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Figure 1: (a-c) Cage-based 2D deformation of a Gecko. (b) Using Green Coordinates induces a pure conformal mapping. (c) The result of
Harmonic Coordinates. Note the preservation of shape in the marked square. (d-f) Cage-based 3D articulation of an Ogre. (e) Using Green
Coordinates in 3D admits a quasi-conformal deformation. In (f) the result using Mean Value Coordinates is presented. Note how Green
Coordinates nicely preserve the shape of the Ogre’s head.

Abstract

We introduce Green Coordinates for closed polyhedral cages. The
coordinates are motivated by Green’s third integral identity and re-
spect both the vertices position and faces orientation of the cage.
We show that Green Coordinates lead to space deformations with a
shape-preserving property. In particular, in 2D they induce confor-
mal mappings, and extend naturally to quasi-conformal mappings
in 3D. In both cases we derive closed-form expressions for the coor-
dinates, yielding a simple and fast algorithm for cage-based space
deformation. We compare the performance of Green Coordinates
with those of Mean Value Coordinates and Harmonic Coordinates
and show that the advantage of the shape-preserving property is not
achieved at the expense of speed or simplicity. We also show that
the new coordinates extend the mapping in a natural analytic man-
ner to the exterior of the cage, allowing the employment of partial
cages.

1 Introduction

In recent years there is an increased interest in cages as practical
means to manipulate 3D models [Floater 2003; Ju et al. 2005b;
Joshi et al. 2007]. A cage is a low polygon-count polyhedron, which
typically has a similar shape to the enclosed object. The points in-
side the cage are represented by affine sums of the cage’s vertices
multiplied by special weight functions called coordinates. Manip-
ulating the cage induces a smooth space deformation of its interior.
The main advantage of these cage-based space deformation tech-

niques is their simplicity, flexibility and speed. Manipulating an en-
closed object, for example a mesh surface, requires a rather small
computational cost, since transforming a point requires merely a
linear combination of the cage geometry using precalculated coor-
dinates. Moreover, since each point is transformed independently,
these techniques are indifferent to the surface representation and
free of discretization errors.

However, current space-deformation techniques do not have good
control over the preservation of shape and details, such as ad-
vanced surface-based deformation techniques. Throughout the pa-
per we use the phrase Shape-preserving deformations as our main
target. Shape-preserving deformations are smooth mappings such
that their Jacobian matrices are close to rotations with isotropic
scale. Notice that shape-preservation is reflecting local behavior
of the transformation. That is, the shear component of the local
transformation is small. Shape-preserving transformations are also
referred to as Quasi-conformal mappings. While conformal map-
pings map infinitesimal balls into infinitesimal balls, with no shear
at all, quasi-conformal mappings map infinitesimal balls into in-
finitesimal ellipsoids with bounded axis ratio.

Achieving shape-preserving space deformations defined by cage-
based techniques seems unfeasible. The reason is that current cage
methods express a point η inside a cage P as an affine sum of the
cage vertices V = {vi}i∈IV ⊂ R

3:

η = F (η;P ) =
∑
i∈IV

ϕi(η)vi, (1)

where ϕi(·) are referred to as “coordinates”. Then the deformation
defined by a deformed cage P ′ is defined by

η 7→ F (η;P ′) =
∑
i∈IV

ϕi(η)v′i, (2)

where V′ = {v′i}i∈IV are the deformed cage’s vertices. These
operators are affine-invariant. Consequently, when the cage under-
goes an affine transformation, the operator reconstructs this affine
transformation. Such affine transformations may include shear
and anisotropic scale which violate the shape-preserving property.
Moreover, the general form of the current cage-based operators



Figure 2: Cage-based articulation using Green Coordinates admits
a quasi-conformal deformation in 3D (right column). The middle
column shows the result of Mean Value Coordinates. Note how
Green Coordinates preserve the details as well as the whole shape
of the Armadillo’s leg and arm.

(Eq. (1) and (2)) cannot produce shape-preserving mappings. This
stems from the fact that respecting the requirement that the Jaco-
bian consists of rotations and isotropic scaling, necessarily requires
that the operator reflects a dependency between the different axes.
However, in Eq. (2) each axis is treated independently of the others.
For example, translating the x-axis coordinate of one cage’s vertex
has no affect on the y and z-axis coordinates whatsoever. The effect
of the affine invariance property can be seen for example in Figure 3
where the details (bumps) maintain their original orientation under
the translation of part of the cage.

Green Coordinates. Despite the above-mentioned limitation
of cage-based operators, we show in the paper that it is still possi-
ble to define detail-preserving cage-based coordinates which retain
all the advantages of the general cage-based operator. The coordi-
nates that we present here introduce appropriate rotations into the
space deformation to allow shape preservation. In Section 3 we
show that these coordinates are derived from the theory of Green
Functions [Nehari 1952; Kantorovich and Krylov 1964]. There-
fore, we call them Green Coordinates (GC). This theory is applica-
ble to piecewise-smooth boundaries in any dimension, and the re-
sulting deformation operator does not require discretization. In 2D
the operator is proved to induce a pure conformal mapping. Con-
formal mappings are the ideal shape-preserving deformations since
they locally consist of rotations and isotropic scaling only, that is
angle preserving, see Figure 4. In 3D the operator provides a natu-
ral generalization of these conformal maps, that is quasi-conformal
maps. It should be noted that in 3D (and higher dimensions) no
conformal mappings exist besides (composition of) similarity and
inversion transformations [Blair 2000]. Quasi-conformal mapping
is close to conformal in the sense that it allows a minimal amount
of anisotropic scaling. We show the quasi-conformality empirically,
that is, by checking that the distortion is bounded in 3D. Further-

Figure 3: Detail preservation is exhibited using Green Coordinates
(on the right), where the details adhere to the surface deformation
and rotate accordingly. In the middle, the MVC result is depicted
where the details maintain their original orientation and therefore
shear.

more, in both cases the operator has a closed-form analytic formula.
By the term closed-form we mean that the coordinates can be cal-
culated analytically from the cage positions without approximation
and discretization of any kind.

To achieve cage-based coordinates with shape-preserving property,
we necessarily need a slightly different operator than the one de-
fined by Eq. (1),(2). The new coordinates respect the orientation
of the cage’s faces and not only the positions of the vertices: Let
the cage be an oriented simplicial surface (i.e., 2D polygon, 3D tri-
angular mesh), that is P = (V,T), where V = {vi}i∈IV ⊂ R

d

are the vertices and T = {tj}j∈IT are the simplicial face elements,
namely edges in case of polygons in 2D, triangles in case of trian-
gular meshes in 3D. Let us further denote byn(tj) the outward nor-
mal to the oriented simplicial face tj (||n(tj)|| = 1). Our general
framework for defining the coordinates is derived by representing
each interior point η as the linear combination

η = F (η;P ) =
∑
i∈IV

φi(η)vi +
∑
j∈IT

ψj(η)n(tj). (3)

Thus, the deformation induced by a deformed cage P ′ is defined by

η 7→ F (η;P ′) =
∑
i∈IV

φi(η)v′i +
∑
j∈IT

ψj(η)sj n(t′j), (4)

where v′i and t′j denote the vertices and faces of P ′, respectively.
The scaling factors {sj}j∈IT are essential for achieving impor-
tant properties such as scale invariance. The definition of the
scalars {sj} is explained later on. In particular, in 2D, it is sim-
ply sj = ||t′j ||/||tj ||, where ||tj || is the length of tj . We remark
here that although we aim at least distorting mappings, some ap-
plications may require more flexibility, e.g., the user may want to
simply stretch an object, or part of it. Such features can also be
achieved by an adequate choice of the factors {sj} (see Section 3
for details).

The new method, similarly to previous cage-based methods, al-
lows fast interactive deformation that only require to compute linear
sums (Eq. (4)) with the precalculated coordinates. In Section 3 we
present a way of defining the coordinate functions φ, ψ so that the
operator F has the desired shape-preserving property and a closed-
form formula.

Let us precede by few examples: In Figure 1 (a-c) we perform 2D
deformation, comparing Harmonic Coordinates (HC) [Joshi et al.
2007], and Green Coordinates (GC). In this example we articulate
the tail of the gecko by manipulating the cage. As can be observed,
the conformality of the deformation produced by Green Coordi-
nates better preserves the shape. The Harmonic coordinates, on the
other hand, are affine-invariant and as such may contain shears and



Figure 4: ’L’-shaped checkerboard is deformed. Left: The original
checkerboard pattern and cage. Top-right: GC result. Bottom-right:
the HC result. Note that in order to guarantee that the mapping is
conformal, the map extends beyond the deformed cage.

non-uniform scalings. However, the HC deformation better adheres
the cage than the GC deformation. In a sense, the shape preserva-
tion property becomes possible due to relaxation of the interpola-
tion requirement. As can be observed in this figure, not insisting
on interpolating the cage’s boundaries allows the deformation to
preserve the shape. Moreover, the shape-preserving property also
helps preventing local foldovers (see Figure 13).

In Figure 1 (d-f) we perform similar comparison, now with Mean
Value Coordinates (MVC) [Ju et al. 2005b] in 3D where we artic-
ulate the Ogre model. Note the preservation of the shape of the
ogre’s head, in particular his chin, mouth and forehead. Another
example is shown in Figure 2, where the Armadillo’s hand and leg
are articulated. Note, that in these cases (not highly concave cages)
employing the Harmonic Coordinates will yield similar results to
the Mean Value Coordinates.

2 Background

Space deformation techniques were introduced by Sederberg and
Parry [1986] and further extended by others [Coquillart 1990; Mac-
Cracken and Joy 1996; Kobayashi and Ootsubo 2003]. The basic
space deformation technique defines a lattice with a rather small
number of control points that encloses the subject model. Manipu-
lating the control points smoothly deforms the space enclosed in the
lattice, and the embedded geometry deforms accordingly. As indi-
cated in [Joshi et al. 2007], the rigid spatial topological structure of
the FFD latices makes the deformation less flexible. This motivated
a search for a more general control polyhedron to enclose the model
in a tighter fashion and have a better match of degrees of freedom
to the subject model.

Floater [2003] has introduced the Mean Value Coordinates (MVC)
for 2D polygons as a closed-form scheme for smoothly interpo-
lating data on general polygons. Later [Ju et al. 2005b; Floater
et al. 2005; Langer et al. 2006] have further generalized the Mean
Value Coordinates to 3D. Ju et al. [2005b] presented a surface de-
formation technique based on these coordinates. The MVC have
been subject to more theoretical investigation and have proved to
be well-defined in the whole plane and infinitely smooth except at
the vertices [Hormann and Floater 2006]. Joshi et al. [2007] in-
troduced different cage-based coordinates called Harmonic Coor-
dinates. These coordinates are non-negative and do not possess a
local extrema. These properties lead to more intuitive control in the
deformation process, mainly of highly concave cages, compared
to the original MVC. However, Harmonic Coordinates do not pos-
sess closed-form formulas as MVC. Later, Lipman et al.[2007] pre-

Figure 5: The original model (on the left) is modified by a partial
cage to straighten the girl. Note the preservation of the dress details
and the smooth extension of the deformation to the exterior of the
cage.

(a) (b)

(c) (d)

Figure 6: Deformation of a text with a coarse cage (a). The results
of the Green, Mean Value and Harmonic Coordinates are displayed
in (b),(c) and (d), respectively.

sented alternative coordinates which are also non-negative. As we
discussed in the introduction, all these methods are affine-invariant
and not shape-preserving. Another alternative to compute space de-
formations is employing scattered-data interpolation methods like
RBF [Kojekine et al. 2002; Botsch and Kobbelt 2005]. However,
in these methods also each axis is treated independently and hence
shape preservation is generally not possible. For a more complete
discussion of previous work we note that previously to Floater’s 2D
Mean Value Coordinates there was a considerable amount of work
done generalizing the barycentric coordinates to general polygons
and polyhedra [Wachpress 1975; Pinkall and Polthier 1993; Warren
1996; Meyer et al. 2002; Ju et al. 2005a].

A different family of deformation techniques applies the deforma-
tion directly to the surface [Sorkine et al. 2004; Yu et al. 2004; Lip-
man et al. 2005; Zhou et al. 2005; Botsch et al. 2006; Huang et al.
2006; Sorkine and Alexa 2007; Au et al. 2007; Shi et al. 2007]
These methods are based on measuring some deformation energy
directly over the surface, or representing the surface with some tai-
lored structures, and then optimizing them under some user con-
straints to yield the desired deformation. These “direct” approaches
achieve high quality shape-preserving deformation. However, these
methods require solving large, often non-linear, systems of equa-
tions, which may suffer from discretization errors. The GC tech-
nique that we present achieves similar shape-preservation quality
as these direct methods with the advantage of closed-form expres-
sions for the mapping operator.



3 Derivation of Green Coordinates

In this section we derive the Green Coordinates in Rd. As argued
in the introduction, shape-preservation cannot be achieved by affine
combinations of the cage’s vertices alone, and we suggest to con-
sider combinations of vertices and normals of the form (3), where
the exact relation is coded in the coordinate functions {φi} and
{ψj} and the scalars {sj}.

Our derivation of these coordinate functions is based upon the the-
ory of Green functions and upon Green’s third integral identity: Let
u(ξ), ξ = (ξ1, ..., ξd) be a harmonic function in a domainD ⊂ Rd
enclosed by a piecewise-smooth boundary ∂D. A function u is
called harmonic if it is a solution to Laplace equation, i.e.,

∆u =
∂2u

∂ξ 2
1

+
∂2u

∂ξ 2
2

+ ...+
∂2u

∂ξ 2
d

= 0. (5)

Further, letG(·, ·) be the fundamental solution of the Laplace equa-
tion inRd, that is

∆ξG(ξ,η) = δ(ξ − η), (6)

where δ(·) is the Dirac delta function. Then, for any η ∈ Din :=
interior(D), u(η) can be expressed by its boundary values and
boundary normal derivatives via Green’s third identity:

u(η) =

∫
∂D

(
u(ξ)

∂G(ξ,η)

∂n(ξ)
−G(ξ,η)

∂u(ξ)

∂n(ξ)

)
dσξ, (7)

where n is the oriented outward normal to ∂D and dσξ is the area
element on ∂D.

The solution of (6) inRd without boundary conditions results in the
fundamental solutions of the Laplace equation in Rd, which have
the following expressions:

G(ξ,η) =

{
1

(2−d)ωd
||ξ − η||2−d d ≥ 3

1
2π

log ||ξ − η|| d = 2
, (8)

where ωd is the area of a unit sphere inRd.

Now let us take the domain D to be the domain enclosed by our
cage P , and let us use the coordinate functions η = (η1, ..., ηd),
which are linear functions, in the role of the harmonic function u in
(7), that is u(η) = η:

η =

∫
∂D

(
ξ
∂G(ξ,η)

∂n(ξ)
−G(ξ,η)

∂ξ

∂n(ξ)

)
dσξ. (9)

Noting that the outward normaln(ξ) is constant on each face tj we
have ∂ξ/∂n(ξ) = ∂ξ/∂n(tj) = n(tj), where n(tj) denotes the
outward normal of face tj . Let us write the integral (9) as a sum of
integrals over the cage’s faces tj (omitting the arguments in G and
n for brevity):

η =
∑
j∈IT

(∫
tj

ξ
∂G

∂n
dσξ −

∫
tj

G n(tj)dσξ

)
, η ∈ Din. (10)

Denote by N{vi} the union of all faces in the 1-ring neighborhood
of vertex vi, and let the function Γi be the piecewise-linear hat
function defined on N{vi}, which is one at vi, zero at all other
vertices in the 1-ring and linear on each face. Then writing ξ as
the (unique) barycentric combination in the simplicial face tj , ξ =∑d
k=1 Γk(ξ)vk, where vk are the vertices of the face tj , we get

from (10)

η =
∑
j∈IT

∑
vk∈V(tj)

vk

(∫
tj

Γk(ξ)
∂G

∂n
dσξ

)
−
∑
j∈IT

n(tj)

(∫
tj

G dσξ

)
,

Figure 7: Different {sj} scaling to accommodate non-uniform
stretch: Left, sj by Eq. (14). In the middle 0.5(sj + 1) , and on the
right sj = 1.

where V(tj) denotes the vertices of the face tj . The last equation
can be rearranged to get

η =
∑
i∈IV

φi(η)vi +
∑
j∈IT

ψj(η)n(tj), η ∈ Din, (11)

where the coordinate functions φi and ψj are

φi(η) =

∫
ξ∈N{vi}

Γi(ξ)
∂G(ξ,η)

∂n(ξ)
dσξ i ∈ IV (12)

ψj(η) = −
∫
ξ∈tj

G(ξ,η)dσξ j ∈ IT,

To complete the construction of the mapping η 7→ F (η;P ′) de-
fined by (4) we still need to define the scaling factors {sj}. The
definition of these factors is derived by the following properties,
desirable for shape-preserving deformations:

1. Linear reproduction: η = F (η;P ), for η ∈ P in.

2. Translation invariance:
∑
i∈IV

φi(η) = 1, for η ∈ P in.

3. Rotation and scale invariance: For an affine transformation
which consists of a rotation with possible isotropic scale T ,
Tη = F (η;TP ).

4. Shape preservation: For d = 2, the mapping η 7→ F (η;P ′)
is conformal, for d = 3, this mapping is quasi-conformal.

5. Smoothness: {φi(η)}, {ψj(η)} are harmonic functions in
P in. Hence, they are C∞ for η ∈ P in.

Linear reproduction is the basic relation (11) we started with, we
just need to take sj = 1 if t′j = tj . This choice is also suitable for
the second property, together with the relation

∑
i∈IV

φi(η) = 1

followed by applying (7) to the function u(η) ≡ 1. To ensure the
third property we take sj = ||T ||2, and thus Tn(tj) = sjn(t′j).
The face tj , together with the point vj1 + n(tj), where vj1 is a
vertex in tj , define a simplex Sj in Rd, and similarly t′j and v′j1 +
sjn(t′j) define a simplex S′j . In the case of a similarity (rotation
and uniform scaling) map T we have T (Sj) = S′j . In the general
case we would like to define sj so that the linear mapping taking
Sj onto S′j is least-distorting. In other words, sj should represent
the stretch the face tj undergoes as the cage is deformed. In 2D
(d = 2) this stretch is well defined, simply take

sj = ||t′j ||/||tj ||, (13)



Figure 8: Twisting a bar using MVC (left) and GC (right). Note the
two cuts displayed from top view.

Figure 9: Deformation with non simply-connected cage (torus).

i.e., the exact stretch of the edge tj . In higher dimensions, however,
the stretch is not so evident and it cannot be described by a single
scalar. Nevertheless, we find the following definition natural: In
3D, let σ1, σ2 be the singular values of the linear map taking tj
to t′j . Then, to have a least-distorting map taking Sj onto S′j we
should define sj as some average of σ1 and σ2. The choice that
provided us with the desired quasi-conformality property is sj =√

σ2
1+σ2

2
2

. Using computations presented in [Pinkall and Polthier
1993] for linear transformations between triangles in R3, one (tj)
with edges defined by the vectors u,v and the other (t′j) by the
corresponding vectors u′,v′, it turns out that

sj =

√
||u′||2||v||2 − 2(u′ · v′)(u · v) + ||v′||2||u||2√

8area(tj)
. (14)

Note that this final definition encapsulates and generalizes all of the
above cases. As demonstrated by the examples throughout the pa-
per, the above definition of the factors sj leads to ’least-distorting’
deformations. However, in some cases, one may be interested in a
distortion, such as stretching the object non-uniformly. Such effects
may still be achieved by replacing the definitions (13) and (14) by
the simple choice sj = 1. Intermediate effects may be obtained by
sliding the values of sj between these two options (see Figure 7).

The fifth property holds for any choice of {sj}, and is due to
the fact that for η ∈ P in {φi} and {ψj} can be differentiated
an infinite number of times under the integral sign. Furthermore,
since the function G(·, ·) is symmetric and harmonic, it implies
that {φi}, {ψj} are also harmonic functions. Finally, regarding the
fourth property, in the case of d = 2, the mapping η 7→ F (η;P ′) is
pure conformal. The proof is rather long and technical and provided
fully in [Lipman and Levin 2008]. Generally, the proof is based on

Figure 10: Deforming the Raptor model (2000K triangles). Left -
original model, right - GC deformation.

two simple ingredients: First, confirming that the coordinate func-
tions {φi} and {ψj} are in some sense conjugate harmonic. Sec-
ond, observing that the gradient field of a harmonic function defines
a conformal map.

Quasi-Conformality In Rd, d ≥ 3 we cannot expect to get
pure conformal mappings. Instead, we wish to minimize as much
as possible the shear component of the transformation. More for-
mally, we define the distortion of a map F : D 7→ F (D) ⊂ Rd at
each point η ∈ D by σmax(η)

σmin(η)
, where σmin(η) and σmax(η) are

the minimal and maximal singular values of the differential of F
(Jacobian matrix) at the point η, respectively. Note that the choice
of the scaling factors {sj} is also based upon this principle. A map
with a bounded maximal distortion is called quasi-conformal. Fig-
ure 13 compares the deformation F induced by Green Coordinates,
Mean Value Coordinates and Harmonic Coordinates, using two or-
thogonal planes with a circles pattern. This figure also shows the
histogram of the distortions of each of the maps, defined in the in-
terior of the cage. Note that the maximal distortion of GC mapping
in these examples does not exceed the value of 3.2, while the maxi-
mal distortion of MVC and HC mappings has exceeded the value of
100. Note that the Y-axis is shown in a logarithmic scale. Applying
other transformations to the same cage, we noticed that, in excep-
tion of degenerate cases, the deformations induced by Green Coor-
dinates have a maximal distortion bounded by a constant ≤ 6. In
contrast, the deformations induced by Mean Value Coordinates and
Harmonic Coordinates present unbounded total distortion which is
linearly proportional to the amount of distortion of the deformed
cage. Figure 8 demonstrates 2π twisting of a bar model (each cage
level is rotated by π/2). Note the two cuts depicted from top view:
The GC preserves the square silhouette better than MVC.

Closed-form formulas for 2D and 3D Interestingly, closed-
form formulas can be derived for the dimensions d = 2, 3 which are
the cases considered in this paper. The derivation of the formulas
is rather technical, so to keep the fluency of the reading we have
attached only the final pseudocodes for calculating the 2D and 3D
coordinates for η ∈ P in, see Algorithms 1 and 2 in Appendix A.
The detailed derivations are listed in [Lipman and Levin 2008].



(a) (b)

Figure 11: Deformation using partial 3D cages. Note the local influence of the GC deformation (middle in (a) and (b)), compared to the
global influence of the MVC deformation (right in (a) and (b)).

Figure 12: An illustration of the values of φi (left) for one vertex
(marked in bold green point), and ψj (right) for one edge (marked
in bold green line) in 2D.

4 Extending to the cage’s exterior

The Green Coordinates defined by Eq. (3),(4) and (12) are smooth
in the interior of the cage P . However, each coordinate φi(η) has
jump discontinuities along the edges (simplicial faces) meeting at
vi, see Figure 12. A natural question is whether the coordinates can
be smoothly extended to the exterior of P . In 2D the Green Coor-
dinates induce conformal transformations of the interior of P , and
the above question is addressing the analytic continuation of these
conformal transformations through the boundaries of P . An impor-
tant application of such an extension is the deformation of a certain
region of an object by a partial cage only, for example see Figure
5. A proper extension to the exterior of the partial cage would have
smooth transition to the rest of the object and a diminishing influ-
ence, leaving the rest of the object in place.

In this section we derive the unique analytic continuation of the co-
ordinates outside the cage, and show that it requires only a rather
slight modification to the closed-form formulas at hand. Let us re-
mark that the use of the term analytic continuation is twofold: In
case d = 2 we refer to the classical meaning of extending the con-
formal (or analytic) complex maps. While in the case d ≥ 3 we
mean extending the map in a real-analytic manner. That is, we
show that the coordinate functions are real-analytic, which means
they can be locally represented as a power series, and then their
extension is unique in their (connected) domain.

Extension through a face. Let us start by describing how the
coordinates can be extended through some face t` ∈ T, ` ∈ IT of
the cage. Let i1, ..., id ∈ IV be the indices of the vertices which
consist of the face t`. First, the mapping η 7→ F (η;P ′) is con-
formal also in the exterior of the cage, which we denote by P ext.
However, F (η;P ) = 0 for η ∈ P ext (this can be seen by similar
argumentation to Section 3). Therefore, the important linear repro-
duction (property 1 in Section 3) does not hold outside the cage.
In addition, the coefficients φik (·), k = 1, ..., d are not continuous

across the face t`. In view of this, in order to extend the coordinates
(12) smoothly through t` we take the following path.

From properties 1 and 2 listed in Section 3 we have that the coordi-
nates φi1(η), ..., φid(η), ψ`(η) where η ∈ P in satisfy
d∑
k=1

φik (η)vik + ψ`(η)n(t`) =η−
∑

i 6= ik

k = 1..d

φi(η)vi −
∑
j 6=`

ψj(η)n(tj),

(15)and d∑
k=1

φik (η) = 1−
∑

i 6= ik

k = 1..d

φi(η). (16)

This yields a linear system for the coefficients φik (η), k = 1..d
and ψ`(η). It can be shown that this system is invertible for any
η ∈ Rd (see [Lipman and Levin 2008]). Thus, we may view this
system as an alternative way to define φi1(η), ..., φid(η), ψ`(η).
Therefore, it is natural to extend the coordinates across the face
t` by keeping the original definition for all the coordinates except
φik (η), k = 1..d and ψ`(η) and for the later coordinates, in both
sides of t`, by the system of linear equations (15),(16). To distin-
guish the newly defined coordinates from the original ones defined
in (12) we denote the new ones as φ̃ik (η) and ψ̃`(η). Note that
φ̃i(η) = φi(η) and ψ̃j(η) = ψj(η) inside the cage.

Simplifying the system (15),(16) using the facts that for η ∈ P ext
we have F (η;P ) = 0 and

∑
i φi(η) = 0, we obtain

φ̃ik (η) = φik (η) + αk(η) k = 1, .., d (17)

ψ̃`(η) = ψ`(η) + β(η) ,

where {αk(η)} and β(η) vanish for η ∈ P in and for η ∈ P ext
they satisfy

d∑
k=1

αk(η)vik + β(η)n(t`) = η (18)

d∑
k=1

αk(η) = 1.

Furthermore, for a point η on the exact boundary of P we get the
same equations where the right hand sides are multiplied by 1/2.

System (18) defines {αk(η)} and β(η) as the unique affine coor-
dinates of the point η in the simplex defined by the vertices {vik}
of the face t` plus the vertex vi1 + n(t`): η = L(η;P, `) where

L(η;P, `) = (α1(η)− β(η))vi1 (19)

+

d∑
k=2

αk(η)vik + β(η) (vi1 + n(t`)) .



Figure 13: Comparison of GC , MVC and HC. Two intersecting planes with circles pattern enclosed by a simple cage (left) are deformed
twice: Each row demonstrates a different cage manipulation, indicated by an arrow. Note that MVC and HC might cause some shear,
significant stretching and foldovers. On the right: The histogram of the distortion values of each map in logarithmic scale (see Section 3).

Furthermore, note that {αk(η)} are the unique barycentric coor-
dinates of the projection of η onto the hyperplane defined by the
simplicial face t`. Hence, they also have a closed-form expres-
sions. The above derivation implies that this simple correction (17)
to the coordinates φik (η), k = 1..d and ψ`(η) in the exterior of P
provides the unique analytic continuation through the face t`:
Theorem 4.1. The mapping

F̃ (η;P ′) =
∑
i∈IV

φ̃i(η)v′i +
∑
j∈IT

ψ̃j(η)sjn(t′j) (20)

in the 2D case is the unique complex-analytic extension of the map-
ping η 7→ F (η;P ′) through the edge t`. In 3D, φ̃i,ψ̃j are the
unique real-analytic (and harmonic) extensions of the coordinate
functions φi, ψj through the face t`.

Note that the mapping outside the cage can be written as

F̃ (η;P ′) = F (η;P ′) + L(η;P ′, `) for η ∈ P ext, (21)

where L(η;P ′, l) is defined by replacing vik and n(t`) in (19) by
their transformed versions v′ik and s`n(t′`) from P ′.

Proof: For the 2D case, we note that two holomorphic functions
that coincide on a line, are the unique analytic continuation of each
other. Hence, it is enough to show that the mapping (20) is con-
formal inside and outside the cage, and that it is continuous on the
edge t`. The conformality inside and outside the cage is proven in
[Lipman and Levin 2008]. The continuity across the edge t` can
be understood from the fact that the new coordinates φ̃i,ψ̃j (inside
and outside) are solutions of the non-singular system of equations
(15),(16) which has C∞ smooth coefficients.

In the 3D case, we note that the new coordinate functions are har-
monic both inside and outside the cage (we are only adding an affine
function outside, see (21)). As explained above, the new coordi-
nates are smooth across the face t` and therefore the new coor-
dinates are harmonic through the face t`. We note that harmonic
functions are real-analytic, and real-analytic functions in connected

domains which coincide on an open set coincide everywhere [Shel-
don Axler 2001]. Therefore, we have that since the new coordi-
nates φ̃i,ψ̃j coincide with φi,ψj inside the cage, they are actually
the unique real-analytic (and harmonic) extension through the face
t`.

Deformation with partial cages. The above procedure of the
coordinate extension allows the employment of partial cages. The
construction of cages around the entire model may not always be
simple, while fitting partial cages around the region of interest is
rather simple. Canonical simple shaped cages can then be used as
tools for local deformation. Figure 11 shows an example of a simple
cage fitted twice: once to the whole arm of the character and once
to two fingers only.

Figure 14: 2D deformation using a partial cage. The Green Coor-
dinates are extended through two faces tj , tk (colored red).

It is possible to extend the coordinates through every face, by
adding to the transformation F (η;P ′) outside the cage, the affine
transformation L(η;P ′, l). As proved in Theorem 4.1 this exten-
sion is unique. Therefore, in the common case where different cage



faces undergo different affine transformations, it is not possible to
extend the deformation analytically over the whole space. Yet, it
is important to note that for our purpose it is enough to define an
extension which is smooth on the object to be deformed. The sim-
plest option would be to extend the coordinates through one face,
which we call the exit face. We know that our transformation would
always be smooth though this face. Now, if the exit face is trans-
formed by a similarity transformation (rigid transformation possi-
bly with uniform scaling) then our definition of the scaling factor s`
assures us thatL(η;P ′, `) reconstruct this (spatial) similarity affine
transformation. We also observe that the deformation will also be
smooth through all the other faces which undergo the same simi-
larity transformation L(η;P ′, `) as the exit face. Let us call this
condition the similarity condition. For a smooth deformation it is
enough to ensure that the object does not intersect faces which are
not satisfying the similarity condition.

In the case of extending the coordinates through two exit faces
tj , tk the exterior of the cage may be cut into two disjoint con-
nected parts, one which include tj and one which include tk, and
define the extension in each part accordingly. The deformation
will always be smooth through both these exit faces, and over
any object which does not intersect the cut or any of the faces
not satisfying the similarity condition, as in the following figure:

tk

tj

The same principle holds for any
number of extensions (Ej) through
exit faces (tj). That is, the ex-
terior of the cage is decomposed
into disjoint connected parts Oj ,
such that tj ⊂ Oj , and thus each
Oj would be subject to a differ-
ent (corresponding) extension Ej .
The deformation will be smooth in
each partOj through the exit faces
tj and all other faces which sat-
isfy the similarity condition in Oj . Figure 14 shows the extension
through two edges (tj , tk) colored red.

For different results of partial cage deformations, see Figures
3,5,11. An interesting point which appears in these examples (es-
pecially in Figure 11), is that although the Mean Value Coordinates
are well-defined and smooth everywhere outside the cage [Hor-
mann and Floater 2006], their influence is not decaying outside the
cage, and the effect of partial cage manipulation is not local. Note
that Harmonic Coordinates are not defined outside the cage.

5 Implementation and Results

The Green Coordinates and their associated calculations and ap-
plication were developed in C++ and MATLAB. Although the
coordinates are defined for arbitrary dimension, we have imple-
mented them only for the two and three dimension cases. Let
Λ = {η} ⊂ Rd denote the subject of the deformation, where Λ
can be an arbitrary collection of points in any dimension Rd. The
cage, denoted by P , is a closed polygonal line in 2D, triangular
mesh in 3D or a simplicial surface in Rd. It should be emphasized
that P is not necessarily simply connected (see Figure 9). To ease
its manipulation, the cage should be as coarse as possible, while still
having a reasonable amount of degrees of freedom and flexibility to
perform the desired deformation. In our experiments, we learned
that even a very coarse cage leads to deformations which are more
plausible than those achieved with affine-invariant methods (see for
example Figures 6 and 15).

Given a cage, the coordinate functions φi(η), ψj(η), i ∈ IV, j ∈
IT,η ∈ Λ are calculated in a closed-form manner as a function of
the cage geometry. The pseudocodes for η ∈ P in are presented

Example verts tris Eval (sec) Deform (sec)
Hand (11) 14K 28K 2.3 0.010Hand cage 16 28
Man (11) 32K 64K 5.3 0.024Man cage 16 28
Elk (9) 20K 41K 8.5 0.036Elk cage 35 70
Ogre (1) 62K 124K 9.98 0.044Ogre cage 35 70
Budha (15) 543K 1087K 89.1 0.395Budha cage 16 28
Armadillo (2) 173K 345K 215.5 0.930 (0.204)Armadillo cage 110 216
Raptor (10) 1000K 2000K 160.9 0.720Raptor cage 16 28

Table 1: Green coordinates evaluation and deformation times.

in Algorithms 1 and 2 for the 2D and 3D cases, respectively. In
Table 1 we give some timings for the coordinate evaluation (pre-
process) and deformation, calculated using single thread on a Core
2TM 2.4GHz, 3.5GB RAM machine.

During the online session, the deformation of the subject is ap-
plied in real-time rate. The user manipulates the cage’s geometry,
P → P ′, and the deformed geometry of the subject Λ→ F (Λ;P ′)
is immediately reconstructed via the linear sum Eq. (4). In cases
when the user manipulates only a small part of the cage (as the
Armadillo example in Figure (2), see also the table above) it is pos-
sible to further accelerate the speed of the deformation by taking
advantage of the fact that manipulation involves only a subset of
the cage’s vertices. Thus, it is more efficient to calculate the dif-
ference of the locations of each transformed point. Consequently,
if P ′, P ′′ are source and target cages, then the deformation differ-
ence η′′ − η′ = F (η;P ′′) − F (η;P ′) is a function of only the
modified faces and vertices. For example, using this method for
deforming the Armadillo model reduces the deformation time from
0.930 seconds (see the table above) to 0.204 seconds. The simplic-
ity of this online calculation (i.e., linear combinations of constant
precalculated coordinates), allows interactive deformation of huge
models. For example, the deformation of the Buddha model, which
consists of 1087K triangles, is deformed at interactive frame rates
(see the accompanying video), and the Raptor model (Figure 10),
which consists of 2000K triangles.

6 Conclusions

We have introduced the Green Coordinates for cage-based defor-
mations. The new coordinates provide shape-preserving mappings
from the space Rd into itself. For the d = 2, 3 cases, we extracted
closed-form formulas to simplify their computation. It is proved
that in the 2D case the deformations are conformal, and we show
that they extend to quasi-conformal in 3D. Furthermore, it is shown
that the coordinates can be analytically extended to the exterior of
the cage allowing the usage of partial cages.

As we showed in the paper, the deformation is not interpolatory.
This can be considered as a limitation in applications that require
interpolation of the cage’s boundary. However, a cage is defined
quite loosely around the shape, and the cage is a rather convenient
deformation tool for articulating shapes. Another issue, is the de-
formation’s computational complexity in comparison to other free-
from methods such as MVC or HC. Since GC are defined on the
faces of the cage as well as the vertices of the cage, the number of
terms in the linear sum used to calculate the deformation (4) con-



tains about three times the number of terms appearing at the vertex
based methods (2).

We would like to stress that the definition of conformal mappings
has been extensively investigated and it typically involves complex
constructions and approximate numerical solutions. Here, the target
domain is not prescribed or given as constraints. The target domain
is defined on-the-fly to resemble the geometry of a target cage. We
find it surprising that these conformal and quasi-conformal map-
pings come in such simple, closed-form formulas. We thus believe
that there are further applications for Green Coordinates beyond de-
formations. Another interesting direction for future work is to use
the added degrees of freedom in Eq. (4) to make the mapping onto
the deformed cage. Another practical direction for future research
is employing GPU techniques, such as vertex shaders, to further
accelerate the on-line deformation.
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Appendix A

In this appendix we lay out the pseudocodes for calculating Green
Coordinates in 2D and 3D for interior points Λ ⊂ P in. We note
that for exterior or boundary points one should add to these coordi-
nates the {αk} and β as explained in Section 4. Note that αk and
β also posses a simple closed-form formula employing the regular
barycentric coordinates in triangles (3D) or edges (2D).

Input: cage P = (V,T), set of points Λ = {η}
Output: 2D GC φi(η), ψj(η), i ∈ IV, j ∈ IT,η ∈ Λ
/* Initialization */
set all φi = 0 and ψj = 0

/* Coordinate computation */
foreach point η ∈ Λ do

foreach edge j ∈ IT with vertices vj1 ,vj2 do
a := vj2 − vj1 ; b := vj1 − η
Q := a · a ; S := b · b ; R := 2a · b
BA := b · ||a||n(tj) ; SRT :=

√
4SQ−R2

L0 := log(S) ; L1 := log(S +Q+R)

A0 := tan−1(R/SRT )
SRT

A1 := tan−1((2Q+R)/SRT )
SRT

A10 := A1−A0 ; L10 := L1− L0

ψj(η) :=

−||a||/(4π)
[(

4S − R2

Q

)
A10 + R

2Q
L10 + L1− 2

]
φj2(η) := φj2(η)− BA

2π

[
L10
2Q
−A10R

Q

]
φj1(η) := φj1(η) + BA

2π

[
L10
2Q
−A10

(
2 + R

Q

)]
end

end

Algorithm 1: 2D Green Coordinates algorithm.

Input: cage P = (V,T), set of points Λ = {η}
Output: 3D GC φi(η), ψj(η), i ∈ IV, j ∈ IT,η ∈ Λ
/* Initialization */
set all φi = 0 and ψj = 0
/* Coordinate computation */
foreach point η ∈ Λ do

foreach face j ∈ IT with vertices vj1 ,vj2 ,vj3 do
foreach ` = 1, 2, 3 do

vj` := vj` − η
p := (vj1 · n(tj))n(tj)
foreach ` = 1, 2, 3 do

s` :=
sign

((
(vj` − p)× (vj`+1 − p)

)
· n(tj)

)
I` := GCTriInt(p,vj` ,vj`+1 , 0)
II` := GCTriInt(0,vj`+1 ,vj` , 0)
q` := vj`+1 × vj`
N ` := q`/||q`||

I := −
∣∣∑3

k=1 skIk
∣∣

ψj(η) := −I
w := n(tj)I +

∑3
k=1NkIIk

if ||w|| > ε then
foreach ` = 1, 2, 3 do

φj`(η) := φj`(η) +
N`+1·w
N`+1·vj`

end
end
Procedure GCTriInt(p,v1,v2,η)
α := cos−1

(
(v2−v1)·(p−v1)
||v2−v1||||p−v1||

)
β := cos−1

(
(v1−p)·(v2−p)
||v1−p||||v2−p||

)
λ := ||p− v1||2 sin(α)2

c := ||p− η||2

foreach θ = π − α, π − α− β do
S := sin(θ) ; C := cos(θ)

Iθ := −sign(S)
2

[
2
√
c tan−1

(
√
cC√

λ+S2c

)
+

√
λ log

(
2
√
λS2

(1−C)2

(
1− 2cC

c(1+C)+λ+
√
λ2+λcS2

))]
return −1

4π
|Iπ−α − Iπ−α−β −

√
cβ|

Algorithm 2: 3D Green Coordinates algorithm.


