
DOI 10.1007/s002229900914
Invent. math. 137, 1–84 (1999)

C© Springer-Verlag 1999

Smoothp-adic analytic spaces are locally contractible

Vladimir G. Berkovich ?

Department of Theoretical Mathematics, The Weizmann Institute of Science, P.O.B. 26,
76100 Rehovot, Israel

Oblatum 18-III-1998 & 26-X-1998 / Published online: 10 May 1999

Contents

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1. Pluri-nodal and poly-stable morphisms and poly-stable fibrations of

formal schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2. A stratification of a pluri-nodal scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3. A polysimplicial set associated with a poly-stable scheme. . . . . . . . . . . . . 18
4. A colored polysimplicial set associated with a poly-stable formal scheme 31
5. The homotopy type of the generic fibre of a poly-stable formal scheme. . 37
6. A polysimplicial set associated with a poly-stable fibration of schemes. . 52
7. A lifting of a homotopy for a poly-stable morphism of formal schemes. . 59
8. The homotopy type of the generic fibre of a poly-stable fibration of

formal schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9. Local contractibility of smooth analytic spaces. . . . . . . . . . . . . . . . . . . . . . . 74
10. Finiteness and stability of cohomology of certain analytic spaces. . . . . . . 81
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Introduction

Recall that a topological spaceX is called contractible if there exist a contin-
uous mappingΦ : X×[0,1] → X and a pointx0 ∈ X such thatΦ(x,0) = x,
Φ(x,1) = x0 andΦ(x0, t) = x0 for all x ∈ X and 0≤ t ≤ 1. A topological
space is called locally contractible if each point of it has a fundamental sys-
tem of contractible open neighborhoods. A trivial example of such a space is
a topological manifold. A non-trivial example is a complex analytic space.
Local contractibility implies important properties of a topological space. For
example, such a space has a universal covering and, if it is connected, the
universal covering is a Galois one with the Galois group isomorphic to the
fundamental group of the space [Spa, Ch. 2]. Furthermore, if such a space
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is paracompact, its cohomology groups with coefficients in a constant sheaf
coincide with the singular cohomology groups [Spa, Ch. 6]. The statement
on local contractibility of smoothp-adic analytic spaces formulated in the
title is one of the main results of this paper. What is the meaning of the
statement?

First of all, the statement does not make sense for rigid analytic spaces,
introduced by J. Tate in [Tate] asp-adic analogs of complex analytic spaces,
since the topology on rigid spaces is totally disconnected. The statement
is about the analytic spaces introduced by the author in [Ber1] and [Ber2].
They are closely related to rigid spaces. Namely, the category of analytic
spaces has a full subcategory of so called Hausdorff strictly analytic spaces
which admits a fully faithful functor to the category of quasiseparated rigid
spaces, and this functor induces an equivalence between the category of
paracompact strictly analytic spaces and that of quasiseparated rigid spaces
that have an admissible affinoid covering of finite type. (Actually both
equivalent categories include all of the spaces needed in practice.) More-
over, the above functor preserves the cohomology groups of abelian sheaves
and the categories of coherent sheaves. But the advantage of the new spaces
is in their nice topology. For example, each point has a fundamental system
of open neighborhoods which are locally compact, countable at infinity and
arcwise connected. The topological dimension of a paracompact analytic
space is at most its (algebraic) dimension and is equal to it if the space is
strictly analytic. Furthermore, a schemeX of locally finite type is separated
(resp. proper, resp. connected) if and only if the associated analytic space
Xan is Hausdorff (resp. compact, resp. arcwise connected), and the topo-
logical dimension ofXan is equal to the dimension ofX. Such spaces as the
projective spacePd, the affine spaceAd, open and closed polydiscs in it and
the Drinfeld upper half-spaceΩd [Dr1] are contractible, and the Tate elliptic
curve is homotopy equivalent to the circle. In [Ber1] we also proved that
analytic curves are locally contractible. The nice topology of the analytic
spaces was essentially used in their various applications ([Ber1]–[Ber7],
[Che], [deJ1]). Of course, local contractibility of the analytic spaces proven
in this paper for smooth spaces is one of the most desirable properties of
them. Besides the consequences mentioned at the beginning of the intro-
duction, it provides an evidence of the existence of integration onp-adic
analytic spaces. What is the difficulty in proving this property?

Recall that a smooth complex analytic space is locally isomorphic to
an open polydisc and, therefore, it is contractible for trivial reasons. Al-
though contractibility ofp-adic open polydiscs was established in [Ber1],
the difficulty of thep-adic case is in the fact that a smoothp-adic analytic
space is not in general locally isomorphic to an open polydisc. The simplest
example is an open annulus in the affine line. (In the language of rigid
analytic geometry, this means that the open annulus has no an admissible
covering by open or closed discs.) In the proof of local contractibility of
analytic curves, a key ingredient was the semi-stable reduction theorem for
curves. It was used to show that a smooth curve minus a certain discrete



Smoothp-adic analytic spaces are locally contractible 3

subset of points is a disjoint union of open discs and annuli. Of course, after
A.J. de Jong proved his remarkable results in [deJ2] and [deJ3], the author
started thinking of applying them to the problem of local contractibility of
p-adic analytic spaces. What is done in this paper is a higher dimensional
generalization of the one-dimensional case from [Ber1, Ch. 4], obtained
with the use of constructions from [Ber1], [Ber3] and [Ber5] together with
the results of de Jong. But even for curves, the picture obtained is more
precise. As for local contractibility of the analytic spaces with singularities,
one probably needs new ideas. We now give a brief summary of the material
which follows.

Let k be a field complete with respect to a non-Archimedean valu-
ation (which is not assumed to be nontrivial). The main body of the paper
(§§ 1–8) is devoted to a description of the homotopy type of the generic
fibre Xη of a formal schemeX locally finitely presented over the ring of
integersk◦ in terms of a combinatorial object associated with the closed
fibreXs. Notice that in general the closed fibreXs does not determine the
homotopy type of the generic fibreXη. But, it turns out, thatXs does de-
termine the homotopy type ofXη for a class of formal schemes, called
poly-stable fibrations and related toG-pluri nodal fibrations from [deJ3].
In §1 we introduce this class. It consists of the formal schemesX pro-
vided with a decomposition of the canonical morphism toSpf(k◦) in the

form X = Xl
fl−1→ Xl−1

fl−2→ · · · f0→ X0 = Spf(k◦), where fi are poly-stable
morphisms. The latter are natural generalizations of fibre products of semi-
stable morphisms. For technical reasons we also introduce a broader class
of pluri-nodal morphisms. In §2 we provide a pluri-nodal schemeX over
a field with a stratification. The latter defines a simplicial setN(X) which
is, more or less, the nerve of the partially ordered set of the strata.

In §3 we introduce a category of polysimplicial sets. It is a symmetric
strict monoidal category which is better adapted to a combinatorial descrip-
tion of poly-stable fibrations than the category of simplicial sets. We asso-
ciate with a poly-stable schemeX over a field a polysimplicial setC(X).
We also construct functors from the category of polysimplicial sets to those
of partially ordered sets and of simplicial sets. The former takesC(X) to
the partially ordered set of strata ofX, and the latter preserves geometric
realizations and takesC(X) to N(X). In §4 we provide the polysimplicial
setC(Xs) associated with the closed fibre of a poly-stable formal schemeX

overk◦ with an extra structure. For this we introduce a category of colored
polysimplicial sets and a geometric realization functor from it to the cate-
gory of topological spaces endowed with a sheaf of monoids of continuous
functions with values in the unit interval[0,1]. (The colored polysimplicial
sets are precisely the combinatorial objects that give rise to the the Bruhat-
Tits buildings of semi-simple algebraic groups from [BrTi].) We associate
with X a colored polysimplicial setL(X). The underlying topological space
of |L(X)| is homeomorphic to|C(Xs)|. In §5 we construct a proper defor-
mation retraction ofXη to a closed subsetS(X), called the skeleton ofX.
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This retraction possesses nice properties. In particular, it commutes with all
automorphisms ofX and induces a deformation retraction of each Zariski
open subset ofXη to its intersection withS(X). Furthermore, we provide
the closed fibre ofX with anétale sheaf of monoids which is closely related
to the logarithmic structures of Fontaine-Illusie (see Remark 5.12(ii)). It is
used to endow the skeletonS(X)with a sheaf of monoids of continuous func-
tions with values in[0,1]. Finally, we construct a functorial isomorphism
|L(X)| ∼→S(X). The simplest consequence of the results of §5 tells that the
analytification of a scheme, isomorphic to an open subscheme of a proper
scheme with good reduction, is contractible.

We want to emphasize that there is a strong similarity between the results
of §5 and the Fontaine-Jannsen conjecture (already proven) which relates
p-adic étale cohomology of the generic fibreXη of a proper semi-stable
schemeX over k◦, wherek is a finite extension ofQp, and crystalline
cohomology of the closed fibreXs endowed with the logarithmic structure
induced fromX (see [Tsu]).

In §§ 6–8 we extend the results of §5 to poly-stable fibrations. Namely,
in §6 we associate with a poly-stable fibrationX = (Xl → Xl−1→ · · · →
X0 =Spec(K)) over a fieldK a polysimplicial setC(X) so that the partially
ordered set associated withC(X) is isomorphic to the set of strata ofXl .
In §7 we construct for a poly-stable morphism of formal schemesY→ X
a lifting of a homotopy of certain type fromXη to Yη. In §8 we construct
for a poly-stable fibrationX = (Xl → Xl−1 → · · · → X0 = Spf(k◦)) of
formal schemes overk◦ a strong deformation retraction ofXl,η to a closed
subsetS(X), called the skeleton ofX, and a functorial homeomorphism
|C(Xs)| ∼→S(X). The latter possesses the same nice properties as the re-
traction for poly-stable formal schemes. The results of §8 suggest that
a generalization of the Fontaine-Jannsen conjecture for compositions of
proper semi-stable morphisms might exist.

In §9 the valuation on the ground fieldk is assumed to be nontriv-
ial. (In all other sections this is not assumed.) First of all, the notion
of smoothness we work with is that introduced in [Ber2, §3]. It corres-
ponds better to the complex analytic smoothness but is more restrictive
than the rigid analytic one. Namely, a strictly analytic space is smooth
if and only if it is rigid analytically smooth and has no boundary (in
the sense of [Ber2, §1.5]). We prove local contractibility of the analytic
spaces locally embeddable in a smooth space. This class is broader than
that of smooth spaces. It contains all strictly analytic domains in smooth
spaces and all rigid analytically smooth affinoid spaces. As we mentioned
at the beginning of the introduction, the result implies that any analytic
space locally embeddable in a smooth space has a universal covering.
Finally, in §10, we use the same methods to prove the following result.
Let X be a separated scheme of finite type overk and X = Xan. Then
the abelian groupsHq(|X|,Z) and Hq

c (|X|,Z) are finitely generated, and
there exists a finite separable extensionk′ of k such that for any non-
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Archimedean fieldK overk′ one hasHq(|X⊗̂k′|,Z) ∼→Hq(|X⊗̂K |,Z) and
Hq

c (|X⊗̂k′|,Z) ∼→Hq
c (|X⊗̂K |,Z). What is proven in §10 and the results

from §8 give strong evidence for the following conjecture. LetX be a com-
pact analytic space andY a Zariski closed subset ofX. Then (a) the pair
(|X|, |Y|) is homotopy equivalent to a compact polyhedral pair(A, B) with
dim(A) ≤ dim(X) and dim(B) ≤ dim(Y), and (b) there exists a finite
separable extensionk′ of k such that for any non-Archimedean fieldK
over k′ the canonical map of pairs(|X⊗̂K |, |Y⊗̂K |) → (|X⊗̂k′|, |Y⊗̂k′|)
is a homotopy equivalence.

As is clear from the above, this work is very much stimulated by the work
of A.J. de Jong, and I am very grateful to him for the help in understanding
his results. I am very grateful to V. Hinich for many useful discussions and,
especially, for his help in my search for appropriate simplicial tools.

1. Pluri-nodal and poly-stable morphisms and poly-stable fibrations of
formal schemes

In this section we introduce several classes of morphisms of formal schemes
which will be objects of study in this paper. The definitions are given for
arbitrary formal schemes in order to apply them to usual schemes (which
are a particular case of formal schemes).

First of all, recall that a covering of a topological spaceX by subsets
{Xi }i∈I is called locally finite if each point ofX has an open neighborhood
which has a non-empty intersection with at most finite number ofXi ’s. If
all of the subsets are open, this is equivalent to the fact that each point ofX
is contained in at most finite number ofXi ’s.

Let ϕ : Y → X be a morphism of formal schemes. It is said to be
locally finitely presentedif the preimage of every open affine subscheme
Spf(A) is a locally finite union of open affine subschemes of the form
Spf(A{T0, . . . , Tn}/( f1, . . . , fm)). All of the morphisms we consider will
be assumed to be locally finitely presented. Furthermore,ϕ is said to be
étale if, for each ideal of definitionJ ⊂ OX, the induced morphism of
schemes(Y,OY/JOY) → (X,OX/J) is étale. Finally,ϕ is said to be
smoothif, for every pointy ∈ Y, there exist an open affine neighborhood
X′ = Spf(A) of ϕ(y) and an open neighborhoodY′ ⊂ ϕ−1(X′) of y such
that the induced morphismY′ → X′ goes through ańetale morphism
Y′ → Spf(A{T0, . . . , Tn}).
Definition 1.1. Letϕ : Y→ X be a locally finitely presented morphism of
formal schemes.

(i) ϕ is said to bestrictly pluri-nodal if locally in the Zariski top-
ology it is a composition of́etale morphisms and morphisms of the form
Spf(A{u, v}/(uv − a))→ Spf(A), a ∈ A.

(ii) ϕ is said to bepluri-nodalif there exists a surjectivéetale morphism
Y′ → Y such that the induced morphismY′ → X is strictly pluri-nodal.



6 V. G. Berkovich

The following definition introduces an important class of pluri-nodal
morphisms.

Definition 1.2. Letϕ : Y→ X be a locally finitely presented morphism of
formal schemes.

(i) ϕ is said to bestrictly poly-stableif, for every pointy ∈ Y, there
exist an open affine neighborhoodX′ = Spf(A) of ϕ(y) and an open neigh-
borhoodY′ ⊂ ϕ−1(X′) of x such that the induced morphismY′ → X′ goes
through anétale morphismY′ → Spf(B0)×X′ · · ·×X′Spf(Bp), where each
Bi is of the formA{T0, . . . , Tn}/(T0· . . . ·Tn − a) with a ∈ A andn ≥ 0.

(ii) ϕ : Y→ X is said to bepoly-stableif there exists a surjectivéetale
morphismY′ → Y for which the induced morphismY′ → X is strictly
poly-stable.

For example, any smooth morphism is strictly poly-stable. To see that any
(strictly) poly-stable morphism is (strictly) pluri-nodal, it suffices to consider
a morphism of the formSpf(B) → Spf(A) with B = A{T0, . . . , Tn}/
(T0· . . . ·Tn−a) andn ≥ 2, and to notice thatB = C{T0, T1}/(T0T1−u) for
C = A{u, T2, . . . , Tn}/(uT2· . . . Tn − a). For a formal schemeS, a locally
finitely presented morphism of formal schemes overS, which is locally
isomorphic in théetale topology to the projectionX×SY→ X whereY is
poly-stable overS, will be calledtrivially poly-stable(with respect toS).

Definition 1.3. LetS be a formal scheme. A(strictly) poly-stable fibration
overS of lengthl is a sequence of (strictly) poly-stable morphisms

X = (Xl
fl−1−→ . . .

f1−→ X1
f0−→ X0 = S) .

A morphismϕ : X′ → X is a family of morphismsϕi : X′i → Xi , 0≤ i ≤ l ,
such thatϕ0 = 1S and fi−1 ◦ ϕi = ϕi−1 ◦ f ′i−1 for all 1 ≤ i ≤ l . If the
morphismsϕi , 1 ≤ i ≤ l , possess a propertyP, ϕ is said to possess the
property P.

An example of a pluri-stable fibration of schemes is aG-pluri nodal
fibration from [deJ3, 5.8].

We now specify schemes and formal schemes which will be considered
in the paper. First of all, most of the schemes we consider are locally finitely
presented over a fieldK in the above sense. It is more natural to call them
schemes of locally finite type overK . Note that these are schemes of locally
finite type overK in the usual sense with the above additional property, and
the latter is automatically satisfied by those of them which are separated.

Furthermore, letk be a non-Archimedean field, i.e., a field complete with
respect to a non-Archimedean valuation with values inR+. (The valuation
on k is not assumed to be nontrivial). Letk◦ be the ring of integers ofk,
k◦◦ the maximal ideal ofk◦, and k̃ = k◦/k◦◦ the residue field ofk. The
category of formal schemes locally finitely presented overk◦ is denoted
by k◦-F sch. A formal schemeX from k◦-F sch has the closed fibreXs,
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which is a scheme of locally finite type over̃k, and the generic fibreXη,
which is a paracompact strictlyk-analytic space, and there is a reduction
mapπ : Xη → Xs (see [Ber3, §1]). IfX = Spf(A), thenXs = Spec(Ã),
where Ã = A/k◦◦A, andXη = M(A), whereA = A ⊗k◦ k. One also
setsA◦ = { f ∈ A

∣∣| f |sup≤ 1}, where | f |sup = sup
x∈M(A)

| f(x)|, A◦◦ =
{ f ∈ A

∣∣| f |sup< 1} and Ã = A◦/A◦◦. We remark that the image ofA
in A is contained inA◦ and thatA◦ is integral over this image. We also
remark that the ringsA andA◦ are separated and complete in thea-adic
topology, wherea is an element ofk◦◦ non-zero if the valuation onk is
nontrivial. Notice that, if the valuation onk is trivial, the correspondences
X 7→ Xη andX 7→ Xs are equivalences between the categoryk◦-F schand
the categories of paracompact strictlyk-analytic spaces and of schemes of
locally finite type overk, respectively.

We shall use in the sequel the following fact that follows from the local
description of́etale morphisms of schemes (see [Ber3, §2]): given anétale
morphismY → X = Spf(A), each point ofY has an open neighborhood
isomorphic overX to Spf(B) with B = C{c}, C = A[T]/(P) andc ∈ C,
where P(T) is a monic polynomial inA[T] such that the image of the
derivativeP′(T) in B is invertible.

A formal schemeX from k◦-F sch is said to besmooth(resp.(strictly)
pluri-nodal, resp.(strictly) poly-stable, resp. trivially poly-stable) if the
canonical morphismX → Spf(k◦) possesses the corresponding property.
Notice that if a schemeX over k◦ possesses one of the above properties,
then its formal completion̂X along the closed fibreXs possesses the same
property.

For n ≥ 1 anda ∈ k◦, we setT(n,a) = Spf(k◦{T0, . . . , Tn}/(T0·. . .·Tn − a))
and, for m ≥ 0, we setS(m) = Spf(k◦{S1, . . . , Sm,

1
S1
, . . . , 1

Sm
}). If

|a| = 1, thenT(n,a)
∼→S(n). Given two tuplesn = (n0, . . . ,np) ∈ Z p+1

anda = (a0, . . . ,ap) ∈ kp+1 with ni ≥ 1 and|ai | < 1, we setT(n,a) =
T(n0,a0)×· · ·×T(np,ap). A formal scheme of the formS(m) orT(n,a)×
S(m) will be calledstandard. To consider the above formal schemes sim-
ultaneously, we allow the pair of tuples withp = n0 = 0 anda0 = 1 and
setT(0,1) = Spf(k◦).

To have the possibility to consider automorphisms of formal schemes
which act nontrivially on the ground ring, we introduce a categoryF sch
whose objects are pairs(k,X), wherek is a non-Archimedean field andX is
from k◦-F sch, and morphisms(K,Y)→ (k,X) are pairs consisting of an
isometric embeddingk ↪→ K and a morphismY→ X⊗̂k◦K◦ in K◦-F sch.
The categoryF sch is a fibred one over the category of non-Archimedean
fields, and the correspondenceX 7→ Xη gives rise to a functor fromF sch
to the similar categoryAn of analytic spaces. Furthermore, we denote by
F sch́et (resp.F schsm, resp.F schtps) the category with the same family
of objects asF sch but with the morphisms(K,Y) → (k,X) for which
the morphismY → X⊗̂k◦K◦ is étale (resp. smooth, resp. trivially poly-
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stable). We also denote byk◦-Pst f, Pst f, P st f ét, Pst fsm andPst f tps

the full subcategories ofk◦-F sch, F sch, F sch́et, F schsm and F schtps,
respectively, consisting of poly-stable formal schemes. For brevity the pair
(k,X) will be denoted byX.

The category of poly-stable fibrations overk◦ of lengthl will be denoted
by k◦-P st fl . For any bigger non-Archimedean fieldK there is the evident
ground field extension functorX 7→ X⊗̂K . We denote byP st fl the category
of the pairs(k,X)withX ∈ Ob(k◦-Pst fl) and whose morphisms(K,Y)→
(k,X) are the pairs consisting of an isometric embeddingk ↪→ K and
a morphismY → X⊗̂K in K◦-Pst fl . We also denote byPst f ét

l (resp.

Pst fsm
l , resp.P st f tps

l ) the category with the same family of objects asP st f
but whose morphisms are the pairs for which the morphismY→ X⊗̂K is
étale (resp. smooth, resp. trivially poly-stable). For brevity, the pair(k,X)
will be denoted byX.

Finally, we introduce similar categories of poly-stable schemes and
of poly-stable fibrations of schemes over fields and use for them similar
notationsPst, Pstét, Pstl and so on.

Proposition 1.4. Let X = Spf(A) be a pluri-nodal affine formal scheme
overk◦. ThenA

∼→A◦, Ã
∼→Ã and |A|sup= |k|.

Proof. We remark that the propertỹA
∼→Ã trivially follows from the other

two properties. Furthermore, if the valuation onk is trivial, then all of the
properties are evidently true for an arbitraryA. Assume therefore that the
valuation onk is nontrivial, and letα be a fixed non-zero element ofk◦◦.

First of all, it suffices to prove the statement for strictly pluri-nodal formal
schemes. Indeed, assume that it is true for those formal schemes, and let
Spf(B)→ Spf(A) be a surjectivéetale morphism with strictly pluri-nodal
Spf(B). Then Spf(B⊗̂AB) is also strictly pluri-nodal, and the necessary
properties ofA are deduced from those ofB and B⊗̂AB using the exact
sequences 0→ A→ B→ B⊗̂AB and 0→ A◦ → B◦ → (B⊗̂AB)◦.

Thus, assume thatX is strictly pluri-nodal. We prove the statement
by induction on dim(Xs). If dim(Xs) = 0, then A is a direct product
of a finite number of the ring of integers of finite unramified extensions
of k and, therefore, it evidently possesses the required properties. Further-
more, letB = A{T0, T1}/(T0·T1 − a), a ∈ A, and assume thatA

∼→A◦ and
|A|sup= |k|. ThenB

∼→B◦ and|B|sup= |k|. Indeed, each elementf ∈ B
has a unique representation in the form

∑∞
n=−∞ anun, wherean→ 0 in the

α-adic topology ofA andun = T−n
0 for n < 0 andun = Tn

1 for n ≥ 0,
and one has| f |sup = max

n
|an|sup. Furthermore, each elementf ∈ B has

a unique representation in the above form withan ∈ A such that there exists
β ∈ k◦ with βan ∈ A andβan → 0 in theα-adic topology ofA. This implies
the required properties ofB.

Assume now thatY = Spf(B) is étale overX = Spf(A) and that the
statement is true forX and for the formal schemes of smaller dimension.
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The claim is thatB
∼→B◦ and |B|sup= |k|. We prove this in several steps

by induction on the number of irreducible components ofXη =M(A).

Step 1.If Xη is irreducible, thenA is integrally closed.It suffices to
verify thatA is integrally closed. Indeed, letf be an element of the fraction
field of A integral overA. SinceA is integrally closed,f ∈ A. If f n +
a1 f n−1 + · · · + an = 0 is an integral equation off over A, then| f |nsup≤

max
1≤i≤n−1

(| f |isup,1) and, therefore,| f |sup≤ 1, i.e., f ∈ A◦ = A.

SinceXη is irreducible, the integral closeness ofA is equivalent to the
fact that the local ringOXη,x of each pointx ∈ Max(A) ⊂ Xη is integrally
closed. The latter fact is local with respect to theétale topology ofX.
Thus, it suffices to prove that if a strictlyk-affinoid spaceX = M(A) is
irreducible and normal, then the strictlyk-affinoid spaceY = M(B) with
B = A{u, v}/(uv−a) anda 6= 0 is also irreducible and normal. For this we
need the following simple fact which will also be used in the next section.

Lemma 1.5. LetX = Spec(A) andY = Spec(B), whereA is an excellent
ring and B = A[u, v]/(uv − a). ThenY is normal at a pointy if and only
if (a) X is normal at the pointx = ϕ(y) and (b)u(y) 6= 0, or v(y) 6= 0, or
the image ofa in OX,x is not zero.

Proof. Assume first thaty is contained in the normality locusNor(Y) of Y.
Thenx ∈ Nor(X) because the local ringOY,y is faithfully flat overOX,x.
Suppose thatu(y) = v(y) = 0 and that the image ofa in OX,x is zero. We
can shrinkX and assume thata= 0. In this caseB = A[u, v]/(uv) and the
point y belongs to at least two irreducible components ofY.

Assume now that (a) and (b) are true. Ifu(y) 6= 0 or v(y) 6= 0, thenϕ
is smooth aty and, therefore,y ∈ Nor(Y). Assume that the image ofa in
OX,x is not zero. Then we can shrinkX and assume thatA is integrally
closed anda 6= 0. Each elementf ∈ B has a unique representation in the
form

∑∞
i=0 ai ui +∑∞j=1 bjv

j . One hasu f =∑∞i=0 ai ui+1+∑∞j=1 a bjv
j−1,

and sincea 6= 0 the elementu is not a zero-divisor inB. In particular,B is
embedded inB[ 1u]

∼→A[u, 1
u ]. It follows that B is integral. Furthermore,

sinceB[ 1u] is smooth overA, it is integrally closed, and to prove the lemma
it suffices to verify that any elementf ∈ B[ 1u] integral overA and of the
form b

u , b ∈ B, is contained inB. Let f n + b1 f n−1 + · · · + bn = 0 be an
integral equation off over B. The equation implies thatbn ∈ uB. Since
B/uB

∼→A[v] is reduced, it follows thatb ∈ uB. ut
We apply the lemma toX = Spec(A) andY = Spec(A[u, v]/(uv−a)).

It follows thatY is normal. Then from [Ber7, Lemma 3.6], it follows that
the strictlyk-analytic spaceYan is normal. SinceY =M(B) is an affinoid
domain inYan, it follows that Y is normal. Since all of the fibres of the
morphismY → X are connected, it follows thatY is also connected and,
therefore, it is irreducible because it is normal.
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Step 2.The claim is true ifXη is irreducible andB = C{c}, C =
A[T]/(P), c ∈ C, where P is a monic polynomial inA[T] for which
the image ofP′(T) in B is invertible. By Step 1, A is integrally closed.
Furthermore, we may assume thatSpec(B̃) is connected and that the degree
of P is minimal over all representations ofB in such a form.

(1) The polynomialP is irreducible over the fraction field ofA. Let
P = P1P2 be a representation ofP as a product of monic polynomials of
smaller degrees over the fraction field ofA. Since A is integrally closed,
it follows that P1, P2 ∈ A[T]. Let b denote the image ofT in B. Then
P̃1(̃b)P̃2(̃b) = 0 and the element̃P′1(̃b)P̃2(̃b)+ P̃1(̃b)P̃′2(̃b) is invertible inB̃.
SinceB̃ is étale over the reduced ring̃A, it is also reduced. It follows that,
given an irreducible componentY of Spec(B̃), one has either̃P1(̃b)|Y = 0
or P̃2(̃b)|Y = 0. Assume, for example, that̃P1(̃b)|Y = 0. Then the elements
P̃′1(̃b)|Y and P̃2(̃b)|Y are invertible. SinceSpec(B̃) is connected, it follows
that the elements̃P′1(̃b) and P̃2(̃b) are invertible inB̃ and, therefore,P′1(b)
and P2(b) are invertible inB. In particular,P1(b) = 0. If D = A[T]/(P1),
then the canonical epimorphismC→ D induces an isomorphismD{d}

∼→B,
whered is the image ofc in D, and we can replaceP by the polynomialP1
of smaller degree. The claim follows. We remark that since the image of
P′(T) in B is invertible, it follows that the polynomialP(T) is separable
over the fraction field ofA.

(2) The homomorphismB → B◦ is bijective. First of all, sinceB
is flat over A, the homomorphism considered is injective. Furthermore,
since the both rings are separated and complete in theα-adic topology, to
prove the surjectivity, it suffices to verify thatB is dense inB◦. A dense
subset inB is provided by elements of the formσ( f)/σ(c)n, whereσ
is the canonical homomorphismC = C ⊗k◦ k → B and f ∈ C. Let
σ( f)/σ(c)n be such an element ofB ◦, i.e.,|σ( f)/σ(c)n|sup≤ 1.We claim that
σ( f)/σ(c)n ∈ B. Indeed, since|σ(c)(y)| = 1 for all pointsy ∈ Yη, it follows
that |σ( f)|sup ≤ 1. By [BGR, 7.2.6/2], one has|σ( f)|sup = |cm f |sup for
a sufficiently largem. Replacingf by cm f , we may assume that| f |sup≤ 1,
i.e. f ∈ C◦, and sinceσ(c) ∈ B∗ it suffices to show thatσ( f) ∈ B = C{c}.
By [BGR, 6.3.5/1], the ringC◦ is integral overA = A◦. It follows thatC◦
is contained in the integral closure ofA in L = C ⊗A K , whereK is the
fraction field ofA. SinceL is separable overK , it follows that f = g/P′(γ)
for someg ∈ C, whereγ is the image ofT in C. Since the image ofP′(γ)
in B is invertible, it follows thatσ( f) ∈ B.

(3) The homomorphism̃B→ B̃ is bijective.By (2), it suffices to verify
that the homomorphism is injective. Letg be an element ofB with |g|sup< 1.
We have to verify thatg ∈ k◦◦B. For this we can replaceg by an element
of the formσ( f)/σ(c)n. As above, replacingf by cm f for a sufficiently
largem, we may assume that| f |sup< 1, i.e., f ∈ C◦◦. Let f d + a1 f d−1+
· · · + ad = 0 be the minimal equation off overA. By [BGR, 3.8.1/7], one
has| f |sup= min

i
|ai |1/i . It follows thatai ∈ A◦◦ = k◦◦A. The latter implies
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that f d ∈ k◦◦C, and thereforeσ( f)d ∈ k◦◦B. Since the ring̃B is reduced, it
follows thatσ( f) ∈ k◦◦B and thereforeg ∈ k◦◦B.

(4) One has|B|sup= |k|. For this we use the following observation.

Lemma 1.6. LetY→ X be anétale morphism of formal schemes locally
finitely presented overk◦. Then for any pointy ∈ Yη the fieldH(y) is
a finite unramified extension ofH(x), wherex is the image ofy in Xη.

The statement and its proof work also for special formal schemes as
defined in [Ber6, §1] overk◦ with a discrete valuation (not necessarily
nontrivial).

Proof. We may assume thatX = Spf(A) andY = Spf(B), whereB = C{c},
C = A[T]/(P), andP ∈ A[T] is a monic polynomial such that the image
of P′(T) in B is invertible. Since the morphismYη → Xη is quasi-́etale,
H(y) is a finite separable extension ofH(x) generated by the imageβ
of T in H(y). Let Q(β) = 0 be the minimal monic equation ofβ over
H(x). One hasQ ∈ H(x)◦[T]. SinceP(β) = 0, it follows that P = QR
for someR ∈ H(x)◦[T], and thereforeQ′(β) is invertible inH(y)◦. This
immediately implies thatH(y)◦ = H(x)◦[β] and thatH(y)◦ is étale over
H(x)◦, i.e.,H(y) is unramified overH(x). ut

By [Ber1, 2.4.4], for every f ∈ B one has| f |sup = max
y∈Γ(B)

| f(x)|,
whereΓ(B) is the Shilov boundary ofB, andΓ(B) coincides with the
preimage of the set of generic points of the irreducible components of
Ys = Spec(B̃) under the reduction mapYη = M(B) → Ys. Recall also
that the preimage of such a generic point consists of one point. By (3),
B̃ = B̃, and therefore the generic points ofYs are the preimages of the
generic points ofXs = Spec(Ã). It follows thatΓ(B) is the preimage of
Γ(A) under the mapYη → Xη = M(A). Since |H(x)| = |k| for all
x ∈ Γ(A), Lemma 1.6 implies that|H(y)| = |k| for all y ∈ Γ(B), and
therefore|B|sup= |k|.

Step 3.The claim is true ifXη is irreducible.Indeed, we can find a finite
covering ofY by open affine subschemesSpf(Bi), whereBi are of the form
from Step 2, and for each pairi, j a finite open covering ofSpf(Bi)∩Spf(Bj )
by open affine subschemesSpf(Bijl ), whereBijl are also of the form from
Step 2. Then the necessary properties ofB are established using the exact
sequences 0→ B → ∏

i Bi → ∏
ijl Bijl and 0→ B◦ → ∏

i B
◦
i →∏

ijl B◦ijl .
Step 4.The claim is true ifY is an open subscheme ofX. Indeed, by

the reasoning from Step 3, it suffices to consider the caseB = A{ f }, where
f ∈ A\k◦◦A. In this case we use the argument from the substep (2) of Step 2.
Namely, it suffices to verify thatB is dense inB◦. Letσ denote the canonical
homomorphismA → B, and letσ(a)/σ( f)n, a ∈ A be an element ofB
with |σ(a)/σ( f)n|sup ≤ 1. Since|σ( f)(y)| = 1 for all y ∈ Yη, it follows
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that |σ(a)|sup ≤ 1. By [BGR, 7.2.6/2], one has|σ(a)|sup = | f ma|sup for
a sufficiently largem, i.e., f ma ∈ A◦ = A. It follows thatσ(a)/σ( f)n ∈ B.

Step 5.The claim is true in the general case.By Step 4, the claim is local
with respect toX. Hence, we can shrinkX and assume that the morphism
X → Spf(k◦) is a composition of́etale morphisms with morphisms of
the form Spf(D) → Spf(C) with D = C{u, v}/(uv − c). If all of the
elementsc from the latter morphisms are not zero, then Step 1 implies
thatXη is normal, i.e., we are in the situation of that step. Assume thatXη
is not normal. Then for some intermediate morphismSpf(D) → Spf(C)
one hasD = C{u, v}/(uv). We setX1 = Spf(A/u A), X2 = Spf(A/vA)
andX3 = Spf(A/(u A+ vA)). These are strictly pluri-nodal affine formal
schemes overk◦. The numbers of irreducible components ofX1,η andX2,η
are strictly less than that ofXη, and the dimension ofX3,s is strictly less
than that ofXs. By induction, the ringsB1 = B/uB, B2 = B/vB and
B3 = B/(uB+ vB) possess the required properties. SinceB is flat overD,
it follows that there is an exact sequence 0→ B→ B1× B2 → B3. The
required properties ofB are now deduced using it and the exact sequence
0→ B → B1×B2→ B3. ut
Corollary 1.7. Let X be a pluri-nodal formal scheme overk◦, and let
gen(Xs) denote the set of generic points of the irreducible components
ofXs. Then

(i) the reduction mapXη→ Xs is surjective;
(ii) for any x ∈ gen(Xs), there exists a unique pointx ∈ Xη withπ(x) = x,

and one has̃k(x)
∼→H̃(x);

(iii) if X is affine, then the setπ−1(gen(Xs)) is the Shilov boundary ofXη.

Proof. Everything follows from Proposition 1.4 and [Ber1, Propos. 2.2.4].
ut

Corollary 1.8. The generic fibre of a pluri-nodal formal scheme overk◦ is
connected if and only if its closed fibre is connected. ut

2. A stratification of a pluri-nodal scheme

Let X be a scheme of locally finite type over a fieldK . Recall again
that it is a scheme which admits a locally finite covering by open affine
subschemes of finite type overK . It follows that any irreducible component
of X is quasi-compact and has a non-empty intersection with at most finite
number of other irreducible components, and the intersection of any family
of irreducible components has a finite number of irreducible components.
(Of course, if the above intersection is non-empty, the family is finite.)
Moreover, any locally closed subset ofX, considered as a reduced scheme,
is of locally finite type overK . The set of irreducible components ofX will
be denoted byirr(X).
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Assume thatX is reduced. SinceX is an excellent scheme [EGAIV, §7],
the normality locusNor(X) of X is open and dense inX. We setX(0) = X
andX(i+1) = X(i)\Nor(X(i)), i ≥ 0. The irreducible components of the
locally closed subsetsX(i)\X(i+1) = Nor(X(i)) will be called thestrata
ofX. (Note thatNor(X(i)) is a disjoint union of its irreducible components.)
The stratification ofX constructed in this way is evidently locally finite.
A subset which is a union of strata is called astrata subset ofX.

Furthermore, we define another filtrationX = X(0) ⊃ X(1) ⊃ . . . by
the property thatX(i+1) consists of the points ofX(i) which are contained
in at least two irreducible components ofX(i). We say thatX is quasi-
normal if all of the irreducible components of eachX(i) are normal. Notice
that the property to be quasi-normal is local with respect to the Zariski
topology and, for ańetale morphismY → X with quasi-normalX, Y is
also quasi-normal. Notice also that ifX is quasi-normal thenX(i) = X(i)
for all i ≥ 0. Indeed, since the irreducible components ofX are normal,
then Nor(X) = X\X(1), i.e., X(1) = X(1), and the statement forX is
reduced to that forX(1).

Proposition 2.1. LetX be a pluri-nodal scheme overK . Then
(i) the closure of every stratum ofX is a strata subset ofX;
(ii) if X is strictly pluri-nodal, it is quasi-normal.

Lemma 2.2. Let ϕ : Y → X be an étale morphism between reduced
schemes of locally finite type overK . Then

(i) ϕ induces ańetale morphism from each stratum ofY to a stratum
of X; in particular, the preimage of each stratum ofX is a strata subset
of Y;

(ii) if X is quasi-normal and possesses the property (i) of Proposition 2.1,
thenY possesses the same property;

Assume thatϕ is surjective. Then
(iii) if, for a locally closed subsetX′ ⊂ X, ϕ−1(X′) is a strata subset

of Y, thenX′ is a strata subset ofX;
(iv) if Y possesses the property (i) of Proposition 2.1, thenX possesses

the same property.

Proof. (i) SinceNor(Y) = ϕ−1(Nor(X)), the statement is evidently true for
the strata ofY in Nor(Y), and is reduced to that for the induced morphism
Y(1) = ϕ−1(X(1))→ X(1).

(ii) Let Y be a stratum ofY with Y ⊂ Y(i)\Y(i+1), i ≥ 0. ThenY is an
irreducible component ofY(i). If X is the stratum ofX that containsϕ(Y),
then X is an irreducible component ofX(i). Since X is normal and the
induced morphismϕ−1(X)→ X is étale, it follows thatϕ−1(X) is a disjoint
union of its irreducible components. One of them isY, and the statement
follows.

(iii) Since ϕ is surjective, it suffices to verify that, for each stratum
Y of Y in ϕ−1(X′), one hasX ⊂ X′, where X is the stratum ofX that



14 V. G. Berkovich

containsϕ(Y). By (i),ϕ induces ańetale morphismY → X and, in particular,
ϕ(Y) is open inX. It follows that, for each stratumY′ of Y with ϕ(Y′) ⊂ X,
the intersectionϕ(Y′) ∩ ϕ(Y) is non-empty. The latter implies thatY′ ∩
ϕ−1(X′) 6= ∅ and, therefore,Y′ ⊂ ϕ−1(X′) becauseϕ−1(X′) is a union
of strata. It follows thatϕ(Y′) ⊂ X′ and, therefore,X ⊂ X′ becauseϕ is
surjective.

(iv) Let X be a stratum ofX. The assumption implies thatϕ−1(X) is
a union of strata. Sinceϕ is an open map, one hasϕ−1(X) = ϕ−1(X) and,
by (iii), X is a union of strata. ut
Lemma 2.3. Let ϕ : Y = Spec(B)→ X = Spec(A) with B = A[u, v]/(uv− a).
Assume thatX possesses the property (i) of Proposition 2.1. Then

(i) Y possesses the same property;
(ii) given a stratumX of X, one has

(1) if a|X 6= 0, thenϕ−1(X) is a stratum ofY, and the induced mor-
phismϕ−1(X)→ X is flat and generically smooth;

(2) if a|X = 0, thenϕ−1(X) is a union of the two irreducible com-
ponentsY′ ∼→X × Spec(K [v]) and Y′′ ∼→X × Spec(K [u]), and
Z := Y′ ∩ Y′′ ∼→X; moreover,Y′\Z, Y′′\Z and Z are strata ofY;

(iii) if X is quasi-normal, then so isY.

Proof. Assume first thatX is an irreducible component inNor(X). In the
case (1), Lemma 1.5 implies thatϕ−1(X) is irreducible and normal, and
all points from its complement inϕ−1(X) = ϕ−1(X) are not normal, i.e.,
ϕ−1(X) is an irreducible component ofNor(Y). (The above equality follows
from the fact thatϕ is an open map.) In the case (2), one hasϕ−1(X) = Y′ ∪
Y′′ ∪ϕ−1(X\X) and, therefore,Y′\Z andY′′\Z are irreducible components
in Nor(Y), i.e., they are strata ofY. Since Z

∼→X, the setZ is open in
irreducible components ofNor(Y(1)) and ofNor(Y(1)). We claim that each
point from Z\Z is contained in at least two irreducible components of
ϕ−1(X(1)). (Note thatZ\Z ⊂ ϕ−1(X\X).) Indeed, letX′ be an irreducible
component ofX(1) that contains the image of a point fromZ\Z. SinceX is
a strata set, it follows thatX′ ⊂ X\X and, therefore,a|X′ = 0. This implies
that ϕ−1(X′) has two irreducible components whose intersection contains
the point and which are also irreducible components ofϕ−1(X(1)). It follows
that Z is an irreducible component ofNor(Y(1)) and ofNor(Y(1)) and, in
particular,Z is a stratum ofY. It follows also that(Y(1))(1) = (ϕ−1(X(1)))(1),
and ifX(1) = X(1) thenY(1) = Y(1). Thus the statements (ii) and (iii) forϕ
are reduced to those for the morphismϕ−1(X(1))→ X(1). The statement (i)
follows from (ii) and the equalityϕ−1(X) = ϕ−1(X). ut
Proof of Proposition 2.1.Both statements follow straightforwardly from
Lemmas 2.2 and 2.3. ut
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Let str(X) denote the set of the generic points of strata ofX.

Corollary 2.4. Let X be a pluri-nodal scheme overK . Then for each
stratumX of X one hasX = x\(∪y), wherex is the generic point ofX and
the union is taken over all pointsy ∈ str(X) with x 6∈ y. ut

The set of strata of a strictly poly-stable scheme can be described as
follows.

Proposition 2.5. Let X be a strictly poly-stable scheme overK . Then the
intersection of any set of irreducible components ofX is smooth, and the
family of strata coincides with the family of irreducible components of sets
of the form(∩X∈AX)\(∪Y6∈AY), whereA is a finite subset ofirr(X).

Proof. Both statements are easily verified for direct products of schemes
of the form Spec(K [T0, . . . , Tn]/(T0· . . . ·Tn)) and Spec(K [T1, . . . , Tn,

T−1
1 , . . . , T−1

n ]), and easily follow from this in the general case. ut
Corollary 2.6. All of the strata of a poly-stable scheme are smooth.ut
Proposition 2.7. Let ϕ : Y → X be a pluri-nodal morphism to a pluri-
nodal schemeX over K . Then

(i) the image of a stratumY of Y is contained in a stratumX of X, and
the induced morphismY→ X is flat and generically smooth;

(ii) str(Y) = ∪x∈str(X)str(Yx).

Proof. Lemmas 2.2(i) and 2.3 imply that the statements are true ifϕ is of

the formY
g→ Xn

fn−1→ · · · f1→ X1
h→ X, whereg andh areétale,Xi are

affine, andfi areétale or of the form considered in Lemma 2.3. It follows
that in the general case we can find a surjectiveétale morphismψ : Y′ → Y
such that the statements are true for the morphismϕψ : Y′ → X. Let Y be
a stratum ofY, and letX be stratum ofX with ϕ(Y) ∩ X 6= ∅. It suffices
to verify thatϕ(Y) ⊂ X. For this it suffices to check thatϕ−1(X) is a strata
subset ofY. But the latter follows from Lemma 2.2(iii) applied to the subset
ϕ−1(X) and the morphismψ. ut

Notice that, for a pluri-nodal schemeX over K and a bigger fieldK ′,
the morphismX⊗ K ′ → X gives rise to a surjective morphism from each
stratum ofX⊗K ′ to a stratum ofX and to a surjective mapstr(X⊗K ′)→
str(X).

We introduce a partial ordering on the setstr(X) as follows:x ≤ y if
y ∈ x. For a pointx ∈ str(X), we setstr≤x(X)={y∈str(X)|y ≤ x}. Notice
that the mapsstr(Y) → str(X) from Proposition 2.7 andstr(X⊗ K ′)→
str(X) from the previous paragraph are maps of partially ordered sets.

Corollary 2.8. In the situation of Proposition 2.7, if the morphismϕ is
surjective thenCoker(str(Y ×X Y)

→→ str(Y))
∼→str(X).
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Proof. It suffices to check that each pairx ≤ x′ in str(X) comes from a pair
y ≤ y′ in str(Y). One hasX′ ⊂ X for the corresponding strata ofX and,
therefore,ϕ−1(X′) ⊂ ϕ−1(X) = ϕ−1(X). It follows that for each stratumY′
of Y overX′ there exists a stratumY overX with Y′ ∩Y 6= ∅ and, therefore,
Y′ ⊂ Y, i.e., y ≤ y′ for their generic points. ut
Proposition 2.9. Let ϕ : Y → X be a strictly pluri-nodal morphism with
strictly pluri-nodalX, and letx, x′ ∈ str(X) be a pair of points withx′ ≤ x.
Then

(i) for each pointy ∈ str(Y) with ϕ(y) = x, the set of pointsy′ ∈ str(Y)
with ϕ(y′) = x′ and y′ ≤ y is non-empty and has a unique maximal
element; in particular, there is a well defined morphism of partially ordered
setsstr(Yx)→ str(Yx′);

(ii) the above map takes minimal points to minimal points; in particular,
there is a well defined mapirr(Yx)→ irr(Yx′);

(iii) for a point x′′ ∈ str(X) with x′′ ≤ x′, the following diagram is
commutative

str(Yx) −→ str(Yx′)

↘ ↙
str(Yx′′)

Lemma 2.10. Let ϕ : Y → X be anétale morphism with strictly pluri-
nodal X, and let y ∈ Y and x = ϕ(y). Then there is an isomorphism of
partially ordered setsstr≤y(Y)

∼→str≤x(X).

Proof. The minimal elements of both sets are exactly the generic points
of the irreducible components ofY and X passing throughy and x, re-
spectively. It follows thatstr≤y(Y) ∩ Nor(Y)

∼→str≤x(X) ∩ Nor(X) and,
therefore, the bijectivity statement forϕ is reduced to that for the morphism
Y(1) = ϕ−1(X(1)) → X(1). It remains to verify that ifϕ(y′′) ≤ ϕ(y′) for
two pointsy′, y′′ ∈ str≤y(Y) then y′′ ≤ y′. Let X′ and X′′ be the strata of
X whose generic points areϕ(y′) andϕ(y′′). The assumption means that
X′ ⊂ X

′′
. SinceX

′′
is normal,ϕ−1(X′′) = ϕ−1(X

′′
) is a disjoint union of

irreducible components, andy′′ is the only one of them that containsy. It
follows thaty′′ ≤ y′. ut
Proof of Proposition 2.9.We remark that if the statement is true for the
morphismϕ and a morphismψ : Z → Y then it is also true for their
compositionϕ ◦ ψ. Thus, since the statement is local with respect to the
Zariski topology ofY, it suffices to consider the two cases whenϕ is
étale or of the formSpec(B) → Spec(A) with B = A[u, v]/(uv − a).
In both cases everything follows straightforwardly from Lemmas 2.10
and 2.3. ut
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Corollary 2.11. In the situation of Proposition 2.9, letψ : Z → Y be
a second strictly pluri-nodal morphism. Then the following diagram is
commutative

str(Zx) −→ str(Yx)↓ ↓
str(Zx′) −→ str(Yx′)

Proof. Let z′ and y be the images of a pointz ∈ str(Zx) in str(Zx′) and
str(Yx), respectively, and lety′ and ỹ′ be the images ofz′ andy in str(Yx′).
It is clear thaty′ ≤ ỹ′. On the other hand, let̃z′ be the image ofz under
the mapstr(Zy)→ str(Zỹ′). One has̃z′ ≤ z andψ(̃z′) = ỹ′ and, therefore,
z̃′ ∈ str(Zx′). It follows that z̃′ ≤ z′. This implies that̃y′ ≤ y′, i.e., y′ = ỹ′.

ut
We say that a strictly pluri-nodal schemeX is elementaryif the partially

ordered setstr(X)has a unique maximal element. Notice that, given a strictly
pluri-nodal schemeX and a pointx ∈ X, any sufficiently small open
neighborhood ofx is elementary. Indeed, letx0 be the generic point of the
stratum ofX that containsx, and letU = X\(∪y), where the union is taken
over all pointsy ∈ str(X) with x 6∈ y. ThenU is an open neighborhood
of x in X andstr(U′) = str≤x0(X) for any smaller open neighborhoodU′
of x.

Corollary 2.12. In the situation of Proposition 2.9, ifY is elementary then
all of the fibresYx of ϕ at the pointsx ∈ str(X) are also elementary. ut

We are now going to associate with each pluri-nodal schemeX a sim-
plicial setN(X).

Recall that a simplicial set is an object of the category∆◦Ens of con-
travariant functors from∆ to the category of setsEns, where∆ is the cate-
gory whose objects are the sets[n] = {0,1, . . . ,n}, n ≥ 0, and morphisms
are all nondecreasing maps (see [GaZi, Ch. II]). Recall also that the nerve
of a small categoryD is the simplicial setN(D) for which Np(D) consists
of functors[p] → D, where the ordered set[p] considered as a category.
For a morphismγ : [q] → [p], the corresponding mapNp(D)→ Nq(D)
takes a functor[p] → D to its composition withγ .

Proposition 2.13. There is a functorX 7→ N(X), unique up to a unique
isomorphism, from the category of pluri-nodal schemes with pluri-nodal
morphisms between them to the category of simplicial sets∆◦Enssuch that

(a) if X is strictly pluri-nodal, thenN(X) is the nerve of the partially
ordered setstr(X);

(b) for a surjectivéetale morphismX′ → X one hasCoker(N(X′ ×X

X′) →→ N(X′)) ∼→N(X).

Proof. We fix for each pluri-nodal schemeX a surjectiveétale morphism
X′ → X with strictly pluri-nodalX′ so that, ifX is strictly pluri-nodal,
thenX′ = X, and defineN(X) as the cokernel of the pair of morphisms
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N(str(X′′)) →→ N(str(X′)), whereX′′ = X′ ×X X′. To see that we get
a functor, it suffices to verify that the condition (b) is satisfied whenX
andX′ are strictly pluri-nodal. In this case the required fact easily follows
from Lemma 2.10. ut

Recall also that the geometric realization functor is a functor|?| :
∆◦Ens→ Ke to the category of Kelley spacesKe. (Recall that a Kelley
space is a Hausdorff topological spaceX possessing the property that
a subset ofX is closed whenever its intersection with each compact sub-
set of X is closed.) The functor|?| commutes with direct limits and ex-
tends the functorΣ : ∆ → Ke that takes the standardn-simplex∆[n]
to Σn = {(u0, . . . ,un) ∈ [0,1]n+1|u0 + · · · + un = 1} (see [GaZi,
Ch. III]). If C ∈ Ob(∆◦Ens), then |C| is the direct limit of the functor
(∆[n] → C) 7→ Σn from the category∆/C to Ke. (For a categoryD
and a functorC ∈ D◦Ens, D/C denotes the category of morphisms from
representable functors toC.) A subset of|C| which is the image of the
interior Σ̊n of someΣn in the above direct limit is called a (simplicial) cell
of |C|. It follows from [GaZi, Ch. III, §1.8-1.9] thatC is a Hausdorff locally
contractible space. IfC is locally finite (as, for example,N(X)), then|C|
is locally compact. For suchC, any subset of|C| which is a union of cells
is locally contractible. Notice that for an elementary strictly pluri-nodal
schemeX the space|N(X)| is contractible.

Remark 2.14.(i) The canonical mapN(X) → N(str(X)) is not an iso-
morphism in general. An example is the nodal curve defined by the equation
y2 = x2(x+ 1).

(ii) Let k be a non-Archimedean field. What is done in this section is
applied to the closed fibreXs of a pluri-nodal schemeX overk◦. One can, in
fact, introduce in the similar way a stratification on the generic fibreXη of X
for which the properties of Proposition 2.1 are also true, and in the case,
whenX is strictly pluri-nodal, one can define a map of partially ordered sets
from the set of strata ofXs to the set of strata ofXη.

3. A polysimplicial set associated with a poly-stable scheme

In this section we introduce a categoryΛ, which gives rise to a category of
polysimplicial setsΛ◦Ens, and construct a commutative diagram of functors

Psttps

str↙ ↓ C ↘ N

Or
O←− Λ◦Ens

B−→ ∆◦Ens

whereOr is the category of partially ordered sets. We also show that the
functorB preserves geometric realizations, and introduce a categoryΛwith
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the same family of objects asΛ but with smaller sets of morphisms which
is enough for constructing a functorC : Pstsm→ Λ◦Ens.

For a tuplen = (n0, . . . ,np) with either p = n0 = 0 or p ≥ 0 and
ni ≥ 1 for all 0 ≤ i ≤ p, let [n] denote the set[n0] × · · · × [np]. (The
numberp for [n] as above will be denoted byw(n).) Objects of the category
Λ are the sets[n] for the tuplesn as above, and the set of morphisms
Hom([m], [n]) is the set of the maps[m] → [n] associated with triples
(J, f, α) as follows. Letq = w(m). Then J is a subset of[q], assumed to
be empty if[m] = [0], f is an injective mapJ→ [p], andα = {αl}0≤l≤p,
whereαl is an injective map[mf−1(l)] → [nl ] for l ∈ Im( f), andαl is
a map[0] → [nl ] for l 6∈ Im( f). The mapγ : [m] → [n] associated
with the triple (J, f, α) takes an elementj = ( j0, . . . , jq) ∈ [m] to the
elementi = (i0, . . . , i p) ∈ [n] with i l = αl( j f −1(l)) for l ∈ Im( f), and
i l = αl(0) for l 6∈ Im( f). (Note that different triples give rise to different
maps.) It follows from the definition that the composition of two maps of
the above form has of the same form, and soΛ is really a category. For
a subsetJ ⊂ [q], assumed to be empty if[m] = [0], let mJ denote the tuple
(mj0, . . . ,mjt ), if J = { j0, . . . , jt} is non-empty andj0 < · · · < jt, and the
zero tuple 0, otherwise. It follows that the above morphismγ : [m] → [n]
is a composition of the projectionπI : [m] → [mJ] (which is a morphism
in Λ) with an injective morphismσ : [mJ] → [n]. If γ is surjective, then
σ is an isomorphism and, therefore,γ has a right inverse, i.e., there exists
a morphismβ : [n] → [m] with γ ◦ β = 1[n]. In particular, a morphism
γ : [m] → [n] is an isomorphism if and only if it is bijective. Notice
that the automorphism groupAut([n]) for n of the form(n, . . . ,n) is the
wreath product (see [Hall, §5.9]) of the symmetric groupSn+1 with the
symmetric groupSp+1, wherep= w(n). This easily describesAut([n]) for
an arbitrary[n].

We now give an alternative description of injective morphisms inΛ. First
of all, any set[n] ∈ Ob(Λ) is endowed with a metric. Namely, the distance
between two elementsi = (i0, . . . , i p) ∈ [n] and j = ( j0, . . . , j p) ∈ [n]
is the number of distinct coordinates ofi and j . Note that each injective
morphism inΛ is an isometric map.

Lemma 3.1. Each isometric map[m] → [n] is an injective morphism inΛ.

Proof. We may assume that[m] 6= [0]. Let p = w(n) andq = w(m). We
have to verify that each isometric mapγ : [m] → [n] is associated with
a triple of the form([q], f, α).

Caseq = 0. In this case the required fact follows from the simple remark
that if I is a subset of[n] with the property that the distance between any
two distinct elements ofI is equal to 1, then there exists 0≤ l ≤ p such
that, for any 0≤ i ≤ p with i 6= l , thei -th coordinates of all of the elements
of I are equal.

Casem = (1,1). In this case the set[m] consists of four elements. It is
easy to describe all of the possible isometric mapsγ , and this description
shows the required fact.
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Caseq ≥ 1. Fix 0≤k≤q, and letm′ =(m0, . . . , ,mk−1,mk+1, . . . ,mq).
For j ′ ∈ [m′], let νj ′ be the map[mk] → [m] associated with the triple
([0], f, α), where f : [0] → [q] takes 0 tok andα is defined byαk = 1[mk]
andαi (0) = j ′i for i 6= k. We get an isometric mapγ k

j ′ = γ ◦νj ′ : [mk] → [n].
By the caseq = 0, γ k

j ′ is associated with a triple([0], f k
j ′ , α

k
j ′), where

f k
j ′ : [0] → [p] is defined by the numberl (k) = f k

j ′ (0), andαk
j ′ is defined

by the mapα(k) = αk
j ′,l(k) : [mk] → [nl(k) ] and the numbersαk

j ′,i (0) with

0≤ i ≤ p andi 6= l (k). We claim that the numberl (k) and the mapα(k) do not
depend onj ′. Indeed, letl ′′ andα′′ be the number and the map corresponding
to an elementj ′′ ∈ [m′]. To show thatl ′′ = l ′ := l (k) andα′′ = α′ := α(k),
it suffices to assume that the distance betweenj ′ and j ′′ in [m′] is equal
to 1. But if so, the equalityl ′′ = l ′ follows easily from the casem = (1,1).
Furthermore, forj ∈ [mk] the elementsνj ′( j) and νj ′′( j) are distinct at
only one coordinatek′ 6= k, and therefore the elementsγ k

j ′ ( j) andγ k
j ′′( j) are

distinct at only one coordinatel (k
′). To prove the equalityα′( j) = α′′( j),

it suffices to verify thatl (k
′) 6= l (k). But this also easily follows from the

casem = (1,1). Thus, we get an injective map[q] → [p] : k 7→ l (k) and,
for eachk ∈ [q], an injective mapα(k) : [mk] → [nl(k) ] such that for every
j ∈ [m] the l (k)’th coordinate ofγ(j) is α(k)( jk) and all of the coordinates
of γ(j) outside the placesl (0), . . . , l (q) do not depend onj . This gives the
required fact. ut

The category ofpolysimplicial setsis the categoryΛ◦Ens. Thestandard
n-polysimplexΛ[n] is the object representable by[n]. If C ∈ Ob(Λ◦Ens),
the image of[n] underC is denoted byCn (the set ofn-polysimplices ofC)
and, for f : [m] → [n], the corresponding mapCn → Cm will be denoted
by C( f). One evidently hasHom(Λ[n],C) ∼→Cn and, in particular, there is
a canonical bijection between the set

∐
Cn of all polysimplices ofC and the

setOb(Λ/C) of objects of the categoryΛ/C. Then-polysimplex ofΛ[n]
corresponding to the identity morphismΛ[n] → Λ[n] is calledfundamental
and is denoted byen. A polysimplex x ∈ Cn is said to bedegenerateif
there exists a non-isomorphic surjective morphismf : [n] → [m] with
x ∈ Im(C( f)). Let Cnd

n denote the subset of nondegenerate polysimplices
of Cn.

Lemma 3.2 (Eilenberg-Zilber Lemma).Let x ∈ Cn and p= w(n). Then
(i) there exist a unique pair(I, y), consisting of a subsetI ⊂ [p] and

a polysimplexy ∈ Cnd
nI

, such thatx = C(πI )y;
(ii) given a surjective morphismf : [n] → [m] and z ∈ Cm with

x = C( f)z, there exists a unique surjective morphismg : [m] → [nI ] with
z= C(g)y andg ◦ f = πI .

Proof. (i) That such a pair(I, y) exists is trivial. Let(I ′ ⊂ [p], y′ ∈ CnI ′ )
be another pair with the same property. Take an arbitrary right inverse toπI ,
σ : [nI ] → [n]. Then y = C(πI ′ ◦ σ)y′ and, sincey is nondegenerate, it
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follows thatπI ′ ◦ σ : [nI ] → [nI ′ ] is injective. This implies thatI ⊂ I ′.
For the same reason,I ′ ⊂ I and, therefore,I = I ′. It follows also that
πI ′ ◦ σ = 1nI and, therefore,y= y′.

(ii) The morphismf can be represented in a unique way as a composition
of the projectionπJ : [n] → [nJ] with an isomorphismh : [nJ] ∼→[m].
By (i), there exist a unique subsetJ′ ⊂ J and a unique polysimplexy′ ∈ Cnd

nJ′
with C(h)z= C(π ′)y′, whereπ ′ is the canonical projection[nJ] → [nJ′].
We getC(πJ′)y′ = C(πJ)(C(h)z) = C( f)z = x and, by (i) again,J′ = I
andy′ = y. If π is the canonical projection[nJ ] → [nI ], then forg = π◦h−1

one hasC(g)y = zandg◦ f = πI . The unicity ofg follows from (i) applied
to the polysimplexC(h)z ∈ CnJ . ut

Lemma 3.2 implies that there is a bijection
∐

Cnd
nI

∼→Cn, whereI runs
through subsets of[p] and each mapCnd

nI
→ Cn is C(πI ). It also implies

that a morphism of polysimplicial setsE→ C is injective (resp. bijective)
if and only if, for everyn, the image ofEnd

n in Cn is contained inCnd
n and

the induced mapEnd
n → Cnd

n is injective (resp. bijective).
For a polysimplicial setC, let O(C) denote the partially ordered set

associated with the categoryΛ/C (see [GaZi, Ch. II, §5.1]). Namely, it is
the partially ordered set associated with the setOb(Λ/C) of polysimplices
of C endowed with the following partial preorder structure: forx ∈ Cn and
y ∈ Cm, x ≤ y if there exists a morphismf : [n] → [m] with x = C( f)y.
As a set,O(C) is the set of equivalence classes of polysimplices ofC
with respect to the following equivalence relation: forx and y as above,
x ∼ y if there exist morphismsf : [n] → [m] and g : [m] → [n]
with x = C( f)y and y = C(g)x. Lemma 3.2 implies thatO(C) coincides
with the set of equivalence classes of nondegenerate polysimplices. For
example, forn = (n0, . . . ,np), O(Λ[n]) is canonically isomorphic to the
partially ordered (by inclusion) set of all subsetsA ⊂ [n] with the property
A = π0(A) × · · · × πp(A), whereπi is the projection[n] → [ni ]. The
correspondenceC 7→ O(C) is a functor fromΛ◦Ens to the categoryOr of
partially ordered sets.

Lemma 3.3. The functorΛ◦Ens → Or : C 7→ O(C) commutes with
direct limits.

Proof. It is evident that the functor commutes with coproducts, and so
it suffices to verify that ifCoker(C′′ →→ C′) ∼→C then Coker(O(C′′) →→
O(C′)) ∼→O(C). Let x′ ∈ C′n andy′ ∈ C′m, and letx andy be their images
in Cn andCm, respectively. First we have to check that ifx ∼ y, then there
exist x̃′ ≈ x′ and ỹ′ ≈ y′ with x̃′ ∼ ỹ′, where≈ denotes the equivalence
relation on the set of polysimplices ofC′ induced by the pair of morphisms
C′′ →→ C′. Take surjective morphismsf : [n] → [̃n] andg : [m] → [m̃] for
which there exist nondegeneratẽx ∈ Cñ and ỹ ∈ Cm̃ with x = C( f)x̃ and
y= C(g)ỹ. By Lemma 3.2, there exists an isomorphismσ : [m̃] ∼→[̃n] with
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ỹ = C(σ)x̃. Let x′1 be a preimage of̃x. ThenC′( f)x′1 ≈ x′, C′(σg)x′1 ≈ y′
andC′( f)x′1 ∼ x′1 ∼ C′(σg)x′1. We also have to check that ifx ≤ y, then
there exist̃x′ ≈ x′ and ỹ′ ≈ y′ with x̃′ ≤ ỹ′. For this we take a morphism
f : [n] → [m] with x = C( f)y, and we getC′( f)y′ ≈ x′ andC′( f)y′ ≤ y′.

ut
By [GaZi, Ch. II, 1.3], the functorO is left adjoint to the functorOr →

Λ◦Ens that associates with a partially ordered setE the simplicial set
whose sets ofn-polysimplices are the sets of maps of partially ordered sets
O(Λ[n])→ E.

Let d ≥ 0. The d-skeleton Skd(C) of a polysimplicial setC is the
polysimplicial subsetC′ ⊂ C such thatC′n is formed by all polysimplices
degenerated fromm-polysimplices with|m| ≤ d. (Form = (m0, . . . ,mq),
|m| = m0+ · · · +mq.) We say thatC is of dimension≤ d if C = Skd(C).
For example, the standardn-polysimplexΛ[n] is of dimension|n|, and
each nondegeneraten′-polysimplex with |n′| ≥ |n| is equivalent to the
fundamentaln-polysimplex ofΛ[n]. In particular, each polysimplex of
Λ[n], non-equivalent to the fundamental one, is contained in the(|n| − 1)-
skeletonSk|n|−1(Λ[n]). The latter is calledthe boundaryof Λ[n] and is
denoted byΛ̇[n]. Furthermore, for a polysimplexx ∈ Cn, let Gx denote the
stabilizer ofx in Aut([n]). The morphismΛ[n] → C that corresponds tox
goes through a morphismGx\Λ[n] → C.

Lemma 3.4. Let Ad be a set of representatives of the equivalence classes
of nondegenerate polysimplices ofC of dimensiond. Then the following
diagram is cocartesian∐

x∈Ad Gx\Λ̇[nx] −→ Skd−1(C)

↓ ↓∐
x∈Ad Gx\Λ[nx] −→ Skd(C)

Lemma 3.5. Let a finite groupG act on a polysimplicial setC. Then for
anyn one has(G\C)nd

n = G\Cnd
n .

Proof. Let ϕ denote the canonical surjective morphismC → C′ = G\C.
For x ∈ Cnd

n , let I be the subset of[p], p = w(n), for which there exists
a nondegeneratey′ ∈ C′nI

with ϕn(x) = C′(πI )y′. If σ is a right inverse
ofπI , then fory= C(σ)x one hasϕnI (y) = y′ andϕn(C(πI )y) = ϕn(x) and,
therefore, there exists an elementg ∈ G with x = gC(πI )y = C(πI )(gy).
This implies thatI = [p] and x = gy, i.e., ϕn(x) is nondegenerate. It
follows thatG\Cnd

n ⊂ (G\C)nd
n . The converse inclusion is evident. ut

Proof of Lemma 3.4.Let C′ be the cocartesian product, and letD and D′
denote the polysimplicial sets at the north-west and the south-west of the di-
agram, respectively. If|m| < d, thenDm

∼→D′m andSkd−1(C)m
∼→Skd(C)m
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and, therefore,C′m
∼→Skd(C)m. Furthermore, Lemma 3.5 implies that the

lower arrow of the diagram induces a bijection between the setX of nonde-
generate polysimplices ofD′ of dimensiond and the setY of nondegenerate
polysimplices ofC of dimensiond. If now |m| ≥ d andq = w(m), then
the complement ofDm in D′m (resp. ofSkd−1(C)m in Skd(C)m) consists of
the polysimplices degenerated fromX (resp.Y). By the Eilenberg-Zilber
Lemma 3.2, the latter set corresponds bijectively to the set of pairs(J, x)
(resp.(J, y)), whereJ is a subset of[q] with |mJ| = d andx ∈ D′nd

mJ
⊂ X

(resp.y ∈ Cnd
mJ
⊂ Y). It follows thatC′m

∼→Skd(C)m. ut
The categoryΛ is a symmetric strict monoidal category (see [Mac,

Ch. VII]) with respect to the multiplication bifunctorΛ × Λ → Λ de-
fined by [0] [n] = [n] [0] = [n] and, if n′ = (n′0, . . . ,n

′
p′) and n′′ =

(n′′0, . . . ,n
′′
p′′) are different from 0, then[n′] [n′′] = [n], where n =

(n′0, . . . ,n
′
p′,n

′′
0, . . . ,n

′′
p′′). The above structure onΛ is naturally extended

to a similar structure on the category of polysimplicial setsΛ◦Ens, i.e.,
there is a bifunctorΛ◦Ens×Λ◦Ens−→ Λ◦Ens : (C′,C′′) 7→ C′ C′′ that
commutes with direct limits and is defined byC′ C′′ = lim−→Λ[n], where the

limit is taken over all(Λ[n′] → C′) ∈ Ob(Λ/C′) and(Λ[n′′] → C′′) ∈
Ob(Λ/C′′), and[n] = [n′] [n′′]. We remark that the canonical morphisms
from [n′] [n′′] to [n′] and [n′′] induce a morphism of functors→ ×,

where× is the direct product bifunctorΛ◦Ens× Λ◦Ens
×→ Λ◦Ens :

(C′,C′′) 7→ C′ × C′′ (which defines another symmetric strict monoidal
category structure onΛ◦Ens). We also remark that the correspondence
(Λ[n′] → C′,Λ[n′′] → C′′) 7→ (Λ[n] → C), where[n] = [n′] [n′′],
defines a mapOb(Λ/C′)×Ob(Λ/C′′)→ Ob(Λ/C′ C′′). Forx′ ∈ C′n′ and
x′′ ∈ C′′n′′ we denote by〈x′, x′′〉 the corresponding element of(C′ C′′)n,
[n] = [n′] [n′′]. Finally, for two disjoint subsetsI ′, I ′′ ⊂ [p], where
p= w(n), we denote byσI ′,I ′′ the evident isomorphism[nI ′ ∪I ′′ ] ∼→[nI ′ ] [nI ′′ ]
and byπI ′,I ′′ the compositionσI ′,I ′′ ◦ πI ′∪I ′′ : [n] → [nI ′ ] [nI ′′ ].
Lemma 3.6. Let x ∈ (C′ C′′)n and p = w(n). Then there exist a unique
tuple(I ′, I ′′, x′, x′′), consisting of disjoint subsetsI ′, I ′′ ⊂ [p] and polysim-
plicesx′ ∈ C′nd

nI ′ andx′′ ∈ C′′nd

nI ′′ , such thatx = (C′ C′′)(πI ′,I ′′)〈x′, x′′〉.
Lemma 3.6 implies that for any pairx′ ∈ C′nd

n′ andx′′ ∈ C′′nd
n′′ one has

〈x′, x′′〉 ∈ (C′ C′′)nd
n , where[n] = [n′] [n′′]. It also implies that there is

a bijection
∐

C′nd

nI ′ ×C′′nd

nI ′′
∼→(C′ C′′)n, whereI ′ and I ′′ run through disjoint

subsets of[p] (p= w(n)).
Proof. The morphismΛ[n] → C′ C′′ that corresponds tox goes through
the canonical morphismΛ[m′] Λ[m′′] → C′ C′′ for some morphisms
Λ[m′] → C′ andΛ[m′′] → C′′. The morphismΛ[n] → Λ[m′] Λ[m′′]
is a composition of a projectionΛ[n] → Λ[nJ] and an injective morphism
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Λ[nJ] → Λ[m′] Λ[m′′]. The latter is defined by a partitionJ = J′
∐

J′′
and injective morphismsΛ[nJ′] → Λ[m′] and Λ[nJ′′ ] → Λ[m′′]. If
y′ ∈ C′nJ′ andy′′ ∈ C′′nJ′′ correspond to the induced morphismsΛ[nJ′] → C′

andΛ[nJ′′ ] → C′′, we getx = (C′ C′′)(πJ′,J′′)〈y′, y′′〉. Let y′ = C′(π ′)x′

andy′′ = C′′(π ′′)x′′, wherex′ ∈ C′nd

nI ′ andx′′ ∈ C′′nd

nI ′′ for some subsetsI ′ ⊂ J′

and I ′′ ⊂ J′′, andπ ′ andπ ′′ are the canonical projections[nJ′] → [nI ′ ]
and [nJ′′ ] → [nI ′′ ]. Then we getx = (C′ C′′)(πI ′,I ′′)〈x′, x′′〉. Let now
ϕ′ andϕ′′ be the canonical morphismsC′ C′′ → C′ and C′ C′′ → C′′.
Then ϕ′n(x) = C′(πI ′)x′ and ϕ′′n(x) = C′′(πI ′′)x′′. The Eilenberg-Zilber
Lemma 3.2 implies that the subsetsI ′ and I ′′ and the polysimplicesx′
andx′′ are uniquely determined byx. ut
Corollary 3.7. (i) The canonical morphismC′ C′′ → C′ ×C′′ is injective;

(ii) there is a canonical isomorphism of partially ordered setsO(C′)×
O(C′′) ∼→O(C′ C′′);

(iii) given injective morphismsE′ → C′ and E′′ → C′′, the induced
morphismE′ E′′ → C′ C′′ is injective. ut

A polysimplicial set is said to befinite if it has a finite number of non-
degenerate polysimplices. It is said to belocally finite if each vertex is
contained in a finite number of nondegenerate polysimplices. Furthermore,
a polysimplicial set is said to befree if, for eachx ∈ Cnd

n , the correspond-
ing morphismΛ[n] → C is injective or, equivalently, if each nondegen-
erate polysimplex has the maximally possible number of vertices (equal
to (n0+ 1)· . . . ·(np + 1) for n-polysimplices). It is said to beinteriorly
free if for each [n] the action ofAut([n]) on the set of the nondegenerate
n-polysimplices is free. It is clear that a free polysimplicial set is always
interiorly free. From Lemma 3.6 it follows that the-product of two free
(resp. interiorly free) polysimplicial sets is free (resp. interiorly free).

We say that a polysimplicial setC is nondegenerateif, for any injective
morphism f : [m] → [n], the mapC( f) takes nondegenerate polysimplices
to nondegenerate ones. Furthermore, a morphism between polysimplicial
sets is said to benondegenerateif it takes nondegenerate polysimplices to
nondegenerate ones. The category of nondegenerate polysimplicial sets with
nondegenerate morphisms between them can be described as follows. LetΛ
be the category with the same family of objects asΛ but with only injective
morphisms between them. The restriction functorΛ◦Ens→ Λ◦Ens has
a left adjoint functorΛ◦Ens → Λ◦Ens : C 7→ C which extends the

functorΛ → Λ
h�→ Λ◦Ens to the one that commutes with direct limits.

One hasC0 = C0 and, for[n] 6= [0], Cn can be identified with the disjoint
union

∐
CnI , taken over all subsetI ⊂ [p]. For a morphism[m] → [n]

associated with a triple(J, f, α), the mapCn→ Cm is induced by the maps
CnI → Cm f−1( I )

. The functorC 7→ C identifiesΛ◦Ens with the category

mentioned at the beginning of this paragraph, and one hasO(C)
∼→O(C).
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The symmetric strict monoidal category structure onΛ induces a simi-
lar structure onΛ, and the latter extends to the categoryΛ◦Ens and is
compatible with the functorC 7→ C.

We now construct the geometric realization of a polysimplicial set. For
this we consider the functorΣ : Λ→Ke that takes[n] to
Σn = Σn0×· · ·×Σnp = {(uil )0≤i≤p,0≤l≤ni ∈ [0,1][n]|ui0+· · ·+uini = 1} ,
where[0,1][n] is the space of all maps[n] → [0,1]. Given a morphism
γ : [m] → [n] associated with a triple(J, f, α), the mapΣ(γ) takes
a point u = (ujk)0≤ j≤q,0≤k≤mj to the pointu′ = (u′il )0≤i≤p,0≤l≤ni , where
(a) if [m] 6= [0] and i 6∈ Im( f), or [m] = [0], thenu′il = 1 for l = αi (0)
and u′il = 0 for l 6= αi (0), and (b) if [m] 6= [0] and i ∈ Im( f), then
u′il = u f−1(i),α−1

i (l) for l ∈ Im(αi ) andu′il = 0 for l 6∈ Im(αi ). Thegeometric
realization functor|?| : Λ◦Ens→ Ke extends the functorΣ to the one
that commutes with direct limits, i.e., forC ∈ Ob(Λ◦Ens), |C| is the
direct limit of the functor(Λ[n] → C) 7→ Σn from the categoryΛ/C
to Ke. We remark that, given an action of a groupG on a polysimplicial
setC, there is a canonical isomorphismG\|C| ∼→|G\C|, and that for any
pair of polysimplicial setsC′ andC′′ there is a canonical homeomorphism
|C′ C′′| ∼→|C′|×|C′′|, where the latter direct product is taken in the category
of Kelley spaces. We also remark that the restriction of the functorΣ to
the categoryΛ gives rise to a geometric realization functor|?| : Λ◦Ens→
Ke and, for anyC ∈ Ob(Λ◦Ens), there is a canonical homeomorphism
|C| ∼→|C|.

The interiorΣ̊n of Σn, i.e., the subset of the points that have an open
neighborhood homeomorphic to an|n|-dimensional open ball, coincides
with Σn∩]0,1[[n] if [n] 6= [0] and withΣn if [n] = [0]. The boundaryΣ̇n

of Σn is the closed subsetΣn\Σ̊n.

Lemma 3.8. The canonical morphisṁΛ[n] → Λ[n] induces a homeo-
morphism|Λ̇[n]| ∼→Σ̇n.

Proof. Let A denote the family of subsetsA ⊂ [n] with the propertyA =
A0×· · · × Ap, whereAi is the image ofA under the projection[n] → [ni ].
For A ∈ A, letnA denote the tuple consisting of the numbers #Ai−1 that are
greater than zero, and set|A| = |nA|. There is the evident injective morphism
i A : [nA] → [n], and the morphismsi A for all A ∈ A form a representative
set of the equivalence classes of nondegenerate polysimplices ofΛ[n]. For
B ∈ A with B ⊂ A, there is a canonical injective morphism[nB] → [nA]
whose composition withi A coincides withi B. EachB ∈ A with |B| =
|n| − 2 is contained in exactly two subsetsB0, B1 ∈ A with |B0| = |B1| =
|n| − 1. Let i 0

B and i 1
B denote the canonical morphisms[nB] → [nB0] and

[nB] → [nB1], respectively.We claim that there is a canonical isomorphism
of polysimplicial sets

Coker(
∐
Λ[nB] →→

∐
Λ[nA]) ∼→Λ̇[n] ,
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where the first (resp. second) coproduct is taken over allB ∈ A (resp.
A ∈ A) with |B| = |n|−2 (resp.|A| = |n|−1), and the upper (resp. lower)
morphism is induced by the morphismsi 0

B (resp.i 1
B). Indeed, letD denote

the cokernel. Since all of the morphismsΛ[nA] → Λ̇[n] are injective, it
suffices to check thatDnd

m
∼→Λ̇[n]nd

m for all |m| with |m| ≤ |n| − 1. The
surjectivity is evident, and the injectivity form with |m| = |n| − 1 directly
follows from the construction. Assume that there are two subsetA, A′ ∈ A
with |A| = |A′| = |n| − 1 such that for somem with |m| ≤ |n| − 2
the images of two polysimplices fromΛ[nA]nd

m andΛ[nA′ ]nd
m in Λ[n]m

coincide. This means that there is a subsetC ∈ A with C ⊂ A ∩ A′ and
[m] ∼→[nC], and our claim follows from the simple observation that there
exists a sequence of subsetsA1 = A, A2, . . . , Al = A′ with |Ai | = |n| − 1
andC ⊂ Ai ∩ Ai+1. The statement of the lemma now follows easily from
the fact that the geometric realization functor commutes with cokernels.ut

Lemmas 3.4 and 3.8 imply that an injective morphism of polysimplicial
setsC′ → C induces a homeomorphism ofC′ with a closed subset of|C|.
Furthermore, a subset of|C|, which is the image of the interior̊Σn with
respect to the mapΣn → |C| that corresponds to a polysimplexx ∈ Cn,
is called a (polysimplicial) cell of |C|. It is clear that for a given cell
such a polysimplexx can be chosen to be nondegenerate. In this case
Lemmas 3.4 and 3.8 imply that the above map identifiesGx\Σ̊n with the
cell. In particular, ifC is interiorly free,Σ̊n is identified with its image
in |C|. (If C is free,Σn is identified with its image in|C|.) It follows also
that |C| is a disjoint union of cells, the closure of a cell is a union of cells,
and the image of a cell of|C| under the map induced by a morphismC→ C′
is a cell of|C′|. Let O(|C|) denote the set of cells of|C| endowed with the
partial ordering such thatA ≤ B if A ⊂ B.

Corollary 3.9. For each polysimplicial setC, there is a functorial iso-
morphism of partially ordered setsO(C)

∼→O(|C|). ut
Let B be the functorΛ◦Ens → ∆◦Ens which extends the functor

Λ → ∆◦Ens : [n] 7→ N(O(Λ[n])) to the one that commutes with direct
limits (thebarycentric subdivision functor). Notice that, if in the definition
of B we use the categoryΛ instead ofΛ, we get a functorΛ◦Ens→ ∆◦Ens
compatible withB with respect to the functorC 7→ C.

Lemma 3.10. For eachC ∈ Ob(Λ◦Ens) there is a functorial homeomor-
phism|BC| ∼→|C|.
Proof. Since all of the functors considered commute with direct limits,
it suffices to construct functorial homeomorphisms|BΛ[n]| ∼→Σn. For
n = (n0, . . . ,np), let z(Σn) denote the point ofΣn with the coordi-
natesuil = 1

ni+1 for all 0 ≤ i ≤ p and 0 ≤ l ≤ ni . We remark that,

given an isomorphism[m] ∼→[n], the image ofz(Σm) in Σn coincides with
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z(Σn). It follows that, given an injective morphismf : [m] → [n], the
image of z(Σm) in Σn depends only on the image of[m] in [n], i.e.,
only on the class off in O(Λ([n]). In this way we get a system of maps
O(Λ[n])→ Σn : α 7→ z(α) possessing the property that, given an injective
morphismγ : [m] → [n], one hasΣ(γ)(z(α)) = z(O(γ)(α)). For a map
of partially ordered setsµ : [p] → O(Λ[n]), where p here is notw(n),
let θµ denote the affine mapΣ p → Σn that takes thei -th vertex ofΣ p

to z(µ(i)). It follows from the construction that for an injective morphism
γ : [m] → [n] and a commutative diagram of maps of partially ordered
sets

[p] µ−→ O(Λ[n])
↑ h ↑ O(γ)
[q] ν−→ O(Λ[m])

the following diagram is commutative

Σ p θµ−→ Σn

↑ Σ(h) ↑ Σ(γ)
Σq θν−→ Σm

Thus, we get functorial continuous maps|BΛ[n]| → Σn. That these are
homeomorphisms is an easy exercise. ut
Corollary 3.11. Let C ∈ Λ◦Ens. Then

(i) |C| is a Hausdorff locally contractible space;
(ii) if C is finite (resp. locally finite),|C| is compact (resp. locally com-

pact);
(iii) if C is locally finite, any subset of|C| which is a union of cells is

locally contractible.

Proof. Everything follows from the corresponding properties of simplicial
sets and the fact that any cell of|C| is a finite union of cells of|BC|. ut

We remark that for each polysimplicial setC there is a canonical
surjective morphism of simplicial setsBC → N(O(C)). The latter, in
general, is not an isomorphism.

Lemma 3.12. If C is a free polysimplicial set, thenBC
∼→N(O(C)).

Proof. SinceC is nondegenerate, we may consider it as an object ofΛ◦Ens.
The simplicial setBC is the inductive limit lim−→ N(O(Λ[n])) taken over all

(Λ[n] → C) ∈ Ob(Λ/C). Let α : Λ[n] → C andα′ : Λ[n′] → C be
elements ofOb(Λ/C), and assume that two maps of partially ordered sets
f : [p] → O(Λ[n]) and f ′ : [p] → O(Λ[n′]) induce the same map
[p] → O(C). We have two check thatf and f ′ represent the same element
in the inductive limit lim−→ Np(O(Λ[n])). First of all, if f(p) is the class of

a morphismΛ[m] → Λ[n], then the mapf goes through a map of partially
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ordered sets[p] → O(Λ[m]) because the mapO(Λ[m]) → O(Λ[n]) is
injective. It follows that we can replacef and f ′ by maps that represent
the same elements in the inductive limit so thatf(p) and f ′(p) are the
classes of the fundamental polysimplicesen anden′ . Furthermore, since the
images of the latter classes inO(C) coincide, there exists an isomorphism
σ : [n′] ∼→[n] with α′ = α ◦ σ . We may therefore replacef ′ and assume
that n′ = n andα′ = α. SinceC is free, the map of partially ordered sets
O(Λ[n])→ O(C) is injective, and the required statement follows. ut

We are now ready to associate with every poly-stable schemeX over
a field K a locally finite polysimplicial setC(X) ∈ Ob(Λ◦Ens) as fol-
lows. Assume first thatX is strictly poly-stable.By Proposition 2.5, the
set of strata ofX coincides with the family of irreducible components
of sets of the form(∩X∈AX)\(∪X 6∈AX), whereA runs through finite sub-
sets ofirr(X), the intersection of any family of irreducible components of
X is smooth overK and, in particular, ifX is elementary then the later
intersection is always irreducible. For a pointx ∈ X, let irr(X, x) denote
the set of the irreducible components ofX passing throughx provided
with the metric with respect to which the distance between two compo-
nentsX, X′ ∈ irr(X, x) is the codimensioncodimx(X ∩ X′) of the inter-
sectionX ∩ X′ at the pointx. For example, ifT is the standard scheme
T = T 0×· · ·×T p×S, whereT i = Spec(K [Ti0, . . . , Tini ]/(Ti0· . . . ·Tini ))

with ni ≥ 1 andS = Spec(K [S1, . . . , Sm, S−1
1 , . . . , S−1

m ]), then there is an

isometric bijection[n] ∼→irr(T , t) that takesj = ( j0, . . . , j p) ∈ [n] to the
irreducible component defined by the equationsT0 j0 = · · · = Tp jp = 0
and wheret is contained in the intersection of all irreducible components
of T . We remark that ifϕ : Y → X is a smooth morphism andx ∈ ϕ(y)
for y ∈ Y then the canonical mapirr(Y, y) → irr(X, x), that takes an
irreducible component ofY to the closure of its image inX, is isometric
and, in particular, the metric spaceirr(X, x) depends only on the stratum
that contains the pointx. It follows that each́etale morphismϕ : X′ → T
from an open elementary neighborhoodX′ of x to T , as above, such that
the image ofx is contained in the intersection of all irreducible components
of T , gives rise to an isometric bijectionµϕ : [n] ∼→irr(X, x).

Lemma 3.13. Given a pair(x, µ) consisting of a pointx ∈ str(X) and an
isometric bijectionµ : [n] ∼→irr(X, x), for each isometric mapf : [m]→[n]
there exists a unique pair(y, ν) consisting of a pointy ∈ str(X) with y ≤ x
and an isometric bijectionν : [m] ∼→irr(X, y) for which the following
diagram is commutative

[n]
µ
∼→ irr(X, x)

↑ f ↑
[m]

ν∼→ irr(X, y)
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Proof. The intersection of∩X∈Im(µ◦ f)X with an open elementary neighbor-
hood of the pointx is irreducible, and ify is the generic point of the latter,
then y ∈ str(X), y ≤ x and ν = µ ◦ f induces an isometric bijection
[m] ∼→irr(X, y). That the pair(y, ν) is unique is trivial. ut

For [n] ∈ Ob(Λ), let Cn(X) denote the set of the pairs(x, µ) consisting
of a point x ∈ str(X) and an isometric bijectionµ : [n] ∼→irr(X, x). By
Lemma 3.13, each isometric mapf : [m] → [n] gives rise to a map
C( f) : Cn(X) → Cm(X) : (x, µ) 7→ (y, ν). In this way we get a functor
X 7→ C(X) from the full subcategory ofPstsm consisting of strictly poly-
stable schemes to the categoryΛ◦Ens.

Proposition 3.14. (i) The above functor extends in a way, unique up to
a unique isomorphism, to a functorC : Pstsm→ Λ◦Enssuch that for any
surjectiveétale morphismX′ → X one has

Coker(C(X′ ×X X′) →→ C(X′)) ∼→C(X) ;
(ii) for each poly-stable schemeX there are functorial isomorphisms of par-
tially ordered setsO(C(X))

∼→str(X)and of simplicial setsBC(X)
∼→N(X).

Proof. (i) To apply the construction from the proof of Proposition 2.13,
it suffices to verify thatCoker(C(X′ ×X X′) →→ C(X′)) ∼→C(X) for any
surjectiveétale morphism of strictly poly-stable schemesϕ : X′ → X. First
of all, that the map considered is surjective is clear. Let(x1, µ1) and(x2, µ2)
be two elements ofCn(X

′) whose images inCn(X) coincide. This implies
thatϕ(x1) = ϕ(x2) and, therefore, there exists a stratum ofX′′ = X′×X X′,
whose generic pointx′′ goes toxi under the two projections fromX′′

toX′. It follows that the compositions of isometric bijectionsirr(X′′, x′′)
p1→

irr(X′, x1)
∼→irr(X, x) andirr(X′′, x′′)

p2→ irr(X′, x2)
∼→irr(X, x) coincide.

This implies that the isometric bijectionsp−1
1 ◦µ1 andp−1

2 ◦µ2 between[n]
andirr(X′′, x′′) coincide and, therefore, the pair(x′′, p−1

1 ◦ µ1) ∈ Cn(X
′′)

goes to the pairs(x1, µ1) and(x2, µ2), respectively.
(ii) It suffices to construct the isomorphism for strictly poly-stable

schemes. For such a schemeX the first isomorphism is induced by the
map(x, µ) 7→ x. Furthermore, since the polysimplicial setC(X) is free,
Lemma 3.12 implies thatBC(X)

∼→N(O(C(X))). SinceO(C(X))
∼→str(X)

andN(X) = N(str(X)), we get the required isomorphismBC(X)
∼→N(X).

ut
For a poly-stable schemeX the nondegenerate polysimplicial set from

Λ◦Ens that corresponds toC(X) will be denoted byC(X). If X is strictly
poly-stable, thenCn(X) can be identified with the set of the triples(x, I, µ)
consisting of a pointx ∈ str(X), a subsetI ⊂ [p], wherep= w(n), and an
isometric bijectionµ : [nI ] ∼→irr(X, x). Given a morphismγ : [m] → [n]
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associated with a triple(J′, f, α), the mapC(γ) : Cn(X)→ Cm(X) takes
a triple (x, I, µ) to the triple(y, J, ν), whereJ is the preimage ofI under
the injective mapf : J′ → [p], and the pair(y, ν) is defined by the pair
(x, µ) and an isometric map[mJ] → [nI ] as in Lemma 3.13. The following
lemma implies that the functorC : P stsm→ Λ◦Ens extends naturally to
the categoryP sttps.

Lemma 3.15. Let ϕ : Y → X be a trivially poly-stable morphism. Given
(y, J, ν) ∈ Cn(Y), there exists a unique pair(I, µ) consisting of a subset
I ⊂ J and an isometric bijectionµ : [nI ] ∼→irr(X, x), wherex = ϕ(y), for
which the following diagram is commutative

[nJ]
ν∼→ irr(Y, y)

↓ ↓
[nI ]

µ
∼→ irr(X, x)

In particular, (x, I, µ) ∈ Cn(X).

Proof. The unicity is trivial, and the existence is an easy exercise. ut
The functorP sttps → Ke : X 7→ |C(X)| will be denoted by|C|.

Notice that since the polysimplicial setsC(X) are locally finite, the topo-
logical spaces|C(X)| are locally compact. IfX is quasi-compact,|C(X)|
is compact.

Lemma 3.16. For each poly-stable schemeX overK and each poly-stable
schemeY over K ′ with K ′ ⊃ K , there is a functorial surjective nondegen-
erate morphismC(X×Y)→ C(X) C(Y). If X is strictly poly-stable and
all of the strata ofX are geometrically irreducible, then the latter is an
isomorphism.

Proof. To construct the morphism, we may assume thatX andY are strictly
poly-stable. Let(z, I, µ) ∈ Cn(X× Y), and let(x, I ′, µ′) and(y, J, ν) be
its images inCn(X) andCn(Y), respectively. It is clear thatI ′ ∩ J = ∅
and I ′ ∪ J = I and, therefore, the triples(x, I ′, µ′) and (y, J, ν) give
rise to a polysimplex in(C(X) C(Y))n. This gives the required surjective
nondegenerate morphismC(X × Y) → C(X) C(Y). If all of the strata
of X are geometrically irreducible, thenstr(X × Y)

∼→str(X) × str(Y).
This implies that the above triple(z, I, µ) is uniquely defined by the triples
(x, I ′, µ′) and(y, J, ν) and, therefore, the morphism considered is injective.

ut
Corollary 3.17. Let X be a quasi-compact poly-stable scheme overK .
Then there exists a finite separable extensionK ′ of K such that for any
poly-stable schemeY over K ′′ with K ′′ ⊃ K ′ one hasC(X×Y)

∼→C(X⊗
K ′) C(Y). ut
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4. A colored polysimplicial set associated with a poly-stable formal
scheme

In this section we introduce a categoryΛR associated with a submonoid
R ⊂ [0,1] that contains 0 and 1. (The unit interval[0,1] is considered
as a monoid by multiplication; in our applicationsR = |k| ∩ [0,1].) The
categoriesΛR give rise to a category of colored polysimplicial setsΛ̃

◦
Ens.

We construct a commutative diagram of functors

Pst f tps L−→ Λ̃
◦
Ens

|?|−→ K̃e
↓ ↓W ↓

Psttps C−→ Λ◦Ens
|?|−→Ke

where the left vertical arrow is the functorX 7→ Xs, K̃e is the category
of Kelley spaces endowed with a sheaf of monoids of continuous functions
with values in[0,1], and the right vertical arrow is the forgetful functor.

Let R be a submonoid of[0,1] that contains 0 and 1, and letΛR be
the category, whose objects are the pairs[n]r consisting of[n] ∈ Ob(Λ)
and r ∈ R[p], where p = w(n), such thatr0 = 1, if [n] = [0], and
ri < 1 for all 0 ≤ i ≤ p, if [n] 6= [0], and whose sets of morphisms
Hom([m]s, [n]r ) consist of the morphismsγ : [m] → [n] in Λ which are
associated with a triple(J, f, α) such thatsj = r f( j), for all j ∈ J. Notice
that the above morphismγ : [m]s→ [n]r is a composition of the projection
πJ : [m]s→ [mJ]sJ with an injective morphismσ : [mJ]sJ → [n]r . (The
notationsJ has the same meaning asmJ.) If γ is surjective, it has a right
inverse.

The categoryΛ◦REnswill be called the category ofR-colored polysim-
plicial sets. If R′ is a bigger submonoid of[0,1] then there are fully faith-
ful functorsΛR → ΛR′ andΛ◦REns→ Λ◦R′Ens. Thestandardr -colored
n-polysimplexΛ[n]r is the object representable by[n]r . If L ∈ Ob(Λ◦REns),
the image of[n]r underL is denoted byL r

n (the set ofr -coloredn-poly-
simplices ofL) and, for f : [m]s→ [n]r , the corresponding mapL r

n→ Ls
m

will be denoted byL( f). One evidently hasHom(Λ[n]r , L)
∼→L r

n.
All of the notions and facts from §3 that are introduced before the con-

struction of the geometric realization functor are extended in the evident
way to the category of colored polysimplicial sets. In particular,Λ◦REns is
a symmetric strict monoidal category with respect to the multiplicationthat
extends the evident one on the categoryΛR. Furthermore, the category of
nondegenerate colored polysimplicial sets with nondegenerate morphisms
between them is equivalent toΛ◦REns, whereΛR is the subcategory of
ΛR with the same family of objects but with only injective morphisms be-
tween them. ForL ∈ Ob(Λ◦REns) the corresponding nondegenerate colored
polysimplicial set will be denoted byL .

For a topological spaceX, let MX denote the sheaf of continuous func-
tions onX with values in[0,1] considered as a sheaf of monoids by multi-
plication. LetK̃edenote the category whose objects are the pairs(X,MX),



32 V. G. Berkovich

whereX is a Kelley space andMX ⊂ MX is a subsheaf of monoids, and
whose morphisms(Y,MY) → (X,MX) are continuous mapsϕ : Y→ X
such that for any functionf ∈ M(U) over an open subsetU ⊂ X one has
f ◦ ϕ ∈ M(ϕ−1(U)) (i.e., the image of the sheafϕ∗MX in MY is contained
in MY). Note that the categorỹKe admits direct and finite inverse limits
and that the forgetful functorF : K̃e→ Ke commutes with those limits.
We define a functorΣR : ΛR→ K̃e byΣR([n]r ) = (Σn

r ,Mn
r ), where

Σn
r = {t = (til )0≤i≤p,0≤l≤ni ∈ [0,1][n]|ti0· . . . ·tini = ri }

and the sheafMn
r consists of all continuous functions which locally are

restrictions of functions of the formt 7→ λ
∏p

i=0

∏ni
l=0 tail

il with λ ∈ R and
ai ∈ Z+. (Notice that the monoidM(Σn

r ) coincides withM(Σ̊n
r ), and each

non-zero function from it has a unique representation in the above form
with the property that for each 0≤ i ≤ p there exists 0≤ l ≤ ni with
ail = 0.) Given a morphismγ : [m]s → [n]r associated with a triple
(J, f, α), the mapΣR(γ) takes a pointt = (t jk)0≤ j≤q,0≤k≤mj to the point
t′ = (t′il )0≤i≤p,0≤l≤ni , where (a) if[m] 6= [0] andi 6∈ Im( f), or [m] = [0],
thent′il = ri for l = αi (0) andt′il = 1 for l 6= αi (0), and (b) if[m] 6= [0] and
i ∈ Im( f), thent′il = t f−1(i),α−1

i (l) for l ∈ Im(αi ) andt′il = 1 for l 6∈ Im(αi ).
For the mapΣR(γ) the image of the sheafΣR(γ)

∗Mn
r in MΣm

s
is contained

in Mm
s , i.e.,ΣR is really a functor. (Notice that ifγ is injective that the

set of the restrictions of functions fromM(Σn
r ) to the image ofΣR(γ)

coincides withM(Σm
s ).) For brevity, we shall denote an object(X,MX) of

the categorỹKe by X. The following fact will be used in §5.

Lemma 4.1. For [m]s, [n]r ∈ Ob(ΛR), there is a canonical bijection

Isom([m]s, [n]r ) ∼→Isom(Σm
s ,Σ

n
r )
∼→Isom(Σ̊m

s , Σ̊
n
r ) .

Proof. Both maps are evidently injective, and surjectivity of the second
map easily follows from the equalityM(Σn

r ) = M(Σ̊n
r ). It remains to check

that any isomorphismϕ : Σm
s
∼→Σn

r is associated with an isomorphism

[m]s ∼→[n]r . Let us call aface ofΣn
r the image ofΣn′

r ′ for some injective
morphism[n′]r ′ → [n]r . If [n′] = [0] (resp.[1]) such a face is called avertex
(resp.edge). It is easy to see that a subsetA ⊂ Σn

r is a face if and only if
there exists a functionf ∈ M(Σn

r ) with A = {t ∈ Σn
r | f(t) = 1}. It follows

that any isomorphismϕ : Σm
s
∼→Σn

r takes vertices to vertices, edges to edges
and so on. We now notice that there is a canonical bijection between the
set[n] and the set of vertices ofΣn

r , and the distance between two elements
of [n] is equal to the minimal number of edges which are necessary to join
the corresponding vertices ofΣn

r . Hence, the above isomorphismϕ induces
an isometric bijectionγ : [m] ∼→[n]. Replacingϕ by a composition with the
evident isomorphism induced byγ , we may assume that[m] = [n] and that
the isomorphismγ is the identity map, and we have to show thats= r and
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ϕ is the identity map. For this we notice that two functions fromM(Σn
r )

that take the same values at the vertices ofΣn
r are equal. This immediately

reduces the situation to the case when[n] = [1], i.e.,ϕ is an isomorphism
Σ1

s
∼→Σ1

r that induces the identity map on[1]. The latter easily implies that
s= r andϕ is the identity map. ut

The geometric realization functoris the functor|?| : Λ◦REns→ K̃e
which extends the functorΣR to the one that commutes with direct limits.
Lemma 4.1 implies that the automorphism group of the functor|?| is trivial.
The restriction ofΣR to the categoryΛR gives rise to a geometric realization
functor|?| : Λ◦REns→ K̃eand, for anyL ∈ Ob(Λ◦REns), there is a canon-

ical isomorphism|L| ∼→|L |. For any pair of colored polysimplicial setsL ′

and L ′′ there is a canonical isomorphism|L ′ L ′′| ∼→|L ′| × |L ′′|. The facts
stated in Lemma 3.8 and its Corollary 3.9 are straightforwardly extended to
colored polysimplicial sets. In the same way one introduces thebarycen-
tric subdivision functorBR : Λ◦REns→ ∆◦Enswhich extends the functor
ΛR → ∆◦Ens : [n]r 7→ N(O(Λ[n]r )) and commutes with direct limits.
(Notice thatO(Λ[n]r ) ∼→O(Λ[n]).) If in the definition ofBR one uses the
categoryΛR instead ofΛR, one gets a functorΛREns→ ∆◦Enscompat-
ible with BR with respect to the functorL 7→ L . As in Lemma 3.12 one
shows that for a free colored polysimplicial setL one hasBRL

∼→N(O(L)).

Lemma 4.2. For eachL ∈ Ob(Λ◦REns), there is a functorial homeomor-

phism|BRL| ∼→|L|.
Proof. The proof is analogous to that of Lemma 3.10, we only have
to indicate the points that should be changed. It suffices to construct
functorial homeomorphisms|BRΛ[n]r | ∼→Σn

r . If n = (n0, . . . ,np) and
r = (r0, . . . , r p), let z(Σn

r ) denote the point ofΣn
r with the coordinates

til = r
1

ni+1

i for all 0 ≤ i ≤ p and 0≤ l ≤ ni . Given an injective morphism
γ : [m]s→ [n]r , the image ofz(Σm

s ) in z(Σn
r ) depends only on the image

of [m] in [n], i.e., only on the class ofγ in O(Λ]r ), and in this way we
get a system of mapsO(Λ[n]r ) → Σn

r : α 7→ z(α). We remark that for
each map of partially ordered setsµ : [p] → O(Λ[n]r ) all of the points
z(µ(i)) are contained in an affine component ofΣn

r . (Here p is notw(n).)
We now define, for such a mapµ, a mapθµ : Σ p → Σn

r as the affine one
that takes thei -th vertex ofΣ p to z(µ(i)). The remained part of the proof
of Lemma 3.10 is applicable to the situation considered. ut

The canonical functorΛ◦Ens→ Λ◦REns(induced by the functorΛR→
Λ : [n]r 7→ [n]) has a left adjoint functorW : Λ◦REns→ Λ◦Ens. The latter
extends the functorΛR→ Λ◦Ens : [n]r 7→ Λ[n] to the one that commutes
with direct limits. It follows straightforwardly that the functorW commutes
with the multiplication and that there are functorial isomorphisms of
partially ordered setsO(L)

∼→O(WL) and of simplicial setsBRL
∼→B(WL).
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Lemmas 3.10 and 4.2 imply that there is a functorial homeomorphism
|WL| ∼→|L|. One can easily show that the canonical mapsL r

n→ (WL)n give
rise to a bijection

∐
r (L

r
n)

nd ∼→(WL)nd
n . This allows one to view a colored

polysimplicial setL as a polysimplicial setWL provided with partitions of
the sets(WL)nd

n (coloring of polysimplices). Notice that ifR′ is a bigger
submonoid of[0,1] then there is a commutative diagram of functors

ΛREns
L 7→L ′−→ ΛR′Ens

W↘ ↙ W′

Λ◦Ens

In particular, the canonical morphism|L| → |L ′| is a homeomorphism.
Of course, it is not an isomorphism iñKe because the sheaf of monoids
on |L ′| is bigger than that on|L|. Finally, if in the definition ofW one
uses the categoryΛR instead ofΛR, one gets a functorΛ◦REns→ Λ◦Ens
compatible withW with respect to the functorL 7→ L . ForL ∈ Ob(Λ◦REns)
one has(WL)n =∐r L r

n.
We are now going to associate with a poly-stable formal schemeX overk◦

a colored polysimplicial setL(X) ∈ Ob(Λ◦REns), whereR = |k| ∩ [0,1].
For this we need the following fact.Assume thatX is strictly poly-stable.Re-
call that for each pointx ∈ Xs one can find an open neighborhoodX′ of x in
X and ańetale morphismϕ : X′ → T = T(n,a)×S(m) such that the point
ϕs(x) is contained in the intersection of all irreducible components ofTs.
The isometric bijectionsirr(X′s, x)

∼→irr(Xs, x), irr(X′s, x)
∼→irr(Ts, ϕs(x))

and [n] ∼→irr(Ts, ϕs(x)) : i 7→ T i give rise to an isometric bijection
µϕ : [n] ∼→irr(Xs, x) : i 7→ Xi . Notice that for any isometric bijection

µ : [n] ∼→irr(Xs, x) one can findϕ as above withµϕ = µ.

Proposition 4.3. Given a pointx ∈ Xs and an isometric bijectionµ :
[n] ∼→irr(Xs, x), there exists a tupler = (r0, . . . , r p) ∈ [0,1][p], where
p= w(n), such that for anýetale morphismϕ : X′ → T = T(n,a)×S(m)
as above withµϕ = µ one has|a| = r .

The tupler from Proposition 4.3 associated withµ will be denoted
by rµ.

Proof. We first reduce the situation to the case whenp = 0 andn0 = 1.
Indeed, assume that in that case the required fact is true. For a fixed 0≤ j ≤
p, let i andi′ be two elements of[n] whose coordinates are distinct only at
j -th place. Thencodim(Xi ∩Xi′) = 1, whereXi is the image ofi underµ.
It is easy to see that there is an open embedding of an open neighborhood
of the generic point ofT i ∩ T i′ to a standard formal scheme of the form
T′ = T j (1,aj ) × S(m′). Its composition withϕ gives anétale morphism
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from an open neighborhood of the generic point ofXi ∩ Xi′ to T′ and,
therefore,|aj | is uniquely defined.

Thus, we may assume thatp = 0 andn0 = 1, i.e., there is ańetale
morphismϕ : X → T = T(1,a) × S(m) with ϕ(x) ∈ T 0 ∩ T 1. We now
need the following fact which will also be used later.

Lemma 4.4. Let ϕ : X′ → X be anétale morphism of formal schemes
locally finitely presented overk◦, and assume thatϕ induces an isomorphism
Y′ ∼→Y between subschemesY′ ⊂ Xs and Y ⊂ Xs. Then it induces an
isomorphismπ−1(Y′) ∼→π−1(Y).

If the valuation onk is discrete, the assumption implies thatϕ induces
an isomorphism between formal completions ofX′ andX alongY′ andY,
X′
/Y′
∼→XY, and the lemma follows from the fact that(X′

/Y′)η
∼→π−1(Y′) and

(XY)η
∼→π−1(Y) (see [Ber6, §1]). The reasoning for the previous arguments

works in fact in the general case and, for completeness, we recall it.

Proof. We may assume thatX = Spf(A) andX′ = Spf(A′) are affine and
that Y and Y′ are closed subschemes. Furthermore, since the canonical
morphismY′ → X′s×Xs

Y is anétale closed immersion, we can shrinkX′

and assume thatY′ ∼→X′s ×Xs
Y. Let f1, . . . , fm be elements ofA whose

reductions iñA generate the ideal ofY, and leta be a fixed non-zero element
of k◦◦. (It suffices to consider the case of nontrivial valuation onk.) Then
for any n ≥ 1 there is an isomorphism of ringsA/Jn ∼→A′/J′n, where
J = (a, f1, . . . , fm) and J′ = JA′, and therefore there is an isomorphism
of completions with respect to powers ofJ and J′, Â

∼→Â′. It remains to
show that the analytic spacesπ−1(Y) andπ−1(Y′) are expressible only in
terms of these completions.

Recall [Ber3, §1] thatXη is the space of continuous multiplicative semi-
norms onA that extend the valuation onk◦. The subspaceπ−1(Y) is the
subset of those semi-norms whose values atfi ’s are strictly less than one.
It follows that π−1(Y) is identified with the space of continuous multi-
plicative semi-norms on the completion̂A that extend the valuation onk◦,
and therefore the morphismπ−1(Y′) → π−1(Y) is a homeomorphism.
Furthermore, the spaceπ−1(Y) is a union of an increasing sequence of
affinoid domainsW1 ⊂ W2 ⊂ . . . such thatWn is a Weierstrass domain
in Wn+1 (for example,Wn = {x ∈ Xη|| fi (x)| ≤ 1− 1

n,1 ≤ i ≤ m}). It
follows that affinoid domains inπ−1(Y) are compact subsetsV for which
there are ak-affinoid algebraAV and a continuous homomorphism̂A →
A◦V universal with respect to the property that the image ofM(AV) in
π−1(Y) is contained inV. If now V ′ is an affinoid domain inπ−1(Y′),
then the canonical continuous homomorphism̂A

∼→Â′ → A◦V′ satisfies the
universal property, and thereforeV = ϕ(V ′) is an affinoid domain inπ−1(Y)

isomorphic toV ′. Henceπ−1(Y′) ∼→π−1(Y). ut
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LetX = Spf(A) andA = A⊗k◦ k, and letxi be the preimage (under the
reduction map) of the generic point ofXi , i = 0,1. It suffices to verify the
following fact. For eachi = 0,1, the set{| f(xi )|/| f |sup| f ∈ A∗} coincides
with the set{|a| j | j ≥ 0}, if a 6= 0, and with{1}, if a = 0. Of course, we
may assume thati = 1.

Let t j be the preimage of the generic point ofT j , j = 0,1. Since
|ϕ∗T1(x1)| = |T1(t1)| = |a|, it follows that the first set contains the sec-
ond one. To verify the converse inclusion, assume first thatm = 0, i.e.,
T = T(1,a), and lett = ϕs(x). One has̃k(t) = k̃, and̃k(x) is a finite sep-
arable extension of̃k. Let K be the finite unramified extension ofk with
K̃ = k̃(x), and letT′ = T⊗̂K◦ andX′ = X⊗̂K◦. The preimage oft in T′s
is a pointt′ with k̃(t′) = K̃ , and the preimage ofx in X′s contains a pointx′
with k̃(x′) = K̃ . By Lemma 4.4, there are isomorphisms ofk-analytic spaces
π−1(x)

∼→π−1(x′) ∼→π−1(t′). It follows that the restriction of any elementf
of A toπ−1(x) has a unique representation in the form

∑∞
n=−∞ anun, where

un = T−n
0 for n < 0 andun = Tn

1 for n ≥ 0, an ∈ K and, for every
r < 1, one has|an|r |n| → 0 asn→ ±∞. If a = 0, then the restriction to
π−1(x) of each f ∈ A∗ is of the formλ(1+ g), whereλ ∈ K∗ andg is an
analytic function onπ−1(x) whose absolute value is strictly less than one,
and therefore| f(x1)|/| f |sup= {1}. If a 6= 0, then the restriction toπ−1(x)
of each f ∈ A∗ is of the formλun(1+ g), whereλ andg are as above and
n ∈ Z. One has

| f |sup= sup
x∈π−1(x)

| f(x)| = |λ| ,

and, whenU runs through open neighborhoods of the pointt1 in T1, one
has

| f(x1)| = lim
U

sup
x∈π−1(x)∩ϕ−1

η (U)

| f(x)| = |λ|·|a|max(−n,0) .

It follows that | f(x1)|/| f |sup= |a|max(−n,0).
Assume now thatm ≥ 1. Consider the canonical morphismψ : T →

S(m), and lety be the maximal point ofS(m)η. One evidently has{t0, t1} ⊂
ψ−1(y) and{x0, x1} ⊂ (ϕψ)−1(y), and the situation is reduced to the mor-
phismX ×S(m) Spf(H(y)◦)→ T×S(m) Spf(H(y)◦) which is of the type
considered just now. The proposition is proven. ut

We are continuing to assume thatX is strictly poly-stable. For[n]r ∈
Ob(ΛR), let L r

n(X) denote the set of the polysimplices(x, µ) ∈ Cn(Xs)

(i.e., x ∈ str(Xs) and µ is an isometric bijection[n] ∼→irr(Xs, x)) such
that rµ = r . It follows from Proposition 4.3 that, given a morphism
[m]s→ [n]r in ΛR, the mapCn(Xs) → Cm(Xs), associated to the cor-
responding morphism[m] → [n] in Λ, induces a mapL r

n(X) → Ls
m(X).

Thus,L(X) ∈ Ob(Λ◦REns), and we get a functorX 7→ L(X) from the full
subcategory ofk◦-P st fsm consisting of strictly poly-stable formal schemes
to the categoryΛ◦REns. From Proposition 3.14 it follows that this functor
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extends in a way, unique up to a unique isomorphism, to a functorLk : k◦-
Pst fsm → Λ◦REns such that for any surjectivéetale morphismX′ → X

one has

Coker(L(X′ ×X X′) →→ L(X′)) ∼→L(X) .

It follows also that there are functorial isomorphisms of polysimplicial
setsWL(X)

∼→C(Xs), of partially ordered setsO(L(X))
∼→str(Xs) and of

simplicial setsBRL(X)
∼→N(Xs).

Furthermore, the nondegenerate colored polysimplicial set fromΛ◦REns
that corresponds toL(X)will be denoted byL(X). If X is strictly poly-stable,
thenL(X) can be identified with the set of the polysimplices(x, I, µ) ∈
C(Xs) (i.e.,x ∈ str(Xs), I ⊂ [p] andµ : [nI ] ∼→irr(Xs, x)) such thatrµ = r I .
The functorC : Psttps→ Λ◦Ensgives rise to a functorL k : k◦-P st f tps→
Λ◦REns that extends the previous one from the categoryk◦-P st fsm.

To consider all of the functorsL k simultaneously, it is convenient to
introduce a categorỹΛ

◦
Enswhose objects are pairs(k, L), wherek is a non-

Archimedean field andL ∈ Ob(Λ◦REns), R= |k| ∩ [0,1], and morphisms
(K, N) → (k, L) are pairs consisting of an isometric embeddingk ↪→ K
and a morphismN → L ′ inΛ◦R′Ens, R′ = |K |∩[0,1]. The correspondences
(k, L) 7→ |L| and (k, L) 7→ WL give rise to the geometric realization
functor |?| : Λ̃◦Ens→ K̃e and a functorW : Λ̃◦Ens→ ∆◦Ens. For
brevity, the pair(k, L) will be denoted byL. The correspondence(k,X) 7→
(k,L(X)) gives rise to a functorL : P st f tps → Λ̃

◦
Ens. The functor

Pst f tps → K̃e : X 7→ |L(X)| is denoted by|L |. One evidently has
a functorial isomorphismWL(X)

∼→C(Xs)and a functorial homeomorphism
|L(X)| ∼→|C(Xs)|.

5. The homotopy type of the generic fibre of a poly-stable formal
scheme

The main results of this section, Theorems 5.2–5.4, form a basis for, and
are more precise than, their generalizations in §8. To formulate the first
theorem, we introduce a partial ordering on the generic fibreXη of a formal
schemeX from F sch.

First of all, we introduce a partial ordering on an affinoid spaceX=M(A)
as follows:x ≤ y if | f(x)| ≤ | f(y)| for all f ∈ A.

Lemma 5.1. Let X be ak-affinoid space and letV be affinoid domain inX
which is a finite union of Laurent domains of the formX{r f −1} = {x ∈
X|| f(x)| ≥ r } with r = | f |sup. Then

(i) the restriction of the partial ordering onX to V coincides with that
on V;

(ii) if x ∈ V andx ≤ y for somey ∈ X, theny ∈ V.
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Proof. (ii) Assume first thatV = X{r f −1}. Then the inequalityx ≤ y
implies that| f(y)| ≥ | f(x)| ≥ r , and thereforey ∈ X{r f −1}. In the general
case,V = V1∪· · ·∪Vn, where eachVi is of the formX{r f −1}. Sincex ∈ Vi
for some 1≤ i ≤ n, the previous case implies thaty ∈ Vi ⊂ V.

(i) We remark that to verify the conditionx ≤ y it suffices to verify that
| f(x)| ≤ | f(y)| for all f from a dense subset ofA, where X = M(A).
Let V = V1 ∪ · · · ∪ Vn, where eachVi is of the form X{r f −1}. Assume
that for x, y ∈ V one hasx ≤X y. Sincex ∈ Vi for some 1≤ i ≤ n, then
y ∈ Vi , by (ii), and therefore the situation is reduced to the casen = 1, i.e.,
V = X{r f −1}. By the above remark, it suffices to verify that|h(x)| ≤ |h(y)|
for h of the form g

f n with g ∈ A andn ≥ 0. Since| f(x)| = | f(y)| = r and
|g(x)| ≤ |g(y)|, it follows that|h(x) ≤ |h(y)|. ut

We introduce a partial ordering onXη as follows:x ≤ y if there exists an
open affine subschemeX′ ⊂ X such thatx, y ∈ X′η andx ≤ y in X′η. From
Lemma 5.1 it follows that the latter property does not depend on the choice
of X′, and ifx ≤ y thenπ(x) is contained in the closure ofπ(y).

Theorem 5.2. One can construct for every poly-stable formal schemeX
a proper strong deformation retractionΦ : Xη × [0,1] → Xη : (x, t) 7→ xt
ofXη to a closed subsetS(X), theskeleton ofX, so that the following holds:

(i) (xt)t ′ = xmax(t,t ′) for all 0≤ t, t′ ≤ 1;
(ii) x ≤ xt for all 0≤ t ≤ 1; if X is strictly poly-stable andXη is normal,

thenx1 is a unique point fromS(X) with x ≤ x1;
(iii) for each x there exists0≤ t′ ≤ 1 such thatxt = x for all 0≤ t ≤ t′

and the map[t′,1] → Xη : t 7→ xt is injective;
(iv) π(x) = π(xt) for all 0≤ t < 1, andπ(x1) is the generic point of the

stratum ofXs that containsπ(x);
(v) if Xη is normal atx then, for every open affine subschemeX′ ⊂ X

with x ∈ X′η and every0< t ≤ 1, the local ringOX′η,xt
is a field;

(vi) if X is strictly poly-stable then, for every pointx ∈ S(X), H̃(x) is
a purely transcendent extension of the fieldk̃(π(x));

(vii) given a morphismϕ : Y→ X in Pst f tps, one hasϕη(yt) = ϕη(y)t
for all y ∈ Yη and0≤ t ≤ 1; if ϕ is étale then, givenx ∈ Xη and0≤ t < 1,
each point fromϕ−1

η (xt) is of the formyt for somey ∈ ϕ−1
η (x).

Let τ denote the retraction mapXη→ S(X) : x 7→ x1 = Φ(x,1).

Theorem 5.3. One can construct in a unique way for every poly-stable
formal schemeX a monoidP(X) of continuous functions onXη with values
in [0,1] so that the following holds:

(i) if X is the standard formal schemeT(n,a) × S(m) with n =
(n0, . . . ,np), then P(X) consists of functions of the formx 7→
λ
∏p

i=0

∏ni
j=0 |Tij (x)|l ij , whereλ ∈ |k| ∩ [0,1] andl ij ∈ Z+;

(ii) P(X) contains all functions of the formx 7→ | f(x)|with f ∈ O(X)∩
O(Xη)

∗;
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(iii) if τ(x) = τ(y), then f(x) = f(y) for all f ∈ P(X);
(iv) the correspondenceX 7→ P(X) is a contravariant functor onPst f tps

with the property that, given a surjectiveétale morphismY→ X, one has
P(X)

∼→Ker(P(Y)
→→ P(Y×X Y)).

We now provide as follows the skeletonS(X) of a poly-stable formal
schemeX with a subsheaf of monoidsMX ⊂ MS(X). (The skeletonS(X)
considered as an object of the categorỹKe will be denoted byS(X).) For
an open subsetU ⊂ S(X), a continuous functionf : U → [0,1] is in
M(U) if for every point x ∈ U there exist́etale morphismsϕi : Xi → X

with affineXi and functionsfi ∈ P(Xi ), 1 ≤ i ≤ n, such that the union
∪n

i=1ϕi,η(Xi,η) contains an open neighborhoodU ′ of x in U and, for eachi
andy ∈ ϕ−1

i,η (U
′), one hasfi (y) = f(ϕi,η(y)). In this way we get a functor

S : Pst f tps→ K̃e that possesses the property that, given a surjectiveétale
morphismϕ : Y→ X, one hasCoker(S(Y×X Y) →→ S(Y))

∼→S(Y).

Theorem 5.4. There is a unique isomorphism of functors|L | ∼→S. More-
over, given a poly-stable formal schemeX, the isomorphism|L(X)| ∼→S(X)
induces a homeomorphism|C(X)| ∼→S(X)∩π−1(X) for each strata subset
X ofXs.

Here (and later)|C(X)| denotes the union of the cells of|C(Xs)| that
correspond to the strata ofXs contained inX.

Recall that a formal group overk◦ is a formal scheme isomorphic to
k◦[[T1, . . . , Tn]] which is a group object in the category of formal schemes
over k◦. Such a formal groupG gives rise to ak-analytic group structure
on the generic fibreGη of G which is isomorphic to the open unit polydisc
in An with center at zero.

Lemma 5.5. Let ϕ : X′ → X be anétale morphism of formal schemes
locally finitely presented overk◦. Then any action of a formal group onX
extends in a unique way to an action onX′.

The statement and its proof hold also for special formal schemes (defined
in [Ber6] only for discretely valuedk).

Proof. LetG be the formal schemeSpf(k◦[[T1, . . . , Tn]]) and leti (resp.i ′)
denote the canonical sectionX → G × X (resp.X′ → G × X′) of the
projectionG× X→ X (resp.G× X′ → X′). (Direct products are taken in
the category of formal schemes overk◦.) To prove the lemma, it suffices to
show thatfor any morphismm : G× X→ X with m ◦ i = 1X there exists
a unique morphismm′ : G × X′ → X′ with m′ ◦ i ′ = 1X′ that makes the
following diagram commutative

G× X m−→ X

↑(1G, ϕ) ↑ϕ
G× X′ m′−→ X′
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The statement is evidently local with respect toX andX′, and therefore
we may assume thatX = Spf(A) andX′ = Spf(A′), where A′ = B{b},
B = A[S]/(P), P is a monic polynomial inA[S] and b is an element
of B such that the image of the derivativeP′ in A′ is invertible. The
morphismm is determined by a continuous homomorphismm∗ : A →
A[[T1, . . . , Tn]] with m∗( f) ≡ f mod(T1, . . . , Tn) for all f ∈ A. Let a′
be the image ofS in A′. Then P(a′) = 0. Since the ringA′[[T1, . . . , Tn]]
is complete in the topology defined by powers of the ideal(T1, . . . , Tn),
the pair(A′[[T1, . . . , Tn]], (T1, . . . , Tn)) is Henselian (see [Ra, Ch. XI]),
and therefore there exists a unique elementα′ ∈ A′[[T1, . . . , Tn]] with
α′ ≡ a′mod(T1, . . . , Tn) and (ϕ∗P)(α′) = 0. Settingm′∗(a′) = α′, we
get a continuous homomorphismA′ → A′[[T1, . . . , Tn]] that defines the
required morphismm′ : G× X′ → X′. The uniqueness ofm′ follows from
the uniqueness ofα′. ut
Proof of Theorems 5.2–5.4.Step 1. The constructions of the first two steps
are given in a more general setting than it is needed here because they will
also be used in §7. LetA be ak-affinoid algebra with a fixed Banach norm.
(Recall that ifA is reduced then the spectral norm onA is a Banach norm.)
For n = (n0, . . . ,np) with ni ≥ 1, the algebraC = A{T00, . . . , Tpnp} is
a BanachA-module with respect to the norm||∑µ aµTµ|| = max

µ
||aµ||.

The setD, consisting of the elements
∑

µ aµTµ such thataµ = 0 for all
µ = (µij )0≤i≤p,0≤ j≤ni with min

0≤ j≤ni
{µij } ≥ 1 for some 0≤ i ≤ p, is a Banach

A-submodule ofC. Furthermore, given elementsai ∈ A with ||ai || ≤ 1,
0≤ i ≤ p, letb be the ideal ofC generated by the elementsTi0· . . . ·Tini−ai ,
0 ≤ i ≤ p. We endow the algebraB = C/b with the quotient norm, and
we setX =M(A), Y =M(B) and

S= {(x, r) ∈ X× [0,1][n]|ri0· . . . ·rini = |ai (x)|,0≤ i ≤ p} .
Lemma 5.6. (i) The canonical surjectionC → B induces an isometric
isomorphismD

∼→B;
(ii) given a point s = (x, r) ∈ S, the function D → R+ : f =∑
µ aµTµ 7→ max

µ
{|aµ(x)|rµ} gives rise to a bounded multiplicative semi-

norm onB and, therefore, it defines a pointθ(s) ∈ Y;
(iii) the mappingS→ Y : s 7→ θ(s) is continuous and right inverse to the

mappingφ : Y→Sthat takesy ∈ Y to the point(x; |T00(y)|, . . . , |Tpnp(y)|),
wherex is the image ofy in X;

(iv) if τ denotes the retraction mapθ ◦ φ : Y→ θ(S), theny ≤ τ(y) for
every pointy ∈ Y;

(v) given a points= (x, r) ∈ S, let Z be the Zariski closed subset ofY
defined by the equationsTij = 0 over all pairs(i, j) with rij = 0; then the
preimageφ−1(s) is an affinoid domain inZ isomorphic to a direct product
of X and the closed annuliA(rij ) = {z ∈ A1

∣∣|T(z)| = rij } taken over all
pairs (i, j) with rij 6= 0.
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Proof. The statements (iii), (iv) and (v) trivially follow from (i) and (ii). By
induction onp, to prove (i) and (ii) it suffices to consider the casep = 0,
i.e., we may assume thatC = A{T0, . . . , Tn} andB = C/(T0· . . . ·Tn− a).
That the mapD→ B is surjective is trivial, and so to verify (i) it suffices to
check that|| f || ≤ || f + (T0· . . . ·Tn − a)g|| for all f =∑µ aµTµ ∈ D
and g=∑µ bµTµ ∈ C. If the latter is not true, then for eachµ with
|| f || = ||aµ|| one has||aµ|| = ||a bµ|| ≤ ||bµ||. Since the monomial
bµTµ(T0· . . . ·Tn) is not cancelled with other monomials inf +(T0· . . . ·Tn−
a)g, the norm of the latter is at least||bµ|| ≥ || f ||.

To verify (ii), we may assume thatX = M(k), and we have to check
that, givenr0, . . . , rn ∈ [0,1] with r0· . . . ·rn = |a|, the function D →
R+ : f 7→ | f | = max

µ
{|aµ|rµ} gives rise to a multiplicative semi-norm

on B. If f =∑µ aµTµ andg = ∑
µ bµTµ, then the image off ·g in B

is represented by the element
∑

δ cδTδ ∈ D with cδ = ∑∞
l=0(

∑
aµbν)al ,

where the inner sum is taken over all pairsµ, ν with min
0≤i≤n
{µi + νi } = l and

µ+ ν − (l, . . . , l) = δ. The setsA = {µ ∣∣| f | = |aµ|rµ } andB = {ν∣∣|g| =
|bν|r ν} are finite subsets in the union of the coordinate hyperplanes inZ[n]+ ⊂
R[n]. To verify the equality| f ·g| = | f |·|g|, it suffices to check that there
exists a lineL in R[n] parallel to the diagonal line{(x0, . . . , xn)

∣∣xi = xj
for all 0≤ i, j ≤ n} and such that the intersection(A+ B) ∩ L consists of
one point. For this we consider the mappingZ[n]+ → Zn : (x0, . . . , xn) 7→
(x1 − x0, . . . , xn − x0). This mapping is injective on the union of the
coordinate hyperplanes, and the necessary fact is equivalent to the following
one. Given two finite subsetsA, B ⊂ Zn, there exists a pointz ∈ A+ B
which is represented in a unique way in the formz= x+ y with x ∈ A and
y ∈ B. If x and y are the maximal points ofA and B with respect to the
lexicographic ordering onZn, thenz= x+ y is such a point. ut

Step 2. We are still in the situation of Step 1. LetGm be the one-
dimensionalk-affinoid torus{x ∈ A1 ||T(x)| = 1}. If G(n)

m denotes the kernel
of the multiplication homomorphismGn+1

m → Gm, then thek-analytic group

G = G(n0)
m ×· · ·×G

(np)
m acts in the evident way onY overX. For 0≤ t ≤ 1,

let Gt denote the subgroup ofG defined by the inequalities|(Tij −1)(x)| ≤ t.
The groupGt for 0 < t < 1 (resp.G1 = G) is isomorphic, as ak-analytic
space, to a closed polydisc of radiust (resp. a direct product of closed annuli
of radius 1) and, therefore, it has a maximal pointgt (resp.g1). The groupG0
consists of the unit 1 ofG, and we setg0 = 1. The pointsgt are peaked ones
and the map[0,1] → G : t 7→ gt is continuous and, therefore, one can
construct a continuous homotopyΦ : Y×[0,1] → Y : (y, t) 7→ yt := gt∗y
(see [Ber1, §5.2 and §6.1]). It is easy to give an explicit formula for the
homotopyΦ (see [Ber1, 6.1.3]). Namely, forf ∈ D one has

| f(yt)| = max
ν
|∂ν f(y)|tν ,
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where∂ν is the bounded linear operator1
ν!T

ν dν

dTν : C → C

∂ν(
∑
µ

aµTµ) =
∞∑
µ=ν

(
µ
ν

)
aµTµ .

The above formula implies thaty1 = τ(y) for all y ∈ Y, i.e.,Φ is a strong
deformation retraction ofY to the subsetθ(S). Furthermore, given a point
y ∈ Y, let t′ be the maximum value oft with the property|∂ν f(y)|tν ≤ | f(y)|
for all ν and f . Thenyt = y for all 0 ≤ t ≤ t′ and the map[t′,1] → Y :
t 7→ yt is injective.

Step 3. We verify here some of the properties stated in the theo-
rems for the standard formal schemeT = T(n,a) × S(m) over k◦ with
n = (n0, . . . ,np).

(1) Let Gm be the multiplicative groupSpf(k◦{T, 1
T }) considered as

a group object of the categoryk◦-F sch. (The generic fibre ofGm is
the groupGm from Step 2.) The groupGm

m acts in the evident way on
S(m), and the groupG(n)m , the kernel of the multiplication homomorphism
Gn+1

m → Gm, acts in the evident way onT(n,a). This gives rise to an ac-

tion of G = G(n0)
m × . . .G(np)

m × Gm
m on the standard formal schemeT and,

therefore, to an action of thek-analytic groupG = Gη on thek-analytic
spaceTη. The groupG is of the form considered in Step 2, and so we can
consider its subgroupsGt with maximal pointsgt , and a continuous homo-
topyΦ : Tη × [0,1] → Tη : (x, t) 7→ xt = gt ∗ x. By Step 2,Φ is a strong
deformation retraction ofTη to the closed subsetθ(S), and it possesses the
property (iii) of Theorem 5.2.

(2) The subsetθ(S) is naturally to be taken as the skeletonS(T) of T. If τ
is the retraction mapθ◦φ : Tη→ S(T) then, for each pointx ∈ S(T), τ−1(x)
is an affinoid domain in the intersection of the irreducible components ofTη

that containx, it is isomorphic to a direct product of closed annuli, andx is
the maximal point in it. Notice that ifTη is normal (i.e., none ofai is equal
to zero and, therefore,Tη is irreducible), then for any pair of distinct points
x, y ∈ S(T) one can find two coordinate functionsf, g (of the form Tij )
with | f(x)| < | f(y)| and|g(x)| > |g(y)|.

(3) We defineP(T) as the monoid of all continuous functions of the form
from Theorem 5.3(i). The description ofτ−1(x) for x ∈ S(T) from (2) easily
implies that in the case whenTη is normal the set of non-zero functions from
P(T) coincides with the set of functions of the formx 7→ | f(x)| with f ∈
O(T) ∩O(Tη)

∗. The spaceS is canonically identified withΣn
|a|, and so the

homeomorphismθ induces an an isomorphism|L(T)| = (Σn
|a|,M(Σn

|a|))
∼→

(S(T), P(T)). To verify that it induces homeomorphisms|C(X)| ∼→S(T) ∩
π−1(X) from Theorem 5.4, it suffices to assume thatX is a stratum, i.e.,
there are non-empty subsetsAi ⊂ [ni ] such thatX = {x ∈ Ts| for each
0 ≤ i ≤ p, Tij (x) = 0 if j ∈ Ai and Tij (x) 6= 0 if j 6∈ Ai }. Then
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|C(X)| = {(tij )0≤i≤p,0≤ j≤ni ∈ Σn
|a| | for each 0≤ i ≤ p, tij < 1 if j ∈ Ai

andtij = 1 if j 6∈ Ai }, and the necessary property follows.

Step 4. Suppose we are given anétale morphismϕ : X = Spf(A)→ T
with T from Step 3. LetG be the formal completion of the groupG that
acts onT along its unit. It is a formal group overk◦. By Lemma 5.5, the
action ofG onT extends in a unique way to an action onX and, therefore,
the action ofGη = ∪t<1Gt on Tη extends to an action onXη. By [Ber1,
Proposition 5.2.10], for eachx ∈ Xη, the pointgt ∗ x is the maximal one in
the orbitGtx. It follows that for 0≤ t ≤ t′ < 1 one hasgt ∗ x ≤ gt ′ ∗ x and,
therefore, one can define a pointτ(x) ∈ Xη by

| f(τ(x)| = sup
t<1
| f(gt ∗ x)|

for all f ∈ A = A⊗k◦ k. We now define a mappingΦ : Xη × [0,1] →
Xη : (x, t) 7→ xt by xt = gt ∗ x if t < 1 andx1 = τ(x). From [Ber1, Corol-
lary 6.1.2], it follows that the restriction ofΦ to Xη × [0,1[ is continuous.
It follows from the construction thatϕη(xt) = ϕη(x)t for all x ∈ Xη and
t ∈ [0,1] and, in particular,Φ possesses the property (iii) of Theorem 5.2.
We also remark that sincegt ∗gt ′ = gmax(t,t ′), it follows that(xt)t ′ = xmax(t,t ′)
for all t, t′ ∈ [0,1[. We claim thatgt ∗ τ(x) = τ(x) for all x ∈ Xη and
t ∈ [0,1[ (and, in particular,τ(τ(x)) = τ(x) and (xt)t ′ = xmax(t,t ′) for all
t, t′ ∈ [0,1]). Indeed, one has

ϕη(gt ∗ τ(x)) = gt ∗ ϕη(τ(x)) = gt ∗ τ(ϕη(x)) = τ(ϕη(x)) = ϕη(τ(x)) .
Since the mapping[0,1[→ Xη : t 7→ gt ∗ τ(x) is continuous and takes
values in the finite discrete setϕ−1

η (ϕη(τ(x))), we getgt ∗ τ(x) = τ(x).
We define the skeletonS(X) of X as the image of the mapτ. We do not

yet know that the mapτ is continuous and the setS(X) is closed inXη.

Step 5.In the situation of Step 4, the mappingΦ does not depend on
the choice of théetale morphismϕ. Let ϕ′ : X→ T′ = T(n′,n′) × S(m′)
be anotheŕetale morphism withn′ = (n′0, . . . ,n′p′) anda′ = (a′0, . . . ,a′p′),
G′ the corresponding formal group acting onT ′ by Step 4, andg′t the maximal
element of the corresponding subgroupG′t in the generic fibre ofG′. We
have to verify thatg′t ∗ x = gt ∗ x for all x ∈ Xη and 0< t < 1. Since, for
any non-Archimedean fieldK overk, the∗-multiplication commutes with
the canonical mapXη⊗̂K → Xη [Ber1, Proposition 5.2.8], we can increase
the fieldk and assume that the pointx is k-rational and, in particular, that
the pointx = π(x) is k̃-rational. Furthermore, sinceg′t ∗ x andgt ∗ x are
the maximal points of the orbitsG′tx and Gtx, it suffices to verify that
G′t x = Gtx.

First of all we list several cases when the required fact is easily verified.
(1) X = T, ϕ = 1T, andϕ′ is induced by an isomorphism[n] ∼→[n′]

in Λ, i.e., if this isomorphism is represented by a triple([p], f, α), then
ϕ′ is induced by the isomorphismsT(ni ,ai )

∼→T(n f(i),af(i)) that take the
coordinate functionTf(i),l to Ti,αi (l).
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(2) X = T, ϕ = 1T, [n′] = [n], a′i = λi ai for |λi | = 1, 0 ≤ i ≤ p,

andϕ′ is induced by the isomorphismsT(ni ,ai )
∼→T(ni , λi ai ) that takes the

coordinate functionTil to λ−1
i Ti0 for l = 0 and toTil for 1≤ l ≤ ni .

(3)X = T′ = T,ϕ = 1T, andϕ′ is induced by an automorphism ofS(m)
which is a composition of an automorphism generated by a permutation of
the coordinate functionsSj and of an automorphism that takesSj to λ j Sj
for someλ j ∈ k with |λ j | = 1.

(4) X is an open subscheme ofT andϕ′ is an open embeddingX →
T′ = T(n′,a′) × S(m′) of the following form. Assume thatTil (x) = 0 for
0 ≤ l ≤ n′i and Til (x) 6= 0 for n′i + 1 ≤ l ≤ ni and thatn′i ≥ 1 exactly
for 0≤ i ≤ p′. If T(ni ,ai )

′ denotes the open subscheme ofT(ni ,ai ) where
the functionsTil for 0 ≤ i ≤ p andn′i + 1 ≤ l ≤ ni are invertible, then
X = T(n0,a0)

′×T(np,ap)
′×S(m),n′ = (n′0, . . . ,n′p′),a′ = (a0, . . . ,ap′),

m′ = m+∑p
i=0(ni − n′i ), andϕ′ is the open embedding ofX toT′ which is

induced by the open embeddingsT(ni ,ai )
′ → T(n′i ,ai )× S(ni − n′i ) that

takeTil to Ti0·Tn′i+1· . . . ·Tni for l = 0 and toTil for 1 ≤ l ≤ n′i , andSj to
Tn′i+ j for 1≤ j ≤ ni − n′i .

Consider now the general case. Using Proposition 4.3 and replacingϕ
andϕ′ by their compositions with morphisms of the form (1)–(4), we may
assume thatϕ andϕ′ are twoétale morphisms to the same standard for-
mal schemeT = T(n,a) × S(m) and such that the both pointsϕs(x) and
ϕ′s(x) coincide with the pointy defined by the condition that all ofTil ’s
are equal to zero and all ofSj ’s are equal to one aty. Since the pointx
is k̃-rational, Lemma 4.4 implies thatϕ andϕ′ induce two isomorphisms
π−1(x)

∼→π−1(y). The analytic spaceπ−1(0) is easily described. For ex-
ample, if [n] = [0], i.e., T = S(m), thenπ−1(0) is isomorphic to the
m-dimensional open unit disc with center at zeroDm, and the equality
G′t x = Gtx follows from the fact any analytic automorphism of the open
unit polydisc takes a smaller closed polydisc to a closed polydisc of the
same radius (see [Ber1, Lemma 6.4.4]). The case[n] 6= [0] follows from
the following lemma.

Lemma 5.7. Givenm ≥ 0, n = (n0, . . . ,np) anda = (a0, . . . ,ap) with
p ≥ 0, ni ≥ 1 and ai ∈ k◦◦ for all 0 ≤ i ≤ p, let X = X(n,a,m) be
the closed analytic subset of the open unit polydiscD|n|+p+1+m defined by
the equationsTi0· . . . ·Tini = ai for 0 ≤ i ≤ p, and letϕ be an analytic
automorphism ofX. Then

(i) ϕ preserves the monoidP(X) of functions onX of the formx 7→
λ
∏p

i=0

∏ni
l=0 |Til (x)|bil with λ ∈ |k| ∩ [0,1] and bil ∈ Z+; moreoverP(X)

contains the monoidP∗(X) of functions of the formx 7→ | f(x)| with
f ∈ O(X)∗ and | f(x)| ≤ 1 for all x ∈ X;

(ii) ϕ(Et(α)) = Et(ϕ(α)) for any k-rational point α = (αil , α j ) ∈ X
and any0 < t < 1, where Et(α) = {x ∈ X ||Til (x)− αil | ≤ t|αil | and
|Sj (x)− α j | ≤ t for all i, l, j }.

Note that the automorphismϕ is not required to be ak-analytic one.
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Proof. (i) Let I = {i ∈ [p]|ai = 0}. First, we claim that if I = ∅ then
P(X) = P∗(X) ∪ {0}. Indeed, the fibres of the mapX → Σ̊n

|a| : x 7→
(|Til (x)|)0≤i≤p,0≤l≤ni are analytic domains ofX isomorphic to a direct prod-
uct of annuli of the form{x ∈ A1 ||T(x)| = r } with Dm. All invertible
functions on these analytic domains are easily described, and the claim
follows. Thus, assume thatI 6= ∅. Notice that ifI = [p] then any function
from P(X) which does not vanish anywhere is a constant. Using the canon-
ical projectionX → Y = X(nJ,aJ,m), where J = [p]\I , one deduces
that P∗(X) = P∗(Y) and, therefore,P∗(X) coincides with the family of
functions of the formx 7→ λ

∏
i 6∈I

∏ni
l=0 |Til (x)|bil with λ ∈ |k∗| ∩ [0,1]

andbil ∈ Z+. It follows that the latter family is preserved byϕ. Further-
more, the correspondencej 7→ Xj = {x ∈ X

∣∣Tij i = 0 for all i ∈ I }
is a bijection between[nI ] and the set of irreducible components ofX.
The groupAut([nI ]) acts transitively on the latter set, and so we may as-
sume thatϕ preserves all of the irreducible components ofX. We claim
that in this case for eachi ∈ I and 0 ≤ l ≤ ni one hasϕ∗til = til fil ,
wheretil is the functionx 7→ |Til (x)| and fil ∈ P∗(X). Indeed, each irre-
ducible componentZ of X is isomorphic toY × Dn with Y as above and
n = |nI |, and the automorphismϕ preserves the closed analytic subsets
Zi = {z ∈ Z |Ti (z) = 0}, 1≤ i ≤ n. We have to check thatϕ∗ti = ti fi for
all 1 ≤ i ≤ n, whereti is the functionz 7→ |Ti (z)| and fi ∈ P∗(Y). Let
ϕ∗Ti ≡ f0+∑n

j=1 f j Tj (moddeg 2) with fi ∈ O(Y). Sinceϕ preserves the
setsZ1∩· · ·∩Zn andZ1∩· · ·∩Zj−1∩Zj+1∩· · ·∩Zn, it follows that f j = 0
for all j 6= i , i.e.,ϕ∗Ti ≡ fi Ti (moddeg 2). Notice that| fi (y)| ≤ 1 for all
y ∈ Y. Similarly, one has(ϕ−1)∗Ti ≡ gi Ti (moddeg 2) with gi ∈ O(Y). If
ϕ∗gi ≡ hi (moddeg 1), we getTi = ϕ∗(ϕ−1)∗Ti ≡ hi fi Ti (moddeg 2) and,
therefore,fi ∈ O(Y)∗, i.e., the claim is true.

(ii) Consider the surjective continuous mappingτ : X → Σ̊n
|a| : x 7→

(|Til (x)|)0≤i≤p,0≤l≤ni . The family P(X) coincides with that of the preim-
ages of functions fromM(Σ̊n|a|). Moreover, the fibres ofτ are precisely the
equivalence classes of the following equivalence relation onX: x ∼ x′ if
f(x) = f(y) for all x ∈ P(X). It follows from (i) thatϕ induces an auto-
morphism of the pair(Σ̊n

|a|,M(Σ̊n
|a|)). By Lemma 4.1, we can replaceϕ by

its composition with the automorphism ofX associated with an automor-
phism of[n]|a| so thatϕ induces the trivial automorphism ofΣ̊n|a|. In this
caseϕ takes the setτ−1(τ(α)) to itself. Replacing againϕ by its compo-
sition with an automorphism of the form(zil , zj ) 7→ (λil zil , zj ) for some
λil ∈ k◦ with λi0· . . . ·λini = 1, 0≤ i ≤ p, we may assume thatϕ induces
an analytic automorphism of the set{x ∈ τ−1(τ(α)) ||Til (x)− αil | < |αil |
for all 0 ≤ i ≤ p and 0 ≤ l ≤ ni }. This set is isomorphic to the
open unit polydiscDn for some n. We may assume thatα = 0. Let
ϕ∗Ti ≡∑n

j=1 aij Tj (moddeg 2). Using the last reasoning from the proof of
(i), one shows that the matrix(aij ) lies in GLn(k◦). Since the radii of open
polydiscs inDn are invariant under linear transformations fromGLn(k◦),
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we may assumeϕ∗Ti ≡ Ti (moddeg 2). In this case the required fact is
evident. ut

Step 6. In the situation of Step 4, suppose thatXs is elementary and of the
same type asTs, i.e.,ϕ induces a bijectionirr(Xs)

∼→irr(Ts). Thenϕ induces
an isomorphism of colored polysimplicial setsL(X)

∼→L(T) = Λ[n]|a|. We
claim that

(a) S(X) = ϕ−1
η (S(T));

(b) ϕ induces a homeomorphismS(X)
∼→S(T);

(c) for every pointx ∈ S(X), H̃(x) is a purely transcendent extension of
the field̃k(π(x)).

(1) One hasS(X) ⊂ ϕ−1
η (S(T)). Indeed, ifx ∈ S(X), thenx = τ(x) and,

therefore,ϕη(x) = ϕη(τ(x)) = τ(ϕη(x)), i.e.,ϕη(x) ∈ S(T).
(2) The statements (a)–(c) are true ifm = 0, i.e., T = T(n,a). We

prove by induction on|n| = n0 + · · · + np. Assume that the statement
is true for smaller values of|n|. The intersection of all of the irreducible
components ofXs (resp.Ts) is a closed pointx (resp.t) andϕ−1

s (t) = {x}.
One has̃k(t) = k̃, and̃k(x) is a finite separable extension ofk̃. Let K be the
finite unramified extension ofk with K̃ = k̃(x), and letT′ = T⊗̂k◦K◦ and
X′ = X⊗̂k◦K◦. The preimage oft in T′s is a pointt′ with k̃(t′) = K̃ , and the
preimage ofx inX′s contains a pointx′ with k̃(x′) = K̃ . By Lemma 4.4, there

are isomorphisms ofk-analytic spacesπ−1(x)
∼→π−1(x′) ∼→π−1(t′). Since

S(T′)∩π−1(t′) is the preimage ofS(T)∩π−1(t) and homeomorphic to it (it
is the interior of the polysimplexS(T) = Σn

|a|), it follows thatS(X)∩π−1(x)
is also the preimage ofS(T) ∩ π−1(t) and homeomorphic to it. It follows
also that to verify (c) for points fromS(X)∩π−1(x) it suffices to check that,
for every pointt ∈ S(T) ∩ π−1(t), H̃(x) is a purely transcendent extension
of k̃. The latter is a consequence of the following lemma.

Lemma 5.8. Let x be the maximal point of the closed polydisc of radius
(r1, . . . , rn) with center at zero inAn. Then the fieldH̃(x) is a purely
transcendent extension ofk̃.

Proof. Using the projectionAn → An−1 to the firstn − 1 coordinates,
the statement is reduced by induction to the casen = 1. Of course, we
may assume that the radiusr of the disc is positive. The field̃H(x) is
generated over̃k by the residues off(x) for polynomials f = ∑∞i=0 ai Ti

with | f(x)| = max
i
|ai |r i ≤ 1.

Caser ∈ √|k|. Let n be the minimal positive integer withr n ∈ |k|,
and let r n = |α| for someα ∈ k∗. If i is not divisible byn, then the
inequality |ai |r i ≤ 1 implies the more strong inequality|ai |r i < 1 and,

therefore, we may assume thatf = ∑∞
i=0 ani Tni = ∑∞

i=0 aniα
j
(

Tn

α

)i
. It
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follows thatH̃(x) is generated over̃k by the residue ofT
n

α
. The latter is

evidently transcendent over̃k.
Caser 6∈ √|k|. In this case the inequality|ai |r i ≤ 1 implies|ai |r i < 1

for all non-zeroi ’s and, therefore,̃H(x) = k̃. ut
To verify the statements (a)–(c) over the complement ofS(X) ∩ π−1(x)

in S(X), we need the following lemma.

Lemma 5.9. Let ϕ : X → T be a morphism ofk-affinoid spaces and
t ∈ Γ(T). Then

(i) the restriction of the partial ordering onX to Xt coincides with that
on Xt;

(ii) if x ∈ Xt andx ≤ y for somey ∈ X, theny ∈ Xt .

Recall thatXt denotes the fibre ofϕ at the pointt. This is anH (t)-analytic
space whose underlying topological space isϕ−1(t).

Proof. (i) Let T =M(A) andX =M(B). From [Ber1, Corollary 2.4.5], it
follows that the pointt coincides with the intersection of all of the Laurent
domains of the formT{r f −1}, where f ∈ A andr = | f |sup. It follows that
the set of functions of the formg

f , whereg ∈ B and f ∈ A is such that
| f(t)| = | f |sup, is dense inB⊗̂AH(t). (The spectrum of the latter algebra
is Xt .) Let x, y ∈ Xt, and assume thatx ≤X y. It suffices to verify that
|h(x)| ≤ |h(y)| for h of the above formg

f but this is evident.
(ii) For every f ∈ A with | f(t)| = | f |sup, one has| f(y)| ≤ | f |sup =

| f(x)| ≤ | f(y)|. It follows that| f(y)| = | f |sup, i.e., y ∈ Xt. ut
Let t be a point fromS(T) whose reduction is not contained, say, in

the irreducible component ofTs defined by the equationsTini = 0, 0 ≤
i ≤ p. Then |Tini (t)| = 1 for some 0≤ i ≤ p. Consider the canonical
morphismψ : T → E = Spf(k◦{Tini }). Then the image oft in Eη is
the maximal pointe of Eη. By Lemma 5.9, one hasS(T) ∩ ψ−1

η (e) =
S(T′) and S(X) ∩ (ψηϕη)−1(s) = S(X′), whereT′ = T ×E Spf(H(e)◦)
andX′ = X ×E Spf(H(e)◦). One hasT′ = T(n′,a′) (overH(e)◦), where
n′ = (n0, . . . ,ni−1,ni − 1,ni+1, . . . ,np) anda′ = (a0, . . . ,ai−1,

ai
Tini (e)

,

ai+1, . . . ,ap), if ni ≥ 2, andn′ = (n0, . . . ,ni−1,ni+1, . . . ,np) anda′ =
(a0, . . . ,ai−1,ai+1, . . . ,ap), if ni = 1. We can therefore apply the induc-
tion hypothesis to the morphismX′ → T′. It follows that the preimage of
the point t in Xη is one pointx. If x ≤ y for some pointy ∈ Xη then
t = ϕη(x) ≤ ϕη(y), and sincet ∈ S(T) thenϕη(y) = t, and thereforey = x,
i.e., x ∈ S(X). HenceS(X) = ϕ−1

η (S(T)) and, in particular,S(X) is closed
in Xη. SinceS(X)→ S(T) is a bijective continuous map between compact

spaces, it is a homeomorphism. SincẽH(e) = k̃(π(e)) it follows thatH̃(x)
is purely transcendent over̃k(π(x)).

(3) The statement is true form ≥ 1. Consider the canonical projection
ψ : T→ S = S(m). Let s be the maximal point ofSη, and setT′ = T×S
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Spf(H(s)◦) andX′ = X×S Spf(H(s)◦). SinceS(T) ⊂ ψ−1
η (s), it follows

from (1) thatS(X) ⊂ (ψηϕη)
−1(s). By Lemma 5.9, we getS(T) = S(T′)

andS(X) = S(X′). SinceH̃(s) = k̃(π(s)), the statement is reduced to the
casem= 0.

Thus, we get a homeomorphism|L(X)| ∼→|L(T)| ∼→S(T)
∼→S(X). It

possesses the property of Theorem 5.4 because the homeomorphism
|L(T)| ∼→S(T) possesses that property andπT(ϕη(x)) = ϕs(πX(x)) for
all x ∈ Xη.

Step 7.In the situation of Step 4, the mappingΦ : Xη × [0,1] → Xη

is continuous(and, in particular,Φ is a strong deformation retraction ofXη
to S(X)). Indeed, the statement is local with respect to the Zariski topology
of X and, therefore, we may assume that we are in the situation of Step 6.
In this case the claim follows from the following simple fact.

Lemma 5.10. Let ϕ : Y → X be a proper map of topological spaces.
Assume we are given a continuous mapΦ : X × [0,1] → X : (x, t) 7→ xt
and a mapΨ : Y × [0,1] → Y : (y, t) 7→ yt such that the restriction of
Ψ to Y× [0,1[ is continuous,ϕ(yt) = ϕ(y)t andϕ−1(ϕ(y1)) = {y1} for all
y ∈ Y and t ∈ [0,1]. Then the mapΨ is continuous.

Proof. It suffices to verify thatΨ is continuous at each point(y,1) ∈
Y × [0,1]. Let V be an open neighborhood of the pointy1. Sinceϕ is
proper andϕ−1(ϕ(y1)) = {y1}, there exists an open neighborhood of the
point ϕ(y1) with ϕ−1(U) ⊂ V. By continuity ofΦ, we can find an open
neighborhoodW of ϕ(y1) and a numberε > 0 withΦ(W×[1−ε,1]) ⊂ U.
It follows thatΨ(ϕ−1(W)× [1− ε,1]) ⊂ V, i.e.,Ψ is continuous. ut

Step 8. Recall (see [En, §2.4]) that a surjective continuous map of
topological spacesf : Y → X is said to be a factor map if the canonical
map Y/E( f) → X is a homeomorphism. (HereY/E( f) is the quotient
space ofY with respect to the equivalence relationE( f) defined by the
partition { f −1(x)}x∈X.) In other words,f : Y → X is a factor map if it
induces a homeomorphismCoker(Y×X Y

→→ Y)
∼→X. We claim that, given

a surjectiveétale morphismϕ : Y → X between formal schemes locally
finitely presented overk◦, ϕη : Yη→ Xη is a factor map.Indeed, by [Ber3,
§§2-3], the latter is a quasi-étale covering ofXη, and the claim follows from
the following lemma.

Lemma 5.11. Any quasi-́etale covering of analytic spacesϕ : Y → X is
a factor map.

Proof. We may assume thatX is compact (for example, affinoid). By the
definition of a quasi-́etale covering, each point ofX has a neighborhood of
the formϕ(V1)∪ · · · ∪ϕ(Vn) for some affinoid domainsV1, . . . ,Vn ⊂ Y. It
follows that there exists a surjective morphismϕ′ : Y′ → X with compactY′
which factors through the morphismϕ. Sinceϕ′ is evidently a factor map,
then so isϕ (see [En, 2.4.5]). ut
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Step 9. LetX be a poly-stable formal scheme overk◦. Take a surjective
étale morphismψ : X′ → X, whereX′ is a disjoint union of strictly
poly-stable affine formal schemes each of whom admits anétale morphism
to a standard formal scheme. By Step 7, there is a continuous mapping
Φ : X′η × [0,1] → X′η : (x′, t) 7→ x′t . We claim that the mappingΦ :
Xη × [0,1] → Xη : (x, t) 7→ xt := ψη(x′η), wherex′ ∈ ψ−1(x), is well
defined, continuous, proper and does not depend on the choice ofX′ andψ.
Indeed, take a surjectivéetale morphismX′′ → X′ ×XX′ with X′′ satisfying
the same properties asX′. If x̃′ is another point fromψ−1(x), then there
exists a pointx′′ ∈ X′′η with p1(x′′) = x′ and p2(x′′) = x̃′, where p1 and
p2 are the two projections fromX′′η to X′η. By Step 5,p1(x′′t ) = x′t and
p2(x′′t ) = x̃′t and, therefore, the images ofx′t and x̃′t in Xη coincide, i.e.,
the mappingΦ is well defined. That it is continuous easily follows from
Lemma 5.11 and the fact that it is continuous forX′. Step 5 implies thatΦ
does not depend on the choice ofX′ andψ. To see the properness ofΦ, it
suffices to takeX′ such that the images of the connected components ofX′
in X form a locally finite covering. SinceΦ is proper for suchX′, it is also
proper forX.

Thus, we can define a continuous mapτ : Xη → Xη by τ(x) = Φ(x,1)
and the skeleton ofX by S(X) = τ(Xη). The previous steps imply that the
properties (i), (ii), (iii) and (vi) of Theorem 5.2 are true. The first part of (vii)
for morphisms fromPst f ét is also true.

Step 10.The statement (iv) of Theorem 5.2 is true.The first part of the
statement follows from the fact that the action of a formal group on a formal
scheme is trivial on the closed fibre. The second part is local with respect
to the étale topology ofX and, therefore, it suffices to consider the case
of the standard formal schemeT from Step 3. We have to verify that for
a stratumT of Ts with generic pointt one hasS(T)∩π−1(T ) ⊂ π−1(t). As
in Step 3(3), there are non-empty subsetsAi ⊂ [ni ] such thatT = {t′ ∈ Ts|
for each 0≤ i ≤ p, Tij (t′) = 0 if j ∈ Ai andTij (t′) 6= 0 if j 6∈ Ai }. Consider
the canonical morphismψ : T → E = Spf(k◦{Tij }0≤i≤p, j 6∈Ai ). The image
of t is the generic pointe of the closed fibre ofE, andψ−1

s (e) = {t}.
One also hasπ−1(e) = {e}, where e is the maximal point ofEη, and
ψη(S(T)∩π−1(T )) = {e}. From Lemma 5.9 it follows thatS(T)∩π−1(T ) ⊂
S(T′), whereT′ = T×ESpf(H(e)◦). The latter is a standard formal scheme
over H(e)◦ such thatt is the generic point of its maximal stratum. The
inclusionS(T) ∩ π−1(T ) ⊂ π−1(t) follows.

Step 11.The statement (v) of Theorem 5.2 is true.First of all, we remark
that, given ak-affinoid spaceX, a non-Archimedean fieldk′ overk and an
affinoid domainX′ in X⊗̂k′, for any pointx′ ∈ X′ the local ringOX′,x′
is a faithfully flat overOX,x, wherex is the image ofx′ in X (see [Ber1,
2.2.4(ii)] and [Ber2, 2.1.3]). It follows that we can shrinkX and increase
the ground field, so that the situation is as in Step 6 and the pointx is
k-rational. Consider first the caset < 1. Thenx := π(x) = π(xt), π−1(x) is
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open inXη andπ−1(x)
∼→π−1(ϕs(x)). It follows that the normality locus of

π−1(x) is isomorphic to an open subset ofA|n|+m andGtx is isomorphic to
a closed polydisc of radiust there. The maximal point of the latter polydisc
evidently possesses the required property. Consider now the caset = 1,
and sety = x1 = τ(x). By Step 6,ϕ−1

η (ϕη(y)) = {y}. It follows that
X := τ−1(y) is a regular strictlyk-affinoid domain inXη with the unique
maximal pointy. Assume that there is an elementf ∈ OX,y with f(y) = 0.
The function f is analytic in a small affinoid neighborhood ofy in X of the
form Y = X(rg−1), whereg ∈ O(X) andr < r ′ := |g|sup. But the pointy
is also the unique maximal point of the affinoid domainY′ = X(r ′g−1) and,
therefore,f = 0 in O(Y′). SinceOY′,y is faithfully flat overOX,y, it follows
that f is zero inOX,y.

Step 12.The statement (vii) of Theorem 5.2 is true.Indeed, since its first
part is known to be true for morphisms fromPst f ét, to check it for arbitrary
morphisms fromP st f tps it suffices to consider only the case of the canonical
projectionT′ × T′′ → T′, whereT′ andT′′ are standard formal schemes.
But in this case, the required fact is easily seen from the construction of the
mapsτ andΦ. As for the second part of (vii), we notice that if it is true for
the morphismY⊗̂k◦K◦ → X⊗̂k◦K◦, whereK is a bigger non-Archimedean
field over k, then it is also true for the morphismϕ. We can therefore
increase the ground fieldk so that the pointx = π(x) and all of the points
from ϕ−1

s (x) are k̃-rational. In this case from Lemma 4.4 it follows thatϕ

induces isomorphismsπ−1(y)
∼→π−1(x) for all pointsy ∈ ϕ−1

s (x), and the
statement is obviously true.

Thus, Theorem 5.2 is already proven.

Step 13. In the situation of Step 6, assume thatXs is elementary.We claim
that the familyP(X)of the preimages of functions fromP(T)does not depend
on the choice of théetale morphismϕ, and contains all functions of the form
x 7→ | f(x)| with f ∈ O(X)∩O(Xη)

∗. The assumption implies that the map
irr(Xs) → irr(Ts) is injective. Using the construction from Step 5(4) and
Proposition 4.3, we may assume that we are given twoétale morphismsϕ
andϕ′ from X to the same standard formal schemeT = T(n,a) × S(m)
that induce bijectionsirr(Xs)

∼→irr(Ts). We now use the reasoning from
Step 6. Assume first thatm = 0, i.e.,T = T(n,a), and letx and t be the
intersections of all of the irreducible components ofXs andTs, respectively.
Thenϕ−1

s (t) = ϕ′−1
s (t) = {x}. If K is the finite unramified extension ofk

with K̃ = k̃(x), T′ = T⊗̂k◦K◦ andX′ = X⊗̂k◦K◦, then the preimage of
t in T′s is a pointt′ with k̃(t′) = K̃ , and the preimage ofx in X′s contains
a pointx′ with k̃(x′) = K̃ . By Lemma 4.4, théetale morphismsϕ andϕ′
give rise to ak-analytic automorphism ofπ−1(t′). Since the functions from
P(X) are determined by their values onS(X) ∩ π−1(x), the casem = 0 of
the claim follows from Lemma 5.7(i). The casem≥ 1 is obtained using the
reasoning from Step 6(3).
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Thus, we defineP(X) as the monoid of the preimages of functions
from P(T). It follows from the construction thatP(X) possesses the prop-
erties (ii) and (iii) of Theorem 5.3 and, moreover, ifirr(Xs)

∼→irr(Ts) then
P(T)

∼→P(X).

Step 14.Theorem 5.3 is true.For a poly-stable formal schemeX we
take anétale covering(Xi → X)i∈I with Xi ’s satisfying the assumptions
of Step 13, and we defineP(X) as the monoid of all continuous functions
onXη whose preimage on eachXi,η is contained inP(Xi ). From Step 13 it
follows that P(X) does not depend on the choice of theétale covering. It
follows from the construction that the properties (ii), (iii) and (iv) are true.
The statement on the unicity follows from (i) and (iv).

Step 15.Theorem 5.4 is true.If X is from Step 6, then Step 13 easily
implies that the homeomorphismS(X)

∼→S(T) is in fact an isomorphism in
K̃e and, therefore, we get an isomorphism|L(X)| ∼→S(X) that possesses
the property of Theorem 5.4. Furthermore, by the constructions, in the
general case the spaces|L(X)| and S(X) are direct limits of the spaces
|L(Y)| and S(Y), respectively, taken over alĺetale morphismsY → X

with Y’s satisfying the assumptions of Step 6. The above isomorphisms
|L(Y)| ∼→S(Y) give rise to an isomorphism|L(X)| ∼→S(X) that possesses
the required property. That it is unique follows from Lemma 4.1. ut
Remark 5.12.(i) The system of homotopiesΦ satisfying the properties of
Theorem 5.2 is unique if one fixes them for the standard formal schemes
as in Step 3. Indeed, it suffices to check the unicity of the maps[0,1[7→
Xη : x 7→ xt for every pointx ∈ Xη. For this we takéetale morphisms
ϕ : X′ → X andψ : X′ → T such thatx = ϕη(x′) for some pointx′ ∈ X′η
andT is a standard formal scheme. Furthermore, using the property (vi)
we can increase the ground field so that the pointx′ is k-rational. In this
caseϕ andψ induce isomorphismsπ−1(x′) ∼→π−1(x)andπ−1(x′) ∼→π−1(y),
wherex′ = π(x′), x = π(x), y = π(y) and y = ψη(x′), and the required
fact follows from the properties (iv) and (vi).

(ii) Recall that for a formal schemeX the correspondenceY 7→ Ys
induces an equivalence between the category of formal schemesétale overX
and the category of schemesétale overXs (see [Ber3, §3]). Fix a functor
Ys 7→ Y inverse to the above one. Theorem 5.3 implies that for a poly-
stableX the correspondenceYs 7→ P(Y) is a sheaf of monoidsPX on the
étale site ofXs. Let P∗

X
denote the subsheaf of monoids such thatP∗(Y)

consists of the functions fromP(Y) that do not vanish onYη. Assume now
that the valuation onk◦ is discrete andX is the formal completion̂X of
a schemeX over k◦ with semi-stable reduction. A canonical logarithmic
structure onX is defined by théetale sheaf of monoidsP X = OX∩ j∗O∗X,
where j is the open embeddingXη ↪→ X (see [Kato]). There is a canonical
epimorphism of́etale sheaves of monoids onXs, i ∗P X → P∗̂

X
, wherei is

the closed immersionXs→ X.
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(iii) Let F be a local non-Archimedean field,Ωd
F the Drinfeld upper half-

plane of dimensiond− 1 overF, andΩ̂d
F the formal scheme overF◦ with

the generic fibreΩd
F considered in [Dr2] and [Mus]. The formal schemeΩ̂d

F
is strictly poly-stable, and the colored polysimplicial setL(Ω̂d

F ) gives rise
to the Bruhat-Tits buildingBd

F of the groupSLd(F). Some of the objects
from Theorem 5.2–5.4 were constructed in [Ber5] in an elementary way,
i.e., without using formal schemes.

(iv) Assume that a non-Archimedean fieldk contains local fields
F1, . . . , Fn. Then Theorems 5.2–5.4 and their consequences are applicable
to the formal scheme(Ω̂d1

F1
⊗̂k◦)× · · · × (Ω̂dn

Fn
⊗̂k◦), whose generic fibre is

thek-analytic space(Ωd1
F1
⊗̂k)×· · ·×(Ωdn

Fn
⊗̂k). Analytic spaces of this form

are considered in [Var].

6. A polysimplicial set associated with a poly-stable fibration of
schemes

In this section we construct a commutative diagram of functors

Psttps
l

Cl ↙ ↘ strl

Λ◦Ens
O−→ Or

wherestrl associates with a poly-stable fibrationX the partially ordered set
str(Xl). For this we need the following fact which explains, in particular, the
necessity of consideration of the categoryΛ instead ofΛ. (The extension of
all constructions from the categoryP st fsm to Pst f tps is only a by-product
not important for our applications.)

Lemma 6.1. Let ϕ : Y → X be a strictly poly-stable morphism with
strictly pluri-nodalX, and letx, x′ ∈ str(X)be points withx′ ≤ x. Consider
the map of partially ordered setsstr(Yx) → str(Yx′) : y 7→ y′ from

Proposition 2.9. Then, given an isometric bijectionµ : [n] ∼→irr(Yx, y),
there exists a unique pair(I, µ′) consisting of a subsetI ⊂ [p], where
p = w(n), and an isometric bijectionµ′ : [nI ] ∼→irr(Yx′, y′) for which the
following diagram is commutative

[n]
µ
∼→ irr(Yx, y)

↓ ↓
[nI ]

µ′
∼→ irr(Yx′, y′)
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Proof. We can shrinkY and assume that it is elementary andy is the
unique maximal point ofstr(Y). Then Yx and Yx′ are elementary, and
y and y′ are their unique maximal points, respectively. The situation is
then reduced to the caseX = Spec(A) and Y = Spec(B), where B =
B1⊗A · · · ⊗A Bp⊗A C with Bi = A[Ti0, . . . , Tini ]/(Ti0· . . . ·Tini − ai ) and
C = A[T1, . . . , Tm,

1
T1
, . . . , 1

Tm
], so that the isometric bijectionµ is the

evident one. In particular,ai (x) = 0 for all i ∈ [p]. We set I = {i ∈
[p] ∣∣ai (x′) = 0}. Then irr(Yx′, y′) is evidently identified with[nI ] so that
the diagram considered is commutative. That the pair(I, µ′) is unique is
already obvious. ut
Corollary 6.2. In the situation of Lemma 6.1, there is a canonical mor-
phism of polysimplicial setsC(Yx) → C(Yx′). If x′′ ∈ str(X) is a point
with x′′ ≤ x′, then the morphismC(Yx) → C(Yx′′) coincides with the
composition ofC(Yx)→ C(Yx′) andC(Yx′)→ C(Yx′′). ut

Consider the following general construction. LetC be a polysimplicial
set, and letD be a contravariant functor from the categoryΛ/C toΛ◦Ens :
(Λ[n] αx→ C) 7→ Dx. We define as follows a polysimplicial set

C D = Coker
(∐

Λ[ny] Dx
→→
∐
Λ[nx] Dx

)
where the second coproduct is taken over the set of polysimplices ofC,
which can be identified with the setN0(Λ/C) consisting of the morphisms
Λ[nx] αx→ C, the first coproduct is taken over the setN1(Λ/C) consisting
of the commutative diagrams (withy= C( f)x)

Λ[ny] f−→ Λ[nx]
αy ↘ ↙ αx

C

the upper mapd0 takesΛ[ny] Dx toΛ[nx] Dx and acts asf 1Dx , and the
lower mapd1 takesΛ[ny] Dx toΛ[ny] Dy and acts as 1�[ny] D( f), where

D( f) : Dx → Dy. For example, ifD is a constant functor(Λ[nx] αx→ C)
7→ C′, whereC′ ∈ Ob(Λ◦Ens), thenC D is the usual square productC C′.
Thus, we get a functor(Λ/C)◦(Λ◦Ens) → Λ◦Ens : D 7→ C D that
commutes with direct limits. The construction is functorial onC, i.e., given
a morphism of polysimplicial setsC′ → C and a morphismD′ → D
over C′ → C, there is a canonical morphismC′ D′ → C D. We remark
that the canonical morphismsΛ[nx] Dx → Λ[nx] give rise to a functorial
morphism of polysimplicial setsC D → C. We also remark that one can
associate with each pair(x′, x′′), consisting of polysimplicesx′ ∈ Cn′ and
x′′ ∈ Dx′,n′′ , a polysimplex〈x′, x′′〉 ∈ (C D)n, where [n] = [n′] [n′′].
Namely, this pair defines a polysimplex〈en′ , x′′〉 ∈ (Λ[n′] Dx′)n (see §3),
and〈x′, x′′〉 is the image of the latter in(C D)n. (Recall thaten denotes the
fundamentaln-polysimplex ofΛ[n].) The following is a generalization of
Lemma 3.6.
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Lemma 6.3. Assume thatD possesses the following property: for any
surjective morphismf : [m] → [n] and anyx ∈ Cn, one hasD( f) :
Dx
∼→DC( f)x. Then for eachx ∈ (C D)n there exists a unique tuple

(I ′, I ′′, x′, x′′) consisting of disjoint subsetsI ′, I ′′ ⊂ [p], p = w(n), and
polysimplicesx′ ∈ Cnd

nI ′ andx′′ ∈ Dnd
x′,nI ′′ such thatx = (C D)(πI ′,I ′′)〈x′, x′′〉.

Proof. Existence.First, x comes from a polysimplexy ∈ (Λ[m] Dz′)n for
somez′ ∈ Cm. By Lemma 3.2, we can find disjoint subsetsJ′, J′′ ⊂ [p] and
polysimplicesy′ ∈ �[m]nJ′ andy′′ ∈ Dz′,nJ′′ with y = (�[m] Dz′)(πJ′,J′′)〈y′, y′′〉.
If g denotes the morphismΛ[nJ′] → Λ[m] that corresponds toy′, then
d0〈enJ′ , y′′〉 = 〈y′, y′′〉 andd1〈enJ′ , y′′〉 = 〈enJ′ , D(g)(y′′)〉, whereD(g) is
the morphismDz′ → DC(g)z′. Thus, we may assume that

y= (Λ[nJ′ ] Dz′)(πJ′,J′′)〈enJ′ , y′′〉
for somez′ ∈CnJ′ andy′′ ∈ Dz′,nJ′′ and, therefore,x = (C D)(πJ′,J′′)〈z′, y′′〉.
Furthermore, letz′ =C(π ′)x′, wherex′ ∈Cnd

nI ′ , I ′ is a subset ofJ′, andπ ′ is
the canonical surjective morphism[nJ′]→[nI ′ ]. By the assumption,D(π ′) :
Dx′

∼→Dz′ . Let z′′ be the element ofDx′,nJ′′ that goes toy′′ underD(π ′). One
has d1〈enJ′ , z

′′〉 = 〈enJ′ , y′′〉 and d0〈enJ′ , z
′′〉 = 〈y′, z′′〉, where y′ is the

polysimplex fromΛ[nI ′ ]nJ′ that corresponds to the morphismπ ′. Thus, we
can replacey by the element(Λ[nI ′ ] Dx′)(πJ′,J′′)〈y′, z′′〉. The latter is equal
to (Λ[nI ′ ] Dx′)(πI ′,J′′)〈enI ′ , z

′′〉 and, therefore,x = (C D)(πI ′,J′′)〈x′, z′′〉.
Finally, letz′′ = Dx′(π

′′)x′′, wherex′′ ∈ Dnd
x′,nI ′′ , I ′′ is a subset ofJ′′, andπ ′′

is the canonical morphism[nJ′′ ] → [nI ′′ ]. Thenx = (C D)(πI ′,I ′′)〈x′, x′′〉.
Uniqueness.1) I ′ and x′ are uniquely determined byx. Indeed, letϕ

denote the canonical morphismC D→ C. Thenϕn(x) = C(πI ′)x′ and the
claim follows from the Eilenberg-Zilber Lemma 3.2.

2) Giveny′ ∈ Cnd
m′ and y′′ ∈ Dnd

y′,m′′, if 〈y′, y′′〉 = 〈y′, ỹ′′〉 for somẽy′′ ∈
Dy′,m′′ then ỹ′′ = y′′. Indeed, let[m] = [m′] [m′′], q = w(m), and[q] =
J′
∐

J′′ the corresponding partition. Then there exist morphismsΛ[nxl+1] =
Λ[m′] fl→ Λ[nxl ]

fl−1→ · · · f1→ Λ[nx1] = Λ[m′] and polysimpliceszi ∈
(Λ[nxi+1] Dxi )m, 1 ≤ i ≤ l , with d0z1 = 〈em′, y′′〉, d1zi = d0zi+1 for
1 ≤ i ≤ l − 1, andd1zl = 〈em′, ỹ′′〉. By Lemma 3.6, for each 1≤ i ≤ l
there exists a unique tuple(J′i , J′′i , γi , δi ) consisting of disjoint subsets
J′i , J′′i ⊂ [q] and polysimplicesγi ∈ Λ[nxi+1]nd

mJ′i
and δi ∈ Dnd

xi ,mJ′′i
with

zi = (Λ[nxi+1] Dxi )(πJ′i ,J′′i )〈γi , δi 〉. The uniqueness of Lemma 3.6 applied
to the above equalities implies thatJ′i = J′ and J′′i = J′′ for all 1 ≤ i ≤ l ,
em′ = ( f1 ◦ · · · ◦ fl)(em′) and ỹ′′ = D( f1 ◦ · · · ◦ fl)y′′. The first of the latter
two equalities implies thatf1 ◦ · · · ◦ fl = 1�[m′ ] and, therefore,̃y′′ = y′′.

3) In the situation of 2) the polysimplex〈y′, y′′〉 is nondegenerate.In-
deed, let〈y′, y′′〉 = (C D)(πI )z for some subsetI ⊂ [q] and a polysimplex
z ∈ (C D)nd

m I
. By the existence, one hasz = (C D)m I ′,I ′′ 〈z′, z′′〉 for some

partition I = I ′
∐

I ′′ and polysimplicesz′ ∈ Cm I ′,I ′′ andz′′ ∈ Dz′,m I ′′ . We
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get〈y′, y′′〉 = (C D)(πI ′,I ′′)〈z′, z′′〉. By 1), I ′ = J′ andz′ = y′ and, in par-
ticular, I ′′ ⊂ J′′. If π ′′ denotes the canonical morphism[mJ′′ ] → [mI ′′ ], then
〈y′, y′′〉 = 〈y′, Dy′(π

′′)z′′〉. From 2) it follows thatI ′′ = J′′ andz′′ = y′′.
4) I ′′ and x′′ are uniquely determined byx. Indeed, since〈x′, x′′〉 is

nondegenerate, the Eilenberg-Zilber Lemma 3.2 implies thatI ′ ∪ I ′′ and
〈x′, x′′〉 are uniquely determined byx. From 1) and 2) it follows thatI ′′
andx′′ are uniquely determined byx. ut
Corollary 6.4. In the situation of Lemma 6.3, given an injective morphism
of polysimplicial setsC′ → C and an injective morphismD′ → D over
C′ → C with D′ also satisfying the assumption of Lemma 6.3, the induced
morphismC′ D′ → C D is injective. ut

If σ is an automorphism of[n] associated with a triple([p], f, α) then,
for any subsetI ⊂ [p], the triple ( f −1(I ), f | f−1(I ), α f −1(I )) defines an

isomorphismσI : [n f−1(I )] ∼→[nI ]. One hasπI ◦ σ = σI ◦ π f −1(I ). It is easy
to check that forx = (C D)(πI ′,I ′′)〈x′, x′′〉 one has

(C D)(σ)x = (C D)(π f −1(I ′), f−1(I ′′))〈C(σI ′)x
′, D(σI ′)(Dx′(σI ′′)x

′′)〉 .
Corollary 6.5. In the situation of Lemma 6.3, letx′ ∈ Cnd

n′ , x′′ ∈ Dnd
x′,n′′

and [n] = [n′] [n′′]. Then〈x′, x′′〉 ∈ (C D)nd
n and G〈x′,x′′〉 = {(g′, g′′) ∈

Gx′ × Aut([n′′])|x′′ = D(g′)(g′′x′′)}. In particular, if C and all Dx are
interiorly free, then so isC D. ut
Corollary 6.6. In the situation of Lemma 6.3, assume that for a polysimplex
x ∈ Cnd

n the groupGx acts trivially on the polysimplicial setDx. Then the
preimage of the corresponding cellGx\Σ̊n ⊂ |C| in |C D| is canonically
homeomorphic to(Gx\Σ̊n)× |Dx|. ut

Assume we are given a strictly pluri-nodal schemeX and a polysimpli-
cial setE provided with a map of partially ordered setsO(E)→ str(X) :
(Λ[n] α→ E) 7→ α. Then every strictly poly-stable morphismϕ : Y→ X
gives rise to a contravariant functorDϕ : Λ/E → Λ◦Ens defined by

Dϕ(Λ[n] α→ E) = C(Yα). Note that Dϕ satisfies the assumptions of
Lemma 6.3 and Corollary 6.6. We setEϕ = E Dϕ. By Lemma 3.3 and
Proposition 3.14(ii), one has

O(Eϕ) = Coker
(∐

O(Λ[m])× str(Yα)
→→
∐

O(Λ[n])× str(Yα)
)
,

where the first and the second coproducts are taken over the categories
N1(Λ/E) and N0(Λ/E), respectively. The mapd0 takes a pair(̃δ, y),
consisting of the class̃δ of a morphismδ : Λ[r ] → Λ[m] and a point
y ∈ str(Yα), to the pair( f̃ ◦ δ, y), where f is the morphismΛ[m] → Λ[n],
and the mapd1 takes the same pair(̃δ, y) to the pair(̃δ, y′), wherey′ is
the image ofy under mapstr(Yα) → str(Yα◦ f ). It follows that the maps
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O(Λ[n]) × str(Yα) → str(Y), that take a pair(δ, y) to the image of the
point y under the mapstr(Yα) → str(Yα◦δ), define a map of partially
ordered setsO(Eϕ)→ str(Y).

Lemma 6.7. In the above situation the following is true:
(i) if O(E)

∼→str(X), thenO(Eϕ)
∼→str(Y);

(ii) if E is interiorly free, then so isEϕ;
(iii) given an elementα ∈ O(E), the preimage of the corresponding cell

of |E| in |Eϕ| is canonically homeomorphic to a direct product of it with
|C(Yα)|.
Proof. (i) follows from Lemma 6.3 and Proposition 2.7(ii), (ii) follows from
Corollary 6.5, and (iii) follows from Corollary 6.6. ut

We now associate with a strictly poly-stable fibrationX = (Xl
fl−1→

· · · f1→ X1
f0→ X0 = Spec(K)) over a fieldK a polysimplicial setC(X)

as follows. If l = 1 thenC(X) = C(X1), and if l ≥ 2 thenC(X) =
C(X′) fl−1, whereX′ = (Xl−1

fl−2→ · · · f1→ X1). (We omitX0 = Spec(K)
if its presence is evident.) By Corollary 6.4, the polysimplicial setC(X)
is interiorly free, and there is a canonical isomorphism of partially ordered
setsO(C(X))

∼→str(Xl). The construction is obviously functorial, and we
get a functorCl from the full subcategory ofPsttps

l consisting of strictly
poly-stable fibrations toΛ◦Ens.

Using Lemma 6.3, one can describe the setsCn(X) as follows. For
eachn with p = w(n), there is a canonical bijection betweenCn(X) and
the set of the triples(x, I , µ), where x ∈ str(Xl), I = (I1, . . . , Il) is
a family of pairwise disjoint subsets of[p] (all Ik are assumed to be empty
if [n] = [0]), andµ = (µ1, . . . , µl) is a family of isometric bijections

µk : [nIk] ∼→irr(Xk,xk−1, xk), wherexk is the image of the pointx in Xk.
Given a morphismγ : [n′] → [n] associated with a triple(J, f, α), the map
Cn(X) → Cn′(X) takes a triple(x, I , µ) to the triple(x′, I ′, µ′) defined
inductively as follows. One hasI ′1 = f −1(I1), and the setI ′1 defines a point

x′1 ∈ X1 with x′1 ≤ x1 and an isometric bijectionµ′1 : [n′I ′1]
∼→irr(X1, x′1)

for which the following diagram is commutative

[nI1]
µ1∼→ irr(X1, x1)

↑ ↑

[n′I ′1]
µ′1∼→ irr(X1, x′1)

Assume that 2≤ k ≤ l and that the pointsx′j with x′j ≤ xj , the setsI ′j
and the isometric bijectionsµ′j : [n′I ′j ]

∼→irr(X j,x′j−1
, x′j ) are constructed for
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1≤ j ≤ k− 1. First, the setJ′ = f −1(Ik) defines a pointy′ ∈Xk,xk−1 with

y′ ≤ xk and an isometric bijectionν′ : [n′J′] ∼→irr(Xk,xk−1, y′) for which the
following diagram is commutative

[nIk]
µk∼→ irr(Xk,xk−1, xk)

↑ ↑
[n′J′]

ν′∼→ irr(Xk,xk−1, y′)

Let x′k be the image of the pointy′ under the canonical mapstr(Xk,xk−1)→
str(Xk,x′k−1

). By Lemma 6.1, there exists a unique pair(I ′k, µ
′
k) consisting

of a subsetI ′k ⊂ J′ and an isometric bijectionµ′k : [n′I ′k]
∼→irr(Xk,x′k−1

, x′k)
for which the following diagram is commutative

[n′J′ ]
ν′∼→ irr(Xk,xk−1, y′)

↓ ↓

[n′I ′k]
µ′k∼→ irr(Xk,x′k−1

, x′k)

Settingx′ = x′l , I ′ = (I ′1, . . . , I ′l ) andµ′ = (µ′1, . . . , µ′l ), we get the re-
quired triple(x′, I ′, µ′). Given a trivially poly-stable morphismϕ : Y→ X,
the mapCn(Y) → Cn(X) takes a triple(y, J, ν) to the triple(x, I , µ),

wherex = ϕl(y), Ik is the subset ofJk, andµk : [nIk] ∼→irr(Xk,xk−1, xk) is
the isometric bijection for which the following diagram is commutative

[nJk]
νk∼→ irr(Yk,yk−1

, yk)

↓ ↓
[nIk]

µk∼→ irr(Xk,xk−1, xk)

The above explicit description of the setsCn(X)easily implies the following
fact.

Lemma 6.8. Letϕ : X′ → X be a morphism between strictly poly-stable
fibrations inP stsm

l , and assume thatstr(X′l)
∼→str(Xl). ThenC(X′) ∼→C(X).

ut
Proposition 6.9. (i) The above functorX 7→ C(X) extends in a way,
unique up to a unique isomorphism, to a functorCl :Psttps

l →Λ◦Ensso that,
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for any surjectivéetale morphismX′ →X, one hasCoker(C(X′ ×X X′)
→→ C(X′)) ∼→C(X);

(ii) for each poly-stable fibrationX there is a functorial isomorphism
of partially ordered setsO(C(X))

∼→str(Xl);

(iii) given X = (Xl
fl−1→ · · · f1→ X1) with l ≥ 2, assume that for some

1≤ k ≤ l−1 the morphismfk is trivially poly-stable; thenC(X)
∼→C(X′),

whereX′ = (· · · → Xk+1
fk−1◦ fk→ Xk−1 → . . . ); in particular, if all of the

morphismsfi are trivially poly-stable, thenC(X) = C(Xl).

Proof. (i) As in our previous constructions, it suffices to verify the prop-
erty stated for any surjectivéetale morphism of strictly poly-stable fibrations
ϕ : X′ → X. Let first(x, I , µ)be fromCn(X), and take a pointx′ ∈ str(X′l)
overx. Then there are isometric bijectionsγk : irr(X′k,x′k−1

, x′k)
∼→irr(Xk,xk−1 , xk),

and the triple(x, I , µ) is the image of the triple(x′, I , µ′) from Cn(X
′),

whereµ′k = µk◦γ−1
k . Assume now that the images of two triples(x′, I ′, µ′)

and(y′, J′, ν′) from Cn(X
′) coincide inCn(X) with a triple (x, I , µ). We

can find a pointx′′ ∈ str(X′′l ), whereX′′ = X′×XX′, whose two projections
in X′l are the pointsx′ and y′. It follows that the compositions of the iso-

metric bijectionsirr(X′′k,x′′k−1
, x′′k)

γk∼→ irr(X′k,x′k−1
, x′k)

∼→irr(Xk,xk−1, xk) and

irr(X′′k,x′′k−1
, x′′k )

δk∼→ irr(X′k,y′k−1
, y′k)

∼→irr(Xk,xk−1, xk) coincides. This implies

thatI ′k = Ik = J′k and that the isometric bijectionsµ′′k = γ−1◦µ′k andδ−1◦ν′k
between[nIk] andirr(X′′k,x′′k−1

, x′′k ) coincide. Thus the triple(x′′, I , µ′′) goes

to the triples(x′, I ′, µ′) and(y′, J′, ν′) under the two projections fromX′′

to X′.
(ii) follows from (i), Lemma 3.3 and the fact that it is true for strictly

poly-stable fibrations.
(iii) By (i), it suffices to verify the statement only for strictly poly-stable

fibrations, but in this case it is easily deduced from the explicit description
of elements of the setsCn(X). ut

Corollary 6.10. LetX be a poly-stable fibration of lengthl over a fieldK .
Then

(i) If Xl is quasi-compact, then there exists a finite separable exten-
sion K ′ of K such that, for any bigger fieldK ′′, one hasC(X ⊗ K ′′) ∼→
C(X⊗ K ′).

(ii) If X is a strictly poly-stable fibration and all of the strata ofXl are
geometrically irreducible, then the conclusion of (i) is true forK ′ = K . ut
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7. A lifting of a homotopy for a poly-stable morphism of formal
schemes

Let ϕ : Y → X be a poly-stable morphism between formal schemes
locally finitely presented overk◦. For a point x ∈ Xη, we setYx =
Y×X Spf(H(x)◦). It is a poly-stable formal scheme overH(x)◦, and there

are canonical isomorphismsYx,η
∼→Yη,x andYx,s

∼→Ys,x⊗k̃(x) H̃(x), where
x = π(x). LetΦX denote the mappingYη × [0,1] → Yη that coincides
with the mappingΦ from Theorem 5.2 on each fibre of the morphismϕη.

Theorem 7.1. The mappingΦX : Yη × [0,1] → Yη is continuous and
proper. In particular, it is a strong deformation retraction ofYη to the
closed set (theskeleton of the morphismϕ)

S(Y/X) = ∪x∈XηS(Yx) .

The natural question now is as follows. When a homotopyΨ : Xη ×
[0,1] → Xη can be lifted to a homotopỹΨ : S(Y/X)× [0,1] → S(Y/X)?
The following is an answer to the question in a situation which is sufficient
for our purposes.

Assume we are given a formal schemeX locally finitely presented overk◦
and, for each morphismX′ → X in F sch́et, a homotopyΨX′ : X′η×[0,1] →
X′η : (x′, t) 7→ x′t with the properties

(a) (x′t)t ′ = x′max(t,t ′) andx′ ≤ x′t for all x′ ∈ X′η and 0≤ t, t′ ≤ 1;
(b) given a commutative diagram inF sch́et

X′′
ψ−→ X′

↘ ↙
X

one hasψη(x′′t ) = ψη(x′′)t for all x′′ ∈ X′′η and 0≤ t ≤ 1.

Theorem 7.2. In the above situation, one can construct, for every poly-
stable morphismϕ : Y→ X, a proper homotopỹΨ : S(Y/X) × [0,1] →
S(Y/X) : (y, t) 7→ yt overΨ = ΨX so that the following holds:

(i) (yt)t ′ = ymax(t,t ′) and for all 0≤ t, t′ ≤ 1;
(ii) y ≤ yt for all 0≤ t ≤ 1;
(iii) if x = xt (resp.π(x) = π(xt)) for some0≤ t ≤ 1 theny = yt (resp.

π(y) = π(yt)), wherex = ϕη(y);
(iv) given a commutative diagram

Y
ϕ−→ X

↑ψ′ ↑ψ
Y′

ϕ′−→ X′

whereϕ andϕ′ are poly-stable andψ andψ′ are morphisms inF sch́et, one
hasψ′η(y′t) = ψ′η(y′)t for all y′ ∈ S(Y′/X′) and0≤ t ≤ 1.
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Notice that the properness in both theorems trivially follows from the
continuity (see Step 9 from §5).

We say that a strictly pluri-nodal schemeX over a fieldK is geometri-
cally elementaryif it is elementary, i.e., the partially ordered setstr(X) has
a unique maximal element, and all of the strata ofX are geometrically irre-
ducible, i.e., for every bigger fieldK ′ ⊃ K one hasstr(X⊗ K ′) ∼→str(X).
Furthermore, we say that a strictly pluri-nodal morphismϕ : Y → X
is geometrically elementaryif the fibre Yx of Y at each pointx ∈ X is
geometrically elementary.

Lemma 7.3. Let ϕ : Y → X be a strictly poly-stable morphism between
schemes of locally finite type overK . Then for each pointy ∈ Y there
exist anétale morphismX′ → X and an open subsetY′ ⊂ Y ×X X′ such
that the image ofY′ in Y contains the pointy and the induced morphism
Y′ → X′ is geometrically elementary.

Proof. We may assume that the pointy is closed. Furthermore, to prove the
statement we always can replace the ground field by a finite (not necessarily
separable) extension ofK (see [SGA1, Exp. IX, 4.10]). In particular, we
may assume that the pointy is K -rational. ShrinkingX andY, we may
assume thatX = Spec(A) is affine and the morphismϕ goes through an
étale morphismg : Y→ Z = Spec(B) with B = B0⊗A · · · ⊗A Bq, where
Bi = A[Ti0, . . . , Tini ]/(Ti0· . . . ·Tini − ai ), ai ∈ A and ni ≥ 1. We may
assume thatai (x) = 0 andTij (y) = 0 for all 0 ≤ i ≤ p and 0≤ j ≤ ni ,
wherex is the image ofy in X, anda ∈ A∗ for all p+1 ≤ i ≤ q. For a subset
I ⊂ [p], let XI denote the set of the points ofX where the functionsai
with i ∈ I vanish. (For example,X∅ = X.) Given a subsetI ⊂ [p], assume
that for every strictly bigger subsetI ⊂ J ⊂ [p] the fiberYx′ at each point
x′ ∈ XJ is geometrically elementary. We will prove the existence ofX′
andY′, as in the lemma, with the property that the fibreY′x′ of Y′ at each
point x′ ∈ X′ overXI is geometrically elementary.

Let BI (resp. B′I ) denote the tensor product ofBi ’s for i ∈ I (resp.
i ∈ [q]\I ). If f denotes the canonical morphismZ→ X, then f −1(XI ) =
U×XU′, whereU = Spec(BI )×XXI andU′ = Spec(B′I )×XXI . One has

V := {z ∈ U
∣∣Tij (z) = 0 for all i ∈ I and 0≤ j ≤ ni } ∼→XI . Each family

λ = (λij )i∈[q]\I,1≤ j≤ni of non-zero elements ofK defines a homomorphism
B′I → A that takesTi0 to ai

λi1·...·λini
and Tij to λij for 1 ≤ j ≤ ni . The

latter together with the isomorphismXI
∼→V defines a sectionσλ : XI →

f −1(XI ) of f overXI . If I = [p] then, forλij = Tij (g(y)), σλ(x) = g(y).
If I 6= [p], we can increase the fieldK and find a familyλ such that
the pointσλ(x) is contained in the image ofY in Z. Shrinking X, we
can extend théetale morphismg−1(σλ(XI )) → XI to anétale morphism
X′ → X with affine X′. ReplacingX by X′, Y by Y ×X X′ andZ by
Z ×X X′, we may assume that the above sectionσλ : XI → f −1(XI ) of
f overXI can be lifted to a sectionσ : XI → ϕ−1(XI ) of ϕ overXI . For
x′ ∈ XI , let Y◦x′ denote the connected component ofYx′ that contains the
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point σ(x′). If x′ is contained inXJ for some bigger subsetI ⊂ J ⊂ [p],
then the induction hypothesis implies thatY◦x′ = Yx′. Otherwise, by the
construction, the pointσ(x′) is contained in the intersection of all of the
irreducible components ofY◦x′. If I = ∅, i.e., X∅ = X, then the union
Y◦ of Yx′ over all x′ ∈ X is open inY, by [EGAIV, 15.6.4], and the
morphismY◦ → X is geometrically elementary. Assume thatI 6= ∅, and
let I = {i0 < · · · < i l} andn = (ni0, . . . ,nil ). For a subsetA ⊂ [n] with
the propertyA = A0 × · · · × Al , where Ak is the image ofA under the
projection[n] → [nik], we setZA = {z ∈ f −1(XI )|Tij (z) = 0 for all i ∈ I
and j ∈ Ai } and denote byYA the preimage ofZA in Y. Thenσ is also
a section of each of the morphismsYA→ XI . For a pointx′ ∈ XI , letY◦A,x′
denote the connected component ofYA,x′ that contains the pointσ(x′), and
let Y◦A denote the union ofY◦A,x′ overx′ ∈ XI . Again, by [EGAIV, 15.6.4],
Y◦A is open inYA. Thus, we can remove fromY the closed subsetsYA\Y◦A
so that the fibres ofϕ over all points fromXI are geometrically elementary.

ut
We say that a strictly poly-stable morphismϕ : Y → X in k◦-F sch

is geometrically elementaryif the induced morphism between their closed
fibres is geometrically elementary. This property implies that for each point
x ∈ Xη the closed fibre of the strictly poly-stable formal schemeYx is
elementary. The following is a direct consequence of Lemma 7.3 and [Ber3,
Lemma 2.1].

Corollary 7.4. Let ϕ : Y → X be a strictly poly-stable morphism in
k◦-F sch. Then for each pointy ∈ Ys there exists ańetale morphism
X′ → X and an open subschemeY′ ⊂ Y×XX′ such that the image ofY′s in
Ys contains the pointy and the induced morphismY′ → X′ is geometrically
elementary. ut
Proof of Theorem 7.1.Assume first that the morphismϕ is strictly poly-
stable. Since the statement on continuity ofΦX is local with respect to the
Zariski topology ofY, we may assume thatX = Spf(A) is affine and the
morphismϕ goes through ańetale morphismf : Y→ Z = Spf(B), where
B = B0 ⊗A · · · ⊗A Bp with Bi = A{Ti0, . . . , Tini }/(Ti0· . . . ·Tini − ai ),

ai ∈ A andni ≥ 1. The groupG = G(n0)
m × · · · × G

(np)
m from §5 acts in the

evident way onZ. By Lemma 5.5, the action onZ of the formal groupG, the
formal completion ofG along the unit, extends in a unique way to an action
onY. The corresponding continuous homotopyYη×[0,1[→ Yη coincides
with the restriction ofΦX to Yη × [0,1[ (see Step 4 from §5). Thus, it
remains to check the continuityΦX at the points(y,1) ∈ Yη × [0,1]. If,
in addition, the morphismϕ is geometrically elementary then, for every
point x ∈ Xη, Yx,s = Ys,π(x) ⊗k̃(π(x)) H̃(x) is elementary and, therefore,
the morphism of polysimplicial setsC(Yx,s)→ C(Zx,s) is injective. Since
S(Y/X) = f −1

η (S(Z/X)), Theorem 5.4 implies thatf −1
η ( fη(y)) = {y} for

all y ∈ S(Y/X) and, by Lemma 5.10, the mapΦX is continuous.
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In the general case, we can find, by Corollary 7.4, a commutative diagram

Y
ϕ−→ X

↑ψ′ ↑ψ
Y′

ϕ′−→ X′

whereψ′ is surjectiveétale,ψ is étale, andX′ is a disjoint union
∐

i∈I Xi

such that each morphismϕ′−1
(Xi ) → Xi is strictly poly-stable and geo-

metrically elementary. By the previous case, the mapΦX′ : S(Y′/X′) ×
[0,1] → S(Y′/X′) is continuous. Since it is compatible with the mapΦX,
Lemma 5.11 implies thatΦX is also continuous. ut
Proof of Theorem 7.2.Step 1. We start by constructing for eachn ≥ 0
a strong deformation retractionψn : [0,1][n] × [0,1] → [0,1][n] of [0,1][n]
to the point(1, . . . ,1). The mapψn is required to possess the property
thatψ(σ(r), t) = σ(ψn(r , t)) for all σ ∈ Sn+1, and so it suffices to define
ψn(r , t) only for the pointsr ∈ [0,1][n] with r0 ≤ r1 ≤ · · · ≤ rn. First of
all, if t ≤ r0· . . . ·rn we setψn(r , t) = r . Furthermore, ifr i+1

i r i+1· . . . ·rn ≤
t < r i+2

i+1ri+2· . . . ·rn for some 0≤ i ≤ n− 1, we set

ψn(r , t) =
((

t

r i+1· . . . ·rn

) 1
i+1

, . . . ,

(
t

r i+1· . . . ·rn

) 1
i+1

, ri+1, . . . , rn

)
.

Finally, if t ≥ r n+1
n , we setψn(r , t) = (t

1
n+1 , . . . , t

1
n+1 ). For example,

ψ0(r, t) = max(r, t). Notice that ifµn denotes the mapping[0,1][n] →
[0,1] : (r0, . . . , rn) 7→ r0· . . . ·rn, thenµn(ψn(r , t)) = ψ0(µn(r), t). One
also hasψn(ψn(r , t), t′) = ψn(r ,max(t, t′)).

Step 2. Let f : Y = Spf(B) → X = Spf(A) be a morphism of
affine formal schemes finitely presented overk◦ with B = B0⊗̂A . . . ⊗̂ABp,
where Bi = A{Ti0, . . . , Tini }/(Ti0· . . . ·Tini − ai ), ai ∈ A and ni ≥ 1.
The continuous mappingβ f : Yη → Xη × [0,1][n] that takes a pointy
to ( f(y); |T00(y)|, . . . , |Tpnp(y)|) identifiesS(Y/X) with the closed subset
(see Step 1 from §5)

Sf = {(x; r0, . . . , r p) ∈ Xη × [0,1][n] ∣∣ri0· . . . ·rini = |ai (x)|,0≤ i ≤ p} .
Assume that there is a homotopyΨ : Xη × [0,1] → Xη : (x, t) 7→ xt
possessing the properties(xt)t ′ = xmax(t,t ′) andx ≤ xt for all t, t′ ∈ [0,1].
We construct as follows a homotopyΨ f : Sf × [0,1] → Sf overΨ :

Ψ f
(
(x; r0, . . . , r p), t

) = (xt;ψn0(r0, |a0(xt)|), . . . , ψnp(r p, |ap(xt)|)
)
.

In this way we get a homotopỹΨ : S(Y/X)× [0,1] → S(Y/X) : y 7→ yt
overΨ . By the construction,(yt)t ′ = ymax(t,t ′) and, if x = xt for x = fη(y)
then y = yt. Sincex ≤ xt and |Tij (y)| ≤ |Tij (yt)| for all 0 ≤ i ≤ p
and 0≤ j ≤ ni , from Lemma 5.6 it follows thaty ≤ yt. Assume that
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π(x) = π(xt). This means that, for any elementa ∈ A, |a(x)| < 1 if and
only if |a(xt)| < 1, and we have to check that the same property holds for the
points y andyt and all functions fromB. If such a function is represented
by an elementb = ∑

µ aµTµ ∈ D with aµ ∈ A (see Lemma 5.6), then
the inequality|b(y)| < 1 (resp.|b(yt)| < 1) is equivalent to the system
of inequalities|aµ(x)|·|T(y)|µ < 1 (resp.|aµ(xt)|·|T(yt)|µ < 1) for all µ.
If |aµ(x)| < 1 then|aµ(xt)| < 1 and the both inequalities from the above
systems are automatically satisfied. Otherwise,|aµ(x)| = |aµ(xt)| = 1 and
the formula forΨ f implies that|T(y)|µ < 1 if and only if |T(yt)|µ < 1.

We remark that, given an open formal subschemeY′ ⊂ Y, the above
homotopỹΨ induces a homotopỹΨ : S(Y′/X)×[0,1] → S(Y′/X). Indeed,
this follows from the facts thatS(Y′/X) = S(Y/X) ∩ π−1(Y′s) andy ≤ yt.

Step 3. Letϕ : Z → X = Spf(A) be a geometrically elementary
strictly poly-stable morphism. Assume that the morphismϕ is a compo-
sition of an étale morphismg : Z → Y = Spf(B) with a morphism
f : Y → X of the form considered in Step 2. LetY′ be the image ofϕ
in Y. (It is an open formal subscheme ofY.) We claim thatϕ induces
a homeomorphismS(Z/X)

∼→S(Y′/X). Indeed, it suffices to verify that,
for each pointx ∈ Xη, the canonical mapS(Zx) → S(Y′x) is a homeo-

morphism. ButZx,s
∼→Zs,π(x)⊗k̃(π(x)) H̃(x) andY′x,s

∼→Y′s,π(x)⊗k̃(π(x)) H̃(x).
From the assumption it follows thatZx,s is elementary. SinceY′x,s is also

elementary, it follows thatC(Zx,s)
∼→C(Y′x,s). Theorem 5.4 implies that

S(Zx)
∼→S(Y′x). Thus, the homotopy from Step 2 gives rise to a homotopy

Ψ̃ : S(Z/X) × [0,1] → S(Z/X) : z 7→ zt over Ψ . One evidently has
(zt)t ′ = zmax(t,t ′) for all t, t′ ∈ [0,1] and, if x = xt for somet thenz = zt.
Sinceπ(z) ∈ str(Zs,π(x)) andπ(zt) ∈ str(Zs,π(xt)), the pointsπ(z) andπ(zt)
are unique preimages of the pointsπ(y) andπ(yt) in Zs, respectively, where
y= gη(z). Sinceπ(y) is contained in the closure ofπ(yt) andgs : Zs→ Ys
is an open map, it follows thatπ(z) is contained in the closure ofπ(zt) and
if, in addition,π(x) = π(xt) for somet thenπ(z) = π(zt).

Step 4.In the situation of Step 3,z ≤ zt for all z ∈ Zη and t ∈ [0,1].
Sinceπ(z) is contained in the closure ofπ(zt), we can replaceZ by an open
neighborhood of the pointπ(z) so thatZ = Spf(C{c}) with C = B[T]/(P),
whereP is a monic polynomial overB andc ∈ C is such that the image ofP′
in C{c} is invertible. Notice that fory= gη(z) one hasy ≤ yt, f −1

η (y) = {z}
and f −1

η (yt) = {zt}. Notice also that, by Lemma 5.1, the inequalityz ≤ zt
in Zη is equivalent to the same inequality in the generic fibre ofSpf(C).
Thus, the required fact follows from the following lemma.

Lemma 7.5. Let ϕ : Y = M(B) → X = M(A) be a finite morphism of
k-affinoid spaces such thatB is a freeA-module, and letx, x′ ∈ X be points
with x ≤ x′. Furthermore, letZ be an affinoid subdomain ofY of the form
Y(h−1) = {y ∈ Y||h(y)| ≥ 1}with h ∈ B◦. Assume thatϕ−1(x′)∩Z = {z′}.
Then for each pointz ∈ ϕ−1(x) ∩ Z one hasz≤ z′.



64 V. G. Berkovich

Proof. (1) For a closed subsetΣ ⊂ Y and an elementf ∈ B we set
| f |Σ = max

y∈Σ
| f(y)|. We claim that for eachf ∈ B and each pointx ∈ X

one has| f |ϕ−1(x) = max
1≤i≤n
|ai (x)| 1i , whereTn + a1Tn−1 + · · · + an is the

characteristic polynomial of the endomorphism of multiplication byf of B
overA. Indeed, we can replaceA by H(x) andB by B ⊗A H(x) so that
the claim takes the following form. Given a non-Archimedean fieldK and
a finite-dimensional algebraL over K , for each f ∈ L one has| f |sup =
max
1≤i≤n
|ai (x)| 1i , whereTn+a1Tn−1+· · ·+an is the characteristic polynomial

of f . Notice that the both sides of the equality don’t change if we increase
the K and, therefore, we may assume thatL = L1 × · · · × L p, whereLi
are local ArtinianK -algebras with the residue fieldK .

Let λi be the image off in the residue field ofLi . The left hand side of
the equality is max

1≤i≤p
|λi |. On the other hand, if the dimension ofLi over K

is ni , the characteristic polynomial off is (T − λ1)
n1· . . . ·(T − λp)

np, and
the verification of the equality is an easy exercise.

(2) Assume we are given a pointx ∈ X with ϕ−1(x) ∩ Z = {z} and
a function f ∈ B. We claim that if f(z) 6= 0 then there existsm0 ≥ 1 such
that for anym ≥ m0 one has| f(z)| = | fhm|ϕ−1(x), and if f(z) = 0 then
| fhm|ϕ−1(x) → 0 as m → ∞. Indeed, ifϕ−1(x) = {y1 = z, y2, . . . , yl},
then|h(z)| = 1 and|h(yi )| < 1 for all 2≤ i ≤ l and, therefore, in the case
f(z) = 0 the claim is clear, and in the casef(z) 6= 0 it suffices to takem0
with the property| f(yi)|·|h(yi)|m0 ≤ | f(z)| for all 2≤ i ≤ l .

(3) For each f ∈ B one has| f(z)| ≤ | f(z′)|. (The pointsz andz′ are
from the lemma.) Indeed, by (1) and the assumptionx ≤ x′, for everym ≥ 0
one has| f(z)| = |( fhm)(z)| ≤ | fhm|ϕ−1(x) ≤ | fhm|ϕ−1(x′). If f(z′) 6= 0 then
for a sufficiently largem the latter number is equal to| f(z′)|. If f(z′) = 0
then that number tends to zero asm tends to infinity, i.e.,f(z) = 0. ut

Step 5.In the situation of Step 3, the homotopỹΨ : S(Z/X)× [0,1] →
S(Z/X) does not depend on the decompositionϕ = f ◦ g.

Lemma 7.6. Let [0,1] → Xη : x 7→ xt be a continuous map to the generic
fibre of a formal schemeX locally finitely presented overk◦, and assume
that xt ≤ xt ′ for all t ≤ t′. Then there existt0 = 0< t1 < · · · < tn = 1 such
thatπ(xt)=π(xti ) for all ti ≤ t < ti+1 and0≤ i ≤ n− 1.

Proof. We may assume thatX = Spf(A) is affine, and it suffices to show
that for each 0≤ t < 1 there existsε > 0 such thatπ(xt) = π(xt ′) for all
t ≤ t′ < t+ε. Let f1, . . . , fm be elements ofA whose images iñA generate
the prime ideal℘ that corresponds to the pointπ(xt). Since the mapt 7→ xt
is continuous and| fi (xt)| < 1 for all 1 ≤ i ≤ m, there existsε > 0 such
that | fi (xt ′)| < 1 for all t ≤ t′ < t + ε and 1≤ i ≤ m. We claim that for
sucht′ one hasπ(xt) = π(xt ′). Indeed, if f is an element ofA whose image
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in Ã is not in℘, then| f(xt)| = 1 and, therefore,| f(xt ′)| ≥ | f(xt)| = 1. This
means thatπ(xt) = π(xt ′). ut

Assume we are given another decompositionϕ = f ′ ◦ g′, whereg′ :
Z → Y′ = Spf(B′) is an étale morphism withB′ = B′0⊗̂A . . . ⊗̂AB′p′,
whereB′i = A{Ti0, . . . , Tin′i }/(Ti0· . . . ·Tin′i − a′i ), a′i ∈ A andn′i ≥ 1. First
of all, we remark that the required fact is true iff ′ = h ◦ f , whereh is the
isomorphismY

∼→Y′ induced by an isomorphism[n] ∼→[n′]. Letz ∈ S(Z/X)
and x = ϕ(z). Since the mapst 7→ zt = Ψ̃ (z, t) and t 7→ z′t = Ψ̃ ′(z, t)
are continuous, it follows from Lemma 7.6 that it suffices to verify the
equality zt = z′t under the additional assumptions thatπ(xt) = π(x) and
π(zt) = π(z) = π(z′t). We can shrinkX and Z and replacef and f ′
by their compositions with isomorphisms of the above type so that there
exist q ≥ 0 andm = (m0, . . . ,mq) ∈ Ob(Λ) for which |ai (x)| < 1 and
|a′i (x)| < 1 precisely for 0≤ i ≤ q and|g∗Tik(z)| < 1 and|g′∗T ′ik(z)| < 1
precisely for 0≤ i ≤ q and 0≤ k ≤ mi . Let z = π(z) andx = π(x).
The étale morphismsg andg′ give rise to two isometric bijectionsµ,µ′ :
[m] ∼→irr(Zs,x, z). Replacing again, if necessary,f ′ by its composition with
the automorphism ofY′ induced by an automorphism of[m], we may
assume thatµ′ = µ. Proposition 4.3 implies that|ai (x′)| = |a′i (x′)| for all
x′ ∈ π−1(x) and 0≤ i ≤ q. It follows that for each pointx′ ∈ π−1(x) the
two homeomorphismsS(Zx′,η)

∼→Σm
|a(x′)|, induced byg andg′, coincide. The

latter immediately implies thatzt = z′t for all t we consider.

Step 6. Assume we are given a second strictly poly-stable morphism
ϕ′ : Z′ → X′ = Spf(A′), satisfying the same properties from Step 3 as the
morphismϕ, and a commutative diagram inF sch

Z
ϕ−→ X

↑ψ′ ↑ψ
Z′

ϕ′−→ X′

such that the morphismZ′ → Z ×X X′ is étale. Assume also that there is
a homotopyΨ ′ : X′η × [0,1] → X′η possessing the same properties from
Step 2 as the homotopyΨ and such thatψη(Ψ ′(x′, t)) = Ψ ′(ψη(x′), t) for all
x′ ∈ X′η andt ∈ [0,1]. Thenψ′η(Ψ̃ ′(z′, t)) = Ψ̃ (ψ′η(z′), t) for all z′ ∈ Z′η and
t ∈ [0,1]. Indeed, it suffices to consider the following two cases: (a)X′ = X,
and (b)Z′ = Z×XX′. In the case (a) the statement straightforwardly follows
from Step 5. In the case (b) the statement follows from the formula for the
homotopyΨ f from Step 2.

Step 7. Let us return to the situation of the theorem. For a poly-stable
morphismϕ : Y → X we construct as follows a strictly poly-stable mor-
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phismϕ′ : Y′ → X′ a commutative diagram

Y
ϕ−→ X

↑ψ′ ↑ψ
Y′

ϕ′−→ X′

By Corollary 7.4, one can find for each pointy ∈ Ys an étale morphism
U = Spf(A)→ X and anétale morphismV→ Y×X U such thatV→ U
is a geometrically elementary strictly poly-stable morphism and the image
of Vs in Ys contains the pointy. The commutative diagram we are talking
about is obtained forY′, a disjoint union ofV’s of the above form so that
the inducedétale morphismY′ → Y is surjective, and forX′, a disjoint
union of the correspondingU’s.

Step 8. For a poly-stable morphismϕ : Y→ Xwe construct the required
homotopyΨ̃ : S(Y/X)× [0,1] → S(Y/X) as follows. Take a strictly poly-
stable morphismY′ → X′ as constructed in Step 7. Furthermore, take
a strictly poly-stable morphismY′′ → X′′ as constructed in Step 7 for the
morphismY′ ×Y ×Y′ → X′ ×X X′. SinceS(Y′/X′) and S(Y′′/X′′) are
the preimages ofS(Y/X) in Y′η andY′′η, respectively, Lemma 5.11 implies

thatCoker(S(Y′′/X′′) →→ S(Y′/X′)) ∼→S(Y/X). By Step 6, the homotopies
constructed in Step 3 forS(Y′′/X′′) andS(Y′/X′) are compatible and, there-
fore, they induce a homotopỹΨ : S(Y/X) × [0,1] → S(Y/X). That the
homotopyΨ̃ satisfies the properties (i)–(iii) follows from the construction.

ut

8. The homotopy type of the generic fibre of a poly-stable fibration of
formal schemes

The results of the previous section can be used to construct, for each formal

schemeS in F sch and each poly-stable fibrationX = (Xl
fl−1→ · · · f1→

X1
f0→ X0 = S), a homotopyΦl

S
: Xl,η × [0, l] → Xl,η : (x, t) 7→ xt

over Sη. Namely, if l = 1, it is the homotopyΦS from Theorem 7.1.
Assume thatl ≥ 2 and that the homotopyΦl−1

S
is already constructed.

First of all, we setxt = ΦXl−1
(x, t) for 0 ≤ t ≤ 1. Furthermore, given

a morphism(k′,X′)→ (k,Xl−1) in F sch́et, letX′ be the poly-stable fibration
(X′ → Xl−2⊗̂k′◦ → · · · → X0⊗̂k′◦). By induction, there is a proper strong
deformation retractionΦl−1

S
: X′η×[0, l−1] → X′η. SettingΨX′ = Φl−1

S
, we

get a system of homotopies that satisfy the properties (a) and (b) from §7.
Theorem 7.2 provides therefore a homotopyΨ̃ : S(Xl/Xl−1)×[0, l −1] →
S(Xl/Xl−1) overΦl−1

S
, and we setxt = Ψ̃ (x1, t − 1) for all 1 ≤ t ≤ l . The

homotopyΦl
S

is a proper strong deformation retraction ofXl,η to a closed
subset which is naturally to be called theskeleton ofX and to be denoted



Smoothp-adic analytic spaces are locally contractible 67

by S(X). The following theorem lists properties of the homotopy and the
skeleton forS of the formSpf(k◦).

Theorem 8.1. One can construct for every poly-stable fibrationX = (Xl
fl−1→

· · · f1→ X1) of lengthl a proper strong deformation retractionΦl : Xl,η ×
[0, l] → Xl,η : (x, t) 7→ xt of Xl,η to the skeletonS(X) of X, so that the
following holds:

(i) S(X) = S(Xl/Xl−1) ∩ f −1
l−1(S(X

′)), whereX′ = (Xl−1
fl−2→ · · · f1→ X1),

and fl−1,η(xt) = fl−1,η(x)t−1 for all 1≤ t ≤ l ;
(ii) (xt)t ′ = xmax(t,t ′) for all 0≤ t, t′ ≤ l ;
(iii) x ≤ xt for all 0≤ t ≤ l ;
(iv) for everyx and0 ≤ i ≤ l − 1, there existsi ≤ t′ ≤ i + 1 such that

xt = xi for all i ≤ t ≤ t′ and the map[t′, i +1] → Xη : t 7→ xt is injective;
(v) for every0≤ t ≤ l , π(xt) is contained in the same stratum ofXl,s as

π(x); moreover,π(xl) is the generic point of that stratum, andπ(xi ) = π(xt)
for all 0≤ i ≤ l − 1 and i ≤ t < i + 1;

(vi) if Xl,η is normal atx, then for every open affine subschemeX′ ⊂ Xl
with x ∈ X′η and everyl − 1< t ≤ l the local ringOX′η,xt

is a field;

(vii) if X is a strictly poly-stable fibration then, for every pointx ∈ S(X),
H̃(x) is a purely transcendent extension of the fieldk̃(π(x));

(viii) given a morphismϕ : Y→ X in Pst f ét
l , one hasϕl,η(yt) = ϕl,η(y)t

for all y ∈ Yl,η and0≤ t ≤ l ; if ϕ is étale then, givenx ∈ Xη, 0≤ i ≤ l−1
and i ≤ t < i + 1, each point fromϕ−1

l,η (xt) is of the formyt for some

y ∈ ϕ−1
l,η (xi ).

Let Sl denote the functorX 7→ S(X) from Pst f tps
l to the category of

locally compact spaces. The functorP st f tps
l → Λ◦Ens : X 7→ C(Xs) will

be denoted byCl , and its composition with the geometric realization functor
X 7→ |C(Xs)| will be denoted by|Cl |.
Theorem 8.2. There is a canonical isomorphism of functors|Cl | ∼→Sl that
possesses the following property: given a poly-stable fibrationX, the homeo-
morphism |C(X)| ∼→S(X) induces a homeomorphism|C(X)| ∼→S(X)∩
π−1(X) for each strata subsetX of Xl,s.

Here again|C(X)| denotes the subset of|C(X)| which is a union of the
cells that correspond to the strata ofXl,s contained inX.

Proof of Theorem 8.1.The construction of the homotopyΦl has been
already done. That it satisfies the properties (i)–(iv), the third part of (v)
and the first part of (viii) straightforwardly follows from Theorems 7.1
and 7.2. As for the second part of (viii), it is obtained using the fact, that
π(xi ) = π(xt) for all 0≤ i ≤ l−1 andi ≤ t < i+1, and the reasoning from
§5, Step 12, that establishes the corresponding statement (vii) of Theorem 5.
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(v) The first two statements of (v) are proven by induction onl . Since their
validity is local with respect to théetale topology ofXl , it suffices to consider
the case whenXl−1 = Spf(A) andXl = Spf(B) with B = B0⊗̂A . . . ⊗̂ABp
with Bi = A{Ti0, . . . , Tini }/(Ti0· . . . ·Tini − ai ), whereai ∈ A andni ≥ 1.
We may also assume thatXl,s is elementary and that the generic pointx of
the stratumX that containsπ(x) is the unique maximal point instr(Xl,s).
Let X′ be the stratum ofXl−1,s that contains the image ofX, and letx′
be its generic point. We may assume thatai (x′) = 0 for 0 ≤ i ≤ q and
ai (x′) 6= 0 for q + 1 ≤ i ≤ p. ThenX is the subset off −1

l−1,s(X
′) where

the functionsTij for 0 ≤ i ≤ q and 0≤ j ≤ ni vanish. It follows that
π−1(X) = {x ∈ f −1

l−1,η(π
−1(X′))||Tij (x)| < 1 for all 0 ≤ i ≤ q and

0 ≤ j ≤ ni }. From Theorem 5.2 it follows that fort ∈ [0,1] the pointxt
is contained inπ−1(X) andx1 is contained inS(Xl/Xl−1) ∩ π−1(X). We
may therefore assume thatx = x1. The formula of Step 2 from the proof
of Theorem 7.2 and the induction hypothesis imply that fort ∈ [1, l] the
point xt is contained inπ−1(X), and xl is contained in the preimage of
S(X′) ∩ π−1(x′) in π−1(X), whereX′ = (Xl−1 → · · · → X1). The latter
means that forx′ = fl−1,η(xl ) one hasπ(x′) = x′. Sincexl = ΦXl−1

(xl ,1),
Proposition 2.7 and Theorem 5.2, applied to the poly-stable formal scheme
Xl ×Xl−1

Spf(H(x′)◦), imply thatπ(xl) = x.

(vi) We prove by induction onl the following slightly more strong
statement.For every normal pointx ∈ Xl,x and everyl − 1 < t ≤ l , there
exists a morphismY → Xl in F sch́et with affineY such thatxt is the
image of a pointy ∈ Yη which is a unique maximal point of an affinoid
domainY ⊂ Yη. If l = 1, it is exactly the fact established in Step 11 of
the proof of Theorem 5.2. Assume thatl ≥ 2. Forx′ = fl−1,η(x) one has
fl−1,η(xt) = x′t−1. By induction, we may assume thatXl−1 = Spf(A) is
affine andx′t−1 is a unique maximal point of an affinoid domainX ⊂ Xl−1,η.
We may also assume that the morphismfl−1 is geometrically elementary
and factors through ańetale morphismXl → Z = Spf(B) with B =
B0⊗̂A . . . ⊗̂ABp, whereBi = A{Ti0, . . . , Tini }/(Ti0· . . . ·Tini − ai ), ai ∈ A
andni ≥ 1. Since the pointx′ is normal, the pointx′t−1 is also normal and,
therefore, the functionsai do not vanish atx′t−1. We shrink the affinoid
domainX so that the absolute value of each of the functionsai is a non-zero
constant onX. Furthermore, letz be the image of the pointxt in Zη. One
hasz ∈ S(Z/Xl−1). We setZ = {z′ ∈ g−1

η (X)||Tij (z′)| = |Tij (z)| for all
0 ≤ i ≤ p and 0≤ j ≤ ni }, whereg denotes the morphismZ → Xl−1.
The affinoid domainZ is isomorphic to a direct product ofX with one-
dimensional annuli, andz is evidently its unique maximal point. Notice that
xt is a unique preimage of the pointz in Xl,η since the morphismfl−1 is
geometrically elementary. Furthermore, we can shrinkXl = Spf(C) and
assume thatC = (B[T]/(P)){b}, whereb ∈ B[T]/(P) and P is a monic
polynomial for which the image ofP′ in C is invertible. Sincez is a unique
maximal point ofZ, from Lemma 7.5 it follows thatxt is a unique maximal
point of Y, the preimage ofZ in Xl,η.
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(vii) follows from the following lemma.

Lemma 8.3. Let ϕ : Y → X be a strictly poly-stable morphism between
formal schemes locally finitely presented overk◦, and lety ∈ S(Y/X) and
x = ϕη(y). If that H̃(x) is a purely transcendent extension ofk̃(π(x)), then

H̃(y) is a purely transcendent extension ofk̃(π(y)).

Proof. Letx=π(x) andy=π(y). Furthermore, letYx = Y×XSpf(H(x)◦).
One hasYx,η

∼→Yη,x andYx,s
∼→Ys,x ⊗k̃(x) H̃(x). Since H̃(x) is purely

transcendent over̃k(x), it follows thatstr(Yx,s)
∼→str(Ys,x) and, ify′ denotes

the preimage of the pointy under the latter bijection, the field̃H(x)(y′) is
purely transcendent over̃k(y). By Theorem 5.2(vi) applied toYx, H̃(y) is
purely transcendent over̃H(x)(y′). Thus,H̃(y) is purely transcendent over
k̃(y). ut
Proof of Theorem 8.2.Step 1. Fix a number 0< ρ < 1. For a point
u = (u0, . . . ,un) ∈ Σn ⊂ [0,1][n] andr ∈ [0,1], let φn(u, r) denote the
unique pointv = (v0, . . . , vn) ∈ [0,1][n] which lies on the line connecting
the pointsρu = (ρu0, . . . , ρun) and (1, . . . ,1) and satisfies the equality
v0· . . . ·vn = r . In this way we get a continuous mappingφn : Σn×[0,1] →
[0,1][n].

Step 2. Suppose we are given an affine strictly pluri-nodal formal
schemeX = Spf(A) over k◦ and a polysimplicial setE provided with
a map of partially ordered setsO(E) → str(Xs) : (Λ[c] α→ E) 7→ α
and a continuous mapδ : |E| → Xη possessing the following two prop-

erties: (a)(Λ[c] α→ E) ∈ O(E) the image ofΣ̊c under the correspond-
ing map toXη is contained inπ−1(α) and (b) for each pointx ∈ Im(δ),

the field H̃(x) is purely transcendent over̃k(π(x)). Furthermore, letϕ :
Y = Spf(B) → X be a morphism withB = B0⊗̂A . . . ⊗̂ABp, where
Bi = A{Ti0, . . . , Tini }/(Ti0· . . . ·Tini − ai ), ai ∈ A and ni ≥ 1. We con-
struct as follows a continuous mapδϕ : |Eϕs| → S(Y/X) over δ. First
of all, the continuous mapYη → Xη × [0,1][n] that takes a pointy to
(ϕ(y); |T00(y), . . . , |Tpnp(y)|) identifiesS(Y/X) with the closed subset

Sϕ = {(x; r0, . . . , r p) ∈ Xη × [0,1][n] ∣∣ri0· . . . ·rini = |ai (x)|,0≤ i ≤ p}
(see Step 1 from §5). Furthermore, one has

|Eϕs| = Coker
(∐

Σd × |C(Ys,α)| →→
∐

Σc× |C(Ys,α)|
)
,

where the first and the second coproducts are taken over the categories
N1(Λ/E) andN0(Λ/E), respectively, and, given(Λ[d] γ→ Λ[c] α→ E) in
N1(Λ/E), the upper mapd0 acts as(|γ |,1), and the lower mapd1 acts as
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(1, |Dϕ(γ)|). Thus, we have to construct a compatible system of continuous
maps̃δα : Σc × |C(Ys,α)| → Sϕ. Let I = {i ∈ [p] |ai (α) = 0}. Then
|C(Ys,α)| is identified withΣnI . If u ∈ Σc andv = (vi )i∈I ∈ |C(Ys,α)|,
then δ̃α(u, v) = (x; r0, . . . , r p) ∈ Sϕ, wherex is the image ofu in Xη,
and r i = φni (vi , |ai (x)|) for i ∈ I and r i = (1, . . . ,1) for i 6∈ I . That
the maps̃δα are continuous is evident, and that they are compatible easily
follows from the construction. We remark that the mapδϕ : |Eϕs| → Yη

possesses the same property (a) asδ, namely, for each(Λ[c] α→ Eϕs) ∈
O(Eϕs) the image ofΣ̊c under the corresponding map toYη is contained in
π−1(α). If the polysimplicial setE is interiorly free and the mapδ induces
a homeomorphism of|E| with its image inXη then, by Corollary 6.6,
δϕ induces a homeomorphism of|Eϕs| with its image inYη. Finally, given
an open formal subschemeY′ ⊂ Y, the mapδϕ induces a continuous map
δϕ′ : |Eϕ′s| → S(Y′/X), whereϕ′ is the morphismY′ → X. If E is interiorly
free andδ induces a homeomorphism of|E| with its image inXη, thenδϕ′
induces a homeomorphism of|Eϕ′s| with its image inY′η.

Step 3. In the situation of Step 2, assume we are given a strictly poly-
stable morphismψ : Z → X that factors through ańetale morphism
f : Z → Y and such that, for each pointx ∈ str(Xs), the fibreYs,x
is elementary. (For example, by Corollary 2.12, the latter is true ifZs
is elementary.) It follows that ifY′ is the image ofψ in Y and ϕ′ is
the morphismY′ → X, then Eψs

∼→Eϕ′ . The property (b) ofδ implies

that, for each pointx ∈ Im(δ), one hasstr(Zx,s)
∼→str(Zs,π(x)) and, therefore,

S(Zx) = S(Z/X) ∩ ϕ−1(x)
∼→S(Y′x) = S(Y′/X) ∩ ϕ′−1

(x). Thus, the map
δϕ′ from Step 2 induces a continuous mapδψ : |Eψs| → S(Z/X) that pos-
sesses the same property (a) asδ and such that, ifE is interiorly free and
δ induces a homeomorphism of|E| with its image inXη, thenδψ induces
a homeomorphism of|Eψs| with its image inZη. We claim that the map
δψ : |Eψs| → S(Z/X) does not depend on the decompositionψ = ϕ ◦ f . It

suffices to prove that, given(Λ[c] α→ E) in N0(Λ/E) and a pointu ∈ Σ̊c,
the homeomorphism|C(Zs,α)| ∼→S(Zx), induced by the homeomorphism
|C(Ys,α)| ∼→S(Yx) : v 7→ δ̃α(u, v), does not depend on the decomposition
ψ = ϕ◦ f . (Herex is the image ofu inXη.) To verify the latter, we can replace
X by Spf(H(x)◦), andY andZ byYx andZx, respectively, and so we may
assume thatX = Spf(k◦). If I = {i ∈ [p] ||ai | < 1}, then|C(Y)| is iden-
tified withΣnI , and the homeomorphismδ : |C(Zs)| ∼→S(Z) is induced by
the injective mapµ : |C(Ys)| → [0,1]n] defined byµ(v) = (r0, . . . , r p),
wherev = (vi )i∈I ∈ ΣnI , r i = φni (vi , |ai |) for i ∈ I andr i = (1, . . . ,1)
for i 6∈ I . By Lemma 4.1, to show thatδ does not depend on the choice of
f it suffices to check that the sheaf of monoids on|C(Zs)|, generated by
the restrictions of the coordinate functions on[0,1]n] with respect to the
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injective map|C(Zs)| → |C(Ys)| µ→ [0,1]n], does not depend onf . But
this is an easy consequence of Proposition 4.3.

The remaining part of the proof follows Steps 6–8 from the proof of
Theorem 7.2.

Step 4. Assume we are given a morphismg : X′ = Spf(A′) → X in
F sch, whereX′ is strictly pluri-nodal and is provided with a polysimplicial
set E′, a map of partially ordered setsO(E′) → str(X′s) and a continuous
map δ′ : |E′| → X′η possessing the properties (a) and (b) from Step 2
and compatible with the corresponding objects forX. Furthermore, assume
we are given a strictly poly-stable morphismψ′ : Z′ → X′, possessing
the same properties from Step 3 as the morphismψ, and a commutative
diagram inF sch

Z
ψ−→ X

↑g′ ↑g

Z′
ψ′−→ X′

such that the morphismZ′ → Z×X X′ is étale. Then Step 3 implies that the
following diagram of continuous maps is commutative

|Eψ | δψ−→ S(Z/X)
↑ ↑
|E′ψ′ |

δ
′
ψ−→ S(Z′/X′)

Step 5. Let us return to the theorem. Assume that there is an isomorphism
of functors |Cl−1| ∼→Sl−1 possessing the necessary property. For a poly-

stable fibrationX = (Xl
fl−1→ · · · f1→ X1), we construct as follows ańetale

morphismϕ : X′ → X such thatX′ is a strictly poly-stable fibration and
the morphismX′l → Xl is surjective. First of all, letY → X be anétale
morphism from a strictly poly-stable fibrationY such that the morphism
Yl → Xl is surjective. Furthermore, for each pointy ∈ Yl,s, take an open
affine neighborhoodU of the point fl−1,s(y) and an open affine neighbor-
hoodV of the point y over U with elementary closed fibreVs. We set
X′ = (X′l → X′l−1 → Yl−2 → · · · → Y1), whereX′l is a disjoint union
of V’s of the above form such that the induced morphismX′l → Yl is
surjective, andX′l−1 is a disjoint union of the correspondingU’s.

Step 6. For a poly-stable fibrationX, takeétale morphismsX′ → X and
X′′ → X′ ×X X′ as constructed in Step 5. By induction, the construction

from Step 3 gives homeomorphisms|C(X′s)| ∼→S(X′) and|C(X′′s)| ∼→S(X′′)
which are compatible, by Step 4. SinceCoker(C(X′′s)

→→ C(X′s))
∼→C(Xs)

andCoker(S(X′′) →→ S((X′)) ∼→S(X), we get the required homeomorphism
|C(X)| ∼→S(X). That in this way we get an isomorphism of functors|Cl | ∼→Sl

easily follows from the construction. ut
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The first corollary is a consequence of Theorem 8.1.

Corollary 8.4. Given a poly-stable fibrationX of lengthl overk◦, a locally
closed strata subsetX ⊂ Xl,s, and an open subsetX ⊂ π−1(X) which is
the intersection ofπ−1(X) with a family of Zariski open subsets ofXη, the
homotopyΦl induces a strong deformation retraction ofX to S(X)∩X. If X
is dense inπ−1(X) and contains its non-normality locus, thenS(X)∩ X =
S(X).

Proof. We may assume thatXl = Spf(A) is affine. LetU be a Zariski open
subset ofXη, and let f1, . . . , fn be generators of the ideal ofA⊗k◦ k that
corresponds to the complement ofU. If x ∈ U, then fi (x) 6= 0 for some
1 ≤ i ≤ n. Sincex ≤ xt , it follows that fi (xt) 6= 0, i.e.,xt ∈ U, for all
t ∈ [0, l]. This implies the first statement. The second statement follows
from the fact that the local ring of a normal point fromS(X) is a field. ut

The following corollary will be used in the next two sections.

Corollary 8.5. Suppose we are given a finite normal extensionk′ of k,
a poly-stable fibrationX overk′◦ of lengthl with normal generic fibreXl,η,
an action of a finite groupG onXoverk◦, aG-invariant locally closed strata
subsetX ⊂ Xl,s, and a denseG-invariant Zariski open subsetU ⊂ Xl,η.
Let X be the quotient spaceG\(π−1(X) ∩U). Then

(i) there exists a strong deformation retraction ofX to a closed subset
homeomorphic toG\|C(X)|;

(ii) for any abelian groupM there are canonical isomorphisms

Hq(|X|,M)
∼→Hq

sing(|X|,M) .

Notice that the quotient spaceG\|C(X)| coincides with the locally
closed subset of|G\C(Xs)| which is a union of the cells that correspond to
the strata ofXl,s contained inX. In particular, Corollary 3.11 implies that the
spaceG\|C(X)| is locally contractible. Furthermore, hereHq(|X|,M) de-
note the usual cohomology groups of the underlying topological space|X|
of X with coefficients in the constant sheaf generated byM. They coin-
cide with the cohomology groups of the associated rigid analytic space
(see [Ber2, §1.6]). Finally,Hq

sing(|X|,M) denote the singular cohomology
groups of|X| with coefficients inM.

Proof. (i) By Corollary 8.4, the homotopyΦl induces a strong deformation
retraction ofπ−1(X) ∩U to S(X) ∩ π−1(X) and, by Theorem 8.2, there
is a canonical homeomorphism between the latter space and|C(X)|. Since
the homotopyΦl and the above homeomorphism commute with the action
of G, the statement follows.

(ii) Since X is paracompact, the groupsHq(|X|,M) coincide with the
Čech cohomology groups of|X|. By [Spa, Ch. 6], the latter ones coin-
cide with the Alexander cohomology groups of|X| which, in their turn,
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satisfy the homotopy axiom and, therefore, coincide with the Alexander
cohomology groups ofG\|C(X)|. Since the spaceG\|C(X)| is para-
compact and locally contractible, its Alexander cohomology groups co-
incide with Hq

sing(G\|C(X)|,M). It remains to use the fact that the singular
cohomology groups also satisfy the homotopy axiom. ut
Corollary 8.6. LetX be a poly-stable fibration of formal schemes overk◦
of length l provided with an action of a groupΓ , and assume thatXl is
separated and the stabilizer inΓ of each of its open affine subscheme is
finite. Then there exists a strong deformation retraction of the quotient space
Γ \Xl,η to a closed subset homeomorphic to|Γ \C(Xs)|. ut

In the situation of Corollary 8.6, the quotient spaceΓ \Xl,η exists by [Ber5,
Lemma 4.2].

Corollary 8.7. LetXbe a poly-stable fibration of lengthl overk◦,Xa locally
closed strata subset ofXl,s, and X a dense open subset ofπ−1(X) which is
the intersection ofπ−1(X) with a family of Zariski open subsets ofXl,η.

(i) If X is quasi-compact, there exists a finite unramified extensionk′
of k such that, for any non-Archimedean fieldK overk′ and any subsetY of
a HausdorffK -analytic spaceZ, the canonical map|X×Y| → |X⊗̂k′|×|Y|
is a homotopy equivalence.

(ii) If X is a strictly poly-stable fibration and all of the strata ofXl,s in X
are geometrically irreducible, then the conclusion of (i) is true fork′ = k.

Here and later (in §10)X × Y denotes the preimage ofY under the
canonical projectionX× Z→ Z. The setsY andX×Y are provided with
the topology induced fromZ andX× Z, respectively.

Proof. First of all, we claim that the mapΨ : |Xl,η×Z|×[0, l] → |Xl,η×Z|,
which coincides with the mapΦl from Theorem 8.1 on each fibre of the
projectionXl,η × Z → Z, is continuous. Indeed, for this it suffices to
consider the case whenZ is K -affinoid. In this caseZ is a closed analytic
subset of a closed polydisc which, in its turn, is an affinoid domain in the
projective spacePn. The latter is the generic fibre of the formal projective
spacePn over K◦ and, therefore, the claim follows from the fact that the
mapΦl

P
n is continuous. By Corollary 8.4, the mapΨ induces a strong

deformation retraction ofX×Y to a closed subsetV whose fibre at a point
y ∈ Y under the projectionV → Y is S(X⊗̂H(y)◦) ∩ (X⊗̂H(y)).

In the situation of (ii), one has|C(X ⊗ H̃(y))| ∼→|C(X)| and, there-
fore, S(X⊗̂H(y)◦) ∩ π−1(X ⊗ H̃(y))

∼→S(X) ∩ π−1(X). It follows that
S(X⊗̂H(y)◦)∩(X⊗̂H(y))

∼→S(X)∩X. Thus, the map|X×Y| → |X|×|Y|
induces a homeomorphismV

∼→(S(X)∩X)×|Y|, and the required statement
follows from the fact thatX is homotopy equivalent toS(X) ∩ X.

In the situation of (i), letX′ → X be a surjectivéetale morphism from
a strictly poly-stable fibrationX′ such that the preimageX′ of X in X′l,s is
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quasi-compact. Then the preimageX′′ of X in X′′l,s, whereX′′ = X′ ×X X′,
is also quasi-compact. We can replacek by a finite unramified extension and
assume that all of the strata inX′ andX′′ are geometrically irreducible. If
X′ andX′′ (resp.V ′ andV ′′) are the preimages ofX (resp.V) inX′l,η andX′′l,η,
respectively, then, by (ii),V ′ ∼→(S(X′)∩ X′)×|Y| andV ′′ ∼→(S(X′′)∩ X′′)×
|Y|. It follows thatV

∼→(S(X) ∩ X)× |Y|, i.e., (i) is also true. ut
Remark 8.8.Let X be a pluri-nodal formal scheme for which there exist
a poly-stable fibrationX = (Xl → · · · → X1) with Xl = X. It is easy to see
that the polysimplicial setC(X) and the homotopyΦl : Xη × [0, l] → Xη

depend on the representation ofX in the above form. On the other hand, it
is very likely that the skeletonS(X) depends only onX.

9. Local contractibility of smooth analytic spaces

In this section the valuation on the ground fieldk is assumed to be nontrivial,
and allk-analytic spaces considered are strictlyk-analytic (see [Ber2, §1]).
The assumption on nontriviality of the valuation is used through the fact,
which is implied by it, that each point of a strictlyk-analytic space has a fun-
damental system of neighborhoods formed by compact strictlyk-analytic
domains. We say that ak-analytic spaceX is locally embeddable in a smooth
spaceif each point ofX has an open neighborhood isomorphic to a strictly
k-analytic domain in a smoothk-analytic space. We remark that such a space
is automatically strictlyk-analytic. We also remark that anyk-analytic space
that admits ańetale morphism to a space with the above property possesses
the same property (this follows from [Ber2, Theorem 3.4.1]).

Theorem 9.1. Anyk-analytic space locally embeddable in a smooth space
is locally contractible.

Before proving the theorem, we establish a fact that contains everything
we need from results of de Jong. (It will also be used in the next section.) The
point is in inclusion the case of non-discrete valuation on the ground fieldk.
Since the only property of the fieldk we need is that it is the fraction field
of a Henselian valuation ring, the following lemma is proven in a slightly
more general setting.

Lemma 9.2. Let A be a Henselian valuation ring, and letX be an integral
scheme proper finitely presented and flat overA and with geometrically
irreducible generic fibre of dimensionl ≥ 1. Then there exist the following
objects:

(a) a finite normal extension of the fraction field ofA with the ring of
integersA′ (it is also a Henselian valuation ring);

(b) a poly-stable fibrationX′ = (X′l
fl−1→ · · · f1→ X′1

f0→ X′0 =
Spec(A′)), where all morphismsfi are projective of dimension one and
have smooth geometrically irreducible generic fibres;
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(c) an action of a finite groupG onX′ over A;
(d) a commutative diagram

X′l
ϕ−→ X

↓ ↓
Spec(A′) −→ Spec(A)

whereϕ is a dominantG-equivariant morphism that induces a proper
generically finite morphismX′l,η → Xη and such that the fieldR(X′l)G is
purely inseparable overR(X).

HereR(X) denotes the field of rational functions onX. Notice, that in
the case, when the valuation onA is not discrete of rank one, the ringA′ is
not necessarily finitely generated overA and, therefore, one cannot say that
the morphismϕ is proper.

Proof. By [EGAIV, §8], there exists a flat (and therefore dominant) mor-
phismα : Y → T with geometrically irreducible generic fibre between
integral schemes of finite type overSpec(Z) such that the morphismX→
Spec(A) is the base change ofα under a morphismS = Spec(A) → T
with the property that the homomorphismOT ,t → A is injective, wheret is
the image of the closed point ofS in T . By Theorem 5.9 from [deJ3], there
exist

(1) a Galois alteration(T ′,G′) of (T , {1}), i.e., an integral schemeT ′ pro-
vided with an action of a finite groupG′ and a dominantG′-equivariant
proper and generically finite morphismψ : T ′ → T such that the field
R(T ′)G′ is purely inseparable overR(T );

(2) aG′-pluri nodal fibrationY ′ =(Y′l
hl−1→ · · · h1→ Y′1

h0→ Y′0 =T ′, {σij },Z0)

over T ′, i.e., eachhi is a projective semi-stable curve provided with
an action ofG′, Z0 is a G′-stable proper closed subset ofT ′, and
{σij }1≤ j≤ni is aG′-equivariant system of sections ofhi into the smooth
locus of hi , such thathi is smooth overY′i\Zi where, for i ≥ 1,
Zi = ∪ni−1

j=1σi−1, j (Y
′
i−1) ∪ h−1

i−1(Zi−1);
(3) a commutative diagram

Y′l
ψ′−→ Y

↓ ↓
T ′

ψ−→ T

such that(Y′l ,G′) is a Galois alteration of(Y, {1}).
Let K be the fraction field ofA, and letK ′′ be the quotient algebra of

the tensor productR(T ′)⊗R(T ) K by its radical. ThenK ′′ is a finite direct
product of finite normal extensions ofK provided with an action ofG′
over K . Let K ′ be a factor ofK ′′, G its stabilizer inG′, andA′ the integral
closure ofA in K ′. By the valuative criterion of properness [EGAIV, 7.3.8],
there exists a unique liftSpec(A′)→ T ′ of the morphismSpec(K ′)→ T ′
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over the morphismSpec(A′) → T , and the morphismSpec(A′) → T ′ is
G-equivariant. Thus, we get a poly-stable fibrationX′ = Y′ ⊗T ′ Spec(A′)
provided with an action of the groupG and a morphismϕ : X′l → X over
the morphismSpec(A′) → Spec(A). We claim that all of the necessary
conditions are satisfied.

First of all, each of the morphismsfi : X′i+1 → X′i is projective of
dimension one and poly-stable because it is a base change of the similar
morphismhi . If t′ is the image of the closed point ofSpec(A′) in T ′, then
the homomorphismOT ′,t ′ → A′ is injective because its composition with
the injectionA′ → K ′ coincides with the injectionOT ′,t ′ → R(T ′)→ K ′.
It follows that the image of the generic point ofSpec(A′) in T ′ is the generic
point of T ′ and, therefore, the geometric fibre of eachfi is a base change
of the geometric fibre ofhi , i.e., it is smooth and connected. Furthermore,
since the morphismψ′ : Y′l → Y is proper and generically finite and the
image of the generic point ofSpec(A′) is T ′ is the generic point ofT ′, it
follows thatϕ induces a proper generically finite morphismX′l,η → Xη.
Finally, sinceR(X′l) is a factor of the quotient ofR(Y′l) ⊗R(Y) R(X) by
the radical, the following lemma (applied toK0 = R(Y), K ′0 = R(Y′l),
K = R(X) and the action ofG′ on R(Y′l)) implies that the fieldR(X′l)G is
purely inseparable overR(X).

Lemma 9.3. Suppose we are given a fieldK0, a finite normal extensionK ′0
of K0 endowed with an action of a finite groupG′ over K0 such thatK ′0

G′

is purely inseparable overK0, and an extensionK of K0. Let K ′′ be the
quotient ofK ′0⊗K0 K by the radical,K ′ a factor ofK ′′, andG the stabilizer
of K ′ in G′. Then the fieldK ′G is purely inseparable overK .

Proof. Let H = Im(G′ → Aut(K ′0)), R0 = K ′0
H ⊗K0 K , r0 the radical

of R0, andL = R0/r0. SinceK ′0
H is purely inseparable overK0, L is a field

purely inseparable overK . By the normal basis theorem [Lang, Ch. VIII,
§12], K ′0 is isomorphic to a freeK ′0

H[H]-module of rank one. It follows
that for R := K ′0 ⊗K0 K = K ′0 ⊗K ′0

H R0 one hasRH = R0. Tensoring

the exact sequence 0→ r0 → R0 → L → 0 with K ′0 over K ′0
H , we get

an exact sequence 0→ K ′0 ⊗K ′0
H r0 → R → K ′0 ⊗K ′0

H L → 0. Since

K ′0 is a finite separable extension ofK ′0
H , K ′0 ⊗K ′0

H L is a finite separable

algebra overL and, therefore,K ′0⊗K ′0
H r0 is the radical ofR. It follows that

K ′′ = K ′0⊗K ′0
H L, K ′′H = L and, in particular,G′ acts transitively on the

set of direct factors ofK ′′. The latter implies that there is an isomorphism of
G′-modulesK ′′ ∼→IndG′

G (K
′). It follows that K ′G = K ′′G

′ = L, i.e., K ′G is
purely inseparable overK . ut
Proof of Theorem 9.1.Since each point of a smoothk-analytic space has
an open neighborhood isomorphic to an open subset of the analytification of
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a smooth affine scheme overk, we may assume that we are given a compact
strictly k-analytic domainX in Xan, whereX = Spec(A) is a smooth
irreducible affine scheme overk. Let x be a point ofX and letx be the
image ofx in X. There are the following two possibilities:

(a) x is not the generic point ofX;
(b) x is the generic point ofX.
We prove local contractibility ofX at the pointx by induction. In the

case (a) we’ll reduce the statement to the case of smaller dimension, and in
the case (b) we’ll use Lemma 9.2 and Corollary 8.5(i).

Case (a).Step 1.One may assume that the fieldk(x) = OX,x/mx is
separable overk. Indeed, sincek(x) is finitely generated overk, we can
find a finite purely inseparable extensionk′ of k such that the fieldk(x′) is
separable overk′, wherex′ is the (unique) preimage ofx in X⊗ k′. Since
the mapX⊗̂k′ → X is a homeomorphism, we can replacek by k′, X by
X⊗̂k′ andX by X⊗ k′, and reduce the situation to the case when the field
k(x) is separable overk.

Step 2.There is an isomorphism of an open neighborhood of the pointx
in X onto Y × D(0, r) that takesx to Y × {0}, whereY is also a strictly
k-analytic domain in the analytification of a smooth scheme overk and
D(0, r) is the open disc of radiusr > 0 in A1 with center at zero.By Step 1,
the closureX′ of x in X is smooth atx. It follows that we can shrinkX
(and X) and find ańetale morphism fromX to the affine spaceAd, where
d = dim(X) = dim(X), such thatX′ is contained in the preimageY of
Ad−1 = {y ∈ Ad|Td(y) = 0}. Let Y = X ∩ Yan. The above morphism and
its composition with the projection to the firstd − 1 coordinatesAd →
Ad−1 give rise to the following cartesian diagram of morphisms of strictly
k-analytic spaces

Z = X×Ad−1 Y
g−→ Y

↓ f ↓
X −→ Ad−1

The canonical closed immersionY→ X induces a morphismY→ Z that
takes the pointx to a pointz. We claim that f is étale andg is smooth at
the pointz. Assume that the claim is true. SinceH(x)

∼→H(z), from [Ber2,
Theorem 3.4.1], it follows thatf is a local isomorphismz. Then we can
shrink X and Y so that there is a smooth morphism of pure dimension
one X → Y, whose composition with the canonical closed immersion
Y → X is the identity onY, and the required fact follows from [Ber2,
Proposition 3.7.8].

Since f (resp.g) is the restriction of théetale (resp. smooth) morphism
Z′ = X ×Ad−1 Yan→ X (resp.Z′′ = Xan×Ad−1 Y → Y) to the analytic
domainZ, it suffices to verify that the pointz is contained in the topological
interior of Z in Z′ (resp.Z′′). If X = X1 ∪ · · · ∪ Xn is a covering ofX
by affinoid domains, then it suffices to check thatz is contained in the
topological interior ofZi in Z′i (resp.Z′′i ) for eachi with z ∈ Xi , whereZi =
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Xi×Ad−1 Yi , Yi = Xi∩YanandZ′i = Xi×Ad−1Yan (resp.Z′′i = Xan×Ad−1 Yi ).
Thus, the situation is reduced to the case whenX (and thereforeY) is
affinoid. In this case we use the results on the relative interior of a morphism
from [Ber1, §2.5 and §3.1]. Since the canonical morphismY → X (resp.
Y
∼→Y) is closed, it follows that the image ofY in Z is contained inInt(Z/X)

(resp.Int(Z/Y)), the relative interior ofZ overX (resp.Y). But Int(Z/X) =
Int(Z/Z′)∩Int(Z′/X) (resp.Int(Z/Y) = Int(Z/Z′′)∩Int(Z′′/Y)). It remains
to use the facts that the morphismZ′ → X (resp. Z′′ → Y) is closed,
i.e., Int(Z′/X) = Z′ (resp. Int(Z′′/Y) = Z′′), and thatInt(Z/Z′) (resp.
Int(Z/Z′′)) coincides with the topological interior ofZ in Z′ (resp.Z′′).

Step 3.There is a strong deformation retraction ofX = Y × D(0, r)
to Y × {0}. Consider the mappingY × [0, r [→ X that takes a pair(y, t)
to the maximal point of the closed discE(0, t)H (y) (over the pointy).
From [Ber1, Lemma 6.1.1], it follows that this mapping is continuous and
identifiesY× [0, r [ with a closed subset ofX. Furthermore, the canonical
action of the multiplicative groupGm = A1\{0} on A1 induces an action
of the affinoid torusG1

m = {y ∈ A1||T(y)| = 1} on D(0, r). The latter
induces an action ofG1

m on X = Y × D(0, r). For 0 ≤ t < 1, let gt
be the maximal point of the closed disc of radiust with center at 1 (it is
contained inG1

m), and letg1 be the maximal point ofG1
m. By [Ber1, §6.1],

the continuous mappingΦ : X × [0,1] → X that takes(y, t) to gt ∗ y is
a strong deformation retraction ofX to the closed subsetY × [0, r [. But
Y×{0} is evidently a strong deformation retraction of the latter space. Thus,
the local contractibility ofX at x is reduced to that ofY at x.

Case (b).Since rational strictlyk-affinoid neighborhoods of the pointx
form a fundamental system of compact neighborhoods ofx in Xan, it suffices
to show that, given a rational strictlyk-affinoid neighborhoodW of x in Xan,
there exists a contractible open neighborhood ofx in X contained inW∩X.

Step 1. The construction of the first step works in a more general setting
and does not use the assumption (b). Since it will also be used in the next
section, we formulate it as a lemma.

Lemma 9.4. Suppose we are given an integral affine schemeX = Spec(A)
of finite type overk, a compact strictlyk-analytic domainX ⊂ Xan, a point
x ∈ X, and a rational strictlyk-affinoid neighborhoodW of x in Xan. Then
there is an open embedding ofX in Yη, whereY is an integral scheme
proper finitely presented and flat overk◦, open subschemesZ andW of Ys,
and a closed subschemeV of Ys such that

(1) X = π−1(Z), W = π−1(W) andπ(x) ∈ V;
(2) V ⊂W ;
(3) V andYs\Z are unions of irreducible components ofYs.

Hereπ denotes the reduction mapYan
η → Ys. (Recall (see [Ber3, §5])

that sinceY is proper overk◦ the k-analytic spaceYan
η coincides with the

generic fiber̂Yη of the formal completion̂Y of Y along the closed fibre.)
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Notice that the properties (1) and (2) imply thatπ−1(V) ∩ X is an open
neighborhood of the pointx in X contained inW ∩ X.

Proof. Step A. Letα1, . . . , αp be generators of thek-algebraA. Multi-
plying them by an element ofk, we may assume thatX ∪ W ⊂ {y ∈
Xan||αi (y)| ≤ 1,1 ≤ i ≤ p}. Furthermore, letβ1, . . . , βq be polynomials
from k◦[T1, . . . , Tp] which generate the kernel of the surjective homo-
morphismk[T1, . . . , Tp] → A : Ti 7→ αi . By [RaGr, Theorem 3.4.6],
thek◦-saturationa of the ideal ofk◦[T1, . . . , Tp] generated byβ1, . . . , βq
is finitely generated, and we get an affine schemeX′ = Spec(A′), where
A′ = k◦[T1, . . . , Tp]/a, which is flat and finitely presented overk◦ and for
which X′η = X and X̂

′
η = {y ∈ Xan ||αi (y)| ≤ 1,1≤ i ≤ p}. Take an

arbitrary open embedding ofX′ in a schemeY projective overk◦. We may
assume thatX′η = X is dense inY, and we may replaceY by its reduction.
In particular,Y is integral and flat overk◦. Again, by [RaGr, Theorem 3.4.6],
the schemeY is finitely presented overk◦.

Our further constructions will modifyY in the following way (see [RaGr,
§5.1]). Suppose we are given a sheaf of idealsJ ⊂ OY of finite type.
(From [RaGr, 3.4.6], it follows thatJ is a coherent sheaf of ideals.) Further-
more, suppose thatJ contains a non-zero element ofk◦◦, and let f : Y′ → Y
be the blow-up ofJ. The schemeY′ is of finite type overk◦, and therefore
if we divide OY′ by thek◦-torsion, we get, by [RaGr, 3.4.6], a schemeY′′
proper flat and finitely presented overk◦. We’ll say thatY′′ is the blow-up
of the idealJ or, if Y is the Zariski closed subset ofYs which is the support
of OY/J, thatY′′ is the blow-up with center atY. Note that the preimage

of Y in Y′′s is a union of irreducible components. Note also thatY′′η
∼→Yη.

Step B. The strictlyk-affinoid domainW is rational. This implies that
there are elementsf1, . . . , fn, g ∈ A′ such thatg is invertible onW and
W = {y ∈ Xan|| fi (y)| ≤ |g(y)|,1≤ i ≤ n}. By [EGAI, 6.9.7], there exists
a coherent sheaf of idealsJ ⊂ OY whose restriction toX′ is generated by
the elementsf1, . . . , fn, g. Let Y′ → Y be the blow-up of the idealJ (in
the above sense). The “g 6= 0" chartW of the preimage ofX′ in Y′ is an
open affine subscheme ofY′ and one hasπ−1(W s) = W.

We claim that the Zariski closure of the pointπ(x) in Y′s is contained
in W s. Indeed, for this it suffices to verify that, given an open affine sub-
schemeU ⊂ Y′ that contains the pointx, the Zariski closure ofπ(x) in
Us is contained inUs ∩W s. If U = Spec(B) andU ∩W = Spec(B′),
the latter means that̃B/℘

∼→B̃′/℘ B̃′, where℘ is the prime ideal of the
pointπ(x) in B̃ = B/k◦◦B, and B̃′ = B′/k◦◦B′. SinceSpec(B̃′/℘ B̃′) is an
open subscheme ofSpec(B̃/℘), it suffices to check that̃B′/℘ B̃′ is integral
over B̃/℘. For this we use the assumption that the pointx is contained in
the topological interior ofW in Y′an

η . It implies thatx is contained in the
topological interior ofU ∩W in U, whereU = Ûη = π−1(Us). One has
U = M(B) andU ∩W = M(B′) with B = B̂⊗k◦ k andB ′ = B̂′ ⊗k◦ k,
where B̂ and B̂′ are thea-adic completions ofB and B′, respectively for
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any a ∈ k◦◦\{0}. From [Ber1, Proposition 2.5.2], it follows that̃B
′
/℘′B̃ ′

is integral overB̃/℘′, where℘′ is the prime ideal of the pointπ ′(x) and
π ′ is the reduction mapU → Ũ = Spec(B̃). SinceB̃ andB̃

′
are integral

over B̃ and B̃′, respectively (see [Ber3, §1]), and℘ is the preimage of℘′
with respect to the homomorphism̃B→ B̃, the required fact follows.

We replaceY by Y′. In what follows we use only the closed fibre of
the subschemeW , and therefore we denote it byW . We remark that, given
a blow-up Y′ → Y, the preimageW ′ of W in Y′s possesses the same
property: the Zariski closure of the pointπ(x) in Y′s is contained inW ′.

Step C. By Gerritzen-Grauert Theorem [BGR, 7.3.5/3],X is a union of
rational strictly affinoid domainsX1, . . . , Xp. For eachXi we apply the
construction from the beginning of Step B, and we get a blow-upYi → Y
and an open subschemeZi of the closed fibre ofYi such thatπ−1(Zi ) = Xi .
We now can find a blow-upY′ → Y that goes through all of the above blow-
ups. LetZ be the union of the preimages ofZi in Y′s. Thenπ−1(Z) = X.
Finally, we make two additional blow-ups with centers inY′s\Z and in
the Zariski closure ofπ(x) in Y′s. We replaceY by Y′, Z andW by their
preimages inY′s, and denote byV the preimage of the Zariski closure
of π(x). By Step B,V ⊂ W and, by the last construction,V andYs\Z are
unions of irreducible components. ut

Step 2.One may assume that the schemeX is geometrically irreducible.
Indeed, the algebraic separable closurek′ of k in A is finite overk, and
the schemeX, considered as a smooth scheme overk′, is geometrically
irreducible [EGAIV, 4.5.9]. On the other hand,X can be considered as
a strictly k′-analytic space, and so we can replacek by k′ and reduce the
situation to the case whenX is geometrically irreducible.

Step 3. Applying Lemma 9.4 toX, X, W andx, and we getY, Z, W
andV satisfying the properties (1)–(3). SinceX is geometrically irreducible,
Yη is also geometrically irreducible. By Lemma 9.2, there exist a finite
normal extensionk′ of k, a poly-stable fibrationY′ of length l over k′◦

such thatY′l is proper overk′◦ and has a smooth geometrically irreducible
generic fibre, an action of a finite groupG onY′ overk◦, and a dominantG-
equivariant morphismϕ : Y′l → Y that induces a proper generically finite
morphismY′l,η→ Yη and such that the fieldR(Y′l,η)G is purely inseparable
over R(Y).

Step 4. LetZ′,W ′ andV ′ be the preimages ofZ,W andV in Y′l,s, respec-
tively. ThenV ′ andY′l,s\Z′ are unions of irreducible components ofY′l,s and
V ′ ⊂W ′. ForX′ = π−1(Z′) andW′ = π−1(W ′), one hasX′ = ϕ−1

η (X) and
W′ = ϕ−1

η (W). Moreover,π−1(V ′)∩X′ is an open subset ofX′ contained in
W′∩X′. By the construction, we can find a nonempty open affine subscheme
U ⊂ X such that the morphismU′ := ϕ−1

η (U)→ U is finite and the finite
morphismG\U′ → U is radicial. By the assumption (b), the pointx is con-
tained inUan. Then the setU := π−1(V)∩X∩Uan is an open neighborhood
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of x in X contained inW∩X. The setU ′ := π−1(V ′)∩X′∩U′an is open inX′
and dense Zariski open inπ−1(V ′) ∩ X′ = π−1(V ′ ∩Z′), and the radicial
morphismG\U′ → U induces a homeomorphismG\U ′ ∼→U. SinceV ′ and
Y′l,s\Z′ are unions of irreducible components ofY′l,s, it follows thatV ′ ∩Z′

is a strata subset ofY′l,s. By Corollary 8.5(i), there is a strong deformation
retraction ofU to a closed subset homeomorphic toG\|C(V ′ ∩ Z′)| and,
by Corollary 3.11(iii), the latter space is locally contractible. The theorem
follows. ut
Corollary 9.5. Any separatedk-analytic spaceX locally embeddable in
a smoothk-analytic space is locally simply connected. In particular, if
X is connected, it has a universal covering which is a simply connected
strictly k-analytic space. ut

We remark that since smoothk-analytic spaces are locally separated,
ak-analytic space locally embeddable in a smoothk-analytic space is sepa-
rated if and only if it is Hausdorff (see [Ber2, §1.4]). Corollary 9.5 implies
that the topological fundamental groupπ top

1 (X) of such a spaceX, defined
in [deJ1] as a topological group classifying the topological coverings ofX,
coincides with the usual fundamental group ofX, defined through paths on
X. In particular,π top

1 (X) is a discrete group.

Corollary 9.6. Any separatedk-analytic spaceX locally embeddable in
a smoothk-analytic space is homologically locally connected. In particular,
if X is paracompact, then for any abelian groupM the canonical maps
Hq(|X|,M)→ Hq

sing(|X|,M) are isomorphisms. ut
Remark 9.7.Any strictlyk-affinoid space smooth in the sense of rigid geom-
etry is locally embeddable in a smooth space. Indeed, ifX = M(A) be
such a space, then the sheaf of one-differentialsΩX is locally free of rank
n = dim(X). This implies that, given a pointx ∈ X, the restriction of
ΩX to a Zariski open neighborhood ofx is free, i.e., shrinkingX, we may
assume thatΩX is generated byd f1, . . . ,d fn for some fi ∈ A◦, 1≤ i ≤ n.
Consider the morphismf = ( f1, . . . , fn) : X→ En ⊂ An. By the results
of R. Elkik [Elk, Ch. III, Theorem 7, Lemma 6 and Remark 2], one can
approximate the morphismf by a morphism which comes from a morphism
of smooth affine schemesX→ An so thatX is isomorphic to the preimage
of En in Xan.

10. Finiteness and stability of cohomology of certain analytic spaces

In this section the valuation on the ground fieldk is not assumed to be
non-trivial.

Theorem 10.1. Let X be ak-analytic space isomorphic toW\Van, where
W is a compact analytic domain in the analytificationXan of a separated
schemeX of finite type overk andV is a Zariski closed subset ofX. Then



82 V. G. Berkovich

(i) the groupsHq(|X|,Z) are finitely generated;
(ii) if W is strictly k-analytic, then there exists a finite separable exten-

sion k′ of k such that, for any non-Archimedean fieldK over k′ and any
paracompact locally closed subsetY of a HausdorffK -analytic space, one
has

RΓ(|X⊗̂k′|,Z) L⊗RΓ(|Y|,Z) ∼→RΓ(|X × Y|,Z)
and, in particular,Hq(|X⊗̂k′|,Z) ∼→Hq(|X⊗̂K |,Z).
Proof. We use a construction of P. Deligne from [Del] (which is also men-
tioned at the beginning of J. de Jong’s paper [deJ2]). For this we remark that
if there exists a proper hypercoveringX• → X such that the theorem is true
for all Xn’s, then it is also true forX (see [SGA4, Exp. V bis]). Consider
first the case when the compact analytic domainW is strictly k-analytic.

First, we may assume thatX is proper. By the above remark and Chow’s
Lemma, we may assume thatX is projective. Furthermore, by the above
remark, we can replaceX by its normalization and, therefore, we may
assume thatX is irreducible and integral. Using the reasoning from Step A
from the proof of Lemma 9.4, we may assume thatX is the generic fibre
Yη of an integral schemeY projective, finitely presented and flat overk◦.
Finally, by Step C from the proof of Lemma 9.4, we may assume that
W = π−1(Z), whereZ is an open subscheme of the closed fibreYs such
thatYs\Z is a union of irreducible components ofYs.

By the construction from [Del, 6.3.5], and Lemma 9.2, there exist
(a) a simplicial schemeY• such that eachYn is a disjoint union of schemes

of the formXl , whereX = (Xl
fl−1→ · · · f1→ X1

f0→ X0 = Spec(k′)) is
a poly-stable fibration over a finite extensionk′ of k and all fi ’s are projec-
tive and have smooth generic fibres, and (b) an augmentationg : Y• → Y
which gives rise to a proper hypercoveringgη : Y•,η→ Yη. The latter gives
rise to a proper hypercoveringX• → X, whereXn is the preimage ofX in
Yan

n,η. One hasXn = π−1(Zn)\Van
n , whereZn is the preimage ofZ in Yn,s

andVn is the preimage ofV in Yn,η. SinceYs\Z is a union of irreducible
components ofYs, it follows thatYn,s\Zn is a union of irreducible compo-
nents ofYn,s and, therefore,Zn is a strata subset ofYn,s. The statement (i)
for Xn now follows from Corollary 8.5. Corollary 8.7 implies the existence
of k′ such that for anyY from (ii) the canonical maps|Xn×Y| → |Xn|×|Y|
are homotopy equivalences. SinceXn andY are locally compact and para-
compact and the above map is compact, the spacesXn × Y and|Xn| × |Y|
are also locally compact and paracompact. It remains to apply the facts that
for such a space the cohomology groups coincides with the Alexander co-
homology groups and that the latter satisfy the homotopy axiom (see [Spa,
Ch. 6]).

Consider now the general case whenW is not necessarily strictly
k-analytic. We can find positive numbersr1, . . . , rn, whose images in the
quotient groupR∗+/

√|k∗| are linearly independent overQ, such thatW⊗̂K
is strictly K -analytic, whereK = Kr1,... ,rn (see [Ber1, §2.1]). The fieldK
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is isomorphic to thek-affinoid algebra of analytic functions on the direct
productA(r1)× · · · × A(rn), whereA(r) = {x ∈ A1||T(x)| = r }. Thus, to
prove the statement (i) it suffices to check that for any Hausdorffk-analytic
spaceX and any numberr > 0 the canonical map|X × A(r)| → |X|
is a homotopy equivalence. For this we note that the canonical action of
the multiplicative groupGm on A1 induces an action of the affinoid torus
G1

m on A(r). As it was explained in Step 3 (Case (a)) from the proof of
Theorem 9.1, the latter action gives rise to a strong deformation retraction
of X × A(r) to a closed subset homeomorphic toX, and the statement (i)
follows. ut
Corollary 10.2. In the situation of Theorem 10.1, the following is true

(i) the groupsHq
c (|X|,Z) are finitely generated;

(ii) if W is strictly k-analytic, then there exists a finite separable exten-
sion k′ of k such that, for any non-Archimedean fieldK over k′ and any
locally closed subsetY of a HausdorffK -analytic space, one has

RΓc(|X⊗̂k′|,Z) L⊗RΓc(|Y|,Z) ∼→RΓc(|X× Y|,Z)
and, in particular,Hq

c (|X⊗̂k′|,Z) ∼→Hq
c (|X⊗̂K |,Z). ut

Notice that the statements (i) and (ii) of Theorem 10.1 and Corollary 10.2
are true forX = Xan, whereX is a separated scheme of finite type overk.
Indeed, there is an open embedding ofX in a proper schemeY. The analytic
spaceYan is compact and strictlyk-analytic, and one hasXan = Yan\Van,
whereV is the complement ofX in Y.
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langage des schémas, Springer, Berlin-Heidelberg-New York 1971
[EGAIV] Grothendieck, A., Dieudonńe, J.: Eĺements de Ǵeoḿetrie Algébrique. IV.Étude
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