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1 Lecture I: the prototype: Branching Random Walks

Branching random walks (BRWs), and their continuous time counterparts,
branching Brownian motions (BBMs), form a natural model that describe
the evolution of a population of particles where spatial motion is present.
Groundbreaking work on this, motivated by biological applications, was done
in the 1930’s by Kolmogorov-Petrovsky-Piskounov and by Fisher. The model
itself exhibit a rich mathematical structures; for example, rescaled limits of
such processes lead to the study of superprocesses, and allowing interactions
between particles creates many challenges when one wants to study scaling
limits.

Our focus is slightly different: we consider only particles in R, and are
mostly interested in the atypical particles that “lead the pack”. We will re-
strict attention to Gaussian centered increments. Some of the exercises extend
this to more general situations, of relevance to random matrices.

1.1 Definitions and models

We begin by fixing notation. Let 7 be a binary tree rooted at a vertex o,
with vertex set V' and edge set E. We denote by |v| the distance of a vertex
v from the root, i.e. the length of the geodesic (=shortest path, which is
unique) connecting v to o, and we write o <> v for the collection of vertices
on that geodesic (including o and v). With some abuse of notation, we also
write o <> v for the collection of edges on the geodesic connecting o and v.
Similarly, for v,w € V, we write p(v,w) for the length of the unique geodesic
connecting v and w, and define v « w similarly. The nth generation of the
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tree is the collection D,, := {v € V : [v| = n}, while for v € D, and n > m,
we denote by
D; ={we D, : p(w,v) =n—m}

the collection of descendants of v in D,,. We call the descendants of v which
are neighbors of v the children of v. Finally, we designate (somewhat arbi-
trarily) one of the children of a vertex as the “left child” and the other as a
“right child”.

Let {X.}eer denote a family of independent (real valued) standard Gaus-
sian random variables attached to the edges of the tree 7. For v € V, set
So = Diecorsy Xe- The Branching Random Walk (BRW) is simply the collec-
tion of random variables {S,},ev -

1.2 The log-correlated structure

Because the BRW is Gaussian, the collection {S,}vep, is completely charac-
terized by its mean (= 0), and its covariance function

R(v,w) = EX, Xy =n— p(v,w)/2 = |y wl,

where a, ., is the common ancestor of v, w, defined as the (unique) vertex of
largest distance that belongs to both o <» v and 0 <> w. We also write a,
for the k-th ancestor of v (with k < n), ie the unique vertex on o < v with
distance k from the root.

To understand why we think of this process as log-correlated, we embed
the vertices of D,, in the interval [0, 1] as follows: each vertex v determines a
binary string of length n, denotes [v],, whose k-th digit is 0 or 1 according
to whether the descendent of the k-th ancestor of v is the left or right child.
We identify [v], with a point in [0,1] in the natural way. Note that this
identification is consistent, in the sence that if we take an infinite geodesic
and consider v € D,, along that geodesic, then as n — o0 this identified point
converges. In particular, for each n we obtain a Gaussian process S, = Y;,(v),
v=142""4i=0,...,2" — 1, with Var(S,) = n . Now, fix a scale £. Choose a
dyadic interval I, = [j2¢, (j + 1)2¢] at random.

Exercise 1. Pick uniformly and randomly two points z,y in I, that corre-
spond to v, w € D,,. Then, as n — o, R(v,w) = £+ O(1) = log ﬁ +O(1).

The (embedded) BRW is thus "on average” a log correlated field, but of
course not truly: for two points 1/2 4+ € and 1/2 — €, the covariance is 0 even
though the distance is €!

This model of log-correlated field can be used to construct many analogues
of what we will see for random matrices. For example, consider the function,
for x € [127", (i + 1)27™) corresponding to v € D,:

M, (z) = eYSe=7n/2,
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Then M, (x)dx is a positive measure (called a multiplicative cascade) which
is a martingale and therefore converges a.s. It was proved (by Kahane and
Peyriere, building on work of Mandelbrodt) that the limit is non-degenerate
iff v < 4/2log2 =: z*; that limit is called the Gaussian Multiplicative Chaos
associated with the BRW; I will not discuss in these lectures the GMC, but see
Lambert’s course. We will see in a short while the reason for the appearance
of the constant x*.

Exercise 2. Let M,, := Sé M, (z)dxz denote the total mass of M, (z)dz.
Prove that for vy < 2*/+/2 one has that sup,, EM? < . Conclude that
the martingale M, has a nontrivial limit, a.s. Hint: you need to use also
Kolmogorov’s 0-1 law.

Remark 1. The case v = x* is special, as the martingale M,, can be shown to
converge to 0 a.s. However the (non-positive!) martingale measure M,,(z)dx
with M, (z) = 2_"673“_72”/2(§n —~S,) does converge to a non-degenerate
positive measure, whose total mass is the derivative martingale. This will play
an important role in the study of the maximum.

1.3 The maximum
We will be interested in the mazimal displacement of the BRW, defined as

M, = 11}161%)5 Sy -

Warm up: getting rid of dependence We begin with a warm-up com-
putation. Note that M,, is the maximum over a collection of 2™ variables,
that are not independent. Before tackling computations related to M,,, we
first consider the same question when those 2™ variables are independent.
That is, let {S’U}Uepn be a collection of i.i.d. random variables, with S, dis-
tributed like S,, and let M, = maXyep,, S,. We then have the following.
(The statement extends to the Non-Gaussian, non-lattice case by using the
Bahadur-Rao estimate.)

Theorem 1. With notation as above, there exists a constant C so that

*

P(M,, <1y, + 1) — exp(—Ce 2" %), (1.3.1)
where
My, = nx™ log n. (1.3.2)

2
In what follows, we write A ~ B if A/B is bounded above and below by two
universal positive constants (that do not depend on n).

Proof. The key is the estimate, valid for a,, = o(+/n),
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P(S, > nz* —ay,) ~ 5’5 exp(—n(z* — a,/n)?/2), (1.3.3)

which is trivial in the Gaussian case. Therefore,

- C "
P < * n) ~ 1— x®an+o(1)
(M, < nz* —ay) < 2n\/ﬁe

~ exp(—Ce*" mto) [ /n) .
Choosing now a,, = logn/2z* — x, one obtains
P(M,, < my + x) ~ exp(—Ce*" #to())

[}

Remark 2. With some effort, the constant C' can also be evaluated to be
1//27z*, but this will not be of interest to us. On the other hand, the
constant in front of the logn term will play an important role in what follows.

Remark 3. Note the very different asymptotics of the right and left tails: the
right tail decays exponentially while the left tail is doubly exponential. This
is an example of extreme distribution of the Gumbel type.

BRW: the law of large numbers As a further warm up, we will attempt
to obtain a law of large numbers for M,,. Recall, from the results of Section
1.3, that M, /n — x*. Our goal is to show that the same result holds for M,,.

Theorem 2 (Law of Large Numbers). We have that

M,
— >, L0z, almost surely (1.3.4)
n
Proof. While we do not really need in what follows, we remark that the almost

sure convergence can be deduced from the subadditive ergodic theorem.

The upper bound Let Z, = ZveDn 15,5 (14€e)z*n count how many parti-
cles, at the nth generation, are at location greater than (1 + ¢)nz*. We apply
a first moment method: we have, for any v € D,,, that

EZ, =2"P(S, > n(l + €)z*) < on o —n((1+e)z*)?/2 7
where we applied Chebyshev’s inequality in the last inequality. Thus,
P(M,, > (1 +e)nz*) < EZ, <e ",

It follows that

M,
limsup — < z*, almost surely.

n—x n
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The lower bound A natural way to proceed would have been to define

Zn = 2 151,>(1—e)x*n

veD,

and to show that with high probability, Z, > 1. Often, one handles this via

Ln
the second moment method: recall that for any nonegative, integer valued
random variable Z,

EZ = E(Z1z5,) < (EZ*)Y*(P(Z = 1))Y/?

and hence
(EZ)?
E(Z?)

In the case of independent summands, this would work.

P(Z=1) 3

(1.3.5)

Exercise 3. Ch~eck that the vanilla second moment method works for the
LLN lower for M,, using Z,,, while it does not work for M,,.

Because of Exercise 3, we need to reduce correlations. At the level of LLN,
a simple method to achieve that is to introduce the event for v € D,,,

B = {|Sy(t) —z*(1 —e)t| < en,t =1,...,n}.
We now recall a basic large deviations result.

Theorem 3 (Varadhan, Mogulskii). With notation and assumption as
above,

1 1
lim lim sup ~log P(B}) = lim liminf ~log P(B;) = —(x%)?/2.
€e—> n

e>0 pnse N n—o
Define now
veD,

Exercise 4. Check that the second moment method works with this defini-
tion of Z,,, ie EZ, — o and EZ2/(EZ,)? — 1.

Tightness of the centered maximum We continue to refine results for
the BRW, in the spirit of Theorem 1; we will not deal yet with convergence
in law, rather, we will deal with finer estimates on FM,, as follows.

Theorem 4. With notation and assumption as before, we have

EM,, = nz* — logn +O(1). (1.3.6)

2x*

Further, (M,, — EM,,) is a tight sequence.
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Remark 4. It is instructive to compare the logarithmic correction term in
(1.3.6) to the independent case, see (1.3.2): the constant 1/2 coming from the
Bahadur-Rao estimate (1.3.3) is replaced by 3/2. As we will see, this change
is due to extra constraints imposed by the tree structure, and ballot theorems
that are close to estimates on Brownian bridges conditioned to stay positive.

Theorem 4 was first proved by Bramson [Br78] in the context of Branch-
ing Brownian Motions. The branching random walk case was discussed in
[ABRO9], who stressed the importance of certain ballot theorems. Roberts
[Rob13] significantly simplified Bramson’s original proof. The proof we present
combines ideas from these sources. To reduce technicalities, we consider only
the case of Gaussian increments in the proofs.

Before bringing the proof, we start with some preliminaries related to
Brownian motion and random walks with Gaussian increments.

Lemma 1. Let {W,}; denote a standard Brownian motion. Then

1 2
P(Wt € dx’Ws > -1 for s < t) = \/ﬁe—ib /2t (1 _ e—($+2)/2t) dr . (137)
T

Note that the right side in (1.3.7) is of order (z 4 2)/t%? for all z = O(\/t)
positive. Further, by Brownian scaling, for y = O(x\/t) positive,

PWyedr, Wy = —y for s<t)=0 <(x+12’/(2y+1)> . (1.3.8)
Proof: This is D. André’s reflection principle. Alternatively, the pdf in ques-
tion is the pdf of a Brownian motion killed at hitting —1, and as such it solves
the PDE u; = uye/2,u(t,—1) = 0, with solution p;(0,z) — p¢(—2, ), where
pe(x,y) is the standard heat kernel. o
Remark: An alternative approach to the proof of Lemma 1 uses the fact
that a BM conditioned to remain positive is a Bessel(3) process. This is the
approach taken in [Rob13].

We next bring a ballot theorem; for general random walks, this version
can be found in [ABRO8, Theorem 1].

Theorem 5 (Ballot theorem). Let X; be iid random wvariables of zero
mean, finite variance, with P(X; € (—=1/2,1/2)) > 0. Define S,, = > | X;.
Then, for 0 < k < </n,

k+1
P(k<5n<k+1,5i>070<i<n)=@<;;2), (1.3.9)
n

and the upper bound in (1.3.9) holds for any k = 0.

Here, we write that a,, = ©(b,) if there exist constanst ¢, co > 0 so that

.. a . a
c1 < liminf =2 < limsup — < ¢y
n=% Op nox  bn
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Exercise 5. Show that there exists a constant ¢, so that

3/2
lim lim ©— P*(S, €[y,y + 1], >0,i=1,....n) =cp.  (1.3.10)

T,Yy—>L -0 TY

A lower bound on the right tail of M,, Fix y > 1 independent of n and

set

Gn = T*Nn —

T log n.

For v € D,,, define the event
Av = Av(y) = {Sv € [y+an_]-7y+an]a5v(t) < ant/n+yat: 1727"'7n}7

Z, = Z 14, .

veD,

and set

In deriving a lower bound on EM,,, we first derive a lower bound on the
right tail of the distribution of M,,, using a second moment method. For this,
we need to compute P(A,). Recall that we have (z*)?/2 = log 2. Introduce
the new parameter A\ = a,/n. Let p denote the standard Gaussian law on
R.

Define a new probability measure Q on R by

AR () A2
dq
and with a slight abuse of notation continue to use Q when discussing a
random walk whose iid increments are distributed according to (). Note that
in our Gaussian case, ) only modifies the mean of P, not the variance.
We can now write

)

Eg(eMSvtnN?/21 ,
eI @n+y)/m=(12 04, (1.3.11)
= e @t/ 205, e[y —1,y], S (t) = 0,t =1,2,...,n).

P(Ay)

WV

where S, (t) = ant/n — Sy(t) is a random walk with iid Gaussian increments
of variance 1, whose mean vanishes under Q. Thus, {S,(t)}; is distributed
like {S,(t)}:.

Applying Theorem 5, we get that

1 2
P(A,) > c%e—n«ww/u) /2 (1.3.12)

Since

((an ) = @2 =20t (2 28R D) 40 ((f”)) ,
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we conclude that .

PA)=Cly+1)2 e ™Y,
and therefore .
EZ,=2"P(A,) = ciye™™ Y. (1.3.13)

We next need to provide an upper bound on

EZ} =2"P(A,)+ >, P(AynAy)=EZ,+2" ) 2°P(A4,n A,,),
vEWED, s=1
(1.3.14)
where vs € Dy, and p(v,vs) = 2s.
The strategy in computing P(A, n A,,) is to condition on the value of
Sy(n — s). More precisely, with a slight abuse of notation, writing I; , =
an(n —s)/n+[—j,—j + 1] + y, we have that

P(A, nA,,) (1.3.15)
< Z P(S,(t) Sant/n+y,t=1,2,...,n—5,5,(n—s)€l;)
j=1

x max (P(S,(s) € [y + an — 1,y + an],

ZEIJ',S

Su(t) S an(n—s+t)/nt =1,2,...,55,(0) = 2))2.

Repeating the computations leading to (1.3.12) (using time reversibility of
the random walk) we conclude that

P(A, n A,,) < Zf: Me*(ﬂy)ﬁn3(n+8)/2n2*(n+8). (1.3.16)
v Vs “ 33(n _ 8)3/2

Substituting in (1.3.14) and (1.3.15), and performing the summation over j
first and then over s, we conclude that EZ2? < cEZ,, and therefore, using
again (1.3.5),

P(M, = an—1) = P(Zy = 1) = cEZy = coly+1)e 7 = ¢o(y+1)e *"v .

(1.3.17)
This completes the evaluation of a lower bound on the right tail of the law
of M,.

An upper bound on the right tail of M,, A subtle point in obtaining
upper bounds is that the first moment method does not work directly - in
the first moment one cannot distinguish between the BRW and independent
random walks, and the displacement for these has a different logarithmic
corrections (the maximum of 2™ independent particles is larger).

To overcome this, note the following: a difference between the two scenar-
ios is that at intermediate times 0 < t < n, there are only 2! particles in the
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BRW setup while there are 2™ particles in the independent case treated in
Section 1.3. Applying the first moment argument at time ¢ shows that there
cannot be any BRW particle at time ¢ which is larger than z*t + C'logn,
while this constraint disappears in the independent case. One thus expect
that imposing this constraint in the BRW setup (and thus, pick up an extra
1/n factor from the ballot theorem 5) will modify the correction term.

Carrying out this program thus involves two steps: in the first, we consider
an upper bound on the number of particles that never cross a barrier reflect-
ing the above mentioned constraint. In the second step, we show that with
high probability, no particle crosses the barrier. The approach we take com-
bines arguments from [Rob13] and [ABR09]; both papers build on Bramson’s
original argument.

Turning to the actual proof, fix a large constant x > 0, fix y > 0, and
define the function

_ | klogt, 1<t<n/2
ht) = {nlog(n —t+1),n/2<t<n. (1.3.18)

3

Recall the definition a,, = 2%n — 52

logn and let
7(v) =min{t > 0: S,(¢) = ant/n+ h(t) +y—1} An,

and 7 = min,ep, 7(v). (In words, 7 is the first time in which there is a particle
that goes above the line a,t/n + h(t) +y.)
Introduce the events

Bv:{TZnaSve[y'i'an_l»y'i'an]}

and define Y,, = > p, 1B,. Repeating arguments as we already saw (with
a slightly modified barrier, which is dealt with by a k-dependent change of
measure), one obtains the following,.

Lemma 2. There ezists a constant co independent of y so that
P(B,) < cay + 1)e " 27", (1.3.19)

We need to consider next the possibility that 7 = ¢ < n. Assuming that
k is large enough (x > 3/2z* will do), an application of the lower bound
(1.3.17) to the descendants of the parent of the particle v with 7, < n reveals
that for some constant c3 independent of y,

E[Y,|t <n]=cs.
(Recall that Y,, = >, ., 1p,.) We conclude that

E(Y,)P(r <n) EY,
< = < . 9.
P(r<n) < BVl EValr <n) S cEY, (1.3.20)
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One concludes from this and Lemma 2 that
P(My, > an +y) < P(r <n) + BY, <cs(y+1)e™V. (1.3.21)

In particular, this also implies that

EM, <z*n-—

oot logn +O(1). (1.3.22)

Remark 5. An alternative approach to the argument in (1.3.20), which is more
in line with Bramson’s original proof, is as follows. Note that

P(r<n—n")< Y 20P(S,(i) = ani/n + h(i) +y) < Ce Y,
1=1

where k' can be taken so that ' —._,4 0, and in particular for  large we can
have &' < 1. Assume now & large enough so that ' < 1/2. For t > n — n'/2,
one repeats the steps in Lemma 2 as follows. Let V; be the number of vertices
w € Dy (out of 2') whose path S,,(s) crosses the barrier (a,s/n+h(s)+y—1)
at time s = t. We have

1

_ —z*yt/n
P(r=t) S ENi < cly+ De s

for appropriate constants ¢, co. Taking k large enough ensures that

n
Z EN; < c(y+ l)efx*y.

t=n—nl/2

Combining the last two displays leads to the same estimate as in the right
side of (1.3.21), and hence to (1.3.22).

We finally prove a complementary lower bound on the expectation. Recall,
see (1.3.17), that for any y > 0,
P(M, > an(y)) > ey + e,

where a,(y) = a,, +y. In order to have a lower bound on EM,, that comple-
ments (1.3.22), we need only show that

lim limsup P(M, < an(2)) =0. (1.3.23)
2= 0 nooc
Toward this end, fix £ > 0 integer, and note that by the first moment argu-
ment used in the proof of the LLN (Theorem 2 applied to max,ep,(—Sw)),
there exist positive constants ¢, ¢’ so that

P(min (S,) < —cf) < e,
weDy
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On the other hand, for each v € D, let w(v) € Dy be the ancestor of v in
generation ¢. We then have, by independence,

3

£ N
5o log(n —£)) < (1 —cp)? +e°F,

P(M, < —cl+ (n—{)z* —

where ¢g is as in (1.3.17). This implies (1.3.23). Together with (1.3.22), this
completes the proof of Theorem 4. o

Remark 6. The idea of using curved boundaries also helps in the second mo-
ment argument: the arguments we showed can help in showing that

P(Sn(i) = ani/n—h(i)—y|T =n,Sn € [y+an,—1,y+a,]) = 0,(1). (1.3.24)

That is, one can pass from an upward slopping ”banana” to a downward
sloping one without cost. This helps in the proof of the lower bound, as one
needs less precision in the estimates.

Exercise 6. Prove (1.3.24).

Exercise 7. a) Suppose that the increments X, are not Gaussian but satisfy
that with e = (v,v + 1),

E(e0Xe) = (0*/20+0(7™), (1.3.25)

Check that the estimates in this section still apply.

k41_ . .
b) Check that if X, = Z?:% ! \/%, where the W; are independent, mean
0 and variance 1, and possess a uniformly bounded exponential moment, then

(1.3.25) holds.

1.4 Convergence of maximum and Gumbel limit law

We begin with a lemma, whose proof we only sketch.

Lemma 3. There exists a constant ¢ such that
lim lim sup P(M,, = m, +y) = lim liminf

Y20 o Y Y=L n—o0 Y

P(M,, =m,+y)=c.
(1.4.26)

Note that the lemma is consistent with the upper and lower estimates on the
right tail that we already derived. The main issue here is the convergence.
Proof (sketch): The key new idea in the proof is a variance reduction step.
To implement it, fix k£ (which will be taken function of y, going to infinity
but so that k& << y) and define, for any v € D,

Wy = max (S, —Sy).
weDy, (v)
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Here, Dy(v) denote the vertices in D,y that are descendants of v € D,,.
Now,

P(M 4k > Myyr +y) = P(max(S, = my, + (z%k — W, 1 +y))).

veD,

For each v € D,,, we consider the event
Ay(n) = {S,(t) <tmy/n+y,t=1,...,n;S, = my, + (%k — Wy, +y)}.

Note that the event in A, (n) forces to have W, , = z*k+(m,,—S,+y) = z*k,
which (for k large) is an event of small probability. Now, one employs a curve
h(t) as described when deriving an upper bound on the right tail of M, to
show that

P(Mpik > mnsk +y) = (1+ 0y (1)) P(Uven, Au(n)) -

Next, using Exercise 5, one shows that

ES
. . ery
lim lim
Y=L N—>N0 y

P(A,(n)27" =¢,

for some constant ¢. This is very similar to computations we already did.
Finally, note that conditionally on F,, = 0(S,,v € D;, j < n), the events
{Wyr = 2*k + (my, — Sy +y) }vep, are independent. This introduces enough
decorelation so that even when v, w € D,, are neighbors on the tree, one gets
that
P(A,(n) n Ay(n)) < oy(1)P(Ay(n)).

Because of that, defining Z, = ZveD" 14,(n), one obtains that EZ? <

(1 4+ 0y(1))EZ, + CEZ? for some constant C and therefore, using that
limsup,,_,.. FZ, =y 0, one has

(BZo)* _  (EZy)

> >
EZn 2 P(uvep, Av(n)) = EZ2 7 EZ,(1+0,(1))

> EZ,(1—0,(1)).

Combining these three facts gives the lemma. o
We now finally are ready to state the following.

Theorem 6. There exists a random variable © such that

—aky
lim P(M, <m, +y) = E(e=®° ’

n—o0

). (1.4.27)

Thus, the law of M,, —m,, converges to the law of a randomly shifted Gumbel
distribution.

Remark: In fact, the proof we present will show that the random variable ©
is the limit in distribution of a sequence of random variables ©y. In reality,
that sequence forms a martingale (the so called derivative martingale, see
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Remark 1) with respect to Fj, and the convergence is a.s.. We will neither
need nor use that fact. For a proof based on the derivative martingale con-
vergence, see Lalley and Sellke [LS87] for the BBM case and Aidekon [Aid13]
for the BRW case.

Proof (sketch): This time, we cut the tree at a fixed distance k from the root.
Use that for n large, log(n + k) = log(n) + O(1/n). Write

P(Myii < tngk +9) = BEC] | Lisuawn(n))<mn+atiory

veEDy
~ E( H P(Wv,k < my + (m*k - Sv) + y|Sv)
vEDy,
~e(k)+ E(]] (1 — &(z*k — S, + y)e*A*@*k*va)) ,

VEDy,

where the symbol a ~ b means that a/b —,_, 1, and we used that with high
probability (1 —e(k)), ¥k — S, = x} — S} is of order log k and therefore we
could apply Lemma 3 in the last equivalence. Fixing Oy = ¢}, .p (z*k —

Sv)e*’\*(””*k’sv) and using that y is fixed while & is large, we conclude that

_ *y
P(Mpit, < e +y) ~ € (k) + E(e” ¢ * ).

Since the right side does not depend on n, the convergence of the left side
follows by taking n — o0 and then taking k large. Finally, the convergence
also implies that the moment generating function of O} converges, which in
terms implies the convergence in distribution of ©,. o

Extremal process We give a description of (a weak form of) a theorem
due to [ABK11] and [ABBS13] in the Branching Brownian motion case and
to [Mal7] in the (not necessarily Gaussian) BRW case, describing the distri-
bution of the point process 7, = >, cp ds,-m,. Our proof will follow the
approach of Biskup and Louidor [BL13], and is tailored to the Gaussian setup
we are considering.

We begin with a preliminary lemma. For a fixed constant R, set M,,(R) =
{ve D, :S, >m, — R}.

Lemma 4. There exist functions r(R) = g—o 0 and €(R) = r— 0 so that

limsup P(Ju,v € M, (R) : 7(R) < p(u,v)/2 <n—r(D)) <e(R). (1.4.28)
n—oC
The proof is immediate from the second moment computations we did; we
omit details.

Fix now R (eventually, we will take R — oo slowly with n) and define the
thinned point process 1 = ZUEDH7Sv:maxw:dT(v,w)sR s, 08,—m, - In words, n;,
is the point process obtained by only keeping points that are leaders of their
respective “clan”; of depth R.
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Theorem 7. (a) The process n5 converges, as n — o, to a random shift of
a Poisson Point Process (PPP) of intensity Ce*)‘*"”, denoted n®.

(b) The process m, converges, as n — o0, to a decorated version of n°,
which is obtained by replacing each point in ns by a random cluster of points,
independently, shifted around z.

A description of the decoration process is also available. We however will not
bother with it. Instead, we will only sketch the proof of part (a) of Theorem
7.

Before the proof, we state a general result concerning invariant point
processes, due to Liggett [Li78]. The setup of Liggett’s theorem (narrowed
to our needs; the general version replaces R by a locally compact second
countable topological space) is a point process 77 on R (i.e., a random, integer
valued measure on R which is finite a.s. on each compact), with each particle
evolving individually according to a Markov kernel Q. For m a locally finite
positive measure on R, let u,, denote the PPP of intensity m. For a random
measure M on R, we set fins = | 1 P(M € dm) (a more suggestive notation
would be fips = Epp where ppy is, conditioned on M, a PPP of intensity M).
We say that the law of a point process is invariant for @ if it does not change
when each particle makes independently a move according to the Markov
kernel Q.

One has the following. Througout, we assume that Q™(z, K) —,—q 0
uniformly in = for each fixed K cc R.

Theorem 8 (Liggett [Li78]).

(a) fiar is invariant for Q iff MQ = M in distribution.

(b) Every invariant probability measure is of the form fip; for some M.

(¢) The extremal invariant probability measures for the point process are of
the form p., with m satisfying m@Q = m iff MQ = M in distribution
implies MQ = M a.s.

(d) In the special case where Q(x,dy) = g(y—x)dy where g is a density func-
tion with finite exponential moments, condition (c) holds and all extreme
invariant m are of the form m(dz) = Ce~C"*dx, with C’' depending on C
and g.

(Part (d) of the theorem is an application of the Choquet-Deny theorem that

characterizes the exponential distribution).

Proof of Theorem 7(a) (sketch): We write 0, = 1,({Sy}) to emphasize that
7, depends on the Gaussian field {S,},ep, . Note that due to the Gaussian

structure,
o L ((V1 = 1/nS,} + {\/1/n8)}), (1.4.29)

where {S]} is an independent copy of {S,} and the equality is in distri-
bution. Now, {4/1/nS,} is a Gaussian field with variance of order 1, while

\/1-1/nS, =8, — ﬁSv +o(1).
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Note that for any fixed v € D,, we have that maxy.q, (v w)<r(S, —
SI)/A/n < O(R) with probability going to 1 as n — oo, for an appropri-
ate function §(R) —»r—- 0. By a diagonalization argument, one can then
choose R = R(n) so that

(Sy = 8,)/~/n < (R)

max
v, WEDp:Sy>my—R,dr{v,w)<R

with probability going to 1 as n — co.

Consider the right side of (1.4.29) as a (random) transformation on 7,;
when restricting attention to the interval (—R(n), ), which a.s. contains only
finitely many points (first moment!), the transformation, with probability
approaching 1 does the following:

— Replaces each point S, by S, — x*.

— Adds to each clan an independent centered Gaussian random variable of
variance 1.

— Adds a further small error of order 6(R,)

When thinning, one notes that the same transformation applies to the
thinned process. Thus, any weak limit of the thinned process is invariant
under the transformation that adds to each point an independent normal
of mean —z*. By the last point of Liggett’s theorem, we conclude that any
limit point of 1) is a random mixture of PPP with exponential intensity.
The convergence of the maximum then determines both the exponent in the
exponential intensity (must be A\*) as well as the mixture (determined by the
maximum). This completes the proof. o

2 Lecture II: The CGE

The goal of this section is to provide us with a road-map for reading [PZ25].
Due to the length and technical complexity of the latter, I chose to emphasize
the main ideas and the parallels (and differences!) with the treatment of the
BRW. Most proofs, therefore, will only be sketched.

The Circular-3 ensemble (CSE) is a distribution on n points (e, ew2,
.., €™n) on the unit circle with a joint density given by
1 w; iwg |B
H e — "k |Pdwy -+ - dwy,. (2.1.1)

Zn,p 1<j<k<n

In the special case of 8 = 2 this is the joint distribution of eigenvalues of
a Haar-distributed unitary random matrix. The characteristic polynomial
Xn(2) = H;:1(1 — €e™iz) of the CAE has attracted a considerable interest,
for its connections to the theories of logarithmically—correlated fields and
(when § = 2) analytic number theory.

A particular quantity of interest is M, := max|;—; log | X, (z)|. Let



16 Ofer Zeitouni
my, = logn — %log log n. (2.1.2)

The random matrix part of the Fyodorov—Hiary—Keating conjecture [FHK12b]
states that in the special case that 8 = 2, M,, —m,, converges in distribution
towards a limiting random variables Ry, with

P(Ry € dx) = 4e*" Ky(2¢%)dx. (2.1.3)

It was later observed in [SZ15] that the probability density in (2.1.3) is the
law of the sum of two independent Gumbel random variables.

For general 8 > 0, an important step forward was obtained by [CMN18],
who proved that M,, —/2/Bm,, is tight. The goal of this lecture is to sketch
the proof of the following.

Theorem 9 ([PZ25]). The sequence of random variables My — +/2/Bmn
converges in distribution to a random variables Rg. Further,

1
NGE

where Cg is an (implicit) constant, Gg is Gumbel distributed with parameter
1/3/2B, and PB4 (B) is a random variable that is independent of Gg.

Rp =Cp +Gp + log(#:.(8)), (2.1.4)

Remark 7. [PZ25] give a description of %..(8) as the total mass of a certain
derivative martingale. For a specific log-correlated field on the circle, [Rem20)]
computes the law of the total mass of the associated GMC and confirms
the Fyodorov-Bouchaud prediction [FB08] for it. It is possible (and even
anticipated, especially in light of [LN24], see Lambert’s talks) but not yet
proved, that the distribution of Z.. is also Gumbel. If true (even if only for
B = 2), Theorem 9 would then yield a proof of the random matrix side of the
Fyodorov-Hiary-Keating conjecture [FHK12b].

Theorem 9 is a consequence of a more general result, which gives the con-
vergence of the distance between certain marked point processes built from
a sequence of orthogonal polynomials, and a sequence of (n-independent)
decorated Poisson point process. This general result also applies to the imag-
inary part of log X,,(z) (and thus, allows for control on maximal fluctuation
of eigenvalue count on intervals).

2.2 OPUC preliminaries and formulation of main results

A major advance in the study of M, was achieved in [CMN18], who used
the Orthogonal Polynomials on the Unit Circle (OPUC) representation of
the COE measure due to [KNO4]; we refer to Lambert’s course and to
[Sim04] for an encyclopedic account of the OPUC theory. Let {v;} be
independent, complex, rotationally invariant random variables for which
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|vk|? = Beta(l,8(k + 1)/2), that is with density on [0,1] proportional to
(1 — x)8k+1/2=1 The Szegd recurrence is, for all k > 0,

¢k+1(z) zZ =Yk @k(z) Qo(z) =1,
o = { . , . . _ (2.2.5)
r1(2) —Vk2 1 (2) D (2) = 2P (1/Z).
where @} and &, are polynomials of degree at most k. Define in terms of
these coeflicients the Priifer phases

Wyor (0) = U(0) + 0 — 23 (1og(1 - %ei%w))) , W(0) =0,  (2.2.6)

where here and below we take the principal branch of the logarithm with
discontinuity along the negative real line. Then, ¥y (-) may be identified as

. 60
a continuous version of the logarithm of 6 — 1 log(e™ giize))) Let a be a
k
uniformly distributed element of the unit circle, independent of {v : k = 0},
and set for any 6 € R,
X, () = o*

n—l(ew) - aeiean—l(ew) =o5_,

() (1 — ae ). (2.2.7)

Then X, has the law of the characteristic polynomial (as process in #). Note
that this means that to understand |X,(e?’)|, we need to understand both
the real and imaginary part of log @7 _,.

The polynomials {@}} satisfy the recurrence

log @}, (%) = log &} (e%) + log(1 — vxe=@),  dE(e?) = 1.  (2.2.8)

We also recall the relative Prifer phase [CMN18, Lemma 2.4] given by the
recurrence

Ui (8) = U(0) + 0 = 25 (log(1 = e ) —log(1 =), wo(0) = .
(2.2.9)
In law {¢x(0) : k € N,0 € [0,27]} is equal to {¥(0) — ¥%(0) : k € N,0 €
[0, 271},
We will be interested in the extreme values of the fluctuations of real and
imaginary parts of log ®*, for which reason we will formulate our results in
terms of the recurrence

Prt1(0) = pi(0) +2R{o <log(1 - Vkew"'(e))) }o po(0) =0,  (2:2.10)

where o is one of {1,+i}. Then, for o = 1, pr(-) = 2Rlog P} (-) while for
o =1, pp(-) = —2Flog P (-). To alleviate notation, we will in these notes
mostly consider the real part, i.e. ¢ = 1, and explain at the end how results
are transfered to the characteristic polynomial.

The following result, which complements Theorem 9, yields the conver-
gence in law of the centered maxima of ¢, .
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Theorem 10. For any o € {1, +i}, the centered mazimum maxge[o,2x] n(0)—
A/8/Bmy, converges in law to a randomly shifted Gumbel of parameter A/2/p.

In the notation of Theorem 9, the limit is C§ + 2G% + \/2/Blog %, where
G% has the same law as Gg and C§ is an (implicit) constant.

The following result appears in [CMN18], with m,, as in (2.1.2). We use
N because, to link with Lecture 1, we will later use n = |logy, N|.

Theorem 11. For any o € {1, i}, with My := maxgefo,2.] ¥~ (0), the cen-
tered mazimum My — +/8/B8my is tight. The same holds for the real and
imaginary parts of the logarithm of the characteristic polynomial.

Before discussing the proofs of Theorems 9 and 10 on convergence, we
wish to explain the proof of Theorem 11 and relate it to what we saw in
Lecture 1.

2.3 OPUC as log-correlated fields

In a first step, observe that instead of discussing supy pn (), one can discuss
SUPgerry ¥ (0), where Uy is an equispaced net in [0, 27] of cardinality mN,
with m fixed and large. This follows from an interpolation lemma, which
slightly expands and quantifies a result in [CMN18], and the fact that ¢y is
a trigonometric polynomial of degree N.

Lemma 5. For any polynomial QQ of degree k = 1, and any natural number

m = 2,
9 m 9
‘Z|i>§| QU M1 wwtmiey @l

Furthermore, if for any b > 0 we partition the (2mk)-th roots of unity into
N and F so that N are all those roots of unity w so that |w — 1| < %b, then
there is an absolute constant C' > 0 so that

9 m 9 9
< . - - .
|zH¥\Z{%, |Q(2)|” < 1 ng\)/<|Q(w)| + bim — 1) meax|Q(oJ)| and

iplQ@)P - (14 ) oy - e 0GP

|Z*1‘<ﬁ m — ]_ weN b (m — ]_) wiw2mk =1

I do not discuss the (classical) proof and refer instead to [PZ25, Theorem
8.2].

We now begin to explain the hierarchical structure of the processes ¢ (0).
Consider first (2.2.10) for a fized 6. Note that the increment g1 (6) — ¢r(6)
is independent of ¢;(6));<k,se[0,2+], has mean 0 (if o = 1) and mean 6 (if
o = 1), and variance cg/k. Further, one has the following.
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Exercise 8. Check that @qk+1(0) —pqx (0), up to the centering 2% and scal-
ing by ./cg, satisfies the assumptions of Exercise 7.

From Exercise 8, we see that ¢ox(0) behaves essentially like a Gaussian
random walk (in k). We would like to proceed as in the case of BRW, and
introduce barriers. Note that in the introduction of barriers for BRW, we used
the fact that the cardinality of vertices at depth k was 2¥; Here, this is not
the case: if we are interested in M with N = 2", there are still (essentially)
2" points at level k& < n, and not 2¥. This destroys the option of using a
crude union bound in order to introduce the barrier. Instead, we have the
following.

Lemma 6 (MetaTheorem). The processs or(0) is continuous at scale
27k,

We cannot provide in these notes a proof of Lemma 6, but we can ex-
plain why one can expect it to be correct: indeed, we see that the means of
E[par (0) — o (0")] = 02% if o = i, and it is not hard to evaluate the variance
of this difference and show it is of order 1. This of course is not enough, as
we need results at the level of large deviations, and a big technical difficulty
is to introduce good enough approximations that are strong enough at the
tail.

Equipped with Lemma 6, Exercise 8, and Lemma 5, one can obtain the
analogue of the upper tail (1.3.21), and prove the upper tail upper bound
part of Theorem 11.

To obtain a right tail lower bound, we again need to apply a second
moment method with barrier. For that, a first step is the claim, stated here
for o = 1:

E(¢or (0) o () = —log(|6 — 6’| v 27%) + O(1). (2.3.11)

We have already explained why @or (0) and @ox(6") are close together if |6 —
¢'| ~ 27%. Suppose now that |6 — 0| = 27¢ with ¢ < k. Then, we need to
understand why (or —pae ) (6) and (por —pqe ) (6) are essentially independent.
For that, note that the Priifer phases satisfy

Ui(0) ~w;(0')+ (0 —6)j + O(+/log j). (2.3.12)
Now these Prifer phases enter into the evolution of ¢y (see (2.2.10)) as

©r+1(0) — r(0) ~ |vk| cos(¥(0) + ), (2.3.13)
with ag uniform on [0, 1] and independent of ¢y.

Exercise 9. Assume that in (2.3.13), one replaces ~ by an equality and
removes the error term in (2.3.12). Show that this implies (2.3.11).

The actual proof, of course, has to justify these approximation steps, at
the level of large deviations. Once this is done, the same second moment
method that worked for BRW can be applied.
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2.4 Back to convergence: the landscape

There are several places where the description above fails to be precise enough
to yield convergence:

1. Locally, ie at microscopic scales (meaning that |0 — 6’| ~ O(1/N) =
0(27™)), the polynomial () is very different from the piecewise con-
stant field obtained by embedding a BRW on the interval [0, 1].

2. Similarly, the macroscopic description of the beginning of the recursions is
very different from a BRW. In particular, there is no exact independence
of increments as in the BRW case.

3. The log-determinant is not exactly ¢y, and in fact one needs to use an
extra randomization and the ”shape” of ¢x in a neighborhood of near
maxima.

Points 1,2 already appeared in the study of the maximum of the two di-
mensional GFF [BDZ16], and its generalization to log-correlated Gaussian
fields [DRZ17]. In a nutshell, the approach of [BDZ16] used a spatial Markov
property that gave independence of increments (which is not present here),
and the general [DRZ17] used in a strong way the Gaussianity of the field,
which also fails here. We will see however that the ideas from these references,
together with some new elements, are behind the proof of Theorem 9.

We begin with the description of the random shift. Define the random
measure and its total mass

27

£} —lo
D (0)db) = Le\/zww) 5k (2log k — \/§¢k(9))+d9,,@k = | 2:(0)de.
0

27
(2.4.14)
This is not exactly a martingale, due to the truncation, but the truncation
becomes meaningless for large k. We equip the space of finite measures with
the weak-* topology, and then we show that this measure converges almost
surely.

Theorem 12. For any o € {1, i} and any B > 0, there is an almost surely
finite random variable B, and an almost surely finite, nonatomic random
measure 9., so that

92;’ d9 i’ @’L CLTLd %2,7‘ i’ %“L
Jj—x JoL

Furthermore for any € > 0 there is a compact K < (0,0) so that with

0) = 1{ (V2logk — /G0 0V ox R ¢ K.}

it holds that for any k € N,

27 g Zlos
P(J e\/;‘ﬂk(O) 1 gk|\/§logk - \/é@k(9)|x(9)d9 > 6> <e. (2.4.15)
0
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The meaning of (2.4.15) is that only angles 6 with () near the maximal
value contribute to Z,.

Theorem 12 is very useful in carrying out the analogue of the computation
in the proof of Theorem 6, thus addressing effectively point 2 above. Dealing
with point 1 is however more delicate. We turn to describing this.

We introduce parameters {k, : p € N} which will be chosen large but
independent of n. These parameters will be taken large after n is sent to
infinity. Moreover, they will be ordered in a decreasing fashion, so that k; »
kj+1.

We formulate a sequential extremal process, indexed by ki, of approxi-
mation for the process of near maxima, which we refer to as the landscape.
Divide the unit circle into consecutive arcs {I; y} by the formula that for any
5, N eN,

I = I = 2n[ U=k by (2.4.16)
Let Dk, denote the collection of indices j = 1,2, ..., [%1 Welet 6; = 0; n

be the supremum of I?]\V Over each of these intervals, we define the process
Dj = Dj,N . [—27Tk1,0] — (C,

_ (D% )2(exp(‘(94 +£))) - exp(—i(N + 1)0 \/7mN ifo=1,
D;(0) = exp(goN (9; + \/7mN 1f((27'é117)

This will serve as the decoration process, although we will not prove their
convergence as k1 — 00. We next define for all j € D,,, random variables

17(/\-=I7[\/- ‘= max O —./8m
= Wiy = max{on(6)) NEE (2.4.18)

which is a local maximum, appropriately centered, and set

Ex, =Ex;' == > 8, 5 p) (2.4.19)

JEDN/kq

A central technical challenge will be to show that ¢, and ¥y, are essentially
constant on the interval I; for k ~ N/k;, and that hence it suffices to track
both ¢, and ¥;, only at the point 0, € IA] We gloss over this detail in these
notes. Our goal will be to approximate the process Exy by a Poisson processes
with random intensity, which we describe next.

Toward this end, recall that an important strategy used throughout the
analysis of extrema of branching processes is effectively conditioning on the
initial portion of the process, wherein the extrema gain a nontrivial correla-
tion. We will do the same and condition on the first Verblunsky coefficients.
We use the parameter ko, which we assume is a power of 2 (to apply Theorem
12), to refer to how many Verblunsky coefficients on which we condition. We
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also use (F : k € Ny) to refer to the natural o-algebra generated by the
sequence of Verblunsky coefficients (v : k € Np).

Introduce the law pg, (v,-), which is a law of a random function on 6 €
(—2mky,0) which is related to the exponential of the solution of a family of
coupled diffusions $2(6) in an auxiliary time parameter (We discuss below in
Section 2.6 these equations).

The measure Exy will be approximated by a Poisson random measure
with a random intensity on the same space. This intensity on I" := [0, 27| x
R x C([—27k1, 0], C) will take the form of a product measure Z.. x py, , where
(pr, : k1 € N) is a deterministic Radon measure on R xC([—27ky, 0], C), which
is constructed as follows. Let

v, f) = ( max (—\/4/71) + log |f(ac)|),fe*\/4/7ﬁv) (2.4.20)

ze[—27k1,0]

be a map of R x C([—27kq,0],C) to itself, let

I(v) = 1/ 20e¥™1 {(0g k)10 < v < (log kn)*/10},

and let
1, (dv, df) denote the push-forward of I(v)dv x py, (v, df) by t.  (2.4.21)

We let IT** be a Poisson random measure on I’ with intensity 2., X p/\kl
It is worthwhile explaining what exactly is this process: the first coordinate
marks the “height” of the recursion at angle 6, ie generates "high points”
(corresponding to some very large level k) according to the intensity Z.,. At
these high values, one generates pieces of trajectories (the decoration) around
height v, with intensity py, (dv, df).

To compare point processes on I', we endow the latter with the distance

00((01, 21, f1), (02, 22, f2)) == (dr(61,02)+|z1—22|+ sup ]|f1(t)—f2(f)|)/\1-

tG[—Q‘n’kl,O

In terms of this we define a Wasserstein distance on point configurations
& =201, 0y, and & = 3L, 05,

0, ifm=n=0,
01(61,82) = { ming max;—1 . 00(Yi, 2x(sy), if m=mn>0,
1, if m # n.
with the minimum being the distance over all permutations 7 of {1,2,...,n}.

Finally, for two point processes )1 and (3 we define the pseudometric

62(Q17Q2) = (5i11,l§f2)E(al(£1’€2)),

with the infimum over couplings (£1,&2) in which & ~ @1 and & ~ Q5. To
make a comparison between IT** and Exf\}, we will only make a comparison
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in which their second coordinate is in a compact set. Hence we shall further
restrict the space I to

Iy, = [0,27] x [—kr, k7] x C([~2nky,0],C). (2.4.22)
The main approximation result is the following.

Theorem 13. For any k7 > 0, we have

lim sup 0 (Hkl N fkmExlf\} mfk7) =0. (2.4.23)
k1,N—>w

Theorem 13 implies Theorems 9 and 10.

2.5 A high level description of the proof of Theorem 10.

We now provide a high level description of the proof, that glosses over many
important details.
We write

Pn(0) = @i, (0) + (on/k, (0) = 91, (0)) + (N (0) — onp, (0))
= Pko (0) + AkzyN/lﬁ (9) + AN/khn(e)v

and

0) = 0) + A 0)+ A 0)).
pdx o (6) = max max (i, (6) + e (6) + A v(6))

We claim that the last expression can be approximated as

mjax (‘sz (Hj) + Akg,N/kl (Hj) + max AN/khN(G)). (2524)

QEIj,N

To analyze the maximum in (2.5.24), we introduce the field f, ;(n) =
An gy (05 +n/N), with n € [-27k;,0] and A defined above (2.5.24), and
write (2.5.24) as

max (%Okz (0;) + Apy nyw, (05) + L fn,j(n)) (2.5.25)

—: max (%2 (05) + Apy Ny, (05) + AIN/khN(j))~

The main contribution to the maximum comes from js with A, n/, (65)
large, of the order of \/8/B3(my — log(k1k2)). However, the Ay, n, (j) are
far from independent for different j. In order to begin controlling this, we in-
troduce two “good events”: a global good event ¥,,, which allows us to replace
the recursion by one driven by Gaussian variables (called 3:(6), and taken for
convenience in continuous time) and also impose an a priori upper limit on
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the recursion, and a barrier event % , which ensures that the Gaussian-driven
recursion 3;(6) stays within a certain entropic envelope. We will also insist
that 3nk, (0;) stays within an appropriate window. These steps are similar
to what is done in [CMN18] and prepare the ground for the application of
the second moment method.

We next claim that the fields f, ;j(n) converge in distribution to the so-
lution of a system of coupled stochastic differential equations as in (2.6.29)
(this is not literally the case, and requires some pre-processing in the form of
restriction to appropriate events and using a change of k1, that we gloss over
here). In particular, the law of those fields are determined by the Markov
kernel pg,. Further and crucially, the fields f, ; can be constructed so that
for well separated js, they are independent. This latter independence is what
makes the proof work. Of course, for adjoining arcs it is actually hopeless
to make them truly independent, but it turns out we need the independence
only for far away intervals, and this can be achieved due to the fast rotating
Priifer phases.

As in many applications of the second moment method, to allow for some
decoupling it is necessary to condition on .#j,. We need to find high points
of the right side of (2.5.25). The basic estimate, for a given j, is that with

wj = /8/Blogks — ¢, (0;),

ve%wj e 2w

IP’(A,%N/;CI (0;) ~ \/8/B(mn—log(kiks)—v), Barrier | ﬁh) ~C
(2.5.26)
This estimate, already appearing in [CMN18], is nothing but a barrier esti-
mate.
If the variables { Ay, ,./k, (6;) +A;/k1’n(j) : 7} were an independent family,
we would be at this point done, for then we would have that

P(01s (05) + Atgvyis 05) + Ay g, () > V/8/B(mn +2) | Fi, )

_ Dy, (0;) _
Ve — 2)e2Vimo)) o o2k \Yi) 2
Ep,, (( T —x)e ) C Nk e ", (2.5.27)

,—2w;
w;je J

~C Nk

Hence, we have using independence over different j that

T ‘@kz (0) —2r
P on(0) < VRO ) | Fi) ~ [T (1= 00e7)

~ exp(—C%kze_zx) ,

which would then yield Theorem 10.

Unfortunately, different js are not independent. We handle that through
several Poisson approximations. First, we condition on %, /,, and use the
“two moments suffice” method of [AGG89] to show that the process of near
maxima (together with the shape (on(0) — @n/i, (0),0 € I/J\n)) can be well
approximated, as k; — 00, by a Poisson point process of intensity m which
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depends still on k;. In the proof, the independence for well separated js and
the second moment computations play a crucial role.

Using these steps we obtain a Poisson process with random intensity,
measurable on .7 it Our final step is another standard use of the second
moment method to show that this random intensity concentrates, yielding
Theorem 13.

2.6 Decoupling and a diffusion approximation

We now describe the SDE’s alluded to before. Recall the recursions (2.2.8)
and (2.2.9). Writing ¢ instead of k, this is similar to the SDE

dX, = i0dt + e SXeqw,,

where W; is a complex Brownian motion. After a time change t — ¢! with
now t = log N —log k1 + s and a change of scaling for the angles to correspond
to small arcs, ie  — 6/N and we relativise near 0, we obtain the SDE
’i@es ;o
dY, = S —ds + cpeSVedW,.
1

Note that for other intervals, W, gets multiplied by an extra term e%*(%),
which oscillates rapidly, and therefore creates independence between far away
k1-intervals. This leads to the following. Set T, = log k1. Consider the family

of standard complex Brownian motions
(W] :T_ <t<T.,j€ Dy}, (2.6.28)

which will have the property that they are independent from one another
when the relevant arcs are separated by a small power of N. Now with re-
spect to these Brownian motions we define the complex diffusions (£] : ¢ €
[0,7,],0 e R,j € Dy, ) as the (strong) solution of the stochastic differential
equation

dL](0) = dL(0) = ibe'ky  dt + 4/ 45 a0], and

U (0) = —R(o (8](0) — ibk;'e")) — /S
e (0) = -2 log@j‘z1+ (exp(i(0; + £))) + %eT—, for 6eRR.
(2.6.29)
As explained above, the diffusion £7(#) will serve as a proxy for the evolu-
tion of —2log @}, (0; + 0/N) + i0e' [k where k(t) ~ nie’ up to rounding
errors, and in particular its imaginary part will mimick the evolution of the

Priifer phases. When o = 1, the diffusion il{ (0) is designed to be a proxy for
2log |¢Z(t)(9j +6/N)|.
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In reality, the initial condition for the diffusion is not constant. However,
one can move back to negative time (by a power smaller than 1 of logky)
and initialize the SDE from flat initial conditions, so as to decouple from
the past. A technical part of the proof shows that no harm is done by this
initialization.

Exercise 10. To get a feeling for the Poisson approximations in this section,
consider a BRW of depth n, so that each vertex v is associated with a point
x, = j27" and to each x € [j27", (j+1)27"] we define S(x) = S, +RL} ((z—
2,)2"), and £/ is as in (2.6.29) with k; = 1 and £} = 0. Prove that Theorem 6
continues to hold, with @ replaced by ©+C with some deterministic constant
C. State a Poisson convergence for the local landscape.

3 Lecture III: Jacobi matrices and GSBE

We consider in this section a class of random matrices that are tridiagonal;
these include matrices whose eigenvalue distruibutions mimick the GSE en-
sembles. Our emphasis is on methods that work for all 5, and therefore we
do not discuss results specific to § = 2.

3.1 Tridiagonal representation of 3 ensembles

The following material will be skipped and serves only as motivation. It
is taken from [AGZ10]. We begin by recalling the definition of y random
variables (with ¢ degrees of freedom).

Definition 3.1.1 The density on R,

1—t/2,.t—1 ,—z3/2
2 e

1s called the x distribution with t degrees of freedom, and is denoted x;.

If ¢ is integer and X is distributed according to x;, then X has the same law
as W/Z§=1 &2 where &; are standard Gaussian random variables.

Let &; be independent i.i.d. standard Gaussian random variables of zero
mean and variance 1, and let Y; ~ x;3 be independent and independent of
the variables {¢;}. Define the tridiagonal symmetric matrix Hy € Maty(R)
with entries Hy (4,7) = 0if [i —j| > 1, Hn(4,4) = 4/2/8& and Hy(i,i+1) =
Yn_i/N/B,i=1,...,N. The main result of this section is the following.

Theorem 3.1.2 (Edelman—Dumitriu) The joint distribution of the eigen-
values of Hy is given by

Cn(B)AN)Pe T (3.1.3)
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We begin by performing a preliminary computation that proves Theorem
3.1.2 in the case § = 1 and also turns out to be useful in the proof of the
theorem in the general case.

Proof of Theorem 3.1.2 (8 = 1) Let Xy be a matrix distributed according
to the GOE law (and in particular, its joint distribution of eigenvalues has the
density coinciding with (3.1.3)). Set {5 = Xn(1,1)/+/2, which is a standard
Gaussian variable. Let X ](\}’1) denote the matrix obtained from X by striking
the first column and row, and let Z3% , = (Xn(1,2),..., Xn(1,N)). Then
Zn_1 is independent of XI(\}’D and &n. Let Hy be an orthogonal N —1-by-N —
1 matrix, measurable on o(Zx_1), such that HyZn_q1 = (1Zn=1]20,...,0),
and set Yn_1 = [|Zn—1]2, noting that Yy_; is independent of {x and is

distributed according to xy—1. (A particular choice of Hy is the Householder
reflector Hy = I — 2uu™ /|u|3, where u = Zx_1 — | Zn_1]2(1,...,0).) Let

10
= (o)

Then the law of eigenvalues of Hy Xy Hy; is still (3.1.3), while

V26N Yno1 Oy
Yn_1

XN ’
Oy 2

HyXnHy =

where X y_1 is again distributed according to the GOE and is independent of
&N and Yy_1. Tterating this construction N — 1 times (in the next step, with
the Householder matrix corresponding to Xy_1), one concludes the proof
(with =1). o

We next prove some properties of the eigenvalues and eigenvectors of tridi-
agonal matrices. Let Dy denote the collection of diagonal N-by-N matrices
with real entries, D% denote the subset of Dy consisting of matrices with
distinct entries, and DI denote the subset of matrices with decreasing en-

tries. Let Z/I](Vl) denote the collection of N-by-N orthogonal matrices, and let

U ](Vl )+ denote the subset of U/ ](Vl ) consisting of matrices whose first row has all
elements strictly positive.

We parametrize tridiagonal matrices by two vectors of length N and N—1,
a=(a,...,ay)and b = (by,...,by_1), so that if H € Hg\}) is tridiagonal
then H(i,i) = any_;+1 and H(i,i + 1) = by_;. Let Ty Hg\}) denote the
collection of tridiagonal matrices with all entries of b strictly positive.

Lemma 3.1.4 The eigenvalues of any H € Ty are distinct, and all eigen-
vectors v = (v1,...,vn) of H satisfy v1 # 0.

Proof. The null space of any matrix H € Ty is at most one dimensional.
Indeed, suppose Hv = 0 for some nonzero vector v = (v1,...,vy). Because all
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entries of b are nonzero, it is impossible that v; = 0 (for then, necessarily all
v; = 0). So suppose v1 # 0, and then vy = —ay/by_1. By solving recursively
the equation

by_ivi—1 +an—iv; = —bN_i—1viy1, 1=2,...,N — 1, (3.1.5)

which is possible because all entries of b are nonzero, all entries of v are
determined. Thus, the null space of any H € Ty is one dimensional at most.
Since H — AI € Ty for any A, the first part of the lemma follows. The second
part follows because we showed that if v # 0 is in the null space of H — AI,
it is impossible to have v;1 = 0. O

Let H € Ty, with diagonals a and b as above, and write H = UDUT
with D € D and U = [v},...,v"] orthogonal, such that the first row of
U, denoted v = (vi,...,vYV), has nonnegative entries. (Note that ||v]s = 1.)
Write d = (D11,...,Dnn). Let d& = {(z1,...,2N) 1 > 22+ > 2N}
and let

SE Tt ={v=(v,...,on) RN : |v]|2 =1, v; > 0}.

(Note that d$; is similar to dy, except that the ordering of coordinates is
reversed.)

Lemma 3.1.6 The map

(a,b) > (d,v) : RV x RV ™Y & A% x g1 (3.1.7)
is a bijection, whose Jacobian J is proportional to

A(d)
IS o

Proof. That the map in (3.1.7) is a bijection follows from the proof of Lemma
3.1.4, and in particular from (3.1.5) (the map (d,v) — (a,b) is determined
by the relation H = UDUT).

To evaluate the Jacobian, we recall the proof of the 5 = 1 case of The-
orem 3.1.2. Let X be a matrix distributed according to the GOE, consider
the tridiagonal matrix with diagonals a,b obtained from X by the succes-
sive Householder transformations employed in that proof. Write X = UDU*
where U is orthogonal, D is diagonal (with elements d), and the first row u
of U consists of nonnegative entries (and strictly positive except on a set of
measure 0). Check that u is independent of D and that, by a simple Jacobian
computation, the density of the distribution of the vector (d,u) with respect
to the product of the Lebesgue measure on df; and the the uniform measure
on SY~! is proportional to A(d)e‘zﬁld?/‘l. Using Theorem 3.1.2 and the
first part of the lemma, we conclude that the latter (when evaluated in the
variables a, b) is proportional to

(3.1.8)

N o} N1 b7 Nl N 2 N-1
Je Zi=1 4 ~Xim1 o H b:,_l = Je i1 d; /4 1_[ bz—l.
iz1 ey
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The conclusion follows. ©
We will also need the following useful identity.

Lemma 3.1.9 With notation as above, we have the identity

N—-1 44
A(d) _ Hi:l b1

N
|l

Proof. Write H = UDU™. Let e; = (1,0,...,0)T. Let w! be the first column
of UT, which is the vector made out of the first entries of v',...,v". One
then has

N-1

i

[[¥
i=1

(3.1.10)

det[e, Hey, ..., HN te;] = det[e;, UDU ey, ..., UDN1U ¢y]

N
+det[w', Dw',..., DY tw'] = +A(d) Hvi .
i=1

Because all terms involved are positive by construction, the + is actually a
+, and the lemma follows. ©We can now conclude.

Proof of Theorem 3.1.2 (general § > 0) The density of the independent
vectors a and b, together with Lemma 3.1.6, imply that the joint density of
d and v with respect to the product of the Lebesgue measure on d%, and the
uniform measure on Siv ~1 is proportional to

N-1
T b et (3.1.11)
=1

Using the expression (3.1.8) for the Jacobian, one has

N-1 N-1 B-1 N B—1
ST 6" = aca) (n bz) _aay’ (n ) |
=1 =1 =1

where (3.1.10) was used in the second equality. Substituting in (3.1.11) and
integrating over the variables v completes the proof. o

3.2 Characteristic polynomials for GGE and Jacobi matrices

We will be interested in the characteristic polynomial of Jacobi matrices
similar to Hpy. By Section 3.1, the law of the characteristic polynomial for
Hy is the same as that for the GSE ensembles. There are several methods for
handling that. In particular, [BMP22], using loop equations and z complex,
showed that log |det(zI — Hy)| is a logarithmically correlated field (more on
that in Lecture IV). We will take here a different route, closer to what was
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done in the case of the CSE; in doing so, we follow [ABZ23] and [AZ25]; see
[LP23, LP20] for other related results.
We consider matrices of the form

bn ap—1 0 --- 0
Qp—1 bnfl Qp—2 " 0
Jp = T (3.2.12)
0 st a9 bQ aq
0 ... ... al bl

where the coefficients of J, satisfy the following assumptions.

Assumption 3.2.13 (ax)r>1 and (bg)r=1 are two independent sequences of
independent random variables whose law is absolutely continuous with respect
to the Lebesgue measure and such that

E(a2) = k + O(1), Var(a2) = kv + O(1), E(by) =0, Var(by) —11+O( )

(3.2.14)
where v 18 some positive constant. Further, there exists ho > 0 such that

2 2
supE(eholb’“‘) < 400, supE(erak*E(a"’)‘) < 400. (3.2.15)
k=1 k=1

We denote by p,, the characteristic polynomial of the scaled Jacobi matrix
Jn/A/n defined by p,(z) = det(zI, — J,/+/n) for any z € R. Our main result
reads as follows.

Theorem 14. Let n > 0 and denote by I, ;= {ze R:n < |z| <2—n}. In
probability,

max.er, (log|pa(2)| = n(3 —§)) —Vologn 3y
T

loglogn n—+ox

The GSE can be checked to be a particular case of Theorem 14. This partially
confirms the conjecture Fyodorov and Simm stated for the GUE [FS16].
We note that the linear in n term (i.e., n(z?/4 — 1/2)) corresponds to the
logarithmic potential of the semicircle law.

3.3 The three term recursion

Owing to the tridiagonal structure of .J,, its characteristic polynomial is
naturally linked to a certain three term recursion. More precisely, for any
€(=2,2)andn e N, n > 1, let (qr(2))ref—1,...,n} be defined by the recursion:

g-1(2) =0, @o(2) =1, qu(z) = (2n/n — b)) qr—1 — aZ_1qr—2(2), k =1,
(3.3.16)
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where ag = 0 by convention. Then gi(z) = det(z+/nl; — Ji), and in particular
qn(2) = n"?p,(2). Let (#k)kefo,....n) denote the scaled variables defined by

qr(2)
z) = , ke{0,...,n},ze (-2,2). 3.3.17
Or(2) i { bze(-2,2) ( )
The choice of this scaling is motivated by the fact that these new polynomials
now satisfy the recursion

01(2) = (51 = ) ur(2) - \/,f(’%l)m@ k2276 (-2,2),
(3.3.18)

where z; = z4/n/k and where the second order coefficients are of order 1,
given that by assumption a? ; = k typically. Setting

_ by Gk
X7 = ( 240 ) o= (T VE TG |, k=2 (3.3.19)
Pr-1(2) 1 0

the recursion (3.3.18) is equivalent to
X:=TiXi,, k=2z€e(-22) (3.3.20)

where X7 = (z4/n — b1, 1)T. To get a feel for this recursion, note that under
our Assumptions 3.2.13, T is a small random perturbation of the matrix A}

defined by
2z —1
Af = <1" 0 > (3.3.21)

As A% belongs to SLo(R), the dynamics of the system will highly depend
in which of the three classes of SLy(R), hyperbolic, parabolic or elliptic, it
belongs to. Since this classification is determined by respectively the value of
|Tr(Af)| being strictly greater than 2, equal to 2 or strictly smaller than 2,
this leads us to define the critical time k¢ . and - although less obvious for
now - the critical window ¢; as

2’27’L

!

and to decompose the recursion into three regimes: a hyperbolic regime (until
time ko . — £o) where the eigenvalues of A} are real, a parabolic regime (be-
tween time ko , — o and ko . +¢p), and an elliptic regime (after time ko , +4o)
where the eigenvalues of A} are complex conjugated and of modulus 1.

Set ay, . when k < ko ., the spectral radius of A}, given by

2
Nz
- szk 1<k < ko (3.3.23)

ko.:=| lo = |kn?], k=1, (3.3.22)

(€72

With this notation, Theorem 14 is actually equivalent, modulu some anti-
concentration results that we do not detail, to the following:
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Theorem 15. Let n > 0 and denote by I, :== {z €e R : n < |2] <2 —n}.
Under Assumptions 3.2.13,

z| kO,z —
maXzer, (IOgHXnH Zk:llogasz) \/EIOgn — —S\Tﬁ7 (3324)

loglogn n—>-+o0
in probability.

In these notes, we neglect completely the parabolic regime, and focus in-
stead on the hyperbolic and elliptic regimes. The parabolic regime contributes
a variance of order 1 and does not affect the analysis except if one wants to
obtain convergence results, which we do not aim for.

3.4 The hyperbolic regime

Conceptually, the easiest part to handle is the hyperbolic phase: indeed, in
that region, we expect that log|og| ~ Zle log o, and therefore it is natural

to define ¥y, = ¢/ Hle a;. Writing now vy, = ¢y /1r_1, the recursion (3.3.18)
reads
_ (Zk — bk/\/E) . ai_l 1

ag k(k — 1)agag—1 Vk—1

vi(2) (2). (3.4.25)

We expect to have v, ~ 1, and therefore, writing v, = 1 + dx, we obtain the
recursion

Op—
O = up + UkL ~ Uup + VE0p_1 — vkéﬁ_l, (3426)
14 0p_1

where, up to negligible terms,

g 1+ g/Nk by 1+ gr/Vk
——=1- - , U = ———.
Qg QRO apk QRO

(3.4.27)

It is not hard to check, using (3.3.23), that for k € [en, ko], we have up to
negligible terms that

1 _ |20 (1 + gx/VEk)
Uy = —F—— + g\ 7 Vb= )
1+\/(k‘o—k‘)/k‘0

24/ko(ko — k) k
where the independent variables g; have mean 0 and variance 1. One can
now solve (3.4.26) in two steps: first, disregard the term 5,%71 and solve the
resulting linear equation, and then computing the perturbation due to the
quadratic term (replacing 5,3_1 by the solution to the linearized equation). It
is not hard to verify that the approximate solution obtained by this procedure
is within O(1), with high probability, from the exact solution.
Eventually, we need to compute
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k:gfeo k:gfeo 1 ko*fo

2
D7 log(1+4;) ~ D] 8 =5 > 6
j=en Jj=en Jj=en

The second term will turn out to have fluctuations of order 1, and its fluc-
tuations are therefore negligible (it does contribute to the mean!). However,
the first term is very far from being a random walk, due to the high corre-
lation between ¢; and d;_1, see (3.4.26). However, the correlation length is

of the order of y/ko/(ko — k). Choosing sequences L; so that L; = k(l)/Sj?/?’,

j=1,... en, one finds that the variables
ko*L]‘
A= 4
i:kofL]‘_'_l

are essentially uncorrelated, and have variance 1/j. Now we are back to the
random walk setup, and the techniques we discussed in the context of the
CpBE can be applied!

Remark 8. The point of view described above is the one taken in [ABZ23].
There is a slightly more geometric point of view, that unifies the treatment
of the hyperbolic and elliptic regimes, and that is developed in [AZ25]. Due
to time constraints, we do not describe it here.

Exercise 11. Consider the linearized recursion in the hyperbolic regime, i.e.
(3.4.26) without the quadratic term. Show that Zfi;zo log(1 + ¢;), after an

exponential time change, can be coupled to a Brownian motion with drift.

3.5 Change of basis and description of the new recursions

To analyze the recursion (3.3.20), we perform a certain change of basis to
leverage the geometric properties of the expected transition matrix, which is
roughly A}. To this end, define the following time-dependent change of basis
(P, " )i<ks<n a8

1 ol =
PkZ::(1ak72>71<k<k02—£0,P]§Z:< Qk?k ,ko’z—{-fogkg’n’

s

(3.5.28)
and set P := P; _, for |k — ko,»| < o, where ay_, is defined in (3.3.23)
and zy := z4/n/k.
The choice of this change of basis is motivated by the fact that |P?|| <1
and that Df := (P7)™' A7 P7, 1 < k < ko, — {p is a diagonal matrix whereas
R; := (P?)"YA:P?, k = ko . + {o is a rotation. More precisely,

+_ (k= O _ . {cos(6;) —sin(67)
Dy = ( 0 ak,z> » b S ko —lo, Ry = <sin(9f€‘) cos(6;) )’ ke = Ko,z + Lo,
(3.5.29)
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where 67 € [0,2m) is such that e = (z1, + /4 — 22)/2 for k = ko . + {o.
In the sequel, we denote by =7 the new transition matrix and by Y, the
coordinate vector of X7 in the basis PZ, that is

Sie = (Pi) e P YE = PEXE, 1<k <n. (3.5.30)

With this notation, the sequence Y* satisfies the recursion Y7 , = Z¢_ Y/
for any 1 < k < n. Our central observable will be the field 15 (2) defined by
Yo(z) = 0 and

Pi(2) = log |YF || — Mp(2), 1 <k <n, z€ 1, (3.5.31)

where Mj(z) denotes the accumulated mean defined as the sum of the “in-
stantaneous” mean i (z) by

k

in(2) = W M= 3] ) (3.5.32)

3.6 Recursion in the elliptic regime

In this regime where ky . + ¢y < k < n, we show that with high probability
the vector Y)? rotates with essentially the same angle as R}, over short enough
blocks and that the increments of the process 1)(z) over these blocks are well-
approximated by a sum of independent random variables. More precisely,
define the blocks (k; »); <i<j, by kj,.» := ko, + Lo, kj, » == n, and

ki o= ko + i, jo <i < i, (3.6.33)

and where j, := max{i : [i4ké(§J < {p} and j; :=min{i : ko, + [i4ké€] > n}.
For any k& > ko . + {y, denote by (7 a measure of the argument of ¥? in
[0,27). Next, say that the i*2¢ block is good if for all k; , < k < kit1.2,

k
G=CGo.+ > 0;e[—6.0]+2nZ, (3.6.34)
fiki,zﬁ’l

where §; := i~ /*. Denote also by 9., the event that the i*® block is good.
With this notation, we have the following proposition.
Proposition 3.6.35 (Probability of a “bad” block) For any i > x'/4,

_cil/2

P(4;.) <e ",
where ¢ is a positive constant depending on the model parameters.

As an immediate consequence, we can conclude by using a union bound that
all the blocks starting from the (logn)9-th block on are good with overwhelm-
ing probability provided q is large enough.
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Corollary 3.6.36 Let q > 4. Denote by 4, :=) % . Then,

i=(logn)d

2
)

P(#) < e Cos
where ¢ > 0 depends on the model parameters.

Next, we show a representation of the increments Ay, ., _(2) := ¥, . (2)—
Y, .(2) as a sum of independent random variables up to some small error
on the event where the i*" block is good. This representation will be at the
base of all our subsequent results in the elliptic regime. To describe the noise
appearing in the new recursion in the elliptic regime we define the variables
c,> and dy as

o2 (Zk(bk —E(by)) n aj,_y —Eaiq) g e Dk —E(by)
R e N I
(3.6.37)

With this notation, the “instantaneous” noise at time k is given by the func-
tion wf, defined as

wi(€) = ¢ sin(0f + ¢) cos(C) + di sin(0; + () sin(¢), ¢(eR.  (3.6.38)
We are now ready to state our result in the elliptic regime.

Proposition 3.6.39 (Representation of the increments on “good” blocks)
Let i = kY%, On the event Yz

Kit1,=

Apa(@) = D) (wilGe) +PE) + 06,
k=k; .+1

where (Fyi= Cf, _ + Zi:k 107 for any £ € [ki ., kiv12], wi is defined in
(3.6.38) and Pf is a Fi-measurable variable satisfying that

1 (logn)®

a__ z <
sk—1(Pf) < Ak — ko) + (k — ko)

(3.6.40)

where € > 0 depends on the model parameters. There exists a deterministic
sequence J,%’z >0, k= ko + 4y such that

k,;+1yz ki+1,z
Varkiyz( 3 wk(czk71)>= S o2 +0GT), as  (3.6.41)
k=k; . +1 k=k; - +1

Moreover,

o2, = + 0(1)). (3.6.42)
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3.7 A priori exponential moment estimate

Finally, we state the a priori exponential estimate for increments of the pro-
cess (z).

Proposition 3.7.43 There exist h > 0 depending on the model parameters
Cs > 0 depending on 6 > 0 and €, depending on k such that for any z € I,
0<k<k <kj, and1< X< (logn) "n'/s,

log Ey, [e/\(wkf(Z)—lbk(Z))] < 502,
and for any k; . < k <k <n,
K 1

log By [eX(¥r (=) =9x(2)] < ¢, A2 ——
og k[e ] K Z:Zk;rl |k'0,z _ k‘| v nl/3

(3.7.44)

Moreover, if k' < ko, —4lo or k = ko, + €y, € can be taken independent of
#. Further if k = ko, — £, then (3.7.44) holds for 1 < —\ < (logn) On~1/6.

In particular, this result justifies the claim that the parabolic regime has only
a contribution to the field 1(z) of order 1 depending on k.
3.8 The log-correlated structure

We now discuss the correlation structure of the field. It is worthwhile to keep
in mind the following diagram.

0 (1 — €)k0(z) ko (Z) + 4y ko (Z)(l + E) n
L | || | |
f 1 I !
hyperbolic elliptic
0 (1 —e)ko(2) ko(2") £ Lo ko(2") (1 + €) n
L | || | |
f I 1 I !
hyperbolic elliptic

Depending on the distance between z, 2/, there are different overlaps in
regimes:

— [small distance] If |z — 2’| « n=%/3, the overlap between the hyperbolic
regimes for z and 2z’ is complete, and the increments are fully correlated
(this corresponds to ”late branching” in the BRW tree picture). The elliptic
regime overlaps, but the rotation frequency for z and 2’ is different. One
has correlation only for such £ that |97 — 07 |~' < 6% (this is similar to
the oscilatory phase in the CSE). This gives covariance proportional to
—log |z — 2|
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— [moderate distance] If |z — 2'| » n=%% but |z — 2’| « 1 then the elliptic
regime achieves full decorelation, and one only has correlation from the
hyperbolic reguime. Due to the logarithmic time change (see Exercise 11),
the covariance is again proportional to —log |z — 2/|.

— [large distance] If |z — 2’| is of order 1, there is esssentially no correlation
(covariance of order 1 for variables of variance logn) (this corresponds to
7early branching” in the BRW tree picture).

(In the above, I talk about correlation, but in fact this holds also at the level
of exponential moments.)

These correlation/decorrelation estimates are important at two places:
First, the correlation over short distances allows us to introduce barriers, by
reducing the exponential complexity of the field at given scales. This gives
the upper bound. Second, this also gives the tree-like decorrelation .

Remark 9. We have avoided a neighborhood of z = 0 in these notes. The
reason is that z = 0 implies that there is no hyperbolic regime, and in fact
07 ~ 7 and thus is of order 1 for all £. That is, the recursion, viewed at even
times, essentially linearizes, even if we are at the elliptic regime!

4 Lecture I'V: GBE and Wigner matrices, and their
characteristic polynomial

For the (logarithm of) the determinant of random matrices, Tao-Vu proved
a CLT even for Wigner matrices. In doing so, they first proved it for the
GOE/GUE (using the tri-diagonal representation, see Remark 9. This begs
the question, whether one can transfer some of the GSE results to the Wigner
setup. Our methods in the last lecture are not really appropriate for that,
since the three diagonal representation of Wigner matrices creates dependen-
cies that are hard to control. Instead, we follow [BLZ25], which in turn is
building on [BMP22]. Necessarily, here we will be mostly descriptive.

4.1 GQBE and loop equations

We describe here the main input from [BMP22], which is slightly improved
in [BLZ25]: a joint exponential moment for the log determinant at various
points, when z is in the complex domain but only slightly above the real
line. We focus here on the GSE, although the results apply to more general
potentials, that is to measures

N
dluN()\l,,)\N) _ 1 H |Ak _)\Z|B exp (—BN Z V(Ak)> )

dA;...d\y - E 1<k<ISN
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where Zy = Zn(B) is a normalizing factor. We only use V(z) = 22, and

write p forr the semicircle law of density p(z) = c\V4 — 221, <. Let v be
the kth (out of N') quantiles of the semi-circle law, i.e. {J* p(z)da = k/N. Set

N
Ln(E) = Y log(E - \)) —Nleog (E —z)du(z), (4.1.2)

j=1
which is the logarithm of the characteristic polynomial up to a centering shift.

Theorem 16. /[BLZ25] For any ¢,k > 0 we have

B Re LN(E)
Pl su LN e[l —g14¢] | =1-0(1),
(2+H<Eg2m 2 logN [ ] (1)
Pl S e[l—g 146l | =1-0(1).
(2+H<E22l{ 2 logN [ ] (1)
Further,
B o) N(Ax =) B
F <HNSI£2?¥H)N” 5 Tog N e[l—el+e] ] =1-0(01).

(4.1.3)

Compare with Lecture III!
The main input needed for the proof of Theorem 16 is the following esti-
mate from [BMP22, Remark 2.4]. For z € H, let

N
s(z) = sn(z) = % Z ! m(z) = J’R du(z) (4.1.4)
k=1

e — 2 T —z

Theorem 17. There exist constants C,c,7) > 0 such that for any ¢ = 1,
N=2landz=E+inwith0O<n<nand —2—-n< E <2+, we have

(Cq)®?
(Nnm)a

The proof of Theorem 17 follows a well trodden route, going back to Johans-
son [J98], with sharpening based on recursing the estimate while decreasing
the imaginary part of z. As we will see, the fact that in the right hand side of
(4.1.5) one has the term q4/? (and not ¢?) is crucial, since we need to apply
it with ¢ of the order of log N and n ~ log N/N.

We now describe the proof of Theorem 16, starting with the upper bound.
By monotonicity of n — log|E +in — A|, n > 0, and the estimate {log |E —
Al dp(A) = (log |E +ie — A] dp()) + O(e) uniformly in E, there exists a fixed
C > 0 such that

E[[s(z) —m(z)|"] < (4.1.5)
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sup RLN(E) < sup RLy (E + 1) +C. (4.1.6)
Ee[—2+k,2—k] Ee[-2+k,2—K] N

Let J = [-2+#k,2—r] n N717¢Z, where ¢ > 0 is an arbitrary small constant.
For any F € [—2+ k,2 — k], let E’ be the closest point in J, z = E + ﬁ and
z' = E' + 4. Then from log(1 + ¢) = € + O(£?) and recalling the definition
of s(z) from (4.1.4), this implies

RLy(2)—RLN(2") = O((z—2" )N (s(z")—m(2)))+O ((z —2')? Z |z’—1)\1|2> +0(1)

= N°O(|s(z") — m(2")|) + N"20(3s(2')) + O(1).  (4.1.7)
Next, Theorem 17 (with ¢ = log N) together with Markov’s inequality gives

. 7/10\ < p7—200
quglf;{gﬁﬂﬂ”(h(z) m(z)| > (log N) )\N . (4.1.8)

for large enough N. Together with the boundedness of m on compact sets of
C, this gives

P (aE’ e J:|s(z")] = (log N)7/10) < N7100, (4.1.9)

We conclude that

P ( sup  RLy(E) <supRLy(E +iN ') + (log N)9/10) > 1-O(N 1),

Ee[—2+k,2—K] EeJ
(4.1.10)
We now control the increments of Ly along the line segment {Rz =
E,N~7! <3z < 19} using Markov’s inequality, where we set

(log N)1000
M= —">

N
throughout this section. For E € J, we denote z = z(E) = E + i/N and

zZ = FE +ing. Then for any fixed € > 0 and p € N, we have by a union bound
that

(4.1.11)

P(AE € J: RLn(2) > RLy(3) + ¢log N)
< CN'"(clog N) 2

Xmax <LN1 o E H(N(S —m)(E +in;)) H (N(s —m)(F + iﬁi))) dm

E
e’ i=1 i=p+1

We now suppose that p = O(N(loglog N)~!). Theorem 17 gives, for E €
[—2 + k,2 — K],

NN d’r]gp.

(4.1.12)
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(Cp)p/2 + OPe N < (Cp)p/Q’

E[l(s —m)(B +in)l") < "5 < (4.1.13)

where the latter inequality holds because we assume 1 < 1. Equation (4.1.13)
and Holder’s inequality give

H|Ns— )(E + in;)| H (s —m)(E + in;)] Cppn—

i=p+1 i=1 i
(4.1.14)
Inserting the previous display in (4.1.12), we obtain

N1+¢(Cp)? (log log N)*

(elog N)2p
(Ap)P(loglog N )P < N—100
(log N)» = ’

P(AE e J:RLy(z) > RLy(Z) +clog N) <

< Nite (4.1.15)

where A is a new constant depending on C' and ¢, and the latter inequality

is obtained by setting p = B 1ogjlog ~ for sufficiently large B. We note that for

the above reasoning, the Gaussian-like moment growth (C¢)%? in Theorem

17 is crucial (as opposed to an exponential-like growth of (Cq)?) .
Moreover, from Markov’s inequality and an exponential moment compu-

tation at a high enough imaginary part ng, for any fixed A > 0 we have

P <3E €J:RLy(Z) > (1+ 5)\/glog N)

— 2 ~
< Nltee >\(1+5)\/;10gN rga}(IE[emL,\,(z)]
€

o(7,0,5)
+1(X,0,2)—X(1+€) 210 N
< C N maxe 2 ul )7 log
EeJ

for appropriate o and p satisfying p(A,0,2) = O(1) and o(A,0,2) = (1 +
0(1)))\2% uniformly in N, £ € J, and A in any compact subset of R,.
Choosing A = /2 this implies that

P <3E €J:RLy(2) > (1 + 5)\/glog N) L e~ (Zeme=()log N _,

(4.1.16)
The lower bound uses smoothing of the log determinant by moving into
the complex plane, the evaluation of exponential moments, and a GMC
method as in Lambert’s lectures. We do not provide further details, except
to note that this method cannot give the loglog N correction as in Lecture
I
Finally, the proof of (4.1.3) is just a restatement of the control of the
imaginary part of the log-determinant, which is proved in a way similar to
the real part.
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4.2 Wigner matrices

We are now ready for the universality results.

Theorem 18. [BLZ25] Let H be a symmetric Wigner matriz and set dv(z) =
psc(x) dx in (4.1.2). Then for any e,k > 0 we have

RGLN(E) -
Pl sup — T e[l—cl4e]]=1-(1),
(|E|<2m V2log N [ ]> M
Im Ly (E) .
Pl sup — T e[l—e,14e]]=1-(1).
(|E|<2K V2log N [ ]) M

The same result holds for Hermitian Wigner matrices after replacing the /2
factors with 1.

Remark 10. For the imaginary part of the logarithm, a similar estimate on
the minimum holds, by considering the sup for the Wigner matrix —H:

P( o ImLn(E)

— M e [—1—e,—14¢] ) =1-(1).
|B[<2—n \/2log N [ ]> M

No such statement holds for the real part, as inf|pj<o_. Re Ly(E) = —oo.

For Gaussian-divisible Wigner matrices, universality actually holds up to
tightness.

Theorem 19. Let H be a Gaussian-divisible symmetric Wigner matriz, that
is H=1/1—¢e2H'+¢G, where H' is a Wigner matriz independent of a GOE
matriz G. Then for any k > 0, there exists a coupling between H and a GOE
such that the following sequence of random variables is tight:

( sup RLE(E) - sup ?TEL]%OE(E)> .
|B|<2—k |B|<2—k N=1

In particular, in view of the results in Lecture 3, the loglog correction term
is as in the GOE case!

The idea behind the proof of Theorems 18 and 19, like that of many
universality results, is to first provide the proof for a modified (Gaussian
divisible with £ goind to 0 with N) model, and then use moment matching
to get rid of the regularization. We only discuss briefly the first part, which
builds strongly on [B22], which in turns builds on the dynamical approach of
Erdés, Schlein and Yau, and on [EYY12].

Before discussing the proof, we need one more a-priori preliminary rigidity
result.

Theorem 20. [EYY12] Let H be a Wigner matriz. Then there exists Cy > 0
such that the following claims hold.
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1. There exists ¢ > 0 such that

P (U {|mN(z) —m(z)| = ;&}) < e Lexp (—¢°) (4.2.17)

zeH
and
Sm(z) | ¥ -1
P Gis — 045 > —_ < —°).
(gﬂ{iﬁ?ﬁv]ﬂ 1(2) =85 > o0 | =5 +N77}> ¢ Vexp (—¢°)

(4.2.18)
2. There exists ¢ > 0 such that, defining k = min(k, N +1 — k),

P (Ek € [LNT : e — e = gpif%N*%) <clexp(—¢9).  (4.2.19)

We next provide a quantitative relaxation of the eigenvalues (Proposition
1), which is a variant of [B22, Theorem 3.1] and relies on this work. Let H
be a Wigner matrix. We first recall the definition of Dyson Brownian motion
with initial data Hy = H.

Let B be a symmetric matrix such that the entries {B;;};<; and Bu/ﬁ
are independent standard Brownian motions, and B;; = Bj;. Consider the
matrix Ornstein—Uhlenbeck process

1 1

dH, = —dB, — - H, dt. 4.2.20
t W t ) t ( )

If the eigenvalues of H, are distinct, it is well known that the eigenvalues
(A1(8), A2(t), ..., An(t)) of Hy are given by the strong solution of the system
of stochastic differential equations

_ dB 1 1 1
Ay, = i <N > Sy 2)\k) dt, (4.2.21)

L#k

where the {84}, are independent, standard Brownian motions. (See, for
example, [AGZ10, Lemma 4.3.3].)

We now let (u1(t), ua(t), ..., un(t)) be a strong solution of the same SDE
(4.2.21) with initial condition (u1, iz, . .., un), where {ug}2_, are the eigen-
values of a GOE:

d B 1 1 1
dpp = —=+ | — Sk | di.
VN (N ;C R VA
For any z € H, we define

ez V22— 4) + et (2 — V22— 1)

2 Y

(4.2.22)

Zt
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where /22 — 4 is defined using a branch cut in the segment [—2,2]. For z € R,
we define z; = lim, o+ (2 +in);. Set

¢ = exp (Co(loglog N)Q) , (4.2.23)

The following key estimate on the difference between A(t) and pu(t) follows
from the main result in [B22]. Let L and LS°F denote the observable (4.1.2)
defined using the eigenvalues of H and GOE, respectively.

Proposition 1. Fiz k,e > 0. Then for any D > 0 there exist C(e,k, D) > 0
such that for allt € (¢©/N,1), E € [-2+ K,2— k], and k € [[1, N] such that
Vi € [-2+ K,2 — K], we have

SLE(E,) — SLSOE(E,) N max(|E — i), N 71
P(‘A’“(t)_“’“(t)_ NImm(E,) ~ NZ

)) <CN-D.
(4.2.24)

Proof. The key to the proof is [B22, Theorem 3.1], which states that there
exists C(D) > 0 such that

P (‘(Ak(t) — k(1)) — ﬁk(t)‘ > ]@f%) <CN P (4.2.25)

for t € (¢¢/N, 1), where we define

) MO = (). AL = (.

(4.2.26)
Moreover, from [B22, Lemma 3.4], for all vy, v € [-2 + k,2 — k] we have

h(t) = NImm (%) ZIm(

- %

k—1t
P (|uk(t) — (1) = C<p| e |> <CN-P. (4.2.27)
Let E € [-2+k,2—k] be given, and fix some ¢ = £(E, N) such that |E—~,| =
minep, N7 | £ — ;|- The definition of 7y gives

[k — €] < CNly = el < ON (|9 = E| +|E = 3]) < 20N|y — El, (4.2.28)

for some constant C' > 0. Then equations (4.2.25) and (4.2.27) together with
the previous line imply that

P (([Out) - () —mat| > LB D) o,
(4.2.29)

where we increased C' if necessary and used N¢ > ¢ for sufficiently large NV

o7 H _ o7 GOE
(depending on ¢). We therefore just need to bound ‘ JLN(ﬁtI)m T‘;fgt) E) _ g, (t)‘ .

‘We write
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SLY(E,) — SLSOR(B,) 1 - A;(0) — 11;(0)
N NImm(]é\i) ~ NImm(E,) J; (H 11;(0) — E, )
(4.2.30)

On the rigidity event from (4.2.19), a Taylor expansion of the logarithm gives,
with overwhelming probability,

o 1+ MO0 o 8 MO0 )

¢ OE = ~E | )
(4.2.31)

For the error term, on the rigidity event from (4.2.19) we can write

N 2 N

A;(0 i(0 Co? 1 SE 2 2

MO =wOF G071 sn  SE OOy my < 9

= Nt N & (0) =B~ Nt Nt
(4.2.32)

where we used ¢t < SE; < Ct to bound Immy(E;) < C using (4.2.17).
This estimate on Im my (F;) also shows that the second term in (4.2.31) is
negligible when inserted in (4.2.30).

Finally, we need to bound

L o MO =0
S S0 E

For the first sum, from |Imm(E;) — Imm(v})| < C|E: — 4| < CN71,
Imm(E;) = ¢, and Imm(yf) > ¢, on the rigidity event from (4.2.19) we
obtain

1i|x<0)—u«<o>|( N )Im B Y.
N ST RS m(E)  Smlyy) ) #(0) - I — Et|2
On the same rigidity event, the second sum is bounded by
E, — 1 C
Z 1030 fim o Pt v 2w * ) < v
We have thus obtained
‘QL%(E” —SIROHE) (t )‘ oL (4.2.33)

NImm(Ey)

which concludes the proof.
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The relaxation of Ly is an a priori more intricate problem as RLy de-
pends on the full spectrum, however the analysis folows the same lines, with
appropriate discretizations and union bounds. The details are in [BLZ25].
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