
The Ordered Covering Problem

Uriel Feige∗ Yael Hitron †

November 8, 2016

Abstract

We introduce the Ordered Covering (OC) problem. The input is a finite set of n elements
X, a color function c : X → {0, 1} and a collection S of subsets of X. A solution consists of an
ordered tuple T = (S1, ..., S`) of sets from S which covers X, and a coloring g : {Si}`i=1 → {0, 1}
such that ∀x ∈ X, the first set covering x in the tuple, namely Sj with j = min{i : x ∈ Si}, has
color g(Sj) = c(x). The minimization version is to find a solution using the minimum number
of sets. Variants of OC include OC(α0, α1) in which each element of color i ∈ {0, 1} appears
in at most αi sets of S, and k-OC in which the first set of the solution S1 is required to have
color 0, and there are at most k − 1 alternations of colors in the solution. Our main results are
as follows:

1. There is a polynomial time approximation algorithm for Min-OC(2,2) with approximation
ratio 2. (This is best possible unless Vertex Cover can be approximated within a ratio
better than 2.) Moreover. Min-OC(2,2) can be solved optimally in polynomial time if the
underlying instance is bipartite.

2. For every ε > 0, Min-OC is hard to approximate within a factor better than 2ln
1−ε n,

assuming NP 6⊆ DTIME(npoly logn).

3. For every α0, α1 ≥ 2, there is a polynomial time approximation algorithm for Min-3-
OC(α0, α1) with approximation α1(α0 − 1). Unless the unique games conjecture is false,
this is best possible .

∗Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot
76100, Israel. E-mail: uriel.feige@weizmann.ac.il.
†Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot

76100, Israel. E-mail: yael.hitron@weizmann.ac.il.

1 Introduction

We introduce the Ordered Covering problem. As a motivating example, consider an image that one
wishes to print. Each pixel in the

√
n by

√
n image will correspond to an element in our setting,

and it has a given color (for simplicity, assume only one of two colors, such as black and white).
The printing technology involves a given collection of templates, where each template corresponds
to a set of pixels. For example, every rectangle in the

√
n by

√
n grid might be a template. Using

a template, one can simultaneously color all pixels within the template in any desired color. (For
example, a template can be a mask hiding all other pixels, and then one sprays the color through
the openings in the template. Or the templates can correspond to a prefabricated collection of
drawings on stones used in a process such as chromolitography.) Using a sequence of templates,
each pixel remains colored by the color given to it by the last template that included it. The goal is
to use the shortest sequence of templates in order to produce the desired image. The OC problem
captures such problems (when viewing the sequence of templates in reverse order).

1.1 Definitions

The Ordered Covering Problem (OC) The input to OC is a finite set of n elements X, a
color function c : X → {0, 1} and a collection S of m subsets of X. A solution consists of an
ordered tuple T = (S1, ..., S`) of sets from S, and a coloring g : {Si}`i=1 → {0, 1} such that T covers
X and ∀x ∈ X, the first set covering x in the tuple, namely Sj with j = min{i : x ∈ Si}, has color
g(Sj) = c(x). In the minimization version, the goal is to find a solution using the minimum number
of sets.

k–Ordered Covering (k–OC) In the k–OC problem, the input is the same as to OC. A solution
is a solution to OC in which the first set of the solution S1 is required to have color 0, and the
number of alternations of colors is at most k − 1, namely |{i : g(Si) 6= g(Si+1)}| ≤ k − 1. In this
variation, a solution can be viewed as k monochromatic layers of sets with alternating colors, where
the first layer is of color 0. In the minimization version, the goal is to find a solution using the
minimum number of sets.

The OC(α0, α1) problem In this variation of OC, each element of color i ∈ {0, 1} appears in
at most αi sets of S. The input to OC(2,2) can be viewed as a graph, where the elements are the
edges and sets are the vertices (we allow self loops).

1.2 Observations

1.2.1 Set Cover and Vertex Cover are special cases of OC

Consider Min–OC restricted to instances where all elements are of the same color. In this case,
there is no importance to the order of the sets in the solution. Thus, we can view the Set Cover
problem as Min–OC using only one color.

An input to OC can be viewed as a hypergraph with a given 0/1 coloring of its hyperedges. The
sets can be viewed as vertices, elements as hyperedges, and the hyperedge corresponding to element
x is composed of those vertices that represent sets that contain x. When there is only one color,
OC becomes the problem of finding a set of vertices hitting all hyperedges. In particular, minimum
Vertex Cover is a special case of Min–OC(2,2). Moreover, if we restrict the coloring function to one
color, every solution has no alternation between different colors. Therefore, Set Cover and Vertex
Cover are special cases of Min–k–OC for every k.

1

1.2.2 Feasibility

Here we consider the problem of deciding whether a given instance of Min–OC has a feasible
solution, without limiting the number of sets used in the solution tuple.

Definition 1. A set S ∈ S is called monochromatic if it contains only elements of the same color,
meaning that S ⊆ c−1(i) for some i ∈ {0, 1}. Similarly, in the graph setting, we call a vertex
monochromatic if all edges touching it are of the same color. In situations in which a partial
solution is given and some elements are already covered, a set S is called monochromatic if it
contains at least one uncovered element, and all the uncovered elements that it contains have the
same color.

Proposition 1. Deciding if an input to OC has a feasible solution can be done in polynomial time.

Proof. We describe a procedure that greedily builds a solution if one exists. On input (X,S, c),
while X is not empty and there exists a monochromatic set Si of color ci in S, add Si with color
g(Si) = ci to the end of the tuple, update X,S and repeat.

If the procedure manages to cover all elements, it constructs a legal solution and the instance
is feasible. Likewise, if the instance is feasible, say by a solution (S1, ...Sk) and coloring g, the set
Sj \ {Si}j−1

i=1 is monochromatic with color g(Sj). Consequently, regardless of the sets chosen by
the greedy procedure, as long as there remain uncovered elements, a monochromatic set remains
available for the greedy procedure (the set Sj with smallest j that still contains an uncovered
element).

For any k, using a similar procedure we can also check feasibility for k–OC in polynomial time.
If we view instances of OC as hypergraphs as described in Observation 1.2.1, the following

characterization of feasible instances holds.

Proposition 2. A hypergraph G with coloring c (as input to OC) has a feasible solution if and
only if every vertex induced sub-hypergraph of G contains a monochromatic vertex.

Proof. The first vertex in every solution tuple must be monochromatic. If a vertex induced sub-
hypergraph G′ contains no monochromatic vertex, (G′, c) has no solution, and neither does (G, c).

If every vertex induced sub-hypergraph of G contains a monochromatic vertex, the instance is
feasible as implied by the proof of Proposition 1.

1.2.3 Colored Cover – omitting the order constraints

It is instructive to consider a problem similar to OC in some respects, but different in the sense
that the order of the sets in the solution does not matter.

Definition 2. In the Colored Cover (CC) problem, the input is the same as to OC. A solution is
a collection of sets T ⊆ S and colors g : T → {0, 1} such that each element x is contained in a set
T ∈ T colored g(T) = c(x).

Similarly to OC(2,2), we define CC(2,2).

Definition 3. The CC(2,2) problem is CC restricted to instances where each element is contained
in at most two sets.

In contrast to Proposition 1 we have:

Proposition 3. Deciding whether an instance of CC has a feasible solution is NP-hard.

2

Proof. A hypergraph is said to be 2-Colorable if there exists a red-blue coloring of the vertices,
with no monochromatic hyperedge. Deciding whether a hypergraph is 2-colorable is NP-hard [23].
Given a hypergraph G(V,E) we construct an instance of CC. Define the elements to be two copies
of the hyperedges, one with color 1 and one with color 0. The sets are defined by the vertices,
where each vertex set contains both copies of every hyperedge the vertex is contained in. Given a
solution to the CC instance, by coloring all vertices with color 0 in blue and all vertices with color
1 in red we obtain a 2-coloring for G. On the other hand given a 2-coloring of G, including all
blue vertices with color 0 and all other vertices with color 1 forms a solution to the instance of CC.
Thus, deciding feasibility for CC is NP-hard

Proposition 4. Deciding whether an instance of CC(2,2) has a feasible solution can be done in
polynomial time.

Proof. Checking feasibility of an input to CC(2, 2) can be viewed as a 2–SAT problem. The
variables are the sets, and the elements and coloring function define the following constraints.
Suppose that element x is contained in sets Si, Sj . If x has color 1 introduce a constraint Si ∨ Sj ,
and if x has color 0 introduce the constraint S̄i ∨ S̄j . Since 2–SAT is in P, deciding feasibility of
CC(2,2) can be done in polynomial time.

1.2.4 Min–k–OC for k = 1, 2 is equivalent to the Set Cover problem

• For k = 1, solutions are allowed only to use the color 0, and hence feasible instances consist
only of elements of color 0. Thus, this problem can be viewed as the Set Cover problem.

• For k = 2, a solution contains at most one alternation between different colors. Thus, a
solution can be viewed as two layers of sets, the first with color 0 and the second with color 1.
For a feasible instance and a legal solution, the first layer covers all elements of color 0 using
monochromatic sets. The second layer forms a cover to the elements of color 1, and can use
all remaining sets in S. Hence, the 2–OC problem can be translated into two independent
instances of Set Cover.

We can conclude that the first case in which k–OC differs from Set Cover is when k ≥ 3.

1.3 Our results

Min-OC(2,2)

Theorem 5. There exists a polynomial time approximation algorithm for Min–OC(2,2) achieving
approximation ratio 2.

Note that since Vertex Cover is a special case of Min–OC(2,2), Theorem 5 is best possible (up
to low order terms) unless the known approximation ratio for Vertex Cover can be improved.

On bipartite graphs Min-OC(2,2) can be solved optimally.

Theorem 6. There exists a polynomial time algorithm for Min-OC(2,2) on bipartite graphs.

Min-OC

One can design relatively simple polynomial time algorithms that approximate Min-OC within a
factor of o(m), where m is the number of sets. It is more challenging to obtain approximation
ratios of o(n), where n is the number of elements. This is achieved in the following theorem.

3

Theorem 7. There exist polynomial time approximation algorithms for the following problems:

• For Min-3-OC achieving approximation ratio of
√
n · lnn.

• For Min-OC achieving approximation ratio of 2n ln lnn
lnn .

Regarding the hardness of approximating Min-OC, the following holds.

Theorem 8. Unless NP ⊆ DTIME(npolylogn), Min–OC cannot be approximated by a factor of

2log1−ε n for any 0 < ε < 1.

Min-3-OC

As shown in Theorem 7, Min-3-OC can be approximated by a factor of
√
n · lnn. Regarding

hardness of approximation, we show a connection between the hardness of approximating the
Densest k subgraph (DkS) problem, and the hardness of approximating Min–3–OC.

Theorem 9. ∀α > 0, ∃β > 0 s.t if DkS is hard to approximate within a factor of nα, Min–3–OC
is hard to approximate better than Nβ where n is the number of vertices in the instance of DkS,
and N is the number of element in the Min–3–OC instance.

For the Min-3-OC(α0, α1) variation, we achieve the following.

Theorem 10. For any α0, α1 ≥ 2, there exists a polynomial time approximation algorithm for
Min–3–OC(α0, α1) achieving an approximation ratio of α1(α0 − 1).

Moreover, under the Unique Games Conjecture this approximation ratio is best possible (up to
low order terms) for every constant α1, α0.

1.4 Related work

We are not aware of previous work on the OC problem or on problems equivalent to OC. OC
involves both an ordering aspect and a covering aspect, where the cover needs to satisfy color
constraints. Such a combination does not seem to appear in previously studied problems, but
problems combining some of these aspects in other ways include Graph Coloring, Min Sum Set
Cover [10], Black-White Pebbling [4], Perfectly Orderable Graph (which include Chordal Graphs)
[3, 25], the game Lights Out [11], and a variety of other problems that can be found in the Appendix
of [12]. We did not find any of these problems directly relevant to our work.

Two well studied NP-Hard problems which can be viewed as a special case of OC and OC(2,2)
are Set Cover and Vertex Cover. In the Set Cover problem, given a finite set of n elements X
and collection S of subsets of X the goal is to find a subset of S of minimum size which covers X.
Approximation algorithms achieving a ratio of lnn were obtained in [22] [24]. On the other hand,
unless NP = P , Set Cover cannot be approximated by a factor of

(
1 − o(1)

)
· lnn [8, 6]. As Set

Cover is a spacial case of Min–OC and Min–k–OC (see 1.2.1), the same hardness of approximation
result also holds for these problems.

Given a k-uniform hypergraph, the Ek-Vertex-Cover problem is to find the smallest subset of
vertices that intersects every hyperedge. This problem is equivalent to the Set Cover problem
where the edges can be viewed as elements, the vertices as sets, and each element is contained in
exactly k sets. Note that the classic Vertex Cover problem, is Ek-Vertex Cover with k = 2. A
k-approximation for Ek-Vertex-Cover can be obtained using maximal matching. The best known
algorithms for Ek-Vertex-Cover (as well as for Vertex Cover) achieve an approximation ratio of
(1−o(1))k [13, 17]. Regarding hardness results, Ek-Vertex-Cover is NP-hard to approximate within

4

a factor of (k− 1− ε) for every constants ε > 0 and k ≥ 3 [5]. For k = 2, Vertex Cover is NP-hard
to approximate within a factor of 1.3606 [7].

The Unique Games Conjecture, made by Khot [20], refers to the NP–hardness of approximating
a certain type of game, known as a unique game. Assuming the Unique Game Conjecture, for every
k ≥ 2 (including Vertex Cover) for every ε > 0, Ek-Vertex-Cover is hard to approximate by a factor
better than k − ε [19]. We will deduce hardness result for Min–3–OC(α0, α1) from the hardness of
approximating Ek-Vertex-Cover. Vertex Cover is a special case of Min–OC(2,2), and therefore the
hardness of approximation bounds holds for Min–OC(2,2) as well.

In order to show hardness results, we shall also consider the Min-Rep and DkS problems de-
scribed below.
Min-Rep. The Min Rep problem (see [21]), can be viewed as a minimization version of Label
Cover. The input is a bipartite graph G = (A,B,E), |A| = |B| = n, and partitions A1...Al of
A and B1...Bl of B into l clusters of size n/l. The “superedges” between clusters are defined
as H = {(Ai, Bj) : ∃(a, b) ∈ E s.t a ∈ Ai, b ∈ Bj}. We say (a, b) ∈ E covers the superedge
(Ai, Bj) if a ∈ Ai and b ∈ Bj . The goal is to choose A′ ⊆ A and B′ ⊆ B such that the pairs
{(a, b) ∈ E : a ∈ A′, b ∈ B′} cover all the superedges of H while minimizing |A′|+ |B′|.

Via a standard reduction (can be found in [21]), a ρ approximation ratio for Min-Rep is trans-
lated to 8ρ2 approximation ratio for Label Cover. This implies that if Label Cover is hard to
approximate better than ρ, Min–Rep is hard to approximate within a factor better than 1

2
√

2

√
ρ.

Thus, we can deduce hardness results for Min-Rep from hardness results for Label Cover. For
example, unless NP ⊆ DTIME(npolylog(n)) Label Cover has no approximation algorithm achieving

a ratio better than 2log1−ε n, for any 0 < ε < 1 [1, 14]. Under the weaker assumption that P 6= NP
Label Cover is hard to approximate better than lnt n for any constant t [26]. The same hardness
results also holds for Min-Rep.

The densest k subgraph(DkS). Given a graph G on n vertices and a parameter k, the goal
is to find a subgraph of G induced on k vertices, which contains the largest number of edges. This
problem generalizes the max-clique problem and therefore is NP-hard. The best approximation
ratio known, approximates DkS within a ratio of n1/4+ε for every ε > 0 [2]. Regarding hardness
results, under the assumption that refuting 3SAT is hard on average on a natural distribution, DkS
is hard to approximate better than some constant c [9]. Under the assumption that NP 6⊆ ∩ε>0

BPTIME(2n
ε
) DkS has no polynomial time approximation scheme (PTAS) [18].

1.5 Discussion of our results

Recall that set cover is a special case of min-OC and that vertex cover is a special case of min-
OC(2,2). It is instructive to compare the approximation ratios achieved for min-OC (and its special
cases) with those known for set cover (and its special cases). In this respect, theorems 5 and 6
show that min-OC(2,2) behaves quite similarly to vertex cover. In contrast, Theorem 8 shows that
min-OC behaves very differently than set cover. A better understanding of what aspects make
min-OC have different approximation ratios than set cover is provided by considering the special
case of Min-3-OC. Theorem 9 indicates that the approximation ratios expressed as a function of
n are very different than those for set cover, whereas Theorem 10 shows that like set cover, if the
number of sets in which an element can appear is small, one gets improved approximation ratios
(and moreover, in both cases the unique games conjecture is an obstacle for further improvement
in the approximation ratio).

5

2 Proofs

2.1 Approximation algorithm for Min-OC(2,2)

Theorem 5. There exists a polynomial time approximation algorithm for Min–OC(2,2) achieving
approximation ratio 2.

In order to prove Theorem 5, first we show a 2–approximation algorithm for the unordered
version Min–CC(2,2) defined in Section 1.2.3. Then show a gap preserving reduction from Min–
OC(2,2) to Min-CC(2,2) achieving the same ratio.

2 approximation algorithm for Min–CC(2,2)

We describe an approximation algorithm for Min–CC(2,2) based on Linear Programming. An
instance of CC(2,2) can be viewed as a graph where the elements are viewed as edges and sets
as vertices. For each vertex v ∈ V introduce two variables v0, v1 with the intended meaning that
vi = 1 if v is chosen to be included in the solution with color g(v) = i, and vi = 0 otherwise.
With this interpretation, one can see that Min–CC(2,2) can be formulated as the following Integer
Program.

minimize
∑
v∈V

(v0 + v1)

subject to

v0 + v1 ≤ 1 , v ∈ V (1)

ui + vi ≥ 1 , {u, v} ∈ E, c({u, v}) = i (2)

vi ∈ {0, 1} , v ∈ V, i ∈ {0, 1} (3)

To obtain a Linear Program relaxation, replace constraints (3) by non-negativity constraints.
Constructing a solution
First check whether the instance is feasible (this can be done in polynomial time by Proposition
4 in Section 1.2.3). Next, given a fractional solution {vi∗} to the LP, build a solution as follows.
Denote by

S1 = {v : v1∗ >
1

2
} S0 = {v : v0∗ >

1

2
} S

1
2 = {v : v0∗ =

1

2
or v1∗ =

1

2
}

Since {vi∗} satisfies constraint (1), the sets S1, S0, S
1
2 are disjoint. Due to constraint (2), for every

edge that is not covered by S1 ∪ S0 both its endpoints are in S
1
2 .

Since (G, c) is feasible so is the subgraph induced by S
1
2 and coloring c. As stated in Proposition

4, a solution T, g′ for the subgraph induced by S
1
2 and coloring c can be obtained in polynomial

time. Combining all vertices of S1 with color 1, all vertices of S0 with color 0 and T with colors g′

we get a legal solution for (G, c).
Regarding the approximation ratio, given a feasible input let OPT be the size of a minimal

solution. By the definition of the sets S
1
2 , S0 and S1 it holds that

val(Algo) = |T |+ |S0|+ |S1| ≤ |S
1
2 |+ |S0|+ |S1| ≤ 2 · val(LP) ≤ 2 ·OPT

6

Proof of Theorem 5

Proof. Recall that an input to OC(2,2) can be viewed as a graph where the elements are the edges
and sets are the vertices. Given a graph and coloring (G, c) first check whether the instance is
feasible. As Proposition 1 Section 1.2.2 states, this can be done in polynomial time. If (G, c) is
feasible as an input to OC(2,2), by ignoring the order of the vertices in the solution it is also feasible
as an input to CC(2,2). Let S and coloring g be a solution to (G, c) as an instance of CC(2,2).
Since (S, g) is a solution to CC(2,2), for every edge {u, v} ∈ E of color c({u, v}) = i either v ∈ S
with g(v) = i or u ∈ S with g(u) = i.

Define a directed graph G′ = (S,E′) in the following way. For every edge {u, v} ∈ E with
both endpoints in S and color c({u, v}) = i, if g(v) = g(u) = i omit the edge. Else, w.lo.g
g(u) = i, g(v) = ī and we add a directed edge (v, u) to E′.

Lemma 11. G′ is a directed acyclic graph (DAG).

Proof. Assume by contradiction that G′ contains a cycle. If the cycle edges have alternating
colors, the induced subgraph on the vertices of the cycle has no monochromatic vertices. By
the characterization of feasible instances presented in Proposition 2 of Section 1.2.2, (G, c) is not
feasible. Otherwise, the cycle contains two consecutive edges with the same color i, denote v →
u → w. Due to the definition of the edges directions in G′, g(u) = g(w) = i, and the edge {u,w}
should have been omitted.

A DAG graph has a topological ordering of the vertices, such that every edge is directed from
later to earlier vertex. In order to construct a solution to the OC(2,2) problem, order of the vertices
of S by the topological order into a tuple T = (vk, ..., v1), and keep the same color function g.

Claim 12. T, g is a legal solution for (G, c) as an input to OC(2,2).

Proof. Given an edge {u, v} ∈ E with color i, since S and coloring g is a solution to CC(2,2), either
v ∈ S with g(v) = i or u ∈ S with g(u) = i. consider the following cases.

• In case only one of the vertices u, v is in S, only one of them appears in T and with color i.

• If both vertices are in S with color g(u) = g(v) = i, both of them are in T with color i.

• In case both of the vertices are in S with different colors, w.lo.g g(u) = i and g(v) = ī. We
add the directed edge (v, u) to G′ and therefore u appears before v in T .

Hence in all cases the edge {u, v} is covered correctly.

Let OPT be the size of a minimal solution for (G, c). Using the approximation algorithm
described in 1.2.3, we obtain a solution to (G, c) as an instance to CC(2,2) denoted by (S, g). By
the procedure described above we obtain a solution as an instance to OC(2,2) denoted by (T, g).
Every solution to OC(2,2) is a solution to CC(2,2) by ignoring the order of the vertices. Thus, the
value of the solution obtained is |T | = |S| ≤ 2 ·OPT and we achieve approximation ratio 2.

2.2 Min-OC(2,2) on bipartite graphs

Theorem 6. There exists a polynomial time algorithm for Min-OC(2,2) on bipartite graphs.

In order to prove Theorem 6 we will use a Lemma regarding totally unimodular matrices and
Linear Programming.

7

Definition 4. A matrix is totally unimodular if each square submatrix of it has a determinant that
is either 0,1, or −1.

Lemma 13. For an LP Ax ≤ b, x ≥ 0, if A is totally unimodular and A and b are integral, then
all vertices of the polytope are integer. It particular, the optimal solution with respect to any linear
objective function is integer.

Proof of theorem 6

Proof. As shown in Section 2.1 solving the Min-OC(2,2) problem can be reduced to solving Min-
CC(2,2). Let (G(V,E), c) be an input to Min-CC(2,2) where G is bipartite, V = V1 ∪ V2.

Recall that the Min-CC(2,2) problem has the following Linear Program relaxation:
For each vertex v ∈ V introduce two variables v0, v1 with the intended meaning that vj = 1 if v is
chosen to be included in the solution with color g(v) = j, and vj = 0 otherwise.

The LP:

minimize
∑
v∈V

(v0 + v1)

subject to

v0 + v1 ≤ 1 , v ∈ V
− ui − vi ≤ −1, {u, v} ∈ E, c({u, v}) = i

vi ≥ 0 , v ∈ V, i ∈ {0, 1}

The constraint matrix contain |V |+ |E| rows and 2 · |V | columns: V 0
1 , V

1
1 , V

0
2 , V

1
2 .

Claim 14. The constraint matrix of the LP is totally unimodular

Proof. By induction on the size of the submatrix.
Every submatrix of size 1 contains either 0, 1 or −1. Consider a square submatrix B of size n > 1.
If B has a 0 column or row, then its determinant is 0. If there is a row or column with exactly one
±1 entry, remove the row and column on which the ±1 lies. The determinant changes only by a
multiplicative factor of ±1.

Otherwise, Every row has exactly two 1 or two −1 entries.

• Every row corresponding to a vertex vi ∈ Vi in B has exactly one 1 in column v0
i and one 1

in column v1
i .

• Every row corresponding to an edge (v1, v2) of color i, has exactly one −1 on column vi1 and
one −1 on column vi2.

Summing the columns corresponding to V 0
1 and V 1

2 we obtain a column of the form

(1, 1...1,−1,−1...,−1)T

By summing the columns corresponding to V 1
1 and V 0

2 we get the same vector, and therefore
the determinant of B is 0.

Solving a Linear Program can be done in polynomial time. By Lemma 13, the LP has an integer
solution that is optimal, and therefore it is also an optimal solution to the Integer Program i.e. the
Min-CC(2,2) problem.

8

2.3 Approximation algorithms for Min-OC

2.3.1 o(m) approximation algorithm for Min-OC

We begin by describing a simple polynomial time approximation algorithm that approximates Min-
OC within a factor of m

logm , where m is the number of sets.
As stated in Section 1.2.2, given an instance of OC, constructing a solution if one exists can be

done in polynomial time. Denote the polynomial time procedure computing this task on elements
Y , sets R, and color function c by P (Y,R, c). Given an input (X,S, c) to OC with parameters
|S| = m and |X| = n, partition the sets in S into logm “supersets” denoted by T1, ..., Tlogm, where
each superset is a collection m

logm sets from S.

• Starting from i = 1 to logm, for each subset T ⊆ {T1, .., Tlogm} of size |T | = i, invoke
P (X,

⋃
Tj∈T Tj , c).

• If P returns a solution → return it and halt.

• If P failed on all subsets of {T1, ..Tlogm}, the input is not feasible → return false.

Let (S1, ...S`) and color function g be an optimal solution to (X,S, c), and let Ti1 , Ti2 , ...Tik be

the supersets containing S1, .., S`. Thus, P (X,
⋃k
j=1 Tij , c) constructs a solution, meaning that the

solution obtained by the algorithm uses at most k supersets, and is of size at most k · m
logm ≤ `·

m
logm .

Denote the running time of the procedure P by T (n,m). The running time of the algorithm is
bounded by:

logm∑
i=1

(
logm

i

)
· T (n,m) ≤ m · T (n,m) = poly(n,m)

For any k, by replacing P with the polynomial time procedure which decides feasibility of k–OC
introduced in Section 1.2.2, we obtain an approximation algorithm for Min-k–OC with the same
ratio.

2.3.2 o(n) approximation algorithm

Theorem 7. There exist polynomial time approximation algorithms for the following problems:

• For Min-3-OC achieving approximation ratio of
√
n · lnn.

• For Min-OC achieving approximation ratio of 2n ln lnn
lnn .

In order to prove Theorem 7, we give an approximation algorithm for Min−k−OC, for k ≥ 3.

Lemma 15. For every k ≥ 3, there exists a polynomial time approximation algorithm for Min-k-OC

achieving approximation ratio of n1− 1
k−1 · lnn, where n is the number of elements.

Proof of Theorem 7

Proof. For the Min-3-OC problem, the approximation algorithm and ratio follows directly from
Lemma 15 for k = 3.

Regarding the Min-OC problem, we now use Lemma 15 in order to describe an approximation
algorithm for Min-OC. Given an input to the OC problem with n elements, consider the following
procedure.

9

• For k = 3 to lnn
2 ln lnn do:

– Check if the input is feasible as an instance of Min-k-OC. As shown in Observation 1.2.2
this can be done in polynomial time.

– If the input is feasible, obtain a solution to Min-k-OC using the approximation algorithm
described in Lemma 15.

• If the instance is not feasible as an input to Min-k-OC for all 3 ≤ k ≤ lnn
2 ln lnn , obtain a solution

using the greedy procedure which checks feasibility for OC described in Section 1.2.2. The
procedure returns a solution of size at most n.

• Return the minimal size solution obtained.

Recall that in every solution to Min–k–OC the first set is of color 0. In order to allow the first
set to be of color 1, we switch the colors of the elements between 0 and 1 and repeat the procedure.
In the resulting solution, switch the colors of the sets composing the solution between 1 and 0.
Return the solution with minimal size between the two solutions obtained by the procedure.

Let opt be the size of an optimal solution. If opt ≥ lnn
2 ln lnn , the solution obtained by the

procedure is of size at most n ≤ opt · 2n ln lnn
lnn .

If opt < lnn
2 ln lnn , let k be the number of layers used in an optimal solution.

Note that k ≤ opt < lnn
2 ln lnn and therefore by Lemma 15 the size of the solution obtained by the

procedure is at most

opt · n1− 1
k−1 · lnn ≤ opt · n lnn

n
2 ln lnn

lnn

= opt · n

lnn
< opt · 2n ln lnn

lnn

Proof of Lemma 15 Let k ≥ 3. Given an input (X,S, c) to Min-k-OC with n elements and m
sets, let Xi denote the elements in X with color i, and Si denote all monochromatic sets with color
i for i ∈ {0, 1}.

First we build a table T of size m × k where the rows indicate the sets in S, and the columns
indicate the k layers. The intention is that the cell in row S and column i will contain a value that
forms an upper bound on the “cost” of using the set S in layer i. This cost is the number of sets
that suffice in layers prior to i if one is to construct a legal solution to (X,S, c) that includes the
set S in layer i, and ∞ if there is no such legal solution.

Constructing the table T Denote the ith column of T by Ti and the cell in row S and column
i by Ti(S). We construct the table T in an inductive manner using a procedure approximating
the Minimum Weighted Set Cover problem. The Minimum Weighted Set Cover problem has a
polynomial time approximation algorithm achieving ratio of lnn where n is the number of elements
[22] [24]. Denote the procedure which obtains a solution with such an approximation ratio on
elements Y , sets T and cost function c by ApproxSetCover(Y, T , c).

• The first layer consists of only monochromatic sets of color 0, therefore we set the values:

T1(S) =

{
1 S ∈ S0

∞ else

10

• For odd 1 < i ≤ k and S ∈ S, in order to use S in the ith layer we need to cover the elements
S ∩ X1 in the first i − 1 layers. We use the column Ti−1 as a weight function and set the
values:

Ti(S) = 1 + |ApproxSetCover(S ∩X1,S, Ti−1)|

• In the same manner for even 1 < i < k and S ∈ S set values:

Ti(S) = 1 + |ApproxSetCover(S ∩X0,S, Ti−1)|

For every 1 ≤ i ≤ k and S ∈ S, when computing Ti(S) we save which sets are used by the procedure
ApproxSetCover. This can later be used in order to decide which sets to include in the first i− 1
layers, if one is to use S in layer i.

Let L∗1, L
∗
2...L

∗
k be the layers of an optimal solution of size opt. For each set S in the solution,

we give an upper bound on the values Ti(S).

Claim 16. For every 1 ≤ i ≤ k, and for each set S ∈ L∗j s.t j ≤ i and j mod 2 = i mod 2 it holds

that Ti(S) ≤ (opt lnn)i−1.

Proof. We prove the claim by induction on i. For i = 1, every set S ∈ L∗1 is monochromatic with
color 0 and therefore T1(S) = 1. For 1 < i ≤ k, without loss of generality we assume i is odd and
the sets in the ith layer are of color 0 (the same holds for even i replacing 0 and 1). Let S ∈ L∗j s.t
j ≤ i and j mod 2 = i mod 2, meaning that S is colored 0. Since L∗1..L

∗
k is a legal solution of size

opt, there exists r ≤ opt−1 sets Q1, ..Qr colored 1 in layers L∗1, ..., L
∗
j−1 which cover S∩X1. By the

induction step, Ti−1(Qj) ≤ (opt lnn)i−2 for every Qj . Thus there exists a solution for the Weighted
Set Cover problem on elements S∩X1, sets S and weight Ti−1 of size at most (opt−1)(opt lnn)i−2.
Hence, by the approximation ratio of ApproxSetCover we conclude

Ti(S) = 1 + |ApproxSetCover(S ∩X1,S, Ti−1)| ≤ 1 + lnn(opt− 1)(opt lnn)i−2 ≤ (opt lnn)i−1

Constructing a solution Next we use the table T in order to obtain a solution for (X,S, c).
Let a = k mod 2.

• We cover all elements of color a in the (k − 1)th layer denoted by Lk−1. We use the column
Tk−1 as a weight function and set Lk−1 to be:

Lk−1 ← ApproxSetCover(Xa,S, Tk−1)

• Next we construct layers L1, ..Lk−2 in an inductive manner. Starting from i = k− 1 to 2, for
each set S ∈ Li, add the sets used by the procedure ApproxSetCover when computing Ti(S)
to Li−1 (when constructing T we saved in each cell which sets are used).

• We construct the kth layer Lk to be a cover for the elements of color ā:

Lk ← ApproxSetCover(Xā,S, 1)

11

Running time The table T contains k ·m cells. Computing each cell requires at most the time
needed for the procedure ApproxSetCover which is polynomial in the input size.

Given T , constructing layers Lk−1 and Lk requires the time needed for the procedureApproxSetCover.
Constructing Layers L1, .., Lk−2 requires at most (k− 2) ·m2 accesses to the table. Hence, the run-
ning time is polynomial in m,n and k.

Claim 17. The algorithm obtains a legal solution for (X,S, c) as an input to k −OC.

Proof. First note that all elements are covered, the elements of color a are covered in layer Lk−1,
and the elements of color ā are covered in layer Lk.

Next we claim that for every element x, the first set which covers x is of color c(x). Let x be
an element of color b and let Lj be the first layer containing a set S which covers x. If j = 1, S
is monochromatic of color 0, and b = 0. If j > 1, assume by contradiction S is colored b̄. Hence
x ∈ S ∩Xb and therefore x is covered in the (j − 1)th layer, by a set from ApproxSetCover(S ∩
Xb,S, Tj−1) in contradiction to the minimality of j.

Regarding the size of the solution, first we bound the number of sets used in layers L1, ..., Lk−1.

Claim 18. Layers L1, L2, ..Lk−1 contain at most |ApproxSetCover(Xa,S, Tk−1)| sets.

Proof. By the definition of the table T , and the layers L1, .., Lk−1 it holds that:

|ApproxSetCover(Xa,S, Tk−1)| =
∑

S∈Lk−1

Tk−1(S) =

=
∑

S∈Lk−1

(1 + |ApproxSetCover(S ∩Xā,S, Tk−2)|) ≥

≥ |Lk−1|+
∑

S∈Lk−2

Tk−2(S) =

= |Lk−1|+
∑

S∈Lk−2

(1 + |ApproxSetCover(S ∩Xa,S, Tk−3)|) ≥

≥ |Lk−1|+ |Lk−2|+ ...|L2|+
∑
S∈L1

T1(S) =
k−1∑
`=1

|L`|

We use inequalities instead of equalities because in every layer the same set may be used in
ApproxSetCover by different sets from the previous layer.

Next we bound the size of the solution compared to the optimal size.

Claim 19. The algorithm obtains a solution of size at most n1− 1
k−1 · lnn times the size of an

optimal solution.

Proof. Let OPT be an optimal solution of size opt, and let L1, L2..., Lk be the solution of size alg
obtained by the algorithm. We can assume the instance contains elements of both colors (if the
input contains elements with only one color the problem becomes the classic Set Cover problem).
Thus, there exist r ≤ opt− 1 sets Q1, ..Qr in OPT colored a which form a cover to Xa. By Claim
16 for each Qi it hold that Tk−1(Qi) ≤ (opt lnn)k−2. Thus there exists a weighted set cover to Xa,
with weight function Tk−1 of size at most (opt − 1)(opt lnn)k−2. By the approximation ratio of
ApproxSetCover, and Claim 18 the number of sets in L1, ..Lk−1 is bounded by:

|ApproxSetCover(Xa,S, Tk−1)| =
∑

S∈Lk−1

Tk−1(S) ≤ lnn · (opt− 1) · (opt lnn)k−2

12

Regarding the kth layer, the sets colored ā in the optimal solution form a cover to Xā. Thus
the number of sets used in layer Lk is:

|Lk| = |ApproxSetCover(Xā,S, 1)| ≤ lnn · opt

If opt ≤ n1/(k−1)

lnn then

alg ≤ (opt−1)optk−2 lnk−1 n+lnn·opt ≤ opt(optk−2 lnk−1 n) ≤ opt·(n
1

k−1

lnn
)k−2 lnk−1 n = opt·n1− 1

k−1 lnn

If opt ≥ n1/(k−1)

lnn , we can assume each set in the solution covers at least one element for the first
time and therefore

alg ≤ n ≤ n1− 1
k−1 lnn · opt

Hence we can conclude there exist a polynomial time approximation algorithm for Min-k-OC

which obtains a legal solution with approximation ratio of at most n1− 1
k−1 · lnn.

2.4 Hardness of approximating Min-OC

Theorem 8. Unless NP ⊆ DTIME(npolylogn), Min–OC cannot be approximated by a factor of

2log1−ε n for any 0 < ε < 1.

In order to show hardness results for Min–OC we use a reduction from the Min–Rep problem
discussed in 1.4. We will need the following Lemma.

Lemma 20. If Min-Rep is hard to approximate within a factor f(n), it is hard to approximate

Min–OC within a factor better than O(f(N
1
2)), where n is the number vertices in the Min-Rep

instance and N is the number of elements in the input to Min–OC.
Moreover, it is hard to distinguish between instances of OC with a solution of size q with 3

alternations between different colors (namely, 4 layers), and instances in which every solution

(with unlimited number of alternations) uses at least q · f(N
1
2) sets.

Proof of Theorem 8

Proof. Unless NP ⊆ DTIME(npolylog(n)) Label Cover has no approximation algorithm achieving

a ratio better than 2log1−ε n, for any 0 < ε < 1 [1, 14]. As discussed in 1.4, via a standard reduction
(can be found in [21]) the same hardness results apply also for Min–Rep. By Lemma 20 under
the same assumption, for any ε′ > 0 Min–OC is hard to approximate by a factor better than

O(2log1−ε′ N
1
2). Given ε > 0, for a small enough ε′ we achieve the required 2log1−εN ratio also for

Min–OC.

Proof of Lemma 20 Given an input G(A,B,E), {Ai}li=1, {Bj}lj=1, H, with parameters |A| =
|B| = n, |E| = m, |H| = h to Min-Rep construct an instance of OC with parameters |X| = |S| =
2 + 2 · n2

h +m.

• The elements: Define all superedges in H, and all edges in E to be elements with color
1. For every vertex v ∈ A ∪ B, add k elements v1...vk of color 0 (k is a parameter to be
determined later) denote the set of these elements by V . In addition we introduce two new
elements, x0 of color 0, and x1 of color 1.

13

Figure 1: The elements colors in the figure are black for elements colored 1, and white for color 0. For each copy of a vertex, add
a singleton illustrated as {bn,1}. For each edge add a set containing the edge, corresponding vertices and superedge, illustrated
as S(ai,bj)

. The set S1 covers x0, x1 and all elements of E. S0 contain x1 and all elements of H and V .

• The sets: Add a singleton {vi} for every vi ∈ V . For each (a, b) ∈ E introduce a set
S(a,b) = {a1..ak, b1...bk, (a, b), (Ai, Bj) : a ∈ Ai, b ∈ Bj}. Define a set S0 = H ∪ V ∪ {x0} and
a set S1 = E ∪ {x1} ∪ {x0}.

See Figure 1 for an illustration of the construction.
Observe that the instance we created is feasible. Taking all the singletons with color 0, then all

sets of the form Se with color 1 and at the end S0 with color 0 and S1 with color 1 defines a legal
solution.

Claim 21. If the Min–Rep instance G has a solution of size q, the OC instance (X,S, c) has a
solution of size 2 + h+ k · q.

Proof. Let A′, B′ be a solution of size q for G. Build a solution T, g as follows. First add all sets
{vi}, s.t v ∈ A′ ∪ B′, i = 1...k at the beginning of T with color g({vi}) = 0 (k · q sets). Next we
add all sets S(a,b) which correspond to edges between A′ and B′ with color g(S(a,b)) = 1. If there is
more than one edge (a, b) covering the same superedge, pick only one set S(a,b) arbitrarily (h sets).
At the end of the tuple add S0 and S1. Since A′, B′ covers all superedges, all elements of H are
covered by the sets S(a,b). One can check that all other elements are also covered with the right
color.

Claim 22. If every solution for the Min–Rep instance G contains at least ρ · q vertices, every
solution to the OC instance (X,S, c) is of size at least 2 + h+ k · ρ · q.

Proof. Let T, g be a solution for (X,S, c). Observe that x1 is included only in S1, and x0 is included
only in the sets S0 and S1. Therefore T must include S0 with color 0 before S1 with color 1. In
order to cover the elements of H, we need to use sets of the form Se. The vertices touching these
edges form a solution to the Min Rep instance and therefore the sets Se covering H contain at

14

least ρ · q · k elements from V denote them by V ′. Each element xe appears only in the sets S1 and
Se, hence a set Se can appear before S1 only with color 1, meaning that the elements V ′ must be
covered at the beginning of the tuple by singletons.

In total, every solution contain at least 2 + h+ ρ · q · k sets.

Analysis of parameters Assuming it is hard to distinguish between instances of Min Rep with
a solution of size q and instances where every solution is of size at least ρ(n) · q, it is hard to
distinguish between instances of Min–OC with solution of size 2 + h+ k · q and instances in which
every solution is of size at least 2 + h+ k · ρ(n) · q. Note that q ≤ 2n and h ≤ q2. Choosing k = h

q

we get an inapproximability result of Ω(ρ(n)), for instances of size N = 2 + 2 · hq · n+m = O(n2).
Hence if the Min Rep problem is hard to approximate within a factor of f(n), Min–OC is hard to
approximate better than f(O(

√
N)). Since f is sublinear (or in the worse case linear), Min–OC is

hard to approximate better than O(f(
√
N))

2.5 On the hardness of Min-3-OC

Theorem 9. ∀α > 0, ∃β > 0 s.t if DkS is hard to approximate within a factor of nα, Min–3–OC
is hard to approximate better than Nβ where n is the number of vertices in the instance of DkS,
and N is the number of element in the Min–3–OC instance.

In order to prove Theorem 9 we show a reduction from the gap version of DkS to Min–3–OC.
Given a graph G and value q, the ρ–DkS–gap problem is to distinguish between two cases:
Yes: There exist q edges in G(E) that touch only k vertices.
No: Every q/ρ edges touch at least k vertices.

Lemma 23. There exists a polynomial time random reduction that, given parameters n, 1 ≤ k ≤ n,
k ≤ q ≤ k2, takes an instance of ρ–DkS–gap problem G(V,E) with n vertices to an instance of
3–OC, with parameters |X| = q

k · n+ q
ln(n) , |S| = q

k · n+ |E| in which
If G is a YES instance → there exist a solution to the 3–OC instance using at most 1 + 2q sets.

If G is a NO instance → every solution to the 3–OC instance consists of at least q · (1
2 lnn +

√
ρ

lnn)

sets.

We now prove Theorem 9 using Lemma 23.

Proof of Theorem 9

Proof. Via the reduction stated in Lemma 23, starting from a graph with n vertices, we construct
an instance of 3–OC with N = O(n2) elements (q ≤ k2). Assuming DkS is hard to approximate
within a factor of ρ(n), we conclude that Min–3–OC is hard to approximate within a factor of

≈ 1
2

√
ρ(n)
ln(n) = 1

2

√
ρ(O(N1/2))

ln(O(N1/2))
.

For α > 0, if DkS is hard to approximate by a factor better than nα, Min–3–OC is hard to
approximate better than d

ln1/2N
·N

α
4 ≥ Nβ, where d is some constant and β < α/4 can be chosen

arbitrarily close to α/4 (when N is sufficiently large).

For example, for parameters |V | = n, k = n
1
2 , ρ = n

1
4 , q = n

3
4 which seem to be a barrier for

obtaining an approximation ratio of n
1
4
−ε for DkS [2], by Lemma 23 we achieve a gap of N

1
10

c ln(N) for
some constant c, for Min–3–OC.

15

Proof of Lemma 23 In order to prove Lemma 23, first we reduce ρ–DkS–gap problem to an
intermediate problem called dense k vs sparse k′ subgraph , then we show a random reduction from
this problem to 3–OC.

The dense k vs sparse k′ subgraph is a gap problem, with parameters k, ρ′ k′ > k. Given a
graph G, and value q, distinguish between two cases:
Yes: There exists q edges in G(E) touching only k vertices.
No: Every q/ρ′ edges touch at least k’ vertices.
We can assume q >> ρ′, otherwise the problem is in P .

Claim 24. The ρ–DkS–gap problem can be reduced to the dense k vs sparse k′ subgraph problem
with parameters ρ′, k, k′ s.t ρ′/ρ ≤ (k/k′)2, k′ > k.

Proof. Given a graph G and value q.

• If G is a YES instance of ρ–DkS–gap problem, G is also a YES instance of the dense k vs
sparse k′ subgraph .

• If G is not a NO instance of dense k vs sparse k′ subgraph , there exists k′ vertices, touching
at least q/ρ′ edges. We can deduce using averaging arguments there exists k vertices in G

touching at least k(k−1)
k′(k′−1) ·

q
ρ′ ≈ (kk′)

2 · qρ′ ≥
q
ρ edges, i.e. G is not a NO instance of the

ρ–DkS–gap problem.

Given a value q and a graph G(V,E) with parameters |V | = n, |E| = m, we view them as

an instance of dense k vs sparse k′ subgraph , with parameters ρ′ = 2 lnn, and k′ ≈
√

ρ
lnn · k (k’

is chosen to be the largest value for which Claim 24 holds). Next we randomly reduce dense k
vs sparse k′ subgraph with the above parameters to 3–OC. Construct an instance (X,S, c) in the
following way.
The Elements: For each v ∈ V we introduce t = q

k elements v1...vt of color 0. In addition
introduce q

2 lnn elements B = {u1...u q
2 lnn
} of color 1.

The sets: Include X as a set. For every v ∈ V , i ∈ [t] add a singleton {vi}. For each (v, w) ∈ E
introduce a random set S(v,w) = {v1...vt, w1...wt, ui}, where ui is chosen uniformly at random from
B.
The instance we created is feasible, as we can build a solution by taking all the singletons with
color 0 in the first layer, and the set X with color 1 in the second layer.

Claim 25. If G is a YES instance w.h.p (X,S, c) has a solution of size 1 + 2q.

Proof. Since G is a YES instance, there exists a set of k vertices V ′ ⊂ V touching at least q edges
E′ ⊆ E. Build a solution to (X,S, c) as follows:

• The first layer consists of all sets {vi}, s.t v ∈ V ′, i = 1...t with color g({vi}) = 0.

• The second layer is all sets S(v,w) s.t (v, w) ∈ E′, with color g(S(v,w)) = 1.

• In the third layer, take the set X with color g(X) = 0.

All the elements of color 0 are covered and with the right color. In addition all the elements we
covered from B, are covered correctly. We are left to check what is the probability that all elements

16

in B are covered. Using union bound, for a constant c the probability that all elements in B are
covered is:

Pr[B ⊆
⋃

(u,v)∈E′
S(u,v)] ≥ 1− |B| · (1− 2 lnn

q
)q → 1− q

c · n2 · ln(n)
→ 1

Thus, w.h.p we get a solution of size 1 + q + t · k = 1 + q + q
k · k = 1 + 2q

Claim 26. If G is a NO instance any solution to (X,S, c) is of size at least q
2 lnn + q

k · k
′ =

q(1
2 ln(n) +

√
ρ

lnn).

Proof. Consider two possible types of solutions.

• Solutions which include the set X with color 1. Since we use at most 3 layers, the only option
to cover all elements of color 0 is using all singletons with color 0 in the first layer. This
solution is of size 1 + tn = 1 + q

k · n.

• Solutions which don’t include the set X with color 1. In order to color the elements of B
without using the set X, we need at least |B| = q

2 ln(n) = q
ρ′ sets of the form Se. Since

G is a NO instance, every |B| edges touch at least k′ vertices. All the elements associated
with these vertices are need to be covered in the first layer, and therefore we need to include
at least t · k′ singletons. In total, we get that each solution of this form contains at least
q

2 lnn + t · k′ = q
2 lnn + q

k · k
′ sets.

We can assume k ≤ n/ρ, otherwise by a greedy algorithm which removes a vertex of smallest
degree in each step we can solve the ρ–DkS–gap problem in polynomial time. Thus, q

2 ln(n) + q
k ·k

′ =

q
2 lnn + q ·

√
ρ

ln(n) ≤ q · ρ < q · nk < 1 + q
k · n.

2.6 The Min-3-OC(α0, α1) problem

Theorem 10. For any α0, α1 ≥ 2, there exists a polynomial time approximation algorithm for
Min–3–OC(α0, α1) achieving an approximation ratio of α1(α0 − 1).

Moreover, under the Unique Games Conjecture this approximation ratio is best possible (up to
low order terms) for every constant α1, α0.

First we show an α1(α0 − 1)–approximation algorithm for the Min–3–OC(α0, α1) problem for
any α0, α1 > 1. Then we show a hardness of approximation result achieving the same ratio up to
low order terms for constant α0, α1.

2.6.1 α1(α0 − 1)–approximation algorithm for Min–3–OC(α0, α1)

We assume α0, α1 > 1. Note that if α1 = 1, or α0 = 1 and the input is feasible, there is only one
way to cover the elements of color 0 (or 1). Thus, the problem is equivalent to using one color and
therefore to Set Cover.

We begin by formulating 3–OC(α0, α1) as an Integer Programming problem. Given an input
(X,S, c), with parameters |X| = n, |S| = m we divide S to 3 distinct sets. Monochromatic
sets of color 0 denoted by W = {Sj : Sj ⊆ c−1(0)}, monochromatic sets of color 1 denoted by
B = {Sj : Sj ⊆ c−1(1)}, and “mixed sets” M = S \ (W ∪B). Note that in every solution, the first
layer contains only sets from W and the second layer is contained in B ∪M . Since every set from

17

W included in the third layer can also be included in the first layer, we can assume w.lo.g the third
layer contains only sets from M .

The variables: For each set Sj ∈ W , we introduce a variable y1
j with the intended meaning

that y1
j = 1 if the set Sj is selected in the first layer and 0 otherwise. Similarly, for each set

Sj ∈ B ∪M introduce a variable y2
j to indicate whether it is chosen in the second layer, and for

each Sj ∈ M , y3
j holds for the third layer. In addition, for each x with color c(x) = 0 introduce

a variable zx with the intended meaning that zx = 1 if x is covered in the first layer and 0 if x
is covered only in the third layer. If x is contained only in sets from W , fix zx = 1 and if x is
contained only in sets from M fix zx = 0. Thus, Min–3–OC can be formulated as the following
Integer Program.

minimize
∑

yki

subject to

∀x ∈ X : c(x) = 1 : ∑
Sj∈B∪M :x∈Sj

y2
j ≥ 1 (4)

∀x ∈ X : c(x) = 0 : ∑
Sj∈W :x∈Sj

y1
j ≥ zx (5)

∑
Sj∈M :x∈Sj

y3
j ≥ 1− zx (6)

∀Sj ∈M : x ∈ Sj y2
j ≤ zx (7)

All variables have value {0, 1} (8)

For the linear program relaxation change constraints (8) to non-negativity constraints.

Rounding Given a fractional solution to the LP y∗, we construct a solution using three layers

L1 = {Sj : y1∗
j ≥

1

α1(α0 − 1)
} , L2 = {Sj : y2∗

j ≥
1

α1
} , L3 = {Sj : y3∗

j ≥
1

α1(α0 − 1)
}

If a set is contained in more than one layer, include it only in the first layer it appears in.
We can construct a solution (T, g) by simply concatenating all sets in L1, L2 and L3 one after the
other to a tuple T , and defining the color function to be g(Sj) = 1 for Sj ∈ L2 and g(Sj) = 0 for
Sj ∈ L1 ∪ L3

Claim 27. T with coloring g is a legal solution.

Proof. Let x ∈ X be an element of color c(x) = 1. Since y∗ is a feasible solution to the LP, it
satisfies constraint (4). x is contained in at most α1 sets, therefore for some Sj ∈ B ∪M it holds
that y2∗

j ≥ 1
α1

and x is covered in the second layer with color 1. Recall that we introduce variables

of the form y1
j only to sets in W thus, x is not covered in the first layer.

For x ∈ X s.t c(x) = 0, we consider the following cases:

• If there exists a set Sj ∈ L1 containing x we are done.

18

• If x is contained only in sets from M then zx = 0. Due to constraint (7) x is not covered in
the second layer. By constraint (6) and the definition of α0, there exists a set Sj containing
x such that y3∗

j ≥ 1
α0
≥ 1

α1(α0−1) (we assumed α0, α1 > 1). Therefore, x is covered in L3 for
the first time with the right color.

• Otherwise, there are sets both in W and in M containing x. Since x is contained in at most
α0 sets and W ∩M = ∅, each of the sums in constraints (5) and (6) contain at most α0 − 1

summands. x is not covered in the first layer, therefore zx ≤
∑

Sj∈W :x∈Sj y
1∗
j < (α0−1)

α1(α0−1) = 1
α1

,

meaning that x is not covered in the second layer. From constraint (6) we can conclude there
exist Sj ∈M , such that x ∈ Sj , and y3∗

j ≥ 1
α0−1 · (1−

1
α1

) ≥ 1
α1(α0−1) . Hence x is covered in

the third layer for the first time, with the right color.

Note that α1(α0 − 1) ≥ α1. Thus, the size of the solution obtained by the rounding procedure
is at most α1(α0 − 1) · val(LP) ≤ α1(α0 − 1) ·OPT where OPT is the size of a minimal solution.

2.6.2 Hardness of approximation

Under the Unique Games Conjecture we show that for any constant α0, α1 and for any ε > 0,
Min–3–OC(α0, α1) is hard to approximate better than α1(α0 − 1) − ε. Recall that the same ratio
up to lower order terms is achieved by the algorithm described in 2.1.

For every ε′ > 0 and constant k, Khot and Regev [19] show a reduction starting from an instance
of the Unique Games I, to a k-uniform hypergraph G(V,E) and value q s.t:

1. If I is a YES instance, G has a vertex cover of size at most q.

2. If I is a NO instance, every vertex cover of G contain at least (k − ε′)q vertices.

Given ε, α0, α1 starting from an instance I of the unique games, via the reduction stated in
[19], for a small enough ε′ s.t (α1 − ε′)(α0 − 1− ε′) ≥ α1(α0 − 1)− ε/2 construct two hypergraphs,
an α1 uniform hypergraph G(V1, E1) with parameters |V1| = n1, |E1| = m1 and a value q, and an
(α0 − 1) uniform hypergraph H(V2, E2) with parameters |V2| = n2, |E2| = m2 and a value h. Next
we construct an instance of the 3–OC(α0, α1) problem (X,S, c) using G and H. We duplicate H
into n2

1 copies denoted by

H1
1 , H

1
2 , ...,H

1
n1
, H2

1 , H
2
2 , ...,H

2
n1

... Hn1
1 , Hn1

2 , ...,Hn1
n1

The elements: The edges of G are elements of color 1 and the edges of the n2
1 graphs Hj

i are
elements of color 0.
The sets: For each vertex v in each Hj

i , we introduce a set Sv containing all edges touching v

in Hj
i . For each vertex ut in G, introduce a set Sut containing all edges touching ut in G and in

addition all edges of the n1 graphs Ht
1...H

t
n1

.
See Figure 2 for an illustration of the construction.

Claim 28. If I is a YES instance, (X,S, c) has a solution containing at most n1 + n1 · q · h sets.

Proof. If I is a YES instance, G has a vertex cover of size at most q and H has a vertex cover of
size at most h. Thus, in order to cover all the elements of color 1 i.e. the edges of G in the second
layer, we can use at most q sets of the form Sut . For each Sut used in the second layer, all edges
of the n1 graphs of the form Ht

i are covered in the first layer (q · n1 graphs). Since H has a vertex

19

Figure 2: Each edge in G is an element of color 1 (black in the figure) and the edges of the n2
1 copies of H are element of color

0 (white). For each vertex in each hypergraph Hi
j add a set containing all edges touching it, for example Sv1 in H1

1 . For each

vertex ut in G add a set containing all edges in G touching it and all edges of the n1 graphs Ht
i , for example Su1

.

cover of size at most h, we can cover the edges of these graphs using at most n1 · q ·h sets. In order
to cover the rest of the graphs Hj

i in the third layer, use the sets Sut corresponding to the vertices
of G that are not used in the second layer. The solution consists of n1 · q · h sets in the first layer,
q sets in the second layer and n1 − q sets in the third layer, all together n1 + n1 · q · h sets.

Claim 29. If I is a NO instance every solution to (X,S, c) uses at least
n1 + n1 · q · h · (α1 − ε′)(α0 − 1− ε′) sets.

Proof. Since I is a NO instance, covering the edges of G in the second layer requires at least
(α1 − ε′) · q sets of the form Sut . For each of these sets, we need to cover the edges of n1 graphs
of the form Ht

i in the first layer, each requires at least h(α0 − 1 − ε′) sets. The most efficient

way to cover the rest of the graphs Hj
i edges is in the third layer using the sets corresponding to

the vertices of G which are not used in the second layer. Hence, every solution contains at least
n1 + n1 · q · h · (α1 − ε′)(α0 − 1− ε′) sets.

The approximation ratio achieved is

1 + q · h(α1 − ε′)(α0 − 1− ε′)
1 + q · h

≥ 1 + q · h · (α1(α0 − 1)− ε/2)

1 + q · h
= α1(α0−1)−ε/2−α1(α0 − 1)− ε/2− 1

1 + q · h

For a big enough q, h s.t 2α1(α0−1)
ε ≤ q · h (q, h are polynomial in n1, n2 hence this inequality

holds), we get the required α1(α0 − 1)− ε ratio.

Acknowledgments

We wish thank Paz Carmi and Yael Stein for introducing to us problems which inspired this work.
This work was supported in part by the Israel Science Foundation (grant No. 621/12) and by the

20

I-CORE Program of the Planning and Budgeting Committee and the Israel Science Foundation
(grant No. 4/11).

References

[1] Sanjeev Arora, László Babai, Jacques Stern, Elizabeth Sweedyk: The Hardness of Approximate
Optima in Lattices, Codes, and Systems of Linear Equations. J. Comput. Syst. Sci. 54(2): pp.
317-331, 1997

[2] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vijayaragha-

van. Detecting high log-densities: an O(n1/4) approximation for densest k -subgraph. STOC
2010 : pp. 201–210.

[3] Vasek Chvátal, Perfectly orderable graphs, in Berge, Claude; Topics in Perfect Graphs, Annals
of Discrete Mathematics 21, Amsterdam: North-Holland, pp. 6-68 1984.

[4] Stephen A. Cook and Ravi Sethi, Storage requirements for deterministic polynomial time
recognizable languages, J. Comput. System Sci., 13, pp. 25-37, 1976.

[5] Irit Dinur, Venkatesan Guruswami, Subhash Khot, Oded Regev: A New Multilayered PCP
and the Hardness of Hypergraph Vertex Cover. SIAM J. Comput. 34(5): pp. 1129-1146 2005.

[6] Irit Dinur and David Steurer. Analytical approach to parallel repetition. STOC 2014: pp.
624-633

[7] Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex cover. Annals
of Mathematics 162 (1): pp. 439–485, 2005.

[8] Uriel Feige, A Threhold of ln n for approximating set cover, Journal of the ACM, 45(4): pp.
634–652 , 1998.

[9] Uriel Feige. Relations between average case complexity and approximation complexity. IEEE
Conference on Computational Complexity 2002: 5

[10] Uriel Feige, László Lovász, Prasad Tetali: Approximating Min Sum Set Cover. Algorithmica
40(4): pp. 219-234, 2004

[11] Rudolf Fleischer, Jiajin Yu: A Survey of the Game “Lights Out!”. Space-Efficient Data Struc-
tures, Streams, and Algorithms 2013: pp. 176-198

[12] Michael R. Garey, David S. Johnson:Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman 1979, ISBN 0-7167-1044-7

[13] Eran Halperin: Improved Approximation Algorithms for the Vertex Cover Problem in Graphs
and Hypergraphs. SIAM J. Comput. 31(5): pp. 1608–1623, 2002

[14] Sanjeev Arora, Carsten Lund: Hardness of Approximation. In Dorit S. Hochbaum: Approx-
imation algorithms for NP-hard problems, PWS Publishing Company, Boston, MA, USA,
1997.

[15] Russell Impagliazzo, Ramamohan Paturi, Francis Zane: Which Problems Have Strongly Ex-
ponential Complexity? J. Comput. Syst. Sci. 63(4): pp. 512–530, 2001

21

[16] David S. Johnson, Mario Szegedy: What are the Least Tractable Instances of max Tndepen-
dent Set? SODA 1999: pp. 927–928

[17] George Karakostas: A better approximation ratio for the vertex cover problem. ACM Trans.
Algorithms 5(4), 2009

[18] Subhash Khot, Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite
clique, SIAM Journal on Computing 36: pp. 1025–1071, 2006.

[19] Subhash Khot, Oded Regev: Vertex cover might be hard to approximate to within 2-epsilon.
J. Comput. Syst. Sci. 74(3): pp. 335–349, 2008

[20] Subhash Khot, On the power of unique 2-Prover 1-Round games, in: Proc. 34th ACM Symp.
on Theory of Computing, pp. 767–775, 2002.

[21] Guy Kortsarz: On the Hardness of Approximating Spanners. Algorithmica 30(3): pp. 432–450,
2001

[22] László Lovász: On the ratio of optimal integral and fractional covers. Discrete Mathematics,
13: pp. 383–390, 1975.

[23] László Lovász: Coverings and colorings of hypergraphs. Proc. 4th Southeastern Conf. on
Comb., Utilitas Math. pp 3-12, 1973

[24] David S. Johnson: Approximation Algorithms for Combinatorial Problems. Journal of Com-
puter and System Sciences, 9: pp. 256–278, 1974.

[25] Matthias Middendorf, Frank Pfeiffer: On the complexity of recognizing perfectly orderable
graphs. Discrete Mathematics 80(3): pp. 327-333, 1990

[26] Dana Moshkovitz, Ran Raz: Two Query PCP with Sub-Constant Error. FOCS 2008: pp.
314–323

Appendix A Exact algorithms

The exponential time hypothesis (ETH) introduced in [15] states that 3SAT has no 2o(n) time
algorithm. Vertex Cover has no algorithm in time O∗(2o(n+m)), where n is the number of vertices
and m is the number of edges [15, 16]. As shown in Observation 1.2.1, Vertex Cover is a special
case of all variations of OC and therefore this bounds holds for these problems as well. Regarding
exact algorithms for Min–OC the following holds.

Theorem 30. For an instance with n elements and m sets, the Min-OC problem can be solved
in O∗(2min(n,m)) time, where O∗ notation hides a polynomial factor in n and m. Assuming the
Exponential Time Hypothesis, Min–OC cannot be solved in time O∗(2o(min(n,m))).

Moreover, for all k the same result also applies for Min–k–OC.

In order to prove Theorem 30, we give two algorithms for Min–OC and Min–k–OC, one with
time complexity of O∗(2m) and the other with time complexity O∗(2n). The O∗ notation hides a
polynomial factor in n and m.

22

A.1 O∗(2m) algorithm

As stated in Section 1.2.2, given an instance of OC, constructing a solution if one exists can be
done in polynomial time. Denote the polynomial time procedure computing this task on elements
Y , sets T and cost function c by P (X, T , c). Given an input (X,S, c), with parameters |S| = m,
and |X| = n, consider the following algorithm for Min-OC.

• Starting from i = 1 to m, for each subset T ⊆ S of size |T | = i, invoke P (X, T , c).

• If P returns a solution → return it and halt.

• If P returns false → continue to the next subset.

• If P failed on all subsets of S, the input is not feasible → return false.

For every T ⊆ S which contains the sets of a solution tuple, the procedure P (X, T , c) return a
solution. Hence if the input is feasible, the algorithm constructs a solution of minimal size.

Regarding the running time, denote the running time of the procedure P by T (n,m). The
running time of the algorithm is bounded by:

m∑
i=1

(
m

i

)
T (n, i) ≤ T (n,m) · 2m = poly(n,m) · 2m = O∗(2m)

Extension for Min–k–OC For any k, by replacing P with the polynomial time procedure which
decides feasibility of k–OC introduced in Section 1.2.2, we obtain an algorithm for Min-k–OC with
the same time complexity.

A.2 O∗(2n) algorithm

We introduce an algorithm based on dynamic programming, first for Min–OC, and then for Min–
k–OC.

Let (X,S, c) be an input to OC with parameters |X| = n and |S| = m. For each subset Y ⊆ X,
define f(Y) to be the size of a minimal solution for (Y,S|Y , c), where S|Y = {S ∩ Y : S ∈ S}. We
build a table T computing f inductively in the following way:

• T (∅) = 0

• ∀Y ⊆ X, T (Y) = min{T (Y \ Sj) + 1 : Sj ∈ S and Sj ∩ Y is monochromatic}.

Claim 31. T (Y) = f(Y) for all Y ⊆ X

Proof. First note that if (X,S, c) is feasible, so is (Y,S|Y , c). We now prove the claim by induction
on |Y |. For |Y | = 0, Y = ∅ and therefore f(Y) = T (Y) = 0. For Y 6= ∅, let (S1..Sl) be a solution of
minimum size for (Y,S|Y , c) . Since it is a legal solution, S1 ∩Y is monochromatic and non–empty.
By the minimality of l, the tuple (S2..Sl) is a minimal size solution to Y \S1 with the same coloring.
Thus, f(Y) = l = f(Y \S1) + 1 = T (Y \S1) + 1 = T (Y), where the last equalities derives from the
induction step and the minimality of l.

In order to construct a solution, in each cell T (Y) save which set achieved the minimum value
when constructing T . Starting from T (X) by adding at each step the corresponding set to the end
of the tuple and updating the color function, we construct a legal solution of minimum size.

23

Complexity The algorithm uses a table of size 2n, where each cell contains a set index and a
value of a solution. Thus, the space complexity is O∗(2n).

Regarding the time complexity, building each cell takes O(m) time. Given the table T , con-
structing the solution tuple takes O(n) time. If we assume the computational model allows random
access to the table, the running time is O∗(2n).

Extension for Min–k–OC We can think of a solution to k–OC as k monochromatic layers of
sets. The algorithm for Min–k–OC is similar to the algorithm for Min–OC, with the following
modulation. Given an input (X,S, c), for every Y ⊆ X, a ∈ {0, 1}, j ≤ k, we define the function
f(Y, j, a) to be the size of a minimal solution for (Y,S|Y , c) using j layers, where the first layer is
of color a, or ∞ if it is not feasible. Building the table T :

• T (∅, j, a) = 0 for all j, a

• T (Y, 0, a) =∞ for every Y 6= ∅

• Else,

T (Y, k, a) = min {T (Y \ Sj , k, a) + 1 : Sj ∩ Y is monochromatic with color a)},
{T (Y \ Sj , k − 1, a) + 1 : Sj ∩ Y is monochromatic with color a)},
∞

The equivalence of T and f can be shown by a simple induction similarly to Claim 31. In
order to build a solution, we save at each step which set achieved the minimum. Starting
from T (X, k, 0), by adding at each step the corresponding set to the end of the tuple and
updating the color function, we obtain a solution of minimum size.

Since we can assume k ≤ n, the time and space complexity remains O∗(2n).

Appendix B Multiple colors

For simplicity in the main body of the paper we only consider instances where the coloring function
uses at most two colors. However, all results can be extended to multiple colors.

The OC-`-colors problem is a generalization of OC in which the input color function c uses `
colors instead of two (c : X → [`]). As discussed in Section 1.2.1, Set Cover and Vertex Cover are
special cases of Min-OC-`-colors and Min-k-OC-`-colors using only one color. Regarding feasibility,
Proposition 1 stated in 1.2.2 holds for the OC-`-colors problem as well, and therefore checking if
an instance is feasible, i.e. has a solution can be done in polynomial time.

B.1 Hardness of approximation Results.

Since OC is a special case of OC–`–colors for any ` ≥ 2, all hardness results shown for Min–OC,
and Min–3–OC in Theorems 8, 10 and 9 also hold for Min-OC–`–colors and Min-3–OC–`–colors.

B.2 3–OC(α0, α1)-`-colors

Instances of 3–OC(α0, α1)-`-colors which use more than three colors are not feasible since there
is no solution using only two alternations between colors. For ` ≤ 2, the problem is the same as

24

3–OC(α0, α1), and the algorithmic result stated in Theorem 10 holds . Regarding ` = 3, using
the same arguments used in Section 1.2.4 for k = 2, the 3–OC(α0, α1)-3-colors problem can be
translated into three independent instances of Set Cover.

B.3 Exact algorithms

The algorithms described in Appendix A for Min–OC and Min–k–OC also solve the Min–OC-`-
colors and Min–k–OC-`-colors problems, and therefore Theorem 30 holds as well.

B.4 Colored Cover-`-colors – omitting the order constraints

Similarly to the CC problem described in Section 1.2.3, denote by CC-`-colors the variation of
OC–`-colors where we omit the constrains regarding the order of the sets in a solution. Since CC
is a sub-problem of CC-`-colors, Proposition 3 holds and it is NP-hard to check if a solution exists.

The CC(2,2)-`-colors problem is CC-`-colors restricted to instances where each element is con-
tained in at most two sets. Similarly to CC(2,2), checking feasibility for OC(2,2)-`-colors can be
done in polynomial time.

Proposition 32. Deciding whether an instance to CC(2,2)-`-colors is feasible, i.e. has a solution,
can be done in polynomial time.

Proof. We reduce the problem of deciding whether an input to CC(2, 2)-`-colors is feasible to a
2–SAT problem. For each set S ∈ S, we introduce ` variables S1, ..., S` with the intended meaning
that Si = 1 if S is included in the solution with color i. To ensure that each set is included in the
solution with at most one color, for each i, j ∈ [`], add a constraint Si∨Sj . For each element x with
color i contained in sets S, T ∈ S, add a constraint Si ∨ T i. Since ` is bounded by the number of
elements, the size of the 2–SAT instance is polynomial in the size of the input to CC(2, 2)-`-color.
The 2–SAT problem is in P, and consequently deciding feasibility of CC(2,2)-`-colors can be done
in polynomial time.

B.4.1 Min–OC(2,2)-`-colors

The same result presented in Theorem 5 holds for Min–OC(2,2)-`-colors. The 2–approximation
algorithm for Min–OC(2,2)-`-colors is similar to the algorithm for Min–OC(2,2) presented in Section
2.1, with the following modifications to the LP.

For every v ∈ V , introduce ` variables v1, ...v` with the intended meaning that vi = 1 if v is
included in the solution with color i. The Linear Program for CC(2,2)-`-colors is as follows.

minimize
∑
v∈V

v0 + v1 + ..+ v`

subject to ∑̀
i=1

vi ≤ 1 , v ∈ V

ui + vi ≥ 1 , {u, v} ∈ E, c({u, v}) = i

vi ≥ 0 , v ∈ V, i ∈ [`]

25

B.4.2 Min–OC(2,2)-`-colors on bipartite graphs

Using similar arguments to Claim 14, the constraint matrix of the LP relaxation for CC(2,2)-`-
colors presented above is totally unimodular. Hence, as Lemma 13 states the solution to the LP
on bipartite graphs is integral and therefore the problem can be solved in polynomial time.

Appendix C Integrality gap for Min–3–OC(α0, α1)

First we give an example showing that the analysis of the rounding procedure is tight.

C.1 Tightness of rounding

Consider a complete α1–partite hypergraph H on n vertices divided into α1 sets U1...Uα1 of size
|Ui| = n

α1
, with edges U1 × U2... × Uα1 . In addition, we introduce n complete (α0 − 1)–partite

hypergraphs G1...Gn. Each Gi has n vertices divided into α0−1 sets V i
1 ...V

i
α0−1 of size |V i

1 | = n
α0−1

and edges V i
1 × V i

2 ...V
i
α0−1. Using these graphs we define an instance of 3–OC(α0, α1).

The elements: The edges of H are the elements of color 1. The edges of G1...Gn are the
elements of color 0.

The sets: For each vertex v in Gi we introduce a set Sv containing all edges touching v in Gi.
For each vertex ui in H, we add a set Sui containing all edges touching ui in H and all edges of
the graph Gi.

Note that each element of color 0 is included in α0 sets, and each element of color 1 is included
in α1 sets.

Optimal value: In order to cover all elements of color 1 i.e the edges of H in the second layer,
we need at least n

α1
sets of the form Sui . Thus, we need to cover at least n

α1
graphs Gi edges in the

first layer, each requires n
α0−1 sets of the form Sv. The rest of the graphs Gi can be covered in the

third layer with the sets Sui not used in the second layer. All together, the optimal value is

n+
n

α1
· n

α0 − 1
= Θ(

n2

α1(α0 − 1)
)

The value achieved by the algorithm: In order to satisfy the constraints regarding the
elements of color 1 in a minimal way, for each set associated with a vertex in H, give value y2 = 1

α1
.

In order to cover the elements of color 0, for each set associated with a vertex of Gi, give value
y1 = 1

α1(α0−1) , and for all sets Sui for ui ∈ V (H), give value y3 = 1− 1
α1

. In total the LP value is
n2

α1(α0−1) + n, which is equal to the optimal value.

Using the rounding procedure, a solution of size n2 + n is obtained and therefore a ratio of
approximately α1(α0 − 1).

C.2 Integrality Gap

We give two bounds for the integrality gap, one for Min–3–OC(α1, α0) with constant α1, α0, and
one for Min–3–OC without limiting the number of sets an element is contained in.

C.2.1 Integrality Gap for constant α0, α1

We show an example where the integrality gap is approximately α1(α0 − 1).
For parameters n, α1 and α0 consider the following instance.

26

• Elements of color 1: The edges of an α1-uniform complete hypergraph on b =
√
n vertices

denoted by G. (
(
b
α1

)
elements.)

• Elements of color 0: The edges of (α0−1)-uniform complete hypergraphs on n vertices denoted
by H1...Hb. (b ·

(
n

α0−1

)
elements.)

• The sets: For each vertex v in each Hj , introduce a set Sv containing all edges touching v
in Hj . For each vertex ui in G, introduce a set Tui containing all edges touching ui and in
addition all edges of the graph Hi.

LP value: In order to satisfy the constraints regarding the elements of color 1 i.e the edges of
G, for all sets Su1 ...Sub set value y2

j = 1
α1

. Regarding the constraints corresponding the elements of

color 0 i.e the edges of H1, ..Hb, define ze = 1
α1

, y1
j = 1

α1(α0−1) , y3
j = 1 − 1

α1
for all variables. This

defines a feasible solution to the LP with value b+ bn
α1(α0−1) ≈

n1 1
2

α1(α0−1) .

Optimal value: In order to cover the elements of color 1 in the second layer, we need at least
b− α1 − 1 sets of the form Sui . Hence, at least b− α1 − 1 Graphs Hi edges are covered in the first
layer, each requires at least n−α0−2 monochromatic sets of the form Sv. The rest of the elements
with color 0 can be covered in the third layer using the sets Sui that were not used in the second

layer. Hence, any solution consists of at least b + (b − 1 − α1) · (n − α0 − 2) = Θ(n1 1
2) sets (we

assume α1, α0 are constants).
Thus, we get a ratio of approximately α1(α0 − 1).

C.2.2 Integrality gap for Min–3–OC

Distinguishing between a random graph G(n, n−1/2) and a random graph G(n, n−1/2) with an

induced subgraph on
√
n vertices replaced with G(

√
n, n−(1

4
+ε)) is an open problem, and seems to

be a barrier for obtaining a better approximation algorithm for DkS [2]. We will use the reduction
from DkS to Min–3–OC described in Section 2.5 in order to build an example for which w.h.p. the
integrality gap is approximately N

1
10 , where N is the number of elements.

The parameters we use in the notation of the reduction are

q =
n

3
4

2
, k =

√
n , ρ =

n
1
4

lnn

Let G(V,E) be a random graph picked from G(n, n−1/2). We build an instance of 3–OC denoted
as (X,S, c) in the following way.

The elements: For t = q/k = n1/4

2 , for each v ∈ V introduce t elements v1...vt of color 0. In

addition, introduce q
2 lnn elements B = {u1...u q

2 ln(n)
} of color 1 (N = Θ(n1 1

4)).

The sets: Include X as a set. For every v ∈ V , i ∈ [t] add a singleton {vi}. For each (v, w) ∈ E in-
troduce a random set S(v,w) = {v1...vt, w1...wt, ui}, where ui is chosen uniformly at random from B.

Using union bound, with high probability G is a NO instance of ρ–DkS. Thus, every set of k
vertices touches at most q/ρ edges. If G is a NO instance as stated in Claim 26 Section 2.5, the
optimal value for (X,S, c) is at least

q · (1

2 lnn
+

√
ρ

lnn
) = Θ(

n
7
8

lnn
)

27

LP value

With high probability the number of edges in G is at least n1 1
2

2 . Using Chernoff and union bound,

w.h.p. every element u ∈ B is part of at least β · n
3
4 · lnn sets of the form Se for some constant β.

In order to satisfy the constrains regarding the elements of color 1 i.e the elements in B, for
each set Se give value y2

e = 1

β·n
3
4 ·lnn

. Regarding the elements of color 0 (the t copies of V) define

zvi = y1
{vi} = 1

β·n
3
4 ·lnn

for each vi, and for the variable associated with the set X give value y3
X = 1.

By Chernoff w.h.p the number of edges is at most 2n1 1
2 . All together w.h.p we get a solution for

the LP of size
1

β · n
3
4 · lnn

· (t · n+ 2n1 1
2) + 1 = Θ(

n3/4

lnn
)

Thus, the ratio between the optimal value and the value of the LP is at least Θ(n1/8) = Θ(N1/10)

Appendix D Covering one designated element

We show that the OC problem is equivalent to the problem of covering only one designated element
correctly without “miscoloring” the other elements.

The x0-OC problem In the x0–OC problem, the input is a finite set of n elements X, a color
function c : X → {0, 1}, a collection S of m subsets of X, and a designated element x0 ∈ X. The
goal is to output a tuple of sets T = (S1...Sk) and coloring g : {Si}ki=1 → {0, 1} such that:

• x0 ∈
⋃k
j=1 Sj

• T, g is a solution for (
⋃k
j=1 Sj ,S, c) as an instance of OC.

We show gap preserving reductions between x0–OC and OC.

D.0.1 From the OC problem to x0-OC.

Given input (X,S, c) to OC, construct an input to x0–OC denoted by (X ′,S ′, c′, x0) as follows. We
introduce two new elements x0, x1, and two new sets T0 = {x0, x1} ∪ c−1(1) , T1 = {x1} ∪ c−1(0).
Define the elements to be X ′ = X ∪ {x0, x1}, the sets S ′ = S ∪ {T0, T1} , and the color function
c′(x0) = 0 , c′(x1) = 1 , c′(x) = c(x) ∀x ∈ X.

The only set containing x0 is T0, and the only sets containing x1 are T0 and T1. We can assume
that in every solution x0 is contained in the last set of the tuple, and therefore that every solution
to (X ′,S ′, c′, x0) contains T0 with color 0 as the last set, and T1 with color 1. Given a solution
(S1, ..Si, T1, Si+1, ..Sk, T0) with coloring g for (X ′,S ′, c′, x0), by the definition of T1, the sets S1, ..Si
cover all the elements of color 0 in X correctly. Similarly, all elements of color 1 in X are covered
correctly by the sets S1, ...Sk. Hence, the tuple (S1, , ..Sk) with the same coloring g is a solution
for (X,S, c) as an instance of OC.

On the other hand, if (S1...Sk) and g is a solution for (X,S, c), the tuple (S1..Sk, T1, T0) with
coloring g′(T0) = 0, g′(T1) = 1, g′(Sj) = g(Sj) is a solution for (X ′,S ′, c′).

We can conclude that (X,S, c) has a solution of size k if and only if (X ′,S ′, c′, x0) has a solution
of size k + 2.

28

D.0.2 From the x0-OC problem to OC.

Starting from an input (X,S, c, x0) to the x0–OC problem, construct an instance of the OC problem
denoted by (X ′,S ′, c′) as follows. Without loss of generality we can assume that c(x0) = 0. We
introduce two new elements y1, y0 and two new sets T0 = {y1, y0} ∪X \ {x0} and T1 = {y1, x0} ∪
c−1(1). Define the elements to be X ′ = X ∪ {y1, y0}, the sets S ′ = S ∪ {T0, T1} and the color
function c′(y1) = 1 , c′(y0) = 0 , c′(x) = c(x) ∀x ∈ X.

Observe that any solution to (X,S, c, x0) can be extended to a solution for (X ′,S ′, c′) by con-
catenating T1 and then T0 at the end of the tuple with colors g(T0) = 0 and g(T1) = 1.

On the other hand, since the only set containing y0 is T0 and the only sets containing y1 are T0

and T1, every solution to (X ′,S ′, c) contains the set T0 with color 0 and later in the tuple T1 with
color 1. Given a solution (S1, ..Si, T1, Si+1, ..Sk, T0, Sk+1, ..S`) to (X ′,S ′, c′), the set T1 colors the
element x0 with color 1. Thus, x0 ∈

⋃i
j=1 Sj and the tuple (S1, ..., Si) is a solution to (X,S, c, x0).

We can conclude that (X,S, c, x0) has a solution of size at most k if and only if (X ′,S ′, c′) has a
solution of size at most k + 2.

29

