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1 Lecture I: the prototype: Branching Random Walks

Branching random walks (BRWs), and their continuous time counterparts,
branching Brownian motions (BBMs), form a natural model that describe
the evolution of a population of particles where spatial motion is present.
Groundbreaking work on this, motivated by biological applications, was done
in the 1930’s by Kolmogorov-Petrovsky-Piskounov and by Fisher. The model
itself exhibit a rich mathematical structures; for example, rescaled limits of
such processes lead to the study of superprocesses, and allowing interactions
between particles creates many challenges when one wants to study scaling
limits.

Our focus is slightly different: we consider only particles in R, and are
mostly interested in the atypical particles that “lead the pack”. We will re-
strict attention to Gaussian centered increments. Some of the exercises extend
this to more general situations, of relevance to random matrices.

1.1 Definitions and models

We begin by fixing notation. Let T be a binary tree rooted at a vertex o,
with vertex set V and edge set E. We denote by |v| the distance of a vertex
v from the root, i.e. the length of the geodesic (=shortest path, which is
unique) connecting v to o, and we write o Ø v for the collection of vertices
on that geodesic (including o and v). With some abuse of notation, we also
write o Ø v for the collection of edges on the geodesic connecting o and v.
Similarly, for v, w P V , we write ρpv, wq for the length of the unique geodesic
connecting v and w, and define v Ø w similarly. The nth generation of the
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tree is the collection Dn :“ tv P V : |v| “ nu, while for v P Dm and n ą m,
we denote by

Dv
n “ tw P Dn : ρpw, vq “ n´mu

the collection of descendants of v in Dn. We call the descendants of v which
are neighbors of v the children of v. Finally, we designate (somewhat arbi-
trarily) one of the children of a vertex as the “left child” and the other as a
“right child”.

Let tXeuePE denote a family of independent (real valued) standard Gaus-
sian random variables attached to the edges of the tree T . For v P V , set
Sv “

ř

ePoØvXe. The Branching Random Walk (BRW) is simply the collec-
tion of random variables tSvuvPV .

1.2 The log-correlated structure

Because the BRW is Gaussian, the collection tSvuvPDn
is completely charac-

terized by its mean (“ 0), and its covariance function

Rpv, wq “ EXvXw “ n´ ρpv, wq{2 “ |av,w|,

where av,w is the common ancestor of v, w, defined as the (unique) vertex of
largest distance that belongs to both o Ø v and o Ø w. We also write av,k
for the k-th ancestor of v (with k ă n), ie the unique vertex on o Ø v with
distance k from the root.

To understand why we think of this process as log-correlated, we embed
the vertices of Dn in the interval r0, 1s as follows: each vertex v determines a
binary string of length n, denotes rvsn, whose k-th digit is 0 or 1 according
to whether the descendent of the k-th ancestor of v is the left or right child.
We identify rvsn with a point in r0, 1s in the natural way. Note that this
identification is consistent, in the sence that if we take an infinite geodesic
and consider v P Dn along that geodesics, then as n Ñ 8 this identified point
converges. In particular, for each n we obtain a Gaussian process Sv “ Ynpvq,
v “ i2´n, i “ 0, . . . , 2n ´ 1, with VarpSvq “ n . Now, fix a scale ℓ. Choose a
dyadic interval Iℓ “ rj2ℓ, pj ` 1q2ℓs at random.
Exercise 1. Pick uniformly and randomly two points x, y in Iℓ that corre-
spond to v, w P Dn. Then, as n Ñ 8, Rpv, wq “ ℓ`Op1q “ log 1

|x´y|
`Op1q.

The (embedded) BRW is thus ”on average” a log correlated field, but of
course not truly: for two points 1{2 ` ϵ and 1{2 ´ ϵ, the covariance is 0 even
though the distance is ϵ!

This model of log-correlated field can be used to construct many analogues
of what we will see for random matrices. For example, consider the function,
for x P ri2´n, pi` 1q2´nq corresponding to v P Dn:

Mnpxq “ 2´neγSv´γ2n{2.
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Then Mnpxqdx is a positive measure (called a multiplicative cascade) which
is a martingale and therefore converges a.s. It was proved (by Kahane and
Peyriere, building on work of Mandelbrodt) that the limit is non-degenerate
iff γ ă

?
2 log 2 “: x˚; that limit is called the Gaussian Multiplicative Chaos

associated with the BRW; I will not discuss in these lectures the GMC, but see
Lambert’s course. We will see in a short while the reason for the appearance
of the constant x˚.

Exercise 2. Let M̄n :“
ş1

0
Mnpxqdx denote the total mass of Mnpxqdx.

Prove that for γ ă x˚{2 one has that supnEM̄2
n ă 8. Conclude that the

martingale M̄n has a nontrivial limit, a.s. Hint: you need to use also Kol-
mogorov’s 0-1 law.

Remark 1. The case γ “ x˚ is special, as the martingale M̄n can be shown to
converge to 0 a.s. However the (non-positive!) martingale measure ĂMnpxqdx

with ĂMnpxq “ 2´neγSv´γ2n{2p
γ2

2 n´γSvq does converge to a non-degenerate
positive measure, whose total mass is the derivative martingale. This will play
an important role in the study of the maximum.

1.3 The maximum

We will be interested in the maximal displacement of the BRW, defined as

Mn “ max
vPDn

Sv .

Warm up: getting rid of dependence We begin with a warm-up com-
putation. Note that Mn is the maximum over a collection of 2n variables,
that are not independent. Before tackling computations related to Mn, we
first consider the same question when those 2n variables are independent.
That is, let tS̃vuvPDn

be a collection of i.i.d. random variables, with S̃v dis-
tributed like Sv, and let M̃n “ maxvPDn S̃v. We then have the following.
(The statement extends to the Non-Gaussian, non-lattice case by using the
Bahadur-Rao estimate.)

Theorem 1. With notation as above, there exists a constant C so that

P pM̃n ď m̃n ` xq Ñ expp´Ce´x˚xq , (1.3.1)

where

m̃n “ nx˚ ´
1

2x˚
log n. (1.3.2)

In what follows, we write A „ B if A{B is bounded above and below by two
universal positive constants (that do not depend on n).

Proof. The key is the estimate, valid for an “ op
?
nq,

P pS̃v ą nx˚ ´ anq „
C

?
n
expp´npx˚ ´ an{nq2{2q , (1.3.3)
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which is trivial in the Gaussian case. Therefore,

P pM̃n ď nx˚ ´ anq „

ˆ

1 ´
C

2n
?
n
ex

˚an`op1q

˙2n

„ expp´Cex
˚an`op1q{

?
nq .

Choosing now an “ log n{2x˚ ´ x, one obtains

P pM̃n ď mn ` xq „ expp´Ce´x˚x`op1qq .

[\

Remark 2. With some effort, the constant C can also be evaluated to be
1{

?
2πx˚, but this will not be of interest to us. On the other hand, the

constant in front of the log n term will play an important role in what follows.

Remark 3. Note the very different asymptotics of the right and left tails: the
right tail decays exponentially while the left tail is doubly exponential. This
is an example of extreme distribution of the Gumbel type.

BRW: the law of large numbers As a further warm up, we will attempt
to obtain a law of large numbers for Mn. Recall, from the results of Section
1.3, that M̃n{n Ñ x˚. Our goal is to show that the same result holds for Mn.

Theorem 2 (Law of Large Numbers). We have that

Mn

n
ÑnÑ8 x˚ , almost surely (1.3.4)

Proof. While we do not really need in what follows, we remark that the almost
sure convergence can be deduced from the subadditive ergodic theorem.

The upper bound Let Z̄n “
ř

vPDn
1Svąp1`ϵqx˚n count how many parti-

cles, at the nth generation, are at location greater than p1` ϵqnx˚. We apply
a first moment method: we have, for any v P Dn, that

EZ̄n “ 2nP pSv ą np1 ` ϵqx˚q ď 2ne´npp1`ϵqx˚
q
2

{2 ,

where we applied Chebyshev’s inequality in the last inequality. Thus,

P pMn ą p1 ` ϵqnx˚q ď EZ̄n ď e´cpϵqn .

It follows that

lim sup
nÑ8

Mn

n
ď x˚ , almost surely .
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The lower bound A natural way to proceed would have been to define

Zn “
ÿ

vPDn

1Svąp1´ϵqx˚n

and to show that with high probability, Zn ě 1. Often, one handles this via
the second moment method: recall that for any nonegative, integer valued
random variable Z,

EZ “ EpZ1Zě1q ď pEZ2q1{2pP pZ ě 1qq1{2

and hence

P pZ ě 1q ě
pEZq2

EpZ2q
. (1.3.5)

In the case of independent summands, this would work.

Exercise 3. Check that the vanilla second moment method works for the
LLN lower for M̄n using Zn, while it does not work for Mn.

Because of Exercise 3, we need to reduce correlations. At the level of LLN,
a simple method to achieve that is to introduce the event for v P Dn,

Bϵv “ t|Svptq ´ x˚p1 ´ ϵqt| ď ϵn, t “ 1, . . . , nu .

We now recall a basic large deviations result.

Theorem 3 (Varadhan, Mogulskii). With notation and assumption as
above,

lim
ϵÑ0

lim sup
nÑ8

1

n
logP pBϵvq “ lim

ϵÑ0
lim inf
nÑ8

1

n
logP pBϵvq “ ´px˚p1 ´ ϵqq2{2 .

Define now
Zn “

ÿ

vPDn

1Bϵ
v
.

Exercise 4. Check that the second moment method works with this defini-
tion of Zn, ie EZn Ñ 8 and EZ2

n{pEZnq2 Ñ 1.

Tightness of the centered maximum We continue to refine results for
the BRW, in the spirit of Theorem 1; we will not deal yet with convergence
in law, rather, we will deal with finer estimates on EMn, as follows.

Theorem 4. With notation and assumption as before, we have

EMn “ nx˚ ´
3

2x˚
log n`Op1q . (1.3.6)

Further, pMn ´ EMnq is a tight sequence.
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Remark 4. It is instructive to compare the logarithmic correction term in
(1.3.6) to the independent case, see (1.3.2): the constant 1{2 coming from the
Bahadur-Rao estimate (1.3.3) is replaced by 3{2. As we will see, this change
is due to extra constraints imposed by the tree structure, and ballot theorems
that are close to estimates on Brownian bridges conditioned to stay positive.

Theorem 4 was first proved by Bramson [Br78] in the context of Branch-
ing Brownian Motions. The branching random walk case was discussed in
[ABR09], who stressed the importance of certain ballot theorems. Roberts
[Rob13] significantly simplified Bramson’s original proof. The proof we present
combines ideas from these sources. To reduce technicalities, we consider only
the case of Gaussian increments in the proofs.

Before bringing the proof, we start with some preliminaries related to
Brownian motion and random walks with Gaussian increments.

Lemma 1. Let tWtut denote a standard Brownian motion. Then

P pWt P dx,Ws ě ´1 for s ď tq “
1

?
2πt

e´x2
{2t

´

1 ´ e´px`2q{2t
¯

dx . (1.3.7)

Note that the right side in (1.3.7) is of order px ` 2q{t3{2 for all x “ Op
?
tq

positive. Further, by Brownian scaling, for y “ Op
?
tq positive,

P pWt P dx,Ws ě ´y for s ď tq “ O

ˆ

px` 1qpy ` 1q

t3{2

˙

. (1.3.8)

Proof: This is D. André’s reflection principle. Alternatively, the pdf in ques-
tion is the pdf of a Brownian motion killed at hitting ´1, and as such it solves
the PDE ut “ uxx{2 , upt,´1q “ 0, with solution ptp0, xq ´ ptp´2, xq, where
ptpx, yq is the standard heat kernel. [\

Remark: An alternative approach to the proof of Lemma 1 uses the fact
that a BM conditioned to remain positive is a Bessel(3) process. This is the
approach taken in [Rob13].

We next bring a ballot theorem; for general random walks, this version
can be found in [ABR08, Theorem 1].

Theorem 5 (Ballot theorem). Let Xi be iid random variables of zero
mean, finite variance, with P pX1 P p´1{2, 1{2qq ą 0. Define Sn “

řn
i“1Xi.

Then, for 0 ď k ď
?
n,

P pk ď Sn ď k ` 1, Si ą 0, 0 ă i ă nq “ Θ

ˆ

k ` 1

n3{2

˙

, (1.3.9)

and the upper bound in (1.3.9) holds for any k ě 0.

Here, we write that an “ Θpbnq if there exist constanst c1, c2 ą 0 so that

c1 ď lim inf
nÑ8

an
bn

ď lim sup
nÑ8

an
bn

ď c2 .
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Exercise 5. Show that there exists a constant cb so that

lim
x,yÑ8

lim
nÑ8

n3{2

xy
P xpSn P ry, y ` 1s, Si ą 0, i “ 1, . . . , nq “ cb . (1.3.10)

A lower bound on the right tail of Mn Fix y ą 1 independent of n and
set

an “ x˚n´
3

2x˚
log n.

For v P Dn, define the event

Av “ Avpyq “ tSv P ry ` an ´ 1, y ` ans, Svptq ď ant{n` y, t “ 1, 2, . . . , nu,

and set
Zn “

ÿ

vPDn

1Av .

In deriving a lower bound on EMn, we first derive a lower bound on the
right tail of the distribution ofMn, using a second moment method. For this,
we need to compute P pAvq. Recall that we have px˚q2{2 “ log 2. Introduce
the new parameter λ˚

n “ an{n. Let µ denote the standard Gaussian law on
R.

Define a new probability measure Q on R by

dµ

dQ
pxq “ e´λ˚

nx`pλ˚
n q

2
{2 ,

and with a slight abuse of notation continue to use Q when discussing a
random walk whose iid increments are distributed according to Q. Note that
in our Gaussian case, Q only modifies the mean of P , not the variance.

We can now write

P pAvq “ EQpe´λ˚
nSv`npλ˚

n q
2

{21Av
q

ě e´nrλ˚
n pan`yq{n´pλ˚

n q
2

{2sQpAvq (1.3.11)

“ e´nppan`yq{nq
2

{2QpS̃v P ry ´ 1, ys, S̃vptq ě 0, t “ 1, 2, . . . , nq .

where S̃vptq “ ant{n´ Svptq is a random walk with iid Gaussian increments
of variance 1, whose mean vanishes under Q. Thus, tS̃vptqut is distributed
like tSvptqut.

Applying Theorem 5, we get that

P pAvq ě C
y ` 1

n3{2
e´nppan`yq{nq

2
{2 . (1.3.12)

Since

ppan ` yq{nq2 “ px˚q2 ´ 2x˚

ˆ

3

2x˚
¨
log n

n
´
y

n

˙

`O

˜

ˆ

log n

n

˙2
¸

,
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we conclude that
P pAvq ě Cpy ` 1q2´ne´x˚y ,

and therefore
EZn “ 2nP pAvq ě c1ye

´x˚y . (1.3.13)

We next need to provide an upper bound on

EZ2
n “ 2nP pAvq `

ÿ

v‰wPDn

P pAv XAwq “ EZn ` 2n
n
ÿ

s“1

2sP pAv XAvsq ,

(1.3.14)
where vs P Dn and ρpv, vsq “ 2s.

The strategy in computing P pAv X Avsq is to condition on the value of
Svpn ´ sq. More precisely, with a slight abuse of notation, writing Ij,s “

anpn´ sq{n` r´j,´j ` 1s ` y, we have that

P pAv XAvsq (1.3.15)

ď

8
ÿ

j“1

P pSvptq ď ant{n` y, t “ 1, 2, . . . , n´ s, Svpn´ sq P Ij,sq

ˆ max
zPIj,s

pP pSvpsq P ry ` an ´ 1, y ` ans,

Svptq ď anpn´ s` tq{n, t “ 1, 2, . . . , s|Svp0q “ zqq2 .

Repeating the computations leading to (1.3.12) (using time reversibility of
the random walk) we conclude that

P pAv XAvsq ď

8
ÿ

j“1

j3py ` 1q

s3pn´ sq3{2
e´pj`yqx˚

n3pn`sq{2n2´pn`sq . (1.3.16)

Substituting in (1.3.14) and (1.3.15), and performing the summation over j
first and then over s, we conclude that EZ2

n ď cEZn, and therefore, using
again (1.3.5),

P pMn ě an´1q ě P pZn ě 1q ě cEZn ě c0py`1qe´I1
px˚

qy “ c0py`1qe´x˚y .
(1.3.17)

This completes the evaluation of a lower bound on the right tail of the law
of Mn.

An upper bound on the right tail of Mn A subtle point in obtaining
upper bounds is that the first moment method does not work directly - in
the first moment one cannot distinguish between the BRW and independent
random walks, and the displacement for these has a different logarithmic
corrections (the maximum of 2n independent particles is larger).

To overcome this, note the following: a difference between the two scenar-
ios is that at intermediate times 0 ă t ă n, there are only 2t particles in the



Log correlated fields in random matrices, and their extremes 9

BRW setup while there are 2n particles in the independent case treated in
Section 1.3. Applying the first moment argument at time t shows that there
cannot be any BRW particle at time t which is larger than x˚t ` C log n,
while this constraint disappears in the independent case. One thus expect
that imposing this constraint in the BRW setup (and thus, pick up an extra
1{n factor from the ballot theorem 5) will modify the correction term.

Carrying out this program thus involves two steps: in the first, we consider
an upper bound on the number of particles that never cross a barrier reflect-
ing the above mentioned constraint. In the second step, we show that with
high probability, no particle crosses the barrier. The approach we take com-
bines arguments from [Rob13] and [ABR09]; both papers build on Bramson’s
original argument.

Turning to the actual proof, fix a large constant κ ą 0, fix y ą 0, and
define the function

hptq “

"

κ log t, 1 ď t ď n{2
κ logpn´ t` 1q, n{2 ă t ď n .

(1.3.18)

Recall the definition an “ x˚n´ 3
2x˚ log n and let

τpvq “ mintt ą 0 : Svptq ě ant{n` hptq ` y ´ 1u ^ n ,

and τ “ minvPDn
τpvq. (In words, τ is the first time in which there is a particle

that goes above the line ant{n` hptq ` y.)
Introduce the events

Bv “ tτ ě n, Sv P ry ` an ´ 1, y ` ansu

and define Yn “
ř

vPDn
1Bv

. Repeating arguments as we already saw (with
a slightly modified barrier, which is dealt with by a k-dependent change of
measure), one obtains the following.

Lemma 2. There exists a constant c2 independent of y so that

P pBvq ď c2py ` 1qe´x˚y2´n . (1.3.19)

We need to consider next the possibility that τ “ t ă n. Assuming that
κ is large enough (κ ą 3{2x˚ will do), an application of the lower bound
(1.3.17) to the descendants of the parent of the particle v with τv ă n reveals
that for some constant c3 independent of y,

ErYn|τ ă ns ě c3 .

(Recall that Yn “
ř

vPDn
1Bv

.) We conclude that

P pτ ă nq ď
EpYnqP pτ ă nq

EpYn1τănq
“

EYn
EpYn|τ ă nq

ď cEYn . (1.3.20)
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One concludes from this and Lemma 2 that

P pMn ě an ` yq ď P pτ ă nq ` EYn ď c5py ` 1qe´x˚y . (1.3.21)

In particular, this also implies that

EMn ď x˚n´
3

2x˚
log n`Op1q . (1.3.22)

Remark 5. An alternative approach to the argument in (1.3.20), which is more
in line with Bramson’s original proof, is as follows. Note that

P pτ ď n´ nκ
1

q ď

n´nκ1

ÿ

i“1

2iP pSnpiq ě ani{n` hpiq ` yq ď Ce´x˚y ,

where κ1 can be taken so that κ1 ÑκÑ8 0, and in particular for κ large we can
have κ1 ă 1. Assume now κ large enough so that κ1 ď 1{2. For t ě n ´ n1{2,
one repeats the steps in Lemma 2 as follows. Let Nt be the number of vertices
w P Dt (out of 2

t) whose path Swpsq crosses the barrier pans{n`hpsq`y´1q

at time s “ t. We have

P pτ “ tq ď ENt ď cpy ` 1qe´x˚yt{n 1

pn´ tqc1κ´c2

for appropriate constants c1, c2. Taking κ large enough ensures that

n
ÿ

t“n´n1{2

ENt ď cpy ` 1qe´x˚y .

Combining the last two displays leads to the same estimate as in the right
side of (1.3.21), and hence to (1.3.22).

We finally prove a complementary lower bound on the expectation. Recall,
see (1.3.17), that for any y ą 0,

P pMn ě anpyqq ě cpy ` 1qe´x˚y ,

where anpyq “ an ` y. In order to have a lower bound on EMn that comple-
ments (1.3.22), we need only show that

lim
zÑ´8

lim sup
nÑ8

P pMn ď anpzqq “ 0 . (1.3.23)

Toward this end, fix ℓ ą 0 integer, and note that by the first moment argu-
ment used in the proof of the LLN (Theorem 2 applied to maxwPDℓ

p´Swq),
there exist positive constants c, c1 so that

P pmin
wPDℓ

pSwq ď ´cℓq ď e´c1ℓ .
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On the other hand, for each v P Dn, let wpvq P Dℓ be the ancestor of v in
generation ℓ. We then have, by independence,

P pMn ď ´cℓ` pn´ ℓqx˚ ´
3

2x˚
logpn´ ℓqq ď p1 ´ c0q2

ℓ

` e´c1ℓ ,

where c0 is as in (1.3.17). This implies (1.3.23). Together with (1.3.22), this
completes the proof of Theorem 4. [\

Remark 6. The idea of using curved boundaries also helps in the second mo-
ment argument: the arguments we showed can help in showing that

P pSnpiq ě ani{n´ h̄piq´y|τ ě n, Sn P ry`an´1, y`ansq “ oyp1q. (1.3.24)

That is, one can pass from an upward slopping ”banana” to a downward
sloping one without cost. This helps in the proof of the lower bound, as one
needs less precision in the estimates.

Exercise 6. Prove (1.3.24).

Exercise 7. a) Suppose that the increments Xe are not Gaussian but satisfy
that with e “ pv, v ` 1q,

EpeθXeq “ eθ
2

{2p1`Ope´|v|αq
q. (1.3.25)

Check that the estimates in this section still apply.

b) Check that if Xe “
ř2k`1

´1
j“2k

Wj?
j log 2

, where the Wj are independent, mean

0 and variance 1, and possess a uniformly bounded exponential moment, then
(1.3.25) holds.

1.4 Convergence of maximum and Gumbel limit law

We begin with a lemma, whose proof we only sketch.

Lemma 3. There exists a constant c̄ such that

lim
yÑ8

lim sup
nÑ8

ex
˚y

y
P pMn ě mn ` yq “ lim

yÑ8
lim inf
nÑ8

ex
˚y

y
P pMn ě mn ` yq “ c̄ .

(1.4.26)

Note that the lemma is consistent with the upper and lower estimates on the
right tail that we already derived. The main issue here is the convergence.
Proof (sketch): The key new idea in the proof is a variance reduction step.
To implement it, fix k (which will be taken function of y, going to infinity
but so that k ăă y) and define, for any v P Dn,

Wv,k “ max
wPDkpvq

pSw ´ Svq .
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Here, Dkpvq denote the vertices in Dn`k that are descendants of v P Dn.
Now,

P pMn`k ą mn`k ` yq “ P pmax
vPDn

pSv ě mn ` px˚k ´Wv,k ` yqqq .

For each v P Dn, we consider the event

Avpnq “ tSvptq ď tmn{n` y, t “ 1, . . . , n;Sv ě mn ` px˚k ´Wv,k ` yqu .

Note that the event in Avpnq forces to haveWv,k ě x˚k`pmn´Sv`yq ě x˚k,
which (for k large) is an event of small probability. Now, one employs a curve
hptq as described when deriving an upper bound on the right tail of Mn to
show that

P pMn`k ą mn`k ` yq “ p1 ` oyp1qqP pYvPDnAvpnqq .

Next, using Exercise 5, one shows that

lim
yÑ8

lim
nÑ8

ex
˚y

y
P pAvpnqq2´n “ c̄ ,

for some constant c̄. This is very similar to computations we already did.
Finally, note that conditionally on Fn “ σpSv, v P Dj , j ď nq, the events

tWv,k ě x˚k` pmn ´Sv ` yquvPDn are independent. This introduces enough
decorelation so that even when v, w P Dn are neighbors on the tree, one gets
that

P pAvpnq XAwpnqq ď oyp1qP pAvpnqq .

Because of that, defining Zn “
ř

vPDn
1Avpnq, one obtains that EZ2

n ď

p1 ` oyp1qqEZn ` CEZ2
n for some constant C and therefore, using that

lim supnÑ8 EZn ÑyÑ8 0, one has

EZn ě P pYvPDn
Avpnqq ě

pEZnq2

EZ2
n

ě
pEZnq2

EZnp1 ` oyp1qq
ě EZnp1 ´ oyp1qq .

Combining these three facts gives the lemma. [\

We now finally are ready to state the following.

Theorem 6. There exists a random variable Θ such that

lim
nÑ8

P pMn ď mn ` yq “ Epe´Θe´λ˚y

q . (1.4.27)

Thus, the law ofMn´mn converges to the law of a randomly shifted Gumbel
distribution.
Remark: In fact, the proof we present will show that the random variable Θ
is the limit in distribution of a sequence of random variables Θk. In reality,
that sequence forms a martingale (the so called derivative martingale, see
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Remark 1) with respect to Fk, and the convergence is a.s.. We will neither
need nor use that fact. For a proof based on the derivative martingale con-
vergence, see Lalley and Sellke [LS87] for the BBM case and Aı̈dekon [Aı̈d13]
for the BRW case.
Proof (sketch): This time, we cut the tree at a fixed distance k from the root.
Use that for n large, logpn` kq “ logpnq `Op1{nq. Write

P pMn`k ď mn`k ` yq “ Ep
ź

vPDk

1pSv`Wv,kpnqqďmn`x˚k`y

„ Ep
ź

vPDk

P pWv,k ď mn ` px˚k ´ Svq ` y|Svq

„ ϵpkq ` Ep
ź

vPDk

´

1 ´ c̄px˚k ´ Sv ` yqe´λ˚
px˚k´Sv`yq

¯

,

where the symbol a „ b means that a{b ÑnÑ8 1, and we used that with high
probability p1 ´ ϵpkqq, x˚k ´ Sv ě x˚

k ´ S˚
k is of order log k and therefore we

could apply Lemma 3 in the last equivalence. Fixing Θk “ c̄
ř

vPDk
px˚k ´

Svqe´λ˚
px˚k´Svq and using that y is fixed while k is large, we conclude that

P pMn`k ď mn`k ` yq „ ϵ1pkq ` Epe´Θke
´λ˚y

q .

Since the right side does not depend on n, the convergence of the left side
follows by taking n Ñ 8 and then taking k large. Finally, the convergence
also implies that the moment generating function of Θk converges, which in
terms implies the convergence in distribution of Θk. [\

Extremal process We give a description of (a weak form of) a theorem
due to [ABK11] and [ABBS13] in the Branching Brownian motion case and
to [Ma17] in the (not necessarily Gaussian) BRW case, describing the distri-
bution of the point process ηn “

ř

vPDn
δSv´mn . Our proof will follow the

approach of Biskup and Louidor [BL13], and is tailored to the Gaussian setup
we are considering.

We begin with a preliminary lemma. For a fixed constant R, set MnpRq “

tv P Dn : Sv ą mn ´Ru.

Lemma 4. There exist functions rpRq ÑRÑ8 8 and ϵpRq ÑRÑ8 0 so that

lim sup
nÑ8

P pDu, v P MnpRq : rpRq ă ρpu, vq{2 ă n´ rpDqq ď ϵpRq . (1.4.28)

The proof is immediate from the second moment computations we did; we
omit details.

Fix now R (eventually, we will take R Ñ 8 slowly with n) and define the
thinned point process ηsn “

ř

vPDn,Sv“maxw:dT pv,wqďR Sw
δSv´mn

. In words, ηsn
is the point process obtained by only keeping points that are leaders of their
respective “clan”, of depth R.
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Theorem 7. (a) The process ηsn converges, as n Ñ 8, to a random shift of

a Poisson Point Process (PPP) of intensity Ce´λ˚x, denoted ηs.
(b) The process ηn converges, as n Ñ 8, to a decorated version of ηs,

which is obtained by replacing each point in ηs by a random cluster of points,
independently, shifted around z.

A description of the decoration process is also available. We however will not
bother with it. Instead, we will only sketch the proof of part (a) of Theorem
7.

Before the proof, we state a general result concerning invariant point
processes, due to Liggett [Li78]. The setup of Liggett’s theorem (narrowed
to our needs; the general version replaces R by a locally compact second
countable topological space) is a point process η on R (i.e., a random, integer
valued measure on R which is finite a.s. on each compact), with each particle
evolving individually according to a Markov kernel Q. For m a locally finite
positive measure on R, let µm denote the PPP of intensity m. For a random
measure M on R, we set µ̄M “

ş

µmP pM P dmq (a more suggestive notation
would be µ̄M “ EµM where µM is, conditioned onM , a PPP of intensityM).
We say that the law of a point process is invariant for Q if it does not change
when each particle makes independently a move according to the Markov
kernel Q.

One has the following. Througout, we assume that Qnpx,Kq ÑnÑ8 0
uniformly in x for each fixed K ĂĂ R.

Theorem 8 (Liggett [Li78]).

(a) µ̄M is invariant for Q iff MQ “ M in distribution.
(b) Every invariant probability measure is of the form µ̄M for some M .
(c) The extremal invariant probability measures for the point process are of
the form µm with m satisfying mQ “ m iff MQ “ M in distribution
implies MQ “ M a.s.

(d) In the special case where Qpx, dyq “ gpy´xqdy where g is a density func-
tion with finite exponential moments, condition (c) holds and all extreme
invariant m are of the form mpdxq “ Ce´C1xdx, with C 1 depending on C
and g.

(Part (d) of the theorem is an application of the Choquet-Deny theorem that
characterizes the exponential distribution).
Proof of Theorem 7(a) (sketch): We write ηn “ ηnptSvuq to emphasize that
ηn depends on the Gaussian field tSvuvPDn

. Note that due to the Gaussian
structure,

ηn
d
“ ηnpt

a

1 ´ 1{nSvu ` t
a

1{nS1
vuq , (1.4.29)

where tS1
vu is an independent copy of tSvu and the equality is in distri-

bution. Now, t
a

1{nS1
vu is a Gaussian field with variance of order 1, while

a

1 ´ 1{nSv “ Sv ´ 1
2nSv ` op1q.
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Note that for any fixed v P Dn, we have that maxw:dT pv,wqďRpS1
w ´

S1
vq{

?
n ď δpRq with probability going to 1 as n Ñ 8, for an appropri-

ate function δpRq ÑRÑ8 0. By a diagonalization argument, one can then
choose R “ Rpnq so that

max
v,wPDn:Svąmn´R,dT pv,wqďR

pS1
w ´ S1

vq{
?
n ď δpRq

with probability going to 1 as n Ñ 8.
Consider the right side of (1.4.29) as a (random) transformation on ηn;

when restricting attention to the interval p´Rpnq,8q, which a.s. contains only
finitely many points (first moment!), the transformation, with probability
approaching 1 does the following:

– Replaces each point Sv by Sv ´ x˚.
– Adds to each clan an independent centered Gaussian random variable of
variance 1.

– Adds a further small error of order δpRnq

When thinning, one notes that the same transformation applies to the
thinned process. Thus, any weak limit of the thinned process is invariant
under the transformation that adds to each point an independent normal
of mean ´x˚. By the last point of Liggett’s theorem, we conclude that any
limit point of ηsn is a random mixture of PPP with exponential intensity.
The convergence of the maximum then determines both the exponent in the
exponential intensity (must be λ˚) as well as the mixture (determined by the
maximum). This completes the proof. [\

2 Lecture II: The CβE

The goal of this section is to provide us with a road-map for reading [PZ25].
Due to the length technical complexity of the latter, I chose to emphasize
the main ideas and the parallels (and differences!) with the treatment of the
BRW. Most proofs, therefore, will only be sketched.

The Circular-β ensemble (CβE) is a distribution on n points peiω1 , eiω2 ,
. . . , eiωnq on the unit circle with a joint density given by

1

Zn,β

ź

1ďjăkďn

|eiωj ´ eiωk |βdω1 ¨ ¨ ¨ dωn. (2.1.1)

In the special case of β “ 2 this is the joint distribution of eigenvalues of
a Haar-distributed unitary random matrix. The characteristic polynomial
Xnpzq :“

śn
j“1p1 ´ eiωjzq of the CβE has attracted a considerable interest,

for its connections to the theories of logarithmically–correlated fields and
(when β “ 2) analytic number theory.

A particular quantity of interest is Mn :“ max|z|“1 log |Xnpzq|. Let
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mn “ log n´ 3
4 log log n. (2.1.2)

The randommatrix part of the Fyodorov–Hiary–Keating conjecture [FHK12b]
states that in the special case that β “ 2, Mn ´mn converges in distribution
towards a limiting random variables R2, with

P pR2 P dxq “ 4e2xK0p2exqdx. (2.1.3)

It was later observed in [SZ15] that the probability density in (2.1.3) is the
law of the sum of two independent Gumbel random variables.

For general β ą 0, an important step forward was obtained by [CMN18],
who proved that Mn ´

a

2{βmn is tight. The goal of this lecture is to sketch
the proof of the following.

Theorem 9 ([PZ25]). The sequence of random variables MN ´
a

2{βmN

converges in distribution to a random variables Rβ. Further,

Rβ “ Cβ `Gβ `
1

?
2β

logpB8pβqq, (2.1.4)

where Cβ is an (implicit) constant, Gβ is Gumbel distributed with parameter
1{

?
2β, and B8pβq is a random variable that is independent of Gβ.

Remark 7. [PZ25] give a description of B8pβq as the total mass of a certain
derivative martingale. For a specific log-correlated field on the circle, [Rem20]
computes the law of the total mass of the associated GMC and confirms
the Fyodorov-Bouchaud prediction [FB08] for it. It is possible (and even
anticipated, especially in light of [LN24], see Lambert’s talks) but not yet
proved, that the distribution of B8 is also Gumbel. If true (even if only for
β “ 2), Theorem 9 would then yield a proof of the random matrix side of the
Fyodorov-Hiary-Keating conjecture [FHK12b].

Theorem 9 is a consequence of a more general result, which gives the con-
vergence of the distance between certain marked point processes built from
a sequence of orthogonal polynomials, and a sequence of (n-independent)
decorated Poisson point process. This general result also applies to the imag-
inary part of logXnpzq (and thus, allows for control on maximal fluctuation
of eigenvalue count on intervals).

2.2 OPUC preliminaries and formulation of main results

A major advance in the study of Mn was achieved in [CMN18], who used
the Orthogonal Polynomials on the Unit Circle (OPUC) representation of
the CβE measure due to [KN04]; we refer to Lambert’s course and to
[Sim04] for an encyclopedic account of the OPUC theory. Let tγku be
independent, complex, rotationally invariant random variables for which
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|γk|2 “ Betap1, βpk ` 1q{2q, that is with density on r0, 1s proportional to
p1 ´ xqβpk`1q{2´1. The Szegő recurrence is, for all k ě 0,

ˆ

Φk`1pzq

Φ˚
k`1pzq

˙

:“

ˆ

z ´γk
´γkz 1

˙ˆ

Φkpzq

Φ˚
kpzq

˙

,

"

Φ0pzq ” 1,

Φ˚
kpzq “ zkΦkp1{zq.

*

(2.2.5)

where Φ˚
k and Φk are polynomials of degree at most k. Define in terms of

these coefficients the Prüfer phases

Ψk`1pθq “ Ψkpθq ` θ ´ 2ℑ
´

logp1 ´ γke
iΨkpθqq

¯

, Ψ0pθq “ θ, (2.2.6)

where here and below we take the principal branch of the logarithm with
discontinuity along the negative real line. Then, Ψkp¨q may be identified as

a continuous version of the logarithm of θ ÞÑ 1
i logpeiθ Φkpeiθq

Φ˚
k peiθq

q. Let α be a

uniformly distributed element of the unit circle, independent of tγk : k ě 0u ,
and set for any θ P R,

Xnpeiθq :“ Φ˚
n´1peiθq ´ αeiθΦn´1peiθq “ Φ˚

n´1peiθq
`

1 ´ αeiΨn´1pθq
˘

. (2.2.7)

Then Xn has the law of the characteristic polynomial (as process in θ). Note
that this means that to understand |Xnpeiθq|, we need to understand both
the real and imaginary part of logΦ˚

n´1.
The polynomials tΦ˚

ku satisfy the recurrence

logΦ˚
k`1peiθq “ logΦ˚

kpeiθq ` logp1 ´ γke
iΨkpθqq, Φ˚

0 peiθq “ 1. (2.2.8)

We also recall the relative Prüfer phase [CMN18, Lemma 2.4] given by the
recurrence

ψk`1pθq “ ψkpθq ` θ ´ 2ℑ
´

logp1 ´ γke
iψkpθqq ´ logp1 ´ γkq

¯

, ψ0pθq “ θ.

(2.2.9)
In law tψkpθq : k P N, θ P r0, 2πsu is equal to tΨkpθq ´ Ψkp0q : k P N, θ P

r0, 2πsu.
We will be interested in the extreme values of the fluctuations of real and

imaginary parts of logΦ˚, for which reason we will formulate our results in
terms of the recurrence

φk`1pθq “ φkpθq ` 2ℜ
␣

σ
´

logp1 ´ γke
iΨkpθqq

¯

(

, φ0pθq “ 0, (2.2.10)

where σ is one of t1,˘iu . Then, for σ “ 1, φkp¨q “ 2ℜ logΦ˚
kp¨q while for

σ “ i, φkp¨q “ ´2ℑ logΦ˚
kp¨q. To alleviate notation, we will in these notes

mostly consider the real part, i.e. σ “ 1, and explain at the end how results
are transfered to the characteristic polynomial.

The following result, which complements Theorem 9, yields the conver-
gence in law of the centered maxima of φn.
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Theorem 10. For any σ P t1,˘iu , the centered maximum maxθPr0,2πs φnpθq´
a

8{β mn converges in law to a randomly shifted Gumbel of parameter
a

2{β.

In the notation of Theorem 9, the limit is Cσβ ` 2Gσβ `
a

2{β logB8, where
Gσβ has the same law as Gβ and Cσβ is an (implicit) constant.

The following result appears in [CMN18], with mn as in (2.1.2). We use
N because, to link with Lecture 1, we will later use n “ tlog2N u.

Theorem 11. For any σ P t1,˘iu , with MN :“ maxθPr0,2πs φN pθq, the cen-

tered maximum MN ´
a

8{β mN is tight. The same holds for the real and
imaginary parts of the logarithm of the characteristic polynomial.

Before discussing the proofs of Theorems 9 and 10 on convergence, we
wish to explain the proof of Theorem 11 and relate it to what we saw in
Lecture I.

2.3 OPUC as log-correlated fields

In a first step, observe that instead of discussing supθ φN pθq, one can discuss
supθPUN

φN pθq, where UN is an equispaced net in r0, 2πs of cardinality mN ,
with m fixed and large. This follows from an interpolation lemma, which
slightly expands and quantifies a result in [CMN18].

Lemma 5. For any polynomial Q of degree k ě 1, and any natural number
m ě 2,

max
|z|“1

|Qpzq|2 ď
m

m´ 1
¨ max
ω:ω2mk“1

|Qpωq|2.

Furthermore, if for any b ą 0 we partition the p2mkq-th roots of unity into
N and F so that N are all those roots of unity ω so that |ω ´ 1| ď 2b

k , then
there is an absolute constant C ą 0 so that

max
|z´1|ď b

k ,
|z|“1

|Qpzq|2 ď
m

m´ 1
¨ max
ωPN

|Qpωq|2 `
C

bpm´ 1q
¨ max
ωPF

|Qpωq|2 and

min
|z´1|ď b

k ,
|z|“1

|Qpzq|2 ě
m

m´ 1
¨ min
ωPN

|Qpωq|2 ´

ˆ

1 `
C

b

˙

1

pm´ 1q
¨ max
ω:ω2mk“1

|Qpωq|2.

I do not discuss the (classical) proof and refer instead to [PZ25, Theorem
8.2]. and the fact that φN is a trigonometric polynomial of degree N .

We now begin to explain the hierarchical structure of the processes φkpθq.
Consider first (2.2.10) for a fixed θ. Note that the increment φk`1pθq ´φkpθq

is independent of φjpθqqjďk,θPr0,2πs, has mean 0 (if σ “ 1) and mean θ (if
σ “ i), and variance cβ{k. Further, one has the following.
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Exercise 8. Check that φ2k`1pθq´φ2kpθq, up to the centering i2kθ and scal-
ing by

?
cβ , satisfies the assumptions of Exercise 7.

From Exercise 8, we see that φ2kpθq behaves essentially like a Gaussian
random walk (in k). We would like to proceed as in the case of BRW, and
introduce barriers. Note that in the introduction of barriers for BRW, we used
the fact that the cardinality of vertices at depth k was 2k; Here, this is not
the case: if we are interested in MN with N “ 2n, there are still (essentially)
2n points at level k ă n, and not 2k. This destroys the option of using a
crude union bound in order to introduce the barrier. Instead, we have the
following.

Lemma 6 (MetaTheorem). The processs φkpθq is continuous at scale 2´k.

We cannot provide in these notes a proof of Lemma 6, but we can ex-
plain why one can expect it to be correct: indeed, we see that the means of
Erφ2kpθq´φ2kpθ1qs “ θ2k if σ “ i, and it is not hard to evaluate the variance
of this difference and show it is of order 1. This of course is not enough, as
we need results at the level of large deviations, and a big technical difficulty
is to introduce good enough approximations that are strong enough at the
tail.

Equipped with Lemma 6, Exercise 8, and Lemma 5, one can obtain the
analogue of the upper tail (1.3.21), and prove the upper tail upper bound
part of Theorem 11.

To obtain a right tail lower bound, we again need to apply a second
moment method with barrier. For that, a first step is the claim, stated here
for σ “ 1:

Epϕ2kpθqϕ2kpθ1qq “ ´ logp|θ ´ θ1| _ 2´kq `Op1q. (2.3.11)

We have already explained why φ2kpθq and φ2kpθ1q are close together if |θ ´

θ1| „ 2´k. Suppose now that |θ ´ θ1| “ 2´ℓ with ℓ ă k. Then, we need to
understand why pφ2k ´φ2ℓqpθq and pφ2k ´φ2ℓqpθ1q are essentially independent.
For that, note that the Prüfer phases satisfy

Ψjpθq „ Ψjpθ
1q ` pθ ´ θ1qj `Op

a

log jq. (2.3.12)

Now these Prüfer phases enter into the evolution of φk (see (2.2.10)) as

φk`1pθq ´ φkpθq „ |γk| cospΨkpθq ` αq, (2.3.13)

with α uniform on r0, 1s.

Exercise 9. Assume that in (2.3.13), one replaces „ by an equality and
removes the error term in (2.3.12). Show that this implies (2.3.11).

The actual proof, of course, has to justify these approximation steps, at
the level of large deviations. Once this is done, the same second moment
method that worked for BRW can be applied.
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2.4 Back to convergence: the landscape

There are several places where the description above fails to be precise enough
to yield convergence:

1. Locally, ie at microscopic scales (meaning that |θ ´ θ1| „ Op1{Nq “

Op2´nq), the polynomial φN pθq is very different from the piecewise con-
stant field obtained by embedding a BRW on the interval r0, 1s.

2. Similarly, the macroscopic description of the beginning of the recursions is
very different from a BRW. In particular, there is no exact independence
of increments as in the BRW case.

3. The log-determinant is not exactly φN , and in fact one needs to use an
extra randomization and the ”shape” of φN in a neighborhood of near
maxima.

Points 1,2 already appeared in the study of the maximum of the two di-
mensional GFF [BDZ16], and its generalization to log-correlated Gaussian
fields [DRZ17]. In a nutshell, the approach of [BDZ16] used a spatial Markov
property that gave independence of increments (which is not present here),
and the general [DRZ17] used in a strong way the Gaussianity of the field,
which also fails here. We will see however that the ideas from these references,
together with some new elements, are behind the proof of Theorem 9.

We begin with the description of the random shift. Define the random
measure and its total mass

Dkpθqdθ :“ 1
2π e

c

β
2 φkpθq´log k`?

2 log k ´

b

β
4φkpθq

˘

`
dθ,Bk :“

ż 2π

0

Dkpθqdθ.

(2.4.14)
This is not exactly a martingale, due to the truncation, but the truncation
becomes meaningless for large k. We equip the space of finite measures with
the weak-* topology, and then we show that this measure converges almost
surely.

Theorem 12. For any σ P t1,˘iu and any β ą 0, there is an almost surely
finite random variable B8 and an almost surely finite, nonatomic random
measure D8 so that

D2jdθ
a.s.

ÝÝÝÑ
jÑ8

D8 and B2j
a.s.

ÝÝÝÑ
jÑ8

B8.

Furthermore for any ϵ ą 0 there is a compact K Ă p0,8q so that with

χpθq “ 1

"

p
?
2 log k ´

b

β
4φkpθqq{

a

log k R K,

*

it holds that for any k P N,

P
ˆ
ż 2π

0

e

c

β
2 φkpθq´log kˇ

ˇ

?
2 log k ´

b

β
4φkpθq

ˇ

ˇχpθqdθ ą ϵ

˙

ă ϵ. (2.4.15)
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The meaning of (2.4.15) is that only angles θ with φkpθq near the maximal
value contribute to D8.

Theorem 12 is very useful in carrying out the analogue of the computation
in the proof of Theorem 6, thus addressing effectively point 2 above. Dealing
with point 1 is however more delicate. We turn to describing this.

We introduce parameters tkp : p P Nu which will be chosen large but
independent of n. These parameters will be taken large after n is sent to
infinity. Moreover, they will be ordered in a decreasing fashion, so that kj "

kj`1.
We formulate a sequential extremal process, indexed by k1, of approxi-

mation for the process of near maxima, which we refer to as the landscape.
Divide the unit circle into consecutive arcs tyIj,Nu by the formula that for any
j,N P N,

pIj “ yIj,N :“ 2πr
pj´1qk1

N , jk1N q. (2.4.16)

Let Dn{k1 denote the collection of indices j “ 1, 2, . . . , r nk1 s. We let θj “ θj,n

be the supremum of yIj,n. Over each of these intervals, we define the process

Dj “ Dj,n : r´2πk1, 0s Ñ C,

Djpθq :“

$

&

%

`

Φ˚
n

˘2
pexppipθj ` θ

n qqq ¨ expp´ipn` 1qθj´
b

8
βmnq, if σ “ 1,

exp
`

φnpθj ` θ
n q ´

b

8
βmn

˘

, if σ “ i.

(2.4.17)

This will serve as the decoration process, although we will not prove their
convergence as k1 Ñ 8. We next define for all j P Dn{k1 random variables

xWj “ xWj,n :“ max
θPxIj

tφnpθqu ´

b

8
βmn (2.4.18)

which is a local maximum, appropriately centered, and set

Exn “ Exk1n :“
ÿ

jPDn{k1

δ
pθj ,yWj ,Djq

. (2.4.19)

A central technical challenge will be to show that φk and Ψk are essentially
constant on the interval pIj for k « n{k1, and that hence it suffices to track

both φk and Ψk only at the point θj P pIj . We gloss over this detail in these
notes. Our goal will be to approximate the process Exn by a Poisson processes
with random intensity, which we describe next.

Toward this end, recall that an important strategy used throughout the
analysis of extrema of branching processes is effectively conditioning on the
initial portion of the process, wherein the extrema gain a nontrivial correla-
tion. We will do the same and condition on the first Verblunsky coefficients.
We use the parameter k2, which we assume is a power of 2 (to apply Theorem
12), to refer to how many Verblunsky coefficients on which we condition. We
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also use pFk : k P N0q to refer to the natural σ-algebra generated by the
sequence of Verblunsky coefficients pγk : k P N0q.

Introduce the law pk1pv, ¨q, which is a law of a random function on θ P

p´2πk1, 0q which is related to the exponential of the solution of a family of
coupled diffusions Uospθq in an auxiliary time parameter (We discuss below in
Section 2.6 these equations).

The measure Exn will be approximated by a Poisson random measure
with a random intensity on the same space. This intensity on Γ :“ r0, 2πs ˆ

RˆCpr´2πk1, 0s,Cq will take the form of a product measure D8 ˆ xpk1 , where
pxpk1 : k1 P Nq is a deterministic Radon measure on RˆCpr´2πk1, 0s,Cq, which
is constructed as follows. Let

ιpv, fq :“
`

max
xPr´2πk1,0s

p´
a

4{βv ` log |fpxq|q, fe´
?

4{βv
˘

(2.4.20)

be a map of R ˆ Cpr´2πk1, 0s,Cq to itself, let

Ipvq “

b

2
πve

?
2v1

!

plog k1q1{10 ď v ď plog k1q9{10
)

,

and let

xpk1pdv, dfq denote the push-forward of Ipvqdv ˆ pk1pv, dfq by ι. (2.4.21)

We let Πk1 be a Poisson random measure on Γ with intensity D8 ˆ xpk1 .
It is worthwhile explaining what exactly is this process: the first coordinate
marks the “height” of the recursion at angle θ, ie generates ”high points”
(corresponding to some very large level k2) according to the intensity D8. At
these high values, one generates pieces of trajectories (the decoration) around
height v, with intensity xpk1pdv, dfq.

To compare point processes on Γ , we endow the latter with the distance

B0ppθ1, z1, f1q, pθ2, z2, f2qq :“
`

dTpθ1, θ2q`|z1´z2|` sup
tPr´2πk1,0s

|f1ptq´f2ptq|
˘

^1.

In terms of this we define a Wasserstein distance on point configurations
ξ1 “

řm
i“1 δyi and ξ2 “

řn
i“1 δzi

B1pξ1, ξ2q :“

$

’

&

’

%

0, if m “ n “ 0,

minπmaxi“1,...,n B0pyi, zπpiqq, if m “ n ą 0,

1, if m ‰ n.

with the minimum being the distance over all permutations π of t1, 2, . . . , nu.
Finally, for two point processes Q1 and Q2 we define the pseudometric

B2pQ1, Q2q :“ inf
pξ1,ξ2q

EpB1pξ1, ξ2qq,

with the infimum over couplings pξ1, ξ2q in which ξ1 „ Q1 and ξ2 „ Q2. To
make a comparison between Πk1 and Exk1n , we will only make a comparison
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in which their second coordinate is in a compact set. Hence we shall further
restrict the space Γ to

pΓk7 :“ r0, 2πs ˆ r´k7, k7s ˆ Cpr´2πk1, 0s,Cq. (2.4.22)

The main approximation result is the following.

Theorem 13. For any k7 ą 0, we have

lim sup
k1,nÑ8

B2
`

Πk1 X pΓk7 ,Ex
k1
n X pΓk7

˘

“ 0. (2.4.23)

Theorem 13 implies Theorems 9 and 10.

2.5 A high level description of the proof of Theorem 10.

We now provide a high level description of the proof, that glosses over many
important details.

We write

φnpθq “ φk2pθq ` pφn{k1pθq ´ φk2pθqq ` pφnpθq ´ φn{k1pθqq

“: φk2pθq `∆k2,n{k1pθq `∆n{k1,npθq,

and

max
θPr0,2πs

φnpθq “ max
j

max
θPzIj,n

´

φk2pθq `∆k2,n{k1pθq `∆n{k1,npθq

¯

.

We claim that the last expression can be approximated as

max
j

´

φk2pθjq `∆k2,n{k1pθjq ` max
θPzIj,n

∆n{k1,npθq

¯

. (2.5.24)

To analyze the maximum in (2.5.24), we introduce the field fn,jpηq :“
∆n{k1,npθj ` η{nq, with η P r´2πk1, 0s and ∆ defined above (2.5.24), and
write (2.5.24) as

max
j

´

φk2pθjq `∆k2,n{k1pθjq ` max
ηPr´2πk1,0s

fn,jpηq

¯

(2.5.25)

“: max
j

´

φk2pθjq `∆k2,n{k1pθjq `∆1
n{k1,n

pjq
¯

.

The main contribution to the maximum comes from js with ∆k2,n{k1pθjq

large, of the order of
a

8{βpmn´ logpk1k2qq. However, the ∆k2,n{k1pjq are far
from independent for different j. In order to begin controlling this, we intro-
duce two “good events”: a global good event Gn, which allows us to replace
the recursion by one driven by Gaussian variables (called ztpθq, and taken for
convenience in continuous time) and also impose an a priori upper limit on
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the recursion, and a barrier event pR, which ensures that the Gaussian-driven
recursion ztpθq stays within a certain entropic envelope. We will also insist
that zn{k1pθjq stays within an appropriate window. These steps are similar to
what is done in [CMN18] and prepare the ground for the application of the
second moment method.

We next claim that the fields fn,jpηq converge in distribution to the so-
lution of a system of coupled stochastic differential equations as in (2.6.29)
(this is not literally the case, and requires some pre-processing in the form of
restriction to appropriate events and using a change of k1, that we gloss over
here). In particular, the law of those fields are determined by the Markov
kernel pk1 . Further and crucially, the fields fn,j can be constructed so that
for well separated js, they are independent. This latter independence is what
makes the proof work. Of course, for adjoining arcs it is actually hopeless
to make them truly independent, but it turns out we need the independence
only for far away intervals, and this can be achieved due to the fast rotating
Prüfer phases.

As in many applications of the second moment method, to allow for some
decoupling it is necessary to condition on Fk2 . We need to find high points
of the right side of (2.5.25). The basic estimate, for a given j, is that with
wj “

a

8{β log k2 ´ φk2pθjq,

P
´

∆k2,n{k1pθjq „
a

8{βpmn ´ logpk1k2q ´ vq | Fk2

¯

„ C
ve2vwje

´2wj

n
.

(2.5.26)
This estimate, already appearing in [CMN18], is nothing but a barrier esti-
mate.

If the variables t∆k2,n{k1pθjq`∆1
n{k1,n

pjq : ju were an independent family,
we would be at this point done, for then we would have that

P
´

φk2pθjq `∆k2,n{k1pθjq `∆1
n{k1,n

pjq ą
a

8{βpmn ` xq | Fk2

¯

„ C
wje

´2wj

n{k1
Epk1

´

pVj ´ xqe2pVj´xq
¯

„ C
Dk2 pθjq

n{k1
e´2x. (2.5.27)

Hence, we have using independence over different j that

Pp max
θPr0,2πs

φnpθq ď
a

8{βpmn ` xq | Fk2q „
ź

j

´

1 ´ C
Dk2 pθjq

n{k1
e´2x

¯

„ exp
`

´CBk2e
´2x

˘

,

which would then yield Theorem 10.
Unfortunately, different js are not independent. We handle that through

several Poisson approximations. First, we condition on Fn{k1 and use the
“two moments suffice” method of [AGG89] to show that the process of near

maxima (together with the shape pφnpθq ´ φn{k1pθq, θ P yIj,nq) can be well
approximated, as k1 Ñ 8, by a Poisson point process of intensity m which
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depends still on k1. In the proof, the independence for well separated js and
the second moment computations play a crucial role.

Using these steps we obtain a Poisson process with random intensity,
measurable on Fn{k`

1
. Our final step is another standard use of the second

moment method to show that this random intensity concentrates, yielding
Theorem 13.

2.6 Decoupling and a diffusion approximation

We now describe the SDE’s alluded to before. Recall the recursions (2.2.8)
and (2.2.9). Writing t instead of k, this is similar to the SDE

dXt “ iθdt` ecβℑXtdWt,

where Wt is a complex Brownian motion. After a time change t ÞÑ et with
now t “ logN´ log k1`s and a change of scaling for the angles to correspond
to small arcs, ie θ ÞÑ θ{N and we relativise near 0, we obtain the SDE

dYs “
iθes

k1
ds` cβe

iℑYsdWs.

Note that for other intervals,Ws gets multiplied by an extra term eiΨtpθjq,
which oscillates rapidly, and therefore creates independence between far away
k1-intervals. This leads to the following. Set T` “ log k1. Consider the family
of standard complex Brownian motions

tWj
t : T´ ď t ď T`, j P DN{k1u, (2.6.28)

which will have the property that they are independent from one another
when the relevant arcs are separated by a small power of N. Now with re-
spect to these Brownian motions we define the complex diffusions pLjt : t P

r0, T`s, θ P R, j P Dn{k1q as the (strong) solution of the stochastic differential
equation

dLjt pθq “ dLtpθq “ iθetk´1
1 dt`

b

4
β e

iℑLtpθqdWj
t , and

Ujt pθq “ ´ℜ
`

σ
`

Ljt pθq ´ iθk´1
1 et

˘˘

´

b

8
βmn.

LjT´
pθq “ ´2 logΦ˚

n`
1

pexppipθj ` θ
n qqq ` iθ

k1
eT´ , for θ P R.

(2.6.29)
As explained above, the diffusion Ljpθq will serve as a proxy for the evolution
of ´2 logΦ˚

kptqpθj`θ{nq`iθet{k1 where kptq « n1e
t up to rounding errors, and

in particular its imaginary part will mimick the evolution of the Prüfer phases.
When σ “ 1, the diffusion Ujt pθq is designed to be a proxy for 2 log |Φ˚

kptqpθj `

θ{nq|.
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In reality, the initial condition for the diffusion is not constant. However,
one can move back to negative time (by a power smaller than 1 of log k1)
and initialize the SDE from flat initial conditions, so as to decouple from
the past. A technical part of the proof shows that no harm is done by this
initialization.

Exercise 10. To get a feeling for the Poisson approximations in this section,
consider a BRW of depth n, so that each vertex v is associated with a point
xv “ j2´n, and to each x P rj2´n, pj`1q2´ns we define Spxq “ Sv`ℜLj1ppx´

xvq2nq, and Ljt is as in (2.6.29) with k1 “ 1 and Lj0 “ 0. Prove that Theorem 6
continues to hold, with Θ replaced by Θ`C with some deterministic constant
C. State a Poisson convergence for the local landscape.

3 Lecture III: Jacobi matrices and GβE

We consider in this section a class of random matrices that are tridiagonal;
these include matrices whose eigenvalue distruibutions mimick the GβE en-
sembles. Our emphasis is on methods that work for all β, and therefore we
do not discuss results specific to β “ 2.

3.1 Tridiagonal representation of β ensembles

The following material will be skipped and serves only as motivation. It
is taken from [AGZ10]. We begin by recalling the definition of χ random
variables (with t degrees of freedom).

Definition 3.1.1 The density on R`

ftpxq “
21´t{2xt´1e´x2

{2

Γ pt{2q

is called the χ distribution with t degrees of freedom, and is denoted χt.

If t is integer and X is distributed according to χt, then X has the same law

as
b

řt
i“1 ξ

2
i where ξi are standard Gaussian random variables.

Let ξi be independent i.i.d. standard Gaussian random variables of zero
mean and variance 1, and let Yi „ χiβ be independent and independent of
the variables tξiu. Define the tridiagonal symmetric matrix HN P MatN pRq

with entries HN pi, jq “ 0 if |i´ j| ą 1, HN pi, iq “
a

2{βξi and HN pi, i`1q “

YN´i{
?
β, i “ 1, . . . , N . The main result of this section is the following.

Theorem 3.1.2 (Edelman–Dumitriu) The joint distribution of the eigen-
values of HN is given by

CN pβq∆pλqβe´
β
4

řN
i“1 λ

2
i . (3.1.3)
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We begin by performing a preliminary computation that proves Theorem
3.1.2 in the case β “ 1 and also turns out to be useful in the proof of the
theorem in the general case.
Proof of Theorem 3.1.2 (β “ 1) Let XN be a matrix distributed according
to the GOE law (and in particular, its joint distribution of eigenvalues has the
density coinciding with (3.1.3)). Set ξN “ XN p1, 1q{

?
2, which is a standard

Gaussian variable. LetX
p1,1q

N denote the matrix obtained fromXN by striking
the first column and row, and let ZT

N´1 “ pXN p1, 2q, . . . , XN p1, Nqq. Then

ZN´1 is independent ofX
p1,1q

N and ξN . Let H̃N be an orthogonalN´1-by-N´

1 matrix, measurable on σpZN´1q, such that H̃NZN´1 “ p}ZN´1}2, 0, . . . , 0q,
and set YN´1 “ }ZN´1}2, noting that YN´1 is independent of ξN and is
distributed according to χN´1. (A particular choice of H̃N is the Householder
reflector H̃N “ I ´ 2uuT{}u}22, where u “ ZN´1 ´ }ZN´1}2p1, . . . , 0q.) Let

HN “

ˆ

1 0

0 H̃N

˙

.

Then the law of eigenvalues of HNXNH
T
N is still (3.1.3), while

HNXNH
T
N “

¨

˚

˚

˝

?
2ξN YN´1 0N´2

YN´1

XN´1

0N´2

˛

‹

‹

‚

,

where XN´1 is again distributed according to the GOE and is independent of
ξN and YN´1. Iterating this construction N ´ 1 times (in the next step, with
the Householder matrix corresponding to XN´1), one concludes the proof
(with β “ 1). [\

We next prove some properties of the eigenvalues and eigenvectors of tridi-
agonal matrices. Let DN denote the collection of diagonal N -by-N matrices
with real entries, Dd

N denote the subset of DN consisting of matrices with
distinct entries, and Ddo

N denote the subset of matrices with decreasing en-

tries. Let U p1q

N denote the collection of N -by-N orthogonal matrices, and let

U p1q,`
N denote the subset of U p1q

N consisting of matrices whose first row has all
elements strictly positive.

We parametrize tridiagonal matrices by two vectors of lengthN andN´1,

a “ pa1, . . . , aN q and b “ pb1, . . . , bN´1q, so that if H P Hp1q

N is tridiagonal

then Hpi, iq “ aN´i`1 and Hpi, i ` 1q “ bN´i. Let TN Ă Hp1q

N denote the
collection of tridiagonal matrices with all entries of b strictly positive.

Lemma 3.1.4 The eigenvalues of any H P TN are distinct, and all eigen-
vectors v “ pv1, . . . , vN q of H satisfy v1 ‰ 0.

Proof. The null space of any matrix H P TN is at most one dimensional.
Indeed, supposeHv “ 0 for some nonzero vector v “ pv1, . . . , vN q. Because all
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entries of b are nonzero, it is impossible that v1 “ 0 (for then, necessarily all
vi “ 0). So suppose v1 ‰ 0, and then v2 “ ´aN{bN´1. By solving recursively
the equation

bN´ivi´1 ` aN´ivi “ ´bN´i´1vi`1, i “ 2, . . . , N ´ 1, (3.1.5)

which is possible because all entries of b are nonzero, all entries of v are
determined. Thus, the null space of any H P TN is one dimensional at most.
Since H ´λI P TN for any λ, the first part of the lemma follows. The second
part follows because we showed that if v ‰ 0 is in the null space of H ´ λI,
it is impossible to have v1 “ 0. [\

Let H P TN , with diagonals a and b as above, and write H “ UDUT with
D P Ddo

N and U “ rv1, . . . , vN s orthogonal, such that the first row of U , de-
noted v “ pv11 , . . . , v

N
1 q, has nonnegative entries. (Note that }v}2 “ 1.) Write

d “

pD1,1, . . . , DN,N q. Let dcN “ tpx1, . . . , xN q : x1 ą x2 ¨ ¨ ¨ ą xNu and let

SN´1
` “ tv “ pv1, . . . , vN q P RN : }v}2 “ 1, vi ą 0u .

(Note that dcN is similar to dN , except that the ordering of coordinates is
reversed.)

Lemma 3.1.6 The map

pa,bq ÞÑ pd,vq : RN ˆ RpN´1q

` Ñ ∆c
N ˆ SN´1

` (3.1.7)

is a bijection, whose Jacobian J is proportional to

∆pdq
śN´1
i“1 bi´1

i

. (3.1.8)

Proof. That the map in (3.1.7) is a bijection follows from the proof of Lemma
3.1.4, and in particular from (3.1.5) (the map pd,vq ÞÑ pa,bq is determined
by the relation H “ UDUT).

To evaluate the Jacobian, we recall the proof of the β “ 1 case of The-
orem 3.1.2. Let X be a matrix distributed according to the GOE, consider
the tridiagonal matrix with diagonals a,b obtained from X by the succes-
sive Householder transformations employed in that proof. Write X “ UDU˚

where U is orthogonal, D is diagonal (with elements d), and the first row u
of U consists of nonnegative entries (and strictly positive except on a set of
measure 0). Check that u is independent of D and that, by a simple Jacobian
computation, the density of the distribution of the vector pd,uq with respect
to the product of the Lebesgue measure on dcN and the the uniform measure

on SN´1
` is proportional to ∆pdqe´

řN
i“1 d

2
i {4. Using Theorem 3.1.2 and the

first part of the lemma, we conclude that the latter (when evaluated in the
variables a,b) is proportional to
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Je´
řN

i“1

a2
i
4 ´

řN´1
i“1

b2i
2

N´1
ź

i“1

bi´1
i “ Je´

řN
i“1 d

2
i {4

N´1
ź

i“1

bi´1
i .

The conclusion follows. [\

We will also need the following useful identity.

Lemma 3.1.9 With notation as above, we have the identity

∆pdq “

śN´1
i“1 bii

śN
i“1 v

i
1

. (3.1.10)

Proof. Write H “ UDUT. Let e1 “ p1, 0, . . . , 0qT. Let w1 be the first column
of UT, which is the vector made out of the first entries of v1, . . . , vn. One
then has

N´1
ź

i“1

bii “ detre1, He1, . . . ,H
N´1e1s “ detre1, UDU

Te1, . . . , UD
N´1UTe1s

“ ˘detrw1, Dw1, . . . , DN´1w1s “ ˘∆pdq

N
ź

i“1

vi1 .

Because all terms involved are positive by construction, the ˘ is actually a
`, and the lemma follows. [\We can now conclude.
Proof of Theorem 3.1.2 (general β ą 0) The density of the independent
vectors a and b, together with Lemma 3.1.6, imply that the joint density of
d and v with respect to the product of the Lebesgue measure on dcN and the
uniform measure on SN´1

` is proportional to

J
N´1
ź

i“1

biβ´1
i e´

β
4

řN
i“1 d

2
i . (3.1.11)

Using the expression (3.1.8) for the Jacobian, one has

J
N´1
ź

i“1

biβ´1
i “ dpdq

˜

N´1
ź

i“1

bii

¸β´1

“ dpdqβ

˜

N
ź

i“1

vi1

¸β´1

,

where (3.1.10) was used in the second equality. Substituting in (3.1.11) and
integrating over the variables v completes the proof. [\

3.2 Characteristic polynomials for GβE and Jacobi matrices

We will be interested in the characteristic polynomial of Jacobi matrices
similar to HN . By Section 3.1, the law of the characteristic polynomial for
HN is the same as that for the GβE ensembles. There are several methods for
handling that. In particular, [BMP22], using loop equations and z complex,
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showed that log |detpzI ´HN q| is a logarithmically correlated field (more on
that in Lecture IV). We will take here a different route, closer to what was
done in the case of the CβE; in doing so, we follow [ABZ23] and [AZ25]; see
[LP23, LP20] for other related results.

We consider matrices of the form

Jn “

¨

˚

˚

˚

˚

˚

˝

bn an´1 0 ¨ ¨ ¨ 0
an´1 bn´1 an´2 ¨ ¨ ¨ 0
...

. . .
. . .

. . .
...

0 ¨ ¨ ¨ a2 b2 a1
0 ¨ ¨ ¨ ¨ ¨ ¨ a1 b1

˛

‹

‹

‹

‹

‹

‚

. (3.2.12)

where the coefficients of Jn satisfy the following assumptions.

Assumption 3.2.13 pakqkě1 and pbkqkě1 are two independent sequences of
independent random variables whose law is absolutely continuous with respect
to the Lebesgue measure and such that

Epa2kq “ k `Op1q, Varpa2kq “ kv `Op1q, Epbkq “ 0, Varpbkq “ v `O
´1

k

¯

,

(3.2.14)
where v is some positive constant. Further, there exists h0 ą 0 such that

sup
kě1

E
`

eh0|bk|
˘

ă `8, sup
kě1

E
`

e
h0?
k

|a2k´Epa2kq|
˘

ă `8. (3.2.15)

We denote by pn the characteristic polynomial of the scaled Jacobi matrix
Jn{

?
n defined by pnpzq “ detpzIn ´ Jn{

?
nq for any z P R. Our main result

reads as follows.

Theorem 14. Let η ą 0 and denote by Iη :“ tz P R : η ď |z| ď 2 ´ ηu. In
probability,

maxzPIη

`

log |pnpzq| ´ n
`

z2

4 ´ 1
2

˘˘

´
?
v log n

log log n
ÝÑ
nÑ`8

´
3
?
v

4
.

The GβE can be checked to be a particular case of Theorem 14. This partially
confirms the conjecture Fyodorov and Simm stated for the GUE [FS16].
We note that the linear in n term (i.e., npz2{4 ´ 1{2q) corresponds to the
logarithmic potential of the semicircle law.

3.3 The three term recursion

Owing to the tridiagonal structure of Jn, its characteristic polynomial is
naturally linked to a certain three term recursion. More precisely, for any
z P p´2, 2q and n P N, n ě 1, let pqkpzqqkPt´1,...,nu be defined by the recursion:
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q´1pzq “ 0, q0pzq “ 1, qkpzq “
`

z
?
n´ bk

˘

qk´1 ´ a2k´1qk´2pzq, k ě 1,
(3.3.16)

where a0 “ 0 by convention. Then qkpzq “ detpz
?
nIk´Jkq, and in particular

qnpzq “ nn{2pnpzq. Let pϕkqkPt0,...,nu denote the scaled variables defined by

ϕkpzq “
qkpzq
?
k!
, k P t0, . . . , nu, z P p´2, 2q. (3.3.17)

The choice of this scaling is motivated by the fact that these new polynomials
now satisfy the recursion

ϕkpzq “

´

zk ´
bk
?
k

¯

ϕk´1pzq ´
a2k´1

a

kpk ´ 1q
ϕk´2pzq, k ě 2, z P p´2, 2q,

(3.3.18)
where zk “ z

a

n{k and where the second order coefficients are of order 1,
given that by assumption a2k´1 — k typically. Setting

Xz
k “

ˆ

ϕkpzq

ϕk´1pzq

˙

T zk “

˜

zk ´
bk?
k

´
a2k´1?
kpk´1q

1 0

¸

, k ě 2, (3.3.19)

the recursion (3.3.18) is equivalent to

Xz
k “ T zkX

z
k´1, k ě 2, z P p´2, 2q, (3.3.20)

where Xz
1 “ pz

?
n´ b1, 1qT. To get a feel for this recursion, note that under

our Assumptions 3.2.13, T zk is a small random perturbation of the matrix Azk
defined by

Azk :“

ˆ

zk ´1
1 0

˙

. (3.3.21)

As Azk belongs to SL2pRq, the dynamics of the system will highly depend
in which of the three classes of SL2pRq, hyperbolic, parabolic or elliptic, it
belongs to. Since this classification is determined by respectively the value of
|TrpAzkq| being strictly greater than 2, equal to 2 or strictly smaller than 2,
this leads us to define the critical time k0,z and - although less obvious for
now - the critical window ℓ0 as

k0,z :“ t
z2n

4
u, ℓ0 :“ tκn1{3u, κ ě 1, (3.3.22)

and to decompose the recursion into three regimes: a hyperbolic regime (until
time k0,z ´ ℓ0) where the eigenvalues of Azk are real, a parabolic regime (be-
tween time k0,z´ℓ0 and k0,z`ℓ0), and an elliptic regime (after time k0,z`ℓ0)
where the eigenvalues of Azk are complex conjugated and of modulus 1.

Set αk,z when k ă k0,z, the spectral radius of Azk, given by

αk,z :“
|zk| `

a

z2k ´ 4

2
, 1 ď k ď k0,z. (3.3.23)
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With this notation, Theorem 14 is actually equivalent, modulu some anti-
concentration results that we do not detail, to the following:

Theorem 15. Let η ą 0 and denote by Iη :“ tz P R : η ď |z| ď 2 ´ ηu.
Under Assumptions 3.2.13,

maxzPIη

`

log }Xz
n} ´

řk0,z
k“1 logαk,z

˘

´
?
v log n

log log n
ÝÑ
nÑ`8

´
3
?
v

4
, (3.3.24)

in probability.

In these notes, we neglect completely the parabolic regime, and focus in-
stead on the hyperbolic and elliptic regimes. The parabolic regime contributes
a variance of order 1 and does not affect the analysis except if one wants to
obtain convergence results, which we do not aim for.

3.4 The hyperbolic regime

Conceptually, the easiest part to handle is the hyperbolic phase: indeed, in
that region, we expect that log |ϕk| „

řk
i“1 logαi, and therefore it is natural

to define ψk “ ϕk{
śk
i“1 αi. Writing now νk “ ψk{ψk´1, the recursion (3.3.18)

reads

νkpzq “
pzk ´ bk{

?
kq

αk
´

a2k´1
a

kpk ´ 1qαkαk´1

1

νk´1
pzq. (3.4.25)

We expect to have νk „ 1, and therefore, writing νk “ 1 ` δk, we obtain the
recursion

δk “ uk ` vk
δk´1

1 ` δk´1
„ uk ` vkδk´1 ´ vkδ

2
k´1, (3.4.26)

where, up to negligible terms,

uk “
zk
αk

´ 1 ´
1 ` gk{

?
k

αkαk´1
´

bk

αk
?
k
, vk “

1 ` gk{
?
k

αkαk´1
. (3.4.27)

It is not hard to check, using (3.3.23), that for k P rϵn, k0s, we have up to
negligible terms that

uk “
1

2
a

k0pk0 ´ kq
` g̃k

c

2v

k
, vk “

p1 ` gk{
?
kq

1 `
a

pk0 ´ kq{k0
,

where the independent variables g̃k have mean 0 and variance 1. One can
now solve (3.4.26) in two steps: first, disregard the term δ2k´1 and solve the
resulting linear equation, and then computing the perturbation due to the
quadratic term (replacing δ2k´1 by the solution to the linearized equation). It
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is not hard to verify that the approximate solution obtained by this procedure
is within Op1q, with high probability, from the exact solution.

Eventually, we need to compute

k0´ℓ0
ÿ

j“ϵn

logp1 ` δjq „

k0´ℓ0
ÿ

j“ϵn

δj ´
1

2

k0´ℓ0
ÿ

j“ϵn

δ2j .

The second term will turn out to have fluctuations of order 1, and its fluc-
tuations are therefore negligible (it does contribute to the mean!). However,
the first term is very far from being a random walk, due to the high corre-
lation between δj and δj´1, see (3.4.26). However, the correlation length is

of the order of
a

k0{pk0 ´ kq. Choosing sequences Lj so that Lj “ k
1{3
0 j2{3,

j “ 1, . . . , ϵn, one finds that the variables

∆j “

k0´Lj
ÿ

i“k0´Lj`1

δj

are essentially uncorrelated, and have variance 1{j. Now we are back to the
random walk setup, and the techniques we discussed in the context of the
CβE can be applied!

Remark 8. The point of view described above is the one taken in [ABZ23].
There is a slightly more geometric point of view, that unifies the treatment
of the hyperbolic and elliptic regimes, and that is developed in [AZ25]. Due
to time constraints, we do not describe it here.

Exercise 11. Consider the linearized recursion in the hyperbolic regime, i.e.
(3.4.26) without the quadratic term. Show that

řk0´ℓ0
i“t logp1 ` δiq, after an

exponential time change, can be coupled to a Brownian motion with drift.

3.5 Change of basis and description of the new recursions

To analyze the recursion (3.3.20), we perform a certain change of basis to
leverage the geometric properties of the expected transition matrix, which is
roughly Azk. To this end, define the following time-dependent change of basis
pP zk q1ďkďn as

P zk :“

ˆ

1 α´1
k,z

α´1
k,z 1

˙

, 1 ď k ď k0,z´ℓ0, P
z
k :“

˜?
4´z2k
2

zk
2

0 1

¸

, k0,z`ℓ0 ď k ď n,

(3.5.28)
and set P zk :“ P zk0,z´ℓ0

for |k ´ k0,z| ă ℓ0, where αk,z is defined in (3.3.23)

and zk :“ z
a

n{k.
The choice of this change of basis is motivated by the fact that }P zk } À 1

and that Dz
k :“ pP zk q´1AzkP

z
k , 1 ď k ď k0,z ´ ℓ0 is a diagonal matrix whereas

Rzk :“ pP zk q´1AzkP
z
k , k ě k0,z ` ℓ0 is a rotation. More precisely,
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Dz
k :“

ˆ

αk,z 0
0 αk,z

˙

, k ď k0,z´ℓ0, R
z
k :“

ˆ

cospθzkq ´ sinpθzkq

sinpθzkq cospθzkq

˙

, k ě k0,z`ℓ0,

(3.5.29)
where θzk P r0, 2πq is such that eiθ

z
k “ pzk `

a

4 ´ z2kq{2 for k ě k0,z ` ℓ0.
In the sequel, we denote by Ξzk the new transition matrix and by Y zk the

coordinate vector of Xz
k in the basis P zk , that is

Ξzk`1 :“ pP zk`1q´1T zk`1P
z
k , Y

z
k “ P zkX

z
k , 1 ď k ď n. (3.5.30)

With this notation, the sequence Y z satisfies the recursion Y zk`1 “ Ξzk`1Y
z
k

for any 1 ď k ď n. Our central observable will be the field ψkpzq defined by
ψ0pzq “ 0 and

ψkpzq :“ log }Y zk } ´Mkpzq, 1 ď k ď n, z P Iη, (3.5.31)

where Mkpzq denotes the accumulated mean defined as the sum of the “in-
stantaneous” mean µkpzq by

µkpzq “
v ´ 1

4pk ´ k0,zq
, Mkpzq :“

k
ÿ

ℓ“k0`ℓ0

µℓpzq. (3.5.32)

3.6 Recursion in the elliptic regime

In this regime where k0,z ` ℓ0 ď k ď n, we show that with high probability
the vector Y zk rotates with essentially the same angle as Rzk over short enough
blocks and that the increments of the process ψpzq over these blocks are well-
approximated by a sum of independent random variables. More precisely,
define the blocks pki,zqjoďiďj1 by kjo,z :“ k0,z ` ℓ0, kj1,z :“ n, and

ki,z :“ k0,z ` ti4k
1{3
0,z u, jo ă i ă j1, (3.6.33)

and where jo :“ maxti : ti4k
1{3
0,z u ď ℓ0u and j1 :“ minti : k0,z ` ti4k

1{3
0,z u ě nu.

For any k ě k0,z ` ℓ0, denote by ζzk a measure of the argument of Y zk in
r0, 2πq. Next, say that the ithe block is good if for all ki,z ď k ă ki`1,z,

ζzk ´ ζzki,z `

k
ÿ

ℓ“ki,z`1

θzℓ P r´δi, δis ` 2πZ, (3.6.34)

where δi :“ i´1{4. Denote also by Gi,z the event that the ith block is good.
With this notation, we have the following proposition.

Proposition 3.6.35 (Probability of a “bad” block) For any i ě κ1{4,

P
`

G A
i,z

˘

ď e´ci1{2

,

where c is a positive constant depending on the model parameters.
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As an immediate consequence, we can conclude by using a union bound that
all the blocks starting from the plog nqq-th block on are good with overwhelm-
ing probability provided q is large enough.

Corollary 3.6.36 Let q ą 4. Denote by Gz :“
Ş

iěplognqq Gi,z. Then,

PpG A
z q ď e´plognq

2

,

where c ą 0 depends on the model parameters.

Next, we show a representation of the increments∆ψki`1,z
pzq :“ ψki`1,z

pzq´

ψki,z pzq as a sum of independent random variables up to some small error
on the event where the ith block is good. This representation will be at the
base of all our subsequent results in the elliptic regime. To describe the noise
appearing in the new recursion in the elliptic regime we define the variables
ck,z and dk as

ck,z :“ ´
2

a

4 ´ z2k

´zkpbk ´ Epbkqq

2
?
k

`
a2k´1 ´ Ea2k´1
a

kpk ´ 1q

¯

, dk :“ ´
bk ´ Epbkq

?
k

.

(3.6.37)
With this notation, the “instantaneous” noise at time k is given by the func-
tion wzk defined as

wzkpζq :“ czk sinpθzk ` ζq cospζq ` dk sinpθzk ` ζq sinpζq, ζ P R. (3.6.38)

We are now ready to state our result in the elliptic regime.

Proposition 3.6.39 (Representation of the increments on “good” blocks)
Let i ě κ1{4. On the event Gi,z,

∆ψki`1,zpzq “

ki`1,z
ÿ

k“ki,z`1

`

wzkpζzi,k´1q ` Pzk
˘

`Opi´5{4q,

where ζzi,ℓ :“ ζzki,z `
řℓ
k“ki,z`1 θ

z
k for any ℓ P rki,z, ki`1,zs, wzk is defined in

(3.6.38) and Pzk is a Fk-measurable variable satisfying that

sk´1pPzk q À
1

i1{4pk ´ k0q
`

plog nqC

pk ´ k0,zq2
, (3.6.40)

where C ą 0 depends on the model parameters. There exists a deterministic
sequence σ2

k,z ą 0, k ě k0,z ` ℓ0 such that

Varki,z

´

ki`1,z
ÿ

k“ki,z`1

wkpζzi,k´1q

¯

“

ki`1,z
ÿ

k“ki,z`1

σ2
k,z `Opi´7q, a.s. (3.6.41)

Moreover,

σ2
k,z “

v

k ´ k0,z
`O

´ 1
a

k0pk ´ k0q

¯

. (3.6.42)
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3.7 A priori exponential moment estimate

Finally, we state the a priori exponential estimate for increments of the pro-
cess ψpzq.

Proposition 3.7.43 There exist h ą 0 depending on the model parameters
Cδ ą 0 depending on δ ą 0 and Cκ depending on κ such that for any z P Iη,
0 ď k ď k1 ď k´

δ,z and 1 ď λ ď plog nq´hn1{6,

logEk
“

eλpψk1 pzq´ψkpzqq
‰

ď Cδλ
2,

and for any k´
δ,z ď k ď k1 ď n,

logEk
“

eλpψk1 pzq´ψkpzqq
‰

ď Cκλ
2

k1
ÿ

ℓ“k`1

1

|k0,z ´ k| _ n1{3
. (3.7.44)

Moreover, if k1 ď k0,z ´ ℓ0 or k ě k0,z ` ℓ0, Cκ can be taken independent of
κ. Further if k ě k0,z ´ ℓ0, then (3.7.44) holds for 1 ď ´λ ď plog nq´hn´1{6.

In particular, this result justifies the claim that the parabolic regime has only
a contribution to the field ψpzq of order 1 depending on κ.

3.8 The log-correlated structure

We now discuss the correlation structure of the field. It is worthwhile to keep
in mind the following diagram.

0 p1 ´ ϵqk0pzq

|

hyperbolic

k0pzq ˘ ℓ0
| |

k0pzqp1 ` ϵq
|

elliptic

n

0 p1 ´ ϵqk0pz1
q

|

hyperbolic

k0pz1
q ˘ ℓ0
| |

elliptic

k0pz1
qp1 ` ϵq
|

n

Depending on the distance between z, z1, there are different overlaps in
regimes:

– [small distance] If |z ´ z1| ! n´2{3, the overlap between the hyperbolic
regimes for z and z1 is complete, and the increments are fully correlated
(this corresponds to ”late branching” in the BRW tree picture). The elliptic
regime overlaps, but the rotation frequency for z and z1 is different. One
has correlation only for such ℓ that |θzℓ ´ θz

1

ℓ |´1 ă θℓz (this is similar to
the oscilatory phase in the CβE). This gives covariance proportional to
´ log |z ´ z1|.
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– [moderate distance] If |z ´ z1| " n´2{3 but |z ´ z1| ! 1 then the elliptic
regime achieves full decorelation, and one only has correlation from the
hyperbolic reguime. Due to the logarithmic time change (see Exercise 11),
the covariance is again proportional to ´ log |z ´ z1|.

– [large distance] If |z´z1| is of order 1, there is esssentially no correlation
(covariance of order 1 for variables of variance log n) (this corresponds to
”early branching” in the BRW tree picture).

(In the above, I talk about correlation, but in fact this holds also at the level
of exponential moments.)

These correlation/decorrelation estimates are important at two places:
First, the correlation over short distances allows us to introduce barriers, by
reducing the exponential complexity of the field at given scales. This gives
the upper bound. Second, this also gives the tree-like decorrelation .

Remark 9. We have avoided a neighborhood of z “ 0 in these notes. The
reason is that z “ 0 implies that there is no hyperbolic regime, and in fact
θzℓ „ π and thus is of order 1 for all ℓ. That is, the recursion, viewed at even
times, essentially linearizes, even if we are at the elliptic regime!

4 Lecture IV: GβE and Wigner matrices, and their
characteristic polynomial

For the (logarithm of) the determinant of random matrices, Tao-Vu proved
a CLT even for Wigner matrices. In doing so, they first proved it for the
GOE/GUE (using the tri-diagonal representation, see Remark 9. This begs
the question, whether one can transfer some of the GβE results to the Wigner
setup. Our methods in the last lecture are not really appropriate for that,
since the three diagonal representation of Wigner matrices creates dependen-
cies that are hard to control. Instead, we follow [BLZ25], which in turn is
building on [BMP22]. Necessarily, here we will be mostly descriptive.

4.1 GβE and loop equations

We describe here the main input from [BMP22], which is slightly improved
in [BLZ25]: a joint exponential moment for the log determinant at various
points, when z is in the complex domain but only slightly above the real
line. We focus here on the GβE, although the results apply to more general
potentials, that is to measures

dµN pλ1, . . . , λN q

dλ1 . . . dλN
“

1

ZN

ź

1ďkălďN

|λk ´ λl|β exp

˜

´
βN

2

N
ÿ

k“1

V pλkq

¸

,

(4.1.1)
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where ZN “ ZN pβq is a normalizing factor. We only use V pxq “ x2, and
write µ forr the semicircle law of density ρpxq “ c

?
4 ´ x21|x|ď2. Let γk be

the kth (out of N) quantiles of the semi-circle law, i.e.
şγk
0
ρpxqdx “ k{N . Set

LN pEq “

N
ÿ

j“1

log pE ´ λjq ´N

ż

R
log pE ´ xqdµpxq, (4.1.2)

which is the logarithm of the characteristic polynomial up to a centering shift.

Theorem 16. [BLZ25] For any ε, κ ą 0 we have

P

˜

sup
2`κăEă2´κ

c

β

2

ReLN pEq

logN
P r1 ´ ε, 1 ` εs

¸

“ 1 ´Op1q,

P

˜

sup
2`κăEă2´κ

c

β

2

ImLN pEq

logN
P r1 ´ ε, 1 ` εs

¸

“ 1 ´Op1q.

Further,

P

˜

max
κNďkďp1´κqN

π

c

β

2
¨
ρpγkqN

`

λk ´ γk
˘

logN
P r1 ´ ε, 1 ` εs

¸

“ 1 ´Op1q.

(4.1.3)

Compare with Lecture III!
The main input needed for the proof of Theorem 16 is the following esti-

mate from [BMP22, Remark 2.4]. For z P H, let

spzq “ sN pzq “
1

N

N
ÿ

k“1

1

λk ´ z
, mpzq “

ż

R

dµpxq

x´ z
. (4.1.4)

Theorem 17. There exist constants C, c, η̃ ą 0 such that for any q ě 1,
N ě 1 and z “ E ` iη with 0 ă η ď η̃ and ´2 ´ η ď E ď 2 ` η, we have

E
“

|spzq ´mpzq|q
‰

ď
pCqqq{2

pNηqq
. (4.1.5)

The proof of Theorem 17 follows a well trodden route, going back to Johans-
son [J98], with sharpening based on recursing the estimate while decreasing
the imaginary part of z. As we will see, the fact that in the right hand side of
(4.1.5) one has the term qq{2 (and not qq) is crucial, since we need to apply
it with q of the order of logN and η „ logN{N .

We now describe the proof of Theorem 16, starting with the upper bound.
By monotonicity of η ÞÑ log |E ` iη ´ λ|, η ą 0, and the estimate

ş

log |E ´

λ|dρpλq “
ş

log |E ` iε´ λ|dρpλq `Opεq uniformly in E, there exists a fixed
C ą 0 such that
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sup
EPr´2`κ,2´κs

ℜLN pEq ď sup
EPr´2`κ,2´κs

ℜLN
ˆ

E `
i

N

˙

` C. (4.1.6)

Let J “ r´2`κ, 2´κsXN´1´cZ, where c ą 0 is an arbitrary small constant.
For any E P r´2 ` κ, 2 ´ κs, let E1 be the closest point in J , z “ E ` i

N and

z1 “ E1 ` i
N . Then from logp1 ` εq “ ε ` Opε2q and recalling the definition

of spzq from (4.1.4), this implies

ℜLN pzq´ℜLN pz1q “ Oppz´z1qNpspz1q´mpz1qqq`O

ˆ

pz ´ z1q2
ÿ 1

|z1 ´ λi|2

˙

`Op1q

“ N´cOp|spz1q ´mpz1q|q `N´2cOpℑspz1qq `Op1q. (4.1.7)

Next, Theorem 17 (with q “ logN) together with Markov’s inequality gives

max
EPr´2`κ,2´κs

P
´

|spzq ´mpzq| ą plogNq7{10
¯

ď N´200. (4.1.8)

for large enough N . Together with the boundedness of m on compact sets of
C, this gives

P
´

DE1 P J : |spz1q| ě plogNq7{10
¯

ď N´100. (4.1.9)

We conclude that

P

˜

sup
EPr´2`κ,2´κs

ℜLN pEq ď sup
EPJ

ℜLN pE ` iN´1q ` plogNq9{10

¸

ě 1´OpN´100q.

(4.1.10)
We now control the increments of LN along the line segment tℜz “

E,N´1 ă ℑz ă η0u using Markov’s inequality, where we set

η0 “
plogNq1000

N
(4.1.11)

throughout this section. For E P J , we denote z “ zpEq “ E ` i{N and
z̃ “ E ` iη0. Then for any fixed ε ą 0 and p P N, we have by a union bound
that

P pDE P J : ℜLN pzq ą ℜLN pz̃q ` ε logNq

ď CN1`cpε logNq´2p

ˆmax
EPJ

˜

ż

rN´1,η0s2p
E

p
ź

i“1

pNps´mqpE ` iηiqq

2p
ź

i“p`1

pNps´mqpE ` iηiqq

¸

dη1 . . . dη2p.

(4.1.12)

We now suppose that p “ OpNplog logNq´1q. Theorem 17 gives, for E P

r´2 ` κ, 2 ´ κs,
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Er|ps´mqpE ` iηq|ps ď
pCpqp{2

pNηqp
` Cpe´c̃N ď

pCpqp{2

pNηqp
, (4.1.13)

where the latter inequality holds because we assume η ă η0. Equation (4.1.13)
and Hölder’s inequality give

E

«

p
ź

i“1

ˇ

ˇNps´mqpE ` iηiq
ˇ

ˇ

2p
ź

i“p`1

|Nps´mqpE ` iηiq|

ff

ď pCpqp
2p
ź

i“1

1

ηi
.

(4.1.14)
Inserting the previous display in (4.1.12), we obtain

P pDE P J : ℜLN pzq ą ℜLN pz̃q ` ε logNq ď
N1`cpCpqpplog logNq2p

pε logNq2p

ď N1`c pApqpplog logNq2p

plogNq2p
ď N´100, (4.1.15)

where A is a new constant depending on C and ε, and the latter inequality
is obtained by setting p “ B logN

log logN for sufficiently large B. We note that for

the above reasoning, the Gaussian-like moment growth pCqqq{2 in Theorem
17 is crucial (as opposed to an exponential-like growth of pCqqq) .

Moreover, from Markov’s inequality and an exponential moment compu-
tation at a high enough imaginary part η0, for any fixed λ ą 0 we have

P
ˆ

DE P J : ℜLN pz̃q ą p1 ` εq

c

2

β
logN

˙

ď N1`c e
´λp1`εq

b

2
β logN

max
EPJ

E
“

eλℜLN pz̃q
‰

ď C N1`c max
EPJ

e
σpλ,0,z̃q

2 `µpλ,0,z̃q´λp1`εq

b

2
β logN

,

for appropriate σ and µ satisfying µpλ, 0, z̃q “ Op1q and σpλ, 0, z̃q “ p1 `

op1qqλ2 logN
β uniformly in N , E P J , and λ in any compact subset of R`.

Choosing λ “
?
2β this implies that

P
ˆ

DE P J : ℜLN pz̃q ą p1 ` εq

c

2

β
logN

˙

ď e´p2ε´c´p1qq logN Ñ 0.

(4.1.16)
The lower bound uses smoothing of the log determinant by moving into

the complex plane, the evaluation of exponential moments, and a GMC
method as in Lambert’s lectures. We do not provide further details, except
to note that this method cannot give the log logN correction as in Lecture
III!

Finally, the proof of (4.1.3) is just a restatement of the control of the
imaginary part of the log-determinant, which is proved in a way similar to
the real part.
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4.2 Wigner matrices

We are now ready for the universality results.

Theorem 18. [BLZ25] Let H be a symmetric Wigner matrix and set dνpxq “

ρscpxqdx in (4.1.2). Then for any ε, κ ą 0 we have

P

˜

sup
|E|ă2´κ

ReLN pEq
?
2 logN

P r1 ´ ε, 1 ` εs

¸

“ 1 ´ p1q,

P

˜

sup
|E|ă2´κ

ImLN pEq
?
2 logN

P r1 ´ ε, 1 ` εs

¸

“ 1 ´ p1q.

The same result holds for Hermitian Wigner matrices after replacing the
?
2

factors with 1.

Remark 10. For the imaginary part of the logarithm, a similar estimate on
the minimum holds, by considering the sup for the Wigner matrix ´H:

P
ˆ

inf
|E|ă2´κ

ImLN pEq
?
2 logN

P r´1 ´ ε,´1 ` εs

˙

“ 1 ´ p1q.

No such statement holds for the real part, as inf |E|ă2´εReLN pEq “ ´8.

For Gaussian-divisible Wigner matrices, universality actually holds up to
tightness.

Theorem 19. Let H be a Gaussian-divisible symmetric Wigner matrix, that
is H “

?
1 ´ ε2H 1 `εG, where H 1 is a Wigner matrix independent of a GOE

matrix G. Then for any κ ą 0, there exists a coupling between H and a GOE
such that the following sequence of random variables is tight:

´

sup
|E|ă2´κ

ℜLHN pEq ´ sup
|E|ă2´κ

ℜLGOE
N pEq

¯

Ně1
.

In particular, in view of the results in Lecture 3, the loglog correction term
is as in the GOE case!

The idea behind the proof of Theorems 18 and 19, like that of many
universality results, is to first provide the proof for a modified (Gaussian
divisible with ε goind to 0 with N) model, and then use moment matching
to get rid of the regularization. We only discuss briefly the first part, which
builds strongly on [B22], which in turns builds on the dynamical approach of
Erdős, Schlein and Yau, and on [EYY12].

Before discussing the proof, we need one more a-priori preliminary rigidity
result.

Theorem 20. [EYY12] Let H be a Wigner matrix. Then there exists C0 ą 0
such that the following claims hold.
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1. There exists c ą 0 such that

P

˜

ď

zPH

"

|mN pzq ´mpzq| ě
φ

Nη

*

¸

ď c´1 exp p´φcq (4.2.17)

and

P

˜

ď

zPH

#

max
i,jPrr1,Nss

|Gijpzq ´ δijpzq| ě φ

d

ℑmpzq

Nη
`

φ

Nη

+¸

ď c´1 exp p´φcq .

(4.2.18)

2. There exists c ą 0 such that, defining k̂ “ minpk,N ` 1 ´ kq,

P
´

Dk P rr1, N ss : |λk ´ γk| ě φ k̂´ 1
3N´ 2

3

¯

ď c´1 exp p´φcq . (4.2.19)

We next provide a quantitative relaxation of the eigenvalues (Proposition
1), which is a variant of [B22, Theorem 3.1] and relies on this work. Let H
be a Wigner matrix. We first recall the definition of Dyson Brownian motion
with initial data H0 “ H.

Let B be a symmetric matrix such that the entries tBijuiăj and Bii{
?
2

are independent standard Brownian motions, and Bij “ Bji. Consider the
matrix Ornstein–Uhlenbeck process

dHt “
1

?
N

dBt ´
1

2
Ht dt. (4.2.20)

If the eigenvalues of H0 are distinct, it is well known that the eigenvalues
pλ1ptq, λ2ptq, . . . , λN ptqq of Ht are given by the strong solution of the system
of stochastic differential equations

dλk “
dβk
?
N

`

˜

1

N

ÿ

ℓ‰k

1

λk ´ λℓ
´

1

2
λk

¸

dt, (4.2.21)

where the tβkuNk“1 are independent, standard Brownian motions. (See, for
example, [AGZ10, Lemma 4.3.3].)

We now let pµ1ptq, µ2ptq, . . . , µN ptqq be a strong solution of the same SDE
(4.2.21) with initial condition pµ1, µ2, . . . , µN q, where tµkuNk“1 are the eigen-
values of a GOE:

dµk “
dβk
?
N

`

˜

1

N

ÿ

ℓ‰k

1

µk ´ µℓ
´

1

2
µk

¸

dt.

For any z P H, we define

zt “
et{2pz `

?
z2 ´ 4q ` e´t{2pz ´

?
z2 ´ 4q

2
, (4.2.22)



Log correlated fields in random matrices, and their extremes 43

where
?
z2 ´ 4 is defined using a branch cut in the segment r´2, 2s. For z P R,

we define zt “ limηÑ0` pz ` iηqt. Set

φ “ exp
`

C0plog logNq2
˘

, (4.2.23)

The following key estimate on the difference between λptq and µptq follows
from the main result in [B22]. Let LH and LGOE denote the observable (4.1.2)
defined using the eigenvalues of H and GOE, respectively.

Proposition 1. Fix κ, ε ą 0. Then for any D ą 0 there exist Cpε, κ,Dq ą 0
such that for all t P pφC{N, 1q, E P r´2` κ, 2´ κs, and k P rr1, N ss such that
γk P r´2 ` κ, 2 ´ κs, we have

P
´
ˇ

ˇ

ˇ
λkptq´µkptq´

ℑLHN pEtq ´ ℑLGOE
N pEtq

N ImmpEtq

ˇ

ˇ

ˇ
ą
N1`εmaxp|E ´ γk|, N´1q

N2t

¯

ď CN´D.

(4.2.24)

Proof. The key to the proof is [B22, Theorem 3.1], which states that there
exists CpDq ą 0 such that

P
ˆ

ˇ

ˇ

ˇ

`

λkptq ´ µkptq
˘

´ ūkptq
ˇ

ˇ

ˇ
ą

Nε

N2t

˙

ď CN´D (4.2.25)

for t P pφC{N, 1q, where we define

ūkptq “
1

N Immpγtkq

N
ÿ

j“1

Im

ˆ

1

γj ´ γtk

˙

`

λjp0q ´ µjp0q
˘

, γtk “ pγkqt.

(4.2.26)
Moreover, from [B22, Lemma 3.4], for all γk, γℓ P r´2 ` κ, 2 ´ κs we have

P
ˆ

|ūkptq ´ ūℓptq| ě Cφ
|k ´ ℓ|

N2t

˙

ď CN´D. (4.2.27)

Let E P r´2`κ, 2´κs be given, and fix some ℓ “ ℓpE,Nq such that |E´γℓ| “

minjPrr1,Nss |E ´ γj |. The definition of γk gives

|k ´ ℓ| ă CN |γk ´ γℓ| ď CN p|γk ´ E| ` |E ´ γℓ|q ď 2CN |γk ´E|, (4.2.28)

for some constant C ą 0. Then equations (4.2.25) and (4.2.27) together with
the previous line imply that

P
ˆ

ˇ

ˇ

ˇ

`

λkptq ´ µkptq
˘

´ ūℓptq
ˇ

ˇ

ˇ
ą
CN1`εmaxp|E ´ γk|, N´1q

N2t

˙

ď CN´D,

(4.2.29)
where we increased C if necessary and used Nε ě ϕ for sufficiently large N

(depending on ε). We therefore just need to bound
ˇ

ˇ

ˇ

ℑLH
N pEtq´ℑLGOE

N pEtq

N ImmpEtq
´ ūℓptq

ˇ

ˇ

ˇ
.

We write
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ℑLHN pEtq ´ ℑLGOE
N pEtq

N ImmpEtq
“

1

N ImmpEtq
ℑ

N
ÿ

j“1

log

ˆ

1 `
λjp0q ´ µjp0q

µjp0q ´ Et

˙

.

(4.2.30)
On the rigidity event from (4.2.19), a Taylor expansion of the logarithm gives,
with overwhelming probability,

ℑ
N
ÿ

j“1

log

ˆ

1 `
λjp0q ´ µjp0q

µjp0q ´ Et

˙

“ ℑ
N
ÿ

j“1

λjp0q ´ µjp0q

µjp0q ´ Et
`O

˜

N
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

λjp0q ´ µjp0q

µjp0q ´ Et

ˇ

ˇ

ˇ

ˇ

2
¸

.

(4.2.31)
For the error term, on the rigidity event from (4.2.19) we can write

N
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

λjp0q ´ µjp0q

µjp0q ´ Et

ˇ

ˇ

ˇ

ˇ

2

ď
Cϕ2

Nt
¨
1

N

N
ÿ

j“1

ℑEt
|µjp0q ´ Et|2

“
Cϕ2

Nt
ImmN pEtq ď

Cϕ2

Nt
,

(4.2.32)
where we used ct ď ℑEt ď Ct to bound ImmN pEtq ď C using (4.2.17).
This estimate on ImmN pEtq also shows that the second term in (4.2.31) is
negligible when inserted in (4.2.30).

Finally, we need to bound

1

NℑmpEtq
ℑ

N
ÿ

j“1

λjp0q ´ µjp0q

µjp0q ´ Et
´ ūℓptq

“
1

N

N
ÿ

j“1

pλjp0q ´ µjp0qq

ˆ

1

ℑmpEtq
´

1

ℑmpγtℓq

˙

Im
1

µjp0q ´ Et

`
1

N

N
ÿ

j“1

λjp0q ´ µjp0q

ℑmpγtℓq
Im

ˆ

1

µjp0q ´ Et
´

1

γj ´ γtℓ

˙

.

For the first sum, from | ImmpEtq ´ Immpγtℓq| ď C|Et ´ γtℓ| ď CN´1,
ImmpEtq ě c, and Immpγtℓq ě c, on the rigidity event from (4.2.19) we
obtain

1

N

N
ÿ

j“1

|λjp0q´µjp0q|

ˆ

1

ℑmpEtq
´

1

ℑmpγtℓq

˙

Im
1

µjp0q ´ Et
ď
Cφ

N3
¨
ÿ t

|γj ´ Et|2
ď
Cφ

N2
.

On the same rigidity event, the second sum is bounded by

1

N

N
ÿ

j“1

|µjp0q´λjp0q|

ˇ

ˇ

ˇ

ˇ

Im
Et ´ γtℓ

pµjp0q ´ Etqpγj ´ γtℓq

ˇ

ˇ

ˇ

ˇ

ď
Cφ

N3

ÿ

j

ˆ

1

|µjp0q ´ Et|2
`

1

|γj ´ γtℓ|
2

˙

ď
Cφ

N2t
.

We have thus obtained
ˇ

ˇ

ˇ

ˇ

ℑLHN pEtq ´ ℑLGOE
N pEtq

N ImmpEtq
´ ūℓptq

ˇ

ˇ

ˇ

ˇ

ď C
φ2

N2t
, (4.2.33)

which concludes the proof.
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The relaxation of LN is an a priori more intricate problem as ℜLN de-
pends on the full spectrum, however the analysis folows the same lines, with
appropriate discretizations and union bounds. The details are in [BLZ25].
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