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1 Gaussian random variables and vectors

1.1 Basic definitions and properties

Definition 1. A random variable X is called Gaussian if its characteristic
function is given by

E(eiθX) = eiθb−
1
2 θ

2σ2

,

for some b ∈ R and σ2 ≥ 0.

Note that we allow for σ = 0. If σ2 > 0 then one has the pdf

fX(x) =
1√
2πσ2

e−(x−b)2/2σ2

,

i.e. EX = b and Var(X) = σ2. The reason for allowing σ = 0 is so that the
next definition is not too restrictive.

Definition 2. A random vector X = (X1, . . . , Xn) is called Gaussian if
⟨X, ν⟩ is a Gaussian random variable for any deterministic ν ∈ Rn.
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Alternatively, X is a Gaussian random vector iff its characteristic function is
given by

E(ei⟨ν,X⟩) = eiν
T b− 1

2ν
TRν ,

for some b ∈ Rd and R positive definite symmetric d × d matrix. In that
case, b = EX and R is the covariance matrix of X. (Check these claims!).
Throughout, we use the term positive in the sense of not negative, i.e. a
matrix is positive definite if it is symmetric and all its eigenvalues belong to
R+ = {x ∈ R : x ≥ 0}.

We call random variables (vectors) centered if their mean vanishes.
Note: R may not be invertible, even if X is non-zero. But if detR = 0, there
exists a vector ν such that ⟨ν,X⟩ is deterministic.

The following easy facts are immediate from characteristic function com-
putations.

Lemma 1. If {Xn} is a sequence of Gaussian random variables (vectors)
that converge in probability to X, then X is Gaussian and the convergence
takes place in Lp, any p ∈ [1,∞).

Proof: (scalar case) Convergence of the characteristic function on compacts
yield that X is Gaussian; it also gives that bn → b and Rn → R. In partic-
ular, since E|Xn|p is bounded by a continuous function of p, bn, Rn, the L

p

convergence follows from uniform integrability. ⊓⊔

Lemma 2. For any R symmetric and positive definite one can find a centered
Gaussian vector X with covariance R.

Proof: Take Y with i.i.d. centered standard Gaussian entries, and write
X = R1/2Y. ⊓⊔

Lemma 3. If Z = (XY) is a Gaussian vector and (with obvious block nota-
tion) RX,Y = 0 then X is independent of Y.

Proof: Characteristic function factors. ⊓⊔
The following is an important observation that shows that conditioning

for Gaussian vectors is basically a linear algebra exercise.

Lemma 4. If Z = (X,Y) is a centered Gaussian vector then X̂Y := E[X|Y]
is a Gaussian random variable, and X̂Y = TY for a deterministic matrix T .
If det(RY Y ) ̸= 0 then T = RXYR

−1
Y Y .

Proof: Assume first that det(RY Y ) ̸= 0. Set W = X − TY. Then, since TY
is a linear combination of entries of Y and since Z is Gaussian, we have that
(W,Y) is a (centered) Gaussian vector. Now,

E(WY) = RXY − TRY Y = 0 .

Hence, by Lemma 3, W and Y are independent. Thus, E[W |Y] = EW = 0,
and the conclusion follows from the linearity of the conditional expectation.
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In case det(RY Y ) = 0 and Y ̸= 0, let Q denote the projection to
range(RY Y ), a subspace of dimension d ≥ 1. Then Y = QY + Q⊥Y = QY
since Var(Q⊥Y) = 0. Changing bases, one thus finds a matrix B with n− d
zero rows so that Y = Q̂BY for some matrix Q̂, and the covariance matrix
of the d dimensional vector of non-zero entries of BY is non-degenerate. Now
repeat the first part of the proof using the non-zero entries of BY instead of
Y. ⊓⊔

1.2 Gaussian vectors from Markov chains

Let X denote a finite state space on which one is given a (discrete time)
irreducible, reversible Markov chain {Sn}. That is, with Q denoting the tran-
sition matrix of the Markov chain, there exists a (necessarily unique up to
normalization) positive vector µ = {µx}x∈X so that µxQ(x, y) = µyQ(y, x).
We often, but not always, normalize µ to be a probability vector.

Fix Θ ⊂ X with Θ ̸= X and set τ = min{n ≥ 0 : Sn ∈ Θ}. Set, for
x, y ̸∈ Θ,

G(x, y) =
1

µy
Ex

τ∑
n=0

1{Sn=y} =
1

µy

∞∑
n=0

P x(Sn = y, τ > n) .

We also set G(x, y) = 0 if either x ∈ Θ or y ∈ Θ. Note that, up to the
multiplication by µ−1

y , G is the Green function associated with the Markov
chain killed upon hitting Θ. We now have the following.

Lemma 5. G is symmetric and positive-definite.

Proof: Let Zn(x, y) denote the collection of paths z = (z0, z1, . . . , zn) of
length n that start at x, end at y and avoid Θ. We have

P x(Sn = y, τ > n) =
∑

z∈Zn(x,y)

n−1∏
i=0

Q(zi, zi+1) =
∑

z∈Zn(x,y)

n−1∏
i=0

Q(zi+1, zi)
µzi+1

µzi

=
µy

µx

∑
z∈Zn(y,x)

n−1∏
i=0

Q(zi, zi+1) =
µy

µx
P y(Sn = x, τ > n) .

This shows that G(x, y) = G(y, x). To see the positive definiteness, let Q̂
denote the restriction of Q to X \ Θ. Then, Q̂ is sub-stochastic, and due to
irreducibility and the Perron-Frobenius theorem, its spectral radius is strictly
smaller than 1. Hence, I − Q̂ is invertible, and

(I − Q̂)−1(x, y) = 1x=y + Q̂(x, y) + Q̂2(x, y) + . . . = G(x, y)µy .

In case µx is independent of x, this would imply that all eigenvalues of G are
non-negative.
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In the general case1, introduce the bilinear form

E(f, g) =
∑

µxQx,y(f(y)− f(x))(g(y)− g(x)).

A bit of algebra (using that µ is stationary for Q) shows that for any f, g,

E(f, g) = 2[
∑
x

µxf(x)g(x)−
∑
x,y

µxQxyf(x)g(y)].

Restricting to functions that vanish at Θ gives

E(f, g) = 2[
∑

µxf(x)g(x)−
∑

µxQ̂x,yf(x)g(y)]

= 2
∑

f(x)g(y)µx(I − Q̂)x,y.

For f vanishing on Θ as above, write (with obvious abuse of notation) ψ =
(I − Q̂)f , and note that any ψ ∈ Rd−|Θ| can be written like that for some f .
We obtain that

0 ≤ E(f, f) = 2
∑

µx(I − Q̂)−1
x,yψ(x)ψ(y) = 2

∑
ψ(x)ψ(y)G(x, y).

Since ψ is arbitrary, this proves that G is positive-definite. ⊓⊔
From Lemmas 2 and 5 it follows that the function G is the covariance of

some Gaussian vector.

Definition 3. The (centered) Gaussian vector with covariance G (denoted
{X(x)}) is called the Gaussian Free Field (GFF) associated with Q,Θ.

The Green function representation allows one to give probabilistic repre-
sentation for certain conditionings. For example, let A ⊂ X \Θ and set XA =
E[X|X(x), x ∈ A]. By Lemma 3 we have that XA(x) =

∑
z∈A a(x, z)X(z).

We clearly have that for x ∈ A, a(x, y) = 1x=y. On the other hand, because
GA (the restriction of G to A) is non-degenerate, we have that for x ̸∈ A,
a(x, y) =

∑
w∈AG(x,w)G

−1
A (w, y). It follows that for any y ∈ A, a(x, y) (as

a function of x ̸∈ A) is harmonic, i.e.
∑
Q(x,w)a(w, y) = a(x, y) for x ̸∈ A.

Hence, a satisfies the equations{
(I −Q)a(x, y) = 0, x ̸∈ A ,
a(x, y) = 1{x=y} , x ∈ A .

(1.2.1)

By the maximum principle, the solution to (1.2.1) is unique. On the other
hand, one easily verifies that with τA = min{n ≥ 0 : Sn ∈ A}, the function
â(x, y) = P x(τA < τ, SτA = y) satisfies (1.2.1). Thus, a = â.

The difference YA = X −XA is independent of {Xx}x∈A (see the proof
of Lemma 4). What is maybe surprising is that YA can also be viewed as a
GFF.
1 thanks to Nathanael Berestycki for observing that we need to consider that case
as well
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Lemma 6. YA is the GFF associated with (Q,Θ ∪A).

Proof: Let GA denote the Green function restricted to A (i.e., with τA ∧ τ
replacing τ). By the strong Markov property we have

G(x, y) =
∑
y′∈A

a(x, y′)G(y′, y) +GA(x, y) , (1.2.2)

where the last term in the right side of (1.2.2) vanishes for y ∈ A. On the
other hand,

E(YA(x)YA(x
′)) = G(x, x′)−E(X(x)XA(x

′))−E(X(x′)XA(x))+EXA(x)XA(x
′) .

Note that

EX(x)XA(x
′) =

∑
y∈A

a(x′, y)G(x, y) = G(x′, x)−GA(x
′, x)

while

EXA(x)XA(x
′) =

∑
y,y′∈A

a(x, y)a(x′, y)G(y, y′)

=
∑
y′∈A

a(x, y′)G(x′, y′) = G(x, x′)−GA(x, x
′) .

Substituting, we get E(YA(x)YA(x
′)) = GA(x, x

′), as claimed. ⊓⊔
Another interesting interpretation of the GFF is obtained as follows. Re-

call that the GFF is the mean zero Gaussian vector with covariance G.
Since G is invertible (see the proof of Lemma 5), the density of the vector
{Xx}x∈X\Θ is simply

p(z) =
1

Z
exp

(
−zTG−1z

)
where Z is a normalization constant. Since (I− Q̂)−1 = Gµ, where µ denotes
the diagonal matrix with entries µx on the diagonal, we get that G−1 =
µ(I − Q̂). In particular, setting {z′x}x∈X with z′x = 0 when x ∈ Θ and
z′x = zx if x ∈ X \Θ, we obtain

p(z) =
1

Z
exp

−
∑

x ̸=y∈X

(z′x − z′y)
2Cx,y/2

 (1.2.3)

where Cx,y = µxQ(x, y).

Exercise 1. Consider continuous time, reversible Markov chains {St}t≥0 on
a finite state space X with G(x, y) = 1

µy
Ex
∫ τ

0
1St=ydt , and show that the

GFF can be associated also with that Green function.
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Exercise 2. Consider a finite binary tree of depth n rooted at o and show
that, up to scaling, the GFF associated with Θ = o and the simple random
walk on the tree is the same (up to scaling) as assigning to each edge e an
independent, standard Gaussian random variable Ye and then setting

Xv =
∑

e∈o↔v

Ye .

Here, o ↔ v denotes the geodesic connecting o to v. This is the model of a
Gaussian binary branching random walk (BRW).

Exercise 3. Show that (1.2.3) has the following interpretation. Let A =
{{x, y} : both x and y belong to Θ}. Let gx,y = 0 if {x, y} ∈ A and let
{gx,y}{x,y}̸∈A,Qx,y>0 be a collection of independent centered Gaussian vari-
ables, with Eg2x,y = 1/Cx,y. Set an arbitrary order on the vertices and de-
fine g(x,y) = gx,y if x < y and g(x,y) = −gx,y if x > y. For a closed path
p = (x = x0, x1, . . . , xk = x0) with vertices in X and Q(xi, xi+1) > 0 for all

i, set Yp =
∑k−1

i=0 g(xi,xi+1), and let P denote the collection of all such closed
paths. Let σΘ := σ({Yp}p∈P). Let ḡ(x,y) = g(x,y) − E(g(x,y)|σΘ), and recall
that the collection of random variables ḡ(x,y) is independent of σΘ. Prove that
{ḡ(x,y)}{x,y}:Qx,y>0 has the same law as {Z(x,y) := (Xx−Xy)}{x,y}:Qx,y>0 and
deduce from this that the GFF can be constructed from sampling the collec-
tion of variables ḡ(x,y).

1.3 Spaces of Gaussian variables

Definition 4. A Gaussian space is a closed subset of L2 = L2(Ω,F , P ) con-
sisting of (equivalence classes of) centered Gaussian random variables.

Note that the definition makes sense since the L2 limit of Gaussian random
variables is Gaussian.

Definition 5. A Gaussian process (field, function) indexed by a set T is a
collection of random variables {Xt}t∈T such that for any (t1, . . . , tk), the
random vector (Xt1 , . . . , Xtk) is Gaussian.

The closed subspace of L2 generated by Xt is a Hilbert space with respect to
the standard inner product, denoted H. With B(H) denoting the σ-algebra
generated by H, we have that B(H) is the closure of σ(Xt, t ∈ T ) with respect
to null sets. Any random variable measurable with respect to B(H) is called
a functional on {Xt}.

Exercise 4. Let {Hi}i∈I be closed subsets of H and let B(Hi) denote the
corresponding σ-algebras. Show that {B(Hi)}i∈I is an independent family of
σ-algebras iff the Hi are pairwise orthogonal.

As a consequence, if H ′ is a closed subset of H then E(·|B(H ′)) is the or-
thogonal projection to H ′ in H.
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1.4 The reproducing kernel Hilbert space associated with a
centered Gaussian random process

Let R(s, t) = EXsXt denote the covariance of the centered Gaussian process
{Xt}. Note thatR is symmetric and positive definite:∞ >

∑
a(s)a(t)R(s, t) ≥

0 whenever the sum is over a finite set.
Define the map u : H → RT by

u(Z)(t) = E(ZXt) .

Note in particular that u(Xs)(·) = R(s, ·).

Definition 6. The space

H := {g : g(·) = u(Z)(·), some Z ∈ H}

equipped with the inner product ⟨f, g⟩H = E(u−1(f)u−1(g)), is called the
reproducing kernel Hilbert space (RKHS) associated with {Xt} (or with R).

We will see shortly the reason for the name.

Exercise 5. Check that H is a Hilbert space which is isomorphic to H (be-
cause the map u is injective and {Xt} generates H).

Note: For Z =
∑k

i=1 aiXti we have u(Z)(t) =
∑k

i=1 aiR(ti, t). Thus H could
also be constructed as the closure of such function under the inner product
⟨
∑k

i=1 aiR(ti, t),
∑k

i=1 biR(ti, t)⟩H =
∑
aibjR(ti, tj).

Now, for h ∈ H with u−1(h) =: Z we have, because u−1(R(t, ·)) = Xt,

⟨h,R(t, ·)⟩H = E(u−1(h)Xt) = u(Z)(t) = h(t) .

Thus, ⟨h,R(t, ·)⟩H = h(t), explaining the RKHS nomenclature. Further, since
R(t, ·) ∈ H we also have that ⟨R(t, ·), R(s, ·)⟩ = R(s, t).

We can of course reverse the procedure.

Lemma 7. Let T be an arbitrary set and assume K(·, ·) is a positive definite
kernel on T × T . Then there exists a closed Hilbert space H of functions on
T , such that:
• K(t, ·) ∈ H and generates H.
• for all h ∈ H, one has h(t) = ⟨h,K(t, ·)⟩H

Hint of proof: Start with finite combinations
∑
aiK(si, ·), and close with

respect to the inner product. Use the positivity of the kernel to show that
⟨h, h⟩H ≥ 0 and then, by Cauchy-Schwarz and the definitions,

|h(t)|2 = |⟨h,K(t, ·)⟩H|2 ≤ ⟨h, h⟩HK(t, t) .

Thus, ⟨h, h⟩H = 0 implies h = 0. ⊓⊔
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Proposition 1. Let T,K be as in Lemma 7. Then there exists a probability
space and a centered Gaussian process {Xt}t∈T with covariance R = K.

Proof: Let {hi}i∈J be an orthonormal basis of H. Let {Yi}i∈J denote an
i.i.d. collection of standard Gaussian random variables (exists even if J is not
countable). Let H = {

∑
aiYi :

∑
a2i < ∞} (sum over arbitrary countable

subsets of J). H is a (not necessarily separable) Hilbert space. Now define
the isomorphism of Hilbert spaces

H I→ H
hi 7→ Yi (i ∈ J)

Set Xt = I(K(t, ·)). Now one easily checks that Xt satisfies the conditions,
since EXsXt = ⟨K(t, ·),K(s, ·)⟩H = K(s, t). ⊓⊔

We discuss some continuity and separability properties of the Gaussian
process {Xt} in terms of its covariance kernel. In the rest of this section, we
assume that T is a topological space.

Proposition 2. The following are equivalent.
• The process {Xt}t∈T is L2 continuous (i.e., E(Xt −Xs)

2 →|s−t|→0 0).
• The kernel R : T × T → R is continuous.

Under either of these conditions, H is a subset of C(T ), the continuous
functions on T . If T is separable, so is H and hence so is the process {Xt}t∈T

in H.

Proof: If R is continuous we have E(Xt−Xs)
2 = R(s, s)−2R(s, t)+R(t, t),

showing the L2 continuity. Conversely,

|R(s, t)−R(u, v)| = |E(XsXt −XuXv)|
≤ |E(Xs −Xu)(Xt −Xv)|+ |EXu(Xt −Xv)|+ |E(Xs −Xu)Xv| .

By Cauchy-Schwarz, the right side tends to 0 as s→ u and t→ v.
Let h ∈ H. By the RKHS representation, h(t) = ⟨h,R(t, ·)⟩H. Since {Xt}

is L2 continuous, the isomorphism implies that t → R(t, ·) is continuous in
H, and then, from Cauchy-Schwarz and the above representation of h, one
concludes that t→ h(t) is continuous. Further, if T is separable then it has a
dense subset {tn} and, by the continuity of K, we conclude that {R(tn, ·)}n
generates H. From the isomorphism, it follows that {Xtn}n generates H, i.e.
{Xt} is separable in H. ⊓⊔

Exercise 6. Show that {Xt} is bounded in L2 iff supt∈T R(t, t) < ∞, and

that under either of these conditions, supt∈T |h(t)| ≤
√
supT R(t, t)∥h∥H.

Let T be a separable topological space. We say that a stochastic process
{Xt}t∈T is separable if there is a countable D ⊂ T and a fixed null set Ω′ ⊂ Ω
so that, for any open set U ⊂ T and any closed set A,
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{Xt ∈ A, t ∈ D ∩ U} \ {Xt ∈ A, t ∈ U} ⊂ Ω′ .

{Xt}t∈T is said to have a separable version if there is a separable process
{X̃t}t∈T so that P (Xt = X̃t) = 1,∀t ∈ T . It is a fundamental result in the
theory of stochastic process that if T is a separable metric space then {Xt}t∈T

possesses a separable version. In the sequel, unless we state otherwise, we
take T to be a compact second countable (and hence metrizable) Hausdorff
space. This allows us to define a separable version of the process {Xt}, and
in the sequel we always work with such version. When the covariance R
is continuous, Proposition 3 below can be used to construct explicitely a
separable version of the process (that actually works for any countable dense
D).

Example 1. Let T be a finite set, and let {Xt}t∈T be a centered Gaus-
sian process with non-degenerate covariance (matrix) R. Then, ⟨f, g⟩H =∑
figjR

−1(i, j). To see that, check the RKHS property:

⟨f,R(t, ·)⟩H =
∑
i,j

fiR(t, j)R
−1(i, j) =

∑
i

fi1t=i = ft , t ∈ T .

Example 2. Take T = [0, 1] and let Xt be standard Brownian motion. Then
R(s, t) = s ∧ t. If h(t) =

∑
aiR(si, t), f(t) =

∑
biR(si, t) then

⟨h, f⟩H =
∑
i,j

aibjR(si, sj) =
∑
i,j

aibj(si ∧ sj)

=
∑
i,j

aibj

∫ 1

0

1[0,si](u)1[0,sj ](u)du =

∫ 1

0

h′(u)f ′(u)du .

This hints that

H = {f : f(t) =

∫ t

0

f ′(u)du,

∫ 1

0

(f ′(u))2du <∞} ,

with the inner product ⟨f, g⟩H =
∫ 1

0
f ′(s)g′(s)ds. To verify that, need the

RKHS property:

⟨R(t, ·), f(·)⟩H =

∫ 1

0

f ′(u)1[0,t](u)du =

∫ t

0

f ′(s)ds = f(t) .

A useful aspect of the RKHS is that it allows one to rewrite Xt, with co-
variance R, in terms of i.i.d. random variables. Recall that we assume T to
be second countable and we will further assume that R is continuous. Then,
as we saw, both H and H are separable Hilbert spaces. Let {hn} be an or-
thonormal base of H corresponding to an i.i.d. basis of centered Gaussian
variables {ξn} in H.
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Proposition 3. With notation and assumption as above, we have

R(s, ·) =
∑
n

hn(s)hn(·) (equality in H) (1.4.4)

Xs =
∑
n

ξnhn(s) (equality in H) (1.4.5)

Further, the convergence in (1.4.4) is uniform on compact subsets of T .

Proof: We have

E(Xsξn) = ⟨R(s, ·), hn⟩H = hn(s) ,

where the first equality is from the definition of H and the second from the
RKHS property. The equality (1.4.5) follows. The claim (1.4.4) then follows
by writing R(s, t) = E(XsXt) and applying (1.4.5). Note that one thus ob-
tains R(t, t) =

∑
hn(t)

2.
To see the claimed uniform convergence, note that under the given as-

sumptions, hn(·) are continuous functions. The monotone convergence of the
continuous functions RN (t) :=

∑
n≤N hn(t)

2 toward the continuous function
R(t, t) is therefore, by Dini’s theorem, uniform on compacts (indeed, fixing
a compact S ⊂ T , the compact sets SN (ϵ) := {t ∈ S : R(t, t) ≥ ϵ + RN (t)}
monotonically decrease to the empty set as N → ∞, implying that there is a
finite N with SN (ϵ) empty). Thus, the sequence fN (s, ·) :=

∑
n≤N hn(s)hn(·)

converges in H uniformly in s belonging to compacts. Now use again the
RKHS property: fN (s, t) = ⟨R(t, ·), fN (s, ·)⟩H to get

sup
s,t∈S×S

|fN (s, t)−R(s, t)| = sup
s,t∈S×S

|⟨R(t, ·), fN (s, ·)−R(s, ·)⟩H|

≤ sup
s∈S

∥fN (s, ·)−R(s, ·)∥H · sup
t∈S

∥R(t, ·)∥H . (1.4.6)

Since ⟨R(t, ·), R(t, ·)⟩H = R(t, t), we have (by the compactness of S and
continuity of t→ R(t, t)) that supt∈S ∥R(t, ·)∥H <∞. Together with (1.4.6),
this completes the proof of uniform convergence on compacts. ⊓⊔
Remark: One can specialize the previous construction as follows. Start with
a finite measure µ on a compact T with supp(µ) = T , and a symmetric
positive definite continuous kernel K(·, ·) on T . Viewing K as an operator on
L2
µ(T ), it is Hilbert-Schmidt, and its normalized eigenfunctions {hn} (with

corresponding eigenvalues {λn}) form an orthonormal basis of L2
µ(T ), and

in fact due to the uniform boundedness of K on T , one has
∑
λn < ∞ (all

these facts follow from the general form of Mercer’s theorem). Now, one checks
that {

√
λnhn} is an orthonormal base of H, and therefore one can write Xt =∑

ξn
√
λnhn(t). This special case of the RKHS often comes under the name

Karhunen-Loeve expansion. The Brownian motion example corresponds to µ
Lebesgue on T = [0, 1].

As an application of the series representation in Proposition 3, we provide
a 0− 1 law for the sample path continuity of Gaussian processes. Recall that
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we now work with T compact (and for convenience, metric) and hence {Xt}
is a separable process. Define the oscillation function

oscX(t) = lim
ϵ→0

sup
u,v∈B(t,ϵ)

|Xu −Xv|.

Here, B(t, ϵ) denotes the open ball of radius ϵ around t. Since {Xt} is sepa-
rable, the oscillation function is well defined as a random variable. The next
theorem shows that it is in fact deterministic.

Theorem 1. Assumptions as in the preceeding paragraph. Then there exists
a deterministic function h on T , upper semicontinuous, so that

P (oscX(t) = h(t), ∀t ∈ T ) = 1.

Proof: Let B ⊂ T denote the closure of a non-empty open set. Define

oscX(B) = lim
ϵ→0

sup
s,t∈B,d(s,t)<ϵ

|Xs −Xt| ,

which is again well defined by the separability of {Xt}. Recall that (in the
notation of Proposition 3), Xt =

∑∞
j=1 ξjhj(t), where the functions hj(·) are

each uniformly continuous on the compact set T . Define

X
(n)
t =

∞∑
j=n+1

ξjhj(t) .

Since Xt − X
(n)
t is uniformly continuous in t for each n, we have that

oscX(B) = oscX(n)(B) a.s., with the null-set possibly depending on B
and n. By Kolmogorov’s 0 − 1 law (applied to the sequence of indepen-
dent random variables {ξn}), there exists a deterministic h(B) such that
P (oscX(B) = h(B)) = 1. Choose now a countable open base B for T , and set

h(t) = inf
B∈B:t∈B

h(B) .

Then h is upper-semicontinuous, and on the other hand

oscX(t) = inf
B∈B:t∈B

oscX(B) = inf
B∈B:t∈B

h(B) = h(t) ,

where the second equality is almost sure, and we used that B is countable.
⊓⊔

The following two surprising corollaries are immediate:

Corollary 1. TFAE:
• P (lims→tXs = Xt, for all t ∈ T ) = 1.
• P (lims→tXs = Xt) = 1, for all t ∈ T .

Corollary 2. P (X· is continuous on T ) = 0 or 1.

Indeed, all events in the corollaries can be decided in terms of whether h ≡ 0
or not.
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2 The Borell–Tsirelson-Ibragimov-Sudakov inequality

In what follows we always assume that T is compact and that {Xt} is a
centered Gaussian process on T with continuous covariance (we mainly as-
sume the continuous covariance to ensure that {Xt} is separable). We use
the notation

Xsup := sup
t∈T

Xt

noting that Xsup is not a norm.

Theorem 2 (Borell’s inequality). Assume that Xsup < ∞ a.s.. Then,
EXsup <∞, and

P
(∣∣ Xsup − EXsup ∣∣ > x

)
≤ 2e−x2/2σ2

T

where σ2
T := maxt∈T EX

2
t .

The heart of the proof is a concentration inequality for standard Gaussian
random variables.

Proposition 4. Let Y = (Y1, . . . , Yk) be a vector whose entries are i.i.d.
centered Gaussians of unit variance. Let f : Rk → R be Lipschitz, i.e. Lf :=
supx ̸=y(|f(x)− f(y)|/|x− y|) <∞. Then,

P (|f(Y)− Ef(Y)| > x) ≤ 2e−x2/2L2
f .

There are several proofs of Proposition 4. Borell’s proof relied on the Gaussian
isoperimetric inequality. In fact, Proposition 4 is an immediate consequence of
the fact that the one dimensional Gaussian measure satisfies the log-Sobolev
inequality, and that log-Sobolev inequalities are preserved when taking prod-
ucts of measures. Both these facts can be proved analytically, either from the
Gaussian isoperimetry or directly from inequalities on Bernoulli variables
(due to Bobkov). We will take a more probabilistic approach, following Pisier
and/or Tsirelson and al.
Proof of Proposition 4: By homogeneity, we may and will assume that
Lf = 1. Let F (x, t) = Exf(B1−t) where B· is standard k-dimensional Brow-
nian motion. The function F (x, t) is smooth on R × (0, 1) (to see that, rep-
resent it as integral against the heat kernel). Now, because the heat kernel
and hence F (x, t) is harmonic with respect to the operator ∂t +

1
2∆, we get

by Ito’s formula, with It =
∫ t

0
(∇F (Bs, s), dBs),

f(B1)− Ef(B1) = F (B1, 1)− F (0, 0) = I1 . (2.1.1)

Since f is Lipschitz(1), we have that Psf is Lipschitz(1) for any s and there-
fore ∥∇F (Bs, s)∥2 ≤ 1, where ∥ · ∥2 denotes here the Euclidean norm. On the
other hand, since for any stochastic integral It with bounded integrand and
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any θ ∈ R we have 1 = E(eθIt−θ2⟨I⟩t/2) where ⟨I⟩t is the quadratic variation
process of It, we conclude that

1 = E(eθI1−
θ2

2

∫ 1
0
∥∇F (Bs,s)∥2

2ds) ≥ E(eθI1−
θ2

2 ) ,

and therefore E(eθI1) ≤ eθ
2/2. By Chebycheff’s inequality we conclude that

P (|I1| > x) ≤ 2 inf
θ
eθx+θ2/2 = 2e−x2/2 .

Substituting in (2.1.1) yields the proposition. ⊓⊔
Proof of Theorem 2: We begin with the case where T is finite (the main
point of the inequality is then that none of the constants in it depend on the
cardinality of T ); in that case, {Xt} is simply a Gaussian vectorX, and we can
write X = R1/2Y where Y is a vector whose components are i.i.d. standard
Gaussians. Define the function f : R|T | → R by f(x) = maxi∈T (R

1/2x)i.
Now, with ei denoting the ith unit vector in R|T |,

|f(x)− f(y)| = |max
i∈T

(R1/2x)i −max
i∈T

(R1/2y)i| ≤ max
i

|(R1/2(x− y))i|

≤ max
i

∥eiR1/2∥2∥x− y∥2 = max
i

(eiR
1/2R1/2eTi )

1/2∥x− y∥2

= max
i
R

1/2
ii ∥x− y∥2 .

Hence, f is Lipschitz(σT ). Now apply Proposition 4 to conclude the proof of
Theorem 2, in case T is finite.

To handle the case of infinite T , we can argue by considering a (dense)
countable subset of T (here separability is crucial) and use monotone and then
dominated convergence, as soon as we show that EXsup < ∞. To see that
this is the case, we argue by contradiction. Thus, assume that EXsup = ∞.
Let T1 ⊂ . . . Tn ⊂ Tn+1 ⊂ . . . ⊂ T denote an increasing sequence of finite
subsets of T such that ∪nTn is dense in T . Choose M large enough so that
2e−M2/2σ2

T < 1. By the first part of the theorem,

1 > 2e−M2/2σ2
T ≥ 2e−M2/2σ2

Tn ≥ P (| Xsup
Tn − EXsup

Tn | > M)

≥ P ( EXsup
Tn −Xsup

Tn > M) ≥ P ( EXsup
Tn −Xsup

T > M) .

Since EXsup
Tn

→ EXsup
T by separability and monotone convergence, and

since Xsup
T < ∞ a.s., we conclude that the right side of the last display

converges to 1 as n→ ∞, a contradiction. ⊓⊔

3 Slepian’s inequality and variants

We continue with general tools for “nice” Gaussian processes; Borell’s in-
equality allows one to control the maximum of a Gaussian process. Slepian’s
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inequality allows one to compare two such processes. As we saw in the proof of
Borell’s inequality, once estimates are done (in a dimension-independent way)
for Gaussian vectors, separability and standard convergence results allow one
to transfer results to processes. Because of that, we focus our attention on
Gaussian vectors, i.e. to the situation where T = {1, . . . , n}.

Theorem 3 (Slepian’s lemma). Let X and Y denote two n-dimensional
centered Gaussian vectors. Assume the existence of subsets A,B ∈ T × T so
that

EXiXj ≤ EYiYj , (i, j) ∈ A

EXiXj ≥ EYiYj , (i, j) ∈ B

EXiXj = EYiYj , (i, j) ̸∈ A ∪B.

Suppose f : Rn → R is smooth, with appropriate growth at infinity of f and
its first and second derivatives (exponential growth is fine), and

∂ijf ≥ 0, (i, j) ∈ A

∂ijf ≤ 0, (i, j) ∈ B .

Then, Ef(X) ≤ Ef(Y).

Proof: Assume w.l.o.g. that X,Y are constructed in the same probability
space and are independent. Define, for t ∈ (0, 1),

X(t) = (1− t)1/2X+ t1/2Y. (3.1.1)

Then, with ′ denoting differentiation with respect to t, we have X ′
i(t) =

−(1− t)−1/2Xi/2 + t−1/2Yi/2. With ϕ(t) = Ef(X(t)), we get that

ϕ′(t) =

n∑
i=1

E(∂if(X(t))X ′
i(t)) . (3.1.2)

Now, by the independence of X and Y,

EXj(t)X
′
i(t) =

1

2
E(YiYj −XiXj) . (3.1.3)

Thus, we can write (recall the conditional expectation representation and
interpretation as orthogonal projection)

Xj(t) = αjiX
′
i(t) + Zji , (3.1.4)

where Zji = Zji(t) is independent of X ′
i(t) and αji is proportional to the

expression in (3.1.3). In particular, αji ≥ 0,≤ 0,= 0 according to whether
(i, j) ∈ A,B, (A ∪B)c.

Using the representation (3.1.4), we can now write
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E(X ′
i(t)∂if(X(t))) = E(X ′

i(t)∂if(α1iX
′
i(t) + Z1i, . . . , αniX

′
i(t) + Zni))

=: Mi(α1i, . . . , αni; t) .

We study the behavior of M as a function of the αs: note that

∂Mi

∂αji
= E(X ′

i(t)
2∂jif(· · · ))

which is ≥ 0,≤ 0 according to whether (i, j) ∈ A or (i, j) ∈ B. Together with
the computed signs of the αs, it follows that Mi(α1i, . . . , αni) ≥ Mi(0). But
due to the independence of the Zij on X ′

i(t), we have that M(0) = 0. Hence,
ϕ′(t) ≥ 0, implying ϕ(1) ≥ ϕ(0), and the theorem. ⊓⊔

Corollary 3 (Slepian’s inequality). Let X,Y be centered Gaussian vec-
tors. Assume that EX2

i = EY 2
i and EXiXj ≥ EYiYj for all i ̸= j. Then

maxiXi is stochastically dominated by maxi Yi, i.e., for any x ∈ R,

P (max
i
Xi > x) ≤ P (max

i
Yi > x) .

In particular, EmaxiXi ≤ Emaxi Yi.

Of course, at the cost of obvious changes in notation and replacing max by
sup, the result continue to hold for separable centered Gaussian processes.
Proof of Corollary 3: Fix x ∈ R. We need to compute E

∏n
i=1 f(Xi)

where f(y) = 1y≤x. Let fk denote a sequence of smooth, monotone functions
on R with values in [0, 1] that converge monotonically to f . Define Fk(x) =∏n

i=1 fk(xi); then ∂ijFk(x) ≥ 0 for i ̸= j. By Slepian’s lemma, with F̃k =

1−Fk we have that EF̃k(Y ) ≤ EF̃k(X). Now, take limits as k → ∞ and use
monotone convergence to conclude the stochastic domination. The claim on
the expectation is obtained by integration (or by using the fact that supiXi

and supi Yi can now be constructed on the same probability space so that
supiXi ≤ supi Yi). ⊓⊔

�

It is tempting, in view of Corollary 3, to claim that Theorem 3 holds for
f non-smooth, as long as its distributional derivatives satisfy the indicated
constraints. In fact, in the Ledoux–Talagrand book, it is stated that way.
However, that extension is false, as noted by Hoffman-Jorgensen. Indeed, it
suffices to take Y a vector of independent standard centered Gaussian (in
dimension d ≥ 2), X = (X, . . . ,X) where X is standard centered Gaussian,
and take f = −1D where D = {x ∈ Rd : x1 = x2 = . . . = xd}. Then
Ef(Y) = 0, Ef(X) = −1 but the mixed distributional derivatives of f
vanish.

The condition on equality of variances in Slepian’s inequality is sometimes
too restrictive. When dealing with EXsup, it can be dispensed with. This
was done (independently) by Sudakov and Fernique. The proof we bring is
due to S. Chatterjee; its advantage is that it provides a quantitative estimate
on the gap in the inequality.
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Proposition 5. Let X,Y be centered Gaussian vectors. Define γXij = E(Xi−
Xj)

2, γYij = E(Yi − Yj)
2. Let γ = max |γXij − γYij |. Then,

• |EXsup − EY sup| ≤
√
γ log n.

• If γXij ≤ γYij for all i, j then EXsup ≤ EY sup.

As a preliminary step in the proof, we provide a very useful Gaussian inte-
gration by parts.

Lemma 8. Let X be a centered Gaussian vector and let F be a smooth func-
tion with at most polynomial growth at infinity of its first derivatives. Then

E(XiF (X)) =
∑
j

E(XiXj)E(∂jF (X)) .

Proof of Lemma 8: Assume first that X has non-degenerate covariance.
Then,

EXiF (X) = C

∫
xiF (x)e

−xTR−1
X x/2dx . (3.1.5)

We will integrate by parts: note that

∂je
−xTR−1

X x/2 = −
∑
k

R−1
X (j, k)xke

−xTR−1
X x/2 = −(R−1

X x)je
−xTR−1

X x/2 .

Hence,

∇e−xTR−1
X x/2 = −R−1

X xe−xTR−1
X x/2 .

Integrating by parts in (3.1.5) and using the last display we get∫
xF (x)e−xTR−1

X x/2dx = −RX

∫
F (x)∇e−xTR−1

X x/2dx

= RX

∫
∇F (x)e−xTR−1

X x/2dx ,

completing the proof in case RX is non-degenerate. To see the general case,
replace RX by the non-degenerate RX + ϵI (corresponding to adding an in-
dependent centered Gaussian of covariance ϵI to X), and then use dominated
convergence. ⊓⊔
Proof of Proposition 5: Fix β ∈ R, X,Y independent, and set Fβ(x) =
1
β log

∑
i e

βxi . Set Z(t) = (1 − t)1/2X +
√
tY, and define ϕ(t) = EFβ(Z(t)).

Then,

ϕ′(t) = E
∑
i

∂iFβ(Z(t))
(
Yi/2

√
t−Xi/2

√
1− t

)
.

Using Lemma 8 we get

E(Xi∂iFβ(Z(t))) =
√
1− t

∑
j

RX(i, j)E∂2ijFβ(Z(t)) ,

E(Yi∂iFβ(Z(t))) =
√
t
∑
j

RY (i, j)E∂
2
ijFβ(Z(t)) .
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Therefore,

ϕ′(t) =
1

2

∑
i,j

E∂2ijFβ(Z(t))(RY (i, j)−RX(i, j)) .

A direct computation reveals that

∂iFβ(x) =
eβxi∑
j e

βxj
=: pi(x) > 0 ,

∂2ijFβ(x) =

{
β(pi(x)− p2i (x)) i = j
−βpi(x)pj(x) i ̸= j .

Thus, ϕ′(t) equals the expectation of

−β
2

∑
i,j

pi(Z(t))pj(Z(t))(RY (i, j)−RX(i, j))+
β

2

∑
i

pi(Z(t))(RY (i, i)−RX(i, i)) .

Because
∑

i pi(x) = 1, we get that the second term in the last display equals
β/4 times∑

i,j

pi(Z(t))pj(Z(t))(RY (i, i)−RX(i, i) +RY (j, j)−RX(j, j)) .

Combining, we get that ϕ′(t) equals β/4 times the expectation of∑
i,j

pi(Z(t))pj(Z(t)) (RY (i, i) +RY (j, j)− 2RY (i, j)−RX(i, i)−RX(j, j) + 2RX(i, j))

=
∑
i,j

pi(Z(t))pj(Z(t))
(
γYij − γXij

)
.

Thus, if γXij ≤ γYij for all i, j, we get that ϕ′(t) ≥ 0. In particular, ϕ(0) ≤ ϕ(1).
Taking β → ∞ yields the second point in the statement of the proposition. To
see the first point, note that maxi xi =

1
β log eβmax xi and therefore maxxi ≤

Fβ(x) ≤ maxi xi + (log n)/β. Since |ϕ(1)− ϕ(0)| ≤ βγ/4, and therefore∣∣EXsup − EY sup∣∣ ≤ βγ/4 + (log n)/β ≤
√
γ log n

where in the last inequality we chose (the optimal) β = 2
√
(log n)/γ. ⊓⊔

Exercise 7. Prove Kahane’s inequality: if F : R+ → R is concave of polyno-
mial growth, EXiXj ≤ EYiYj for all i, j, and if qi ≥ 0, then

E(F (

n∑
i=1

qie
Xi− 1

2RX(i,i))) ≥ E(F (

n∑
i=1

qie
Yi− 1

2RY (i,i))) .

Hint: Repeat the proof above of the Sudakov-Fernique inequality using F
instead of Fβ .
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4 Entropy and majorizing measures

In view of Borell’s inequality, an important task we still need to perform is
the control of the expectation of the maximum (over the parameters in T )
of a “nice” Gaussian process. A hint at the direction one could take is the
following real analysis lemma of Garsia, Rodemich and Rumsey.

Lemma 9. [Garsia-Rodemich-Rumsey lemma] Let Ψ : R+ → R+ and p :
[0, 1] → R+ be increasing functions with p continuous, p(0) = 0 and Ψ(∞) =
∞. Set Ψ−1(u) = sup{v : Ψ(v) ≤ u} (u ≥ Ψ(0)) and p−1(x) = max{v :
p(v) ≤ x} (x ∈ [0, p(1)]). Let f : [0, 1] → R be continuous. Set

I(t) =

∫ 1

0

Ψ

(
|f(t)− f(s)|
p(|t− s|)

)
ds .

Assume that B :=
∫ 1

0
I(t)dt <∞. Then,

|f(t)− f(s)| ≤ 8

∫ |t−s|

0

Ψ−1

(
4B

u2

)
dp(u). (4.1.1)

This classical lemma can be used to justify uniform convergence (see e.g.
Varadhan’s book for the stochastic processes course at NYU, for both a proof
and application in the construction of Brownian motion). For completeness,
we repeat the proof.
Proof of Lemma 9: By scaling, it is enough to prove the claim for s =
0, t = 1. Because B < ∞ we have I(t0) ≤ B for some t0 ∈ [0, 1]. For n ≥ 0,
set dn = p−1(p(tn)/2) (thus, dn < tn) and tn+1 < dn (thus, dn+1 < dn and
tn+1 < tn) converging to 0 so that

I(tn+1) ≤
2B

dn
and therefore ≤ 2B

dn+1
(4.1.2)

and

Ψ

(
|f(tn+1)− f(tn)|
p(|tn+1 − tn|)

)
≤ 2I(tn)

dn
and therefore ≤ 4B

dndn−1
≤ 4B

d2n
. (4.1.3)

Note that tn+1 can be chosen to satisfy these conditions since
∫ dn

0
I(s)ds ≤ B

(and hence the Lebesgue measure of s ≤ dn so that the inequality in (4.1.2) is
violated is strictly less than dn/2) while similarly the set of s ≤ dn for which
the inequality in (4.1.3) is violated is strictly less than dn/2 for otherwise

I(tn) =

∫ 1

0

Ψ

(
|f(s)− f(tn)|
p(|s− tn|)

)
ds ≥

∫ dn

0

Ψ

(
|f(s)− f(tn)|
p(|s− tn|)

)
ds

>
2I(tn)

dn
· dn
2

= I(tn) .
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Hence, such a tn+1 can be found. Now, from (4.1.3),

|f(tn+1)− f(tn)| ≤ p(tn − tn+1)Ψ
−1

(
4B

d2n

)
,

while

p(tn − tn+1) ≤ p(tn) = 2p(dn) equality from the definition of dn .

Therefore, since 2p(dn+1) = p(tn+1) ≤ p(dn) and therefore p(dn)−p(dn+1) ≥
p(dn)/2, we get that

p(tn − tn+1) ≤ 4[p(dn)− p(dn+1)] .

We conclude that

|f(0)− f(t0)| ≤ 4
∞∑

n=0

[p(dn)− p(dn+1)]Ψ
−1

(
4B

d2n

)

≤ 4

∞∑
n=0

∫ dn

dn+1

dp(u)Ψ−1

(
4B

u2

)
du = 4

∫ 1

0

dp(u)Ψ−1

(
4B

u2

)
du ,

where the first inequality is due to the monotonicity of Ψ−1. Repeating the
argument on |f(1)− f(t0)| yields the lemma. ⊓⊔

The GRR lemma is useful because it gives a uniform modulus of continuity
(e.g., on approximation of a Gaussian process on [0, 1] using the RKHS repre-
sentation) as soon as an integrability condition is met (e.g., in expectation).
For our needs, a particularly useful way to encode the information it provides
on the supremum is in terms of the intrinsic metric determined by the co-
variance. Set d(s, t) =

√
E(Xs −Xt)2, choose p(u) = max|s−t|≤u d(s, t), and

set Ψ(x) = ex
2/4 with Ψ−1(x) = 2

√
log x. Unraveling the definitions, we have

the following.

Corollary 4. There is a universal constant C with the following properties.
Let {Xt} be a centered Gaussian process on T = [0, 1] with continuous co-
variance. Assume that

A :=

∫ 1

0

√
log(25/4/u)dp(u) <∞ .

Then
E sup

t∈[0,1]

Xt ≤ CA ,

Remark: The constant 25/4 is an artifact of the proof, and we will see later
(toward the end of the proof of Theorem 4) that in fact one may replace it
by 1 at the cost of modifying C.
Proof of Corollary 4: By considering X̄t := Xt − X0, we may and will
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assume that X0 = 0. Further, using the RKHS representation, one may con-
sider only finite n approximations, with almost surely continuous sample
paths (this requires an extra equicontinuity argument that I leave as exer-
cise, and that is a consequence of the same computations detailed below).
Set

Z := 2

∫ 1

0

∫ 1

0

exp

(
(Xs −Xt)

2

4p2|s− t|

)
dsdt .

Then, EZ ≤
√
2. By Lemma 9, we have

Xsup ≤ 16

∫ 1

0

√
log

(
4Z

u2

)
dp(u) ,

and therefore, since the function
√

log(4x/u2) is concave in x,

EXsup ≤ 16

∫ 1

0

√
log(4

√
2/u2)dp(u) .

The conclusion follows. ⊓⊔
Corollary 4 is a prototype for the general bounds we will develop next.

The setup will be of T being a Hausdorff space with continuous positive
covariance kernel R : T × T → R. Introduce as before the intrinsic metric
d(s, t) =

√
E(Xs −Xt)2. We assume that T is totally bounded in the metric

d (the previous case of T being compact is covered by this, but the current
assumption allows us also to deal e.g. with T being a countable set).

Definition 7. A probability measure µ on T is called a majorizing measure
if

Eµ := sup
t∈T

∫ ∞

0

√
log(1/µ(Bd(t, r)))dr <∞ .

Note the resemblance to the definition of A in Corollary 4; choosing p(u) = u
and taking the one dimensional Lebesgue measure on T = [0, 1] maps between
the expressions.

The following generalizes Corollary 4.

Theorem 4 (Fernique). There exists a universal constant K such that, for
any majorizing measure µ,

EXsup ≤ KEµ .

We will later see that Theorem 4 is optimal in that a complementary lower
bound holds for some majorizing measure µ.
Proof: By scaling, we may and will assume that sups,t∈T d(s, t) = 1. The
first step of the proof is to construct an appropriate discrete approximation

of T . Towards this end, let µ be given, and for any n, let {t(n)i }rni=1 be a

finite collection of distinct points in T so that, with Bi,n := Bd(t
(n)
i , 2−(n+2))
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and Bs
i,n := Bd(t

(n)
i , 2−(n+3)) ⊂ Bi,n, we have T ⊂ ∪iB

s
i,n and µ(Bi,n) ≥

µ(Bi+1,n). (Thus, we have created a finite covering of T by d-balls of radii
2−(n+3), with roughly decreasing µ-volume.) We now use these to extract

disjoint subsets of T as follows. Set C
(n)
1 = B1,n and for i = 2, . . . , n, set

C
(n)
i =

{
∅, Bi,n

⋂(
∪i−1
j=1C

(n)
j

)
̸= ∅,

Bi,n otherwise.

In particular, every ball Bi,n intersects some Cj with j ≤ i.

We define πn : T → {t(n)i }i by setting πn(t) to be the first t
(n)
i for which

t ∈ Bs
i,n and C

(n)
i ̸= ∅. If no such i exists (i.e., C

(n)
i = ∅ for all Bs

i,n that cover
t), then let i(t) be the first index i for which Bs

i,n covers t, and let j < i(t)

be the maximal index so that C
(n)
j ∩Bi(t),n ̸= ∅; set then πn(t) = t

(n)
j .

Let Tn denote the range of the map πn and let T = ∪nTn. Note that by
construction,

d(t, πn(t)) ≤ 2−(n+3) + 2 · 2−(n+2) ≤ 2−n . (4.1.4)

(In the first case in the construction of πn(t), we get 2−(n+3).)

Set µ
(n)
t := µ(Bπn(t),n). We now claim that

µ
(n)
t ≥ µ(B(t, 2−(n+3))). (4.1.5)

Indeed, in the first case of the construction of πn(t) we have d(t, πn(t)) ≤
2−(n+3) and therefore µ

(n)
t = µ(B(πn(t), 2

−(n+2))) ≥ µ(B(t, 2−(n+3))). In the
second case, we have d(t, ti(t)) ≤ 2−(n+3) and therefore, by the monotonicity
of µ(Bi,n),

µ(B(t, 2−(n+3))) ≤ µ(B(ti(t), 2
−(n+2))) ≤ µ(B(πn(t), 2

−(n+2))) = µ
(n)
t .

In either case, (4.1.5) holds.
The heart of the proof of the theorem is the construction of an auxilliary

process whose distance dominates that defined by d, and then apply the
Sudakov-Fernique inequality. Toward this end, attach to each s ∈ Tn an

independent standard random variable ξ
(n)
s , and define the process

Yt =

∞∑
n=1

2−nξ
(n)
πn(t)

.

We are going to study the process {Yt} for t ∈ T (in fact, it would suffice
to consider it for t ∈ T ). We have

E(Xs −Xt)
2 ≤ 6E(Ys − Yt)

2 . (4.1.6)

Indeed, let N = N(s, t) be chosen such that 2−N ≤ d(s, t) < 2−N+1. Then,
by (4.1.4), we have that πn(t) ̸= πn(s) for n ≥ N + 1. In particular,
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E(Yt − Ys)
2 ≥ 2

∞∑
n=N+1

2−2n = 2−2N+2/6 ≥ d(s, t)2/6 .

Thus, by the Sudakov–Fernique inequality Proposition 5, we have that
EY sup ≥ EXsup/

√
6. We now evaluate EY sup.

The argument is somewhat surprising. For some M we will obtain the
uniform bound EYτ ≤ M for any random variable τ with values in T that
may depend on {Yt}. Taking as the law of τ (an approximation of) the law
of the maximum, this will imply that EY sup ≤M .

Let τ be a random variable with values in T of law ν and write

EYτ =

∞∑
n=1

2−n
∑
s∈Tn

E(ξ(n)s 1πn(τ)=s) . (4.1.7)

Now, set g(u) =
√

log(1/u) and, recalling that µ
(n)
s = µ(Bπn(s),n), write

E(ξ(n)s 1πn(τ)=s) = E(ξ(n)s 1πn(τ)=s1ξ(n)
s >

√
2g(µ

(n)
s )

) + E(ξ(n)s 1πn(τ)=s1ξ(n)
s ≤

√
2g(µ

(n)
s )

)

≤ E(ξ(n)s 1
ξ
(n)
s >

√
2g(µ

(n)
s )

) +
√
2g(µ(n)

s )P (πn(τ) = s)

=
µ
(n)
s√
2π

+
√
2g(µ(n)

s )P (πn(τ) = s) ,

where the last equality follows from the Gaussian estimate

E(ξs1ξs>
√
2g(a)) =

1√
2π

∫ ∞

√
2g(a)

xe−x2/2dx =
a√
2π

.

Therefore, substituting in (4.1.7) we get

EYτ ≤ 1√
2π

+
∑
n

2−n+1/2
∑
s∈Tn

g(µ(n)
s )P (πn(τ) = s)

≤ 1√
2π

+
∑
n

2−n+1/2

∫
T

g(µ(B(t, 2−(n+3))))ν(dt)

≤ 1√
2π

+

∫
T

ν(dt)
∑
n

2−n+1/2g(µ(B(t, 2−(n+3)))) ,

where the next to last inequality used (4.1.5). Due to the monotonicity of g,
we have that∑

n

2−n+1/2g(µ(B(t, 2−(n+3)))) ≤ 8
√
2

∫ ∞

0

g(µ(B(t, u)))du .

Thus,

EYτ ≤ C(1+

∫
T

ν(dt)

∫ ∞

0

g(µ(B(t, u))du) ≤ C(1+sup
t

∫ ∞

0

g(µ(B(t, u))du) ,
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for a universal constant C independent of ν. On the other hand, there are
at least two distinct points s1, s2 in T with d(s1, s2) > 1/2 and therefore
B(s1, u) ∩ B(s2, u) = ∅ for u ≤ 1/4. Therefore, for t equal at least to one of
s1 or s2 we have µ(B(t, u)) ≤ 1/2 for all u < 1/4. Therefore,

sup
t∈T

∫ ∞

0

g(µ(B(t, u))du ≥ 1

4

√
log 2 . (4.1.8)

Thus, 1+supt
∫∞
0
g(µ(B(t, u))du ≤ C ′ supt

∫∞
0
g(µ(B(t, u))du for a universal

C ′. This completes the proof. ⊓⊔
While majorizing measures are useful (and, as we will see, capture the

right behavior), it is rather awkward to work with them. A bound can be
obtained using the notion of metric entropy, as follows. Consider (T, d) as a
metric space, and let N(ϵ) denote the number of ϵ balls needed to cover T .
Let H(ϵ) = logN(ϵ) denote the metric entropy of T . We have the following.

Proposition 6 (Dudley). Assume that
∫∞
0

√
H(u)du < ∞. Then, there

exist a universal constant K and a majorizing measure µ such that,

Eµ ≤ K

∫ ∞

0

√
H(u)du .

Proof: By scaling we may and will assume that sups,t d(s, t) = 1. Let Nn =

N(2−n). Choose, for each n positive integer, a partition {Bn,k}Nn

k=1 of T where
each element of the partition is contained in a ball of radius 2−n, and fix
arbitrary probability measures νn,k supported on Bn,k. Set

µ(A) =
1

2

∞∑
n=0

2−n 1

Nn

∑
k

νn,k(A ∩Bn,k) .

Now, for any t ∈ T and u ∈ (2−(n+1), 2−n),

µ(B(t, u)) ≥ 1

2n+3Nn+2
.

Thus,∫ 1

0

√
log(1/µ(B(t, u)))du ≤

∑
n

2−n
√

log(2−nNn) ≤ C + 2

∫ 1

0

H(u)1/2du .

On the other hand,
∫ 1

0
H(u)1/2du ≥

√
log 2 (using the existence of a pair of

points which cannot be covered by one ball of radius < 1). ⊓⊔
As stated before, the majorizing measure bound is in fact tight (up to

multiplicative constants). The result is contained in the following theorem.

Theorem 5 (Talagrand). There exists a universal constant K such that for
some majorizing measure µ,

EXsup ≥ KEµ .
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The proof of the theorem is instructive in that it will emphasize the role of an
appropriate tree construction based on the covariance R. Before beginning,
we introduce some notation.

Let g(u) =
√
log(1/u). Define

Eµ(A) = sup
t∈A

∫ ∞

0

g(µ(B(t, u)))du , E(A) = inf
µ∈M1(A)

Eµ(A) .

(Here, M1(X) denotes the set of probability measures on X; we have ob-
viously that Eµ = Eµ(T ).) Note that E(·) is not necessarily monotone, and
therefore we set

α(A) = sup
B⊂A

E(B) , α = sup
∅̸=V⊂T finite

α(V ) .

By definition, α(·) is monotone.
The proof of the theorem involves several steps. The first two are relatively

easy and their proof is, at this stage, omitted .

Lemma 10. Let X = (X1, . . . , Xn), be i.i.d. standard Gaussians. Then
EXsup ∼

√
2 log n. In particular, there exist universal constants C, c such

that c
√
log n ≤ EXsup ≤ C

√
log n.

(The equivalence here is asymptotic as n → ∞.) The proof of Lemma 10
proceeds by writing the CDF of Xsup as product of the CDFs of the Xis.

Lemma 11. Let (T, d) be a metric space, of diameter D, and let {Ai}ni=1 be
a partition of T . Then there exists a nonempty subset I ⊂ {1, . . . , n} such
that, for all i ∈ I,

α(Ai) ≥ α(T )−D
√

2 log(1 + |I|) .

The heart of the combinatorial argument in the proof of Theorem 5 em-
ploys Lemma 11 in order to introduce a hierarchical structure in (T, d) when
the latter is finite. In what follows, set

βi(A) = α(A)− sup
t∈A

α(A ∩B(t, 6−(i+1))) ≥ 0 ,

which measures the minimal gain in α over restrictions to balls of radii
6−(i+1).

Lemma 12. Suppose (X, d) is finite of diameter D ≤ 6−i. Then, one can
find an integer I ≤ |X| and sets {Bk ⊂ X}Ik=1 so that the following hold.
• diam(Bk) ≤ 6−(i+1),
• d(Bk, Bj) ≥ 6−(i+2) if k ̸= j,

and

• α(Bk) + βi+1(Bk) ≥ α(X) + βi(X)− 6−(i−1)(2 +
√
log I) . (4.1.9)
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We will prove Lemma 12 after we see that it directly implies a domination of
EXsup

V , where X
sup

V = supt∈V Xt.

Proposition 7. Assume that diam(T ) = 1. Then there exists a universal
constant C such that for any V ⊂ T finite,

EXsup
V ≥ Cα(V ) .

Going from Proposition 7 to Theorem 5 involves only a limiting and density
argument, that we will discuss explicitely only after the proof of Proposition
7. It is in the proof of Proposition 7 that a tree structure in T will be most
apparent.
Proof of Proposition 7: We assume Lemma 12 as well as the preliminary
Lemmas 10 and 11. Note first that by a straightforward computation, if
(X,Y ) is a two dimensional centered Gaussian vector then Emax(X,Y ) =√
E(X − Y )2/2π and thus we may and will assume that 1 = diam(V ) ≤

6−3α(V ) (the constant 63 is of course arbitrary).
Set M = min{m : infs,t∈V,d(s,t)>0 d(s, t) > 6−m}. Using Lemma 12, con-

struct a collection of families {Bi}Mi=0, where Bi is non-empty and consists of
disjoint sets of diameter at most 6−i (in fact, actually smaller than 6−(i+1),
at least distanced by 6−(i+2). Do that so that the sets are nested, i.e. for each
B ∈ Bi and j < i there is a B′ ∈ Bj with B ⊂ B′, and such that (4.1.9) in
Lemma 12 holds at each level.

For t ∈ V , if t ∈ B ⊂ Bi, define B
i
t := B, and set

N i
t =

∣∣{C ∈ Bi+1 : C ⊂ Bi
t

}∣∣ .
We then have from (4.1.9) that for any B ∈ Bi+1 with B ⊂ Bi

t,

α(B) + βi+1(B) ≥ α(Bi
t) + βi(B

i
t)− 6−(i−1)(2 +

√
logN i

t ) . (4.1.10)

Set now Ṽ = ∩M
i=0 (∪B∈Bi

B) and, for t ∈ Ṽ , set Ψk
t =

∑M−1
i=k 6−(i+1)

√
logN i

t .

By construction, Ṽ is non empty and whenever BM
t is non-empty (which is

equivalent to t ∈ Ṽ ) one has that BM
t = {t}. Therefore, α(BM

t ) = βM (BM
t ) =

0. On the other hand, α(B0
t ) = α(V ) while β0(B

0
t ) ≥ 0. We thus get by tele-

scoping

α(V ) ≤ inf
t∈Ṽ

M−1∑
i=0

(
α(Bi

t) + βi(B
i
t)− α(Bi+1

t )− βi+1(B
i+1
t )

)
. (4.1.11)

Therefore, using (4.1.10), one gets

α(V ) ≤ 62 inf
t∈Ṽ

Ψ0
t + 2

∑
i

6−(i−1) ≤ 62 inf
t∈Ṽ

Ψ0
t +

α(V )

2
,

where in the last inequality we used the assumption that α(V ) ≥ 63. We
conclude that
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α(V ) ≤ 72 inf
t∈Ṽ

Ψ0
t . (4.1.12)

We still need to compare to the supremum of a Gaussian vector, and here
too we use a comparison with a tree-like process. With {ξB} i.i.d. standard

Gaussians, set, for t ∈ Ṽ , ξit = ξBi
t
and Y k

t =
∑M

i=k+1 6
−iξit. Then, for s, t ∈ Ṽ

with d(s, t) > 0 there is an i0 ∈ (0, . . . ,M) such that d(s, t) ∈ (6−(i0−1), 6−i0)]
and therefore, arguing as in the proof of the upper bound, we deduce that

E(Y 0
t − Y 0

s )
2 ≤ 2

∞∑
i0−1

6−2i ≤ 2 · 64

35
d(s, t)2 .

Hence for an explicit universal constant C,

Emax
t∈Ṽ

Y 0
t ≤ CEmax

t∈Ṽ
Xt . (4.1.13)

We are left with our last task, which is to control the expectation of
the maximum of Emaxt∈Ṽ Y

0
t from below. Toward this end, note that for

B ∈ BM−1 so that B ∩ Ṽ ̸= ∅, we have from Lemma 10 that for a universal
constant c > 0,

Emax
t∈B

YM−1
t ≥ cmin

t∈B
ΨM−1
t .

We will propagate this estimate inductively (backward), claiming that for
any B ∈ Bk with B ∩ Ṽ ̸= ∅,

Emax
t∈B

Y k
t ≥ cmin

t∈B
Ψk
t . (4.1.14)

(the universal constant c does not depend on k and is the same as in Lemma
10). Once we prove that, we have that it holds with k = 0 and then, using
(4.1.12) and (4.1.14) in the first inequality,

α(V ) ≤ CEmax
t∈Ṽ

Y 0
t ≤ CEmax

t∈Ṽ
Xt ≤ CEXsup

V .

So assume that (4.1.14) holds for k, we show it holds for k − 1. Fix
B ∈ Bk−1 so that B ∩ Ṽ ̸= ∅, and define CB

k = {C ∈ Bk : C ⊂ B}. For
C ∈ CB

k , set ΩC = {ξC > ξC′ , for all C ′ ∈ CB
k , C

′ ̸= C}. Then, define τkC so
that maxt∈C Y

k
t =: YτC , and note that

sup
t∈B

Y k−1
t ≥

∑
C∈CB

k

1ΩC

(
YτC + 6−kξC

)
=
∑

C∈CB
k

1ΩC
YτC + 6−k sup

C∈CB
k

ξC .

(4.1.15)
Because 1ΩC

is independent of the Y k
t s, we have (using that the ξCs are

identically distributed and hence P (ΩC) = 1/|CB
k |),

E
∑

C∈CB
k

1ΩC
YτC =

1

|CB
k |

∑
C∈CB

k

E sup
t∈C

Y k
t .
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Using the induction hypothesis (recall that c there is determined from Lemma
10 and in particular is universal), we thus obtain that

E
∑

C∈CB
k

1ΩC
YτC ≥ 1

|CB
k |

∑
C∈CB

k

c inf
t∈C

Ψk
t ≥ c inf

t∈B
Ψk
t .

Substituting in (4.1.15) and using Lemma 10, we conclude that

E sup
t∈B

Y k
t ≥ c inf

t∈B
Ψk
t + c6−k

√
log(|CB

k |) ≥ cΨk−1
t .

This completes the proof. ⊓⊔
Proof of Theorem 5: Fix subsets Tn = {tni } ⊂ T so that Tn is 2−(n+4) dense
in T . Fix k. Since E(Tk) ≤ α(Tk) ≤ α, we may find a measure µk ∈ M1(Tk)
so that

sup
t∈Tk

∑
i

2−ig(µk(B(t, 2−i))) ≤ 2α . (4.1.16)

Apply the construction in the proof of the upper bound to yield a nested

family of subsets {C(n)
i,k } = {B(tni,k, 2

−(n+2))} (with a map πk
n : T 7→ {tni,k} ⊂

Tk that is 2−n dense) so that

µk(C
(n)
i,k (t)) ≤ µk(B(t, 2−(n+3))). (4.1.17)

Define µn,k ∈M1(Tn) by µn,k(t
n
i,k) = Z−1

n,kµk(C
(n)
i,k (t)) where Zn,k is a normal-

ization constant. Fixing n and taking k → ∞ yields a sequence of measures on
the finite set Tn, that converges on subsequences. Let µ̄n be a subsequential
limit point.

Fix now t ∈ T and fix a further subsequence (in k) such that πn
k (t)

converges to a limit point πn(t) ∈ Tn (and thus, equals the limit from some k

onward). Call this k0. Let τk(t) denote the smallest in lexicographic order t
(k)
i

with d(t, t
(k)
i ) ≤ 2−(k+4); Such a τk exists because {t(k0)

i } is 2−(k0+4)-dense.
We get ∑

n

2−ng(µ̄n(πn(t)) ≤
∑
n

2−n lim inf
k

g(Z−1
k,nµk(C

(n)
k (t)))

≤
∑
n

2−n lim inf
k

g(µk(C
(n)
k (t))) ,

because Zk,n ≤ 1. Therefore,∑
n

2−ng(µ̄n(πn(t)) ≤ 16
∑
n

2−(n+4) lim inf
k

g(µk(B(τk(t), 2
−(n+4)) ≤ 32α ,

(4.1.18)
where the first inequality is due to (4.1.17) and the last inequality follows
from (4.1.16). Define µ ∈ M1(T ) so that µ(A) =

∑
n 2

−nµ̄n(A). Use that
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g(µ({πn(t)}) ≤ g(2−nµ̄n({πn(t)}) ≤ g(2−n) + g(µ̄n({πn(t)}) ≤ g(2−n)S and
that πn(t) ⊂ B(t, 2−n) and therefore µ(B(t, 2−n) ≥ µ({πn(t)}), see (4.1.4),
to conclude that∫ 1

0

g(µ(B(t, u))du ≤
∑
n

2−ng(µ(B(t, 2−n))

≤
∑
n

2−ng(µ({πn(t)})

≤
∑
n

2−ng(µ̄n({πn(t)})) +
∑
n

2−ng(2−n)

≤ 32α+ 2
√
log 2,

where the last inequality is due to (4.1.18). Using again (4.1.8), we conclude
that the right side of the last display is bounded by Cα. Applying Proposition
7 then completes the proof. ⊓⊔
Proof of Lemma 12: We construct a (nested) sequence of subsets of X as
follows: Set X1 = X and for 1 ≤ k < κ, Xk = X \ ∪j<kAj . We next show
how to construct subsets ∅ ≠ Bk ⊆ Ak ⊆ Xk so that the following conditions
hold:

diam(Ak) ≤ 6−(i+1), d(Bk, Xk \Ak) ≥ 6−(i+2), and (4.1.19)

either

α(Bk) + α(Xk) ≥ 2α(Ak) (such k belongs to I1) (4.1.20)

or

α(Bk) + βi+1(Bk) ≥ α(Xk) (such k belongs to I2) . (4.1.21)

Indeed, given Xk, if there exists t ∈ Xk so that

α(B(t, 6−(i+2)) ∩Xk) + α(Xk) ≥ 2α(B(t, 2 · 6−(i+2)) ∩Xk) (4.1.22)

then set Ak = B(t, 2 · 6−(i+2))∩Xk, Bk = B(t, 6−(i+2))∩Xk, with obviously
k ∈ I1. Otherwise, let t0 ∈ Xk maximizes α(B(t, 2 · 6−(i+2)) ∩ Xk) and set
Ak = B(t0, 3 · 6−(i+2))∩Xk, Bk = B(t0, 2 · 6−(i+2))∩Xk; this choice satisfies
(4.1.21) (and hence k ∈ I2) because

βi+1(Bk) = α(Bk)− sup
t∈Bk

α(Bk∩B(t, 6−(i+2))) ≥ α(Bk)− sup
t∈Bk

α(B(t, 6−(i+2))∩Xk)

is larger than

α(Bk) + α(Xk)− 2 sup
t∈Bk

α(B(t, 2 · 6−(i+2)) ∩Xk)

(just use that the inequality in (4.1.22) does not hold over Xk) and therefore

βi+1(Bk) ≥ α(Xk)− α(Bk) , for k ∈ I2 .
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With κ = min{k : α(Xk) < α(X) − 2 · 6−i}, we have that α(Xk) ≥ α(X) −
2 · 6i−1 for all k < κ. Set Cκ = ∪k<κAk. Applying Lemma 11 with the two
set partition (Cκ, Xκ) of X, one obtains that

α(Cκ) ≥ α(X)− 6−i
√
2 log 2 . (4.1.23)

(We used here that α(Xκ) < α(X)− 2 · 6−i < α(X)− 6−i
√
2 log 2.) Another

application of Lemma 11 to Ck yields that there exists a subset I of I1 ∪ I2
so that for all k ∈ I,

α(Ak) ≥ α(Ck)− 6−i
√
2 log(1 + |I|) ≥ α(X)− 2 · 6−i(2 +

√
log(1 + |I|)) .

(4.1.24)
(The last inequality used (4.1.23).) Therefore, for k ∈ I ∩ I1, using that the
definitions implies that

βi(X) ≤ α(X)− α(B(t, 2 · 6−(i+2)) ∩Xk) ≤ α(X)− α(Ak),

we conclude that

α(Bk) + βi+1(Bk) ≥ α(Bk) ≥ 2α(Ak)− α(Xk)

≥ α(X) + βi(X)− 3(α(X)− α(Ak))

≥ α(X) + βi(X)− 6−i+1(2 +
√
log(1 + |I|)) .

(The last inequality follows from (4.1.24).) On the other hand, for k ∈ I ∩ I2,
we get

α(Bk) + βi+1(Bk) ≥ α(Xk) ≥ α(X)− 2 · 6−i

≥ 2α(X)− α(Ak)− 2 · 6−i(4 +
√
log(1 + |I|))

≥ α(X) + βi(X)− 2 · 6−i(4 +
√
log(1 + |I|)) ,

where the first inequality is due to (4.1.21), the second because k < κ, the
third from (4.1.24), and the last from the definition of βi(X) and the mono-
tonicity of α(·):

βi(X) = α(X)− sup
t∈A

α(X ∩B(t, 6−(i+1)))

≤ α(X)− sup
t∈Ak

α(X ∩B(t, 6−(i+1)))

≤ α(X)− α(Xk ∩B(t0, 3 · 6−(i+2))) = α(X)− α(Ak) .

This completes the proof. ⊓⊔
Proof of Lemma 11: Order the Ais in decreasing order of their α mea-

sure. Fix V ⊂ T and fix probability measures µi supported on Ai ∩ V and
ai = 1/(i+ 1)2. Define µ supported on V by

µ(A) =

∑n
i=1 aiµi(A ∩Ai)∑n

i=1 ai
≥

n∑
i=1

aiµi(A).
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Then, for t ∈ Ai ∩ V ,∫ ∞

0

g(µ(B(t, d))dr ≤
∫ D

0

g(aiµi(B(t, r)))dr ≤ Dg(ai)+

∫ D

0

g(µi(B(t, r)))dr .

In particular,

Eµ(V ) ≤ sup
i

(Dg(ai) + Eµi
(Ai ∩ V )) = Dg(aj) + Eµj

(Aj ∩ V )

for some j ∈ {1, . . . , n}. Thus,

E(V ) ≤ Dg(aj) + E(Aj ∩ V ) ≤ Dg(aj) + E(Aj) .

Taking I = {1, . . . , j} and using the monotonicity of α(Ai) completes the
proof. ⊓⊔

5 Branching Random Walks

Branching random walks (BRWs), and their continuous time counterparts,
branching Brownian motions (BBMs), form a natural model that describe
the evolution of a population of particles where spatial motion is present.
Groundbreaking work on this, motivated by biological applications, was done
in the 1930’s by Kolmogorov-Petrovsky-Piskounov and by Fisher. The model
itself exhibit a rich mathematical structures; for example, rescaled limits of
such processes lead to the study of superprocesses, and allowing interactions
between particles creates many challenges when one wants to study scaling
limits.

Our focus is slightly different: we consider only particles in R, and are
mostly interested in the atypical particles that “lead the pack”. Surprisingly,
this innocent looking question turns out to show up in unrelated problems,
and in particular techniques developed to handle it show up in the study of
the two dimensional Gaussian Free Field, through an appropriate underlying
tree structure. For this reason, and also because it simplifies many proofs, we
will restrict attention to Gaussian centered increments.

5.1 Definitions and models

We begin by fixing notation. Let T be a tree rooted at a vertex o, with
vertex set V and edge set E. We denote by |v| the distance of a vertex
v from the root, i.e. the length of the geodesic (=shortest path, which is
unique) connecting v to o, and we write o ↔ v for the collection of vertices
on that geodesic (including o and v). With some abuse of notation, we also
write o ↔ v for the collection of edges on the geodesic connecting o and v.
Similarly, for v, w ∈ V , we write ρ(v, w) for the length of the unique geodesic
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connecting v and w, and define v ↔ w similarly. The nth generation of the
tree is the collection Dn := {v ∈ V : |v| = n}, while for v ∈ Dm and n > m,
we denote by

Dv
n = {w ∈ Dn : ρ(w, v) = n−m}

the collection of descendants of v in Dn. Finally, the degree of the vertex v
is denoted dv.

Let {Xe}e∈E denote a family of independent (real valued) random vari-
ables attached to the edges of the tree T , of law µ. As mentioned above,
we consider µ to be the standard centered Gaussian law. For v ∈ V , set
Sv =

∑
e∈o↔vXe. The Branching Random Walk (BRW) is simply the col-

lection of random variables {Sv}v∈V . We will be interested in the maximal
displacement of the BRW, defined as

Mn = max
v∈Dn

Sv .

In our treatment, we always assume that the tree T is a k-ary tree, with
k ≥ 2: do = k and dv = k + 1 for v ̸= o.

As mentioned above, we will only discuss the Gaussian case, but whenever
possible the statements will be phrased in a way that extends to more general
distributions. With this in mind, introduce the large deviations rate function
associated with the increments:

I(x) = sup
λ∈R

(λx− Λ(λ)) = x2/2 ,
(
Λ(λ) = logEµ(e

λX) = λ2/2
)
, (5.1.1)

which is strictly convex and has compact level sets. Set x∗ =
√
2 log k to

be the unique point so that x∗ > Eµ(X) and I(x∗) = log k. We then have
I(x∗) = λ∗x∗ − Λ(λ∗) where x∗ = Λ′(λ∗) and x∗ = I ′(λ∗) = λ∗.

5.2 Warm up: getting rid of dependence

We begin with a warm-up computation. Note that Mn is the maximum over
a collection of kn variables, that are not independent. Before tackling com-
putations related to Mn, we first consider the same question when those
kn variables are independent. That is, let {S̃v}v∈Dn

be a collection of i.i.d.
random variables, with S̃v distributed like Sv, and let M̃n = maxv∈Dn

S̃v.
We then have the following. (The statement extends to the Non-Gaussian,
non-lattice case by using the Bahadur-Rao estimate.)

Theorem 6. With notation as above, there exists a constant C so that

P (M̃n ≤ m̃n + x) → exp(−Ce−I′(x∗)x) , (5.2.1)

where

m̃n = nx∗ − 1

2I ′(x∗)
log n. (5.2.2)



32 Ofer Zeitouni

In what follows, we write A ∼ B if A/B is bounded above and below by two
universal positive constants (that do not depend on n).

Proof. The key is the estimate, valid for an = o(
√
n),

P (S̃v > nx∗ − an) ∼
C√
n
exp(−nI(x∗ − an/n)) , (5.2.3)

which is trivial in the Gaussian case. We have

nI(x∗ − an/n) = nI(x∗)− I ′(x∗)an + o(1) .

Therefore, recalling that I(x∗) = log k,

P (M̃n ≤ nx∗ − an) ∼
(
1− C

kn
√
n
eI

′(x∗)an+o(1)

)kn

∼ exp(−CeI
′(x∗)an+o(1)/

√
n) .

Choosing now an = log n/2I ′(x∗)− x, one obtains

P (M̃n ≤ mn + x) ∼ exp(−Ce−I′(x∗)x+o(1)) .

The claim follows. ⊓⊔

Remark 1. With some effort, the constant C can also be evaluated to be
1/
√
2πx∗, but this will not be of interest to us. On the other hand, the

constant in front of the log n term will play an important role in what follows.

Remark 2. Note the very different asymptotics of the right and left tails: the
right tail decays exponentially while the left tail is doubly exponential. This
is an example of extreme distribution of the Gumbel type.

5.3 BRW: the law of large numbers

As a further warm up, we will attempt to obtain a law of large numbers for
Mn. Recall, from the results of Section 5.2, that M̃n/n→ x∗. Our goal is to
show that the same result holds for Mn.

Theorem 7 (Law of Large Numbers). We have that

Mn

n
→n→∞ x∗ , almost surely (5.3.1)

Proof. While we do not really need in what follows, we remark that the al-
most sure convergence can be deduced from the subadditive ergodic theorem.
Indeed, note that each vertex in Dn can be associated with a word a1 . . . an
where ai ∈ {1, . . . , k}. Introduce an arbitrary (e.g., lexicographic) order on
the vertices of Dn, and define
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v∗m = min{v ∈ Dm : Sv = max
w∈Dm

Sw} .

For n > m, write
Mm

n = max
w∈D

v∗
m

n

Sw − Sv∗
m
.

We then have, from the definitions, that Mn ≥Mm+Mm
n , and it is not hard

to check that Mn possesses all moments (see the first and second moment
arguments below). One thus concludes, by applying the subadditive ergodic
theorem (check the stationarity and ergodicity assumptions, which here follow
from independence!), thatMn/n→ c, almost surely, for some constant c. Our
goal is now to identify c.

The upper bound Let Z̄n =
∑

v∈Dn
1Sv>(1+ϵ)x∗n count how many parti-

cles, at the nth generation, are at location greater than (1+ ϵ)nx∗. We apply
a first moment method: we have, for any v ∈ Dn, that

EZ̄n = knP (Sv > n(1 + ϵ)x∗) ≤ kne−nI((1+ϵ)x∗) ,

where we applied Chebyshev’s inequality in the last inequality. By the strict
monotonicity of I at x∗, we get that EZ̄n ≤ e−nc(ϵ), for some c(ϵ) > 0. Thus,

P (Mn > (1 + ϵ)nx∗) ≤ EZ̄n ≤ e−c(ϵ)n .

It follows that

lim sup
n→∞

Mn

n
≤ x∗ , almost surely .

The lower bound A natural way to proceed would have been to define

Zn =
∑
v∈Dn

1Sv>(1−ϵ)x∗n

and to show that with high probability, Zn ≥ 1. Often, one handles this via
the second moment method: recall that for any nonegative, integer valued
random variable Z,

EZ = E(Z1Z≥1) ≤ (EZ2)1/2(P (Z ≥ 1))1/2

and hence

P (Z ≥ 1) ≥ (EZ)2

E(Z2)
. (5.3.2)

In the case of independent summands, we obtain by this method that

P (M̃n ≥ (1−ϵ)x∗n) ≥ k2nP (S̃v ≥ (1− ϵ)x∗n)2

kn(kn − 1)P (S̃v ≥ (1− ϵ)x∗n)2 + knP (S̃v ≥ (1− ϵ)x∗n)
.

Since (e.g., by Cramer’s theorem of large deviations theory),
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αn := knP (S̃v ≥ (1− ϵ)x∗n) → ∞ , exponentially fast

one obtains that

P (M̃n ≥ (1− ϵ)x∗n) ≥ 1
kn−1
kn + 1/αn

≥ 1− e−c′(ϵ)n ,

implying that

lim inf
M̃n

n
≥ x∗ , almost surely.

Any attempt to repeat this computation withMn, however, fails, because
the correlation between the events {Sv > nx∗(1− ϵ)} and {Sw > nx∗(1− ϵ)}
with v ̸= w is too large (check this!). Instead, we will consider different
events, whose probability is similar but whose correlation is much smaller.
Toward this end, we keep track of the trajectory of the ancestors of particles
at generation n. Namely, for v ∈ Dn and t ∈ {0, . . . , n}, we define the ancestor
of v at levet t as vt := {w ∈ Dt : ρ(v, w) = n− t}. We then set Sv(t) = Svt ,
noting that Sv = Sv(n) for v ∈ Dn. We will later analyze in more detail
events involving Sv(t), but our current goal is only to prove a law of large
numbers. Toward this end, define, for v ∈ Dn, the event

Bϵ
v = {|Sv(t)− x∗t| ≤ ϵn, t = 1, . . . , n} .

We now recall a basic large deviations result.

Theorem 8 (Varadhan, Mogulskii). With notation and assumption as
above,

lim
ϵ→0

lim sup
n→∞

1

n
logP (Bϵ

v) = lim
ϵ→0

lim inf
n→∞

1

n
logP (Bϵ

v) = −I(x∗) .

Define now
Zn =

∑
v∈Dn

1Bϵ
v
.

By theorem 8, we have that

EZn ≥ e−c(ϵ)n . (5.3.3)

To obtain an upper bound requires a bit more work. Fix a pair of vertices
v, w ∈ Dn with ρ(v, w) = 2r. Note that the number of such (ordered) pairs is
kn+r−1(k−1). Now, using independence in the first equality, and homogenuity
in the first inequality,

P (Bϵ
v ∩Bϵ

w) = E
(
1{|Sv(t)−x∗t|≤ϵn,t=1,...,n−r} )

· (P (|Sv(t)− x∗t| ≤ ϵn, t = n− r + 1, . . . , n|Sv(n− r))
2
)

≤ P (|Sv(t)− x∗t| ≤ ϵn, t = 1, . . . , n− r)

·P (|Sv(t)− x∗t| ≤ 2ϵn, t = 1, . . . , r)2 .
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Using Theorem 8, we then get that for all n large enough,

P (Bϵ
v ∩Bϵ

w) ≤ e−(n−r)I(x∗)−2rI(x∗)+c(ϵ)n ,

where c(ϵ) →ϵ→0 0. Therefore,

EZ2
n ≤

n∑
r=0

kn+re−(n+r)I(x∗)+c(ϵ)n = ec(ϵ)n .

It follows from (5.3.2), (5.3.3) and the last display that, for any δ > 0,

P (∃v ∈ Dn : Sv ≥ (1− δ)x∗n) ≥ e−o(n) . (5.3.4)

It seems that (5.3.4) is not quite enough to conclude. However, that turns out
not to be the case. In the non-Gaussian case, one may proceed by truncating
the tree at depth ϵn and use independence. In the Gaussian case, I will follow
a suggestion of Eliran Subag, and directly apply Borell’s inequality: indeed,

P (|Mn − EMn| ≥ δn) ≤ 2e−δ2n/2 .

Using (5.3.4), one deduces that EMn ≥ (1 − δ)x∗n − δn. Together with the
upper bound and the arbitrariness of δ, this implies that EMn/n → x∗,
and subadditivity (or directly, the use of Borell inequality together with the
Borel-Cantelli lemma) then yield that also Mn/n→ x∗ almost surely. ⊓⊔

5.4 A prelude to tightness: the Dekking-Host argument

The law of large number in Theorem 7 is weaker than the statement in The-
orem 6 in two respects: first, no information is given in the latter concerning
corrections from linear behavior, and second, no information is given, e.g.,
on the tightness of Mn − EMn, let alone on its convergence in distribution.
In this short section, we describe an argument, whose origin can be traced to
[DH91], that will allow us to address the second point, once the first has been
settled. Because it is a rather general argument, we drop in this subsection
the assumption that the increments are Gaussian.

The starting point is the following recursion:

Mn+1
d
=

k
max
i=1

(Mn,i +Xi), (5.4.1)

where
d
= denotes equality in distribution, Mn,i are independent copies of

Mn, and Xi are independent copies of Xe which are also independent of the
collection {Mn,i}ki=1. Because of the independence and the fact that EXi = 0,
we have that

E
(

k
max
i=1

(Mn,i +Xi)
)
≥ E

(
k

max
i=1

(Mn,i)
)
.

Therefore,
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EMn+1 ≥ E
(

k
max
i=1

(Mn,i)
)
≥ E

(
2

max
i=1

(Mn,i)
)
.

Using the identity max(a, b) = (a+ b+ |a− b|)/2, we conclude that

E(Mn+1 −Mn) ≥
1

2
E|Mn −M ′

n| , (5.4.2)

where M ′
n is an independent copy of Mn.

The importance of (5.4.2) cannot be over-estimated. First, suppose that
there exists K <∞ such that Xe < K, almost surely (this was the setup for
which Dekking and Host invented this argument). In that case, we have that
EMn+1 − EMn ≤ K, and therefore, using (5.4.2), we immediately see that
the sequence {Mn−EMn}n≥1 is tight (try to prove this directly to appreciate
the power of (5.4.2)). In making this assertion, we used the easy

Exercise 8. Prove that for every C > 0 there exists a function f = fC on R
with f(K) →K→∞ 0, such that if X,Y are i.i.d. with E|X − Y | < C < ∞,
then P (|X − EX| > K) ≤ f(K).

However, (5.4.2) has implications even when one does not assume that
Xe < K almost surely for some K. First, it reduces the question of tightness
to the question of computing an upper bound on EMn+1 − EMn (we will
provide such a bound, of order 1, in the next section). Second, even without
the work involved in proving such a bound, we have the following observation,
due to [BDZ11].

Corollary 5. For any δ > 0 there exists a deterministic sequence {nδj}j≥1

with lim sup(nδj/j) ≤ (1+δ), so that the sequence {Mnδ
j
−EMnδ

j
}j≥1 is tight.

Proof. Fix δ ∈ (0, 1). We know that EMn/n → x∗. By (5.4.2), EMn+1 −
EMn ≥ 0. Define nδ0 = 0 and nδj+1 = min{n ≥ nδj : EMn+1−EMn ≤ 2x∗/δ}.
We have that nδj+1 <∞ because otherwise we would have lim supEMn/n ≥
2x∗/δ. Further, let Kn = |{ℓ < n : ℓ ̸∈ {nδj}}|. Then, EMn ≥ 2Knx

∗/δ,
hence lim supKn/n ≤ δ/2, from which the conclusion follows. ⊓⊔

5.5 Tightness of the centered maximum

We continue to refine results for the BRW, in the spirit of Theorem 6; we will
not deal with convergence in law, rather, we will deal with finer estimates on
EMn, as follows.

Theorem 9. With notation and assumption as before, we have

EMn = nx∗ − 3

2I ′(x∗)
log n+O(1) . (5.5.1)
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Remark 3. It is instructive to compare the logarithmic correction term in
(5.5.1) to the independent case, see (5.2.2): the constant 1/2 coming from
the Bahadur-Rao estimate (5.2.3) is replaced by 3/2. As we will see, this
change is due to extra constraints imposed by the tree structure, and ballot
theorems that are close to estimates on Brownian bridges conditioned to stay
positive.

Theorem 9 was first proved by Bramson [Br78] in the context of Branch-
ing Brownian Motions. The branching random walk case was discussed in
[ABR09], who stressed the importance of certain ballot theorems. Recently,
Roberts [Ro11] significantly simplified Bramson’s original proof. The proof
we present combines ideas from these sources. To reduce technicalities, we
consider only the case of Gaussian increments in the proofs.

Before bringing the proof, we start with some preliminaries related to
Brownian motion and random walks with Gaussian increments.

Lemma 13. Let {Wt}t denote a standard Brownian motion. Then

P (Wt ∈ dx,Ws ≥ −1 for s ≤ t) =
1√
2πt

e−x2/2t
(
1− e−(x+2)/2t

)
dx .

(5.5.2)

Note that the right side in (5.5.2) is of order (x + 2)/t3/2 for all x = O(
√
t)

positive. Further, by Brownian scaling, for y = O(
√
t) positive,

P (Wt ∈ dx,Ws ≥ −y for s ≤ t) = O

(
(x+ 1)(y + 1)

t3/2

)
. (5.5.3)

Proof: This is D. André’s reflection principle. Alternatively, the pdf in ques-
tion is the pdf of a Brownian motion killed at hitting −1, and as such it solves
the PDE ut = uxx/2 , u(t,−1) = 0, with solution pt(0, x) − pt(−2, x), where
pt(x, y) is the standard heat kernel. ⊓⊔
Remark: An alternative approach to the proof of Lemma 13 uses the fact
that a BM conditioned to remain positive is a Bessel(3) process. This is the
approach taken in [Ro11].

We next bring a ballot theorem; for general random walks, this version
can be found in [ABR08, Theorem 1]. We provide the proof in the case of
Gaussian increments.

Theorem 10 (Ballot theorem). Let Xi be iid random variables of zero
mean, finite variance, with P (X1 ∈ (−1/2, 1/2)) > 0. Define Sn =

∑n
i=1Xi.

Then, for 0 ≤ k ≤
√
n,

P (k ≤ Sn ≤ k + 1, Si > 0, 0 < i < n) = Θ

(
k + 1

n3/2

)
, (5.5.4)

and the upper bound in (5.5.4) holds for any k ≥ 0.
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Here, we write that an = Θ(bn) if there exist constanst c1, c2 > 0 so that

c1 ≤ lim inf
n→∞

an
bn

≤ lim sup
n→∞

an
bn

≤ c2 .

Proof (for standard Gaussian increments): The lower bound is an im-
mediate consequence of Lemma 13. To see the upper bound, one approach
would be to interpolate from the Brownian motion result. To make this work
is however somewhat lengthy, so instead we provide a direct proof.

The idea is simple: staying positive for an interval of length n/4 when
started at 0 has probability of order c/

√
n. When started at z ∈ [k, k + 1]

(and looking at the reversed walk), the same event has probability of order
c(k + 1)/

√
n. Matching the two walks can’t happen with probability larger

than c/
√
n by Gaussian estimates (for a random walk at time n/2).

To turn the above into a proof, we need the following facts. For h ≥ 0, let
τh = min{n ≥ 1 : Sn ≤ −h}. Then,

P (τh ≥ n) ≤ c(h+ 1)/
√
n . (5.5.5)

The case h = 0 in (5.5.5) is classical and in Feller’s book, who uses the
Sparre-Andersen bijection to compute the generating function of τ0; in that
case, one actually has that

lim
n→∞

n1/2P (τ0 > n) = c .

The general case follows from this by choosing first α so that P (Sαh2 > h) ≥
1/3 for all h. Then, by the FKG inequality,

P (Sαh2 > h, τ0 > αh2) ≥ P (Sαh2 > h)P (τ0 > αh2) ≥ c/h .

Therefore, from the Markov property,

c

h
P (τh > n) ≤ P (Sαh2 > h, τ0 > αh2, Sαh2+j − Sαh2 ≥ −h, j = 1, . . . , n)

≤ P (τ0 > αh2 + n) ≤ cn−1/2 ,

yielding (5.5.5).
To complete the proof of Theorem 10 in the case under consideration,

define the reversed walk Sr
i = Sn − Sn−i, and consider the reverse hitting

time τ rh = mini:Sr
i <−h. Then, the event {Si > 0, i = 1, . . . , n, Sn ∈ [k, k + 1]}

is contained in the event {τ0 > n/4, τ rk > n/4, S3n/4 + Sr
n/4 ∈ [k, k + 1]} and

thus, using (conditional) independence,

P (Si > 0, i = 1, . . . , n, Sn ∈ [k, k + 1]})

≤ P (τ0 > n/4)P (τ rk > n/4)max
y∈R

P (Sn/2 ∈ [y, y + 1]) ≤ c
k + 1

n3/2
,

as claimed. ⊓⊔
Exercise 9. Show that there exists a constant cb so that

lim
x,y→∞

lim
n→∞

n3/2

xy
P x(Sn ∈ [y, y + 1], Si > 0, i = 1, . . . , n) = cb . (5.5.6)
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A lower bound on the right tail of Mn Fix y > 0 independent of n and
set

an = x∗n− 3

2I ′(x∗)
log n = x∗n− 3

2x∗
log n.

For v ∈ Dn, define the event

Av = Av(y) = {Sv ∈ [y + an − 1, y + an], Sv(t) ≤ ant/n+ y, t = 1, 2, . . . , n},

and set
Zn =

∑
v∈Dn

1Av
.

In deriving a lower bound on EMn, we first derive a lower bound on the
right tail of the distribution ofMn, using a second moment method. For this,
we need to compute P (Av). Recall that we have I(x

∗) = λ∗x∗−Λ(λ∗) = log k,
with λ∗ = I ′(x∗) = x∗. Introduce the new parameter λ∗n so that

λ∗n
an
n

− Λ(λ∗n) = I(an/n) = (an/n)
2/2 .

In the Gaussian case under consideration, we get that λ∗n = an/n.
Define a new probability measure Q on R by

dµ

dQ
(x) = e−λ∗

nx+Λ(λ∗
n) ,

and with a slight abuse of notation continue to use Q when discussing a
random walk whose iid increments are distributed according to Q. Note that
in our Gaussian case, Q only modifies the mean of P , not the variance.

We can now write

P (Av) = EQ(e
−λ∗

nSv+nΛ(λ∗
n)1Av

)

≥ e−n[λ∗
n(an+y)/n−Λ(λ∗

n)]Q(Av) (5.5.7)

= e−nI((an+y)/n)Q(S̃v ∈ [y − 1, y], S̃v(t) ≥ 0, t = 1, 2, . . . , n) .

where S̃v(t) = ant/n−Sv(t) is a random walk with iid increments whose mean
vanishes under Q. Again, in the Gaussian case, the law of the increments is
Gaussian and does not depend on n, and {S̃v(t)}t is distributed like {Sv(t)}t.

Applying Theorem 10, we get that

P (Av) ≥ C
y + 1

n3/2
e−nI((an+y)/n) . (5.5.8)

Since

I((an + y)/n) = I(x∗)− I ′(x∗)

(
3

2I ′(x∗)
· log n

n
− y

n

)
+O

((
log n

n

)2
)
,

we conclude that
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P (Av) ≥ C(y + 1)k−ne−I′(x∗)y ,

and therefore
EZn = knP (Av) ≥ c1e

−I′(x∗)y . (5.5.9)

We next need to provide an upper bound on

EZ2
n = knP (Av) +

∑
v ̸=w∈Dn

P (Av ∩Aw) = EZn + kn
n∑

s=1

ksP (Av ∩Avs) ,

(5.5.10)
where vs ∈ Dn and ρ(v, vs) = 2s.

The strategy in computing P (Av ∩ Avs) is to condition on the value of
Sv(n − s). More precisely, with a slight abuse of notation, writing Ij,s =
an(n− s)/n+ [−j,−j + 1] + y, we have that

P (Av ∩Avs) (5.5.11)

≤
∞∑
j=1

P (Sv(t) ≤ ant/n+ y, t = 1, 2, . . . , n− s, Sv(n− s) ∈ Ij,s)

× max
z∈Ij,s

(P (Sv(s) ∈ [y + an − 1, y + an], Sv(t) ≤ an(n− s+ t)/n, t = 1, 2, . . . , s|Sv(0) = z))2 .

Repeating the computations leading to (5.5.8) (using time reversibility of the
random walk) we conclude that

P (Av ∩Avs) ≤
∞∑
j=1

j3(y + 1)

s3(n− s)3/2
e−(j+y)I′(x∗)n3(n+s)/2nk−(n+s) . (5.5.12)

Substituting in (5.5.10) and (5.5.11), and performing the summation over j
first and then over s, we conclude that EZ2

n ≤ cEZn, and therefore, using
again (5.3.2),

P (Mn ≥ an−1) ≥ P (Zn ≥ 1) ≥ cEZn ≥ c0(y+1)e−I′(x∗)y = c0(y+1)e−x∗y .
(5.5.13)

This completes the evaluation of a lower bound on the right tail of the law
of Mn.

An upper bound on the right tail of Mn A subtle point in obtaining
upper bounds is that the first moment method does not work directly - in
the first moment one cannot distinguish between the BRW and independent
random walks, and the displacement for these has a different logarithmic
corrections (the maximum of kn independent particles is larger).

To overcome this, note the following: a difference between the two scenar-
ios is that at intermediate times 0 < t < n, there are only kt particles in the
BRW setup while there are kn particles in the independent case treated in
Section 5.2. Applying the first moment argument at time t shows that there
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cannot be any BRW particle at time t which is larger than x∗t + C log n,
while this constraint disappears in the independent case. One thus expect
that imposing this constraint in the BRW setup (and thus, pick up an extra
1/n factor from the ballot theorem 10) will modify the correction term.

Carrying out this program thus involves two steps: in the first, we consider
an upper bound on the number of particles that never cross a barrier reflecting
the above mentioned constraint. In the second step, we show that with high
probability, no particle crosses the barrier. The approach we take combines
arguments from [Ro11] and [ABR09]; both papers build on Bramson’s original
argument.

Turning to the actual proof, fix a large constant κ > 0, fix y > 0, and
define the function

h(t) =

{
κ log t, 1 ≤ t ≤ n/2
κ log(n− t+ 1), n/2 < t ≤ n .

(5.5.14)

Recall the definition an = x∗n− 3
2I′(x∗) log n and let

τ(v) = min{t > 0 : Sv(t) ≥ ant/n+ h(t) + y − 1} ∧ n ,

and τ = minv∈Dn
τ(v). (In words, τ is the first time in which there is a

particle that goes above the line ant/n+ h(t) + y.)
Introduce the events

Bv = {Sv(t) ≤ ant/n+ h(t) + y, 0 < t < n, Sv ∈ [y + an − 1, y + an]}

and define Yn =
∑

v∈Dn
1Bv . We will prove the following.

Lemma 14. There exists a constant c2 independent of y so that

P (Bv) ≤ c2(y + 1)e−I′(x∗)yk−n . (5.5.15)

Proof of Lemma 14 (Gaussian case). Let βi = h(i)−h(i− 1) (note that βi is
of order 1/i and therefore the sequence β2

i is summable). Define parameters
λ̃∗n(i) so that

λ̃∗n(i)
(an
n

+ βi

)
− Λ(λ̃∗n(i)) = I

(an
n

+ βi

)
=
(an
n

+ βi

)2
/2 .

In the Gaussian case under consideration,

λ̃∗n(i) = λ∗n + βi.

Define the new probability measures Qi on R by

dP

dQi
(x) = e−λ̃∗

n(i)x+Λ(λ̃∗
n(i)) ,

and use Q̃ to denote the measure where Xi are independent of law Qi. We
have, similarly to (5.5.7),
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P (Bv) = EQ̃(e
−

∑n
i=1 λ̃∗

n(i)Xi+
∑n

i=1 Λ(λ̃∗
n(i))1Bv

) . (5.5.16)

Using that
∑n

i=1 βi = 0, one gets that on the event Sn ∈ [y+ an − 1, y+ an],

n∑
i=1

λ̃∗n(i)Xi −
n∑

i=1

Λ(λ̃∗n(i)) = nI((an + y)/n) +

n∑
i=1

βiXi +O(1) . (5.5.17)

Substituting in (5.5.16), and using again that
∑n

i=1 βi = 0, one gets

P (Bv) ≤ Cn3/2k−ne−I′(x∗)yEQ̃(e
−

∑n
i=1 βi(Xi−an/n−βi)1Bv ) . (5.5.18)

Using again that
∑n

i=1 βi = 0, integration by parts yields
∑
βi(Xi − (an +

y)/n−βi) = −
∑
S̃(i)γ̃i, where under Q̃, S̃(i) is a random walk with standard

Gaussian increments, and γ̃i = βi+1 − βi. We thus obtain that

P (Bv) ≤ Cn3/2k−ne−I′(x∗)yEQ̃(e
∑n

i=1 S̃(i)γ̃i1Bv
)

≤ Cn3/2k−ne−I′(x∗)yEQ̃(e
∑n

i=1 S̃(i)γi1Bv ) , (5.5.19)

where γi = −γ̃i = O(1/i2). In terms of S̃i, we can write

Bv = {S̃(t) ≤ y, S̃(n) ∈ y + [−1, 0]} .

Without the exponential term, we have

Q̃(Bv) ≤ c(y + 1)n−3/2 .

Our goal is to show that the exponential does not destroy this upper bound.
Let

C− = {∃t ∈ [(log n)4, n/2] : S̃(t) < −t2/3},

C+ = {∃t ∈ (n/2, n− (log n)4] : S̃(n)− S̃(t) < −(n− t)2/3}.

Then,

P (C− ∪ C+) ≤ 2

n/2∑
t=(logn)4

e−ct1/3 ≤ 2e−c(logn)4/3 .

Since γi ∼ 1/i2, one has
∑n−(logn)4

(logn)4 γi →n→∞ 0 and further
∑
S̃(i)γi is

Gaussian of zero mean and bounded variance. We thus obtain

EQ̃(e
∑n

i=1 S̃(i)γi1Bv
) (5.5.20)

≤ 1

n2
+ EQ̃(e

−
∑(log n)4

i=1 (S̃(i)γi+S̃(n−i)γn−i)1Bv∩Cc
−∩Cc

+
) .

Denote by

B(z, z′, t) = {S̃(i) ≤ z + y, i = 1, . . . , n− t, S̃(n− t) ∈ [z′ − 1, z′] .
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We have, for 0 ≤ z, z′, t < (log n)4, by (5.5.6),

EQ̃(B(z, z′, t)) ≤ C
(1 + (z + y)+)(1 + (z + y − z′)+)

n3/2
.

We next decompose the expectation in the right side of (5.5.20) according
to whether the curve S̃(t) drops below the curve ϕ(t) = −(t2/3 ∧ (n− t)−2/3)
or not. If it does not, then the exponential is of order 1. If it does, on the event
Cc
−∩Cc

+ it must do so either during the interval [1, (log n)4] or [n−(log n)4, n].
Letting (t−, z−) denote the location and value of the first drop in the first
interval and leting (t+, z+) denote the location and value of the last drop in
the second interval, we then get

EQ̃(e
I′′(an/n)

∑(log n)4

i=1 (S̃(i)γi+S̃(n−i)γn−i)1Bv∩Cc
−∩Cc

+
)

≤ 1

n2
+ CQ̃(Bv) +

(logn)4∑
t−,t+=1

(logn)4∑
z−>t

2/3
−

(logn)4∑
z+>t+−2/3

ec(z−+z+)e−cz2
−/2t−e−cz2

+/2t+

× max
u,u′∈[0,1]

EQ̃(B(u+ z−, u+ z+ + y, t− + t+))

≤ C
(y + 1)

n3/2
.

Combined with (5.5.19), this completes the proof of Lemma 14. ⊓⊔
We need to consider next the possibility that τ = t < n. Assuming that

κ is large enough (κ > 3/2I ′(x∗) will do), an application of the lower bound
(5.5.13) to the descendants of the parent of the particle v with τv < n reveals
that for some constant c3 independent of y,

E[Yn|τ < n] ≥ c3 .

(Recall that Yn =
∑

v∈Dn
1Bv

.) We conclude that

P (τ < n) ≤ E(Yn)P (τ < n)

E(Yn1τ<n)
=

EYn
E(Yn|τ < n)

≤ cEYn . (5.5.21)

One concludes from this and Lemma 14 that

P (Mn ≥ an + y) ≤ P (τ < n) + EYn ≤ c5(y + 1)e−I′(x∗)y . (5.5.22)

In particular, this also implies that

EMn ≤ x∗n− 3

2I ′(x∗)
log n+O(1) . (5.5.23)

Remark 4. An alternative approach to the argument in (5.5.21), which is more
in line with Bramson’s original proof, is as follows. Note that
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P (τ ≤ n− nκ
′
) ≤

n−nκ′∑
i=1

kiP (Sn(i) ≥ ani/n+ h(i) + y) ≤ Ce−I′(x∗)y ,

where κ′ can be taken so that κ′ →κ→∞ 0, and in particular for κ large
we can have κ′ < 1. Assume now κ large enough so that κ′ ≤ 1/2. For
t ≥ n − n1/2, one repeats the steps in Lemma 14 as follows. Let Nt be the
number of vertices w ∈ Dt (out of k

t) whose path Sw(s) crosses the barrier
(ans/n+ h(s) + y − 1) at time s = t. We have

P (τ = t) ≤ ENt ≤ c(y + 1)e−I′(x∗)yt/n 1

(n− t)c1κ−c2

for appropriate constants c1, c2. Taking κ large enough ensures that

n∑
t=n−n1/2

ENt ≤ c(y + 1)e−I′(x∗)y .

Combining the last two displays leads to the same estimate as in the right
side of (5.5.22), and hence to (5.5.23).

We finally prove a complementary lower bound on the expectation. Recall,
see (5.5.13), that for any y > 0,

P (Mn ≥ an(y)) ≥ c(y + 1)e−I′(x∗)y ,

where an(y) = an + y. In order to have a lower bound on EMn that comple-
ments (5.5.23), we need only show that

lim
z→−∞

lim sup
n→∞

∫ y

−∞
P (Mn ≤ an(y))dy = 0 . (5.5.24)

Toward this end, fix ℓ > 0 integer, and note that by the first moment argu-
ment used in the proof of the LLN (Theorem 7 applied to maxw∈Dℓ

(−Sw)),
there exist positive constants c, c′ so that

P ( min
w∈Dℓ

(Sw) ≤ −cℓ) ≤ e−c′ℓ .

On the other hand, for each v ∈ Dn, let w(v) ∈ Dℓ be the ancestor of v in
generation ℓ. We then have, by independence,

P (Mn ≤ −cℓ+ (n− ℓ)x∗ − 3

2I ′(x∗)
log(n− ℓ)) ≤ (1− c0)

kℓ

+ e−c′ℓ ,

where c0 is as in (5.5.13). This implies (5.5.24). Together with (5.5.23), this
completes the proof of Theorem 9. ⊓⊔
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5.6 Convergence of maximum and Gumbel limit law

We begin with a lemma, whose proof we only sketch.

Lemma 15. There exists a constant c̄ such that

lim
y→∞

lim sup
n→∞

ex
∗y

y
P (Mn ≥ mn + y) = lim

y→∞
lim inf
n→∞

ex
∗y

y
P (Mn ≥ mn + y) = c̄ .

(5.6.25)

Note that the lemma is consistant with the upper and lower estimates on the
right tail that we already derived. The main issue here is the convergence.
Proof (sketch): The key new idea in the proof is a variance reduction step.
To implement it, fix k (which will be taken function of y, going to infinity
but so that k << y) and define, for any v ∈ Dn,

Wv,k = max
w∈Dk(v)

(Sw − Sv) .

Here, Dk(v) denote the vertices in Dn+k that are descendants of v ∈ Dn.
Now,

P (Mn+k > mn+k + y) = P (max
v∈Dn

(Sv ≥ mn + (x∗k −Wv,k + y))) .

For each v ∈ Dn, we consider the event

Av(n) = {Sv(t) ≤ tmn/n+ y, t = 1, . . . , n;Sv ≥ mn + (x∗k −Wv,k + y)} .

Note that the event in Av(n) forces to haveWv,k ≥ x∗k+(mn−Sv+y) ≥ x∗k,
which (for k large) is an event of small probability. Now, one employs a curve
h(t) as described when deriving an upper bound on the right tail of Mn to
show that

P (Mn+k > mn+k + y) = (1 + oy(1))P (∪v∈Dn
Av(n)) .

Next, using Exercise 9, one shows that

lim
y→∞

lim
n→∞

ex
∗y

y
P (Av(n))k

−n = c̄ ,

for some constant c̄. This is very similar to computations we already did.
Finally, note that conditionally on Fn = σ(Sv, v ∈ Dj , j ≤ n), the events

{Wv,k ≥ x∗k+(mn−Sv + y)}v∈Dn
are independent. This introduces enough

decorelation so that even when v, w ∈ Dn are neighbors on the tree, one gets
that

P (Av(n) ∩Aw(n)) ≤ oy(1)P (Av(n)) .

Because of that, defining Zn =
∑

v∈Dn
1Av(n), one obtains that EZ2

n ≤
(1 + oy(1))EZn + CEZ2

n for some constant C and therefore, using that
lim supn→∞EZn →y→∞ 0, one has
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EZn ≥ P (∪v∈DnAv(n)) ≥
(EZn)

2

EZ2
n

≥ (EZn)
2

EZn(1 + oy(1))
≥ EZn(1− oy(1)) .

Combining these three facts gives the lemma. ⊓⊔
We now finally are ready to state the following.

Theorem 11. There exists a random variable Θ such that

lim
n→∞

P (Mn ≤ mn + y) = E(e−Θe−λ∗y

) . (5.6.26)

Thus, the law ofMn−mn converges to the law of a randomly shifted Gumbel
distribution.
Remark: In fact, the proof we present will show that the random variable Θ
is the limit in distribution of a sequence of random variables Θk. In reality,
that sequence forms a martingale (the so called derivative martingale) with
respect to Fk, and the convergence is a.s.. We will neither need nor use that
fact. For a proof based on the derivative martingale convergence, see Lalley
and Sellke [LS87] for the BBM case and Aı̈dekon [Ai11] for the BRW case.
Proof (sketch): This time, we cut the tree at a fixed distance k from the root.
Use that for n large, log(n+ k) = log(n) +O(1/n). Write

P (Mn+k ≤ mn+k + y) = E(
∏

v∈Dk

1(Sv+Wv,k(n))≤mn+x∗k+y

∼ E(
∏

v∈Dk

P (Wv,k ≤ mn + (x∗k − Sv) + y|Sv)

∼ ϵ(k) + E(
∏

v∈Dk

(
1− c̄(x∗k − Sv + y)e−λ∗(x∗k−Sv+y)

)
,

where the symbol a ∼ b means that a/b→n→∞ 1, and we used that with high
probability (1− ϵ(k)), x∗k − Sv ≥ x∗k − S∗

k is of order log k and therefore we
could apply Lemma 15 in the last equivalence. Fixing Θk = c̄

∑
v∈Dk

(x∗k −
Sv)e

−λ∗(x∗k−Sv) and using that y is fixed while k is large, we conclude that

P (Mn+k ≤ mn+k + y) ∼ ϵ′(k) + E(e−Θke
−λ∗y

) .

Since the right side does not depend on n, the convergence of the left side
follows by taking n → ∞ and then taking k large. Finally, the convergence
also implies that the moment generating function of Θk converges, which in
terms implies the convergence in distribution of Θk. ⊓⊔

5.7 Extremal process

We give a description of (a weak form of) a theorem due to [ABK11] and
[ABBS11] in the Branching Brownian motion case and to [Ma11] in the (not
necessarily Gaussian) BRW case, describing the distribution of the point
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process ηn =
∑

v∈Dn
δSv−mn

. Our proof will follow the approach of Biskup
and Louidor [BL13], and is tailored to the Gaussian setup we are considering.

We begin with a preliminary lemma. For a fixed constant R, set Mn(R) =
{v ∈ Dn : Sv > mn −R}.

Lemma 16. There exist functions r(R) →R→∞ ∞ and ϵ(R) →R→∞ 0 so
that

lim sup
n→∞

P (∃u, v ∈ Mn(R) : r(R) < dT (u, v) < n− r(D)) ≤ ϵ(R) , (5.7.27)

where dT (u, v) = n− |au,v| is the tree distance between u, v ∈ Dn and au,v is
the largest common ancestor of u and v.

The proof is immediate from the second moment computations we did; we
omit details.

Fix now R (eventually, we will take R→ ∞ slowly with n) and define the
thinned point process ηsn =

∑
v∈Dn,Sv=maxw:dT (v,w)≤R Sw

δSv−mn
. In words, ηsn

is the point process obtained by only keeping points that are leaders of their
respective “clan”, of depth R.

Theorem 12. (a) The process ηsn converges, as n → ∞, to a random shift
of a Poisson Point Process (PPP) of intensity Ce−λ∗x, denoted ηs.

(b) The process ηn converges, as n → ∞, to a decorated version of ηs,
which is obtained by replacing each point in ηs by a random cluster of points,
independently, shifted around z.

A description of the decoration process is also available. We however will not
bother with it. Instead, we will only sketch the proof of part (a) of Theorem
12.

Before the proof, we state a general result concerning invariant point
processes, due to Liggett [Li78]. The setup of Liggett’s theorem (narrowed
to our needs; the general version replaces R by a locally compact second
countable topological space) is a point process η on R (i.e., a random, integer
valued measure on R which is finite a.s. on each compact), with each particle
evolving individually according to a Markov kernel Q. For m a locally finite
positive measure on R, let µm denote the PPP of intensity m. For a random
measureM on R, we set µ̄M =

∫
µmP (M ∈ dm) (a more suggestive notation

would be µ̄M = EµM where µM is, conditioned onM , a PPP of intensityM).
We say that the law of a point process is invariant for Q if it does not change
when each particle makes independently a move according to the Markov
kernel Q.

One has the following. Througout, we assume that Qn(x,K) →n→∞ 0
uniformly in x for each fixed K ⊂⊂ R.

Theorem 13 (Liggett [Li78]).

(a) µ̄M is invariant for Q iff MQ =M in distribution.
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(b) Every invariant probability measure is of the form µ̄M for some M .
(c) The extremal invariant probability measures for the point process are of
the form µm with m satisfying mQ = m iff MQ = M in distribution
implies MQ =M a.s.

(d) In the special case where Q(x, dy) = g(y−x)dy where g is a density func-
tion with finite exponential moments, condition (c) holds and all extreme
invariant m are of the form m(dx) = Ce−C′xdx, with C ′ depending on C
and g.

(Part (d) of the theorem is an application of the Choquet-Deny theorem that
characterizes the exponential distribution).
Proof of Theorem 12(a) (sketch): We write ηn = ηn({Sv}) to emphasize that
ηn depends on the Gaussian field {Sv}v∈Dn . Note that due to the Gaussian
structure,

ηn
d
= ηn({

√
1− 1/nSv}+ {

√
1/nS′

v}) , (5.7.28)

where {S′
v} is an independent copy of {Sv} and the equality is in distri-

bution. Now, {
√

1/nS′
v} is a Gaussian field with variance of order 1, while√

1− 1/nSv = Sv − 1
2nSv + o(1).

Note that for any fixed v ∈ Dn, we have that maxw:dT (v,w)≤R(S
′
w −

S′
v)/

√
n ≤ δ(R) with probability going to 1 as n → ∞, for an appropri-

ate function δ(R) →R→∞ 0. By a diagonalization argument, one can then
choose R = R(n) so that

max
v,w∈Dn:Sv>mn−R,dT (v,w)≤R

(S′
w − S′

v)/
√
n ≤ δ(R)

with probability going to 1 as n→ ∞.
Consider the right side of (5.7.28) as a (random) transformation on ηn;

when restricting attention to the interval (−R(n),∞), which a.s. contains
only finitely many points (first moment!), the transformation, with probabil-
ity approaching 1 does the following:

– Replaces each point Sv by Sv − x∗.
– Adds to each clan an independent centered Gaussian random variable of
variance 1.

– Adds a further small error of order δ(Rn)

When thinning, one notes that the same transformation applies to the
thinned process. Thus, any weak limit of the thinned process is invariant
under the transformation that adds to each point an independent normal
of mean −x∗. By the last point of Liggett’s theorem, we conclude that any
limit point of ηsn is a random mixture of PPP with exponential intensity.
The convergence of the maximum then determines both the exponent in the
exponential intensity (must be λ∗) as well as the mixture (determined by the
maximum). This completes the proof. ⊓⊔
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6 The 2D discrete Gaussian Free Field

Take VN = ([0, N − 1] ∩ Z)d. Set V o
N = ((0, N − 1) ∩ Z)d and identify all

vertices in ∂VN = VN \ V o
N , calling the resulting vertex the root of VN . The

collection of vertices thus obtained is denoted VN , and we take as edge set
EN the collection of all the (unordered) pairs (x, y) where either x, y ∈ V o

N

and |x−y|1 = 1 or x ∈ V o
N , y = o and there exists z ∈ ∂VN so that |x−z|1 = 1.

We thus obtain a sequence of graphs GN where all vertices, except for the
root, have degree d∗ = 2d. The GFF on GN is then defined as in Section 1,
with a rescaling by

√
2d:

EXN
z XN

z′ = Ez(

τ−1∑
k=0

1{Sk=z′}) , (6.1.1)

where {Sk} is a simple random walk on GN killed upon hitting o, with killing
time τ . As before we set X ∗

N = maxz∈VN
XN

z .

Remark 5. As alluded to above, many authors, including the present one,
refer to the field XN

z as the GFF. I hope that this extra factor of
√
2d will

not cause too much confusion in what follows.

Recall from Borell’s inequality that for d ≥ 3, the sequence {X ∗
N − EX ∗

N}N
is tight. On the other hand, for d = 1, the GFF is simply a random walk
with standard Gaussian steps, conditioned to hit 0 at time N . In particular,
X ∗

N/
√
N scales like the maximum of a Brownian bridge, and thus X ∗

N −EX ∗
N

fluctuates at order
√
N . This leads us immediately to the question:

For d = 2, what is the order of X ∗
N and are the fluctuations of order O(1)?

The rest of this section is devoted to the study of that question. In the rest
of this subsection, we provide some a-priori comparisons and estimates.

Lemma 17. For any d ≥ 1, the sequence EX ∗
N is monotone increasing in

N .

Proof. Let N ′ > N . For z ∈ V o
N , write

XN ′

z = E[XN ′

z |FN ] +
(
XN ′

z − E[XN ′

z |FN ]
)
:= Az +Bz ,

where FN = σ(X z
N ′ : z ∈ VN ′ \ V o

N ) and {Az}z∈V o
N

and {Bz}z∈V o
N

are
independent zero mean Gaussian fields. By the Markov property Lemma
6, we have that {Bz}z∈V o

N
is distributed like {XN

z }z∈V o
N
. Therefore, since

Emax(X· + Y·) ≥ EmaxX·, we conclude that EX ∗
N ′ ≥ EX ∗

N . ⊓⊔
The next lemma is an exercise in evaluating hitting probabilities for simple

random walk.
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Lemma 18 (GFF covariance, d = 2). Fix d = 2. For any δ > 0 there exists
a C = C(δ) such that for any v, w ∈ VN with d(v, ∂VN ), d(w, ∂VN ) ≥ δN ,
one has ∣∣∣∣RXN (v, w)− 2

π
(logN − (log ∥v − w∥2)+)

∣∣∣∣ ≤ C . (6.1.2)

Further,
max
x∈VN

RXN (x, x) ≤ (2/π) logN +O(1) . (6.1.3)

The proof of Lemma 18 can be found in [BDG01, Lemma 1] or [BZ11, Lemma
2.2].

Exercise 10. Using hitting estimates for simple random walks, prove Lemma
18.

6.2 The LLN for the 2D-GFF

We prove in this short section the Bolthausen-Deuschel-Giacomin LLN; our
proof is shorter than theirs and involves comparisons with BRW.

Theorem 14. Fix d ≥ 2. Then,

EX ∗
N ≤ mN +O(1) , (6.2.1)

and

lim
N→∞

EX ∗
N

mN
= 1 , (6.2.2)

where
mN = (2

√
2/π) logN − (3/4)

√
2/π log logN , (6.2.3)

Further, for any ϵ > 0 there exists a constant c∗ = c∗(ϵ) so that for all
large enough N ,

P (|X ∗
N −mN | ≥ ϵmN ) ≤ 2e−c∗(ϵ) logN . (6.2.4)

Proof. We note first that (6.2.4) follows from (6.2.2), (6.1.3) and Borell’s
inequality. Further, because of the monotonicity statement in Lemma 17, in
the proof of (6.2.1) and (6.2.2) we may and will consider N = 2n for some
integer n.

We begin with the introduction of a BRW that will be useful for compari-
son purposes. For k = 0, 1, . . . , n, let Bk denote the collection of subsets of Z2

consisting of squares of side 2k with corners in Z2, let BDk denote the subset
of Bk consisting of squares of the form ([0, 2k−1]∩Z)2+(i2k, j2k). Note that
the collection BDk partitions Z2 into disjoint squares. For x ∈ VN , let Bk(x)
denote those elements B ∈ Bk with x ∈ B. Define similarly BDk(x). Note
that the set BDk(x) contains exactly one element, whereas Bk(x) contains
22k elements.
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Let {ak,B}k≥0,B∈BDk
denote an i.i.d. family of standard Gaussian random

variables. The BRW {RN
z }z∈VN

is defined by

RN
z =

n∑
k=0

∑
B∈BDk(z)

ak,B .

We again define R∗
N = maxz∈VN

RN
z . Note that RN

z is a Branching random
walk (with 4 descendants per particle). Further, the covariance structure of
RN

z respects a hierarchical structure on V o
N : for x, y ∈ V o

N , set dH(x, y) =
max{k : y ̸∈ BDk(x)}. Then,

RRN
(x, y) = n− dH(x, y) ≤ n− log2 ∥x− y∥2 . (6.2.5)

We remark first that, as a consequence of the Markov property (see the
computation in Lemma 17),

EX ∗
N ≤ E max

x∈(N/2,N/2)+VN

X 2N
x .

Combined with Lemma 18 and the Sudakov-Fernique, we thus obtain that
for some constant C independent of N ,

EX ∗
N ≤

√
2 log 2

π
ER∗

N + C .

Together with computations for the BRW (the 4-ary version of Theorem 9),
this proves (6.2.1).

To see (6.2.2), we dilute the GFF by selecting a subset of vertices in VN .

Fix δ > 0. Define V δ,1
N = VN and, for k = 2, . . . , n− log2(1− δ)n− 1, set

V δ,k
N = {x ∈ V δ,k−1

N : |x− y|∞ ≥ δN/2n−k,∀y ∈ ∪B∈BDk
∂B} .

Note that |V δ,k
N | ∼ (1 − δ)2k|VN |. We can now check that for x, y ∈

V
δ,n(1−log2(1−δ))
N , log2 |x− y|2 is comparable to dH(x, y). Obviously,

EX ∗
N ≥ E( max

x∈V
δ,n(1−log2(1−δ))

N

XN
x ) .

Applying the same comparison as in the upper bound, the right side is
bounded below by the maximum of a diluted version of the BRW, to which
the second moment argument used in obtaining the LLN for the BRW can be
applied. (Unfortunately, a direct comparison with the BRW is not possible,
so one has to repeat the second moment analysis. We omit further details
since in Section 6.4 we will construct a better candidate for comparison, that
will actually allow for comparison up to order 1.) We then get that for some
universal constant C,

EX ∗
N ≥ E( max

x∈V
δ,n(1−log2(1−δ)

N

XN
x ) ≥

√
2 log 2

π
ER∗

N(1−δ)n+C/C .

This yields (6.2.2) after taking first N → ∞ and then δ → 0. ⊓⊔
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6.3 A tightness argument: expectation is king

Our goal in this short section is to provide the following prelude to tightness,
based on the Dekking–Host argument. It originally appeared in [BDZ11].

Lemma 19. With X ∗′

N an independent copy of X ∗
N , one has

E|X ∗′

N −X ∗
N | ≤ 2(EX ∗

2N − EX ∗
N ) . (6.3.1)

Note that by Lemma 17, the right side of (6.3.1) is positive. The estimate
(6.3.1) reduces the issue of tightness of {X ∗

N −EX ∗
N}N to a question concern-

ing precise control of EX ∗
N , and more specifically, to obtaining a lower bound

on EX ∗
2N which differs only by a constant from the upper bound (6.2.1) on

EX ∗
N .

Exercise 11. Prove that if An is a sequence of random variables for which
there exists a constant C independent of n so that E|An−A′

n| ≤ C, where A′
n

is an independent copy of An, then EAn exists and the sequence {An−EAn}n
is tight.

In fact, Lemma 19 already yields a weak form of tightness.

Exercise 12. Combine Lemma 19 with the monotonicity statement (Lemma
17 and the LLN (Theorem 14) to deduce the existence of a deterministic
sequence Nk → ∞ so that {XN∗

k
− EX ∗

Nk
}k is tight.

(We eventually get rid of subsequences, but this requires extra estimates, as
discussed in Lemma 20 below. The point of Exercise 12 is that tightness on
subsequences is really a “soft” property.)
Proof of Lemma 19. By the Markov property of the GFF and arguing as in
the proof of Lemma 17 (dividing the square V2N into four disjoint squares of
side N), we have

EX ∗
2N ≥ E

4
max
i=1

X ∗,(i)
N ≥ E

2
max
i=1

X ∗,(i)
N ,

where X ∗,(i)
N , i = 1, . . . , 4 are four independent copies of X ∗

N . Using again
that max(a, b) = (a+ b+ |a− b|)/2, we thus obtain

EX ∗
2N ≥ EX ∗

N + E|X ∗,(1)
N −X ∗,(2)

N |/2 .

This yields the lemma. ⊓⊔
We will use Lemma 19 in order to prove the following.

Theorem 15. Let X ∗
N denote the maximum of the two dimensional (discrete)

GFF in a box of side N with Dirichlet boundary conditions. Then

EX ∗
N = mN +O(1) , (6.3.2)

and the sequence {X ∗
N − EX ∗

N}N is tight.

The main task is the evaluation of lower bounds on EX ∗
N , which will be

achieved by introducing a modified branching structure.
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6.4 Expectation of the maximum: the modified BRW

We will now prove the following lemma, which is the main result of [BZ11].

Lemma 20. With mN as in (6.2.3), one has

EX ∗
N ≥ mN +O(1) . (6.4.1)

Assuming Lemma 20, we have everything needed in order to prove Theorem
15.
Proof of Theorem 15. Combining Lemma 20 and (6.2.1), we have that EX ∗

N =
mN +O(1). This yields (6.3.2). The tightness statement is now a consequence
of Lemma 19, Exercise 11 and the fact that m2N −mN is uniformly bounded.
⊓⊔

We turn to the main business of this section.
Proof of Lemma 20 (sketch). The main step is to construct a Gaussian field
that interpolates between the BRW and the GFF, for which the second mo-
ment analysis that worked in the BRW case can still be carried out. Surpris-
ingly, the new field is a very small variant of RN

z . We therefore refer to this
field as the modified branching random walk, or in short MBRW.

We continue to consider N = 2n for some positive integer n and again em-
ploy the notation Bk and Bk(x). For x, y ∈ Z2, write x∼N y if x−y ∈ (NZ)2.
Similarly, for B,B′ ⊂ VN , write B ∼N B′ if there exist integers i, j so that
B′ = B + (iN, jN). Let BN

k denote the collection of subsets of Z2 consisting
of squares of side 2k with lower left corner in VN . Let {bk,B}k≥0,B∈BN

k
denote

a family of independent centered Gaussian random variables where bk,B has
variance 2−2k, and define

bNk,B =

{
bk,B , B ∈ BN

k ,
bk,B′ , B ∼N B′ ∈ BN

k .

The MBRW {SN
z }z∈VN

is defined by

SN
z =

n∑
k=0

∑
B∈Bk(z)

bNk,B .

We will also need a truncated form of the MBRW: for any integer k0 ≥ 0, set

SN,k0
z =

n∑
k=k0

∑
B∈Bk(z)

bNk,B .

We again define S∗
N = maxz∈VN

SN
z and S∗

N,k0
= maxz∈VN

SN,k0
z . The corre-

lation structure of S respects a torus structure on VN . More precisely, with
dN (x, y) = minz: z∼N y ∥x − z∥, one easily checks that for some constant C
independent of N ,

|RSN (x, y)− (n− log2 d
N (x, y))| ≤ C . (6.4.2)
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In particular, for points x, y ∈ (N/2, N/2) + VN , the covariance of S2N is
comparable to that of X2N . More important, the truncated MBRW has the
following nice properties. Define, for x, y ∈ VN , ρN,k0

(x, y) = E((SN,k0
x −

SN,k0
y )2). The following are basic properties of ρN,k0

; verification is routine
and omitted.

Lemma 21. The function ρN,k0 has the following properties.

ρN,k0(x, y) decreases in k0. (6.4.3)

lim sup
k0→∞

lim sup
N→∞

sup
x,y∈VN :dN (x,y)≤2

√
k0

ρN,k0(x, y) = 0 . (6.4.4)

There is a function g : Z+ → R+ so that g(k0) →k0→∞ ∞
and, for x, y ∈ VN with dN (x, y) ≥ 2

√
k0 , (6.4.5)

ρN,k0
(x, y) ≤ ρN,0(x, y)− g(k0) , n > k0.

Equipped with Lemma 21, and using the Sudakov-Fernique Theorem, we
have the following.

Corollary 6. There exists a constant k0 such that, for all N = 2n large,

EX ∗
N ≥

√
2 log 2

π
ES∗

N/4,k0
. (6.4.6)

Therefore, the proof of Lemma 20 reduces to the derivation of a lower bound
on the expectation of the maximum of the (truncated) MBRW. This is con-
tained in the following proposition, whose proof we sketch below.

Proposition 8. There exists a function f : Z+ → R+ such that, for all
N ≥ 22k0 ,

ES∗
N,k0

≥ (2
√
log 2)n− (3/(4

√
log 2)) log n− f(k0) . (6.4.7)

The proposition completes the proof of Lemma 20. ⊓⊔
Proof of Proposition 8 (sketch). Set V ′

N = VN/2+(N/4, N/4) ⊂ VN and define

S̃∗
N,k0

= max
z∈V ′

N

SN,k0
z , S̃∗

N = S̃∗
N,0 .

Set
An = mN

√
π/2 log 2 = (2

√
log 2)n− (3/(4

√
log 2)) log n .

An application of the second moment method (similar to what was done for
the BRW, and therefore omitted) yields the following.

Proposition 9. There exists a constant δ0 ∈ (0, 1) such that, for all N ,

P (S̃∗
N ≥ An) ≥ δ0 . (6.4.8)
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We now explain how to deduce Proposition 8 from Proposition 9. Our plan
is to show that the left tail of S̃∗

N is decreasing exponentially fast; together
with the bound (6.4.8), this will imply (6.4.7) with k0 = 0. At the end of
the proof, we show how the bound for k0 > 0 follows from the case k0 = 0.
In order to show the exponential decay, we compare S̃∗

N , after appropriate
truncation, to four independent copies of the maximum over smaller boxes,
and then iterate.

For i = 1, 2, 3, 4, introduce the four sets WN,i = [0, N/32)2 + zi where
z1 = (N/4, N/4), z2 = (23N/32, N/4), z3 = (N/4, 23N/32) and z4 =
(23N/32, 23N/32). (We have used here that 3/4− 1/32 = 23/32.) Note that
∪iWN,i ⊂ VN , and that these sets are N/4-separated, that is, for i ̸= j,

min
z∈WN,i,z′∈WN,j

dN∞(x, y) > N/4 .

Recall the definition of SN
z and define, for n > 6,

S̄N
z =

n−6∑
k=0

∑
B∈Bk(z)

bNk,B ;

note that

SN
z − S̄N

z =

5∑
j=0

∑
B∈Bn−j(z)

bNn−j,B .

Our first task is to bound the probability that maxz∈VN
(SN

z − S̄N
z ) is

large. This will be achieved by applying Fernique’s criterion in conjunction
with Borell’s inequality. We introduce some notation. Let m(·) = mN (·)
denote the uniform probability measure on VN (i.e., the counting measure
normalized by |VN |) and let g : (0, 1] → R+ be the function defined by

g(t) = (log(1/t))
1/2

.

Set GN
z = SN

z − S̄N
z and

B(z, ϵ) = {z′ ∈ VN : E((GN
z −GN

z′ )2) ≤ ϵ2} .

Then, Fernique’s criterion, Theorem 4, implies that, for some universal con-
stant K ∈ (1,∞),

E(max
z∈VN

GN
z ) ≤ K sup

z∈VN

∫ ∞

0

g(m(B(z, ϵ)))dϵ . (6.4.9)

For n ≥ 6, we have, in the notation of Lemma 21,

E((GN
z −GN

z′ )2) = ρN,n−5(z, z
′) .

Therefore, there exists a constant C such that, for ϵ ≥ 0,
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{z′ ∈ VN : dN∞(z, z′) ≤ ϵ2N/C} ⊂ B(z, ϵ) .

In particular, for z ∈ VN and ϵ > 0,

m(B(z, ϵ)) ≥ ((ϵ4/C2) ∨ (1/N2)) ∧ 1 .

Consequently,∫ ∞

0

g(m(B(z, ϵ)))dϵ ≤
∫ √

C/N

0

√
log(N2)dϵ+

∫ √
C

√
C/N

√
log(C2/ϵ4)dϵ < C4 ,

for some constant C4. So, from Fernique’s criterion (6.4.9) we deduce that

E(max
z∈VN

(SN
z − S̄N

z )) ≤ C4K .

The expectation E((SN
z −S̄N

z )2) is bounded inN . Therefore, using Borell’s
inequality, it follows that, for some constant C5 and all β > 0,

P (max
z∈VN

(SN
z − S̄N

z ) ≥ C4K + β) ≤ 2e−C5β
2

. (6.4.10)

We also note the following bound, which is obtained similarly: there exist
constants C5, C6 such that, for all β > 0,

P ( max
z∈V ′

N/16

(S̄N
z − SN/16

z ) ≥ C6 + β) ≤ 2e−C7β
2

. (6.4.11)

The advantage of working with S̄N instead of SN is that the fields
{S̄N

z }z∈WN,i
are independent for i = 1, . . . , 4. For every α, β > 0, we have the

bound

P (S̃∗
N ≥ An − α) (6.4.12)

≥ P (max
z∈V ′

N

S̄N
z ≥ An + C4 − α+ β)− P (max

z∈V ′
N

(SN
z − S̄N

z ) ≥ C4 + β)

≥ P (max
z∈V ′

N

S̄N
z ≥ An + C4 − α+ β)− 2e−C5β

2

,

where (6.4.10) was used in the last inequality. On the other hand, for any
γ, γ′ > 0,

P (max
z∈V ′

N

S̄N
z ≥ An − γ) ≥ P (

4
max
i=1

max
z∈WN,i

S̄N
z ≥ An − γ)

= 1− (P ( max
z∈WN,1

S̄N
z < An − γ))4

≥ 1−

(
P ( max

z∈V ′
N/16

SN/16
z < An − γ + C6 + γ′) + 2e−C7(γ

′)2

)4

,
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where (6.4.11) was used in the inequality. Combining this estimate with
(6.4.12), we get that, for any α, β, γ′ > 0,

P (S̃∗
N ≥ An − α) (6.4.13)

≥ 1− 2e−C5β
2

−

(
P ( max

z∈V ′
N/16

SN/16
z < An + C4 + C6 + β + γ′ − α) + 2e−C7(γ

′)2

)4

.

We now iterate the last estimate. Let η0 = 1 − δ0 < 1 and, for j ≥ 1,
choose a constant C8 = C8(δ0) > 0 so that, for βj = γ′j = C8

√
log(1/ηj),

ηj+1 = 2e−C5β
2
j + (ηj + 2e−C7(γ

′
j)

2

)4

satisfies ηj+1 < ηj(1 − δ0). (It is not hard to verify that such a choice is
possible.) With this choice of βj and γ

′
j , set α0 = 0 and αj+1 = αj+C4+C6+

βj + γ′j , noting that αj ≤ C9

√
log(1/ηj) for some C9 = C9(δ0). Substituting

in (6.4.13) and using Proposition 8 to start the recursion, we get that

P (S̃∗
N ≥ An − αj+1) ≥ 1− ηj+1 . (6.4.14)

Therefore,

ES̃∗
N ≥ An −

∫ ∞

0

P (S̃∗
N ≤ An − θ)dθ

≥ An −
∞∑
j=0

αjP (S̃∗
N ≤ An − αj)

≥ An − C9

∞∑
j=0

ηj

√
log(1/ηj) .

Since ηj ≤ (1− δ0)
j , it follows that there exists a constant C10 > 0 so that

ES∗
N ≥ ES̃∗

N ≥ An − C10 . (6.4.15)

This completes the proof of Proposition 8 in the case k0 = 0.
To consider the case k0 > 0, define

Ŝ∗
N,k0

= max
z∈V ′

N∩2k0Z2
SN,k0
z .

Then, Ŝ∗
N,k0

≤ S̃∗
N,k0

. On the other hand, Ŝ∗
N,k0

has, by construction, the

same distribution as S̃∗
2−k0N,0

= S̃∗
2−k0N

. Therefore, for any y ∈ R,

P (S̃∗
N,k0

≥ y) ≥ P (Ŝ∗
N,k0

≥ y) ≥ P (S̃∗
2−k0N ≥ y) .

We conclude that
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ES∗
N,k0

≥ ES̃∗
N,k0

≥ ES̃∗
2−k0N .

Application of (6.4.15) completes the proof of Proposition 8. ⊓⊔
Remark: J. Ding [Di11a] has improved on the proof of tightness by providing
the following tail estimates.

Proposition 10. The variance of X ∗
N is uniformly bounded. Further, there

exist universal constants c, C so that for any x ∈ (0, (log n)2/3), and with
X̄ ∗

N = X ∗
N − EX ∗

N ,

ce−Cx ≤ P (X̄ ∗
N ≥ x) ≤ Ce−cx , ce−CeCx

≤ P (X̄ ∗
N ≤ −x) ≤ Ce−cecx ,

It is interesting to compare these bounds with the case of BRW: while the
bounds on the upper tail are similar, the lower tail exhibits quite different
behavior, since in the case of BRW, just modifying a few variables near the
root of the tree can have a significant effect on the maximum. On the other
hand, the tail estimates in Proposition 10 are not precise enough for con-
vergence proofs as we did in the BRW case. We will see that more can be
said.

6.5 Tail estimates for GFF

To complete

6.6 Convergence of Maximum for GFF & extremal process

To complete

7 Isomorphism theorems and cover times

To complete
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