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Surface reconstruction is one of the central problems in computer graphics.

Existing research on this problem has primarily focused on improving the

geometric aspects of the reconstruction (e.g., smoothness, features, element

quality, etc.), and little attention has been paid to ensure it also has desired

topological properties (e.g., connectedness and genus). In this paper, we

propose a novel and general optimization method for surface reconstruction

under topological constraints. The input to our method is a prescribed genus

for the reconstructed surface, a partition of the ambient volume into cells,

and a set of possible surface candidates and their associated energy within

each cell. Our method computes one candidate per cell so that their union is a

connected surface with the prescribed genus that minimizes the total energy.

We formulate the task as an integer program, and propose a novel solution

that combines convex relaxations within a branch and bound framework.

As our method is oblivious of the type of input cells, surface candidates, and

energy, it can be applied to a variety of reconstruction scenarios, and we

explore two of them in the paper: reconstruction from cross-section slices

and iso-surfacing an intensity volume. In the rst scenario, our method

outperforms an existing topology-aware method particularly for complex

inputs and higher genus constraints. In the second scenario, we demonstrate

the benet of topology control over classical topology-oblivious methods

such as Marching Cubes.
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1 INTRODUCTION
Surface reconstruction from incomplete data (e.g., images, volumes,

points, curves, etc.) is one of the central topics in computer graph-

ics. To be useful for downstream tasks, the surfaces need to satisfy
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Fig. 1. Topologically correct, connected, genus zero reconstruction of a corn
root (right) from cross sections (le).

application-dependent requirements. One class of such requirements

concerns the surfaces’ topology, including its connectedness and

genus. Topological requirement often arises in biology andmedicine,

as many natural objects (e.g., anatomical structures) have a known

topology; for example the corn roots whose reconstruction is shown

in Figure 1 are known to be connected, genus zero surfaces. Geomet-

ric processing tasks, such as parameterization and shape matching,

also prefer shapes with simple and consistent topology.

Despite the extensive research on surface reconstruction, few

works have addressed the topological correctness of their output.

The scarcity is in part due to the fact that topology is an inherent

property that is invariant of geometric deformations. Hence it is

dicult to change topology (without creating adverse impacts on

geometry), and even more dicult to enforce a prescribed topology.

To satisfy topological requirements, existing reconstructionmethods

either rely on user interaction, which can be tedious and not suited

for batch processing, or resort to post-processing topology repair,

which generally has no knowledge of the input data from which the

surface is created and hence can make incorrect decisions.

In this work, we propose a solution for automatic topology-aware

reconstruction that outputs topologically correct surfaces without

the need for post-processing repair. Our method is inspired by the

recent works [Huang et al. 2017; Zou et al. 2015] which are among

the rst topology-aware reconstruction methods. The methods are

designed for the problem of surface reconstruction from 2D cross-

section curves, and take a divide-and-conquer approach. Given a

partitioning of space into “cells” by the cross-section planes, they

rst enumerate multiple candidate surfaces within each cell that

connect the curves on the cell boundary. They then solve a challeng-

ing combinatorial optimization problem to select one candidate per

cell so that their union surface has the prescribed topology while

minimizing a geometric energy. These methods are eective in meet-

ing the topological requirements and are rather ecient for simple

data sets consisting of a few planes. However, a simple optimization

method (dynamic programming) is used in these methods. Although
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optimal, dynamic programming scales poorly with the complexity

of the inputs, such as the number of planes, complexity of curves

on each plane, and the genus constraint.

Our work aims at developing an ecient, eective and general-

purpose combinatorial optimizationmethod, which can enable topol-

ogy aware reconstruction not only from cross-sections but also from

any other data where the divide-and-conquer approach is applicable.

We formulate the candidate-selection task as an integer program-

ming problem, and show that the topological constraints on the

consistency, genus, and connectivity of the surface can be translated

into convex constraints in an integer valued vector x . By convexi-

fying the integer constraints we obtain convex relaxations for the

topology-aware reconstruction problem which leads to tight lower

bounds for the optimal value of the problem. These tight lower

bounds are exploited to solve the combinatorial optimization prob-

lem eciently in a small number of branch and bound iterations.

We explore two reconstruction scenario that utilize our new op-

timization method. For the problem of reconstructing from cross-

sectional curves, our results show that our method is signicantly

more scalable than dynamic programming, often nding optimal

results several orders of magnitude faster. The scalability allows

our algorithm to process much more complex inputs and higher

genus constraints that exceed the capability of methods like [Huang

et al. 2017; Zou et al. 2015]. In a second problem, we develop a

topology-aware iso-surfacing method for grid data. Unlike conven-

tional methods (e.g., Marching Cubes) that determines the patch

structure within each grid cell solely based on local information (e.g.,

signs at the grid points), our method is guided by global topologi-

cal constraints and hence is more likely to produce a topologically

correct iso-surface.

Of independent interest is the formulation of the connectivity

constraint on the surface as a convex constraint , which we re-

duce to the problem of constraining an appropriate graph to be

connected. We explore two convex formulations of graph connec-

tivity: edge-connectivity and algebraic connectivity. We show edge-

connectivity is strictly tighter (i.e., produce better lower bounds)
than algebraic connectivity and propose a cutting-plane-like algo-

rithm to eciently incorporate edge-connectivity constraints by

iteratively solving a chain of linear programs. We use algebraic

connectivity as a safe-guard for rare cases where convergence of

the cutting plane algorithm is slow.

2 PREVIOUS WORK
Topology control in surface reconstruction. Topological control can

be achieved by either user interaction [Sharf et al. 2007; Yin et al.

2014] or template tting [Bazin and Pham 2007; Zeng et al. 2008].

However, these methods are limited to the availability of human

resource or template structures. An alternative strategy is removing

topological errors from on an existing surface [Ju et al. 2007; Wood

et al. 2004] (see more in-depth discussion in the survey [Attene et al.

2013]). However, as these post-processing methods generally have

no knowledge of the data from which the surface is created, they

could make repair decisions that result in undesirable geometry that

deviate from the inputs (e.g., surface no longer interpolating the

input point clouds or cross-section curves).

Only a few works have attempted to incorporate topology con-

straints within an automatic reconstruction algorithm. Sharf et al.

[Sharf et al. 2006] proposes an advancing-front method, designed

for point cloud inputs, which allows control over the genus of the

result. A divide-and-conquer approach is used in several works for

reconstructing 2D curves [Zhou et al. 2014], and, more recently,

3D surfaces [Huang et al. 2017; Zou et al. 2015]. These algorithms

rst enumerate possible candidates within each cell of a spatial

subdivision and measure the suitability of each candidate as an

energy. Given a target topological goal (e.g., number of connected

components and/or genus), they solve a combinatorial optimization

problem that selects one candidate per cell to achieve the goal while

minimizing the total energy. While these methods dier in the di-

mensionality of the problem, the enumeration of candidates, and the

denition of energy, they all use dynamic programming (DP) in the

optimization step. Starting from an initial cell, DP sequentially adds

adjacent cells, keeping track of all topological possibilities as the

algorithm progresses. In each stage topological possibilities are dis-

carded if they have a larger number of handles than the prescribed

genus. The DP algorithm will eventually nd the globally optimal

solution, but has worse case exponential time and space complexity.

Reconstruction from cross-sections. Surface reconstruction from

cross-section slices has been extensively studied for the past few

decades (see more in-depth reviews in [Bermano et al. 2011; Zou

et al. 2015]). While earlier methods are specialized for closed curves

on parallel cross-sections, more recent methods can handle non-

parallel, intersecting planes [Boissonnat and Memari 2007] and

even multi-labelled domains on each plane [Barequet and Vaxman

2009; Bermano et al. 2011; Liu et al. 2008]. The majority of these

methods rely on the spatial subdivision by the cross-section planes,

and focuses on surfacing within each cell to interpolate the curves

on the cell boundary. However, unlike [Huang et al. 2017; Zou et al.

2015], most existing methods create a single surface within each cell

that is determined locally, with no guarantee on the topology of their

union. An exception to this rule is the algorithm presented in [Amini

et al. 2013] which is guaranteed to achieve a correct topological

reconstruction for a suciently dense choice of intersection planes.

In contrast our algorithm is applicable for scenarios in which only

a sparse input is given.

Iso-surfacing. Polygonalizing iso-surfaces is another well-studied

problem in computer graphics and visualization. We refer readers to

a recent survey [De Araújo et al. 2015] on this topic. Arguably, the

most successful iso-surfacing method is the Marching Cubes algo-

rithm [Lorensen and Cline 1987], which creates triangles within each

cubic cell based on the signs at the cell corners. Signicant eort has

been made to improve Marching Cubes, particularly for capturing

the topology of the analytical iso-surface dened by some inter-

polant (e.g., trilinear) of the values at the cell corners [Chernyaev

1995; Cignoni et al. 2000; Custodio et al. 2013; Velasco et al. 2008].

However, all existing grid-based iso-surfacing algorithms determine

a unique choice of surface within each grid cell using only local

information (e.g., signs and values at cell corners). On the other

hand, our algorithm is guided by a global topological constraint,

and explores multiple candidates per cell to seek a surface that meets

the constraint.
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Graph connectivity. Our algorithm reduces the surface connec-

tivity problem to a graph connectivity problem, and then enforces

graph connectivity using convex constraints. Several papers in dif-

ferent elds have used semi-denite programming (SDP) to enforce

positive algebraic connectivity on graphs. [Qian et al. 2014] use SDPs

to optimize a given energy over all connected subgraphs of a given

graph. [Das and Mesbahi 2005] use SDP relaxations to optimize

over the set of k-connected graphs. In [Ghosh and Boyd 2006] SDP

relaxations are used to nd k edges to add to the graph such that the

algebraic connectivity of the graph is maximized. The latter paper

seems to be the only one to propose a lower bound for the algebraic

connectivity of a graph, a lower bound which we use as well. This

bound is based on the seminal paper by Fiedler on bounding the

algebraic connectivity [Fiedler 1973], and establishing connections

between algebraic connectivity, vertex connectivity and edge con-

nectivity. In our case we show theoretical and empirical evidence to

the fact that enforcing edge connectivity can signicantly enhance

the accuracy of graph connectivity relaxations.

3 METHOD

3.1 Problem definition.
We consider a cell complex C = {Ci }

n
i=1 decomposition of a given

domain Ω ⊂ R3. That is, a collection of (not necessarily bounded)

convex polyhedral cells Ci , such that Ω = ∪iCi , and any two cells

either do not intersect, or their intersection is a sub-polyhedron

(vertex, edge, or a polyhedral face). We assume that we are given

a sampling of the surface on the cell boundaries, represented by

segments Γ = {γk }
m
k=1, e.g., the red curves and points in the inset.

Note these are not necessarily entire intersections of surfaces with

cells’ boundaries. Each segment is connected and resides in one or

more polyhedral faces of the cell complex.

In each cell Ci we are looking

for a surface patch Si out of a col-

lection of ci (topologically dierent)

possible valid triangulated surface

patches

{
Si1, Si2, . . . , Sici

}
interpo-

lating the segments γk which reside

in the boundary of this cell. By valid

surface patches we mean that each Si j is a surface, whose intersec-
tion with the boundary of Ci is a nite collection of closed curves.

By interpolating the segments we mean that every segment γk of

a cell is contained in every candidate surface patch. Furthermore,

we require that the intersection of every surface patch Sip with

the sub-cells of its cell (i.e., the cell itself, or faces, edges or points
in the cell) contains at-least a part of a segment γk in every con-

nected component of the intersection. For example, the inset shows

in green a potential surface patch candidate Sip that interpolates

the red segments in a cell.

The task is to choose a single surface patch per cell such that a

fair connected manifold surface S of some prescribed topology is

achieved.

Problem 1. Find a manifold compact surface triangulation S =
(V S ,ES , FS ), where Γ ⊂ S , by choosing a surface patch per-cell so
that S is connected, matches a prescribed topology д0 and minimizes
an appropriate convex energy.

3.2 Approach
The rst step of our approach for solving Problem 1 is formalizing

it as an optimization problem.

We begin by dening the unknowns. Per cell Ci , i = 1, . . . ,n
we dene an indicator unknown vector xi = [xi1,xi2, . . . ,xici ],
responsible for choosing the surface patch Si ∈

{
Si1, . . . Sici

}
at cell

Ci out of ci possible predened (topologically dierent) options,

ci∑
j=1

xi j = 1 (1a)

xi j ∈ {0, 1} (1b)

The reconstructed surface is dened to be

S = S(x) =
n⋃
i=1

ci∑
j=1

xi jSi j .

Problem 1 can be formulated as the optimization problem:

min

x
E(x) (2a)

s.t. x satises (1) (2b)

S(x) is well dened across cells (2c)

S(x) is of genus д0 (2d)

S(x) is connected (2e)

We show that the topological constraints (2c)-(2e) can be formu-

lated as convex constraints in the variable x . Once this is achieved,
Problem 1 is an integer program that can be convexied by simply

relaxing the 0/1 constraint to the constraint

0 ≤ xi j ≤ 1. (3)

Our experiments show that this convex relaxation is very tight, and

in most cases can be used to globally optimize Problem 1 in a small

number of branch and bound iterations.

3.3 Convex formulation of topological constraints
In this section we consider Problem (2) (with integer variables x)
and formulate (2c), (2d), (2e) as convex constraints in x .

Consistency. The constraint (2c) amounts to the requirement that

if Ci and Ck are two adjacent cells such that B = B(i,k) = Ci ∩
Ck is non-empty, then the surface patches selected for the two

cells will agree on their common boundary. The surface patches

dene a nite number of possibilities for the intersection of the

reconstructed surface S with B, which we denote by b` , ` = 1, . . . ,L.
For x satisfying (1), the reconstructed surface S(x)will be consistent
if and only if x satises the linear constraints∑

j : Si j∩B=b`

xi j =
∑

j : Sk j∩B=b`

xk j , for all i,k, `. (4)

Genus constraint. The constraint (2d) is equivalent to requiring
the Euler characteristic of S(x) to be χ0 = 2 − 2д0. If a surface patch
Si j is selected, and v is a vertex in this surface patch which is on

the boundary of the cell Ci , then by the consistency constraints v
will also be a member of all surface patches selected for the other
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cells which contain v . Denoting by nv (v) the number of cells which

contain v , we have that the number of vertices in S(x) is given by

|V | =
∑
i j

xi j
©«
∑
v ∈Si j

n−1v (v)
ª®¬ .

Using a similar argument to count the edges and faces of S(x), we
obtain that (2d) can be phrased using the linear constraint

χ0 =
∑
i j

xi j
©«
∑
v ∈Si j

n−1v (v) −
∑
e ∈Si j

n−1e (e) +
∑
f ∈Si j

n−1f (f )
ª®¬ , (5)

where the r.h.s. is the Euler formula for the reconstructed surface

S(x). Note that in practice since we require surface patches to be

valid, we always have nf (f ) = 1.

Connectivity. For a xed integer valued vector x , we dene a

graph G(x) = (V, E), where E = E(x) so that S(x) is a connected
surface if and only ifG(x) is a connected graph. Each vertexuk ∈ V

of the graph corresponds to an input segment from Γ = {γk }
m
k=1

(uk can be imagined as a point in γk ), therefore |V| =m. The edges

E of the graph are dened by considering each surface patch Si j
for which xi j = 1, and connecting pairs of vertices u,u0 ∈ V if

they belong to the same connected component of Si j . We prove the

following theorem in the appendix:

Theorem 3.1. S(x) is connected if and only if G(x) is connected.

The connectivity of G(x) can be enforced algebraically in two

related, but dierent ways: using the edge connectivity and the al-
gebraic connectivity. Both are functions of the Laplacian L(x) of
G(x).

To dene the Laplacian of G(x) as a function of x , consider for
each Si j the sub-graph Gi j = (V, Ei j ) obtained by selecting only

the edges induced by this surface patch. The Laplacian Li j ∈ Rm×m

of Gi j is a constant (i.e., independent of x ) matrix dened by

L
i j
kl =


deg(uk ) uk = ul ∈ Si j

−1 uk , ul are connected by Si j

0 otherwise

.

where deg(uk ) is the number of vertices attached to uk inGi j . Note

that by construction Li j1 = 0. The Laplacian matrix of G(x) is then

L(x) =
∑
i j

xi jL
i j .

Edge connectivity. Note that G(x) is disconnected if and only if

there is some J ⊂ V such that there are no edges connecting J and
V \ J . Accordingly G(x) is connected if and only if for all J ⊂ V

e(x , J ) ≡
∑

q∈J ,r<J
−Lqr (x) ≥ 1, (6)

Or equivalently if

e(x) ≥ 1, (7)

where e(x) is the edge connectivity of G(x) which is dened as

e(x) = min

J ⊂V
e(x , J ). (8)

We note (6) is convex (in the variables xi j ) since it is dened by

2
m−1 − 1 linear inequality constraints.

Algebraic connectivity. A tractable convex connectivity constraint

can be achieved by using a classical result in spectral graph theory

[Chung 1997] which states that the graph G(x) is connected i

λ2(x) > 0, where λ2(x) is the second smallest eigenvalue of the

Laplacian L(x). This motivates the denition of λ2(x) as the algebraic
connectivity of the graph G(x). The relation of the algebraic and

edge connectivity are given by the next inequality [Fiedler 1973]

λ2(x) ≥ e(x) ¯λ, where ¯λ = 2

(
1 − cos

π

m

)
(9)

and since for connected graphs G(x) we have that e(x) ≥ 1 we see

that G(x) is connected if and only if λ2 ≥ ¯λ. As shown in [Ghosh

and Boyd 2006], this constraint is convex and can be enforced by a

positive-semidenite constraint: Since the minimal eigenvector of

the Laplacian is always a constant vector, λ2(x) ≥ ¯λ, i

L(x) � L̄ = ¯λ

(
I −

1

m
11T

)
. (10)

3.4 Convex relaxations
We saw that Problem 1 can be formulated as the integer program-

ming problem of optimizing the energy E over all 0/1 solutions

satisfying a collection of convex constraints. We will relax this prob-

lem by replacing the 0/1 constraint with its convex hull (3). For 0/1

variables x both connectivity constraints, i.e., edge (7) and algebraic

(10) are equivalent. However when relaxing the 0/1 constraints to (3),

the edge-connectivity is in-fact tighter as can be understood from

(9) which holds also for weighted graphs. Our convex relaxation is

therefore

min

x
E(x) (11a)

s.t. x satises (1a), (3), (4), (5) (11b)

G(x) is edge connected (7) (11c)

edge
algebraic

We denote this convex optimization

problem Ptop. To further quantify the gap
between edge connectivity and algebraic

connectivity, consider the matrix L̄ from

(10): a direct computation shows that

its edge connectivity is e(L̄) = O(m−2)

while its algebraic connectivity is λ2(L̄) = ¯λ; i.e., the corresponding
weighted graph is algebraic connected but pretty far from being

edge connected. Another consequence is that algebraically discon-

nected graphs can be made algebraically connected by changing the

edge weights byO(m−2) (the magnitude of o-diagonal elements in

L̄). Our comparison of algebraic and edge connectivity is illustrated

in the inset, and is summarized in the following Theorem (proved in

the appendix): Let L = L(m) be the set of laplacians of weighted

graphs, that is,

L = {L | L = LT ,L1 = 0, and Lqr ≤ 0 for all q , r }.

Note thatL is a convex cone, and in all of the relaxationswe consider

L(x) ∈ L . In the following we set

‖L‖1 =
∑
i j

|Li j |.
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Theorem 3.2. There is a constant c > 0 such that
(1) For all L ∈ L, if e(L) ≥ 1 then λ2(L) ≥ ¯λ.
(2) There exists an L ∈ L such that λ2(L) ≥ ¯λ but e(L) ≤ cm−2.
(3) For all L0 ∈ L, there exists an L ∈ L such that λ2(L) ≥ ¯λ and

‖L − L0‖1 ≤ 2cm−1.

Relaxation chain. Our goal is to solve Ptop to achieve a good

lower bound (and hopefully an exact solution) for (2). Since the

edge connectivity constraint (7) cannot be formulated eciently

we use a variant of the cutting plane method to solve Ptop. The idea
is to completely remove the edge connectivity constraint (7) from

Ptop, solve the resulting linear program and iteratively improve the

solution, as follows. Given a current solution x0 that does not satisfy
the edge connectivity constraint, namely

e(x0) < 1

a cutting plane is found which separates x0 and all edge connected x
satisfying e(x) ≥ 1 . Then a linear inequality forcing x to lay on the

side containing the edge-connectedx is added to the relaxation and it
is solved again to produce x1. If e(x1) ≥ 1 the algorithms terminates

(it found the optimal solution to Ptop), otherwise it continues to add
cutting plane inequalities.

edge

Finding a cutting plane for x0 amounts

to computing the global min-cut J0 of the

weighted graph G(x0), i.e., e(x0, J0) = e(x0).
This can be done using the Stoer-Wagner

algorithm [Stoer and Wagner 1997] which

computes the global min cut in O(|V||E | +

|V|2 log |V|) time . The linear inequality e(x , J0) ≥ 1 would then

exclude x0 from the feasible edge-connected set as illustrated in the

inset. The eectiveness of even a single cutting plane constraints

in comparison with algebraic connectivity constraints is illustrated

by comparing the third claim in Theorem 3.2 with the following

lemma which is proven in the appendix:

Lemma 3.3. Assume x0 has e(x0) < 1 and J is the minimal cut of
L(x0). Then for all x with e(x , J ) ≥ 1,

‖L(x) − L(x0)‖1 ≥ 2(1 − e(x0))

The cutting plane process continues until a solution xk with

e(xk ) > 1 − 10
−6

is obtained, or until a maximal number of iter-

ations (50 in our implementation) is reached. We denote by J =

{J0, J1, . . . , Jk } the collection of cutting plane cuts, J ⊂ V , found

so far, and by Ptop(J) the linear program solved with these cutting

plane constraints. If the algorithm is terminated before convergence

we add algebraic connectivity constraint (10) to Ptop(J) and solve

again to obtain our nal lower bound. Before we solve we rst check

the value of λ2(x
k ) and if it is larger that ¯λ there is no need to solve,

we already have the optimal solution at hand. We note that almost

always the number of linear programs solved until the stopping cri-

terion is reached is small (i.e., up to 10 iterations), and the algebraic

connectivity is indeed larger than
¯λ. This means that we are able

to solve Ptop using only a small number of linear programs, and

without solving any expensive semi-denite programs.

The relaxation chain algorithm is summarized in Algorithm 1.

Note that we allow to input the algorithm a set of predened cuts;

this is used in the branch and bound algorithm explained next.

Algorithm 1: Relaxation chain

Input: The linear energy to be minimized;

initial set of cuts J (default is J = ∅).

set k = 0 stop=false;

while (not stop) and (k < 50) do
k = k + 1;

xk = argmin Ptop(J);

compute Jk the global min-cut of G(xk );

J = J ∪ {Jk };

if e(xk , Jk ) ≥ 1 − 10
−6 then

stop=true;

if λ2(xk ) < ¯λ then
xk = argmin Ptop (J) with (10);

Output: x = xk and cutting planes J .

Energy. Since (2) is a combinatorial problem there could be a

large number of feasible solutions. We would like to pick one that

is in some sense "the best". For example, the minimal/maximal area

solutions S(x). This will be formulated as a linear energy in x :

E(x) =
∑
i j

xi j area(Si j ).

In our experiments we used this energy as well as two other energies

which will be described in the results section.

Branch and bound. In several cases the relaxation chain described

above returns an integer solution, which is thus the optimal solu-

tion of Problem 1. However to guarantee an optimal solution for

Problem 1 in all cases we use a branch and bound approach, see

Algorithm 2.

We begin with solving the relaxation chain as described in Al-

gorithm 1 with J = ∅, to obtain a solution x(0) which minimizes

Ptop(J0) with energy LB0, which is a lower bound to the optimal

solution of Problem 1. We round this solution to an integer solution

x̄(0) and compute its energy to obtain an upper boundUB to Prob-

lem 1 (if x̄(0) doesn’t fulll the constraints then we setUB = inf ).

If LB0 = UB, as indeed happens quite often, then x̄(0) is the optimal

solution and we can terminate the algorithm. Otherwise, we select

a cellCi for which the probability vector xi (0) has maximal entropy,

and branch on cell i . That is, solve the relaxation chain again ci times,

with the additional constraint that xi j = 1, 1 ≤ j ≤ ci , and starting

from the set of cuts J0, to obtain new solutions x(1), . . . ,x(ci ) and
lower bounds LB1, . . . ,LBci . We also compute an upper bound for

each solution by rounding and updatingUB if the new upper bound

is lower than all previous upper bounds. Now for each 1 ≤ j ≤ ci
we check whether LBj ≥ UB. If so then we can stop investigating

all solutions with xi j = 1. Otherwise, we choose another cellCi′ and
solve ci′ problems to obtain solutions x(j, j ′), 1 ≤ j ′ ≤ ci′ obtained
by solving the relaxation chain while setting xi j ,xi′j′ = 1.

The branch and bound algorithm is guaranteed to achieve the

global optimum of Problem 1. In general, this can occur only after

all possible

∏n
i=1 ci possibilities were explored. The eciency of the
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Algorithm 2: Branch and Bound

Input: Linear energy to be minimized.

UB = +∞, node = zeros(1,n), xopt = NaN

J0 = ∅ , list = {node,J0};

while list isn’t empty do
(node , J0)=pop(list);
Solve relaxation chain initialized by J0 and xing non-zero

node coordinates to attain a partition list J and

x = argmin Ptop (J);

LB = E(x);

x̄ = round(x);

if (x̄ is feasible) and (E(x̄) < UB) then
UB = E(x);

xopt = x̄ ;

if LB ≥ UB then
do nothing (no need to explore this node).

else
Find cell Ci for which x(i) has maximal entropy;

for j = 1 : ci do
node(i) = j;
push(list,{node ,J })

Output: xopt , the global minimizer of Problem 1.

algorithm depends on the successfulness of the convex relaxation

in producing high quality lower bounds which can eliminate large

branches of the tree of possibilities without exploring them. As our

experiments will show, our algorithm is often (but not always) able

to obtain global solutions in reasonable time.

Graph reduction. In every stage of the branch and bound algo-

rithm, several entries of x are xed, which corresponds to a xed

selection of surface patches for some of the cells. As a result, certain

vertices of the graph G(x) may now be already connected by the

xed surface patches. We can therefore merge each known con-

nected component of the graph to a single vertex, to obtain a new,

smaller graph which is connected if and only if the previous graph,

with the known xed edges, is connected.

4 RESULTS

4.1 Reconstruction from cross sections
We applied our BnB (branch and bound) algorithm to the prob-

lem of surface reconstruction from cross sections, and compared

it with the DP algorithm of [Zou et al. 2015], and with its ex-

tended version for multi-labeled materials from [Huang et al. 2017].

In all problems we used the cell partition,

surface patches, and linear energy provided

by the algorithm of [Huang et al. 2017; Zou

et al. 2015], and we only compared the opti-

mization method. For two-labelled domains,

the surface patches are constructed as level sets of a scalar function

at a set of scalar levels chosen to yield dierent surface topologies.

For multi-labelled domains, the level sets are replaced by so-called
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Fig. 2. Running time comparison of BnB and DP algorithms, as a function of
the number of planar cross sections, the number of materials, and the genus
of the surface. Both algorithms were terminated aer ten minutes if they did
not converge. Square labels mean the algorithm returned a feasible, but not
necessarily globally optimal solution. Triangle label means the algorithm
did not find a feasible solution in the alloed ten minutes. In contrast with
DP, the timing of BnB is not significantly aected by a large number of
intersecting planes, or high genus problems. Large multi-label problems are
diicult for both algorithms, but BnB is able to achieve a feasible solution
for these problems while DP runs out of memory.

interface sets of a vector function, which are surface networks pa-

rameterized by vectors. The inset shows a candidate surface patch

for the chicken heart reconstruction problemwe discuss below. Note

that the surface patch has nontrivial topology- it is non-contractible

and has two connected components. Ourmethod is readily extended

to the multi-label surface reconstruction scenario by imposing the

genus and connectivity constraints on each constrained sub-surface

separately.

Synthetic data. We generated synthetic examples to evaluate the

dependence of the algorithms’ complexity on genus, the number of

cross sections, and the number of labels. Our results are shown in

Figure 2. Our algorithm converged in a few seconds for the problems

with changing genus and number of planes, often several orders of

magnitude faster than DP which deteriorates in terms of computa-

tion time and memory usage as genus or plane number is increased.

For the changing number of planes and genus we set 10 minutes as

a time limit, and DP reached this limit in the changing number of

planes experiment without achieving an optimal solution.

For problems with changing numbers of materials, both algo-

rithms encountered diculties as the number of materials was in-

creased. BnBwas signicantly faster for problems with 2-4 materials.

For ve materials both algorithm reached the ten minute limit, but

BnB was able to return a feasible solution while DP did not nd a

feasible solution in the alloted time. For six materials (not shown in

the graph) both algorithm could not even nd a feasible solution

in ten minutes, but BnB could nd a feasible solution within 18.5

minutes while DP ran out of memory after running for two hours.

Figure 4 shows two examples from the multi-material problem set:

(a) and (b) shows the input for the 4 and 6 material examples; and

(c)-(d) show their reconstruction by BnB. In this case the 4 material

problem was solved in less than two minutes, while DP was stopped
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Sillicon reconstruction

Planes Genus Parallel? BnB (s) DP (s) energy gap

25 93 yes 43.16 446.51 0

33 124 yes 66.95 1729.72 0

41 155 yes 2.72 588.09 0

49 189 yes 602.65 636.45 5.00E-04

57 217 yes 603.21 571.34 2.20E-04

65 248 yes 422.9 615.64 0

9 31 no 0.25 267.38 0

9 free no 1.31 294.54 0

Table 1. Timing comparison of the BnB and DP algorithms for reconstruc-
tion of the crystal structure of silicon.

after ten minutes without achieving an optimal solution. The energy

gap (normalized dierence between energy) between their solution

and the optimal result achieved by our solution was 0.72. Figure 4

(d) shows the feasible, sub-optimal solution found by BnB for the

6 material problem. As mentioned above DP was not able to nd a

feasible solution for this problem.

Real-life data. We ran our algorithm on the real life examples from

[Zou et al. 2015], and on the multi-labeled examples from [Huang

et al. 2017]. In all these examples, both DP and BnB converge in

less than a second. Our algorithm nds the correct integer solution

after only one linear program solve. We note that in [Huang et al.

2017] DP was reported to solve the chicken heart reconstruction

problem in 56 seconds, but in fact this relatively slow solution was

due to the fact that a suboptimal method for traversing the cells was

selected in the implementation of their algorithm. Once this error

was repaired DP solves this problem as well in less than a second.

We applied our algorithm to cross-sections of the crystal structure

of silicon, which has a diamond cubic crystal structure (consists of

two inter-penetrating face centered cubic lattices). This data is more

challenging due to its high genus and large number of contours

and variables. Figure 3 shows an example of the input data (top)

and our reconstructed surfaces (bottom). We compare timing and

objective values with DP in Table 1 for several dierent silicon data

inputs with varying number of planes (parallel and non-parallel)

and target genus. In most examples parallel planar cross sections

were used, while in the last two experiments in the table the cross

sections were non-parallel (e.g., Figure 3, right). In all examples

when a global solution was found by our algorithm it was faster

than DP, sometimes by two orders of magnitude. The dierence

between the methods was especially signicant for non-parallel

examples, where BnB converged within a second while DP took

more than 250 seconds. Both algorithms were stopped if they ran

for (approximately) ten minutes, and in this case the best objective

value obtained up to this point was reported. BnB reached the time

limit twice, and DP reached the time limit in ve examples. In the

examples where both BnB and DP reached the time limit the energy

obtained by DP was marginally better (the normalized dierence

between energies was less that 10
−3
). We note that when both

Fig. 3. Reconstruction of the crystal structure of silicon (boom) from its
cross section (top). The boom le model has genus 167 while the boom
right has genus 31.

algorithms converge the energy values are always the same since

both algorithm are guaranteed to solve Problem 1 globally.

We then applied our algorithm to a stack of cross-sections of a

4-week old corn root imaged by CT. This data is particularly chal-

lenging due to the large number of cross sectional curves: 317 cross

sections on 26 parallel planes. The energy we used is the minimal to-

tal length of the branches. Figure 1 shows the reconstructed surface

(right) as well as the cross section data (left). Solving this problem

took 103 seconds. Figure 5 (a) shows an overlay of all the possi-

ble connections of cross sections; (b) shows the globally optimal

reconstruction result with a genus zero constraint; (c) shows the

unconstrained solution (i.e., solving (11) without the topological

constraints), note the disconnected branch and loops; (d) shows the

optimal reconstruction with genus 20.

4.2 Isosurface reconstruction
Isosurface reconstruction deals with the problem of nding the zero

level set of a smooth function f : R3 → R. This level set is indeed a

surface provided that zero is a regular value of f . We assume the

zero level set of f is bounded in the unit cube (0, 1)3, and partition

the unit cube into a grid of cubes (cells in our former terminology).
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(a) (b)

(c) (d)

Fig. 4. Multi-material synthetic reconstruction: (a) and (b) show cross sec-
tion input for 4 and 6 material reconstruction problems, respectively; (c)
and (d) shows the reconstructions found by our algorithm; (c) is the optimal
solution while (d) is a feasible, not optimal solution.

We are given an evaluation of f on the vertices of the cubes, and our

goal is to reconstruct f −1(0) from this information. The celebrated

marching cube (MC) algorithm and its variants solve this problem

locally in each cube, without taking into account global information

such as topological constraints. For a given sign conguration on

the vertices of a cube, MC assigns a unique surface patch. While this

approach is very successful for densely sampled functions, it may

cause topological errors for sparsely sampled functions. In contrast,

our approach can nd a globally correct solution, providing that

the family of surface patches per cells is rich enough to allow for a

correct global solution. Our method for choosing surface patches

per cell is described in the appendix.

In gure 6 we show two examples where our algorithm achieves

a topologically correct result and MC does not. On the left we show

a torus with a small handle, which the MC algorithm "doesn’t no-

tice". We note that in this example the MC algorithm will attain

a topologically correct solution if the resolution of the cube parti-

tion is increased. The remainder of gure 6 show reconstructions

produced by the MC algorithm and the BnB algorithm of a coned

surface with two cone points, at three dierent resolutions. It can

be easily shown that at any resolution the MC algorithm will fail to

achieve a connected solution, since the intersection of the surface

with cubes suciently close to the cone point will result in a sign

conguration which causes MC to choose a disconnected solution.

(a) (b)

(c) (d)

Fig. 5. Reconstruction of corn roots from cross sections. (a) shows all pos-
sibilities (in brown) of connecting the cross section contours (in silver). (b)
shows our globally optimal genus zero connected solution. (c) shows the
non connected solution obtained from the unconstrained linear relaxation
(i.e., best solution in each cell), and (d) shows a genus 20 reconstruction of
the corn roots.

In contrast to the MC algorithm, our algorithm reconstructs both

surfaces correctly by allowing for additional topological possibil-

ities per cell and forcing genus and connectivity constraints. For

the highest resolution surface on the far right of Figure 6 our recon-

struction took 3 seconds while MC took half a second. For the other

three surfaces in the gure MC was faster as well, although both

algorithms required less than a second.

5 CONCLUSION AND FUTURE WORK
We devise an algorithm for solving the topology-aware surface

reconstruction problem. Our key insight is that the topological con-

straints can be formulated as convex constraints over the unknown

integer variables. In turn, when these variables are relaxed a tight

convex relaxation is achieved. We use the relaxation in a branch

and bound framework to solve the reconstruction problem, often

after a small number of steps and several order of magnitude faster

than competing methods.

The main limitation of our approach is that each computation of

a lower bound requires solving (in the worst-case) up-to 50 linear

programs and a semidenite program. Although the lower bound

can be tight and provide the solution very fast, we have found

instances, e.g., vematerial problem (see Figure 2, bottom left) where

we were not able to nd an optimal solution in reasonable time.
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Fig. 6. Isosurface reconstruction by BnB (top) and MC (boom). BnB cor-
rectly reconstructs both surfaces, while MC returns a surface with incorrect
genus (le) and a disconnected surface (next three surfaces, which show the
same surface reconstructed at three dierent resolutions). For the second
surface the MC algorithm will return a disconnected surface, regardless of
the resolution considered.

One very interesting future work direction is to incorporate qua-

dratic energies into this framework. Quadratic energies can be used

to encourage smooth output surfaces and other pairwise penalty

terms. Another direction for future work is topological reconstruc-

tion of surfaces with k > 1 connected components.
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6 APPENDIX
Proof of Theorem 3.1. Assume G(x) is connected, we want to

show that S(x) is connected. By construction ofG(x), there is a path
in S(x) connecting any two segments γi and γj . Given an arbitrary

point in S(x), it is a member of one of the surface segments Si j , and
thus by our requirements on the surface segmentsmust be connected

to one of the surface segments γi . Thus S(x) is connected.
Now assume S(x) is connected, we want to prove G(x) is con-

nected. We choose arbitrary vertices in the graph corresponding

to the surface segments γ0,γ1, we want to show that they are con-

nected by the edges of G(x). We begin with a path β : [0, 1] → S(x)
connecting p ∈ γ0 and q ∈ γ1, whose existence is guaranteed

by the connectivity of S(x). Next we choose a minimal partition

0 = t0 < t1 < . . . tk = 1 of the unit interval, such that the restriction

of β to each subinterval is contained in a single surface patch. By

the minimality of the partition, each β(ti ), 0 < i < k belongs to the

intersection of two surface patches S1∩S2 ⊂ C1∩C2 in the common

boundary of the cell C1 containing β(ti−1, ti ) and a distinct cell C2

containing β(ti , ti+1). The assumption on the surface patches inter-

polating the segments Γ implies that in each connected components

of S1 ∩ S2 there is at-least a part of some segment which we denote

by γti ∈ Γ. Therefore by construction of G, γ0 is connected to γt1
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which is connected to γt2 and so forth until γtk−1 which is connected

to γtk = γ1.
�

Proof of Theorem 3.2. Part (1) of the theorem follows directly

from (9) which is valid also for weighted graphs.

For part (2) of the theorem, note that
¯λ = f (πm−1) for

f (x) = 2(1 − cos(x)) ≤ x2.

Therefore
¯λ = f (πm−1) ≤ cm−2

for c = π 2
. Now consider L̄ de-

ned in (10); it can be seen as the Laplacian of a full graph. Direct

computation shows that λ2(L̄) = ¯λ and

e(L̄) = ¯λ
m − 1

m
≤ cm−2.

For part (3) of the theorem, we choose for any given L0 a new

laplacian L = L0 + L̄. Then

λ2(L) = min

v | ‖v ‖=1, v⊥1
vT Lv ≥ min

v | ‖v ‖=1, v⊥1
vT L̄v = λ2(L̄) = ¯λ

and

‖L − L0‖1 = ‖L̄‖1 = ¯λ2(m − 1) ≤ 2cm−1

�

Proof of Lemma 3.3. For x ,x0 and J satisfying the conditions of
the lemma we haveL(x0) − L(x)


1
≥ 2

∑
j ∈J ,i<J

��Lji (x0) − Lji (x)
��

(12a)

≥ 2

������ ∑
j ∈J ,i<J

(
Lji (x) − Lji (x

0)

)������ (12b)

= 2

��e(x , J ) − e(x0)
�� ≥ 2(1 − e(x0)) (12c)

�

Surface patch selection for isosurface reconstruction. For every sign
assignment to a cube’s vertices, we select a number of possible

surface patches, which are constructed in three stages as follows:

Stage (0): We dene the surface patches uniquely on the edges of

the cube: On each edge of the cube, we add a point to the candidate

surface patch if the two vertices of the edge are assigned opposite

signs.

Stage (1): We dene the surface patches on each of the six faces

of the cubes. Each face has been assigned 0, 1, 2 or 4 points to its

four edges in stage (0). If a face contains two points then they are

connected by an edge, and if the face contains four points then

we connect two pairs of points by an edge each. This results in an

ambiguity: There are two ways to select these edges so that they do

not intersect. Thus for each face we have two possible interpolations

(if there are four points in the face), or a unique interpolation (if the

face contains two vertices or less).

Stage (2): At the conclusion of stage (1) we have one or two

candidates per face, and so in total up to 2
6
reconstruction options

for the boundary of the cube. For each xed reconstruction on

the boundary, we nd the connected components B1, . . . ,Bk of

the reconstruction. We then consider all possibilities of connecting

B1, . . . ,Bk . Each connection possibility partitions the k sets into

j ≤ k connected components, and the total number of possibilities

is the number of partitions of the set {1, . . . ,k}, which is known

as the kth bell number. This number is double exponential in k ,
however for any xed reconstruction of the boundary k will never

be larger than four, and thus the bell number is bounded by fteen.

This is because in Stage (0) at most twelve points are added to the

surface, and each Bi will contain at least three of these points. Once

a connection scheme is selected, we complete it to a surface patch

using the triangulation algorithm of [Zou et al. 2013].
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