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Abstract

We introduce a rigid motion invariant mesh representation based
on discrete forms defined on the mesh. The reconstruction of mesh
geometry from this representation requires solving two sparse lin-
ear systems that arise from the discrete forms: the first system de-
fines the relationship between local frames on the mesh, and the
second encodes the position of the vertices via the local frames. The
reconstructed geometry is unique up to a rigid transformation of the
mesh. We define surface editing operations by placing user-defined
constraints on the local frames and the vertex positions. These con-
straints are incorporated in the two linear reconstruction systems,
and their solution produces a deformed surface geometry that pre-
serves the local differential properties in the least-squares sense.
Linear combination of shapes expressed with our representation en-
ables linear shape interpolation that correctly handles rotations. We
demonstrate the effectiveness of the new representation with vari-
ous detail-preserving editing operators and shape morphing.

Keywords: rigid-motion invariant shape representation, local
frames, mesh editing, shape blending

1 Introduction

In this paper we introduce a rigid motion invariant mesh represen-
tation. The new representation describes the surface by its local
properties, while filtering out the global spatial location and orien-
tation. The representation consists of two discrete forms defined
directly on the mesh. Reconstructing mesh geometry from locally
defined quantities is a fundamental mechanism which allows edit-
ing a mesh while preserving its local appearance under some global
constraints or boundary conditions. The focus here is on the local
surface details rather than the spatial embedding.

Our mesh representation implicitly defines a local frame at each
vertex, where the discrete forms encode the changes between adja-
cent frames. The key point is that the transitions between adjacent
frames are expressed in relative coordinates. This relative encoding
does not contain any global information that depends on the posi-
tion and orientation of the mesh. The choice of local frames can
be arbitrary. However, we define them analogously to the adapted
frames [O’Neill 1969] or Cartan’s moving frames [Guggenheimer
1963; Stoker 1989], that is, such that the third vector in the frame
triplet is the normal to the surface. Such a definition enables intu-
itive decomposition of the representation into normal and tangential
components.

The reconstruction of local frames from the discrete forms is ex-
pressed as a sparse linear system of equations. The global surface
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coordinates are obtained from the local frames by integration, also
expressed as a solution of a linear system. We demonstrate that pos-
ing additional constraints, guided by interactive manipulation of the
mesh, defines linear least-squares systems for surface editing. Us-
ing advanced numerical solvers allows interactive reconstruction.

The main contributions of this paper are:

• A rigid-motion invariant mesh representation based on dis-
crete forms defined at each vertex.

• A linear surface reconstruction scheme that restores the geom-
etry from the discrete forms.

• An interactive editing mechanism that strives to preserve lo-
cal differential properties based on the surface reconstruction
method.

• A linear shape interpolation technique which minimizes elas-
tic distortion.

1.1 Related work

Interactive mesh editing is becoming a prominent field in geomet-
ric modeling due to the abundance of surface data in the form of
irregular triangular meshes, originating mainly from 3D scanning
devices. In the past years several mesh editing techniques were in-
troduced [Zorin et al. 1997; Kobbelt et al. 1998; Guskov et al. 1999;
Lee 1999; Bendels and Klein 2003; Botsch and Kobbelt 2004; Lip-
man et al. 2004; Sheffer and Kraevoy 2004; Sorkine et al. 2004; Yu
et al. 2004; Zayer et al. 2005]. The main goals of interactive edit-
ing tools are an intuitive interface and preservation of surface de-
tails. Multiresolution approaches [Zorin et al. 1997; Kobbelt et al.
1998; Guskov et al. 1999; Botsch and Kobbelt 2004] enable detail-
preserving deformations by decomposing the surface into several
frequency bands. Roughly speaking, details are defined as the dif-
ferences between successive levels in the multiresolution hierarchy,
and are encoded with respect to the local frames of the lower level,
in a rotation-invariant manner.

Some multiresolution techniques [Kobbelt et al. 1998; Botsch and
Kobbelt 2004] work on a two-band decomposition: the smooth base
mesh and the details, encoded in the local frames of the base mesh.
This approach can be viewed as equivalent to the recent meth-
ods that work directly on the original mesh [Lipman et al. 2004;
Sorkine et al. 2004; Yu et al. 2004]. The latter methods define de-
tails in a more implicit way, and do not require explicitly setting
the smooth base level; on the other hand, the local frame orienta-
tion then needs to be handled explicitly. These methods strive to
preserve certain differential properties, such as the discrete Lapla-
cians [Lipman et al. 2004; Sorkine et al. 2004] or the gradients
of the mesh coordinate functions [Yu et al. 2004]. These differ-
ential entities are vectors encoded in the global coordinate system
this time, and therefore the main challenge of these techniques is
to correctly modify the local frames to accommodate user-defined
constraints and deformations. This is done by implicitly including
a linearized version of the local frame transforms in the Laplacian
fitting formulation [Sorkine et al. 2004], by explicitly assigning the
local frames by propagating the user-defined transformation of the
handle [Yu et al. 2004] or heuristically approximating the local rota-
tions [Lipman et al. 2004]. In [Zayer et al. 2005] the transformation
of the handle is interpolated over the mesh by using harmonic fields,



defined via the same Laplacian operator that is used in the editing
operation itself.

The inherent problem of the above methods is that the local quanti-
ties, which constitute the surface representation, are not rotation
invariant, and thus local rotations must be explicitly handled to
achieve geometric shape preservation. Sheffer and Kraevoy [2004]
represent the mesh by rotation-invariant pyramid coordinates. They
achieve intuitive editing results for large deformation constraints,
but the reconstruction process is not linear. The surface representa-
tion we present is truely rotation-invariant, which avoids the explicit
handling of local frame transforms altogether, and the reconstruc-
tion is formulated as a sparse linear problem.

1.2 Overview

We describe our surface representation in the following section.
We then proceed to formulate the surface equations that enable
to reconstruct the surface geometry from our representation (Sec-
tion 3). Mesh manipulation applications (detail-preserving editing
and shape blending) are presented in Section 4. Finally, we discuss
our method in Section 5 and conclude in Section 6.

2 Discrete Forms

In this section we introduce the first and second discrete forms Ĩ
and ĨI for meshes. These discrete quantities are invariant to rota-
tion and translation of the mesh and contain enough information
to reconstruct the mesh uniquely (up to rotation and translation).
Let M = (G,P) be a 2-manifold triangular mesh; G = (V,E,F) is
a graph where V , E, and F are the vertices, edges, and faces, re-
spectively, and P is the geometry associated with each vertex in V .
Vertex i is placed at x̂i. Note that each vertex and its 1-ring can
be locally parameterized. The valence of a vertex, denoted by di,
is the number of edges which emanate from this vertex. The 1-ring
neighborhood of each vertex is decomposed into the tangential part,
represented by the first discrete form, and the normal part, which is
represented by the second discrete form. The method for comput-
ing the tangent plane at each vertex should be invariant under rigid
transformations of the mesh. In other words, if the mesh is trans-
formed by some rigid transformation, the normal should be trans-
formed by the same transformation. There are several advanced
methods for computation of normals, such as [Meek and Walton
2000; Meyer et al. 2002; Cazals and Pouget 2003; Cohen-Steiner
and Morvan 2003]. For our application, it is sufficient to define a
vertex normal as the weighted average of the normals of the adja-
cent triangles, where the weights are proportional to the triangles’
areas. We denote the tangent plane at vertex i by TiM and its normal
by Ni.

Given a vertex i positioned at x̂i, we denote by x̂i
1, x̂

i
2, . . . , x̂

i
di

the
vectors emanating from the vertex x̂i to its neighbors. We denote
by x̃i

k the projection of x̂i
k onto the tangent plane TiM, and by xi

and xi
k the representation of x̂i and x̂i

k in a parameterization Ui of
the 1-ring in the plane, respectively 1 (illustrated in Figure 1). Note
that all the following definitions and constructions are valid even if
the projection of the 1-ring onto TiM is not injective. If some edge
is parallel to the normal at the vertex, one can perturb the normal to
avoid this singularity. In practice we have never encountered such
a situation.

1We use a hat (∧) for mesh vertices and edges embedded in R3 and
tilde (∼) for vertices and edges projected onto the tangent plane.
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Figure 1: The 1-ring setting. Vertices in the parameter domain are
denoted by xi and the corresponding positions in R3 by x̂i. The
edge towards the kth neighbor of i is xi

k. Mesh edges in R3 are
denoted by x̂i

k, and their projection onto the tangent plane by x̃i
k.

We define a piecewise inner product in Ui by assigning each para-
metric triangle 4i

k (formed by vertex xi and its kth and (k + 1)th
neighbors) the standard inner product of its corresponding triangle
in the tangent plane TiM. Let µ = µ1xi

k + µ2xi
k+1 be a vector in4i

k.
Then we define the first discrete form Ĩ as:

Ĩ i(·) :
di−1⋃
k=1

4i
k −→ R.

Ĩ i(µ) = 〈µ,µ〉R3 = 〈µ1x̃i
k + µ2x̃i

k+1, µ1x̃i
k + µ2x̃i

k+1〉R3 =

= µ
2
1 g̃i

k,k +2 µ1 µ2 g̃i
k,k+1 + µ

2
2 g̃i

k+1,k+1,

where g̃i
k,k = 〈x̃i

k, x̃
i
k〉R3 and g̃i

k,k+1 = 〈x̃i
k, x̃

i
k+1〉R3 . We also denote

O i
k := sign

(
det(x̃i

k, x̃i
k+1, Ni)

)
. The quantity O i

k indicates the ori-
entation of the triplet (x̃i

k, x̃i
k+1, Ni).

Note that Ĩ i(·) is a quadratic form in each triangle 4i
k with a C0

connection between adjacent triangles. Also note that the quanti-
ties g̃i

k,m and O i
k give a full parameterization of the tangent plane.

Furthermore, the invariance of the first discrete form to different
parameterizations can be easily verified. The first discrete form can
be described by the lengths of the projected edges and the signed
angles between every two adjacent projected edges.

The first discrete form lacks information in the normal direction of
the 1-ring neighborhood of a vertex. We define the second discrete
form as a piecewise linear form which is actually the height func-
tion of the 1-ring neighborhood of a vertex above the tangent plane:

ĨI
i
(·) :

di−1⋃
k=1

4i
k −→ R.

Let µ = µ1 xi
k + µ2 xi

k+1 ∈4
i
k . Then,

ĨI
i
(µ) := µ1 〈x̂i

k, Ni〉R3 + µ2 〈x̂i
k+1, Ni〉R3 = µ1 L̃i

k + µ2 L̃i
k+1,

where we introduce the coefficients L̃i
k = 〈x̂i

k, Ni〉R3 .

The discrete forms at a vertex define the geometry of its 1-ring
neighborhood up to a rigid transformation, as explained in the
following lemma.

Lemma 2.1. Given the discrete form coefficients and the orien-
tation bits at vertex i, the 1-ring neighborhood of i is defined up
to a rigid transformation. Fixing the position of vertex i at some



point x̂i ∈ R3, and fixing the direction of one edge emanating from
vertex i (or its projection onto the tangent plane) and the normal
Ni, uniquely defines all the rest of the 1-ring vertex positions.

Proof. Assume w.l.o.g. that we fix the first edge x̃i
1 in the tangent

plane. Denote by n the unit length vector which is orthogonal to
Ni and to x̃i

1 and such that the ordered triplet (x̃i
1, n, Ni) forms a

right-hand orthogonal basis. Then,

x̂i
2 = 〈x̃i

2,
x̃i

1
‖x̃i

1‖
〉

x̃i
1

‖x̃i
1‖

+ 〈x̃i
2, n〉n+ 〈x̂i

2, Ni〉Ni =

=
g̃12

g̃11
x̃i

1 +Oi
1

√
∆

g̃11g̃22
n+ L̃2 Ni,

where ∆ = g̃11g̃22− g̃2
12.

In the same manner one can compute x̂3, ..., x̂di .

Note that the discrete forms are not affected by the choice of the lo-
cal parameterization because we compute their coefficients directly
from the mesh. However, the parametric definition can be used to
prove convergence of the discrete forms to continuous differential
properties (see [Lipman 2004]). The main strength of these defini-
tions is that they allow us to define discrete linear surface equations
that represent the mesh by local quantities which are invariant un-
der rigid transformations, as shown in the next section. It should be
emphasized that the discrete forms are not scale- or shear-invariant.

3 Discrete surface equations

We use the definitions from Section 2 to introduce a surface rep-
resentation. We define a discrete frame at vertex i ∈ V as the
triplet (bi

1, bi
2, Ni), where bi

1 ∈ TiM is a unit vector parallel to x̃i
1,

bi
2 ∈ TiM is a unit vector orthogonal to bi

1, such that the triplet
(bi

1, bi
2, Ni) forms a right-hand orthonormal basis. Note that the

choice of the vector x̃i
1 is arbitrary.

Assume (i, j) ∈ E. We define the difference operator δ on the dis-
crete frame vectors:

δ j(bi
1) = b j

1−bi
1

δ j(bi
2) = b j

2−bi
2

δ j(Ni) = N j −Ni.

Finally, we lay out the discrete surface equations:
∀ i, j ∈V s.t. (i, j) ∈ E

δ j(bi
1) = Γ

i,1
j,1bi

1 +Γ
i,2
j,1bi

2 +Ai
j,1Ni

δ j(bi
2) = Γ

i,1
j,2bi

1 +Γ
i,2
j,2bi

2 +Ai
j,2Ni (1)

δ j(Ni) = Γ
i,1
j,3bi

1 +Γ
i,2
j,3bi

2 +Ai
j,3Ni.

The above discrete surface equations encode the difference be-
tween adjacent discrete frames corresponding to adjacent vertices
of the mesh. The difference is encoded in the discrete frame of
one of the vertices. The key observation is that the quantities Γ

i,l
j,m

and Ai
j,m can be expressed by the coefficients of the discrete forms

only.

Theorem 3.1. The coefficients Γ
i,l
j,m and Ai

j,m of the discrete surface
equations can be expressed by the discrete forms.
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Figure 2: Illustration for Theorem 3.1. The vertex notations are in
gray and the edge vector notations are black.

Proof. Note that equations (1) can be written in the following
equivalent way:

b j
1 =

(
Γ

i,1
j,1 +1

)
bi

1 +Γ
i,2
j,1bi

2 +Ai
j,1Ni

b j
2 = Γ

i,1
j,2bi

1 +
(

Γ
i,2
j,2 +1

)
bi

2 +Ai
j,2Ni (2)

N j = Γ
i,1
j,3bi

1 +Γ
i,2
j,3bi

2 +
(

Ai
j,3 +1

)
Ni.

These equations simply encode a discrete frame in the basis of an
adjacent discrete frame. Thus, to calculate the coefficients of the
above equations, one should represent the discrete frame at vertex j
in the coordinates of the discrete frame at vertex i. For convenience,
let us take the discrete frame at vertex i as the coordinate vectors,
that is, bi

1 = (1,0,0), bi
2 = (0,1,0), Ni = (0,0,1). Note that we

are not interested to find the actual discrete frame at j in the global
coordinate system, but only its representation with respect to the
frame at i. Denote the index of the kth neighbor of vertex i by ni

k .
Assume j = ni

k. First let us find the normal Nni
k . Note that

x̂i
k = x̂ni

k − x̂i = x̃i
k + L̃i

kNi.

Since x̂i
k+1 = x̂ni

k+1 − x̂i = x̃i
k+1 + L̃i

k+1Ni,

we also have
x̂ni

k+1 − x̂ni
k = x̃i

k+1 + L̃i
k+1Ni− x̃i

k − L̃i
kNi.

Next, note that x̂ni
k+1 − x̂ni

k and x̂i− x̂ni
k are the vectors x̂ni

k
m and x̂ni

k
m+1

for some 1 ≤ m ≤ dni
k

(see Figure 2), so finding Nni
k reduces to solv-

ing the following linear 2×2 system:

〈x̂ni
k

m ,Nni
k 〉 = 〈x̃i

k+1− x̃i
k,N

ni
k 〉+

(
L̃i

k+1− L̃i
k

)
〈Ni, Nni

k 〉

〈x̂ni
k

m+1, Nni
k 〉 = −〈x̃i

k, Nni
k 〉− L̃i

k〈N
i, Nni

k 〉. (3)

The left-hand sides of the above equations are the second discrete
form coefficients at vertex ni

k: L̃ni
k

m and L̃ni
k

m+1. By writing Eq. 3 in
the discrete frame at vertex i we get an under-determined system
for Nni

k in that basis. Taking a unit length solution to this system
results in the coordinate vector of Nni

k with respect to the discrete
frame at vertex i (the choice between the two possible solutions
of norm 1 is determined by the orientation bits). Next, since we
have the vertex position x̂ni

k , the normal Nni
k and one edge x̂ni

k
m , all

expressed in the coordinates of the discrete frame of i, the whole
1-ring of vertex ni

k is determined by Lemma 2.1. By the definition
of the discrete frame, it is set by the 1-ring neighborhood of a vertex
and its normal, therefore we have the representation of the discrete
frame of ni

k in the coordinates of the frame of i.



(a) (b) (c) (d) (e)

Figure 3: Examples of basic editing operations. (a) Rotation of the handle discrete frame. The top curve is the original curve. We constrain
the leftmost discrete frame (red) to remain the same and rotate the rightmost discrete frame by 90◦. (b) The original circle model. (c) Uniform
scaling (×2). (d) Uniform shrink constraint (×0.3). (e) Shear constraint. We constrained the discrete frames and the positions of the brown
vertices to remain the same, and placed the editing constraint on the red discrete frames.

(a) (b) (c) (d) (e)

Figure 4: (a) The original Armadillo model (172974 vertices). (b) Scaling (×3) a few discrete frames on the nose, while fixing the body.
(c) Scaling the same frames by 2.5 while fixing only the legs. (d–e) Bending the Bunny’s head while fixing the rear part. Note the preservation
of the fur details.

The set of equations (1) forms an over-determined sparse linear
system. To argue that the discrete forms indeed give rise to a
representation of the mesh up to rigid motion, we point out the
following two arguments.

Theorem 3.2. Given an initial discrete frame at an arbitrary ver-
tex i0, (bi0

1 ,bi0
2 ,Ni0), such that the triplet is a right-hand orthonor-

mal basis, and given that the first and second discrete forms with
the orientation bits are taken from an existing mesh, there exists a
unique solution to the set of equations (1) such that vertex i0 has the
initial discrete frame, and this unique solution constitutes the orig-
inal surface discrete frames (rotated to match the initial discrete
frame at vertex i0).
Theorem 3.3. Given the solution to the discrete surface equations,
namely, the discrete frames at each vertex, there exists a unique
embedding of the vertices of the mesh in R3 up to a translation, such
that the resulting mesh has the given discrete forms and discrete
frames. In other words, the mesh is uniquely determined, up to
translation, by its discrete frames and the coefficients of its discrete
forms.

For the proof of Theorem 3.2, note that the existence of a solution
is obvious (the original discrete frames of the mesh rotated to fit the
given initial condition). For uniqueness, note that by Eq. 2, fixing a
single discrete frame uniquely defines all others.

To prove Theorem 3.3, we reconstruct the geometry of the mesh
from the original discrete form coefficients and the discrete frames
we got by solving Eq. 1. We construct the following difference
equations:

x̂i
k = x̃i

k + L̃i
kNi, i ∈V, k = 1, . . . ,di. (4)

Since we have the discrete frame at vertex i and the first discrete
form, we can find x̃i

1 as x̃i
1 = bi

1(g̃
i
1,1)

1/2. We also have Ni and thus
we can find all x̃i

k, 2≤ k ≤ di (see the proof of Lemma 2.1). There-
fore the right-hand side of the above equations is known. Next, note
that x̂i

k = x̂ j − x̂i where j is the kth neighbor of vertex i. The un-
knowns x̂i , i ∈V , are the positions we are looking for. Combining
the above with the proof of Lemma 2.1 and Eq. 4, we get:

x̂ j − x̂i = x̃i
k + L̃i

kNi = 〈x̃i
k,b

i
1〉bi

1 + 〈x̃i
k,b

i
2〉bi

2 + L̃k Ni,

∀(i, j) ∈ E (5)

where the coefficients 〈x̃i
k,b

i
k〉 are computed from the original dis-

crete forms. These equations obviously have a unique solution
which is the original mesh, up to translation. This proves Theo-
rem 3.3.

It should be noted that when the mesh is edited (Section 4), more
constraints are added to the surface equations (1) and (5). Although
it is clear that the reconstruction will produce a new triangular
mesh, it is not guaranteed that self-intersection will not occur. The
user can always define an extreme deformation constraint for which
self-intersection would be inevitable.

3.1 Mesh representation

As proved above, one can represent the mesh (up to rigid transfor-
mation) using the first and second discrete form coefficients with
orientation bits. Below we summarize how to construct this repre-
sentation. Given a mesh in Cartesian coordinates, we orthogonally



(a) (b) (c) (d)

Figure 5: Smooth rotation of discrete frames. In (a), the original model is shown; the red part is fixed and the yellow part serves as a handle.
(b) The result of constraining a 90◦ rotation about the yellow axis on the discrete frames of the handle. (c) The pseudocolor visualizes the
gradual change of the discrete frames; the color coding corresponds to the Frobenius norm of the difference between the original discrete
frame and the discrete frame after the editing operation. Note that regular shading due to the light source was disabled here, thus the smooth
gradient of the Frobenius norm coloring shows that the rotations of the discrete frames vary smoothly on flat parts of the model as well as on
the details. (d) Same rotation applied twice more.

project the edges emanating from each vertex i onto the tangent
plane TiM, which results in the following decomposition:

x̂i
k = x̂i

k −〈x̂i
k,N

i〉Ni + 〈x̂i
k,N

i〉Ni = x̃i
k + L̃i

kNi.

The orthogonal component represents the second discrete form, that
is, L̃i

k = 〈x̂i
k,N

i〉. The first discrete form is represented by the
lengths of the projected edges and angles between adjacent pro-
jected edges. This sums to 3di scalars for each vertex: 2di scalars
for the first discrete form and di scalars for the second discrete form.
These scalars are rigid motion invariant and describe only the dif-
ferential properties around each vertex. In addition, we need the
orientation bits O i

k, as defined in Section 2.

Note that this differential representation is not intended to be com-
pact. On the contrary, it contains redundant information, since
the discrete surface equations (1) form an over-determined system,
where at each vertex we hold enough information to reconstruct the
mesh in any direction.

To reconstruct the mesh given its discrete form coefficients, an ini-
tial discrete frame and a position of one vertex in space:

• Construct the discrete surface equations (1):

– For each vertex i and its k-th neighbor ni
k:

∗ Solve Eq. 3 to obtain the normal Nni
k (Theo-

rem 3.1) in the coordinates of the local frame of i;

∗ Use x̂i
k and Nni

k to find the discrete frame of
vertex ni

k expressed in the frame of vertex i
(Lemma 2.1);

∗ Extract the coefficients of Eq. 1 for i and j = ni
k.

• Add the given initial discrete frame as an additional equation;

• Solve the augmented linear system in the least-squares sense
to obtain the discrete frames;

• Construct the geometry difference equations (5):

– Use the discrete frames obtained above and the original
discrete forms to calculate the right-hand side of Eq. 5;

• Add the given initial vertex position as an additional equation;

• Solve the augmented linear system in the least-squares sense
to get the positions of the vertices.

In the next section, we describe an editing mechanism that uses the
above steps.

4 Mesh editing

Our interactive mesh editing mechanism is based on the surface
representation and the reconstruction process of the geometry in-
troduced in Section 3. The editing operation is applied by adding
linear constraints to the linear systems defined by Eqs. 1 and 5. As
described in Section 3, the reconstruction of the geometry of the
mesh from the discrete forms consists of two main stages:

• Reconstructing the discrete frames at each vertex by solving
the discrete surface equations.

• Reconstructing the geometry at each vertex from the discrete
forms and the discrete frames.

In the first stage, we solve the discrete surface equations (1), which
form an over-determined sparse linear system. The coefficients of
the equations can be computed in two equivalent ways: either as
described in Section 3.1 using only the discrete forms, or directly
from the original mesh and the vertex normals by Eq. 2. In this case,
since the geometry of the original mesh is known, the latter way is
somewhat simpler. Editing is applied by constraining more discrete
frames and solving in the least-squares sense. When constraining
more than one discrete frame, there is no guarantee of an exact so-
lution; hence we aim at obtaining the mesh which is as close as
possible to satisfying the prescribed differential relations between
the discrete frames under the posed conditions. Theorem 3.2 guar-
antees a unique solution given an initial discrete frame at some ver-
tex, hence, the corresponding system in (1) with the added initial
condition has full rank, and thus there exists a unique least-squares
solution to the over-determined editing system. In the second stage,
some spatial constraints on the geometry are added to Eq. 5, and the
system is solved to reconstruct the mesh geometry. As before, The-
orem 3.3 guarantees a unique least-squares solution of the system
with the added spatial conditions.

In our interactive editing system, we adopt the modeling metaphor
established in previous works [Kobbelt et al. 1998; Botsch and
Kobbelt 2004; Sorkine et al. 2004; Yu et al. 2004]. Namely, the
user defines a region of interest (ROI) and a handle, which is some
subset of the ROI vertices. The editing is performed by manipulat-
ing the handle and reconstructing the surface by applying the new
constraints. The discrete frames and the positions of the vertices on
the boundary of the ROI are constrained to remain the same, and
surface reconstruction is performed on the ROI only, leaving the
rest of the mesh unchanged. For speedup, the sparse matrices in-
volved in the reconstruction are factored once per ROI (using sparse
Cholesky decomposition [Toledo 2003]), and each time the con-
straints on the handle change, only an update of the right-hand side
of the system and a solution by back-substitution is needed. Note



(a) (b) (c)

Figure 6: Examples of editing operators. (a) The original Armadillo model. (b) rotation operator applied to the knee. The red region denotes
the free vertices; the vertices of the foot are used as the handle. The close-ups show the details around the knee from an additional angle.
Note that the details are well-preserved after the rotation. (c) Combination of several edits.

(a) (b) (c) (d) (e) (f)

Figure 7: Comparison of our editing method to Poisson Editing and Laplacian Editing. The original Cactus model is shown in (a). The result
of editing with our method is displayed in (b), where the red spheres mark the static anchors and the yellow spheres mark the handle vertices.
(c) The “strength field” resulting from marking a handle curve in the Poisson Editing application. Red denotes maximum and blue denotes
minimum values. (d) The result achieved with Poisson Editing when rotating and translating the handle in approximately the same manner as
in (b). Note that since the strength field is weaker at the branches (which are geodesically far from the handle), the branches do not receive the
same amount of rotation as the trunk. To compare to Laplacian Editing, we deformed the arm of the Octopus (the original surface is rendered
in yellow). (e) shows the result of Laplacian Editing, whereas (f) is our result. It is evident that our new method handles large rotations better.

that we always use the original discrete forms of the mesh given the
ROI, and thus the system matrices remain fixed. Our editing appli-
cation enables the user to edit ROIs containing tens of thousands of
vertices at interactive frame rates.

Different constraints on the handle result in various editing effects.
The basic operation is a linear transformation A on the discrete
frames of the handle. This can be done by manipulating an arcball-
like control. For all the handle’s vertices i we add the following
constraints to the system:

bi
l = A(b̆i

l), l = 1,2

Ni = A(N̆i),

where (b̆i
1, b̆

i
2, N̆

i) denotes the discrete frame of vertex i in the orig-
inal mesh. A simple example is shown in Figure 5, where A is a
rotation. In 5(b) one can see that the surface bends according to the
rotation of the handle, and the details are preserved and maintain
their relative orientation with respect to the surface. This happens
because our surface representation is rotation-invariant, and thus
the local frames of the ROI are rotated in the reconstruction.

Figures 3 and 4(a–c) show other types of transformations A:
uniform scale and shear. In all these cases the reconstruction
process preserves the differential representation as much as pos-
sible under the constraints. More examples are shown in Fig-

ures 4(d–e), 6, 9, 13, where it can be seen that the details are
preserved under the editing operations, including sharp features.
The above examples contain transformation constraints on the lo-
cal frames as well as translation constraints on the vertex positions.
We apply the same transformation A and the same translation to
all vertices of the handle. It should be noted that extreme rotation
constraints (e.g., by 180 degrees) on the discrete frames may cause
unintuitive results. However, less ambiguous rotation constraints
can be easily performed; see Figure 10, where the top of the bar is
rotated by 170 degrees.

Note that the solution of the augmented system for the discrete
frames does not guarantee that the resulting discrete frames will
be orthonormal triplets. On the contrary, with scaling and shear-
ing editing operations A, the system produces scaled and sheared
frames. When A is orthogonal, the frames tend to stay orthonormal
in practice. In this case, it is possible to normalize each frame vec-
tor of the solution. It is important to mention that the orthogonality
of the discrete frames is not a necessary condition for the discrete
surface equations framework to work.

We compare the capabilities of our editing mechanism to other re-
cent approaches in Figure 7. The Poisson editing system, proposed
by Yu et al. [2004], propagates the transformation of the handle
to the rest of the ROI using geodesic distances as weights. As a
result, protruding features that are “far” from the handle get less



Figure 8: The positional constraints on the vertices and the trans-
formation constraints on the local frames need to be compatible.
The left image shows the result of compatible constraints, where
the local frames are first appropriately rotated and then the handle
is translated (the original mesh is shown in light yellow). The right
image shows incompatible constraints: the handle is only trans-
lated. As a result, the local frames are not rotated appropriately and
the deformation looks less natural.

Figure 9: Rotating the top vertices on the bar while fixing the bot-
tom; then bending the top. The editing preserves the sharp edges.

rotation, and the editing result might look unnatural. Observe the
Cactus model in Figure 7(a–d), where the tips of the branches are
further from the handle than their bases, which causes the branches
to almost stay in place when the handle is rotated. In contrast,
our rotation-invariant representation yields a plausible editing re-
sult, naturally rotating the branches. The Laplacian editing ap-
proach [Sorkine et al. 2004] handles local rotations in an implicit
manner in the same system that solves for the vertex positions.
However, to pose the editing in a linear way, 3D rotations must
be linearized. This causes errors when the required rotation of the
handle is large. See Figure 7(e–f), where a large rotation of the Oc-
topus arm looks smooth with our approach, whereas the Laplacian
editing result is “broken” into several parts of smaller rotation.

An important observation is that the linear transformation con-
straints are added to the discrete surface equations (1), while the
positional constraints are added to the system (5), so that actually,
the discrete frames are determined before the positional constraints
are considered. The positional and the linear transformation con-
straints of the handle should be compatible. Figure 8 shows an ex-
ample of compatible constraints and incompatible ones. In future
work, we would like to consider solving the two sets of equations
again to obtain a better correspondence between the linear and the
positional constraints. In addition, it would be interesting to in-
fer the transformation of the discrete frames from the translational
movement of the handle.

By solving the augmented surface equations in the least-squares
sense, we minimize the differences between the coefficients in the
discrete surface equations (1) of the original mesh and the corre-
sponding coefficients of the edited mesh. We argue that such a so-
lution strives to keep the curvatures of the edited mesh as close as

Figure 10: Example of extreme rotation. Left: the handle (in yel-
low) is rotated by 170◦. The red vertices mark the static constraints.
Right: rotation by 315◦ performed in three steps.

possible to the original surface curvatures. Indeed, in the smooth
case, if we consider a frame field {(b1,b2,N)}, where N is the
surface normal, a curve on the surface with arc-length parameter s
yields the following equations [Guggenheimer 1963]:

d
ds

b1

b2

N

 =

 0 kg kn

−kg 0 tr
−kn −tr 0

b1

b2

N

 ,

where kg is the geodesic curvature, kn is the normal curvature and
tr is the relative torsion. In our discrete case, the coefficients of the
surface equations (1) approximate the curvature quantities, as in the
matrix above. This can be shown by dividing both sides of Eq. 1
by the length of the corresponding edges. Hence, when the defor-
mation constraint A does not change the edge lengths (when A is
orthogonal), minimizing the difference between the coefficients in
Eq. 1 approximately minimizes the curvature differences between
the original and the edited mesh. Of course, when A is strongly
distorting the edge lengths, the curvature error is large, which is
unavoidable in this case.

4.1 Shape interpolation

Our rigid-motion invariant surface representation is readily suitable
for interpolation between different shapes. It has been shown that a
proper shape interpolation should minimize redundant distortions,
or in other words, that it should be as rigid as possible [Cohen-Or
et al. 1998; Alexa et al. 2000]. This can be achieved by apply-
ing a rigid-elastic decomposition to the transformation. The elastic
component is defined as the residual of applying the rigid transfor-
mation first. Such decomposition minimizes the elastic component,
and consequently, the redundant distortion. This effect comes for
free with rigid-motion invariant representation, since the rigid part
is factored out.

Assume M1 and M2 are two meshes with identical connectivity and
different geometries, where the geometries are represented by the
discrete forms. Simple linear interpolation between the discrete
forms coefficients of M1 and M2 yields the “as-rigid-as-possible”
effect. To preserve the property that the sum of angles in the tan-
gent plane around each vertex is 2π , we interpolate the angles them-
selves, rather than their cosines (g̃12). Our method can be regarded
as a generalization of the 2D interpolation technique of [Sederberg
et al. 1993], which interpolates the edge lengths and the angles be-
tween consecutive edges of polygonal curves.

Examples of such shape interpolation are demonstrated in Fig-
ures 11 and 12, where we show a number of intermediate shapes for
different parameters t. It is evident that linear interpolation between
our rigid-invariant representations yields intuitive rotations of the
source shape towards the target shape, whereas, for comparison, the
linear interpolation clearly does not accommodate local rotations.
Note that linear interpolation of relative coordinates, such as the



source t = 0.2 t = 0.4 t = 0.6 t = 0.8 target

Figure 11: Linear shape interpolation sequence of the Bar mesh (1600 vertices) using our representation. Note the natural rotation of the
in-between shapes.

source t = 0.2 t = 0.4 t = 0.6 t = 0.8 target

Figure 12: Shape interpolation sequence of the Camel mesh, 39074 vertices. The top row shows the results of linear interpolation of the
discrete forms, and the bottom row shows linear interpolation of the Cartesian coordinates. Clearly, the interpolation using our rigid motion
invariant shape representation (top row) yields natural rotations of the in-between shapes.

Laplacian coordinates [Alexa 2003; Sorkine et al. 2004], does not
yield different results, since the coordinates are linearly dependent
on the Cartesian coordinates. Furthermore, our shape interpolation
does not involve any non-linear optimizations, neither in the inter-
polation nor in the reconstruction. We believe that our results have
the same quality as the advanced morphing methods, such as [Alexa
et al. 2000; Xu et al. 2005], where the first requires meshing the in-
terior of the model, and the second involves non-linear interpolation
of the Poisson mesh representation.

5 Discussion

The mesh representation presented in the previous sections has an
interesting link to classical differential geometry in the following
sense. Classical differential geometry defines two quadratic forms
on the surface, that is, the first and second fundamental forms,
which locally describe the tangential and normal components of
the surface. Combining these two forms furnishes a good local ap-
proximation of the surface. Furthermore, Bonnet theorem ensures
that locally, the surface can be reconstructed given the fundamental
forms which hold some compatibility conditions (Gauss-Codazzi-
Mainardi equations, see [Stoker 1989]). The Bonnet theorem is
constructive and consists of two stages: first, a first-order linear
PDE describing the changes of the local Frenet frames on the sur-
face is solved, and second, the frames are integrated, which leads to
a parameterization of the surface. Our algorithm has a very similar
concept: we also write a linear system which describes the changes
of the local frames and then “integrate” the changes to solve for the
geometry. The reason we use a least-squares solution instead of in-
crementally “growing” a solution from an initial frame is that the
latter approach equally distributes the error across the mesh.

6 Conclusions

We have presented a discrete framework on triangular meshes that
furnishes a rigid motion invariant representation of the mesh. We
obtain a linear surface reconstruction method by taking two steps:
first, solving for the local frames of the surface, and then solving
for the positions of the vertices. The reconstructed mesh can be
regarded as the natural global shape defined by local descriptors
defined at each vertex. Our framework enables detail-preserving
surface editing and shape interpolation.

In future work, it might be interesting to experiment with other in-
teractive tools that directly manipulate the local frames on the sur-
face. We would also like to improve the co-existence of constraints
on the local frames and the vertex positions, as mentioned in Sec-
tion 4. Another interesting application could be to use our repre-
sentation for detail editing, such as detail enhancement and other
modifications.
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Figure 13: Another example of interactive editing. We folded the
Gargoyle’s wings and bent its head.
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