof
with respect to the following equivalence relation: forandy as above,
X ~ vy if there exist morphismsf : [n] — [m] andg : [m] — [n]
with x = C(f)y andy = C(g)x. Lemma 3.2 implies tha®(C) coincides
with the set of equivalence classes of nondegenerate polysimplices. For
example, fom = (ng, ... , np), O(A[n]) is canonically isomorphic to the
partially ordered (by inclusion) set of all subs&sc [n] with the property
A = mo(A) x --- x mp(A), wherem; is the projection[n] — [n;j]. The
correspondenc€ — O(C) is a functor fromA°&nsto the categoryr of
partially ordered sets.

Lemma 3.3. The functorA°éns — Or : C — O(C) commutes with
direct limits.

Proof. It is evident that the functor commutes with coproducts, and so

—

it suffices to verify that ifCokeC” = C’)—C then Coker(O(C") =
O(C")=>0O(C). Letx e C, andy € C;,, and letx andy be their images
in C, andC,,, respectively. First we have to check thaxif- y, then there
existX ~ x’ andy ~ y with X ~ ¥, where~ denotes the equivalence
relation on the set of polysimplices Gf induced by the pair of morphisms
C’ 3 C'.Take surjective morphismi: [n] — [fi] andg : [m] — [M] for
which there exist nondegener&e= Cy andy € Cx with x = C(f)X and

y = C(g)y. By Lemma 3.2, there exists an isomorphism [ffi]— [fi] with
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y = C(0)X. Letx] be a preimage d&. ThenC'(f)x; ~ X/, C'(cQ)x; = Y’
andC'(f)x; ~ x; ~ C'(c9)x;. We also have to check thatxf < y, then
there exisX’ ~ x’ andy ~ y with X' < Y. For this we take a morphism
f : [n] — [m]with x = C(f)y, and we geC'(f)y =~ x"andC'(f)y < V.

m]

By [GaZi, Ch. Il, 1.3], the functoO is left adjoint to the functo®r —
A°éns that associates with a partially ordered &etthe simplicial set
whose sets afi-polysimplices are the sets of maps of partially ordered sets
O(A[n]) — E.

Letd > 0. Thed-skeleton SK!(C) of a polysimplicial setC is the
polysimplicial subseC’ C C such thatC/ is formed by all polysimplices
degenerated fromm-polysimplices withim| < d. (Form = (mg, ... , my),
Im| = mg + - - - + my.) We say thaC is of dimension< d if C = sSk(C).
For example, the standardpolysimplex A[n] is of dimension|n|, and
each nondegenerat&-polysimplex with |n’| > |n| is equivalent to the
fundamentaln-polysimplex of A[n]. In particular, each polysimplex of
A[n], non-equivalent to the fundamental one, is contained irf|thie— 1)-
skeletonSK"~(A[n]). The latter is calledhe boundaryof A[n] and is
denoted byA[n]. Furthermore, for a polysimplex € C,, let Gx denote the
stabilizer ofx in Aut([n]). The morphismA[n] — C that corresponds t®
goes through a morphis@y\A[n] — C.

Lemma 3.4. Let A be a set of representatives of the equivalence classes
of nondegenerate polysimplices ©fof dimensiond. Then the following
diagram is cocartesian

[Lxens Gx\A[NK] —> SK1(C)
v |

]—[XeAd Gx\A[ny] — Skd(C)

Lemma 3.5. Let a finite groupG act on a polysimplicial se€. Then for
anyn one has(G\C)M = G\Cnd.

Proof. Let ¢ denote the canonical surjective morphi€m— C' = G\C.
Forx e Cl9 let | be the subset dfp], p = w(n), for which there exists
a nondegeneratg € C; with gn(x) = C'()Yy'. If o is a right inverse
of ;, then fory = C(o)x one hasg,, (y) = y andyn(C(m))y) = ¢n(X) and,
therefore, there exists an element G with x = gC(xwr))y = C(m;)(Qy).
This implies thatl = [p] andx = gy, i.e., ¢n(X) iS nondegenerate. It
follows thatG\Cl¥ c (G\C)M The converse inclusion is evident. 0O

Proof of Lemma 3.4Let C’ be the cocartesian product, and 2tand D’
denote the polysimplicial sets at the north-west and the south-west of the di-

agram, respectively. Iin| < d, thenDy,— D/, andSK*~*(C),— SK!(C)y
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and, thereforeC/, —SK!(C),,. Furthermore, Lemma 3.5 implies that the
lower arrow of the diagram induces a bijection between thXs#tnonde-
generate polysimplices @’ of dimensiond and the seY of nondegenerate
polysimplices ofC of dimensiond. If now |[m| > d andq = w(m), then
the complement oDy, in D/,, (resp. ofSK'=*(C),, in SK¥(C),y) consists of
the polysimplices degenerated fron(resp.Y). By the Eilenberg-Zilber
Lemma 3.2, the latter set corresponds bijectively to the set of pairg
(resp.(J, y)), whered is a subset ofq] with |m;| = d andx € D;ﬂf cX

(resp.y € CI¢ C V). It follows thatC/,—SK'(C)m. O

The categoryA is a symmetric strict monoidal category (see [Mac,

Ch. VII]) with respect to the multiplication bifunctod x A — A de-
fined by [O]a[n] = [n]a[0] = [n] and, ifn" = (ng, ... ,n/p,) andn” =
(ng, ... ,n’F’),,) are different from 0, therin’la[n”] = [n], wheren =
ngs .- ., n/p,, ngs .-, n’F’,,). The above structure an is naturally extended
to a similar structure on the category of polysimplicial sdt¥ns, i.e.,

there is a bifunctord°€ns x A°6ns — A°&ns: (C, C") — C'aC” that

commutes with direct limits and is defined BY+C" = IiLn A[n], where the

limit is taken over all(A[n'] — C’) € Ob(A/C’) and(A[n"] — C") €
Ob(A/C"), and[n] = [n']=[n”]. We remark that the canonical morphisms
from [n’]a[n”] to [n'] and [n"] induce a morphism of functors — x,

where x is the direct product bifunctord°éns x A°6ns = A°€ns :
(C,C") — C’ x C” (which defines another symmetric strict monoidal
category structure om°éns). We also remark that the correspondence
(A[n] — C, A[n"] - C") — (A[n] — C), where[n] = [n']a[n"],
defines a mapb(A/C’) x Ob(A/C") — Ob(A/C'=C"). Forx" € C/, and

x" e C/, we denote by(x’, x”) the corresponding element ¢€'=C"),,

[n] = [n]o[n”]. Finally, for two disjoint subsetd’, |” C [p], where

p = w(n), we denote by, |~ the evident isomorphisnﬁmpmu];[nv]n[nw]
and by ;» the compositior » o 7wy & [N] — [Ny ][N ].

Lemma 3.6. Letx € (C'eC”), and p = w(n). Then there exist a unique
tuple(l’, 1”7, X', X", consisting of disjoint subset§ |” c [p] and polysim-
plicesx’ € C(fld andx” € C™, such thatx = (C'=C") (/) (X, X").

’ nym?

Lemma 3.6 implies that for any pak’ € C® andx” e C/7¥ one has

n//
X', x"y e (C/DC”)Qd, where[n] = [n'Io[n”]. It also implies that there is
a bijection] | C;,”Id, X C;{Tf;(C/DC”)n, wherel” and|” run through disjoint

subsets of p] (p = w(n)).

Proof. The morphismA[n] — C'oC” that corresponds tg goes through
the canonical morphismA[m’leA[m”] — C'=C” for some morphisms
AM'] - C and A[m"] — C”. The morphismA[n] — A[m'JoA[m"]

is a composition of a projectiod[n] — A[n;] and an injective morphism
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A[nj] - A[M'leA[M”"]. The latter is defined by a partitioh = J' [ [ J”
and injective morphismsA[ny] — A[m’] and A[ny:] — A[m”]. If
y € C;,J/ andy” e C({JN correspond to the induced morphisdgy] — C’
andA[ny] — C”, we getx = (C'aC")(mwy )Y, Y"). Lety = C'(z")X
andy” = C"(z")x", wherex’ € C;:Id, andx” € C;{I"ff for some subsets C J’
and1” c J’, andn’ andx” are the canonical projectioisy] — [n/]
and [ny/] — [n;»]. Then we getx = (C'eC”)(m/7)(X', X"). Let now
¢ and ¢” be the canonical morphisn@=C” — C’ andCoC” — C’.
Then g, (x) = C'(m)x" and ¢ (x) = C"(m;»)x". The Eilenberg-Zilber
Lemma 3.2 implies that the subsdtsand |” and the polysimplicex’
andx” are uniquely determined by O

Corollary 3.7. (i) The canonical morphisrf@'=C” — C’ x C” is injective;
(ii) there is a canonical isomorphism of partially ordered séxsC’) x
O(C")=0(C'sC;
(iii) given injective morphism&’ — C’ and E” — C”, the induced
morphismE'sE” — C'uC” is injective. O

A polysimplicial set is said to bénite if it has a finite number of non-
degenerate polysimplices. It is said to loeally finite if each vertex is
contained in a finite number of nondegenerate polysimplices. Furthermore,
a polysimplicial set is said to eeeif, for eachx € CNY, the correspond-
ing morphismA[n] — C is injective or, equivalently, if each nondegen-
erate polysimplex has the maximally possible number of vertices (equal
to (ng+1)- ...-(np + 1) for n-polysimplices). It is said to beteriorly
freeif for each[n] the action ofAut([n]) on the set of the nondegenerate
n-polysimplices is free. It is clear that a free polysimplicial set is always
interiorly free. From Lemma 3.6 it follows that theproduct of two free
(resp. interiorly free) polysimplicial sets is free (resp. interiorly free).

We say that a polysimplicial s€ is nondegeneratd, for any injective
morphismf : [m] — [n], the mapC( f) takes nondegenerate polysimplices
to nondegenerate ones. Furthermore, a morphism between polysimplicial
sets is said to beaondegeneratd it takes nondegenerate polysimplices to
nondegenerate ones. The category of nondegenerate polysimplicial sets with
nondegenerate morphisms between them can be described as follovts. Let
be the category with the same family of objectsfabut with only injective
morphisms between them. The restriction functiit€ns — A°&ns has
a left adjoint functorA°éns — A°éns : C — C which extends the

A
functorA — A s A°&nsto the one that commutes with direct limits.
One hasCy = Cy and, for[n] # [0], C, can be identified with the disjoint
union | | C,,, taken over all subsdt C [p]. For a morphisnim] — [n]
associated with a tripleJ, f, «), the mapC,, — C,, is induced by the maps
Cn — Cmf_l(.)- The functorC — C identifies A°&ns with the category

mentioned at the beginning of this paragraph, and onéii@s— O(C).
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The symmetric strict monoidal category structuresbimduces a simi-
lar structure onA, and the latter extends to the categotyéns and is
compatible with the functo€ — C.

We now construct the geometric realization of a polysimplicial set. For
this we consider the functor : A — Kethat takegn] to

IN=3"x...x X" = {(uil)Ogigp,Oglgni S [0, 1][n]|ui0+' . '+uini = 1} s

where[0, 1]™ is the space of all map®] — [0, 1]. Given a morphism
y : [m] — [n] associated with a tripl€J, f, @), the mapX(y) takes
(@) if [m] # [0] anai_g I_m_( f), or [m] = [0], thenuj = 1 for| = «;(0)

anduj; = 0 for| # «(0), and (b) if[m] # [0] andi € Im(f), then
Uj = U1 41, forl € Im(ei) anduj = 0 forl ¢ Im(ej). Thegeometric
realization functor|?| : A°éns — K e extends the functo®' to the one
that commutes with direct limits, i.e., fo€L € Ob(A°&ng), |C| is the
direct limit of the functor(A[n] — C) — X" from the categoryA/C

to Ke. We remark that, given an action of a groGpon a polysimplicial

setC, there is a canonical isomorphis@\|C|—|G\C|, and that for any
pair of polysimplicial setsC’ andC” there is a canonical homeomorphism

|C’=C”|—|C’| x |C"|, where the latter direct product is taken in the category
of Kelley spaces. We also remark that the restriction of the funZtdo

the categoryA gives rise to a geometric realization funct8r: A°€ns —

Ke and, for anyC € Ob(A°&nsg), there is a canonical homeomorphism
ICl—|Cl. .

The interior X" of X", i.e., the subset of the points that have an open
neighborhood homeomorphic to am|-dimensional open ball, coincides
with £"N]0, 1["" if [n] # [0] and with =" if [n] = [0]. The boundang"
of X" is the closed subsef™\ X".

Lemma 3.8. The canonical morphismi[n] — A[n] induces a homeo-
morphism|A[n]|— =".

Proof. Let A denote the family of subse#&s c [n] with the propertyA =
Ag x - - - x Ap, WhereA is the image ofA under the projection] — [n;].
For A € 4, letn” denote the tuple consisting of the numbefg #1 that are
greaterthan zero, and $& = |n”|. There is the evident injective morphism
ia:[n?] = [n], and the morphismis, for all A € 4 form a representative
set of the equivalence classes of nondegenerate polysimplicggpfFor

B € A with B C A, there is a canonical injective morphigmf] — [n”]
whose composition with, coincides withig. EachB € 4 with |B| =
In| — 2 is contained in exactly two subse®g, B; € A with |Bg| = |By| =
In| — 1. Leti$ andi} denote the canonical morphisiis®] — [n®] and
[nB] — [nB1], respectivelyWe claim that there is a canonical isomorphism
of polysimplicial sets

Coker(]_[ A[nB 3 ]_[ AN )= Aln],
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where the first (resp. second) coproduct is taken oveBa#t A (resp.

A € A)with |B| = [n|—2 (resp|A| = |[n| —1), and the upper (resp. lower)
morphism is induced by the morphisrifs(resp.i3). Indeed, letD denote
the cokernel. Since all of the morphismgn”] — A[n] are injective, it
suffices to check thabfd— A[n]nd for all |m| with |m| < |n| — 1. The
surjectivity is evident, and the injectivity fon with |m| = |n| — 1 directly
follows from the construction. Assume that there are two suBsét € A
with |A| = |A'| = |n] — 1 such that for somen with m| < |n| — 2
the images of two polysimplices from[n”]"¢ and A[n*12¢ in A[n],
coincide. This means that there is a suliSet 4 with C ¢ AN A’ and
[m]—[n®], and our claim follows from the simple observation that there
exists a sequence of subséis= A, Ao, ... , A = Awith |[A|=|n]—1
andC c A N Aj;1. The statement of the lemma now follows easily from
the fact that the geometric realization functor commutes with cokernels.

Lemmas 3.4 and 3.8 imply that an injective morphism of polysimplicial
setsC’ — C induces a homeomorphism 6f with a closed subset ¢€C|.
Furthermore, a subset ¢€|, which is the image of the interiaE" with
respect to the map" — |C| that corresponds to a polysimplexe C,,
is called a polysimplicia) cell of |C|. It is clear that for a given cell
such a polysimplexx can be chosen to be nondegenerate. In this case
Lemmas 3.4 and 3.8 imply that the above map identi@gs X" with the
cell. In particular, ifC is interiorly free, X" is identified with its image
in |C|. (If Cis free, X" is identified with its image ifC|.) It follows also
that|C]| is a disjoint union of cells, the closure of a cell is a union of cells,
and the image of a cell ¢€| under the map induced by a morphi€n— C’
is a cell of|C’|. Let O(|C|) denote the set of cells ¢€| endowed with the
partial ordering such thad < Bif A C B.

Corollary 3.9. For each polysimplicial seC, there is a functorial iso-
morphism of partially ordered se®(C)— O(|C). |

Let B be the functorA°éns — A°&ns which extends the functor
A — A°Ens: [n] — N(O(A[N)])) to the one that commutes with direct
limits (the barycentric subdivision functprNotice that, if in the definition
of B we use the category instead ofA, we get afunctort°éns — A°&ns
compatible withB with respect to the functd® +— C.

Lemma 3.10. For eachC € Ob(A°&ny) there is a functorial homeomor-
phism|BC|—|C].

Proof. Since all of the functors considered commute with direct limits,
it suffices to construct functorial homeomorphisiBA[n]|— X". For
n = (No,...,Np), let z(X") denote the point ofX" with the coordi-

natesu; = n._il forall0 <i < pand 0< | < n;. We remark that,

given an isomorphisr[m];[n], the image o(X™) in X" coincides with
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z(X"). It follows that, given an injective morphisrh : [m] — [n], the
image of z(X™) in X" depends only on the image @] in [n], i.e.,
only on the class off in O(A([n]). In this way we get a system of maps
O(A[n]) — X" : o — z(a) possessing the property that, given an injective
morphismy : [m] — [n], one has¥(y)(z(«)) = z(O(y)(«)). For a map
of partially ordered setg : [p] — O(A[n]), where p here is notw(n),
let 6,, denote the affine map’®? — X" that takes the-th vertex of ¥'P
to z(u(i)). It follows from the construction that for an injective morphism
y : [m] — [n] and a commutative diagram of maps of partially ordered
sets

[p] = O(Aln])

th 1+ O)

[a] — O(A[m])
the following diagram is commutative

LI

t X(h) T2y

o B ogm
Thus, we get functorial continuous mafA[n]| — X". That these are
homeomorphisms is an easy exercise. O

Corollary 3.11. LetC € A°€ns. Then

() |C| is a Hausdorff locally contractible space;

(ii) if Cis finite (resp. locally finite)|C| is compact (resp. locally com-
pact);

(i) if C is locally finite, any subset d€| which is a union of cells is
locally contractible.

Proof. Everything follows from the corresponding properties of simplicial
sets and the fact that any cell || is a finite union of cells ofBC|. O

We remark that for each polysimplicial s&t there is a canonical
surjective morphism of simplicial setBC — N(O(C)). The latter, in
general, is not an isomorphism.

Lemma 3.12. If C is a free polysimplicial set, theBC— N(O(C)).

Proof. SinceC is nondegenerate, we may consider it as an objedtéhs.
The simplicial seBC is the inductive limit limN(O(A[n])) taken over all

(A[n] — C) € Ob(A/C). Leta : A[n] - C and«’ : A[N] — C be
elements oOb(A/C), and assume that two maps of partially ordered sets
f:[p] - O[N] and f’ : [p] — O(A[N']) induce the same map
[p] — O(C). We have two check that and f’ represent the same element
in the inductive Iimit[r)an(O(A[n])). First of all, if f(p) is the class of

a morphismA[m] — A[n], then the magd goes through a map of partially
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ordered set$p] — O(A[m]) because the ma@(A[m]) — O(A[n]) is
injective. It follows that we can replacé and f’ by maps that represent
the same elements in the inductive limit so tHap) and f'(p) are the
classes of the fundamental polysimpli@gsande, . Furthermore, since the
images of the latter classes @(C) coincide, there exists an isomorphism

o : [N]=>[n] with « = @ 0 0. We may therefore replacé€ and assume
thatn’ = n anda’ = «. SinceC is free, the map of partially ordered sets
O(A[n]) — O(C) is injective, and the required statement follows. O

We are now ready to associate with every poly-stable sch¥noer
a field K a locally finite polysimplicial seC(X) € Ob(A°&ns) as fol-
lows. Assume first thaiX is strictly poly-stable By Proposition 2.5, the
set of strata ofX coincides with the family of irreducible components
of sets of the form(NxcaX)\(UxgaX), where A runs through finite sub-
sets ofirr (X), the intersection of any family of irreducible components of
X is smooth overK and, in particular, ifX is elementary then the later
intersection is always irreducible. For a poine X, letirr(X, X) denote
the set of the irreducible components %f passing throughx provided
with the metric with respect to which the distance between two compo-
nentsX, X" € irr(X, x) is the codimensiorwodim (X N X’) of the inter-
sectionX N X" at the pointx. For example, if7" is the standard scheme
T =Tox---xT px8,whereT; = SpecK[Tip, ..., Tin;1/(Tio-. .. -Tin;))
with nj > 1 and$ = SpecK|[S,, ..., S, Sfl, e, %1]), then there is an

isometric bijection[n];irr(ﬂ‘,t) that takeg = (jo, ..., jp) € [n] to the
irreducible component defined by the equatidpg = --- = Tp;, = 0
and wherd is contained in the intersection of all irreducible components
of 7. We remark that ifp : Y — X is a smooth morphism and e ¢(y)

for y € Y then the canonical majpr(Y,y) — irr(X, x), that takes an
irreducible component o¥ to the closure of its image i, is isometric
and, in particular, the metric spage(X, x) depends only on the stratum
that contains the poirx. It follows that eactetale morphisny : X' — T
from an open elementary neighborho®d of x to 7, as above, such that
the image ok is contained in the intersection of all irreducible components

of 77, gives rise to an isometric bijectign, : [N]—=irr (X, X).

Lemma 3.13. Given a pair(x, u) consisting of a poink € str(X) and an
isometric bijectionu : [n]—irr (X, x), for each isometric may : [m]— [n]
there exists a unique paifly, v) consisting of a poiny e str(X) withy < x

and an isometric bijections : [m]=irr(X,y) for which the following
diagram is commutative

0
[N] = irr(X, X)

1 1

Y

[m] = irr(X, y)



Smoothp-adic analytic spaces are locally contractible 29

Proof. The intersection of xcim(..0 1) X With an open elementary neighbor-
hood of the poink is irreducible, and ify is the generic point of the latter,
theny € str(X), y < xandv = u o f induces an isometric bijection

[m]—irr (X, y). That the paiKy, v) is unique is trivial. |

For[n] € Ob(A), let C,,(X) denote the set of the paifs, 1+) consisting
of a pointx € str(X) and an isometric bijectiop : [n]—irr (X, x). By
Lemma 3.13, each isometric map : [m] — [n] gives rise to a map
C(f) : Ch(X) = Cn(X) : (X, ) — (Y, v). In this way we get a functor
X — C(X) from the full subcategory of*st*™ consisting of strictly poly-
stable schemes to the categotyéns.

Proposition 3.14. (i) The above functor extends in a way, unique up to
a unique isomorphism, to a funct@r: Lstt™ — A°&nssuch that for any
surjectiveétale morphisn®’ — X one has

CokenC(X xx X') = C(X)=>C(X) ;

(ii) for each poly-stable schen?®é there are functorial isomorphisms of par-
tially ordered set©(C(X))— str(X) and of simplicial set8C()— N(X).

Proof. (i) To apply the construction from the proof of Proposition 2.13,
it suffices to verify thatCokerC(X' xx X') = C(X)—C(X) for any
surjectiveétale morphism of strictly poly-stable schemesX’ — X. First
of all, that the map considered is surjective is clear.(ketw,) and(x, o)
be two elements of,(X’) whose images i, (X) coincide. This implies
thatp(x1) = @(x2) and, therefore, there exists a stratunXdf= X' x x X/,
whose generic poink” goes tox; under the two projections fronk.”
to X'. It follows that the compositions of isometric bijectiang X", x”) L1
i (0, X1)—>irr (X, X) andirr (", X"y 2 irr (X7, x2)>irr (X, x) coincide.
This implies that the isometric bijections * o ;11 andp,* o 11 betweerin]
andirr (X", x") coincide and, therefore, the pai”, p;l oup) € Ch(X"
goes to the pairéxy, (1) and(Xo, 12), respectively.

(ii) It suffices to construct the isomorphism for strictly poly-stable
schemes. For such a schemethe first isomorphism is induced by the
map (X, 1) +— X. Furthermore, since the polysimplicial se¢X) is free,
Lemma 3.12 implies tha C(3X)— N(O(C(X))). SinceO(C(X))—> str(X)
andN(X) = N(str(X)), we get the required isomorphisBC(3)— N(X).

]

For a poly-stable schent€ the nondegenerate polysimplicial set from
A°gnsthat corresponds t6(X) will be denoted byC(X). If X is strictly
poly-stable, theiC,,(X) can be identified with the set of the triples I, 1)
consisting of a poink € str(X), a subset c [p], wherep = w(n), and an

isometric bijectionu : [N, ]1—irr (X, x). Given a morphisny : [m] — [n]



30 V. G. Berkovich

associated with a tripleJ’, f, @), the mapC(y) : Cr(X) — Cn(X) takes
a triple (x, 1, w) to the triple(y, J, v), whereJ is the preimage of under
the injective mapf : J* — [p], and the pairy, v) is defined by the pair
(X, u) and an isometric majpn;] — [n;] as in Lemma 3.13. The following
lemma implies that the functd® : Pstt™ — A°&nsextends naturally to
the categoryPst®s,

Lemma 3.15. Lety : Y — X be a trivially poly-stable morphism. Given
(y, J,v) € Cr(Y), there exists a unique paill, u) consisting of a subset

I ¢ Jand an isometric bijectiom : [n, J=irr (X, X), wherex = o(y), for
which the following diagram is commutative

[Nyl = imr(Y,y)
J J

0
[N = irr(X, x)

In particular, (x, I, u) € Ch(X).

Proof. The unicity is trivial, and the existence is an easy exercise. O

The functor PstP® — Ke : X — |C(X)| will be denoted by|C|.
Notice that since the polysimplicial se®&X) are locally finite, the topo-
logical space$C(X)| are locally compact. X is quasi-compactC(X)|
is compact.

Lemma 3.16. For each poly-stable schemé overK and each poly-stable
schemey over K’ with K’ > K, there is a functorial surjective nondegen-
erate morphisnC (X x Y¥) — C(X)=C(Y). If X is strictly poly-stable and
all of the strata ofX¢ are geometrically irreducible, then the latter is an
isomorphism.

Proof. To construct the morphism, we may assume Maind?y, are strictly

poly-stable. Let(z, I, u) € C,(X x Y), and let(x, I’, «’) and(y, J, v) be

its images inCn(X) andC,(Y), respectively. It is clear that N J = ¢

and |’ U J = | and, therefore, the triple&, I, 1) and (y, J, v) give

rise to a polysimplex ifC(X)=C(Y))n. This gives the required surjective

nondegenerate morphis@(X x Y¥) — C(X)=C(¥). If all of the strata

of X are geometrically irreducible, thestr(X x y):>str(X) x Sti(Y).

This implies that the above triple, 1, 1) is uniquely defined by the triples

x, I, u")y and(y, J, v) and, therefore, the morphism considered is injective.
O

Corollary 3.17. Let X be a quasi-compact poly-stable scheme oler
Then there exists a finite separable extensionof K such that for any
poly-stable schemy over K” with K” 5 K’ one hasC(X x y)l>C(9<; ®
K")aC(Y). O
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4. A colored polysimplicial set associated with a poly-stable formal
scheme

In this section we introduce a categadk associated with a submonoid
R C [0, 1] that contains 0 and 1. (The unit intervid, 1] is considered
as a monoid by multiplication; in our applicatiofs= |k| N [0, 1].) The
categoriesAr give rise to a category of colored polysimplicial ssens.
We construct a commutative diagram of functors

pstirs 5, A°ens 7 Ke
2 W 2
2|
PstPs N A°Ens 1 xe

where the left vertical arrow is the functar — X, Xeis the category
of Kelley spaces endowed with a sheaf of monoids of continuous functions
with values in[0, 1], and the right vertical arrow is the forgetful functor.

Let R be a submonoid of0, 1] that contains 0 and 1, and lekr be
the category, whose objects are the péik consisting of[n] € Ob(A)
andr e RIPl, wherep = w(n), such thatro = 1, if [n] = [0], and
r <1lforall 0 <i < p,if [n] # [0], and whose sets of morphisms
Hom([m]s, [n];) consist of the morphismg : [m] — [n] in A which are
associated with a tripléJ, f, ) such thats; = r ), for all j € J. Notice
that the above morphisg: [m]s — [n], is @ composition of the projection
3 : [mls — [My]s, with an injective morphisna : [m;]s, — [n];. (The
notations; has the same meaning ag.) If y is surjective, it has a right
inverse.

The categoryAi&nswill be called the category dR-colored polysim-
plicial sets If R is a bigger submonoid @D, 1] then there are fully faith-
ful functors Ag - Ar and Axéns — AR €ns The standardr-colored
n-polysimplexA[n]; is the object representable py;. If L € Ob(ARENS),
the image ofin]; underL is denoted byL | (the set ofr-coloredn-poly-
simplices ofL) and, forf : [m]s — [n];, the corresponding mag, — L3,

will be denoted byL ( f). One evidently haslom(A[n];, L)— Lr.

All of the notions and facts from 83 that are introduced before the con-
struction of the geometric realization functor are extended in the evident
way to the category of colored polysimplicial sets. In particultéensis
a symmetric strict monoidal category with respect to the multiplicattbat
extends the evident one on the categdry. Furthermore, the category of
nondegenerate colored polysimplicial sets with nondegenerate morphisms
between them is equivalent tazéns, where Ag is the subcategory of
ARg with the same family of objects but with only injective morphisms be-
tween them. Fok € Ob(A%&ns9) the corresponding nondegenerate colored
polysimplicial set will be denoted bly.

For a topological spack, let M x denote the sheaf of continuous func-
tions onX with values in[0, 1] considered as a sheaf of monoids by multi-
plication. Let.X e denote the category whose objects are the girsvix),
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where X is a Kelley space anx C Mx is a subsheaf of monoids, and
whose morphismsY, My) — (X, My) are continuous mapg: Y — X
such that for any functiorfi € M(U) over an open subs&t C X one has

f o € M(¢~1(W)) (i.e., the image of the sheaf My in My is contained
in My). Note that the categoryf@vadmits direct and finite inverse limits
and that the forgetful functdf : Xe — JKecommutes with those limits.
We define a functoZr : Ag — Keby Xr([n],) = (X7, M"), where

Ern = {t = (tiI)Ogigp,Oglgni € [07 1][n]|ti0' v ‘tini = ri}

and the sheaM_' consists of all continuous functions which locally are
restrictions of functions of the formi— A [, [Tt with » € Rand

a € Z,. (Notice that the monoid/(XT") coincides withM(X), and each
non-zero function from it has a unique representation in the above form
with the property that for each & i < p there exists O< | < n; with

ay = 0.) Given a morphisny : [m]s — [n]; associated with a triple
t' = (t} Jo=i=p.o<i=n;, Where (a) iffm] 5 [0] andi ¢ Im(f), or [m] = [0],
thent; =r; forl = «;(0) andt; = 1 forl # «;(0), and (b) iffm] # [0] and

I € Im(f), thent) = bty forl € Im(a;) andt; = 1 forl & Im(w).
For the mapXr(y) the image of the shedlr(y)*M;" in M zp is contained

in M, i.e., Xr is really a functor. (Notice that if is injective that the
set of the restrictions of functions from((X}") to the image ofXr(y)
coincides withM(X").) For brevity, we shall denote an obj&ct, Mx) of

the categoryXe by X. The following fact will be used in §5.

Lemma 4.1. For [m]g, [n]; € Ob(AR), there is a canonical bijection
Isom([m]s, [n],)=>Isom(Z™, £M S Isom(Z™M, 51 .

Proof. Both maps are evidently injective, and surjectivity of the second
map easily follows from the equalityl(X") = M(XT"). It remains to check
that any isomorphisny : E;“;Er” is associated with an isomorphism

[m]s—[n];. Let us call aface of X' the image ofEr”,’ for some injective
morphism[n’],, — [n];. If [n'] = [0] (resp[1]) such a face is calledchaertex
(resp.edgg. It is easy to see that a subsktC X7 is a face if and only if
there exists a functiori € M(XZ") with A = {t € X7'| f(t) = 1}. It follows

that any isomorphism : ¥ 3" takes vertices to vertices, edges to edges
and so on. We now notice that there is a canonical bijection between the
set[n] and the set of vertices &}, and the distance between two elements
of [n] is equal to the minimal number of edges which are necessary to join
the corresponding vertices af". Hence, the above isomorphigminduces

an isometric bijectiory : [m]— [n]. Replacingp by a composition with the
evident isomorphism induced by we may assume thiin] = [n] and that

the isomorphisny is the identity map, and we have to show that r and
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¢ is the identity map. For this we notice that two functions frdaXT)
that take the same values at the vertices’pfare equal. This immediately
reduces the situation to the case wiieh= [1], i.e.,¢ is an isomorphism

»15 5! that induces the identity map ¢f]. The latter easily implies that
s =r andg is the identity map. O

The geometric realization functois the functor|? : ARéns — Xe
which extends the functaEy to the one that commutes with direct limits.
Lemma 4.1 implies that the automorphism group of the fun@as trivial.
The restriction of2'r to the categoryl g gives rise to a geometric realization
functor|? : Agéns— Keand, foranyL € Ob(A%(Ens), there is a canon-

ical isomorphism/L|— |L|. For any pair of colored polysimplicial sets

and L” there is a canonical isomorphisth’'oL”|=|L’| x |L”|. The facts
stated in Lemma 3.8 and its Corollary 3.9 are straightforwardly extended to
colored polysimplicial sets. In the same way one introduceshtrgcen-

tric subdivision functorBg : Ax&ns — A°&nswhich extends the functor
Ar — A°€&ns: [n]; = N(O(A[n],)) and commutes with direct limits.

(Notice thatO(A[n];)— O(A[n]).) If in the definition of Bg one uses the
categoryAg instead ofAg, one gets a functongéns — A°&nscompat-
ible with Bg with respect to the functok — L. As in Lemma 3.12 one

shows that for a free colored polysimplicial $ebne hasBgL — N(O(L)).

Lemma 4.2. For eachL € Ob(Ak€ny), there is a functorial homeomor-
phism|BgL|—|L]|.

Proof. The proof is analogous to that of Lemma 3.10, we only have
to indicate the points that should be changed. It suffices to construct
functorial homeomorphism$BRA[n],|l>2r”. If n = (ng,...,np) and
r = (fo,...,rp), let z(X") denote the point o' with the coordinates

1

t = rim forall0 <i < pand 0< | < n;. Given an injective morphism

y : [m]s — [n], the image oz(X{") in z(X") depends only on the image
of [m] in [n], i.e., only on the class af in O(A],), and in this way we
get a system of map®(A[n],) — X' : o — z(x). We remark that for
each map of partially ordered sats: [p] — O(A[n];) all of the points
z(u(i)) are contained in an affine componentXf. (Here p is notw(n).)
We now define, for such a map a mapd, : P — X! as the affine one
that takes thé-th vertex of ¥'P to z(u(i)). The remained part of the proof
of Lemma 3.10 is applicable to the situation considered. O

The canonical functan°éns — Axéns(induced by the functaig —
A : [n]; — [n]) has aleft adjoint functow : ALEns — A°&ns. The latter
extends the functalg — A°&ns: [n]; — A[n] to the one that commutes
with direct limits. It follows straightforwardly that the functe@¥ commutes
with the multiplicationo and that there are functorial isomorphisms of

partially ordered set®(L)— O(WL) and of simplicial set8gL— B(WL).
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Lemmas 3.10 and 4.2 imply that there is a functorial homeomorphism
|WL|=|L|. One can easily show that the canonical miaps~> (WL), give

rise to a bijection] [, (L))" (WL)M. This allows one to view a colored
polysimplicial setl as a polysimplicial sedVL provided with partitions of
the sets(WL)M (coloring of polysimplices). Notice that iR is a bigger
submonoid of0, 1] then there is a commutative diagram of functors

Li—L’
ARENS - Aréns

W\ v W
A°Ens

In particular, the canonical morphisih| — |L’| is a homeomorphism.
Of course, it is not an isomorphism K e because the sheaf of monoids
on [L’| is bigger than that onL|. Finally, if in the definition of W one
uses the categoryr instead ofAg, one gets a functonyéns — A°€ns
compatible withwW with respect to the functdr +— L. ForL € Ob(A%&ns)
one hagWL), =[], L}.

We are now going to associate with a poly-stable formal scheowerk®
a colored polysimplicial sett (X¥) € Ob(A%&ns), whereR = |k| N [0, 1].
For this we need the following fachssume that is strictly poly-stableRe-
call that for each point € X5 one can find an open neighborha®dof x in
X and arétale morphisnp : X’ — T = T(n, @) x &(m) such that the point
s(X) is contained in the intersection of all irreducible componentsof
The isometric bijectionsrr (X%, X)—irr (Xs, X), irr (X%, X)—irr (Ts, gs(X))
and [n]—irr (%, ps(X)) : 1 — T give rise to an isometric bijection
Wy [N]=irr(Xs,X) : i — X;. Notice that for any isometric bijection
w : [n]=irr(Xs, X) one can findp as above withu, = .

Proposition 4.3. Given a pointx € X5 and an isometric bijections :
[N]—irr(Xs, X), there exists a tuple = (ro,...,rp) € [0, 1]'P), where
p = w(n), such that for angtale morphisnp : X’ — T = T(n, @) x &(M)
as above withi, = n one hagal =r.

The tupler from Proposition 4.3 associated with will be denoted
by r#.

Proof. We first reduce the situation to the case whes- 0 andng = 1.
Indeed, assume that in that case the required fact is true. For a fixgd-©

p, leti andi’ be two elements din] whose coordinates are distinct only at
j-th place. Therrodim(X; N X)) = 1, whereX;; is the image of under.

It is easy to see that there is an open embedding of an open neighborhood
of the generic point of; N 7y to a standard formal scheme of the form

T = %j(1, a;) x &(m'). Its composition withy gives anétale morphism
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from an open neighborhood of the generic poinafN X to ¥ and,
therefore |a;| is uniquely defined.

Thus, we may assume thpt= 0 andng = 1, i.e., there is arktale
morphismg : X - T = T(1, @) x &(m) with ¢(X) € To N T1. We now
need the following fact which will also be used later.

Lemma4.4. Letgp : X' — X be anétale morphism of formal schemes
locally finitely presented ovéds, and assume thatinduces an isomorphism

Y'Y between subscheméf c Xs and ¥ C X Then it induces an

isomorphismr 1Y) >~ L(Y).

If the valuation ork is discrete, the assumption implies thainduces
an isomorphism between formal completionsxéfandx alongy’ and ¥,

36’/%,%36% and the lemma follows from the fact tf(&//y,)n%n‘l(y’) and

(xy),,lnfl(y) (see [Ber6, 81]). The reasoning for the previous arguments
works in fact in the general case and, for completeness, we recall it.

Proof. We may assume that = Spf(A) andXx’ = Spf(A) are affine and
that ¥ and Y’ are closed subschemes. Furthermore, since the canonical
morphismY’ — X3 xx_Y is anétale closed immersion, we can shrigk

and assume thég’lws; Xx, % Let fq, ..., fm be elements oA whose
reductions inA generate the ideal &, and leta be a fixed non-zero element
of k*°. (It suffices to consider the case of nontrivial valuationkgnThen
for anyn > 1 there is an isomorphism of rings/J"— A'/J", where
J=1(a fy,..., fn) andJ = JA, and therefore there is an isomorphism
of completions with respect to powers dfand J/, A= A'. It remains to
show that the analytic spaces'(Y) andz~1(Y’) are expressible only in
terms of these completions.

Recall [Ber3, §1] that, is the space of continuous multiplicative semi-
norms onA that extend the valuation ck?. The subspace —*(Y) is the
subset of those semi-norms whose value§ ‘atare strictly less than one.
It follows that 7=1(Y) is identified with the space of continuous multi-
plicative semi-norms on the completighnthat extend the valuation dui,
and therefore the morphism=1(Y') — 7~1(Y) is a homeomorphism.
Furthermore, the space1(Y) is a union of an increasing sequence of
affinoid domainsw; c W, C ... such thatW, is a Weierstrass domain
in Why1 (for example W, = {x € X,||fi(X)] < 1-— % l<i=z=m}.lt
follows that affinoid domains ir—%(Y) are compact subsets for vahich
there are &-affinoid algebrasy, and a continuous homomorphisf —
Ay universal with respect to the property that the imageMfAy) in
7~1(Y) is contained inV. If now V' is an affinoid domain int~1(Yy"),
then the canonical continuous homomorphidm A’ — A2, satisfies the
universal property, and therefove= ¢(V’) is an affinoid domain i =1 (Y)
isomorphic toV’. Hencen*l(‘},(’);nfl(y). O
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Letx = Spf(A) andA = A®y k, and let; be the preimage (under the
reduction map) of the generic point &f;, i = 0, 1. It suffices to verify the
following fact. For eachi = 0, 1, the set{| f(x;)|/| f |sud f € 4™} coincides
with the set{|a|!|j > 0}, if a # 0, and with{1}, if a = 0. Of course, we
may assume that= 1

Let t; be the preimage of the generic point ©f, j = 0, 1. Since
l*T1(X1)| = |T1(ty)| = Jal, it follows that the first set contains the sec-
ond one. To verify the converse inclusion, assume firstat O, i.e.,

T =%(1, @), and lett = gs(x). One hask(t) =K, andk(x) is a finite sep-
arable extension dt. Let K be the finite unramified extension kfwith
K = k(x), and letg’ = €E®K° andx’ = x®K°. The preimage of in T,
is a pointt” with k) = K, and the preimage of in X contains a pomI(/
with k(x") = K. By Lemma 4.4, there are isomorphism&keinalytic spaces

1 )= 7 LX) S L(t). It follows that the restriction of any elemerft
of 4 tor~1(x) has a unique representation in the fo¥yii” . @un, Where
u, = To‘n forn < 0 andu, = T forn > 0, a, € K and, for every
r < 1, one haga,|r'" — 0 asn — +oo. If a = 0, then the restriction to
7~1(x) of eachf e 4* is of the formi(1 + @), wherex € K* andg is an
analytic function onr~1(x) whose absolute value is strictly less than one,
and therefore f(x1)|/| f|sup = {1}. If @ # O, then the restriction ta—1(x)
of eachf € A" is of the formiu, (1 + g), wherea andg are as above and
neZ.0ne has
[flsup=sup [f()] = [2],
xer—1(x)
and, whenU runs through open neighborhoods of the pejrin <1, one
has
[fx)l=lim  sup  [fOO] = [A]-]amCO
xer 10Ny LU

It follows that | f(xy)|/| f |sup= |a|™@"0,

Assume now tham > 1. Consider the canonical morphisin: T —
&(m), and lety be the maximal point a&(m),. One evidently hafi, t1} C
Y1(y) and{xo, X1} C (p¥)~1(y), and the situation is reduced to the mor-
phismX X g, SPH(H(Y)°) — T xgm SPi(F(y)°) which is of the type
considered just now. The proposition is proven. O

We are continuing to assume thatis strictly poly-stable. Fofn], €
Ob(AR), let L}, (%¥) denote the set of the polysimplic€s, 1) € Cn(Xs)

(i.e., x € str(Xs) and u is an isometric bijectionin]—irr(Xs, X)) such
that r* = r. It follows from Proposition 4.3 that, given a morphism
[m]s — [n]; in AR, the maan(aes) — Cn(Xs), associated to the cor-
responding morphisrfm] — [n] in A, induces a magp.(X) — L; (X).
Thus,L (%) € Ob(AjENS), and we get a functak — L(X) from the full
subcategory ok°-g st fSM consisting of strictly poly-stable formal schemes
to the categorydx&ns. From Proposition 3.14 it follows that this functor
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extends in a way, unique up to a unique isomorphism, to a fuhgtok°-
Pstf>M — Agénssuch that for any surjectivétale morphismx’ — x
one has

CokelL (X' xx X) = LX) > L&) .

It follows also that there are functorial isomorphisms of polysimplicial
setsWL(X)—C(Xs), of partially ordered set©(L (X))— str(Xs) and of
simplicial setsBgL (X)— N(Xs).

Furthermore, the nondegenerate colored polysimplicial set ##g8ns
that corresponds to(X) will be denoted by (X). If X is strictly poly-stable,
thenL (X) can be identified with the set of the polysimplices I, 1) €
C(Xs) (i.e.,x € str(Xs), | C [plandu : [N, ]—irr(Xs, X)) such that* =r,.
The functorC : £stPS — A°&nsgives rise to a functol y : k°-Pst P —
Ax€Ensthat extends the previous one from the catedory st f.

To consider all gf the functorky simultaneously, it is convenient to
introduce a categomd’ €nswhose objects are paifk, L), wherek is a non-
Archimedean field andl € Ob(Ax&ENS), R = |k| N[0, 1], and morphisms
(K, N) — (k, L) are pairs consisting of an isometric embedding> K
andamorphistN — L’in A% &ns, R = |K|N[0, 1]. The correspondences
k, L) — |L|~and (k, L)B WL give rise to trle geometric realization
functor |?| : A°éns — Xe and a functorW : A°éns — A°&ns. For
brevity, the pair(k, L) will be denoted byt. The correspondencg, X) —
(k, L(X)) gives rise to a functot : Pstf®> — A°gns The functor
PstfP - Ke : ¥ — |L(X)| is denoted by|L|. One evidently has
a functorial isomorphisfiVL (X)— C(Xs) and a functorial homeomorphism
IL(X)|—]C(Xs).

5. The homotopy type of the generic fibre of a poly-stable formal
scheme

The main results of this section, Theorems 5.2-5.4, form a basis for, and
are more precise than, their generalizations in 88. To formulate the first
theorem, we introduce a partial ordering on the generic fiyref a formal
schemex from #sch

Firstof all, we introduce a partial ordering on an affinoid spdeem (4)
as follows:x < yif | f(x)| < | f(y)| forall f € A.

Lemma 5.1. Let X be ak-affinoid space and lé¥ be affinoid domain irX
which is a finite union of Laurent domains of the foXfrf 1} = {x e
X[ f(x)| = r}withr = | f|sy Then

(i) the restriction of the partial ordering oiX to V coincides with that
onvV;

(i) if x € V andx < yfor somey € X, theny € V.
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Proof. (ii) Assume first thatV = X{rf1}. Then the inequalityx < y
implies that| f(y)| > | f(x)| > r, and thereforgy € X{r f ~1}. In the general
caseV = V,U---UV,, where eachl, is of the formX{r f ~1}. Sincex € V;
for some 1< i < n, the previous case implies thak V; C V.

(i) We remark that to verify the conditiox < y it suffices to verify that
| f(x)| < | f(y)| for all f from a dense subset of, where X = M (A).
LetV = V, U--- U V,, where eachV; is of the form X{r f ~1}. Assume
that forx, y € V one hasx <x y. Sincex € V,; for some 1< i < n, then
y € Vi, by (ii), and therefore the situation is reduced to the ¢asel, i.e.,
V = X{rf~1}. By the above remark, it suffices to verify thatx)| < |h(y)|
for h of the form% with g € A4 andn > 0. Since| f(x)| = | f(y)| =r and

19001 < [g(y)1, it follows that|h(x) < [h(y)I. o

We introduce a partial ordering af), as follows:x < vy if there exists an
open affine subschen® C X such thai, y € X, andx < yin X/. From
Lemma 5.1 it follows that the latter property does not depend on the choice
of X', and ifx < y thenm(X) is contained in the closure af(y).

Theorem 5.2. One can construct for every poly-stable formal scheme
a proper strong deformation retractio? : X, x [0, 1] — X, : (X, t) > X;
of x,, to a closed subse&i(X), theskeleton ofx, so that the following holds:

(1) X)v = Xmaxery forall 0 <t t' < 1;

(i) x < x forall 0 <t < 1;if X is strictly poly-stable an&, is normal,
thenx is a unique point frons(x) with x < Xq;

(iii) for each x there exist® < t’ < 1such thatx, = xforall0 <t <t
and the mapt’, 1] — X, : t — X is injective;

(iv) m(X) = (%) forall 0 < t < 1, andn(x,) is the generic point of the
stratum ofXs that containsz(x);

(v) if x, is normal atx then, for every open affine subschemieZ x
with X € 36/,) and even0 < t < 1, the local ring(93€;)xt is a field;

(vi) if X is strictly poly-stable then, for every poirte S(X), #(X) is
a purely transcendent extension of the fikeld(x));

(vii) given a morphisnp : 9 — X in st S one hasp, () = ¢,(Y)
forallye 9,and0 <t < Lif pis étale then, givem € X, and0 <t < 1,
each point frompn‘l(xt) is of the formy; for somey € (pn_l(X).

Let T denote the retraction mag), — S(X) : X = X1 = (X, 1).

Theorem 5.3. One can construct in a unique way for every poly-stable
formal schemeé: a monoidP(X) of continuous functions ax, with values
in [0, 1] so that the following holds:

(i) if x is the standard formal schem&n,a) x &(m) with n =
(No, ... ,Np), then P(X) consists of functions of the formx —
AT T [T 01, wherex € k| N[0, 1] andly € Z,;

(i) P(X) contains all functions of the formi— | f(x)| with f € @O(X)N
O (X"
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(iii) if 7(x) = ©(y), thenf(x) = f(y) for all f € P(X);
(iv) the correspondence — P(X%) is a contravariant functor oPst f*S
with the property that, given a surjectiéale morphisn®) — X, one has

P(x)—Ker(PQ) = P® xx D).

We now provide as follows the skelet@{X) of a poly-stable formal
schemex with a subsheaf of monoidsly C Mgzx,. (The skeletornS(X)

considered as an object of the catega?é will be denoted byS(Xx).) For
an open subsd) c S(X), a continuous functionf : U — [0, 1] is in
M(U) if for every pointx € U there existetale morphismg; : X — X
with affine X; and functionsf; € P(%;), 1 < i < n, such that the union
UiL,¢i»(Xi ;) contains an open neighborhobd of x in U and, for each

andy e <p[nl(U’), one hasfi(y) = f(¢i ,(y)). In this way we get a functor

S: PstfPS  Kethat possesses the property that, given a surjeétiie
morphismg : 9 — X, one haCoker S x ¢ 9) = S(9))—S®).

Theorem 5.4. There is a unique isomorphism of functdts— S. More-
over, given a poly-stable formal schemgthe isomorphisniL (X)|— S(X)

induces a homeomorphisi@(X)|— S(X) N7 ~1(X) for each strata subset
X of Xs.

Here (and later)C(X)| denotes the union of the cells £(Xy)| that
correspond to the strata &f contained inX.

Recall that a formal group ovée is a formal scheme isomorphic to
k°[[T1, ..., To]] which is a group object in the category of formal schemes
overk°. Such a formal grou gives rise to &-analytic group structure
on the generic fibre, of & which is isomorphic to the open unit polydisc
in A" with center at zero.

Lemma5.5. Let ¢ : X’ — X be anétale morphism of formal schemes
locally finitely presented ove®. Then any action of a formal group ot
extends in a unique way to an action &h

The statement and its proof hold also for special formal schemes (defined
in [Ber6] only for discretely valued).

Proof. Let® be the formal schem®pf(k°[[Ty, ..., Ta]]) and leti (resp.i’)
denote the canonical sectioh - & x X (resp.X’ — & x X') of the
projection® x X — X (resp.® x X’ — X’). (Direct products are taken in
the category of formal schemes oWer) To prove the lemma, it suffices to
show thaffor any morphismm : & x X — X withmoi = 1y there exists
a unique morphisnm’ : & x X’ — X' withm' oi’ = 1, that makes the
following diagram commutative

6xx N x
T(1g, @) X%
6xx oy
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The statement is evidently local with respectitaand X', and therefore
we may assume that = Spf(A) andx’ = Spf(A), where A’ = By,
B = A[S]/(P), P is a monic polynomial inA[S] and b is an element
of B such that the image of the derivativ® in A’ is invertible. The
morphismm is determined by a continuous homomorphisrh : A —
ATy, ..., Tall with m*(f) = fmodT, ..., T,) forall f € A Letd
be the image o5in A'. ThenP(@) = 0. Since the ringA[[Ty, ..., Ty]]
is complete in the topology defined by powers of the id@al ... , T,),
the pair(A[[Ty, ..., Tall, (T1, ..., Ty)) is Henselian (see [Ra, Ch. Xl]),
and therefore there exists a unique elemegnkt A[[Ty,..., Ty]] with
o = amodTy, ..., T, and (¢*P) (o) = 0. Settingm’™*(@) = o, we
get a continuous homomorphis® — A'[[Ty, ..., T,]] that defines the
required morphisnmy : & x X’ — X'. The uniqueness aft’ follows from
the uniqueness af'. O

Proof of Theorems 5.2-5.8tep 1. The constructions of the first two steps
are given in a more general setting than it is needed here because they will
also be used in 87. Let be ak-affinoid algebra with a fixed Banach norm.
(Recall that ifA is reduced then the spectral norm.ris a Banach norm.)
Forn = (no, ..., np) with nj > 1, the algebra® = A{Top, ... , Tpn,} is

a BanachA-module with respect to the normZM a,TH| = mMax||aM||.

The setD, consisting of the elemenfs’, a, T* such thata, = 0 for all
= (Wij)o<i<p,0<j<n; With 0min {wij} = 1forsome O<i < p,isa Banach
<j<nj

A-submodule of©. Furthermore, given elemenss € A with ||a || < 1,
0 <i < p, letb be the ideal o€ generated by the elemerTig- . . . - Tin, — &,
0 <i < p. We endow the algebr& = € /b with the quotient norm, and
we setX = M(A), Y = M(B) and

S={(x,1) € Xx[0,1]™rig- ... Tin, = &(¥)],0<i < p}.

Lemma 5.6. (i) The canonical surjectior@ — B induces an isometric
isomorphismD— B;
(i) given a points = (x,r) € S, the functonD — R, : f =
ZM a, T — maxX|a,(x)|r*} gives rise to a bounded multiplicative semi-
I

norm ongB and, therefore, it defines a poifits) € Y;

(iif) the mappingS — Y : s 6(s) is continuous and right inverse to the
mappingp : Y — Sthattakes/ € Y tothe pointx; [Too(Y)I, - - - , [Tpn,(V)D),
wherex is the image o¥/ in X;

(iv) if T denotes the retraction majo ¢ : Y — 6(9), theny < z(y) for
every pointy € Y;

(v) given a poins = (X, r) € S, let Z be the Zariski closed subset 6f
defined by the equation = 0 over all pairs(i, j) withr; = 0; then the
preimagegp—(s) is an affinoid domain irZ isomorphic to a direct product
of X and the closed annuli(rj) = {z € Al \|T(z)| =r; } taken over all
pairs (i, j) withrj; # 0.
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Proof. The statements (iii), (iv) and (v) trivially follow from (i) and (ii). By
induction onp, to prove (i) and (ii) it suffices to consider the cgse= 0,
i.e., we may assume th@t= A{Ty, ..., To}andB = C/(Ty-... T, — ).
That the maD — B is surjective is trivial, and so to verify (i) it suffices to
check that||f|| < ||f + (To-... T, — a)g|| for all f = ZM a,TteD
andg= ZM b, T* e C. If the latter is not true, then for each with
1]l = Ila,ll one hasl|la,|| = |la b,|| < ||b,[|. Since the monomial
b, T*(To-...-Ty) is not cancelled with other monomialsfn-(To- ... - Ty —
a)g, the norm of the latter is at leagb, || > || f||.

To verify (ii), we may assume that = M (k), and we have to check
that, givenrg, ... ,r, € [0, 1] with ro-...-r, = |a|, the functionD —
R, : f— |f| = mﬂax{|aM|r“} gives rise to a multiplicative semi-norm

onB.If f=3% aT*andg =} b,T#, then the image of -gin B

is represented by the element, c;T° € D with ¢; = > 1°,(>_a,b,)a,

where the inner sum is taken over all pairsv with 0min {ui +vi} =1land
<i<n

p+v—(,....1)=35 ThesetsA={u||f| =|a,lr*}andB = {v||g| =
|b,|r"} are finite subsets in the union of the coordinate hyperplanég']int
R, To verify the equality| f-g| = | f|-|g|, it suffices to check that there
exists a lineL in R™ parallel to the diagonal liné(xo, ... , Xn) [X = X;
forall 0 < i, j < n}and such that the intersectioA + B) N L consists of
one point. For this we consider the mapp#d' — Z" : (xo. ... , X))
(Xy — Xo, ... ,Xn — Xp). This mapping is injective on the union of the
coordinate hyperplanes, and the necessary fact is equivalent to the following
one. Given two finite subsetd, B c Z", there exists a poit € A+ B
which is represented in a unique way in the fars x + y with x € Aand

y € B. If x andy are the maximal points ofA and B with respect to the
lexicographic ordering od", thenz = x + y is such a point. O

Step 2. We are still in the situation of Step 1. L@, be the one-
dimensionak-affinoid torus{x € A [|T(x)| = 1}. If G denotes the kernel
of the multiplication homomorphisi@X+! — G, then thek-analytic group

G =G x ... x Gn” acts in the evident way oriover X. For0<t < 1,
let G; denote the subgroup Gf defined by the inequalitigsT;; —1)(x)| < t.

The groupG; for 0 < t < 1 (resp.G; = G) is isomorphic, as &-analytic
space, to a closed polydisc of radiysesp. a direct product of closed annuli
of radius 1) and, therefore, it has a maximal pairesp.g:). The groupgGg
consists of the unit 1 oB, and we sety = 1. The pointsy; are peaked ones
and the maf0, 1] - G : t — g is continuous and, therefore, one can
construct a continuous homotogy: Y x[0,1] — Y : (Y, 1) > Vi := gy
(see [Berl, §85.2 and 86.1)). It is easy to give an explicit formula for the
homotopy® (see [Berl, 6.1.3]). Namely, fof € D one has

| f(yol = maxja, fIt”
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whered, is the bounded linear operatér‘l’“d‘i'r”v :C—C

8,) a, T = i (‘:) a,T".
" u=v

The above formula implies thay = t(y) forall y € Y, i.e., @ is a strong
deformation retraction oY to the subsef(S). Furthermore, given a point
y € Y, lett’ be the maximum value ofwith the propertya, f(y)[t¥ < | f(y)]
forallvandf. Theny, = yforall0 <t <t and the magt’,1] — Y :

t — y; is injective.

Step 3. We verify here some of the properties stated in the theo-
rems for the standard formal schermie= $(n,a) x &(m) over k®> with
n=(g,...,Np).

(1) Let g,, be the multiplicative grouspf(k°{T, %}) considered as
a group object of the categoy’-Fsch (The generic fibre ofg,, is
the groupGr, from Step 2.) The groug, acts in the evident way on

&(m), and the groug™, the kernel of the multiplication homomorphism

”m“ — G, acts in the evident way ofi(n, a). This gives rise to an ac-

tion of g = 6 x ... 61" x @M on the standard formal schereand,
therefore, to an action of theanalytic groupG = 4, on thek-analytic
spaceg,. The groupG is of the form considered in Step 2, and so we can
consider its subgroups; with maximal pointsy;, and a continuous homo-
topy @ : T, x [0,1] = %, : (X, 1) = X = g * X. By Step 2,@ is a strong
deformation retraction of,, to the closed subsétS), and it possesses the
property (iii) of Theorem 5.2.

(2) The subsei(S) is naturally to be taken as the skelet&it) of <. If ¢
is the retraction mago¢ : T, — (%) then, for each point € (%), 771(x)
is an affinoid domain in the intersection of the irreducible componeritg of
that contairx, it is isomorphic to a direct product of closed annuli, arid
the maximal point in it. Notice that i, is normal (i.e., none dd; is equal
to zero and, therefore,, is irreducible), then for any pair of distinct points
X,y € (%) one can find two coordinate functiorfsg (of the formT;)
with [ f)] < [ f(y)| and|g(X)| > [g(Y)].

(3) We defineP(%) as the monoid of all continuous functions of the form
from Theorem 5.3(i). The description of*(x) for x € S(%) from (2) easily
implies that in the case whe¥ is normal the set of non-zero functions from
P(%) coincides with the set of functions of the forn— | f(x)| with f €
O(%)NO(%,)*. The spaceis canonically identified withz} , and so the

al*

homeomorphism induces an an isomorphisih (%)| = (2";‘, M(Elgl))l>

(S(%), P(T)). To verify that it induces homeomorphisriB(X)|— S(T) N

7~1(X) from Theorem 5.4, it suffices to assume tbéais a stratum, i.e.,
there are non-empty subsefs C [n;] such thatX = {x € T4 for each
O<i<pTx)=0ifj e A andTjx) # 0if j ¢ A}. Then
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ICOOI = {(tjo<i<po<j<n € X} | foreach0<i < p,tj < 1if j € A
andt; = 1if j € A}, and the necessary property follows.

Step 4. Suppose we are givené&tale morphisny : X = Spf(A) —> T
with € from Step 3. Let be the formal completion of the groupthat
acts on¥ along its unit. It is a formal group ovée. By Lemma 5.5, the
action of& on ¥ extends in a unique way to an action ®rand, therefore,
the action of&, = U;.1G; on ¥, extends to an action oN,. By [Berl,
Proposition 5.2.10], for each e X,, the pointg; * X is the maximal one in
the orbitG;x. It follows that for 0< t <t < 1 one hagy * X < gy * X and,
therefore, one can define a pottk) € X, by

| f(z(¥)| = fulpl f(gr * x|
forall f € A = A®x k. We now define a mapping : x, x [0,1] —
X, (X, ) = X byx =g *Xif t <1andx; = 7(x). From [Berl, Corol-
lary 6.1.2], it follows that the restriction ab to X, x [0, 1[ is continuous.
It follows from the construction thap, (%) = ¢,(X); for all x € %, and
t € [0, 1] and, in particular® possesses the property (iii) of Theorem 5.2.
We also remark that Sin@® * 0v = Gmaxt.t), it follows that(x;)r = Xmaxt.t)
for all t,t" € [0, 1[. We claim thatg; * ©(x) = =(X) for all x € X, and
t € [0, 1] (and, in particularz(z(x)) = ©(X) and (X)) = Xmaxt for all
t,t' € [0, 1]). Indeed, one has

@n (G * T(X) = Gt * @y (1(X)) = Gt * (¢, (X)) = (¢, (X)) = @,(7(X)) .

Since the mapping0, 1[— X%, : t — g * ©(X) is continuous and takes
values in the finite discrete segl(wn(r(x))), we getg; * t(X) = (X).

We define the skeleto§(X) of X as the image of the map We do not
yet know that the map is continuous and the s&X) is closed inx,,.

Step 5.In the situation of Step 4, the mappidg does not depend on
the choice of thé&tale morphisnp. Let¢’ : X — T = T(n’, n") x &(mM')
be anothektale morphism witm" = (ng, ... , n’p,) anda = (&, ... ,a/p,),
&' the corresponding formal group acting®iby Step 4, and; the maximal
element of the corresponding subgra@pin the generic fibre o’. We
have to verify that; « x = g * x for all x € X, and O< t < 1. Since, for
any non-Archimedean fiell overk, the x-multiplication commutes with
the canonical maﬁ,@K — X, [Berl, Proposition 5.2.8], we can increase
the fieldk and assume that the poixtis k-rational and, in particular, that
the pointx = m(X) is k-rational. Furthermore, sinog * x andg; * x are
the maximal points of the orbit§;x and G;x, it suffices to verify that
Gix = GXx.

t First of all we list several cases when the required fact is easily verified.

(1) x =%, ¢ = 1g, and¢’ is induced by an isomorphisiim]— [n']
in A, i.e., if this isomorphism is represented by a trigle], f, «), then
¢’ is induced by the isomorphisma(n;, ai)iﬁ(nf(i), agi) that take the
coordinate functio ¢ | t0 Tj 4 ()-
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Qx=%¢=1z, [Nl =[n], & = Aa for [Ai| =1,0<i < p,
andg’ is induced by the isomorphisnign;, a)—T(n;i, i) that takes the
coordinate functior; to A(lTio forl = 0andtoT; forl <| <n;.

(3)x =% =%, ¢ = 1z, andy’ is induced by an automorphism &{m)
which is a composition of an automorphism generated by a permutation of
the coordinate function§; and of an automorphism that tak&sto 1; S;
for somei; € kwith [1;| = 1.

(4) x is an open subscheme ®8fand¢’ is an open embedding —

T =3(n',d) x &(m) of the following form. Assume thafj (x) = O for

0<Il<nandTy(x) # 0forn/ +1 <1| < n; and thatn; > 1 exactly
forO<i < p.If T(nj, &) denotes the open subschemeahi, a) where
the functionsT; for 0 < i < pandn; +1 < | < n; are invertible, then
X = T(Ng, @) xT(Np, ap)' xS(M),n" = (ng, ..., n’p,),a’ = (ap, ... ,ay),

m =m+ > " ,(ni —n)), andy’ is the open embedding afto ¥’ which is

induced by the open embedding&;, &) — T(n{, &) x &(n; — n;) that

takeT; to TioToyga Ty for| = 0 and toT; for 1 < | < nj, andS; to

Tni/+j forl<j<n —n.

Consider now the general case. Using Proposition 4.3 and replacing
and¢’ by their compositions with morphisms of the form (1)—(4), we may
assume thap and¢’ are twoétale morphisms to the same standard for-
mal scheme€ = T(n, a) x &(m) and such that the both poingg(x) and
@¢(X) coincide with the pointy defined by the condition that all df;’s
are equal to zero and all &;’s are equal to one at. Since the poink
is k-rational, Lemma 4.4 implies that and ¢’ induce two isomorphisms
7 1(x)=>71(y). The analytic space 1(0) is easily described. For ex-
ample, if[n] = [0], i.e., T = &(m), thenz~1(0) is isomorphic to the
m-dimensional open unit disc with center at zdpd', and the equality
Gix = G;x follows from the fact any analytic automorphism of the open
unit polydisc takes a smaller closed polydisc to a closed polydisc of the
same radius (see [Berl, Lemma 6.4.4]). The dage# [0] follows from
the following lemma.

Lemma5.7. Givenm > 0,n = (N, ... ,Np) anda = (ay, ... , ap) with
p>0n >1landa € k> forall 0 <i < p, let X = X(n,a,m) be
the closed analytic subset of the open unit polydittP++™ defined by
the equationsTip-...-Tiy, = & for 0 < i < p, and lety be an analytic
automorphism oK. Then

(9 @ preserves the monoiB(X) of functions onX of the formx —
AT TI I Ta (0[P with A € k| N[0, 1] and by € Z.; moreoverP(X)
contains the monoidP*(X) of functions of the fornx — | f(X)| with
f e (X)*and|f(x)| < 1lforall x € X;

(i) p(Et()) = Ei(p(a)) for any k-rational pointa = (aj, «j) € X
and any0 < t < 1, whereEi(e) = {X € X||Tj(X) — aj| < t]erj| and
ISj(X) —aj| <tforalli,l,j}.

Note that the automorphismis not required to be k-analytic one.
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Proof. (i) Let I = {i € [pllay = O}. First, we claim that if| = ¢ then
P(X) = P*(X) U {0}. Indeed, the fibres of the ma}§ — X, : X —
(ITit (X)) o<i<p,0<i<n, are analytic domains of isomorphic to a direct prod-
uct of annuli of the form{x € AY||T(x)| =r} with D™. All invertible
functions on these analytic domains are easily described, and the claim
follows. Thus, assume that=# @. Notice that ifl = [p] then any function
from P(X) which does not vanish anywhere is a constant. Using the canon-
ical projectionX — Y = X(nj, a;, m), whereJ = [p]\I, one deduces
that P*(X) = P*(Y) and, thereforeP*(X) coincides with the family of
functions of the formx - A [T, [TiLo ITa ()™ with & € |k*| N[0, 1]
andb; € Z,. It follows that the latter family is preserved lpy Further-
more, the correspondenge— X; = {X € X(JT”-i =0 foralli € 1}
is a bijection betweetin,] and the set of irreducible components X%f
The groupAut([n;]) acts transitively on the latter set, and so we may as-
sume thaty preserves all of the irreducible componentsXfWe claim
that in this case for each € | and0 < | < n; one hasp*ty =t fj,
wheret; is the functionx — |Tj (x)| and f; € P*(X). Indeed, each irre-
ducible componenE of X is isomorphic toY x D" with Y as above and
n = |n;|, and the automorphism preserves the closed analytic subsets
Zi={ze Z|Ti(zy =0}, 1 <i < n. We have to check that‘t; = t; f; for
all 1 <i < n, wheret; is the functionz — |Tj(2)| and f; € P*(Y). Let
o*Ti = f0+ZT:1 f;Tj(moddeg 2 with f; € O(Y). Sincey preserves the
setsZiN---NZyandZ;N---NZ;_1NZj1N---NZy,itfollows thatf; =0
forall j #1i,i.e.,¢*T, = fiTi(moddeg 3. Notice that| fj(y)| < 1 for all
y € Y. Similarly, one hage=1)*T; = g T,(moddeg 2 with g € O(Y). If
¢*gi = hj(moddeg 1, we getT; = ¢*(¢~1)*T; = h; f;T;(moddeg 2 and,
therefore,fi € O(Y)*, i.e., the claim is true.

(i) Consider the surjective continuous mapping X — X7, : X —
(ITia (X)Do<i<p,0<i<n;- The jamily P(X) coincides with that of the preim-
ages of functions fronM(X'}). Moreover, the fibres of are precisely the
equivalence classes of the following equivalence relatiorKor ~ X' if
f(x) = f(y) for all x € P(X). It follows from (i) thaty induces an auto-
morphism of the paitX,, M(X,)). By Lemma 4.1, we can replageby

: " ; lal’ laj/ /- = ; .
its composition with the automorphism &f associated with an automor-

phism of[n];y so thaty induces the trivial automorphism af}}. In this
casey takes the set~1(z(«)) to itself. Replacing agaig by its compo-
sition with an automorphism of the fori;, zj) — (Xiz, z;) for some
Ai € k° with Ao ... -Ain, = 1, 0<i < p, we may assume thatinduces
an analytic automorphism of the st € v=(t(@)) || Ti (X) — ai | < it
forall 0 <i < pand 0 < | < nj}. This set is isomorphic to the
open unit polydiscD" for somen. We may assume that = 0. Let
O*Ti = ZT:l a;j Ty(moddeg 2. Using the last reasoning from the proof of
(i), one shows that the matrifg;; ) lies in GL,(k°). Since the radii of open
polydiscs inD" are invariant under linear transformations fr@si.,(k°),
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we may assume*T; = Tj(moddeg 3. In this case the required fact is
evident. O

Step 6. In the situation of Step 4, suppose thds elementary and of the
same type aSs, i.e.,p induces a bijectiolirr (Xs)—irr (Ts). Theny induces
an isomorphism of colored polysimplicial sdt§x)— L (%) = A[n]ja. We
claim that

(8) (%) = ¢, 1 (S(9));

(b) ¢ induces a homeomorphisgix)— S(%);

(c) for every poink € S(%), #(X) is a purely transcendent extension of
the fieldk(w(x)).

(1) One hasS(x) C ¢, *(S(%)). Indeed, ifx € S(X), thenx = 7(x) and,
thereforep, (x) = <p,,(r(x)) = 1(¢,; (X)), i.e.,¢,(X) € ST).

(2) The statements (a)—(c) are truentf = 0, i.e., T = T(n,a). We
prove by induction onn| = ng + --- 4 N,. Assume that the statement
is true for smaller values qh| The intersection of all of the irreducible
components ok (resp.Ts) is a closed poink (resp.t) andwgl(t) = {x}.
One ha$<(t) =K, andk(x) is a finite separable extension Ioﬂ_et K be the
finite unramlfled extension df with K = k(x) and letz’ = E@ko Ke and
X' = X®-K°. The preimage of in T, is a 3. pointt’ with k) = K, and the
preimage ok in X; contains a point’ W|th k) = K. By Lemma 4.4, there
are isomorphisms df-analytic spaces ~1(x)— 7 1(x)—x (). Since
ST Na~L(t') is the preimage o8(T) N ~1(t) and homeomorphic to it (it
is the interior of the polysimple®(%) = ‘a‘) it follows thatS(x) Nz ~1(x)
is also the preimage d&(<) N 7~(t) and homeomorphic to it. It follows
also that to verify (c) for points frorﬁ(X) N ~L(x) it suffices to check that,
for every pointt € (%) N7 ~1(t), Jf(x) is a purely transcendent extension
of k. The latter is a consequence of the following lemma.

Lemma 5.8. Let x be the maximal point of the closed polydisc of radius

(r1, ... ,rn) with center at zero iPA". Then the field% is a purely
transcendent extension laf

Proof. Using the projectiolA” — A"! to the firstn — 1 coordinates,
the statement is reduced by induction to the case 1. Of course, we
may assume that the radiusof the disc is positive. The fleldl(’(x) is
generated ovek by the residues of(x) for polynomials f = Yo Oa.T'
with | f(x)| = max|a|r' < 1.

|

Caser € J/|k|. Let n be the minimal positive integer witt' € |k|,
and letr" = |a| for somea € k*. If i is not divisible byn, then the
inequality |g;j|r' < 1 implies the more strong inequalitg|[r' < 1 and,

therefore, we may assume that= Y a,T" = 3>, ania! (%”)I It
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follows that #(x) is generated ovek by the residue of-. The latter is

evidently transcendent ovr . .
Caser ¢ 4/|k|. In this case the inequalityg |r' < 1 implies|g|r' <1
for all non-zera'’s and, thereforef(x) = k. O

To verify the statements (a)—(c) over the complemers(af N 7 —1(x)
in S(X), we need the following lemma.

Lemmab5.9. Letyp : X — T be a morphism ok-affinoid spaces and
t € I(T). Then

(i) the restriction of the partial ordering oiX to X; coincides with that
on Xi;

(i) if x € X; andx < yfor somey € X, theny € X;.

Recall thatX; denotes the fibre @f atthe point. Thisis an# (t)-analytic
space whose underlying topological spacgi(t).

Proof. (i) Let T = M(A) andX = M(B). From [Berl, Corollary 2.4.5], it
follows that the point coincides with the intersection of all of the Laurent
domains of the fornT{r f =%}, wheref € 4 andr = | flsup It follows that
the set of functions of the forn%, whereg € 8 and f € # is such that

[f(©)] = | flsup IS dense iINB® . H (). (The spectrum of the latter algebra
is X;.) Letx,y € X;, and assume that <x y. It suffices to verify that
lh(x)| < [h(y)| for h of the above form but this is evident.

(i) For every f € A with [f(t)] = |f|syp One hag f(y)| < |flsyp =
[f(x)| < [f(y)[. It follows that| f(y)| = | f|sup I.€.,Y € Xt. |

Lett be a point fromS(%) whose reduction is not contained, say, in
the irreducible component dfs defined by the equation§, = 0, 0 <
i < p. Then|T, (t)] = 1 for some 0< i < p. Consider the canonical
morphismyr : € — ¢ = Spf(k°{Ti,;}). Then the image of in ¢, is
the maximal pointe of ¢,. By Lemma 5.9, one ha§%) N wn*l(e) =
S(¥) and S(X) N (Y,0,) 1) = &), where¥' = T x ¢ Spf(H()°)
andXx’ = X xg Spf(#(e)°). One hast’ = T(n', &) (over #(e)°), where
n = (o,...,Ni—1,Ni — 1, Niz1,...,Nnp) anda = (ao, ..., -1, ﬁ
Qy1,...,ap), If Ny > 2, andn’ = (Ng, ... ,Ni_1, Nij1,...,Np) anda =
(@, ..., 8-1,811,...,8p), if Ny = 1. We can therefore apply the induc-
tion hypothesis to the morphisei — <'. It follows that the preimage of
the pointt in X, is one pointx. If x < y for some pointy € X, then
t = ¢,(X) < ¢,(y), and sincg € ST) theng,(y) = t, and thereforg/ = X,
i.e., X € §X). HenceS(x) = <p;1(S(T)) and, in particularS(x) is closed
in X,. SinceS(%X) — %) is a bijective continuous map between compact

spaces, itis a homeomorphism. Sige) = k((e)) it follows that 7 (x)
is purely transcendent ovk(r(x)).

(3) The statement is true fon > 1. Consider the canonical projection
YT — & = &(m). Letsbe the maximal point o6, and sef’ = T xg
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Spf(#(9)°) andx’ = X xg Spf(H#(9)°). SinceS(T) C ¥, *(9), it follows
from (1) thatS(X) C (w,,w,,)*l(s). By Lemma 5.9, we ge§%) = S¥)

andS(X) = SX'). SinceH(s) = F(n(s)), the statement is reduced to the
casem = 0. N N N

Thus, we get a homeomorphisih (X)|—|L(%)|—ST)— NX). It
possesses the property of Theorem 5.4 because the homeomorphism
IL(T)|— S(T) possesses that property ang (¢,(X)) = @s(ryx(x)) for
allx e x,.

Step 7.In the situation of Step 4, the mappidg: %, x [0, 1] — X,
is continuougand, in particularg is a strong deformation retraction &f,
to S(%)). Indeed, the statement is local with respect to the Zariski topology
of X and, therefore, we may assume that we are in the situation of Step 6.
In this case the claim follows from the following simple fact.

Lemmab5.10. Lety : Y — X be a proper map of topological spaces.
Assume we are given a continuous ng@ap X x [0, 1] — X : (X, 1) — X
andamap¥ : Y x [0,1] — Y : (y,t) — YV such that the restriction of
wtoY x [0, 1 is continuousp(yi) = ¢(y); ande1(¢(y1)) = {ya} for all

y € Y andt € [0, 1]. Then the ma@ is continuous.

Proof. It suffices to verify that¥ is continuous at each poirty, 1) €

Y x [0, 1]. Let 'V be an open neighborhood of the poit Sinceg is
proper andp~1(p(y1)) = {y1}, there exists an open neighborhood of the
point p(y;) with ¢=1(U) C V. By continuity of @, we can find an open
neighborhoodw of ¢(y;) and a numbesr > Owith (W x[1—¢, 1]) C U.

It follows that¥(p~1(W) x [1—¢, 1]) C 'V, i.e., ¥ is continuous. O

Step 8. Recall (see [En, 8§2.4]) that a surjective continuous map of
topological spacesg : Y — X is said to be a factor map if the canonical
map Y/E(f) — X is a homeomorphism. (Herg/E(f) is the quotient
space ofY with respect to the equivalence relati@{ f) defined by the
partition { f ~1(X)}xex.) In other words,f : Y — X is a factor map if it

induces a homeomorphis@okerY xx Y = Y)> X. We claim that, given
a surjectiveétale morphismp : 99 — X between formal schemes locally
finitely presented ovee, ¢, : 9, — X, is a factor maplndeed, by [Ber3,
§8§2-3], the latter is a quasitale covering of,,, and the claim follows from
the following lemma.

Lemma 5.11. Any quasietale covering of analytic spacgs: Y — X is
a factor map.

Proof. We may assume tha{ is compact (for example, affinoid). By the
definition of a quaseétale covering, each point &f has a neighborhood of
the forme(Vy) U - - - U (V,) for some affinoid domain¥y, ... ,V, C Y. It
follows that there exists a surjective morphigm Y’ — X with compacty’
which factors through the morphisim Since¢’ is evidently a factor map,
then so isp (see [En, 2.4.5]). O
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Step 9. Letx be a poly-stable formal scheme o¥ér Take a surjective
étale morphismyy : X’ — X, whereX’ is a disjoint union of strictly
poly-stable affine formal schemes each of whom admitstale morphism
to a standard formal scheme. By Step 7, there is a continuous mapping
@ X, x[0,1] - X : (X,t) — X. We claim that the mapping :
Xy x [0,1] = X, 1 (X, 1) = X = ¥, (X)), wherex' € y1(x), is well
defined, continuous, proper and does not depend on the chaiteantl .
Indeed, take a surjectivaale morphisnx” — X’ x ¢ ¥’ with X" satisfying
the same properties ag. If X' is another point fromy—1(x), then there
exists a poin” € X, with p;(X”) = x" and px(x") = X', wherep; and
p. are the two projections fromx) to X. By Step 5,pi(x) = x and
p2(x{) = X! and, therefore, the images gf andX; in X, coincide, i.e.,
the mapping® is well defined. That it is continuous easily follows from
Lemma 5.11 and the fact that it is continuous ®r Step 5 implies tha®
does not depend on the choiceXfandy. To see the properness @f, it
suffices to takex’ such that the images of the connected componerit$ of
in X form a locally finite covering. Sincé is proper for suclx’, it is also
proper forx.

Thus, we can define a continuous mapx, — X, by 7(X) = @(x, 1)
and the skeleton af by S(¥) = ©(%,). The previous steps imply that the
properties (i), (i), (iii) and (vi) of Theorem 5.2 are true. The first part of (vii)
for morphisms fromPst f*tis also true.

Step 10.The statement (iv) of Theorem 5.2 is triide first part of the
statement follows from the fact that the action of a formal group on a formal
scheme is trivial on the closed fibre. The second part is local with respect
to the étale topology ofx and, therefore, it suffices to consider the case
of the standard formal schen®efrom Step 3. We have to verify that for
a stratun” of Ts with generic point one hasS(3) N7 ~1(7) Cc #71(t). As
in Step 3(3), there are non-empty subs&ts” [n;] such thatim = {t' € Tg|
foreachO<i < p, Tjj () = 0if j € AjandT; (t') #0if j ¢ Ai}. Consider
the canonical morphisng : € — ¢ = Spf(k°{Tjj }o<i<p,jea). The image
of t is the generic point of the closed fibre of¢, and v 1(e) = {t}.
One also hasr~1(e) = {e}, wheree is the maximal point ofg,, and
U, (N7 (7)) = {€}. From Lemma5.9 it follows the(¥)Nz~1(7) C
S(T'), where¥’ = T x ¢ Spf(#(€)°). The latter is a standard formal scheme
over F(e)° such thatt is the generic point of its maximal stratum. The
inclusionS(%) N~ 1(7) c 7~(t) follows.

Step 11The statement (v) of Theorem 5.2 is trist of all, we remark
that, given &-affinoid spaceX, a non-Archimedean field overk and an
affinoid domainX’ in X®Kk/, for any pointx’ € X' the local ring@x
is a faithfully flat over@x x, wherex is the image ofx’ in X (see [Ber1,
2.2.4(ii)] and [Ber2, 2.1.3]). It follows that we can shritkand increase
the ground field, so that the situation is as in Step 6 and the poist
k-rational. Consider first the case: 1. Thenx := 7(X) = n(X), 7~ X(X) is
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open inx, andz~1(x)— 7 ~1(ps(x)). It follows that the normality locus of
7~1(x) is isomorphic to an open subset®f!™™ andG;x is isomorphic to
a closed polydisc of radiusthere. The maximal point of the latter polydisc
evidently possesses the required property. Consider now thet cask,
and sety = x; = t(X). By Step 6,(pn_l((p,7(y)) = {y}. It follows that
X := t~1(y) is a regular strictlyk-affinoid domain inx, with the unique
maximal pointy. Assume that there is an element O y with f(y) =
The functionf is analytic in a small affinoid neighborhood pin X of the
form Y = X(rg™1), whereg € O(X) andr < r’ := |g|syp But the pointy
is also the unique maximal point of the affinoid dom¥in= X(r'g~*) and,
therefore,f = 0in O(Y’). SinceOy y is faithfully flat over®x y, it follows
that f is zero inOx y.

Step 12The statement (vii) of Theorem 5.2 is triredeed, since its first
part is known to be true for morphisms fraftst &, to check it for arbitrary
morphisms fromP st f'*Sit suffices to consider only the case of the canonical
projection?’ x ¥/ — ¥, where¥’ and¥” are standard formal schemes.
But in this case, the required fact is easily seen from the construction of the
mapst and®. As for the second part of (vii), we notice that if it is true for
the morphism)®- K° — ¥® K°, whereK is a bigger non-Archimedean
field overk, then it is also true for the morphismp. We can therefore
increase the ground fiekiso that the poink = m(x) and all of the points
from g2 1(x) arek-rational. In this case from Lemma 4.4 it follows that

induces isomorphismg ~(y)—z~(x) for all pointsy € ¢5*(x), and the
statement is obviously true.

Thus, Theorem 5.2 is already proven.

Step 13. In the situation of Step 6, assume thas elementaryWe claim
that the familyP(X) of the preimages of functions froRi¥ ) does not depend
on the choice of thétale morphisnp, and contains all functions of the form
X [f(x)|with f € O(X) N O(X,)*. The assumption implies that the map
irr(xs) — irr(%y) is injective. Using the construction from Step 5(4) and
Proposition 4.3, we may assume that we are givenétate morphismg
and¢’ from X to the same standard formal schefe= T(n, a) x &(m)
that induce bijectionsrr(xs);irr(ss). We now use the reasoning from
Step 6. Assume first thaih = 0, i.e.,£ = ¥(n, a), and letx andt be the
intersections of all of the irreducible componentscgfindTs, respectively.
Thencps l(t) = ¢y Yt = {x}. If K is the finite unramified extension &f
with K = kx), ¥ = i@koK" andx’ = X® K°, then the preimage of
tin T is a pointt” with k(t) = K, and the preimage of in X; contains
a pointx’ with k(x') = K. By Lemma 4.4, thétale morphlsm@ and¢’
give rise to &-analytic automorphism of‘l(t’). Since the functions from
P(x) are determined by their values &x) N 7~1(x), the casen = 0 of
the claim follows from Lemma 5.7(i). The case> 1 is obtained using the
reasoning from Step 6(3).
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Thus, we defineP(X) as the monoid of the preimages of functions
from P(%). It follows from the construction tha®(X) possesses the prop-

erties (ii) and (iii) of Theorem 5.3 and, moreoverijrif(Xs)—irr (Ts) then
P(T)— P(X).

Step 14.Theorem 5.3 is truek-or a poly-stable formal schenie we
take anétale coveringX; — X)i¢ with Xj’s satisfying the assumptions
of Step 13, and we definB(X) as the monoid of all continuous functions
on X, whose preimage on eadh, is contained inP(x;). From Step 13 it
follows that P(X) does not depend on the choice of #tale covering. It
follows from the construction that the properties (ii), (iii) and (iv) are true.
The statement on the unicity follows from (i) and (iv).

Step 15.Theorem 5.4 is trudf X is from Step 6, then Step 13 easily
implies that the homeomorphisBix)— S(T) is in fact an isomorphism in

Xe and, therefore, we get an isomorphi$h(3€)|i>8(3€) that possesses
the property of Theorem 5.4. Furthermore, by the constructions, in the
general case the spacis(X)| and S(X) are direct limits of the spaces
IL(9)| and S(2)), respectively, taken over alitale morphism®) — x

with 9’s satisfying the assumptions of Step 6. The above isomorphisms

IL(9)|—S(9) give rise to an isomorphisriL (X)|— S(X) that possesses
the required property. That it is unique follows from Lemma4.1. 0O

Remark 5.12.(i) The system of homotopie® satisfying the properties of
Theorem 5.2 is unique if one fixes them for the standard formal schemes
as in Step 3. Indeed, it suffices to check the unicity of the ni@pH—
X, : X > X for every pointx € X,. For this we takettale morphisms
@: X — Xandy : X' - T such tha = ¢,(x’) for some poinx’ € X,
and ¥ is a standard formal scheme. Furthermore, using the property (vi)
we can increase the ground field so that the pring k-rational. In this
casep andy induce isomorphisms 1 (x')— 7 ~1(x) andz ~1(x) =7 (y),
wherex’ = n(X'), x = 7(X), y = n(y) andy = ¢, (X’), and the required
fact follows from the properties (iv) and (vi).

(i) Recall that for a formal schema the correspondenc® — 2
induces an equivalence between the category of formal schetalever:
and the category of schemétale overxs (see [Ber3, 83]). Fix a functor
s — 2 inverse to the above one. Theorem 5.3 implies that for a poly-
stablex the correspondencds — P(2) is a sheaf of monoid®y on the
etale site ofxs. Let P;‘e denote the subsheaf of monoids such that)))
consists of the functions frorR(®) that do not vanish og),. Assume now

that the valuation ork® is discrete andk is the formal completiorX of

a schemeX over k° with semi-stable reduction. A canonical logarithmic
structure oriX is defined by thé&tale sheaf of monoid®x = O N |, O%,
where] is the open embeddin¥, — X (see [Kato]). There is a canonical
epimorphism oftale sheaves of monoids ¢, i*#yx — P%, wherei is
the closed immersiofts — X.
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(iii) Let F be alocal non-Archimedean field>,fF‘ the Drinfeld upper half-
plane of dimensiom — 1 overF, and2¢ the formal scheme ove¥° with
the generic fibre2¢ considered in [Dr2] and [Mus]. The formal schem®é
is strictly poly-stable, and the colored polysimplicial iiQ@,C:') gives rise
to the Bruhat-Tits buiIdingB‘,‘: of the groupSLy(F). Some of the objects
from Theorem 5.2-5.4 were constructed in [Ber5] in an elementary way,
i.e., without using formal schemes.

(iv) Assume that a non-Archimedean field contains local fields
Fi, ..., Fn. Then Theorems 5.2-5.4 and their consequences are applicable
to the formal schem@%@ko) X o0 X (?Zg:@ko), whose generic fibre is
thek-analytic space2f ®k) x - - - x (27 ®k). Analytic spaces of this form
are considered in [Var].

6. A polysimplicial set associated with a poly-stable fibration of
schemes

In this section we construct a commutative diagram of functors

{(l-) St'tps

c' N\ st

A°€Ens —O> Or

wherestr associates with a poly-stable fibratighthe partially ordered set
str(XG)). For this we need the following fact which explains, in particular, the
necessity of consideration of the categdrinstead ofA. (The extension of
all constructions from the categogyst 5™ to Pst f*Sis only a by-product
not important for our applications.)

Lemma6.1l.Lety : Y — X be a strictly poly-stable morphism with
strictly pluri-nodal X, and letx, X’ € str(X) be points withx’ < x. Consider
the map of partially ordered setstr(Y,) — str(Y,) : y — Yy from

Proposition 2.9. Then, given an isometric bijection: [n]=irr(Y,. ),
there exists a unique paifl, 1) consisting of a subsdt C [p], where

p = w(n), and an isometric bijectiom’ : [n|]1>irr(yx/, y') for which the
following diagram is commutative

’
N] — irr(Y,,y)
\ \

v
(] —irr (Y, )



Smoothp-adic analytic spaces are locally contractible 53

Proof. We can shrinky and assume that it is elementary anpds the
unique maximal point oftr(Y). Then Yy, and ¥, are elementary, and

y andy are their unique maximal points, respectively. The situation is
then reduced to the ca®é = SpecA) and Y = SpecB), whereB =
B1®a - ®a Bp®aCwith B = AT, ..., Tin,1/(Tio- - .. - Tin, — &) and
C=AT,...,Tm, T—ll . ,%], so that the isometric bijectiop is the
evident one. In particulaigy(x) = O for alli € [p]. We setl = {i €

[p] |ai(x/) = 0}. Thenirr(Y,., y) is evidently identified within,] so that
the diagram considered is commutative. That the gair’) is unique is
already obvious. O

Corollary 6.2. In the situation of Lemma 6.1, there is a canonical mor-
phism of polysimplicial set€(Y,) — C(Y%,). If X" € str(X) is a point
with x” < x’, then the morphisn€(Y%,) — C(%,,) coincides with the
composition o2(Y,) — C(¥%,) andC(¥,) — C(Y,). m|

Consider the following general construction. I&be a polysimplicial
set, and leD be a contravariant functor from the categotyC to A°€ns:

(A[n] =& C) — Dy. We define as follows a polysimplicial set

CaD = Coker(]_[ A[n,JaDy > ]_[ A[nx]nDX)

where the second coproduct is taken over the set of polysimplic€s of
which can be identified with the sé&ly(A/C) consisting of the morphisms

A[n ] = C, the first coproduct is taken over the $¢t(A/C) consisting
of the commutative diagrams (with= C( f)x)

A[ny] —f> A[ny]
oy N\ c v ax

the upper mayly takesA[ny]oDy to A[ny]aDy and acts adclp,, and the
lower mapd; takesA[ny]=Dy to A[ny]sDy and acts as Arny2D( ), where

D(f) : Dy — Dy. For example, ifD is a constant functofA[n,] = C)
— C’, whereC’ € Ob(A°&nyg), thenCaD is the usual square productC'.
Thus, we get a functofA/C)°(A°ény — A°€ns : D +— CoD that
commutes with direct limits. The construction is functorial©ni.e., given
a morphism of polysimplicial set€ — C and a morphismD’ — D
overC' — C, there is a canonical morphis@=D’ — CoD. We remark
that the canonical morphism$[n,J=Dy — A[Nny] give rise to a functorial
morphism of polysimplicial set€oD — C. We also remark that one can
associate with each paix’, x”), consisting of polysimpliceg’ € C, and
X" € Dy, a polysimplex(x’, x”) € (CaD),, where[n] = [n']e[n"].
Namely, this pair defines a polysimplég, , x”) € (A[n'JoDy), (see 83),
and(x’, x”) is the image of the latter i(CoD),. (Recall that, denotes the
fundamentah-polysimplex of A[n].) The following is a generalization of
Lemma 3.6.
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Lemma 6.3. Assume thatD possesses the following property: for any
surjective morphismf : [m] — [n] and anyx € C,, one hasD(f) :
Dy— Dc(fx- Then for eachx € (CoD), there exists a unique tuple
(1I’,1”,x', x") consisting of disjoint subsets, |” C [p], p = w(n), and
polysimplicex’ e CQ:’, andx” € DQ/d,n,// suchthak = (CaD) () 7) (X, X").
Proof. ExistenceFirst, x comes from a polysimpley € (A[m]eD,), for
somez € Cn,. By Lemma 3.2, we can find disjoint subséts J” c [p] and
polysimplices/ € A[m]n,, andy” € Dy n,, Withy = (A[m]aDz)(y 3)(Y, Y").
If g denotes the morphism[n;] — A[m] that corresponds tg/, then
do(en,, Y') = (Y, y") anddi(e,,,y") = (e, D(@)(y")), whereD(g) is
the morphismD, — Dc(g)7. Thus, we may assume that

y = (AInyeDz) (y,97)(€n, . V)

forsomez € C, , andy” € Dy n,, and, thereforesx = (CaD)(y 37)(Z, ¥").
Furthermore, le¥' =C(zr)X’, wherex’' € CRS’ |” is a subset of)’, andrn’ is
the canonical surjective morphigim;.] — [n;-]. By the assumptiorD (") :
D, — D,. LetZ’ be the element Dy n,, that goes ty” underD(r’). One
hasdy(en,,z") = (&,,Yy") anddo(&,,,Z") = (Y, Z’), wherey' is the
polysimpiex fromA[n, ], that corresponds to the morphisrh Thus, we
can replace by the elementA[n, 1oDy) (3 37){Y', Z’). The latter is equal
to (A[ny/ oDy ) (17, 37)(€n,,, Z’) and, thereforex = (CaD) (i 37) (X', Z").
Finally, letz’ = Dy (z")x", wherex” € D, ,1”is asubset 08", andz”
is the canonical morphisiimy-] — [n;~]. Thenx = (CaD) ()7 1») (X', X").

Uniquenessl) |’ and X' are uniquely determined by. Indeed, lety
denote the canonical morphistaD — C. Theng,(X) = C(r,/)x’ and the
claim follows from the Eilenberg-Zilber Lemma 3.2.

2) Giveny e Cifandy” € DY, if (Y, y") = (Y, ¥") for somey” e
Dy m’ theny” = y”. Indeed, lefm] = [m']la[m”], g = w(m), and[q] =
J'11 J” the corresponding partition. Then there exist morphigirs, ] =

A[m] Alny ] L A[ny,] = A[m'] and polysimplicesz; €

(A[Ny,,18Dy)m, 1 < i < |, with doz; = (&, Y"), 1z = doz for
1<i<I|-1 andd;z = (&y,Y’). By Lemma 3.6, foreach k¥ i < |
there exists a unique tuple}/, J’, yi, §) consisting of disjoint subsets
J. 3" C [a] and polysimplicesi € Aln,,IfY, and§ € DYy, , with

z = (A[ny,, 10Dy ) (ry 3) (i, i). The uniquenéss of Lemma 3.6 applied
to the above equalities implies tht= J’ andJ” = J" forall1 <i </,
&n = (fio---0 f))(en) andy’ = D(fy0---0 f))y”. The first of the latter
two equalities implies thaf; o - - - o fj = 1,,,, and, thereforey” = y".

3) In the situation of 2) the polysimpley’, y”) is nondegeneratdn-
deed, lety’, y’) = (CaD)(xr;)z for some subsdt C [q] and a polysimplex
Ze (CnD)”mdl. By the existence, one has= (CaD)m,, ,(Z, Z") for some
partition | = 1] I” and polysimplices’ € le/vl/, andz’ € Dz m,,. We
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get(y,y") = (CaD)(my »){(Z,Z"). By 1),I" = J andz =y’ and, in par-
ticular,1” c J”.If #” denotes the canonical morphigm;.] — [m,~], then
(Y, y") =y, Dy(x")Z"). From 2) it follows thatl” = J” andz” = y".

4) 1”7 and x” are uniquely determined by. Indeed, sincex’, X”) is
nondegenerate, the Eilenberg-Zilber Lemma 3.2 implies tthat|” and
(X, x”)y are uniquely determined by. From 1) and 2) it follows that”
andx” are uniquely determined by O

Corollary 6.4. In the situation of Lemma 6.3, given an injective morphism
of polysimplicial setsC" — C and an injective morphisn®’ — D over

C’ — Cwith D’ also satisfying the assumption of Lemma 6.3, the induced
morphismC'csD’ — CaD is injective. ]

If o is an automorphism dh] associated with a tripl€ p], f, «) then,
for any subsetl C [p], the triple (f (1), flt-10), @¢-1¢) defines an
isomorphisn, : [nf_l(l)]l>[n|]. One hasr| o0 = 0] o ¢-1)). Itis easy
to check that fox = (CaD) () ») (X, X”) one has

(CaD)(0)x = (CaD) (-1, t-111)(Clo1)X', D(01)(Dx (017)X")) .

Corollary 6.5. In the situation of Lemma 6.3, let € C[, x” € DY,
and[n] = [n'Je[n"]. Then(x’,x") € (CoD)™ and G xy = {(d,d") €
Gy x Aut([n"D|x” = D(g)(g@’x")}. In particular, if C and all Dy are

interiorly free, then so i€aD. O

Corollary 6.6. Inthe situation of Lemma 6.3, assume that for a polysimplex
x € CM the groupGy acts trivially on tbe polysimplicial seDy. Then the
preimage of the corresponding c&l\ X" C |C| in |CaD| is canonically
homeomorphic tgG,\ X") x |Dy|. O

Assume we are given a strictly pluri-nodal schedand a polysimpli-
cial setE provided with a map of partially ordered s€i§E) — str(X) :
(A[n] > E) — @. Then every strictly poly-stable morphism: Y — X
gives rise to a contravariant funct®, : A/E — A°&ns defined by
D, (A[n] 5 B = C(Y,). Note thatD, satisfies the assumptions of
Lemma 6.3 and Corollary 6.6. We sif, = E=D,. By Lemma 3.3 and
Proposition 3.14(ii), one has

O(E,) = COker(]_[ O(A[m]) x str(Yy) = | [ oA x str(ya)) :

where the first and the second coproducts are taken over the categories
N1(A/E) and No(A/E), respectively. The mapl, takes a pair(s, y),
consisting of the cIasS of a morphisms : A[r] — A[m] and a point

y € str(Y), tothe palr(f 04,Y), Wheref is the morphlsmfl[m] — A[n],

and the mapl, takes the same pa(rS y) to the palr(S y), wherey' is
the image ofy under mapstr(%,) — str(Y,-). It follows that the maps
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O(A[N]) x str(Y,) — str(Y), that take a pairs, y) to the image of the
point y under the magstr(y,;) — str(Y..;), define a map of partially
ordered set©(E,) — str(Y).

Lemma 6.7. In the above situation the following is true:

(i) if O(E)—>str(X), thenO(E,)—>str(Y);

(i) if Eisinteriorly free, then so i€,;

(iii) given an elemen& € O(E), the preimage of the corresponding cell
of |E| in |E,| is canonically homeomorphic to a direct product of it with
IC(¥2)!-

Proof. (i) follows from Lemma 6.3 and Proposition 2.7(ii), (ii) follows from
Corollary 6.5, and (iii) follows from Corollary 6.6. O
We now associate with a strictly poly-stable fibratidh = (X figt
. X1 f Xo = SpecK)) over a fieldK a polysimplicial setC(X)
as follows. Ifl = 1 thenC(X) = C(Xy), and ifl > 2 thenC(X) =

1-2

C(X) ., WhereX' = (X_1 5 ... % %), (We omitXo = SpecK)

if its presence is evident.) By Corollary 6.4, the polysimplicial GéX)

is interiorly free, and there is a canonical isomorphism of partially ordered
setsO(C(X))—str(X;). The construction is obviously functorial, and we
get a functorC' from the full subcategory oJPsqtpS consisting of strictly
poly-stable fibrations tal°€ns.

Using Lemma 6.3, one can describe the sgt$X) as follows. For
eachn with p = w(n), there is a canonical bijection betwe€r(X) and
the set of the triplegx, |, 1), wherex e str(), | = (I1,..., 1) is
a family of pairwise disjoint subsets pp] (all I, are assumed to be empty
if [n] = [0]), andu = (ug,..., ) is a family of isometric bijections

[T [n|k]1>irr(xk,xkfl, Xk), wherex, is the image of the poink in X.
Given a morphismny : [n'] — [n] associated with a tripleJ, f, «), the map
Cn(X) — Cy(X) takes a triple(x, 1, ) to the triple (X, 1, w') defined
inductively as follows. One hal§ = f (1), and the set; defines a point
X; € X1 with X; < x; and an isometric bijectiop] : [n’li]%irr(xl, X1)
for which the following diagram is commutative

lil
[N ] = i (X, X)

T 1
M1

[N/, ] = irr(Xy, x})

11

Assume that 2< k < | and that the pointx} with x] < Xj, the setsIJf

and the isometric bijectiorys/j 2] {];irr(x JX_po X’) are constructed for
/ _
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1< j < k— 1. First, the setl’ = f~1(l,) defines a poiny e Xk x,_, With
y' < X and an isometric bijection’ : [ng,];irr(xk,xkfl, y') for which the
following diagram is commutative

MK
[n|k] - irr(xk,kala Xk)

1 1

v

(5] = i (Xkxe1s V)

Let x, be the image of the poiryt under the canonical magr(Xy x, ,) —
str(Xkx,_,)- By Lemma 6.1, there exists a unique pdlif, ;) consisting
of a subset; c J’ and an isometric bijectiop,, : [ni;(]:’i”(xk,x’k,l’ Xy)
for which the following diagram is commutative

V/

[Ny ] = i (Xkxe1» Y)

¢ ¢
Mk
[, ] = i (Xx_, » %0

Settingx’ = x/, I’ = (I3,..., 1)) andp’ = (i}, ..., ), we get the re-
quiredtriple(x’, I, ). Given atrivially poly-stable morphisg : ¥ — X,
the mapCn(¥) — Cn(X) takes a triple(y, J, v) to the triple (x, I, ),

wherex = ¢ (y), Ik is the subset ofli, and uy : [n|k]l>irr(xk,xkfl, Xk) IS
the isometric bijection for which the following diagram is commutative

Vk
N3] = I Yy ye YO

¢ +

Mk
[Ny ] = i (X xe 1> Xk)

The above explicit description of the s€g(X) easily implies the following
fact.

Lemma6.8. Lety : X' — X be a morphism between strictly poly-stable

fibrations in st*™, and assume thatr(X|)— str(X). ThenC(X')— C(X).
O

Proposition 6.9. (i) The above functorX — C(X) extends in a way,
unigue up to a unique isomorphism, to a fund@or Pst™ — A°gnssothat,
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for any surjectiveétale morphisnmX’ — X, one hasCokerC(X' xx X')
= C(X)—>C(X);

(ii) for each poly-stable fibratiorf¢ there is a functorial isomorphism
of partially ordered set©(C(X))— Str(X;);

I i _
(iii) given 6 = (X = - -- e X71) with | > 2, assume that for some

1 < k < | — 1 the morphisnty is trivially poly-stable; therC(X)—C(X'),
whereX' = (--+ - Xyi1 fk_—lffk Xk_1 — ...);in particular, if all of the

morphismsf; are trivially poly-stable, therC(X) = C(X).

Proof. (i) As in our previous constructions, it suffices to verify the prop-
erty stated for any surjectiviale morphism of strictly poly-stable fibrations
@ X' — X.Letfirst(x, I, u) be fromC,(X), and take a point’ € str(X;|)
overx. Thenthere are isometric bijections: i”(xf(,x@ K x’k)l>irr(xk,xk_1, X)),
and the triple(x, I, ) is the image of the tripléx’, I, u') from Cn(X)),
wherepy, = uxo yk‘l. Assume now that the images of two triples, 1, ')
and(y’, J',v) from C(X") coincide inCy(X) with a triple (x, L, u). We
canfindapoink” € str(X,"), whereX” = X'x x X', whose two projections

in X/ are the points<’ andy'. It follows that the compositions of the iso-
Yk

metric bijectionsirr (X, . X() = i (X, - X )= ( Xk x_,» Xk) and
Sk

i (X 2 %) > i (X, Yi)— i (X x._; » Xk) coincides. This implies
thatl, = Iy = J; and that the isometric bijectiong, = y ~tou; ands~tov;
betweern,, ] andirr(x{(’)xﬁ o ) coincide. Thus the triplex”, I, 1) goes
to the triples(x’, 1’, u’) and(y’, J’, v') under the two projections frorf”
to X'.

(ii) follows from (i), Lemma 3.3 and the fact that it is true for strictly
poly-stable fibrations.

(iii) By (i), it suffices to verify the statement only for strictly poly-stable
fibrations, but in this case it is easily deduced from the explicit description
of elements of the sefs,(X). O

Corollary 6.10. Let X be a poly-stable fibration of lengtiover a fieldK.
Then

(i) If 2 is quasi-compact, then there exists a finite separable exten-
sion K’ of K such that, for any bigger fieltk”, one hasC(X ® K”)—
C(X ®K’).

(i) If X is a strictly poly-stable fibration and all of the strata & are
geometrically irreducible, then the conclusion of (i) is true Kor= K. O
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7. Alifting of a homotopy for a poly-stable morphism of formal
schemes

Let ¢ : 9 — X be a poly-stable morphism between formal schemes
locally finitely presented ovek°. For a pointx € X,, we setQ), =
2 xx Spi(H (X)°). Itis a poly-stable formal scheme ow#f(x)°, and there

are canonical isomorphisng, ,— 92, , and), s—Vsx S, H(X), where
X = m(X). Let @y denote the mapping, x [0, 1] — 9, that coincides
with the mapping® from Theorem 5.2 on each fibre of the morphigm

Theorem 7.1. The mapping®y : 9, x [0, 1] — 9, is continuous and
proper. In particular, it is a strong deformation retraction @f, to the
closed set (thekeleton of the morphisma)

S(Qj/%) = Uxe%,7 S(gjx) .

The natural question now is as follows. When a homotdpy X, x
[0, 1] — %, can be lifted to a homotopy : S(9/%) x [0, 1] - S(Y/%)?
The following is an answer to the question in a situation which is sufficient
for our purposes.

Assume we are given a formal schemlecally finitely presented ovés
and, for each morphisg — % in FscH*, ahomotopy/y : X x [0, 1] —
X, + (X', 1) > x; with the properties

(@) (XDt = Xpaxt,ry @NAX" < xg forall X" € x; and O< t, ' < 1;

(b) given a commutative diagram i#sch!

¥ 5oy

N
X
one hasy, (x) = ¥,(X"); forall X" € X7 and 0< t < 1.

Theorem 7.2. In the above situation, one can construct, for every poly-
stable morphisnp : 9 — X, a proper homotopy : S9)/X) x [0, 1] —
S/%) : (¥, 1) = y: over¥ = ¥y so that the following holds:
(i) (Vv = Ymaxrry and forall0 < t,t' < 1;
(i) y<wyforallO<t <1
(i) if x = x; (resp.w(X) = w (X)) for somed <t < 1theny = y; (resp.
n(y) = (), wherex = ¢, (y);
(iv) given a commutative diagram
9y 5 x
Y

@l L xl

wherep andg’ are poly-stable angr andy’ are morphisms it¥ scif!, one
hasy, (yp) = ¥, (Y)iforally € S@'/x)and0 <t < 1.
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Notice that the properness in both theorems trivially follows from the
continuity (see Step 9 from 85).

We say that a strictly pluri-nodal scherd@over a fieldK is geometri-
cally elementaryf it is elementary, i.e., the partially ordered s&{(X) has
a unique maximal element, and all of the strat&oére geometrically irre-

ducible, i.e., for every bigger field’ > K one hasstr(X @ K')—str(X).
Furthermore, we say that a strictly pluri-nodal morphigm ¥ — X
is geometrically elementari the fibre Y, of Y at each poink € X is
geometrically elementary.

Lemma7.3. Lety : Y — X be a strictly poly-stable morphism between
schemes of locally finite type ov&r. Then for each poiny € Y there
exist anétale morphism’ — X and an open subsét’ C Y x X’ such
that the image of}’ in Y contains the pointy and the induced morphism
Y — X' is geometrically elementary.

Proof. We may assume that the poiynis closed. Furthermore, to prove the
statement we always can replace the ground field by a finite (not necessarily
separable) extension &€ (see [SGAL, Exp. IX, 4.10]). In particular, we
may assume that the poigtis K-rational. ShrinkingX and %, we may
assume tha¥ = SpecA) is affine and the morphism goes through an
étale morphisng : ¥ — Z = Spe¢B) with B = By ®a - - - ®a By, where
Bi = AlTio, ..., Tin,1/(Tio-...-Tin, — &), & € Aandn; > 1. We may
assume thas; (x) = 0 andT;(y) =0forall0<i < pand0< j <n,
wherex is the image ofyin X, anda € A*forall p+1 < i < q.Forasubset
I C [pl], let X, denote the set of the points & where the functionsy
withi € | vanish. (For example,; = X.) Given a subset C [p], assume
that for every strictly bigger subsétc J C [p] the fiberY,, at each point
X' € X, is geometrically elementary. We will prove the existenceX®f
andy’, as in the lemma, with the property that the fit}fe of Y’ at each
pointx’ € X’ over X, is geometrically elementary.

Let B, (resp. B|) denote the tensor product &'s fori < | (resp.
i € [q]\l). If f denotes the canonical morphistn— X, thenf~1(X,) =
Ux U, wherell = SpecB))x X andU’ = SpegB|) xx X,.One has
Vi={zeU |Tij (z7=0foralli el and0< j < ni}— X,. Each family
A = (Ajj)ieqn1,1<j<n Of Non-zero elements d defines a homomorphism
B| — A that takesTj, to ﬁ andTj to A for 1 < j < n;. The

latter together with the isomorphistq, =y defines a section; : X, —
f=1()) of f overX,. If I = [p] then, fori; = Tij (g(y)), oa(X) = g(y).
If 1 # [p], we can increase the field and find a familyx such that
the pointo; (x) is contained in the image d§ in Z. Shrinking X, we
can extend thé&tale morphisng=(0, (X)) — X, to anétale morphism
X' — X with affine X'. ReplacingX by X', ¥ by ¥ xx X' and Z by
Z x X', we may assume that the above sectign X, — f~1(X,) of
f over X, can be lifted to a sectios : X; — ¢~ 1(X,) of ¢ over X;,. For
X' e X, lety; denote the connected componentygf that contains the
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pointo(X). If X" is contained inX ; for some bigger subsétc J C [p],
then the induction hypothesis implies ti}, = Y,.. Otherwise, by the
construction, the point(x’) is contained in the intersection of all of the
irreducible components d§;,. If | = ¢, i.e., Xy = X, then the union
Yye of Y, over allx’ € X is open inY, by [EGAIV, 15.6.4], and the
morphismyY° — X is geometrically elementary. Assume tha ¢, and
letl = {ip <--- <ij} andn = (ny,, ..., n;). For a subseA C [n] with
the propertyA = Ag x --- x A, where A is the image ofA under the
projection[n] — [N, ], we setZa = {z € f~1(X))|Tj(z) = 0foralli € |
and j € A} and denote byy , the preimage oz, in Y. Theno is also
a section of each of the morphisrig — X,. Forapoinx’ € X, let¥3 ,,
denote the connected componentygf,, that contains the point(x’), and
let Y7 denote the union df; ,, overx’ € X;. Again, by [EGAIV, 15.6.4],
Y4 is open inY 5. Thus, we can remove frof the closed subset$,\ Y,
so that the fibres ap over all points fromX;, are geometrically elementary.
]

We say that a strictly poly-stable morphism: 9 — X in k°-Fsch
is geometrically elementany the induced morphism between their closed
fibres is geometrically elementary. This property implies that for each point
X € X, the closed fibre of the strictly poly-stable formal schefhgis
elementary. The following is a direct consequence of Lemma 7.3 and [Ber3,
Lemma 2.1].

Corollary 7.4. Let ¢ : 9 — X be a strictly poly-stable morphism in
k>-Fsch Then for each poiny € 2 there exists arétale morphism
X’ — X and an open subschere C 9 x x X’ such that the image @f; in
2 contains the poing and the induced morphisf — X’ is geometrically
elementary. O

Proof of Theorem 7.1Assume first that the morphismis strictly poly-
stable. Since the statement on continuity®af is local with respect to the
Zariski topology ofY), we may assume that = Spf(A) is affine and the
morphismg goes through agtale morphisnif : 9 — 3 = Spf(B), where

B = By ®a - ®a Bp with B = A{Tio, ..., Tin,}/(Tio- ... -Tin, — &),

a € Aandn; > 1. The groupg = 6 x --- x gm® from 85 acts in the
evident way or. By Lemma 5.5, the action opof the formal groups, the
formal completion of along the unit, extends in a unique way to an action
ong. The corresponding continuous homotapyx [0, 1[— 9, coincides
with the restriction of®y to 9, x [0, 1] (see Step 4 from 85). Thus, it
remains to check the continui@y at the pointsy, 1) € 9, x [0, 1]. If,

in addition, the morphisny is geometrically elementary then, for every
pointx € X, Vys = Vsrx Dknwy H(X) i elementary and, therefore,
the morphism of polysimplicial sets(2), ) — C(3xs) is injective. Since
S®Q/%) = f1(S(3/%)), Theorem 5.4 implies that *(f,(y)) = {y} for
ally e §9/%) and, by Lemma 5.10, the mahy. is continuous.
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Inthe general case, we can find, by Corollary 7.4, acommutative diagram

9y 5 x

i 4

/

Q_j, L) x/
wherey’ is surjectiveétale,y is étale, and¥’ is a disjoint union[ [;_, X;
such that each morphisgi (%) — X; is strictly poly-stable and geo-
metrically elementary. By the previous case, the idap : S('/X') x
[0, 1] — S(®'/X') is continuous. Since it is compatible with the mag,
Lemma 5.11 implies thaby is also continuous. i

Proof of Theorem 7.2Step 1. We start by constructing for each> 0

a strong deformation retractiaf, : [0, 1] x [0, 1] — [0, 1]™ of [0, 1]™

to the point(l,...,1). The mapy, is required to possess the property
thaty(o(r),t) = o(¥n(r,t) for all 0 € S,,1, and so it suffices to define
Yn(r, t) only for the points € [0, 1]™ with rg < ry < --- < ry. First of
all, if t <rg-...-r, we sety(r,t) = r. Furthermore, i’ri'+lri+1- R

t <r*2risp-...roforsome 0O<i < n— 1, we set

¢ i t i
)y =((—m ) o (——— ) ria )
YD (ri+1-...-rn) (ri+1-...-rn) 1 n

Finally, if t > r,"]‘*l, we setyn(r,t) = (tﬁl,... ,tﬁl). For example,
Yo(r,t) = maxr,t). Notice that if u,, denotes the mapping, 1] —

[0,1] : (ro,...,r) = Fo-...rn, thenua(Yn(r,t)) = Yolun(r),t). One
also has/m (Yn(r, t), t') = ¥n(r, maxt, t')).

Step 2. Letf : 9 = Spf(B) - X = Spf(A) be a morphism of
affine formal schemes finitely presented okewith B = By®a . . . ® By,
where Bi = A{Tio, ..., Tin,)}/(Tio--..-Tin, — &), & € Aandn; > 1.
The continuous mappings : 9, — X, x [0, 1]™ that takes a poiny
to (f(Y); [Too(W)1, - - . » [Tpn, (Y)]) identifiesS(Y/X) with the closed subset
(see Step 1 from 85)

St ={(X;fo,....rp) € X, x [0, 1] |rip-... Tin, = [&(¥)],0<i < p}.

Assume that there is a homotogy : X, x [0,1] — X, : (X,1) = X
possessing the properti€s )y = Xmaxt,ry andx < x; for all t,t" € [0, 1].
We construct as follows a homotogy; : S¢ x [0, 1] — Sf overY:

i (X T0s o5 Tp)s t) = (X Yng (Fos [@0 (X)) - - -, ¥ny (F s [ (X)])) -

In this way we get a homotopy : S2)/%) x [0, 1] — S/X) : Yy — ¥
overy. By the construction(yy)v = Ymaxtt) and, ifx = x; for x = f,(y)
theny = y;. Sincex < x and|T(y)| < [Tj(y)| forall 0 <i < p
and 0< j < nj, from Lemma 5.6 it follows thayy < y;. Assume that
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m(X) = m(X). This means that, for any elemeate A, |a(x)| < 1 if and
only if |a(x)| < 1, and we have to check that the same property holds for the
pointsy andy; and all functions fromB. If such a function is represented
by an elemenb = ) a,T* € D with a, € A (see Lemma 5.6), then
the inequality|b(y)| < 1 (resp.|b(y;)| < 1) is equivalent to the system
of inequalities|a,, (X)|-| T(y)[* < 1 (resp.la,(X)|-|T(y)|* < 1) for all .
If la,(x)| < 1then|a,(x)| < 1 and the both inequalities from the above
systems are automatically satisfied. Otherwjag(x)| = |a, (%)| = 1 and
the formula fore; implies that| T(y)|* < 1if and only if | T(yp)|* < 1.

We remark that, given an open formal subschemec 2, the above
homotopy¥ induces a homotopy : S(2)'/X) x[0, 1] — S)'/%). Indeed,
this follows from the facts tha®Q)'/X) = S(9/%) N 7~1(YL) andy < yi.

Step 3. Letp : 3 — X = Spf(A) be a geometrically elementary
strictly poly-stable morphism. Assume that the morphisns a compo-
sition of anétale morphismg : 3 — 2 = Spf(B) with a morphism
f : 9 — x of the form considered in Step 2. L&t be the image o
in 9. (It is an open formal subscheme Pf) We claim thaty induces

a homeomorphisns(3/X%)— S(9'/X). Indeed, it suffices to verify that,
for each pointx € X, the canonical majs(3x) — S9);) is a homeo-

morphism. BUBX)S;BS’n(X) ®E(n(x)) H (X) andgj;(,s:)@/&n(x) ®E(TT(X)) H(X).
From the assumption it follows thg s is elementary. Sinc); ¢ is also

elementary, it follows thaC(3X,s)l>C@;(,s). Theorem 5.4 implies that

§(3X)l> S);). Thus, the homotopy from Step 2 gives rise to a homotopy
¥ S(3/X%) x [0,1] > S(3/X) : z — z over¥. One evidently has
(Z)v = Zmaxtr) for all t, t" € [0, 1] and, ifx = x; for somet thenz = z.
Sincen(z) € Str(3s ) andn(z) € str(3s x)), the pointsz(z) andr(z)

are unique preimages of the pointsy) andnz(y;) in 3s, respectively, where

y = 0,(2). Sincer(y) is contained in the closure af(y;) andgs : 3s — s

is an open map, it follows that(z) is contained in the closure af(z) and

if, in addition, 7 (X) = (%) for somet thenz(z) = 7(z).

Step 4.In the situation of Step ¥ < z for all z € 3, andt € [0, 1].
Sincern(2) is contained in the closure af(z), we can replacg by an open
neighborhood of the point(z) so that3 = Spf(Cyy) with C = B[T]/(P),
whereP is a monic polynomial ovelB andc € Cis such that the image &f
in Cyq is invertible. Notice that foy = g,(z) one hasy < y, fn—l(y) ={z}
and f{l(yt) = {z}. Notice also that, by Lemma 5.1, the inequalit z
in 3, Is equivalent to the same inequality in the generic fibrSpf(C).
Thus, the required fact follows from the following lemma.

Lemma7.5. Letp: Y = M(B) - X = M(A) be a finite morphism of
k-affinoid spaces such th& is a freeA-module, and lex, X' € X be points
with X < X'. Furthermore, letZ be an affinoid subdomain of of the form
Y(h™) = {y € Y||h(y)| > 1} withh € B°. Assume thap~*(x)NZ = {Z}.
Then for each point € ¢=(x) N Z one hasz < 7.
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Proof. (1) For a closed subsel’ ¢ Y and an elementff € B we set
[fls = ma2x| f(y)|. We claim that for eacif € 8 and each poink € X
ye

one has| f|, 14 = lng&>g|ai(x)|%, whereT" + a, T" 1 + ... 4+ a, is the

characteristic polynomial of the endomorphism of multiplicationf lnf B
over 4. Indeed, we can replacs by #(x) and8 by 8 ® 4, #(X) so that
the claim takes the following form. Given a non-Archimedean fi¢ldnd
a finite-dimensional algebra over K, for eachf € L one has f s, =

lm_ax lgi (X)] T, whereT"+a,; T"1+...+a, is the characteristic polynomial
<i<n

of f. Notice that the both sides of the equality don’'t change if we increase
the K and, therefore, we may assume that= L; x --- x L, whereL;
are local ArtinianK -algebras with the residue fiek.
Let 2 be the image off in the residue field of;. The left hand side of
the equality isl maxA;i|. On the other hand, if the dimension lof over K
<i=p

is n;, the characteristic polynomial dfis (T — A1)™-...-(T —Ap)"°, and
the verification of the equality is an easy exercise.

(2) Assume we are given a poirte X with ¢=%(x) N Z = {z} and
a function f € 8. We claim that iff(z) # 0 then there existany > 1 such
that for anym > mg one has| f(2)| = | th™|,-1(), and if f(z2) = O then
| fh™| 10 — 0 asm — oo. Indeed, ifp™2(X) = {y1 = Z, Yo, ..., ¥i},
thenlh(z)] = 1 and|h(y;)| < 1forall 2 <i < | and, therefore, in the case
f(z) = 0 the claim is clear, and in the ca$&z) # 0 it suffices to takemng
with the propertyl f(y)|-|h(y)|™ < |f(z)|forall2 <i <.

(3) For each f € 8 one has|f(z)| < | f(Z)|. (The pointszandZ are
from the lemma.) Indeed, by (1) and the assumptien x’, for everym > 0
one hag f(2)| = [(th™) ()| < | Th"[, 150 < | ThT|,-1x). If (Z) # O then
for a sufficiently largem the latter number is equal td(z)|. If f(Z) =0
then that number tends to zeroragends to infinity, i.e.,f(z) = 0. O

Step 5.In the situation of Step 3, the homotopy: S(3/%) x [0, 1] —
S(3/%) does not depend on the decompositios f o g.

Lemma7.6. Let[0, 1] — X, : X — X; be a continuous map to the generic
fibre of a formal schemg& locally finitely presented ovee, and assume
thatx; < x¢ forallt <t’. Thenthereexidf =0 <t; < --- < t, = 1such
that(x) =m(x;) foralltf <t <t ;and0<i <n-—1

Proof. We may assume that = Spf(A) is affine, and it suffices to show
that for each O< t < 1 there existg > 0 such thatr(x;) = 7 (x¢) for all
t<t <t+e. Letfq,..., f,beelements of whose images imN\generate
the prime ideajp that corresponds to the pointx;). Since the map — x;

is continuous andifi(x;)|] < 1 for all 1 <i < m, there exists > 0 such
that| fi(xy)] < 1forallt <t <t+eand 1<i < m. We claim that for
sucht’ one hasr(x) = 7(Xy). Indeed, iff is an element oA whose image
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in Ais not ing, then| f(x;)| = 1 and, thereford,f(xy)| > | f(x)| = 1. This
means thatr(X;) = 7w (Xy). O

Assume we are glven another decompositjor- f’ o ¢', whereg’ :
3 — 2 = Spf(B’) is an étale morphism withB" = B{®a .. .®aB! o
whereB = A{Tp, ... s T}/ (Tio -+« Tiny —a),a € Aandn; > 1. Flrst
of all, we remark that the required fact is truefif=h o f, whereh is the
isomorphismy— %)’ induced by an isomorphisfin]—[n']. Letz € §(3/%)
andx = ¢(2). Since the maps — z = ¥(z,t) andt — z = ¥'(z,1)
are continuous, it follows from Lemma 7.6 that it suffices to verify the
equalityz = z under the additional assumptions thak;) = w(x) and
n(z) = n(z) = n(z). We can shrinkx and 3 and replacef and f’
by their compositions with isomorphisms of the above type so that there
existq > 0 andm = (mg, ... ,my) € Ob(A) for which |a;(x)| < 1 and
la/(x)| < 1 precisely for 0<i < qand|g*Tik(2)| < 1 and|g"T; (2)| < 1
precisely for 0O<i < gand 0< k < m;. Let z = n(2) andx = 7(X).
The étale morphismg andg’ give rise to two isometric bijectiong, ' :
[m]—irr (3sx, 2). Replacing again, if necessarly, by its composition with
the automorphism of)’ induced by an automorphism ¢fMm], we may
assume that' = p. Proposition 4.3 implies thag; (x')| = |a/(x)| for all
x' e m71(x) and 0< i < q. It follows that for each poink’ € 7~1(x) the
two homeomorphismS(3y. )—>E‘a(x,)‘ induced byg andg’, coincide. The
latter immediately implies that; = z for all t we consider.

Step 6. Assume we are given a second strictly poly-stable morphism
¢ 3 — X' = Spf(A), satisfying the same properties from Step 3 as the
morphismg, and a commutative diagram #isch

3 4 ox

vty

3/ L xl

such that the morphisty’ — 3 xy X' is étale. Assume also that there is
a homotopy¥’ : X, x [0, 1] — X, possessing the same properties from
Step 2 asthe homotow and such thapn(llf (X, 1) = ¥'(y,(X), ) forall

X € 36/ andt € [0, 1]. Themp’ W' (Z, ) = W(W (Z),Hforall Z e 3/ and

t € [0, 1] Indeed, it suffices to consider the foIIowmg two cases‘ﬂaé: X,

and (b)3" = 3 x ¢ X'. In the case (a) the statement straightforwardly follows
from Step 5. In the case (b) the statement follows from the formula for the
homotopy¥; from Step 2.

Step 7. Let us return to the situation of the theorem. For a poly-stable
morphismg : 9 — X we construct as follows a strictly poly-stable mor-
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phism¢’ : 9 — X’ a commutative diagram

4

PN — X
A / N4
@/ L) X’/

By Corollary 7.4, one can find for each pointe 9 an étale morphism

4 = Spf(A) — X and arétale morphismy — 9 x ¢ 4 such thatd — 4

is a geometrically elementary strictly poly-stable morphism and the image
of Us in 9 contains the poiny. The commutative diagram we are talking
about is obtained fo?)’, a disjoint union ofy’s of the above form so that
the inducedétale morphisnmy)’ — 9 is surjective, and for’, a disjoint
union of the corresponding’s.

Step 8. For a poly-stable morphigm 2 — X we construct the required
homotopy? : S(9)/%) x [0, 1] — S)/X) as follows. Take a strictly poly-
stable morphisny)’ — X’ as constructed in Step 7. Furthermore, take
a strictly poly-stable morphis)” — X" as constructed in Step 7 for the
morphismg)’ X9) x9 — X' xx X'. Since§Q'/X’) and S"/x") are
the preimages o89)/X) in 9, andY);, respectively, Lemma 5.11 implies
that CokenS(9)”/x") = S /x'))— S(/%). By Step 6, the homotopies
constructed in Step 3 f&Q)"/x") andS(9)'/x’) are compatible and, there-
fore, they induce a homotopy : S(9)/%) x [0, 1] — S(2)/X%). That the
homotopyy¥ satisfies the properties (i)—(iii) follows from the construction.

]

8. The homotopy type of the generic fibre of a poly-stable fibration of
formal schemes

The results of the previous section can be used to construct, for each formal

: N fi_
scheme& in #sch and each poly-stable fibratiak = (X bp &y

X1 ji X0 = 6),a homotopyq?'>'6 X, x [0, = X, 0 (X D) = X
over &,. Namely, ifl = 1, it is the homotopy®s from Theorem 7.1.
Assume thal > 2 and that the homotop};b'é1 is already constructed.
First of all, we set; = @5, (x,t) for 0 < t < 1. Furthermore, given
amorphisnﬂ(, X)) — (k, x|_Qin Fschet, letX’ be the poly-stable fibration
(X — X_oQK° — .- — Xo®K°). By induction, there is a proper strong
deformation retractionig1 : X x[0,1—1] — x| . Setting¥y = cb'él,we
get a system of homotopies that satisfy the properties (a) and (b) from 8§7.
Theorem 7.2 provides therefore a homotdpy S(X,/X_1) x [0, — 1] —
S(x/%i_1) over®'=, and we sek; = ¥(x,t — 1) foralll <t <|I. The
homotopyq)'6 is a proper strong deformation retractionXf, to a closed
subset which is naturally to be called thkeleton oft and to be denoted
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by S(X). The following theorem lists properties of the homotopy and the
skeleton fors of the formSpf(k°).

L fi_
Theorem 8.1. One can construct for every poly-stable fibratpor= (X =

Y X1) of lengthl a proper strong deformation retractiog' : X, X
0,11 = X, : (X, 1) = X of X, to the skeletor§(X) of X, so that the
following holds:

fi_2

() S@) = S /%) N f7L(SE)), wherex' = (X1 = -+ = Xy,
and fi_q1 ,(%) = fi_1,(X)—1forall L <t <I;

(i) (%) = Xmaxtty forall 0 <t t' <1,

(i) x <x forall0<t <I;

(iv) for everyx and0 <i < | — 1, there exists < t’ <i + 1 such that
Xy =X foralli <t <t andthe magt’,i+1] — X, : t — X isinjective;

(v) for every0 <t <1, n(X) is contained in the same stratumfs as
7(X); moreover;y(x) is the generic point of that stratum, andx;) = (X;)
forallO<i<l—-1landi <t<i+1;

(vi) if X ,, is normal atx, then for every open affine subschexmer X,
with X € 3€;7 and everyt — 1 <t < the local ring(93€/n’xt is a field;

(vii) if X is a strictly poly-stable fibration then, for every poine (%),
H(X) is a purely transcendent extension of the f'lé(lﬁl(x));

(viii) given amorphisny : 9 — Xin Pstff’, one hasy ,(y1) = @1, (Yt
forallye 9, ,and0<t < I; if ¢ is étale then, givew e X,0<i<l-1
andi <t < i+ 1, each point fromplj(xt) is of the formy; for some

Y € g, (%)

Let S denote the functog > S(X) from Pstf™ to the category of
locally compact spaces. The functst f** — A°ens: X — C(x,) will

be denoted b', and its composition with the geometric realization functor
X |C(xy)| will be denoted byC'|.

Theorem 8.2. There is a canonical isomorphism of functg@|— S that
possesses the following property: given a poly-stable fibratidhe homeo-

morphism IC(X)|—S(X) induces a homeomorphisrTC(X)|l>S(§)ﬁ
7~1(X) for each strata subseX of X s.

Here agaifC(X)| denotes the subset @ (X)| which is a union of the
cells that correspond to the stratadyk contained inX.

Proof of Theorem 8.1The construction of the homotopp' has been
already done. That it satisfies the properties (i)—(iv), the third part of (v)
and the first part of (viii) straightforwardly follows from Theorems 7.1
and 7.2. As for the second part of (viii), it is obtained using the fact, that
(X)) =na(x)forall0<i <l—-1and <t <i+1,andthereasoning from

85, Step 12, that establishes the corresponding statement (vii) of Theorem 5.
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(v) Thefirsttwo statements of (v) are proven by inductioh.&ince their
validity is local with respect to thetale topology o, it suffices to consider
the case wher_; = Spf(A) andx; = Spf(B) with B = By®a ... ®aBy
with Bi = A{Tio, ..., Tin,}/(Tio- ... -Tin, — &), whereg € Aandn; > 1.
We may also assume thifs is elementary and that the generic potraf
the stratumX that containsr(x) is the unigue maximal point iBtr(X; ).
Let X' be the stratum of_;  that contains the image of;, and letx’
be its generic point. We may assume thax’) = 0 for0 <i < g and
axX) #A#0forg+1<i < p ThenX is the subset oiflj_s(x’) where
the functionsT; for 0 < i < qand 0< j < n; vanish. It follows that
X)) = {x e ﬂjm(n*l(X’))HTij (X)] < 1foral0<i < qand
0 < j < nj}. From Theorem 5.2 it follows that fdre [0, 1] the pointx;
is contained int~1(X) andx; is contained iNS(X;/%_1) N 7 1(X). We
may therefore assume that= x;. The formula of Step 2 from the proof
of Theorem 7.2 and the induction hypothesis imply thattfer [1, 1] the
point x, is contained inr~1(X), andx is contained in the preimage of
S N~ (X)) in 771(X), wherex’ = (¥_1 — --- — X1). The latter
means that fox’ = fj_; ,(X) one hast(x’) = x. Sincex; = @y, (%, 1),
Proposition 2.7 and Theorem 5.2, applied to the poly-stable formal scheme
X xx,_, Spf(FH(X)°), imply thatr(x) = x.

(vi) We prove by induction on the following slightly more strong
statementFor every normal poink € X, and everyl — 1 <t </, there
exists a morphisny) — % in Fschf! with affine®) such thatx; is the
image of a pointy € 9, which is a unique maximal point of an affinoid
domainY C 9),. If | =1, it is exactly the fact established in Step 11 of
the proof of Theorem 5.2. Assume that 2. Forx’ = fi_1,(X) one has
fi_1,(X) = X{_;. By induction, we may assume that ; = Spf(A) is
affine andx;_, is a uniqgue maximal point of an affinoid domanc X,_1 ,,.
We may also assume that the morphi$m, is geometrically elementary
and factors through aétale morphism¥, — 3 = Spf(B) with B =
Bo®a ... ®aBp, whereB; = A{Tio, ..., Tin;}/(Tio- ... Tin, — &), & € A
andn; > 1. Since the poink’ is normal, the poink{_, is also normal and,
therefore, the functions; do not vanish ak/_,. We shrink the affinoid
domainX so that the absolute value of each of the functigns a non-zero
constant onX. Furthermore, let be the image of the point in 3,. One
hasz € S(3/%_1). We setZ = {Z e g;"(X)[[T;(2)| = [T (2| for all
0<i < pandO0< j < nj}, whereg denotes the morphisrh — X_;.
The affinoid domainZ is isomorphic to a direct product of with one-
dimensional annuli, anzlis evidently its unique maximal point. Notice that
X; IS a unique preimage of the poiatin X, ,, since the morphisnf,_; is
geometrically elementary. Furthermore, we can shaink= Spf(C) and
assume tha€ = (B[T]/(P))u;, whereb € B[T]/(P) and P is a monic
polynomial for which the image d?’ in C is invertible. Sincez is a unique
maximal point ofZ, from Lemma 7.5 it follows thag; is a uniqgue maximal
point of Y, the preimage oF in X ,,.
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(vii) follows from the following lemma.

Lemma8.3. Lety : 9 — X be a strictly poly-stable morphism between
formal schemes locally finitely presented ok&rand lety e S(@ /%) and

X = go,,(y) If that #¢(X) is a purely transcendent extensmnk()fr(x)) then
,}(’(y) is a purely transcendent extensmnk@fr(y))

Proof. Letx=m(x) andy = (y). Furthermore, IezyX @xxSpf(ﬂ’(x))
One hasajx,?—ﬂjnx and 9y s—>933x Rk J(’(x) Since Jf(x) is purely
transcendent ovéu(x), it follows thatstr(ajx)s)estr(@s)x) and, ify’ denotes
the preimage of the poiryt under the latter bijection, the fiel# (x)(y’) is
purely transcendent ov&(y). By Theorem 5.2(vi) applied t9),, #(y) is
purely transcendent ove? (X)(y"). Thus,#(y) is purely transcendent over
k(y). O
Proof of Theorem 8.2Step 1. Fix a number < p < 1. For a point
U= (Ug,...,Uy) € X" C [0, 1] andr e [0, 1], let ¢, (u, r) denote the
unique poinlv = (v, ... , va) € [0, 1]™ which lies on the line connecting
the pointspY = (pY, ..., p") and(l,...,1) and satisfies the equality
vo-...-vn = I. Inthis way we get a continuous mappipg: X" x [0, 1] —
[0, 1],

Step 2. Suppose we are given an affine strictly pluri-nodal formal
schemex = Spf(A) over k° and a polysimplicial seE provided with
a map of partially ordered se®®(E) — str(Xs) : (A[c] S E) - a
and a continuous map : |[E| — X, possessing the following two prop-
erties: (a)(A[c] % E) € O(E) the image ofX° under the correspond-
ing map t03€ is contained int (&) and (b) for each poink € Im(§),

the field Jt’(x) is purely transcendent ovdx(n(x)) Furthermore, let :

9) = Spf(B) — x be a morphism withB = By®a.. ®ABp, where
Bi = AT, ... Tln.}/(Tlo Tln, a), 8 € Aandn; > 1. We con-
struct as follows a continuous mig : |Egl — S(9)/%) over s. First

of all, the continuous mag), — X, x [0, 1] that takes a poiny to
(e(Y); [ Too(Y)s - - - » [ Tpn, (Y1) identifiesS(Y/X) with the closed subset

S, ={(XTo,....rp) € X, x [0, 1" |rio- ... rin, = [&(X)[,0 < i < p}
(see Step 1 from 85). Furthermore, one has
Bl = Coker(] [ =% x IC@sa) = [ [ £° < IC@sa1) .

where the first and the second coproducts are taken over the categories

N1(A/E) andNg(A/E), respectively, and, give([d] X Alc] > E)in
N1(A/E), the upper maj acts ag|y|, 1), and the lower map, acts as
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(1, [Dy(» - Thus, we have to construct a compatible system of continuous
mapsd, : X° x [CQsz)l — S,. Letl = {i € [p]la(@) =0}. Then
IC(Ys )l is identified withX™ . If u € X° andv = (Vi)iel € [ICDsa)l,
then’s,(u,v) = (X:To, ... ,Ip) € S, wherex is the image ofu in x,,
andr; = ¢n, (vi, |g(x)|) fori € I andr; = (1,...,1) fori & I. That
the mapsy, are continuous is evident, and that they are compatible easily
follows from the construction. We remark that the m%p: |Egsl — 92,

possesses the same property (ay,asamely, for eachA[c] — E,) €
O(E,,) the image ofs¢ under the corresponding map2y is contained in
7~ X@). If the polysimplicial setE is interiorly free and the mapinduces
a homeomorphism ofE| with its image inX, then, by Corollary 6.6,
8, induces a homeomorphism (&, | with its image in®),. Finally, given
an open formal subschemg C 9, the maps,, induces a continuous map
8y |[Egy | — S('/%), wherey' is the morphisn))” — X. If Eis interiorly
free ands induces a homeomorphism (| with its image inX,, thens,
induces a homeomorphism (&, | with its image inQ);.

Step 3. In the situation of Step 2, assume we are given a strictly poly-
stable morphismy : 3 — X that factors through agtale morphism
f : 3 — 92 and such that, for each point € str(Xs), the fibre )y
is elementary. (For example, by Corollary 2.12, the latter is trugsif
is elementary.) It follows that i)’ is the image ofyr in 9 and ¢’ is
the morphismQ’ — %, then E,.—E,. The property (b) ofs implies
that, for each poirnk € Im(8), one haStr(B,X,S);str(ss,ﬂ(x)) and, therefore,

S(3x) = S(3/%) N ¢ (0= SV = SQV'/%) N ¢ (x). Thus, the map
8, from Step 2 induces a continuous map: |Ey| — S(3/%) that pos-
sesses the same property (aand such that, iE is interiorly free and

§ induces a homeomorphism (| with its image inx,, thens,, induces

a homeomorphism ofE,,| with its image in3,. We claim that the map
8y 1 |Ey| — S(3/%) does not depend on the decompositipr= g o f. It
suffices to prove that, givefi[c] — E) in No(A/E) and a poinu € X°,
the homeomorphisrmC(3s,a)|l>S(3X), induced by the homeomorphism
|C(@sﬁ)|1>S(QJX) .V > 8z(u, V), does not depend on the decomposition
¥ = o f.(Herexistheimage ofi in X,,.) To verify the latter, we can replace
X by Spf(#(x)°), and®) and3 by 2), and3y, respectively, and so we may
assume that = Spf(k®). If | = {i € [p]lla| < 1}, then|C(Y)] is iden-
tified with ™, and the homeomorphisk: |C(3s)|— S(3) is induced by
the injective maps : |C(Ys)| — [0, 1]V defined byu(v) = (ro, ..., rp),
wherev = (Vi)icy € X™, 1y = ¢, (i, |g]) fori € | andr; = (1,...,1)
fori ¢ |. By Lemma 4.1, to show thatdoes not depend on the choice of
f it suffices to check that the sheaf of monoids|@3s)|, generated by
the restrictions of the coordinate functions @) 1]" with respect to the
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injective map|C(3s)| — |C(Dy)l £ 10, )", does not depend ofl. But
this is an easy consequence of Proposition 4.3.

The remaining part of the proof follows Steps 6-8 from the proof of
Theorem 7.2.

Step 4. Assume we are given a morphigm X’ = Spf(A’) — X in
F'sch wherex’ is strictly pluri-nodal and is provided with a polysimplicial
setE’, a map of partially ordered se®(E’) — str(x}) and a continuous
mapé : |[E'| — X possessing the properties (a) and (b) from Step 2
and compatible with the corresponding objectsXoFurthermore, assume
we are given a strictly poly-stable morphisgd : 3’ — X/, possessing
the same properties from Step 3 as the morphjsnand a commutative
diagram in¥'sch

4

3 — X
g o1
3/ l) x/

such that the morphisiy — 3 x4 X’ is étale. Then Step 3 implies that the
following diagram of continuous maps is commutative

8y
|Ey| — S(3/%)
t t

</

S
E/,| -5 S(3/%)

Step 5. Let us return to the theorem. Assume that there is an isomorphism
of functors |C'~1|= S~! possessing the necessary property. For a poly-

stable fibration¥ = (¥ f'—‘>1 il> X1), we construct as follows agtale
morphismg : X' — X such thatx’ is a strictly poly-stable fibration and
the morphism] — X, is surjective. First of all, leQ) — X be anétale
morphism from a strictly poly-stable fibratian such that the morphism
9, — X is surjective. Furthermore, for each pojnt 9, , take an open
affine neighborhoodt of the point f_; s(y) and an open affine neighbor-
hood U of the pointy over 4 with elementary closed fibregs. We set
X =& = X_4— 92— - — 2y, whereX| is a disjoint union
of U’s of the above form such that the induced morphi&m— 9, is
surjective, and|_, is a disjoint union of the correspondings.

Step 6. For a poly-stable fibratioty takeétale morphismg’ — X and
X" — X' xx X' as constructed in Step 5. By induction, the construction

from Step 3 gives homeomorphisr‘y@@éﬂ% S(X) and|C(§;’)|l>S(§”)
which are compatible, by Step 4. Sin€ekerC(x) = C(XL)—C(X,)
andCoker(S(X") = S(X)—=> %), we get the required homeomorphism

|C(X)|= S(X). Thatin this way we get an isomorphism of functte§ — 3
easily follows from the construction. O
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The first corollary is a consequence of Theorem 8.1.

Corollary 8.4. Given a poly-stable fibratioft of lengthl overk°, a locally
closed strata subseX, C % s, and an open subset C 7~1(X) which is
the intersection ofr ~1() with a family of Zariski open subsets ®f, the
homotopy®' induces a strong deformation retractionXto S(x) N X. If X
is dense inr~1(X) and contains its non-normality locus, th&w) N X =

S).

Proof. We may assume thay = Spf(A) is affine. LetU be a Zariski open
subset ofx,, and letfq, ... , f, be generators of the ideal &f @\ k that
corresponds to the complementUt If x € U, then f;(x) # O for some

1 <i < n. Sincex < x, it follows that fj(x) # 0, i.e.,x, € U, for all

t € [0,1]. This implies the first statement. The second statement follows
from the fact that the local ring of a normal point frd&) is a field. 0

The following corollary will be used in the next two sections.

Corollary 8.5. Suppose we are given a finite normal extendionf k,
a poly-stable fibratiori overk’ of lengthl with normal generic fibrex, ,,
an action of a finite grougs on X overk®, a G-invariant locally closed strata
subsetX C X, and a densé-invariant Zariski open subséll C X ,,.
Let X be the quotient spacd\ (x~1(X) N U). Then

(i) there exists a strong deformation retraction Xfto a closed subset
homeomorphic t&\ |C(X)|;

(ii) for any abelian groupM there are canonical isomorphisms

HI(XT, M) H (X1, M) .

Notice that the quotient spad8\|C(X)| coincides with the locally
closed subset dfG\C(X,)| which is a union of the cells that correspond to
the strata ok s contained inX. In particular, Corollary 3.11 implies that the
spaceG\|C(X)| is locally contractible. Furthermore, hek!(| X|, M) de-
note the usual cohomology groups of the underlying topological spéce
of X with coefficients in the constant sheaf generatedvhyThey coin-
cide with the cohomology é:]roups of the associated rigid analytic space
(see [Ber2, §1.6]). FinallyHsing(| X|, M) denote the singular cohomology
groups of| X| with coefficients inM.

Proof. (i) By Corollary 8.4, the homotopg' induces a strong deformation
retraction ofz=1(X) N U to S(x) N 7~1(X) and, by Theorem 8.2, there
is a canonical homeomorphism between the latter spacéC(06)|. Since

the homotopy®' and the above homeomorphism commute with the action
of G, the statement follows.

_ (i) Since X is paracompact, the groups$?(|X|, M) coincide with the
Cech cohomology groups ¢¥|. By [Spa, Ch. 6], the latter ones coin-
cide with the Alexander cohomology groups |&f| which, in their turn,
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satisfy the homotopy axiom and, therefore, coincide with the Alexander
cohomology groups ofG\|C(X)|. Since the spac&\|C(X)| is para-
compact and locally contractible, its Alexander cohomology groups co-
incide with Hé‘.ng(G\|C(X)|, M). It remains to use the fact that the singular
cohomology groups also satisfy the homotopy axiom. O

Corollary 8.6. LetX be a poly-stable fibration of formal schemes oker

of lengthl provided with an action of a group’, and assume that, is
separated and the stabilizer iR of each of its open affine subscheme is
finite. Then there exists a strong deformation retraction of the quotient space
I'\%, , to a closed subset homeomorphid f0,C(X,)|. O

Inthe situation of Corollary 8.6, the quotient spdCtex; , exists by [Ber5,
Lemma 4.2].

Corollary 8.7. LetX be apoly-stable fibration of lengtloverke, X alocally
closed strata subset &f s, and X a dense open subsetof(X) which is
the intersection ofr () with a family of Zariski open subsets ®f,,.

(i) If X is quasi-compact, there exists a finite unramified extenkion
of k such that, for any non-Archimedean fiéddoverk’ and any subset of
aHausdorffK -analytic spaceZ, the canonical mapX x Y| — |X®K/|x|Y]|
is a homotopy equivalence.

(i) If X is a strictly poly-stable fibration and all of the strata®fs in X
are geometrically irreducible, then the conclusion of (i) is truekoe k.

Here and later (in 810X x Y denotes the preimage of under the
canonical projectiorK x Z — Z. The sets¥ and X x Y are provided with
the topology induced frorZ and X x Z, respectively.

Proof. Firstofall, we claimthatthe may : |X; , x Z| x[0,|] — [%, x Z|,
which coincides with the mag' from Theorem 8.1 on each fibre of the
projectionX;, x Z — Z, is continuous. Indeed, for this it suffices to
consider the case whehis K-affinoid. In this case is a closed analytic
subset of a closed polydisc which, in its turn, is an affinoid domain in the
projective spac®". The latter is the generic fibre of the formal projective
space" over K° and, therefore, the claim follows from the fact that the
map @\, is continuous. By Corollary 8.4, the map induces a strong

deformation retraction oK x Y to a closed subsé&t whose fibre at a point
y € Y under the projectio’V — Y is SXRH (Y)°) N (XQFH(Y)).

In the situation of (i), one hafC(X ® Jff\(§))|l>|C(X)| and, there-
fore, SX®H(Y)°) N 71X ® H(y)—>S(X) N 7-1(X). It follows that
SERH(Y)°) N (X®FH(Y))— S(X) N X. Thus, the mapX x Y| — |X|x|Y]
induces a homeomorphisth— (S(X)N X) x | Y|, and the required statement
follows from the fact thaX is homotopy equivalent t&X) N X.

In the situation of (i), let’ — X be a surjectiveetale morphism from
a strictly poly-stable fibratiox’ such that the preimag’ of X in x| ¢ is
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quasi-compact. Then the preima@€ of X in x|, wherex” = X' xx X/,
is also quasi-compact. We can repl&d®y a finite unramified extension and
assume that all of the strata X’ and X;” are geometrically irreducible. If

X"andX” (resp.V'andV") are the preimages of (resp.V) in X , andxy,,

respectively, then, by (il — (S&X) N X') x |Y] andV"— (S(X") N X") x
1Y|. It follows thatV— (S(X) N X) x |Y|, i.e., (i) is also true. O

Remark 8.8.Let X be a pluri-nodal formal scheme for which there exist
a poly-stable fibratiot = (X} — --- — X;) with X; = X. Itis easy to see
that the polysimplicial se€(x) and the homotopy' : X, x [0,1] = %,
depend on the representationofn the above form. On the other hand, it
is very likely that the skeleto®(X) depends only orx.

9. Local contractibility of smooth analytic spaces

In this section the valuation on the ground fikid assumed to be nontrivial,
and allk-analytic spaces considered are striétgnalytic (see [Ber2, §81]).
The assumption on nontriviality of the valuation is used through the fact,
which is implied by it, that each point of a stricttyanalytic space has a fun-
damental system of neighborhoods formed by compact stiedgalytic
domains. We say that@analytic spacX islocally embeddable in a smooth
spaceif each point ofX has an open neighborhood isomorphic to a strictly
k-analytic domain in a smootzanalytic space. We remark that such a space
is automatically strictlk-analytic. We also remark that akyanalytic space
that admits argtale morphism to a space with the above property possesses
the same property (this follows from [Ber2, Theorem 3.4.1]).

Theorem 9.1. Anyk-analytic space locally embeddable in a smooth space
is locally contractible.

Before proving the theorem, we establish a fact that contains everything
we need from results of de Jong. (It will also be used in the next section.) The
point is in inclusion the case of non-discrete valuation on the grounddield
Since the only property of the fieklwe need is that it is the fraction field
of a Henselian valuation ring, the following lemma is proven in a slightly
more general setting.

Lemma 9.2. Let A be a Henselian valuation ring, and I8¢ be an integral
scheme proper finitely presented and flat o¥eand with geometrically
irreducible generic fibre of dimensidr> 1. Then there exist the following
objects:
(a) a finite normal extension of the fraction field Afwith the ring of
integersA (it is also a Henselian valuation ring);
fi_1 f1 ,

(b) a poly-stable fibrationXt’ = (X, — --- = X X 0 =
SpecA)), where all morphismsf; are projective of dimension one and
have smooth geometrically irreducible generic fibres;
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(c) an action of a finite grous on X' over A,
(d) a commutative diagram

X 5 X
\2 \:
SpecA’) —> SpecA)

where ¢ is a dominantG-equivariant morphism that induces a proper
generically finite morphisni;;, — X, and such that the fiel®R(X))C is
purely inseparable oveR(X).

Here R(X) denotes the field of rational functions 661 Notice, that in
the case, when the valuation énis not discrete of rank one, the rirdy is
not necessarily finitely generated ov&and, therefore, one cannot say that
the morphisny is proper.

Proof. By [EGAIV, 88], there exists a flat (and therefore dominant) mor-
phisma : Y — 7 with geometrically irreducible generic fibre between
integral schemes of finite type ovBpecZ) such that the morphisr —
SpecA) is the base change of under a morphism§ = SpecA) — T
with the property that the homomorphisfy- ; — Alis injective, wherd is
the image of the closed point &fin 7. By Theorem 5.9 from [deJ3], there
exist

(1) a Galois alteratiod7’, G') of (7, {1}), i.e., an integral scheng’ pro-
vided with an action of a finite grou’ and a dominan&’-equivariant
proper and generically finite morphisin: 7’ — 7 such that the field
R(7)¢ is purely inseparable oveR(7);

, hia

(2) aG'-plurinodalfibratiorty’ = (Y =" - 3 Y, 22 Yo =77, {0y}, Zo)
over 7', i.e., eachh; is a projective semi-stable curve provided with
an action ofG’, Z, is a G'-stable proper closed subset ©f, and
{0ij }1<j<n IS @aG'-equivariant system of sections lofinto the smooth
locus of hj, such thath; is smooth overyY;\Z; where, fori > 1,

Zi = UjLjoi 1 (Yi_0) Uh 3 (Ziw);

(3) a commutative diagram

Yy
\ \
7 7

such that(y,, G’) is a Galois alteration ofY, {1}).

Let K be the fraction field ofA, and letK” be the quotient algebra of
the tensor produdR(7") ®g) K by its radical. TherK” is a finite direct
product of finite normal extensions &t provided with an action o5’
overK. Let K’ be a factor ofK”, G its stabilizer inG’, and A’ the integral
closure ofAin K’. By the valuative criterion of properness [EGAIV, 7.3.8],
there exists a unique lifpec¢A’) — 7' of the morphisnSpecK’) — 7’
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over the morphisn8pe¢A’) — 7, and the morphisnspe¢A’) — 7' is
G-equivariant. Thus, we get a poly-stable fibrath= Y’ ®; SpecA’)
provided with an action of the group and a morphisnp : X;; — X over
the morphismSpec¢A’) — SpecA). We claim that all of the necessary
conditions are satisfied.

First of all, each of the morphism§ : X ; — X is projective of
dimension one and poly-stable because it is a base change of the similar
morphismh;. If t" is the image of the closed point 8pecA) in 7', then
the homomorphisn® s — A’ is injective because its composition with
the injectionA” — K’ coincides with the injectio® s  — R(T') — K.

It follows that the image of the generic point®pecA') in 7’ is the generic
point of 7’ and, therefore, the geometric fibre of eaghs a base change
of the geometric fibre olfij, i.e., it is smooth and connected. Furthermore,
since the morphisny’ : Y, — Y is proper and generically finite and the
image of the generic point @pecA) is 7' is the generic point of”’, it
follows thatg induces a proper generically finite morphisij, — X,.
Finally, sinceR(X) is a factor of the quotient oR(Y|) ®ry, R(X) by
the radical, the following lemma (applied & = R(Y%), K5 = R(Y%),

K = R(X) and the action o6’ on R(Y)) implies that the fieldR(X|)€ is
purely inseparable oveR(X).

Lemma 9.3. Suppose we are given a fiehg, a finite normal extensiok

of Ko endowed with an action of a finite gropy over Ko such thatK(’)G/
is purely inseparable oveKg, and an extensiolK of Ky. Let K” be the
quotient ofK{ ®k, K by the radical K" a factor ofK”, andG the stabilizer

of K’ in G'. Then the field'® is purely inseparable oveK.

Proof. Let H = Im(G' — Aut(K{)), Ry = K" ®k, K, ro the radical

of Ry, andL = Ry/r. SinceK(’)H is purely inseparable ovéy, L is a field
purely inseparable ovef. By the normal basis theorem [Lang, Ch. VIII,

§12], K{ is isomorphic to a fre&k ;" [H]-module of rank one. It follows
that for R := K ®k, K = K ®,n Ro one hasR" = Ry. Tensoring
the exact sequence @ ro — Ry — L — 0 with K} over K", we get
an exact sequence & K, ® 1o > R — Ky ®,n L — 0. Since
K{ is a finite separable extension Kf™, K By H L is a finite separable
algebra ovet and, thereforekK ®K6H rois the radical ofR. It follows that

K" = K ®K6H L, K'H = L and, in particularG’ acts transitively on the
set of direct factors oK”. The latter implies that there is an isomorphism of

G'-modulesk”>>Indg (K"). It follows thatK'® = K¢ =L, i.e.,,K'®is
purely inseparable ovef. O

Proof of Theorem 9.1Since each point of a smookianalytic space has
an open neighborhood isomorphic to an open subset of the analytification of
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a smooth affine scheme odemwe may assume that we are given a compact
strictly k-analytic domainX in X2", where X = SpecA) is a smooth
irreducible affine scheme ovér Let x be a point ofX and letx be the
image ofx in X. There are the following two possibilities:

(a) x is not the generic point dk;

(b) x is the generic point ofC.

We prove local contractibility oiX at the pointx by induction. In the
case (a) we'll reduce the statement to the case of smaller dimension, and in
the case (b) we’'ll use Lemma 9.2 and Corollary 8.5(i).

Case (a).Step 1.0ne may assume that the filktk) = O x /My is
separable ovek. Indeed, sincek(x) is finitely generated ovek, we can
find a finite purely inseparable extensiknof k such that the field(x’) is
separable ovek’, wherex' is the (unique) preimage ofin X ® k'. Since
the mapX®k' — X is a homeomorphism, we can replacéy k', X by
X®K and X by X ® k', and reduce the situation to the case when the field
k(x) is separable ovek.

Step 2.There is an isomorphism of an open neighborhood of the point
in XontoY x D(O,r) that takesx to Y x {0}, whereY is also a strictly
k-analytic domain in the analytification of a smooth scheme &vand
D(0, r) is the open disc of radius> 0in A* with center at zeroBy Step 1,
the closureX’ of x in X is smooth ak. It follows that we can shrink¢
(and X) and find arétale morphism fron¥ to the affine spacé, where
d = dim(X) = dim(X), such thatX’ is contained in the preimagg of
At = {y e AYTy(y) = 0}. LetY = X N Y3". The above morphism and
its composition with the projection to the firdt— 1 coordinatesA? —
Ad-1 give rise to the following cartesian diagram of morphisms of strictly
k-analytic spaces

Z=Xxp1Y -5 Y
I f \:

X —s Ad-1

The canonical closed immersidh— X induces a morphisr¥ — Z that
takes the poink to a pointz. We claim thatf is étale andg is smooth at

the pointz. Assume that the claim is true. Singé(x)— #(z), from [Ber2,
Theorem 3.4.1], it follows thaf is a local isomorphisnz. Then we can
shrink X andY so that there is a smooth morphism of pure dimension
one X — Y, whose composition with the canonical closed immersion
Y — X is the identity onY, and the required fact follows from [Ber2,
Proposition 3.7.8].

Since f (resp.qg) is the restriction of thétale (resp. smooth) morphism
Z' = X xpd1 Y2 — X (resp.Z” = X" xpd-1 Y — Y) to the analytic
domainZ, it suffices to verify that the poirtis contained in the topological
interior of Z in Z' (resp.Z"). If X = X1 U---U X, is a covering ofX
by affinoid domains, then it suffices to check tlzais contained in the
topological interior ofZ; in Z{ (resp.Z/’) for eachi with z € X;, wherezZ; =
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Xixad-1Yi, Y = XinYandZ = Xj xps-1Y*" (resp.Z/’ = X" x pd-1Yj).
Thus, the situation is reduced to the case wbeifand thereforeY) is
affinoid. In this case we use the results on the relative interior of a morphism
from [Berl, 82.5 and 83.1]. Since the canonical morph¥ém> X (resp.

Y>>Y)is closed, it follows that the image ¥fin Z is contained innt(Z/X)

(resp.Int(Z/Y)), the relative interior oZ over X (resp.Y). ButInt(Z/X) =

Int(Z/Z"NInt(Z'/ X) (respInt(Z/Y) = Int(Z/Z")NInt(Z"/Y)). It remains
to use the facts that the morphisgi — X (resp.Z” — Y) is closed,
ie., Int(Z’/X) = Z' (resp.Int(Z2”/Y) = Z"), and thatint(Z/Z’) (resp.
Int(Z/Z")) coincides with the topological interior & in Z’ (resp.Z”).

Step 3.There is a strong deformation retraction &f = Y x D(0, r)
to Y x {0}. Consider the mappiny x [O,r[— X that takes a paity, t)
to the maximal point of the closed didg(0, t)»(y,, (over the pointy).
From [Berl, Lemma 6.1.1], it follows that this mapping is continuous and
identifiesY x [0, r[ with a closed subset of. Furthermore, the canonical
action of the multiplicative grougs,, = A'\{0} on A? induces an action
of the affinoid torusG} = {y € A||T(y)| = 1} on D(O,r). The latter
induces an action oGﬁ1 onX =Y xD@Or). ForO<t <1 letg
be the maximal point of the closed disc of radiuwith center at 1 (it is
contained inG}), and letg; be the maximal point o&}.. By [Berl, §6.1],
the continuous mapping : X x [0, 1] — X that takeq(y, t) to g x y is
a strong deformation retraction of to the closed subseét x [0, r[. But
Y x {0} is evidently a strong deformation retraction of the latter space. Thus,
the local contractibility ofX atx is reduced to that of atx.

Case (b) Since rational stricthk-affinoid neighborhoods of the poirt
form a fundamental system of compact neighborhoodsm;?", it suffices
to show that, given a rational strictkraffinoid neighborhoodV of x in X",
there exists a contractible open neighborhoox iof X contained inV/ N X.

Step 1. The construction of the first step works in a more general setting
and does not use the assumption (b). Since it will also be used in the next
section, we formulate it as a lemma.

Lemma 9.4. Suppose we are given an integral affine schééne SpecA)
of finite type ovek, a compact strictlk-analytic domainX c X", a point
X € X, and a rational strictlyk-affinoid neighborhoodV of x in X2". Then
there is an open embedding &f in ¥%,, where’ is an integral scheme
proper finitely presented and flat ovet, open subschemé&and W of Y,
and a closed subscherfieof ¥ such that

(1) X =7"%2), W=x"1(W)andn(x) € V;

v cw,

(3) Vv and Y.\ Z are unions of irreducible components¥f.

Herer denotes the reduction mgg" — Y. (Recall (see [Ber3, 85])
that sincey is proper ovek® the k-analytic spacéd(;‘” coincides with the

generic fiber@,7 of the formal completior@ of Y along the closed fibre.)
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Notice that the properties (1) and (2) imply that'(V) N X is an open
neighborhood of the pointin X contained inW N X.

Proof. Step A. Letay, ..., ap be generators of thk-algebraA. Multi-
plying them by an element d, we may assume that UW C {y €
X¥ei(y)| < 1,1 <i < p}. Furthermore, lep, ... , Bq be polynomials
from k°[Ty, ..., Tp] which generate the kernel of the surjective homo-
morphismKk[Ty, ..., Tol - A : Ti — «;. By [RaGr, Theorem 3.4.6],
the k°-saturationa of the ideal ofk°[Ty, ... , Ty] generated by, ... , By
is finitely generated, and we get an affine scheltie= SpecA’), where
A =K°[Ty, ..., Tpl/a, which is flat and finitely presented over and for
which X, = X and X, = {y € X*"|loi(y)| <1,1<i < p}. Take an
arbitrary open embedding &€’ in a schemé/ projective ovek°. We may
assume thaftCﬁ7 = X is dense iy, and we may replac¥ by its reduction.
In particular,Y is integral and flat ovee°. Again, by [RaGr, Theorem 3.4.6],
the schemé/ is finitely presented ove°.

Our further constructions will modifyf, in the following way (see [RaGr,
85.1]). Suppose we are given a sheaf of idepls~ Oy of finite type.
(From [RaGr, 3.4.6], it follows thaf is a coherent sheaf of ideals.) Further-
more, suppose thgtcontains a non-zero elementisf, and letf : 4" — Y
be the blow-up off. The schemé@/’ is of finite type ovelk®, and therefore
if we divide @ by thek°-torsion, we get, by [RaGr, 3.4.6], a scherje
proper flat and finitely presented over. We'll say thaty” is the blow-up
of the idealg or, if Y is the Zariski closed subset §f, which is the support
of 9y/g, thaty” is the blow-up with center af. Note that the preimage

of Y in ¥¢ is a union of irreducible components. Note also tyi/,‘;\@ Y,

Step B. The stricthk-affinoid domainW is rational. This implies that
there are element$,, ..., f,, g € A such thatg is invertible onW and

={y e X fi(y)| < lg(y)],1<i < n}. By [EGAI, 6.9.7], there exists
a coherent sheaf of ideafs C ©y whose restriction td’ is generated by
the elementsy, ..., fy, g. Let Y’ — Y be the blow-up of the idea (in
the above sense). Thg % 0" chart'Ww of the preimage of’ in Y’ is an
open affine subscheme Hf and one hag ~1(Ws) = W.

We claim that the Zariski closure of the poim¢x) in ¥ is contained
in Ws. Indeed, for this it suffices to verify that, given an open affine sub-
schemeU c Y’ that contains the point, the Zariski closure ofr(x) in
Us is contained inUs N Ws. If U = Spe¢B) andU N W = SpecB),
the latter means thal/p— B//pB’ where p is the prime ideal of the
point (x) in B= B/k°°B, andB’ = B'/k*°B'. SlnceSpe¢BJ5oB/) is an
open subscheme &pecB/), it suffices to check thaB'/oB’ is integral
over B/g. For this we use the assumption that the pairg contained in
the topological interior ofV in y“”‘” It implies thatx is contained in the

topological interior ofU N W in U, whereU = u = 771(Us). One has

U= M(B)andU NW = M(B') with B = B®ko kandB' = B’ @ K,
where B and B’ are thea-adic completions oB and B, respectively for
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anya e k>°\{0}. From [Berl, Proposition 2.5.2], it follows th&'/o' B’
is integral over:B/p wherep is the prlme ideal of the pomtr (x) and

n’ is the reduction map) — 0= Spec(JB) Since and 8’ are integral
over B and B/, respectively (see [Ber3, 81]), apslis the preimage o’
with respect to the homomaorphisBi— 8, the required fact follows.

We replacey by ¥'. In what follows we use only the closed fibre of
the subschem@&y, and therefore we denote it By. We remark that, given
a blow-upYy’ — Y, the preimagew’ of ‘W in Y. possesses the same
property: the Zariski closure of the poimtx) in % is contained ifw’.

Step C. By Gerritzen-Grauert Theorem [BGR, 7.3.5/8]s a union of
rational strictly affinoid domains, ... , X,. For eachX; we apply the
construction from the beginning of Step B, and we get a blowup> Y
and an open subscher#Zgof the closed fibre off; such thatr=1(Z;) = X;.
We now can find a blow-ufy’ — ¥ that goes through all of the above blow-
ups. LetZ be the union of the preimages &f in Y.. Thenz~1(Z) =
Finally, we make two additional blow-ups with centersy\Z and in
the Zariski closure ofr(x) in Y. We replacey by ¥', Z and'W by their
preimages inY;, and denote byv the preimage of the Zariski closure
of 7(x). By Step B,V C ‘W and, by the last constructiof¥, and % \ Z are
unions of irreducible components. O

Step 20ne may assume that the scheles geometrically irreducible.
Indeed, the algebraic separable closkiref k in A is finite overk, and
the schemeéX, considered as a smooth scheme dvelis geometrically
irreducible [EGAIV, 4.5.9]. On the other han& can be considered as
a strictly k'-analytic space, and so we can repl&dey k' and reduce the
situation to the case whexi is geometrically irreducible.

Step 3. Applying Lemma 9.4 t&¢, X, W andx, and we gety, Z, W
andV satisfying the properties (1)—(3). Sin&eis geometrically irreducible,
Y, is also geometrically irreducible. By Lemma 9.2, there exist a finite
normal extensiork’ of k, a poly-stable fibratior}’ of length| over k°
such thaty, is proper ovek'® and has a smooth geometrically irreducible
generic fibre, an action of a finite gro@on ¥’ overk°®, and a dominan®-
equivariant morphisng : Y, — Y that induces a proper generically finite
morphismY; , — Y, and such that the fieIR(‘},(f,n)G is purely inseparable
over R(Y).

Step4. Lez’, W andV’ be the preimages &, W andV in Y, , respec-
tively. ThenV" andy; {\Z' are unions of irreducible componentsyjf; and
V' c W.ForX' =n~1(Z)andW = z~1(W"), one has<’ = ¢, }(X) and
W’ = ¢, (W). Moreoverz ~1(V") N X' is an open subset of contained in
W'N X'. By the construction, we can find a nonempty open affine subscheme
U C X such that the morphisftl’ := ¢, *(U) — U is finite and the finite
morphismG\U" — U is radicial. By the assumption (b), the poins con-
tained inU?". Then the set) := 7~1(V)N XN U3"is an open neighborhood
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of xin X contained ilWN X. The set)’ := 7= 1(V)NnX'NU'*"is open inX’

and dense Zariski open in1(V) N X' = x~X(V' N Z’), and the radicial
morphismG\ U’ — U induces ahomeomorphis&i\U’'— U. SinceV’ and

Y1 s\Z' are unions of irreducible components¥ff;, it follows thatVv’'n 2z’

is a strata subset df ;. By Corollary 8.5(i), there is a strong deformation
retraction ofU to a closed subset homeomorphicGq|C(V' N Z)| and,

by Corollary 3.11(iii), the latter space is locally contractible. The theorem
follows. o

Corollary 9.5. Any separatec-analytic spaceX locally embeddable in

a smoothk-analytic space is locally simply connected. In particular, if
X is connected, it has a universal covering which is a simply connected
strictly k-analytic space. O

We remark that since smoothianalytic spaces are locally separated,
ak-analytic space locally embeddable in a smdetmnalytic space is sepa-
rated if and only if it is Hausdorff (see [Ber2, §1.4]). Corollary 9.5 implies
that the topological fundamental grouréOp(X) of such a spac, defined
in [deJ1] as a topological group classifying the topological coverings, of
coincides with the usual fundamental groupXgfdefined through paths on
X. In particular,7;°(X) is a discrete group.

Corollary 9.6. Any separated-analytic spaceX locally embeddable in
a smoottk-analytic space is homologically locally connected. In particular,
if X is paracompact, then for any abelian groly the canonical maps
HI(|X|, M) — Hsing(|X|, M) are isomorphisms. O

Remark 9.7.Any strictly k-affinoid space smooth in the sense of rigid geom-
etry is locally embeddable in a smooth space. Indeed, # M(A) be
such a space, then the sheaf of one-differentizisis locally free of rank

n = dim(X). This implies that, given a point € X, the restriction of
2% to a Zariski open neighborhood gfis free, i.e., shrinkingX, we may
assume tha®y is generated bgi fy, ... , d f, for somef; € A°, 1 <i <n.
Consider the morphisnfi = (fq, ..., f,) : X — E" C A". By the results
of R. Elkik [EIk, Ch. lll, Theorem 7, Lemma 6 and Remark 2], one can
approximate the morphisrhby a morphism which comes from a morphism
of smooth affine scheme$ — A" so thatX is isomorphic to the preimage
of EMin X&",

10. Finiteness and stability of conomology of certain analytic spaces

In this section the valuation on the ground figdds not assumed to be
non-trivial.

Theorem 10.1. Let X be ak-analytic space isomorphic t&/\'V®", where
W is a compact analytic domain in the analytificatio¢f" of a separated
schemeéX of finite type ovek andV is a Zariski closed subset 6¢. Then
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(i) the groupsHY(| X|, Z) are finitely generated;

(i) if W is strictly k-analytic, then there exists a finite separable exten-
sionk’ of k such that, for any non-Archimedean fidtd over k' and any
paracompact locally closed subsébf a Hausdorffk -analytic space, one
has

_ L -
RI(X&K|, Z)QRI(|Y], Z)> RI(X x Y|, 2)
and, in particular, HI(|X®K/|, Z)— HI(| X®K |, Z).

Proof. We use a construction of P. Deligne from [Del] (which is also men-
tioned at the beginning of J. de Jong’s paper [deJ2]). For this we remark that
if there exists a proper hypercoveriXg — X such that the theorem is true
for all X,’s, then it is also true foiX (see [SGA4, Exp. V bis]). Consider
first the case when the compact analytic domalfiis strictly k-analytic.

First, we may assume that is proper. By the above remark and Chow’s
Lemma, we may assume that is projective. Furthermore, by the above
remark, we can replac& by its normalization and, therefore, we may
assume tha¥ is irreducible and integral. Using the reasoning from Step A
from the proof of Lemma 9.4, we may assume tais the generic fibre
Y, of an integral schem§ projective, finitely presented and flat over
Finally, by Step C from the proof of Lemma 9.4, we may assume that
W = 7~1(2), whereZ is an open subscheme of the closed figresuch
that Y \Z is a union of irreducible components Y.

By the construction from [Del, 6.3.5], and Lemma 9.2, there exist
(a) a simplicial schemg such that eacly,, is a disjoint union of schemes

fi_1

of the form X}, whereX = (X, — --- i1> X1 j’> Xo = Speck)) is
a poly-stable fibration over a finite extensikirof k and all f;’s are projec-
tive and have smooth generic fibres, and (b) an augmentatidp — Y
which gives rise to a proper hypercoverigg: ¥, — ¥,. The latter gives
rise to a proper hypercovering, — X, whereXp, is the' prelmage oK in

an One hasX, = n—l(zn)\'v . wherez, is the prelmage ofzinYy, o
ancg'vn is the preimage oV in Y, . Slnceys\z is a union of irreducible
components of/, it follows thatyn s\Zn is a union of irreducible compo-
nents ofY,, ; and, thereforez, is a strata subset &, - The statement (i)
for X,, now follows from Corollary 8.5. Corollary 8.7 implies the existence
of k' such that for any from (ii) the canonical mapisX, x Y| — | Xn| x |Y]
are homotopy equivalences. Sinég andY are locally compact and para-
compact and the above map is compact, the spdgesY and|X,| x |Y]
are also locally compact and paracompact. It remains to apply the facts that
for such a space the cohomology groups coincides with the Alexander co-
homology groups and that the latter satisfy the homotopy axiom (see [Spa,

Ch. 6]).
Consider now the general case whéh is not necessarily strictly
k-analytic. We can find positive numbers ... , r,, whose images in the

quotient grouR’ /+/1k*| are linearly independent ov&, such thatW® K
is strictly K-analytic, whereK = K,, _, (see [Berl, §2.1]). The fiel&
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is isomorphic to the&k-affinoid algebra of analytic functions on the direct
productA(ry) x --- x A(rp), whereA(r) = {x € AY||T(X)| =r}. Thus, to
prove the statement (i) it suffices to check that for any Hausdeaffialytic
spaceX and any number > 0 the canonical mapX x A(r)| — |X]

is a homotopy equivalence. For this we note that the canonical action of
the multiplicative groupG,, on A® induces an action of the affinoid torus
Gl on A(r). As it was explained in Step 3 (Case (a)) from the proof of
Theorem 9.1, the latter action gives rise to a strong deformation retraction
of X x A(r) to a closed subset homeomorphicXpand the statement (i)
follows. O

Corollary 10.2. In the situation of Theorem 10.1, the following is true

(i) the groupsHJ (| X|, Z) are finitely generated:;

(i) if W is strictly k-analytic, then there exists a finite separable exten-
sionk’ of k such that, for any non-Archimedean fidtd over k' and any
locally closed subset of a HausdorffK -analytic space, one has

~ L ~
RIL(IX®K], Z)@RI(Y], Z)— RIL(X x Y|, Z)
and, in particular, HI (| X®K /|, Z)— HI(IX®K |, Z). O

Notice that the statements (i) and (ii) of Theorem 10.1 and Corollary 10.2
are true forX = X", whereX is a separated scheme of finite type oker
Indeed, there is an open embeddingkin a proper schemy. The analytic
spacey®"is compact and strictlk-analytic, and one ha¥?" = Ya"\ va",
whereV is the complement ok in Y.
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