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Abstract

In recent years, the moving least-square (MLS) method has been extensively studied for approximation and recon-
struction of surfaces. The MLS method involves local weighted least-squares polynomial approximations, using
a fast decaying weight function. The local approximating polynomial may be used for approximating the under-
lying function or its derivatives. In this paper we consider locally supported weight functions, and we address
the problem of the optimal choice of the support size. We introduce an error formula for the MLS approximation
process which leads us to developing two tools: One is a tight error bound independent of the data. The second
is a data dependent approximation to the error function of the MLS approximation. Furthermore, we provide a
generalization to the above in the presence of noise. Based on the above bounds, we develop an algorithm to
select an optimal support size of the weight function for the MLS procedure. Several applications such as differen-
tial quantities estimation and up-sampling of point clouds are presented. We demonstrate by experiments that our
approach outperforms the heuristic choice of support size in approximation quality and stability.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Surface approximation,
Point clouds, Meshes, Differential quantities estimation

1. Introduction

A fundamental problem in surface processing is the recon-
struction of a surface or estimating its differential quantities
from scattered (sometimes noisy) point data [HDD∗92]. A
common approximation approach is fitting local polynomi-
als, explicitly [ABCO∗01], or implicitly [OBA∗03], to ap-
proximate the surface locally. This approach can be realized
by the moving least-squares (MLS) method, where, for each
pointx, a polynomial is fitted, in the least-squares sense, us-
ing neighboring pointsxi . This technique works well assum-
ing that the surface is smooth enough [Lev98,Wen01]. The
local polynomial fitting enables up and down sampling of the
surface [ABCO∗01], estimating differential quantities such
as normal or curvature data [CP05], and performing other
surface processing operations [PKKG03].

In recent years, the MLS technique has gained much pop-
ularity, and the method is now well studied. However, proper
choice of neighboring pointsxi to be used in the approx-
imation still remains an important open problem. Appar-
ently, there is a large degree of freedom in choosing the

points participating in the approximation since the number
of data points is usually very large, while the degree of
polynomial is usually very small. Naturally, one would like
to make use of these large degrees of freedom to achieve
the “best” approximating polynomial. Several researchers
[ABCO∗01, PGK02, PKKG03] have used different heuris-
tic approaches, such as using a neighborhood proportional
to the local sampling density measured via the radius of the
ball containing theK nearest neighbors, or using Voronoi tri-
angulation [FR01] to choose the neighboring points. In this
paper, we compare a heuristic method in the spirit of these
approaches with a new approach based on error analysis.

Since the problem of choosing the points to be used in
the approximation is closely related to multivariate inter-
polation, it is known that the choice of the points depends
on the geometry of the points, and not only their num-
ber, as in the sampling density based approaches. How-
ever, the geometric configuration of points which admits a
stable interpolation/approximation problem is a hard prob-
lem in the field of multivariate polynomial approximation
[Bos91, SX95, GS00]. Loosely speaking, a ‘stable’ points’
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Figure 1: Resampling of a noisy surface. A patch of the dragon
model (a) with additional white noise (b) is resampled with two
methods: Using the local density (heuristic) to determine the lo-
cal neighborhood yields some noticeable artifacts (c). The proposed
method, assuming the maximal value of the noise is known, faithfully
reconstruct the surface.

configuration is such that is ‘far’ from a degenerate point
configuration, where a degenerate point configuration lies
on an algebraic curve of the dimension of the interpolation
space.

Preliminary example. Consider the pointsXh =
{h(cosj2π/6,sin j2π/6), j = 0,1, ..,5}. X forms a degen-
erate point configuration for bi-variate quadratic interpola-
tion. Although this point set seems nicely distributed around
(0,0), quadratic interpolation cannot be used for approxi-
mation at(0,0), no matter how small we takeh. This can
be seen by taking, for example, the values associated with
xi ∈ Xh to be zeros and noting that bothf1(x) ≡ 0 and
f2(x) = (h2− x2

1− x2
2)/h3 solve the interpolation problem,

but | f1(0)− f2(0)| ∼ 1/h. Another phenomenon is shown in
Figure1 where a noisy part (b) of the dragon model (a) was
re-sampled using a density based heuristic (c), which caused
undesired artifacts, and in (d) the new proposed method was
used. In Figure2, another example of this kind is shown. As
elaborated in Section3.5, this configuration of points causes
amplification of the noise level in the data by a factor of
∼ 10 when using MLS to approximate the surface value at
the red point in (b), and a factor of∼ 100 when this point
configuration is used to approximate∂x f at that point. The
resulting approximations, i.e., point evaluation (c), and nor-
mal approximation (e), are useless at this point. Using the
new approach presented here yields bounded errors which

(a) (b)

(c) (d)

(e) (f)

Figure 2: An example of the amplifying effect of noise in the
data. In (a) the ‘true surface’, i.e., a plane, and the sampled
points with white noise errors of maximal magnitude0.015.
In (b), the sample data (blue) and a red point where an ap-
proximation is sought. The black circle indicates the points
used by the heuristic method. In (c) the surface reconstructed
by this heuristic, note that the high peak is created at the
place indicated by the red point in (b). In (d) the proposed
algorithm for neighborhood was used. In (e) surface (plane)
normals were estimated using the heuristic algorithm and in
(f) the normals were estimated using the new proposed algo-
rithm. We used approximation by quadratics, i.e., N= 2.

don’t exceed much the initial noise level in the data, see (d)
and (f).

Recognizing that there are no simple nor intuitive rules
which distinguish ‘bad’ point sets from ‘good’ point sets for
approximation at a given point, we take a different route to
decide which neighbors should be used in the approxima-
tion process: We introduce an error formula which provides
means to understand and to evaluate the approximation qual-
ity of MLS approximation. From it, we derive two tools. The
first, is a tight bound independent of the data, assuming only
that the local corresponding derivatives of the function are
bounded. The second is a data dependent approximation to
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the error function of the MLS interpolant. We examine the
practical usage of these tools and compare them to a care-
fully chosen heuristic method.

Based on the above bounds, we develop an algorithm to
select an optimal radial neighborhood for the MLS proce-
dure. Loosely speaking, since the underlying surface from
which the sampled points are taken is unknown, the opti-
mality of the chosen neighborhoods is in the sense of the
approximation error having the lowest error bound.

MLS approximations are used in a variety of cases, but the
problem is always reduced to the functional case, by defining
some parameter domain [Lev03, ABCO∗01]. Thus, for the
error analysis, it is enough to consider the functional case.

We develop the various theoretical error terms and bounds
in Section3, and based on these results, in Section4, we
introduce an algorithm for selecting the optimal neighbor-
hood. In Section5 we derive a heuristic rule which we use
for comparison. In the following section, we briefly describe
the MLS technique, and define the terms and notation to be
used in the paper. In Section6 we present some numerical
experiments, and in Section7 we conclude.

2. Background

Surfaces or 2-manifolds embedded inIR3 are most com-
monly represented by a set of spacial points, with neighbor-
ing relations (meshes) or without (point clouds). A common
way to estimate the value of the surface in a new point, or
to estimate differential quantities of the surface at any point,
is by fitting a local polynomial and extracting it’s value or
derivatives.

In order to reduce the problem to the functional case a
local parameter plane is constructed, and the local polyno-
mial is defined over this parameter space. Eventually, one
ends up with the problem of fitting a polynomialp ∈ Π,
where Π is some polynomial subspace, given data points
(xi , f (xi)) ∈ Ω× IR, i = 1, .., I , whereΩ is a domain inIRd.
The goal is to approximate a functionalLx at a pointx∈ Ω,
whereLx can be a function evaluation atx or a derivative
evaluation, e.g.,Lx( f ) = f (x) or Lx( f ) = (∂xy f )(x). A com-
mon way to do it is by fitting the polynomial locally in the
least-squares sense:

min

{
I

∑
i=1

( f (xi)− p(xi))
2 w(‖xi −x‖) , p∈ Π

}
, (1)

wherew(r) is a radial weight function. When the minimizer
polynomial p is achieved, the approximation functionalLx

is applied to it to form the approximation

Lx( f )≈ Lx(p). (2)

As showed in [Lev98],

Lx(p) =
I

∑
i=1

ai f (xi),

whereai are the solution to the constrained quadratic mini-
mization problem{

min
I

∑
i=1

w(‖x−xi‖)−1|ai |2 s.t.
I

∑
i=1

ai p(xi) = p(x), ∀p∈ Π

}
.

The weight functionw is usually chosen to ensure fast decay
of the magnitude of theai for points distant from the evalu-
ation pointx. The decay rate is heuristically chosen to be as
fast as possible while keeping enough points in the signifi-
cant weights area to keep the problem well-posed. Further-
more, a smooth weight function implies smooth approxima-
tion. In this paper we have chosen to use the weight function
of finite support [Lev98], w(r) = wh(r), where

wh(r) = e
− r2

(h−r)2 χ[0,h)(r). (3)

The main objective of this paper is to present an algorithm
for choosing the support sizeh which best assures a mini-
mal approximation error using the procedure (1)-(2). This is
accomplished in two independent ways: First by minimiz-
ing a novel, tight, local error bound formula. This procedure
also supplies a bound on the error which is achieved in the
approximation process, given that a bound on local corre-
sponding derivatives off is known. Second, a novel approxi-
mation of the error in the MLS approximation is constructed,
and the best support sizeh is chosen as before. The latter
generally performs better than the former.

3. Error analysis
3.1. Settings

The settings of the problem consists of a data set(xi , f (xi)),
X = {xi}I

i=1 ⊂ Ω ⊂ IRd, sampled from a smooth function
f ∈ Ck(Ω), and another pointx where an approximation
Lx f = Dα f (x), whereDα = ∂α1

x(1) · ... ·∂
αd

x(d) , is sought. Denote
by N the degree of the polynomials used as the approxima-
tion space.J =

(N+d
d

)
is the dimension of the spaceΠN of d-

variate polynomial of degreeN. Also definep1, p2, ..., pJ ∈
Π to be the standard basis ofΠN shifted to x, that is,
{(· − x)α}|α|≤N, where we use the multi-index notation
α = (α1, ...,αd), α! = α1! · ... ·αd!, |α|= α1 + ...+αd, and
for x = (x(1), ...,x(d)) xα = (x(1))α1...(x(d))αd . We also de-
fine the generalized Vandermonde matrixE by Ei,β = pβ(xi),
i = 1, .., I , |β| ≤ N.

Denote the subsetXh = X∩Bh(x), whereBh(x) denotes a
ball of radiush with centerx, and letI = |Xh|, the number
of data points inBh(x). Then, for a fixedh, we define the
approximationDα f (x)≈Dα p(x), wherep∈ΠN, is defined
by (1), andw = wh defined by (3).

Let us introduce some test functions. The first one is taken
from [Fra82],

F1 =
30
4

e−
(9x+5)2+(9y+5)2

16 +
30
4

e−
(9x+11)2

196 −
9y+11

20 (4)

+
10
2

e−
(9x−5)2+(9y+3)2

16 − 10
5

e−
(9x+1)2+(9y−5)2

4 .
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(a) (b) (c)

Figure 3: The test function used in the paper. (a) is the graph of
F1, (b) of F2 and (c) of F3.

F2 = 0.3cos(8x)sin(6y)+e−x2−y2

. (5)

F3 = cos(20x). (6)

In Figure3, we plotted the graphs of these test functions.
These functions were selected since they seem to represent
well several smooth surface types:F1 is a standard test func-
tion and has been used in numerous papers.F2 has interest-
ing ’details’, andF3 is an anisotropic surface with very high
derivatives.

3.2. Pointwise error in the MLS approximation

In this section we lay out the formula for the error in the
MLS approximation which forms the basis for all latter de-
velopments in the paper:

Theorem 3.1Denote byp the fitted polynomial defined by
(1) to the data(Xh, f (Xh))⊂Ω× IR, sampled from a smooth
function f ∈CN+1(Ω), then forx∈ Ω,

R(x) = Dα p(x)−Dα f (x) = (7)

α!
(N+1)! ∑

i,ν
Dν f (ηi(xi −x)+x)(xi −x)ν det

(
EtWEα←ei

)
det(EtWE)

where∑i,ν stands for∑|ν|=N+1 ∑I
i=1, 0≤ ηi ≤ 1, andE is

the Vandermonde matrixEi,β = pβ(xi). Eα←ei denotes the
matrix E where theα column is replaced by the standard
basis vectorei = δ j,i . The weight matrixW is defined by
W = diag(wh(‖x1−x‖), ...,wh(‖xI −x‖)).

Proof. The proof relies on the polynomial reproduction prop-
erty of the Least-Squares method and is based upon local
Taylor expansions as approximations off .

First, w.l.o.g, we may assumex = 0. Denote byp1, ..., pJ
the standard basis of the multivariate polynomials of degree
≤N, that ispα(x) = xα, |α| ≤N. Next, writingp= ∑β cβ pβ,
leads to

Dα p(0) = ∑
β

cβDα pβ(0) = ∑
β

cβα!δα,β = α!cα.

The multivariate Vandermonde matrixE is ordered by the
multi-indexβ, i.e.,Ei,β = pβ(xi), as we do also for the vector
c = {cβ}|β|≤N of the unknown coefficients. The fitted poly-
nomial p is then defined as the solution in the least-squares

sense. That is,c satisfies the normal equations:

EtWEc= EtWF. (8)

Using Taylor expansion,

f (xi) = ∑
|ν|≤N

Dν f (0)
ν!

xν
i +

1
(N+1)! ∑

|ν|=N+1

Dν f (ηixi)x
ν
i ,

where 1≤ ηi ≤ ν. Hence, the vectorF can be written as

F = ∑
|ν|≤N

Dν f (0)
ν!

Eν +
1

(N+1)! ∑
|ν|=N+1

QνEν,

where Qν = diag(Dν f (η1x1), ...,Dν f (ηI xI )), and Eν de-
notes theν column vector of matrixE. Then, For the solution
of (8) we have,

cν =
Dν f (0)

ν!
+

1
(N+1)!

(
∑

|ν|=N+1

(EtWE)−1EtWQνEν

)
ν

.

Next, EtWQνEν = ∑I
i=1(E

tW)iD
ν f (ηixi)pν(xi), with

pν(xi) = xν
i , and by Cramer’s rule and the linearity of the

determinant
(
(EtWE)−1EtWQνEν

)
ν

=

I

∑
i=1

Dν f (ηixi)x
ν
i

det(EtWEν←ei )
det(EtWE)

.

Finally we get forν = α, α!cα−Dα f (0) =

α!
(N+1)! ∑

|ν|=N+1

I

∑
i=1

Dν f (ηixi)x
ν
i

det(EtWEν←ei )
det(EtWE)

,

where|ν|= N+1 andi = 1, ..,n.

Corollary 3.1 Denote byp the fitted polynomial defined by
(1) to the data(Xh, f (Xh)) ∈ Ω ⊂ IRd × IR, sampled from a
smooth functionf ∈CN+1(Ω), then the following is atight
error bound,

|R(x)| ≤ α!C
(N+1)! ∑

i,ν
|xi −x|ν

∣∣∣∣∣det
(
EtW(E)α←ei

)
det(EtWE)

∣∣∣∣∣ ,
whereC is the bound: max|ν|=N+1,x∈Ω |Dν f (x)| ≤C.

3.3. Data Independent Bound

For a given support sizeh, an error bound for the polynomial
fitting procedure based on the dataXh can be calculated via
the tight bound in Corollary (3.1). We define the bounding
functionBα by

Bα = Bα(x,Xh) =
α!

(N+1)! ∑
β,i

|xi −x|β |det(EtWEα←ei )|
|det(EtWE)| ,

(9)
where, as before,∑i,β is a short notation for∑|ν|=N+1 ∑I

i=1.

>From the computational point of view, in order to com-

pute (9), we note that
det(EtWEα←ei )

det(EtWE) is theα coordinate of
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the solution to the linear system:

EtWEc= (EtW)i ,

where (EtW)i denotes thei-th column of matrix EtW.
Therefore, in the calculation of (9), one should calculate the
solutionV to ETWEV= EtW, and then set

Vα,i =
det(EtWEα←ei )

det(EtWE)
. (10)

Then formula (9) reduces to,

Bα(x,Xh) =
α!

(N+1)! ∑
β,i

|xi −x|β|Vα,i |. (11)

3.4. Data dependent error approximation

In this section we construct a data dependent approxima-
tion to the error function in the MLS approximation for
f ∈ CN+2(Ω). This error approximation uses the known
values at the pointsXh in order to better approximate the
error in the approximation (7). In particular we note that
Dν f (ηi(xi−x)+x) = Dν f (x)+O(h), for |ν|= N+1, where
h is the support size used. Therefore, Eq. (7) can be written
as:

R(x) =
α!

(N+1)! ∑
i,ν

Dν f (x)(xi −x)νVα,i +O(hN+2−|α|).

The idea is to improve the error estimate by approximat-
ing the unknown valuesfν = Dν f (x), |ν|= N+1. Such ap-
proximations can be derived by using the error formula at
pointsxk nearx: We have

p(xk)− f (xk) = R(xk) =
α!

(N+1)! ∑
ν

fν

(
∑
i
(xi −xk)

νVk
α,i

)
,

(12)
where Vk

α,i are defined similar toVα,i in (10), using the
shifted basis{(· − xk)

α}|α|≤N. The points{xi} are taken
from a ball of radiush= 3hJ centered atx, wherehJ denotes
the radius of the ball which contains theJ nearest points to
x. The points{xk} are taken as the 2J nearest points tox.
The system (12), of 2J equations andN +2 unknownsfν is
solved in the least-squares sense.

Plugging the resulting estimated valuesfν into the error
bound (7) we get an approximation of the error term:

R̃α = R̃α(x,Xh) =
α!

(N+1)! ∑
i,ν

fν(xi −x)νVα,i .

This error approximation incorporates the given data values,
and as shown in Section6, in practice it approximate the ac-
tual error better than the tight bound described in Section
3.3. In Figure4, we demonstrate the high similarity of the
approximated error functioñRα to the true error function
R. We used in this example the test functions introduced in
Eq. (4)-(6).

A drawback of this approach that it is not a bound, but
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Figure 4: Comparison between the true error R graphs (blue), and
the approximated error̃R graphs (green) when using quadratics to
approximate the test functions using a uniformly distributed random
point set. In each graph the x-axis stands for the support size h. In
(a), the function F1 has been used to create the data set, where the
density of the points used was0.25k points per unit square. In (b)
the density is1k points per unit square, and in (c)25k points per unit
square. In (d)-(f) function F2 has been used. In (g)-(i) function F3,
and since all it’s third derivatives vanish at the point of evaluation
(origin) , the approximation is bad. Using third degree polynomial
in (j)-(l) alleviates the problem. Also perturbing the evaluation point
by0.05 in the x coordinate (m)-(o) alleviates the problem.

merely an approximation of the error function, and it de-
pends on the quality of the approximation of the coefficients
fν. In the presence of very high derivatives and low sam-
pling density it can perform worse than the data-independent
bound. Another drawback appears at points where all the
derivatives of orderN + 1 vanish. Then, the approximation
of the error function may be damaged, see Figure4. If we
have a prior knowledge about such a point, the problem can
be avoided by perturbing the interest point a little, or using
higher degree polynomialN′ (assuming theN′ + 1 deriva-
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tives do not all vanish at that point), in Figure4, where all the
third derivatives ofF3 vanish at the origin (the point of inter-
est in that example) the approximation of the error function
is quite inaccurate, however using third degree polynomial
or moving the point of interest a little alleviates the problem.
The reason of this phenomenon lies in the fact that the sign
of the coefficientsDν f (ηi(xi−x)+x) are likely to change in
the vicinity ofx, hence the error function is highly dependent
on the values ofηi .

3.5. Noisy Data

In this section we extend our previous error bounds and ap-
proximations to optimally handle errors (noise) in the sam-
pled data. We assume that errorsεi , where|εi | ≤ ε are in-
troduced into the data, that is,f ∗(xi) = f (xi)+ εi , where f
stands for the ’true’ sampled function.

It then follows,as in Theorem3.1, that

R∗(x) = R(x)+α!
I

∑
i=1

εiVα,i ,

where R∗(x) = Dα p(x)− Dα f ∗(x) and R(x) is given in
Eq. (7). Hence,

|R∗(x)| ≤ |R(x)|+α!ε
I

∑
i=1

|Vα,i |. (13)

Note that this bound is again tight since no assumption can
be made on the signs ofεi nor their magnitude, except that
|εi | ≤ ε.

In Figure2, using the points inside the black circle (b),
which are chosen by the heuristic method, in the MLS ap-
proximation leads to∑I

i=1 |Vα,i | ≈ 15 forα = (0,0) and≈ 99
for α = (1,0). Hence, we can suspect that the noise level in
the data might be amplified by these factors when approxi-
mating the value or the partial derivative∂x at the red point,
respectively. Indeed, thetrue error in the function evalua-
tion is∼ 9ε and the error in the derivative approximation is
∼ 106ε. Minimizing the bound (13) imply choosing a big-
ger support size in this case, which results in∼ 0.17ε and
∼ 3.3ε error in approximation of the value and derivatives
respectively. In section3.6we discuss another aspect of the
error amplification phenomenon.

Next, we integrate the sampling error term into the former
error terms. First the data dependent approximation,

|R∗(x)| � |R̃(x)|+α!ε
I

∑
i=1

|Vα,i |,

where� stands for≤ up to a term of magnitudeO(h).
Therefore, we denote our approximated error in the approx-
imation:

R̃α,ε(x,Xh) = |R̃α(x,Xh)|+α!ε
I

∑
i=1

|Vα,i |. (14)

For the data-independent bound:

|R∗(x)| ≤C|Bα(x,Xh)|+α!ε
I

∑
i=1

|Vα,i |.

SinceC is unknown, this bound is better presented if we con-
sider relative error, i.e.,f (xi) = f ∗(xi)(1+ εi). In this case
by similar consideration as before, the tight error bound in
the presence of noise in the data becomes:

|R∗(x)| ≤C

(
|Bα(x,Xh)|+α!ε

I

∑
i=1

|Vα,i |

)
, (15)

whereC bounds the relevant derivatives and the function val-
ues. In practice we considered the term in the parentheses as
the function to be minimized in the presence of noise in the
data:

Bα,ε(x,Xh) = |Bα(x,Xh)|+α!ε
I

∑
i=1

|Vα,i |. (16)

3.6. A Confidence Measure

By Corollary3.1and Eq. (15) we have that

|Dα p(x)−Dα f (x)| ≤CBα,ε(x,Xh),

whereC bounds certain derivatives of the unknown function.
Therefore, if we assume that the unknown function is suf-
ficiently smooth with bounded derivatives,Bα,ε(x,Xh) fur-
nishes a tool which justifies an approximation result. It can
be understood as aconfidence measureof the ability of a
given set of pointsXh to approximateDα f (x). As an exam-
ple of this application, assume we want to approximate local
curvatures on a mesh. A common way to do it is fitting a
local polynomial at each vertex using it’s 1 or 2-ring neigh-
borhood, extracting it’s derivatives and using some standard
classical differential geometry formula. As an easy exam-
ple, suppose we want to approximate∂xx at the vertices of a
sphere mesh. We use a sphere since we know its derivatives
are bounded and are the same everywhere on the sphere,
w.r.t the local frame. We define the parameter domain to
be the plane perpendicular to the weighted average of the
adjacent face’s normals. Figure5 shows a coloring of the
sphere mesh, using the two parts of the tight error bound
factor (16): In (a), the bound of the error factor caused in the
approximation,|Bα(x,Xh)|, and in (b) the bound of the er-
ror factor related to the noise in the data:α! ∑I

i=1 |Vα,i |. Note
that the latter means that if one of the 1-ring neighborhoods
contains noise in the direction of the normal of the parameter
plane, the errors in the approximation might be multiplied by
this factor. In this case we see that even ’nice’ 1-rings of the
sphere might cause∼ 100 times bigger errors than the noise
level of the data. In (c) it is shown that irregular triangulation
may yield much higher errors.

4. Optimal neighborhoods

In this section we present an algorithm, which finds the op-
timal support size ,hopt, which should be used in the ap-
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Figure 5: Color maps of the confidence measures for approximat-
ing ∂xx using quadratic polynomial fitted in the least-squares sense
to the 1-ring neighborhoods on a sphere mesh. In (a) the (tight)
error bound factor Bα caused in the approximation, for non-noisy
data. In (b) the factors which multiply the noiseε in the data. Note
that small noise level in the data may still cause∼ 100times bigger
errors in the approximation. (c) is the same as (b) for an irregular
sphere mesh.

proximation procedure (1)-(2) to ensure minimal error. We
base our algorithm on the error analysis presented in for-
mer sections, i.e., equations (14) and (16). More specifically,
for a givenX,α,N and a point where the approximation is
sought,x, we look for the optimalh, which we denote by
hopt, which minimizes the bound or the approximation of
the error|Dα f (x)−Dα p(x)|.

4.1. Finding an Optimal Support Size

We use the same algorithm for both bounds (14) and (16).
We look for the support sizeh which minimizes the bound
function EBα(x,X,h), where for brevity we will use the
symbolEBα for both bounds.

We fix an upper and lower boundsHmin,Hmax for h
,e.g., Hmin could be set tohJ (which is defined in Sec-
tion 3.4) and Hmax to some large support size radius, we
used for example 4hJ. A rough step size∆ is set, e.g.,
we used|Hmax−Hmin|/50, and the algorithm traverseh =
Hmin,Hmin+ ∆, ...,Hmax where for eachh the algorithm cal-
culates the error bound functionEBα, for the data points
Xh. Next, after extracting the minimizing support size ra-

diush(0)
opt = argminh=Hmin+ j∆{EBα(x,X,h)}, we further im-

prove the approximation tohopt by fitting an interpolating

quadratic nearh(0)
opt and minimize it to defineh(1)

opt. We iterate

this procedure until|h(k+1)
opt −h(k)

opt| ≤ tolerance. In our appli-

cation we actually minimizedEB2, for faster convergence.

For efficient computation the following considerations are
employed. First we move the origin tox, i.e., we use the
pointsxi := xi −x ,i = 1, .., I . Second, we rearrangexi ∈ X∩
BHmax(0) with respect to their distance from 0 (x), where now
the sub-indexi is with respect to this ordering. IfE is the
Vandermonde matrix based on the data pointsx1, ...,xI , then
the matrixE′ for the data pointsx1, ...,xI+1 can be written
asE′i, j = Ei, j for i ≤ I andEI+1, j = p j (xI+1). This implies
that whenh changes to include a new pointxI+1 in Xh, we
only need to add a single row to the previous Vandermonde
matrixE, to construct the Vandermonde matrix forXh.

Note that if we have calculated the bound for the data
points x1, ...,xI , then the quantity∑|β|=N+1 |xi |β for i =
1, .., I should be re-used and the only new calculation that
should be performed is∑|β|=N+1 |xI+1|β. Taking into con-
sideration all the above remarks, whenh is changed to in-
clude a new point, the most time consuming part of the cal-
culation consists of factorization ofJ× J matrix (for exam-
ple for quadratic interpolation we haveJ = 6), and back-
substitution forI vectors (the matrixEtW), this leads to an
O(J3 +J2I) complexity for each step of the algorithm. This
is multiplied by the number of iterations of the algorithm,
which in our implementation is≤ 100. In the case of using
the data dependent bound, there is a preprocess step of solv-
ing for the coefficientsfν as explained in Section3.4. The
computational cost of this step isO(J4 +J3I).

An important consequence of the above procedure is that
sinceV is calculated anyway, we actually get for no sig-
nificant extra calculations the bound of the error for anyα,
|α| ≤ N, that is, the bound for every possible derivative (and
value) approximation.

It should be noted that to get consistenth values,
we take the first global minimum (if there is more than
one zero). Another delicate point, is that the parameter
valuehmin of the minimum ofEBα(x,X,h), i.e., hmin(x) =
argminh{EBα(x,X,h)}, is a piecewise smooth function of
x if the neighborhoods used in the approximation offν are
smoothly chosen. This implies that the MLS approximation,
based on thish field, is only piecewise smooth.

4.1.1. Integrating with the MLS projection operator

All the previous construction dealt with a function over a pa-
rameter space. When dealing with a point cloud there is no
natural choice of such space. A popular method for choos-
ing this space in the case of surfaces is the MLS projection
operator [Lev03,ABCO∗01,PKKG03,AK04]. After choos-
ing the parameter space, in this case a plane, we are back to
our original functional settings, with a minor difference: the
distance to the neighboring points is measured using their
actual position in space and not their projection on the pa-
rameter space, i.e.,p is defined by minimizing

I

∑
i=1

( f (xi)− p(xi))
2 ηh(‖(xi , f (xi))− (x,z)‖),

where(x,z) is chosen by the first step of the MLS projection.
This small change can be easily incorporated in our system,
one just have to redefine the way distances are measured. We
have integrated that into our system and noticed two interest-
ing results: For the test functionF1,F2 the results were sim-
ilar to the algorithm which measured the distance on the pa-
rameter space (results are demonstrated in Section6). How-
ever, In the case of data taken fromF3, since the function is
rapidly oscillating, the new distance measure is likely to pre-
fer points from other periods and not from close parameter
values, and the approximation quality deteriorates.
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density Lx f N ε H̄ σ(H)
.25k f (x) F1 2 0 2.24 0.74
.25k f (x) F2 2 0 2.15 0.73
1k f (x) F2 2 0 2.1 0.69
1k f (x) F1 2 0 2.3 0.75
1k f (x) F1 3 0 1.88 0.57
1k ∂x f (x) F1 3 0 2.28 0.74
4k ∂xy f (x) F2 3 0 2.06 0.74
.5k f (x) F3 2 10−2 2.41 0.77
.5k f (x) F3 2 10−4 2.35 0.77
.5k ∂x f (x) F2 2 10−5 2.25 0.8

Table 1: Experiments results used to derive the heuristic support
size rule.

5. Heuristics

In this section we present the derivation of the heuristic
method for choosing a support sizeh, which we later use
for comparison with the optimal choice. The method is de-
rived by experiments, in the following way: We consider the
trueerror of our MLS approximation procedure as a function
of the support size usedh. We leth vary from it’s minimal
value, i.e., the radiushJ of the ball containing theJ nearest
neighbors up to 4 times this radius. It is observed that the
minimum can be predicted as a certain constant timeshJ.
The heuristic is based on finding the right constant, and we
do it by extensive simulation. We define the random variable

H =
hbest

hJ
,

wherehbest stands for the true optimal support size, i.e., the
support size which minimizes the true error function in the
interval [hJ,4×hJ]. In table1, we specify several measure-
ments ofH, in particular we consider different test functions
(4)-(6), point densities, noisy and non-noisy data, quadratic
and cubic polynomial and different functionals. The den-
sity specify the number of data points per unit square.H
was sampled in a grid inside the domain[−1,1]× [−1,1].
The meanH̄ and standard deviationσ(H) are computed. In
general the results of the different scenarios are similar: the
H̄ is approximately 2.2 andσ(H) is generally around 0.75.
Therefore, our heuristic choice of support size to be used in
the MLS approximation ish = 2.2hJ.

A similar heuristic for choosing the support sizeh may
be obtained by using the error boundBα, as follows: For a
given distribution of data points near the origin we find the
optimalh minimizing Bα, and computehopt/hJ. Averaging
these ratios over many randomly chosen distributions of data
points, we obtain for example, an average ratio∼ 1.9 for
quadratic polynomial approximation of the function value,
N = 2, α = (0,0), and ratio∼ 2.4 for N = 2, α(1,0) with
noise level of 10−5. Another option is to compute a different
rule for each noise levelε, but we didn’t pursue this direc-
tion.
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Figure 6: An example of data set with irregular density. We used
quadratic polynomials in the MLS approximation, and resampled in
the drawn rectangle (a). In (b) the error resulted using the heuristic
support size h. In (c) the optimal h has been used. The error ratio
E1 is 0.37.
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Figure 8: An example of uniformly distributed data set sampled
from F1. We used cubic MLS approximation, and resampled in the
drawn region (a). In (b) we display the error resulting using the
heuristic support size. In (c) the error using the optimal support
size. Note the errors at the boundaries. The error ratio E1 is≈ 0.22.

6. Numerical experiments

In this section we present numerical experiments performed
with the algorithms described in the Section4. We compare
the algorithm for choosingh by minimizing the error bound
(16), or the approximation of the error function (14), to the
heuristic approach described in Section5. In general the
method based on the data dependent approximation works
best, and the method based on the tight bound works slightly
better than heuristic method.

We have tested our algorithm in the following three main
scenarios: 1. Uniform distributed points. 2. Data with noise.
3. Irregular distributed points (change in density). In our ex-
periments we use quotient of the 1-norms as a measure of
error:E1 := ‖Eopt‖1/‖Eheu‖1, andE′1 := ‖Ebnd‖1/‖Eheu‖1.
We denote byEopt the error of the MLS algorithm using the
support sizeh determined by data dependent error approxi-
mationR̃, byEbnd we denote the error of the algorithm when
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Figure 7: An example of data set sampled from F1 with irregular density (a). We used quadratic MLS approximation, and resampled in the
drawn region (a). In (b) (zoom-in in (d)) the reconstructed surface using the heuristic support size. In (c) (zoom-in in (e)) optimal h has been
used. The resulting error ratio E1 is≈ 0.34.
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Figure 9: A very noisy point cloud data (a), for quadratic MLS surface reconstruction. The point cloud was sampled with white noiseε = 10−1

from F1. In (b) the reconstructed surface (zoom-in in (d)) using the heuristic method, and in (c) (zoom-in in (e)) using the data dependent method.
(f) and (g) are the corresponding error graphs.

using the data-independent boundBα, and byEheuwe denote
the error when applying the heuristic approach of choosing
theh.

f density E1 E′1
F1 0.25k 0.46 0.86
F1 1k 0.32 0.87
F1 25k 0.16 0.82
F2 0.25k 0.53 0.84
F2 1k 0.38 0.86
F2 25k 0.19 0.87
F3 0.25k 0.74 0.82
F3 1k 0.52 0.89
F3 25k 0.26 0.89

Table 2: Experiments with uniform distributed data and no noise.

Table 2 shows a comparison of the two error analysis
based methods to the heuristics, in the case of no noise and
uniform distributed points. The approximated functional is
point evaluation, i.e.,Lx( f ) = f (x), and the degree of the
polynomial space isN = 2. In each experiment a new uni-
formly distributed data points where taken and the 1000
query points where randomized. The density specify, as be-
fore, the number of data points per unit square. Note that
method based on the data dependent approximation per-
forms the best, and improves as the density increases. The

method based on the data independent bound is working
slightly better than the heuristic. In Figure8, we show the
error graphs when resampling using cubic (N = 3) MLS for
uniformly distributed data (a), by the heuristic method (b), or
by the data dependent method (c). Note that the errors near
the boundaries are lower with the latter method.

Table3 exhibits a similar comparison between the meth-
ods for noisy data, approximating various derivative func-
tionals. Figure9, shows a resampling ofF1 contaminated
with high noise level (ε = 0.1) (a), by the heuristic method
(b), zoom-in in (d). Similarly (c),(e) exhibits the above cases
when using the method based on the data dependent approx-
imation.

Figures6, 7, exhibit experiments using data set with irreg-
ular density. Figure6 examine the resampling algorithm in
region (a) in the vicinity of a high density region. (c) shows
the error graph of the heuristic method. (d) is the error graph
of the method based on the data dependent approximation.
Similarly, Figure7, shows another configuration of irregular
point density (a), which may present itself at scanned point
clouds. The reconstructed surfaces are drawn in (b) and (c)
and zoom-in at (d),(e).

In Figures1, 10, we show reconstruction results with
scanned data. We compare the heuristic approach to the data-
dependent error approximation approach. In Figure1 we
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Figure 10: Resampling part of a raw point cloud of the Bunny
taken from the Stanford 3D Scanning Repository (a). The result us-
ing a quadratic MLS approximation with the heuristic approach to
determine the local support size is shown in (b). The artifacts ap-
pearing in (b) are removed by using the approach based on the data
dependent error approximation, as shown in (c) (usingε = 10−5).

added noise to the data, while in Figure10we used the orig-
inal raw data, and assume error at maximal sizeε = 10−5.

f density N Lx ε E1 E′1
F1 1k 3 ∂xy 10−2 0.32 0.31
F2 11k 3 ∂x 10−4 0.62 0.71
F1 1k 3 ∂y 10−5 0.61 2.53
F2 1k 2 f (x) 10−1 0.63 0.6

Table 3: Experiments with noise.

7. Conclusions

In this paper we consider the problem of evaluating the ap-
proximation quality of the MLS method, and we derive an
algorithm which finds the best support size to be used in the
approximation. Two methods based on a novel error formula
in the MLS approximation were considered: One, based on a
conservative tight bound, and second, based on a data depen-
dent approximation to the error function in the MLS approx-
imation. In the process, we have carefully chosen a heuristic,
based on the observation that the ratio of the optimal support
sizehbest and the radius of the ball containing theJ nearest
neighborshJ, can be fairly well predicted by the constant
∼ 2.2.

Comparing our error analysis based methods to the heuris-
tic shows that the method based on the tight bound performs

slightly better than the heuristic in presence of very small
and very large noise levels. The method based on the data de-
pendent approximation works generally better than the other
methods, and achieves the best approximation and stability
properties.
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