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Abstract. We consider random hermitian matrices in which distant above-
diagonal entries are independent but nearby entries may be correlated. We
find the limit of the empirical distribution of eigenvalues by combinatorial
methods. We also prove that the limit has algebraic Stieltjes transform by an
argument based on dimension theory of noetherian local rings.

1. Introduction

Study of the empirical distribution of eigenvalues of random hermitian (or real
symmetric) matrices has a long history, starting with the seminal work of Wigner
[Wig55] and Wishart [Wis28]. Except in cases where the joint distribution of eigen-
values is explicitly known, most results available are asymptotic in nature and based
on one of the following approaches: (i) the moment method, i. e., evaluation of ex-
pectations of traces of powers of the matrix; (ii) appropriate recursions for the
resolvant, as introduced in [PM67]; or (iii) the free probability method (especially
the notion of asymptotic freeness) originating with Voiculescu [Voi91]. A good re-
view of the first two approaches can be found in [Ba99]. For the third, see [Voi00],
and for a somewhat more combinatorial perspective, [Sp98]. These approaches
have been extended to situations in which the matrix analyzed neither possesses
i.i.d. entries above the diagonal (as in the Wigner case) nor is it the product of
matrices with i.i.d. entries (as in the Wishart case). We mention in particular the
papers [MPK92], [KKP96], [Sh96] and [Gu02] for results pertaining to the model
of “random band matrices”, all with independent above-diagonal entries.

In our recent work [AZ06] we studied convergence of the empirical distribution
of eigenvalues of random band matrices, and developed a combinatorial approach,
based on the moment method, to identify the limit (and also to provide central
limit theorems for linear statistics). Here we develop the method further to handle
a class of matrices with local dependence among entries (we postpone the precise
definition of the class to Section 2). To each random matrix of the class we associate
a random band matrix with the same limit of empirical distribution of eigenvalues
by a process of “Fourier transformation”, thus making it possible to describe the
limit in terms of our previous work (see Theorem 2.5). We also prove that the
Stieltjes transform of the limit is algebraic (see Theorem 2.6), doing so by a general
“soft” (i. e., nonconstructive) method based on the theory of noetherian local rings
(see Theorem 6.2) which ought to be applicable to many more random matrix
problems.
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To get the flavor of our results, the reader should imagine a Wigner matrix (i.e.,
an N -by-N real symmetric random matrix with i.i.d. above-diagonal entries, each
of mean 0 and variance 1/N), on which a local “filtering” operation is performed:
each entry not near the diagonal or an edge is replaced by half the sum of its
four neighbors to northeast, southeast, southwest and northwest. At the end of
Section 3 (Theorem 2.5 taken for granted) we analyze the “(NE+SE+SW+NW)-
filtered Wigner matrix” described above. We find that the limit measure is the free
multiplicative convolution of the semicircle law (density ∝ 1|x|<2

√
4 − x2) and the

arcsine law (density ∝ 10<x<2/
√

x(2 − x)). The appearance in this example of a
free multiplicative convolution has a simple explanation (see Proposition 3.6). We
also write down the quartic equation satisfied by the Stieltjes transform of the limit
measure.

Recently other authors have considered the empirical distribution of eigenvalues
for matrices with dependent entries, see [GoT05],[Ch05],[SSB05]. Their class of
models does not overlap significantly with ours. In particular, in all these works
and unlike in our model, the limit of the empirical measure is always the same as
that of a semicircle law multiplied by a random or deterministic constant.

Closest to our work is the recent paper by [HLN05], that builds upon earlier work
by [BDM96] and [Gi01]. They consider Gram matrices of the form XNX

∗
N where

XN is a sequence of (non-symmetric) Gaussian matrices obtained by applying a
filtering operation to a matrix with (complex) Gaussian independent entries. They
also consider the case (XN +AN )(XN +AN )∗ with AN deterministic and Toeplitz.
The Gaussian assumption allows them to directly approximate the matrix XN by a
unitary transformation of a Gaussian matrix with independent (but not identically
distributed) entries, to which the results of [Gi01] and [AZ06] apply. In particular,
they do not need an assumption on the support of the filter. Unlike the present
work, the approach in [HLN05] and [BDM96] is based on studying resolvants, rather
than moments.

We mention now motivation from electrical engineering. The analysis of the
limiting empirical distribution of eigenvalues of random matrices has recently played
an important role in the analysis of communication systems, see [TV04] for an
extensive review. In particular, when studying multi-antenna systems, one often
makes the (unrealistic) assumption that gains between different pairs of antennas
are uncorrelated. The models studied in this work would allow correlation between
neighboring antenna pairs. We do not develop this application further here.

The structure of the paper is as follows. In the next section we describe the
class of matrices we treat, and state our main results, namely Theorem 2.5 (assert-
ing a law of large numbers) and Theorem 2.6 (asserting algebraicity of a Stieltjes
transform). In Section 3 we discuss the limit measure in detail, and in particular
write down algebro-integral equations for its Stieltjes transform, which we call color
equations. Section 4 provides a computation of limits of traces of powers of the ma-
trices under consideration. In Section 5 we complete the proof of Theorem 2.5 by
a variance computation. In Section 6 we set up the algebraic machinery needed to
prove Theorem 2.6. We finish proving the theorem in Section 7 by analyzing the
color equations.
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2. Formulation of the main result

After defining a class of kernels in §2.1, we define in §2.2 the class of matrices
dealt with in this paper and in §2.3 describe the subclass of filtered Wigner matrices.
To each kernel we associate a measure in §2.4. Finally, we state our main results,
Theorems 2.5 and 2.6.

2.1. Kernels.

2.1.1. Color space (motivation). As in [AZ06], the spatial change in the variance
structure of the entries of a random matrix is captured by an auxiliary variable,
which we call “color”. The difference between the derivation in [AZ06] and the
present paper is that we append to color space an additional variable (related to
the local averaging mentioned in the introduction), that one should think of as a
Fourier variable. The precise definition follows.

2.1.2. Color space (formal definition). Let C = [0, 1] × S1, where S1 is the unit
circle in the complex plane. We call C color space. We declare C to be a probability
space under the product of uniform probability measures on [0, 1] and S1, denoted
P . We say that a C-valued random variable is uniformly distributed if its law is P .
In the sequel, all Lp(C) (resp., Lp(C ×C)) spaces, p ≥ 1, are taken with respect to
the measure P (resp., P × P ).

2.1.3. The kernel s. We fix a kernel

s : C × C → R

which will govern the local covariance structure of our random matrix model. We
impose on s the following conditions.

Assumption 2.1.4.

(I) s is a nonnegative symmetric function, i.e.

s(c, c′) = s(c′, c) ≥ 0.

(II) s has a Fourier expansion

s(c, c′) =
∑

i,j∈Z

sij(x, y)ξ
iηj (c = (x, ξ), c′ = (y, η))

where all but finitely many of the coefficients

sij : [0, 1]× [0, 1] → C

vanish identically.

(III) There is a finite partition I of [0, 1] into subintervals of positive length
such that every coefficient function sij is constant on every set of the
form I × J with I, J ∈ I.

(IV) s is nondegenerate: ‖s‖L1(C×C) > 0.
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2.1.5. The sets Q
(N)
K . For each N ∈ N (here and below N denotes the set of positive

integers) and K > 0, we define

Q
(N)
K =

{

i ∈ {1, . . . , N}
∣

∣

∣

∣

min
x∈∂I

|i−Nx| > K

}

where ∂I ⊂ [0, 1] is the finite set consisting of all endpoints of all intervals belonging
to the family I.

2.1.6. Remarks. We have

(1) s̄ij = s−i,−j , sji(y, x) = sij(x, y)

because s is real-valued and symmetric. Assumptions (I,II,III) imply that

(2) 0 ≤ s ≤ ‖s‖L∞(C×C) <∞

holds everywhere (not just P × P -a.e.).

2.2. The model. For each N ∈ N, let

X(N) = [X
(N)
ij ]Ni,j=1

be an N -by-N random hermitian matrix. We impose the following conditions,
where s satisfies Assumption 2.1.4.

Assumption 2.2.1.

(I) (a) ∀N ∈ N ∀i, j ∈ {1, . . . , N} EX
(N)
ij = 0.

(b) ∀k ∈ N
∞

sup
N=1

N
max
i,j=1

E|X(N)
ij |k <∞.

(II) There exists K > 0 such that for all N ∈ N, the following hold:

(a) ∀i, j ∈ Z max(|i|, |j|) > K ⇒ sij ≡ 0.

(b) For all nonempty subsets

A,B ⊂ {(i, j) ∈ {1, . . . , N}2 | 1 ≤ i ≤ j ≤ N}

such that

min
(i,j)∈A

min
(k,ℓ)∈B

max(|i− k|, |j − ℓ|) > K,

the σ-fields

σ({X(N)
ij | (i, j) ∈ A}), σ({X(N)

kℓ | (k, ℓ) ∈ B})

are independent.

(c) ∀i, j, k, ℓ ∈ Q
(N)
K s.t. min(j − i, ℓ− k) > K

EX
(N)
ij X

(N)

kℓ = si−k,ℓ−j(i/N, j/N).
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2.2.2. The empirical distribution of eigenvalues. Let

λ
(N)
1 ≤ λ

(N)
2 ≤ . . . ≤ λ

(N)
N

denote the eigenvalues of the hermitian matrix X(N)/
√
N , and let

L(N) = N−1
N
∑

i=1

δ
λ
(N)
i

denote the corresponding empirical distribution of the eigenvalues. We are con-
cerned with the limiting behavior of L(N) as N → ∞.

2.2.3. Remarks. (i) The existence of K satisfying Assumption 2.2.1(IIa) is assured
by Assumption 2.1.4(IIb). (ii) Assumption 2.2.1(IIb) says that the on-or-above di-
agonal entries of X(N) form a finite-range dependent random field, with K a bound
for the range of dependence. This explains the title of the paper. (iii) Assump-
tion 2.2.1(IIc) fixes variances at each site and also short-range local correlations
for sites in sufficiently general position. (iv) None of our assumptions rule out the
possibility that all matrices X(N) are real. In other words, we can handle hermitian
and real symmetric cases uniformly under Assumption 2.2.1. (v) The relations (15),
which are equivalent to the reality and symmetry of the kernel s, play a key role in
our analysis of the limiting behavior of L(N). New methods would be needed were
the reality and symmetry conditions to be relaxed.

2.2.4. Kernels of pure spatial type. Let s : [0, 1] × [0, 1] → R be a kernel. If the
kernel s̃ : C × C → R defined by the formula s̃((x, ξ), (y, η)) = s(x, y) satisfies
Assumption 2.1.4, then by abuse of terminology we say that s is a kernel of pure
spatial type satisfying Assumption 2.1.4, and with the evident modification of As-
sumption 2.2.1(IIc) we can use s to govern the covariance structure of our model.
In the special case of kernels of pure spatial type our model essentially contains the
model of [AZ06] in the special case in which color space is a finite set.

2.2.5. Kernels of pure Fourier type. Let s : S1 × S1 → R be a kernel. If the kernel
s̃ : C × C → R defined by the formula s̃((x, ξ), (y, η)) = s(ξ, η) satisfies Assump-
tion 2.1.4 with I = {[0, 1]}, then by abuse of terminology we say that s is a kernel of
pure Fourier type satisfying Assumption 2.1.4, and with the evident modification of
Assumption 2.2.1(IIc) we can use s to govern the covariance structure of our model.
We suggest that the reader focus on the pure Fourier case when first approaching
this paper because little would be lost in terms of grasping the main ideas. The
main reason for us to work at a higher level of generality is to make sure that our
theory handles not only “filtered Wigner matrices” (for which |I| = 1) but also
“filtered Wishart matrices” (for which |I| = 2). (Here and below |S| denotes the
cardinality of a set S.) We then might as well allow |I| > 2 as a possibility because
there is no gain in simplicity by excluding it.

2.3. Filtered Wigner matrices. We describe now a natural class of random ma-
trices fitting into the framework of Assumptions 2.1.4 and 2.2.1. This class should
be considered the main motivation for the paper. Members of the class arise by
“filtering” Wigner matrices. The corresponding kernels are of pure Fourier type
and depend in a simple way on the “filter”.
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2.3.1. Wigner matrices. Let

{Yij}−∞<i<j<∞

be an i.i.d. family of real random variables. Assume that Y01 has absolute moments
of all orders. Assume that EY01 = 0 and EY 2

01 = 1. Put

Yii = 0 for −∞ < i <∞, Yij = Yji for −∞ < j < i <∞.

Then

(3) Yij = Yji, EYij = 0, EYijYkℓ = (δikδjℓ + δiℓδjk)(1 − δij)(1 − δkℓ)

for all i, j, k, ℓ ∈ Z. Let Y (N) = [Y
(N)
ij ]Ni,j=1 be the N -by-N matrix with entries Yij .

Then Y (N)/
√
N (in the terminology of [AZ06]) is a Wigner matrix, and hence the

empirical distribution of its eigenvalues for N → ∞ tends to the semicircle law.
In particular, if the Yij are standard normal random variables and one makes a

suitable adjustment to the diagonal of Y (N)/
√
N , the result is a Wigner matrix in

the standard sense, i.e., a member of the Gaussian orthogonal ensemble.

2.3.2. The filter, its Fourier transform, and associated kernel. Let a filter

h : Z × Z → R

be given, with H denoting its Fourier transform, that is

H(ξ, η) =
∑

i,j∈Z

h(i, j)ξiηj (ξ, η ∈ S1).

We assume that h does not vanish identically. We assume that there exists K > 0
such that

(4) max(|i|, |j|) > K/2 ⇒ h(i, j) = 0,

and hence H is well-defined. We assume that h satisfies the symmetry condition

(5) h(−i,−j) = h(j, i),

which implies the symmetry condition

H(ξ, η) = H(η, ξ).

Put

s(ξ, η) = |H(ξ, η)|2 =
∑

i∈Z

∑

j∈Z

sijξ
iηj (sij ∈ R).

Then s : S1 × S1 → R is a kernel of pure Fourier type satisfying Assumption 2.1.4.
In particular, ‖s‖L1(C×C) = ‖h‖2

L2(Z×Z) > 0.

2.3.3. Filtered Wigner matrices (definition). For i, j ∈ {1, . . . , N} set

X
(N)
ij =

N
∑

k=1

N
∑

ℓ=1

Ykℓh(i− k, ℓ− j),

thus defining an N -by-N random matrix X(N) which in view of the symmetry (5)

is real symmetric. We call X(N)/
√
N a filtered Wigner matrix, with filter h. We

think of X(N)/
√
N as the result of filtering the Wigner matrix Y (N)/

√
N by h.
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2.3.4. Local covariance structure of X(N). From (3) and (4) we deduce that

(6) i, j, k, ℓ ∈ Q
(N)
K & min(j − i, ℓ− k) > K ⇒ EX

(N)
ij X

(N)
kℓ = si−k,ℓ−j ,

after a straightforward (extremely tedious) calculation. This is the main point in
verifying that the real symmetric random matrices X(N) satisfy Assumption 2.2.1
with respect to the kernel s. The remaining details needed to check Assump-
tion 2.2.1 are easy to supply. Thus we can put filtered Wigner matrices into the
framework of our model.

2.3.5. The (NE+SE+SW+NW)-filtered Wigner matrix. Taking

h = (1/2)1{(1,−1),(1,1),(−1,1),(−1,−1)}, and hence s(eiθ1 , eiθ2) = 4 cos2 θ1 cos2 θ2,

we get a precisely defined version of the model mentioned in the introduction, which
presently we will analyze in detail. Note that with θ uniformly distributed in [0, 2π),

the law of 2 cos2 θ has density ∝ 10<x<2/
√

x(2 − x).

2.3.6. Remark. In [AZ06] we handled Wishart matrices Z∗Z (and more general
matrices formed from matrices Z with independent but perhaps not i.i.d. entries)

in terms of band-type matrices

[

0 Z
Z∗ 0

]

. A similar trick in the present setting

puts “filtered Wishart matrices” into the framework of our model. For the kernels
arising in that connection, the associated partition I consists of two intervals. We
do not discuss the Wishart case further here.

2.4. The measure µs. We make the last preparation to state our main results.
Let s be a kernel satisfying Assumption 2.1.4. For each positive integer N , let

C(N) = {c(N)
1 , . . . , c

(N)
N2 } ⊂ C

be the set of pairs (x, ξ) ∈ C where x ∈ [0, 1)∩ 1
N Z and ξN = 1. Then the empirical

distribution 1
N2

∑

c∈C(N) δc tends weakly as N → ∞ to the uniform probability

measure P . Let C(∞) be the union of the sets C(N). Let

{Ỹe}e⊂C(∞) s.t. |e|=1,2

be an i.i.d. family of standard normal (mean 0 and variance 1) random variables.

(Recall from §2.2.5 that |S| denotes the cardinality of S.) Let X̃(N) be the N2-by-
N2 real symmetric random matrix with entries

X̃
(N)
ij = 2δij/2

√

s(c
(N)
i , c

(N)
j )Ỹ

{c
(N)
i ,c

(N)
j }

.

Let λ̃
(N)
1 ≤ · · · ≤ λ̃

(N)
N2 be the eigenvalues of X̃(N)/N and let L̃(N) = 1

N2

∑N2

i=1 δλ̃(N)
i

be the empirical distribution of the eigenvalues. By [AZ06, Thm. 3.2] the empir-

ical distribution L̃(N) tends weakly in probability as N → ∞ to a limit µs with
bounded support. (The strange-looking factor 2δij/2 in the definition of X̃(N) could
be dropped without changing the limit of L(N). More generally, within the the-
ory of [AZ06], one has many ways to construct models with limiting measure µs.
We made our concrete choice to simplify the proof of Proposition 3.6 below.) In
Section 3 we will provide a combinatorial description of the moments of µs and
write down algebro-integral equations (which we call color equations) satisfied by
the Stieltjes transform of µs and certain auxiliary functions.
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The following are our main results. In these results we fix a kernel s satisfying
Assumption 2.1.4 and a family [X(N)]∞N=1 of random hermitian matrices satisfying

Assumption 2.2.1 with respect to s. As defined in §2.2.2, let L(N) be the empirical
distribution of the eigenvalues of X(N)/

√
N . Let µ = µs be the measure associated

to s by the procedure of §2.4.

Theorem 2.5. L(N) converges weakly in probability to µ.

Theorem 2.6. The Stieltjes transform S(λ) =
∫ µ(dx)

λ−x is an algebraic function

of λ, i. e., there exists some not-identically-vanishing polynomial F (X,Y ) in two
variables with complex coefficients such that F (λ, S(λ)) vanishes for all complex
numbers λ not in the support of µ.

To prove Theorem 2.5 we first prove “convergence in moments” in Section 4, and
then finish the proof in Section 5 by considering variances. To prove Theorem 2.6
we first set up a general method for proving algebraicity in Section 6, and then
finish the proof in Section 7 by analyzing the color equations. The method of proof
does not yield an explicit polynomial F (X,Y ).

We remark that the general method of Section 6 ought to be applicable to many
more random matrix problems. For example, it applies to the Stieltjes transforms
of the limiting measures arising from the model of [AZ06] in the case of a finite
color space, yielding algebraicity in all those cases.

3. The moments and Stieltjes transform of µ

We fix a kernel s satisfying Assumption 2.1.4 and put µ = µs. We provide a
detailed description of the moments and Stieltjes transform of µ. We also introduce
combinatorial tools needed throughout the paper.

3.1. Quick review of key combinatorial notions.

3.1.1. Graphs. For us a graph G = (V,E) consists by definition of a finite set V
of vertices and a set E of edges, where every element of E is a subset of V of
cardinality 1 or 2. In other words, we are dealing here with graphs (i) which have
finitely many vertices, (ii) which have unoriented edges, (iii) in which a vertex may
be joined to itself by an edge, but (iv) in which no two vertices may be joined by
more than one edge. A graph G is a tree if G is connected and |V | = |E| + 1. We
emphasize that every edge of a tree joins two distinct vertices—it is not allowed for
a vertex of a tree to be joined to itself by an edge.

3.1.2. Set partitions. We say that a set π ⊂ 2{1,...,k} is a set-partition of k if π is a
disjoint family of nonempty sets with union equal to {1, . . . , k}. The elements of π
are called the parts of π. For each i ∈ {1, . . . , k}, let π(i) be the part of π to which
i belongs. For convenience we extend i 7→ π(i) to a periodic function on Z by the
rule π(i) = π(i+ k).

3.1.3. The graph associated to a set partition. To each set partition π of k there is
canonically associated a graph Gπ = (Vπ , Eπ), where Vπ = π and

Eπ = {{π(i), π(i+ 1)} | i = 1, . . . , k}.
By construction Gπ comes canonically equipped with a walk, namely

π(1), . . . , π(k), π(k + 1) = π(1),

whence in particular it follows that Gπ is connected.
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3.1.4. Wigner set partitions. We say that a set partition π of k is a Wigner set
partition if the corresponding graph Gπ has k/2 + 1 vertices and k/2 edges, in
which case Gπ , since connected, is a tree. We denote the set of such π by Wk. For
k odd the set Wk is empty. For k = 2ℓ the set Wk is canonically in bijection with
the set of rooted planar trees with ℓ+ 1 nodes and hence, as is well-known [St99],
the cardinality of Wk is the Catalan number 1

ℓ+1 (2ℓ
ℓ ).

Lemma 3.1.5. Fix π ∈ Wk. (i) For each i ∈ {1, . . . , k} we have π(i) 6= π(i + 1).
(ii) For each e ∈ Eπ the equation e = {π(i), π(i + 1)} has exactly two solutions
i ∈ {1, . . . , k}, say i1 and i2, and moreover π(i1) 6= π(i2). (iii) For each
i ∈ {1, . . . , k} we have {π(i), π(i + 1)} = {π(j − 1), π(j)}, where j is the least
of the integers ℓ > i such that π(i) = π(ℓ).

Proof. The lemma formalizes facts about the tree Gπ and the canonical walk on it
which are clear from a graph-theoretic point of view. (i) No edge of Gπ connects
a vertex to itself. (ii) The canonical walk on Gπ visits each edge of Gπ exactly
twice. More precisely, the canonical walk traverses each edge of Gπ exactly once in
each direction. (iii) The canonical walk on Gπ extended by periodicity returns to
a given vertex on the same edge by which it departed. �

3.1.6. Tree integrals. Let {κA} be an i.i.d. family of C-valued uniformly distributed
random variables indexed by finite nonempty sets of positive integers. Expectations
with respect to these variables are denoted by E. For each π ∈ Wk we define a
bounded random variable by the formula

Mπ =
∏

{A,B}∈Eπ

s(κA, κB),

which is well-defined on account of the symmetry s(c, c′) = s(c′, c). We call the
expectation EMπ a tree integral.

Proposition 3.2 (Combinatorial description of the moments of µ). We have

(7) 〈µ, xk〉 =
∑

π∈Wk

EMπ

for every integer k > 0.

The proposition is essentially just a special case of [AZ06, Thm. 3.2], but a fair
amount of explanation is needed because the set up in this paper is (superficially)
incompatible with that of [AZ06]—here we emphasize set partitions, whereas in
[AZ06] we emphasized “words” and “spelling”. We can immediately reduce the
proposition to the following technical lemma. The lemma is slightly more detailed
than needed for the proof of the proposition—part (ii) will be needed for the deriva-
tion of algebro-integral equations for the Stieltjes transform of µ.

Lemma 3.2.1. Put A = 2‖s‖1/2
L∞(C×C). (i) There exists a unique system

{Φn,Ψn}n∈N of functions in L∞(C) such that

(8) Ψn(c) =

∫

s(c, c′)Φn(c′)P (dc′)

holds P -a.e. for every n and there holds an identity

(9)

∞
∑

n=1

Φnt
n = t

(

1 − t

∞
∑

n=1

Ψnt
n

)−1
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of formal power series in t with coefficients in L∞(C). (ii) The bounds

(10) 0 ≤ Φn ≤ An−1, 0 ≤ Ψn ≤ An+1/4

hold P -a.e. for every n. (iii) The formula

(11) 〈P,Φk+1〉 =
∑

π∈Wk

EMπ

holds for every integer k > 0.

Proof of the proposition granting the lemma. According [AZ06, Lemma 3.2] (tak-
ing there σ = P , D = 0, and s(2) = s), there exists a unique probability measure on
the real line with kth moment 〈P,Φk+1〉 for every k ≥ 0. That measure according
to [AZ06, Thm. 3.2] is none other than µ. �

Plan for the proof of the lemma. Part (i) of the lemma is nothing but an inductive
definition of Φn and Ψn. So only parts (ii,iii) require proof. In principle, part (iii)
follows from [AZ06, Lemmas 6.3 and 6.4], but because of the incompatibility of set-
ups noted above, those lemmas cannot be directly applied here—some amplification
is needed. Also part (ii) is most easily explained from from the point of view of
[AZ06, loc. cit.] So, after recalling in §3.3 the needed background from [AZ06], we
lightly sketch in §3.4 a proof of parts (ii,iii) of the lemma.

3.3. The “verbal” approach. We briefly recall the point of view of [AZ06] and
compare it to the present one. The material reviewed here will be used in a sub-
stantial way only in Section 3, not in later sections of the paper.

3.3.1. Words. We fix a set of letters and define a word to be a finite nonempty
sequence w = α1 · · ·αk of letters. We say that words w = α1 · · ·αk and x = β1 · · ·βℓ

are equivalent if k = ℓ (the words are the same length) and there exists a one-to-one-
correspondence ϕ : {αi} → {βj} such that ϕ(αi) = βi for i = 1, . . . k (each word
codes to the other under a simple substitution cipher). Each word w = α1 · · ·αk of
length k gives rise naturally to a set partition of k, namely the set of equivalence
classes for the equivalence relation i ∼ j ⇔ αi = αj . Two words are equivalent if
and only if they have the same length and give rise to the same set partition. The
upshot is that speaking of equivalence classes of words is equivalent to speaking of
set partitions.

3.3.2. Wigner words. Let w be a word of at least two letters with same first and
last letter, and let w′ be the word obtained by dropping the last letter of w. The
word w is a Wigner word in the sense of [AZ06] if and only if the set partition
associated to w′ is a Wigner set partition in the sense of this paper. In [AZ06]
we also declared every one-letter word to be a Wigner word. The Wigner words
have a simple inductive characterization [AZ06, Prop. 4.5 and §4.7] which is not
so convenient to state in the set partition language. To wit, a word w is a Wigner
word if and only if the following conditions hold:

• The first and last letters of w are the same.
• No letter appears twice in a row in w.
• Let α be the first letter of w. Write w = αw1α · · ·αwrα, where α does

not appear in any of the words wi. Then each word wi is a Wigner word,
and moreover for i 6= j the words wi and wj have no letters in common.
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(If r = 0 then w consists of a single letter and is by definition a Wigner
word.)

3.3.3. “Verbal” description of tree integrals. Let {κα} be a letter-indexed i.i.d. fam-
ily of uniformly distributed C-valued random variables. Given a Wigner word w,
we define a random variable Mw inductively by the following procedure:

• Writing w = αw1α · · ·αwrα as in the inductive characterization of Wigner
words, and letting βi be the initial letter of wi for i = 1, . . . , r, we set
Mw =

∏r
i=1 s(κα, κβi

)Mwi
. (When w is one letter long, we put Mw = 1.)

The formula (11) claimed in Lemma 3.2.1 can be rewritten

(12) 〈P,Φk+1〉 =
∑

w∈Wk+1

EMw

where the sum is extended over a set of representativesWk+1 for equivalence classes
of Wigner words of length k + 1. Further and crucially, notation as above in the
inductive characterization of the random variables Mw, we have a relation

(13) E(Mw|κα) =

r
∏

i=1

E(s(κα, κβi
)E(Mwi

|κβi
)|κα)

among conditional expectations.

3.4. Proof of Lemma 3.2.1(ii,iii). It is enough to construct an example of a
system {Φn,Ψn} in L∞(C) satisfying (8,9,10,11), and to do so we follow the path
of the proofs of [AZ06, Lemmas 6.3 and 6.4]. Fix a letter α. We may suppose that
every word belonging to the set of representativesWk+1 figuring in (12) begins with
α. There exist for each integer k ≥ 0 well-defined Φk+1,Ψk+1 ∈ L∞(C) such that

Φk+1(κα) =
∑

w∈Wk+1

E(Mw|κα), Ψk+1(κα′) =
∑

w∈Wk+1

E(s(κα′ , κα)Mw|κα′),

where α′ is a letter not appearing in any of the words belonging to the set Wk+1.
The system {Φn,Ψn} has property (8) by construction, and has property (11) since
the latter is equivalent to (12). Since

|Wk| = |Wk+1| ≤ 2k, 0 ≤Mw ≤ ‖s‖k/2
L∞(C×C) for w ∈ Wk+1,

for all integers k ≥ 0, the system {Φn,Ψn} has property (10). Finally, from (13)
and the inductive characterization of Wigner words, we obtain identities

Φk+1 =

∞
∑

r=0

∑

(ℓ1,...,ℓr)∈N
r

Pr
i=1(ℓi+1)=k

r
∏

i=1

Ψℓi

in L∞(C) for all integers k ≥ 0 which together imply that the system {Φn,Ψn} has
property (9). The proofs of Lemma 3.2.1 and Proposition 3.2 are now complete. �

3.5. The color equations. We continue in the setting of Proposition 3.2.
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3.5.1. Nice functions. We say that a complex-valued function f on color space is
nice (with respect to the kernel s and associated partition I of [0, 1]) if f has a
Fourier expansion

f(c) =
∑

i∈Z

fi(x)ξ
i (c = (x, ξ) ∈ C)

where all but finitely many of the coefficient functions fi : [0, 1] → C vanish identi-
cally, and every coefficient function fi is constant on every interval of the partition
I. It is not difficult to see that Φn and Ψn can be “corrected” on a set of P -measure
zero in a unique way to become nice. So we may and we will assume hereafter with-
out any loss of generality that the functions Φn and Ψn are nice and that all the
relations asserted in Proposition 3.2 to hold P -a.e. in fact hold without exception.

3.5.2. An auxiliary function. For all complex numbers |λ| > A and c ∈ C put

Ψ(c, λ) =

∞
∑

n=1

Ψn(c)λ−n,

defining a function depending holomorphically on λ and satisfying estimates

(14) |Ψ(c, λ)| ≤ 1

4

A2

|λ| −A
, |λ| > 2A⇒ |Ψ(c, λ)| < A2

2|λ| ≤
A

4

uniform in c.

3.5.3. The equations. From the system of equations described in Proposition 3.2 we
now deduce by the substitution t = 1/λ and application of dominated convergence
the relations

(15)

∫

s(c, c′)P (dc′)

λ− Ψ(c′, λ)
= Ψ(c, λ),

∫

P (dc)

λ− Ψ(c, λ)
= S(λ) =

∫

µ(dx)

λ− x

which hold for all c ∈ C and |λ| > 2A. We call the relations (15) the color equations.
Equations of this sort have appeared already in other contexts, see [Gi01], [HLN05,
eq. 2.2], [KKP96].

Proposition 3.6. In the setting of the color equations, assume further that for
some nice nonnegative function f on color space

s(c, c′) = f(c)f(c′), ‖f‖L∞(C) = A/2, ‖f‖L1(C) = 1.

Let µf be the law of f viewed as a random variable on C under P . Let Sf (λ) be
the Stieltjes transform of µf . Then: (i) There exists a function w(λ) defined and
holomorphic for |λ| ≫ 0 such that

(16) lim
|λ|→∞

w(λ)λ = 1,

(17) λS(λ) = 1 + w(λ)2 =
λ

w(λ)
Sf

(

λ

w(λ)

)

for |λ| ≫ 0. (We emphasize that we do mean S on the LHS and Sf on the RHS.)
(ii) The measure µ is the free multiplicative convolution of µf with the semicircle
law of mean 0 and variance 1.
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Proof. (i) Put

(18) w(λ) =

∫

f(c)P (dc)

λ− Ψ(c, λ)
=

∫

Ψ(c, λ)P (dc),

thus defining a holomorphic function in the domain |λ| > 2A such that

w(λ) =
1

λ
+O

(

1

|λ|2
)

, Ψ(c, λ) = w(λ)f(c).

By definition

Sf (λ) =

∫

P (dc)

λ− f(c)
,

which is a function holomorphic in the domain |λ| > A/2. For |λ| ≫ 1 we have by
(15) and the first equality in (18) that

λS(λ) =

∫

λP (dc)

λ− w(λ)f(c)
=

λ

w(λ)
Sf

(

λ

w(λ)

)

,

λS(λ) − 1 =

∫

w(λ)f(c)P (dc)

λ− w(λ)f(c)
= w(λ)2,

which proves the result.
(ii) We return to the setting of §2.4. Let W (N) be the N2-by-N2 matrix with

entries

W
(N)
ij = 2δij/2Ỹ

{c
(N)
i ,c

(N)
j }

/N.

Note that W (N) belongs to the GOE (the factor 2δij/2 is needed for orthogonal
invariance). Let Λ(N) be the N2-by-N2 deterministic diagonal matrix with diagonal
entries

Λ
(N)
ii =

√

f(c
(N)
i ).

Then we have

X̃(N)/N = Λ(N)W (N)Λ(N).

Furthermore, as N → ∞, the empirical distribution of eigenvalues of W (N) (resp.,
(Λ(N))2) tends to the semicircle law (resp., µf ). Finally, since W (N) and Λ(N) are
asymptotically freely independent, see [HP00, Corollary 4.3.6] and the discussion
on page 157 there concerning the extension from the unitary to orthogonal case, µ
has the claimed form of free multiplicative convolution. �

3.7. Analysis of (NE+SE+SW+NW)-filtered Wigner matrix. We consider
the setup of §2.3 in the special case mentioned in §2.3.5. We are thus considering
the model mentioned in the introduction. Proposition 3.6 applies, with µf equal to
the law of 2 cos2 θ = 1 + cos 2θ with θ distributed uniformly in [0, 2π). Integrating,
we get

Sf (λ) =
1

2π

∫ 2π

0

dθ

λ− 1 − cos 2θ
=

1
√

λ(λ− 2)
.

It follows from (17) that

(1 + w2)2 =
λ

λ− 2w
,

and hence (after taking out an irrelevant factor of w)

2w4 − λw3 + 4w2 − 2λw + 2 = 0.
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In turn, after forming the resultant of lefthand side above and 1 + w2 − λS with
respect to w and taking out irrelevant factors, we get the equation

(19) 4λ2S4 − λ3S3 − λ2S2 + λS + 1 = 0.

Since the latter is quartic, it can principle be solved explicitly by root extractions.
We omit the details, which are available from the authors. We can without great
difficulty find the boundary of the support of µ, as follows. The discriminant ∆(λ)
of the left side of (19) relative to S is

∆(λ) = −16λ6(8λ4 + 107λ2 − 1024).

The zeroes of ∆(λ) are the only obstructions to analytic continuation of S in the
λ-plane. The only nonzero real roots of ∆(λ) are

±1

4

√

−107 + 51
√

17 (approximately ± 2.5406),

and so these have to be the endpoints of the interval in which µ is supported. We
finally remark that it can be shown that dµ/dx has a spike ∼ 1/

√

|x| at the origin.

4. The main limit calculation

To the end of proving Theorem 2.5, we first prove the following result.

Proposition 4.1. Let Assumption 2.2.1 hold. For each positive integer k,

lim
N→∞

N−k/2−1E trace((X(N))k) =
∑

π∈Wk

EMπ.

The proof requires some preparation and will not be completed until §4.6.

4.2. Notation, terminology and strategy.

4.2.1. (N, k)-words. Let N and k be positive integers. An (N, k)-word i is by
definition a function

i : {1, . . . , k} → {1, . . . , N}.
To each (N, k)-word we attach a random variable

X
(N)
i =

k
∏

α=1

X
(N)
i(α),i(ηk(α))

where

ηk = (12 · · ·k) ∈ Sk.

(Here and below we employ cycle notation for permutations.) We have

∑

i

EX
(N)
i = E trace((X(N))k),

where the sum on the left is extended over (N, k)-words i.
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4.2.2. The set partition associated to an (N, k)-word. Given an (N, k)-word i, con-
sider the graph GK

i = (V K
i , EK

i ), where V K
i = {1, . . . , k} and

EK
i = {{α, β} ⊂ {1, . . . , k} | |i(α) − i(β)| ≤ K}.

Here and below K is the constant figuring in Assumption 2.2.1(II). We define πi

to be the set partition of k the parts of which are the equivalence classes for the
relation “α and β belong to the same connected component of GK

i ”. (Although the
set partition πi depends on K, we suppress reference to K in the notation.) We
have

|i(α) − i(β)| ≤ K ⇒ πi(α) = πi(β), |i(α) − i(β)| > Kk ⇒ πi(α) 6= πi(β),

for all α, β ∈ {1, . . . , k}.

4.2.3. Distinguished (N, k)-words. Let i be an (N, k)-word. Consider the following
conditions:

(I) πi ∈ Wk.

(II) For all A ∈ πi we have i(minA) ∈ Q
(N)
(k+1)K .

(III) For all distinct A,B ∈ πi we have |i(minA) − i(minB)| > 5kK.
(IV) max

A∈πi

max
α,β∈A

|i(α) − i(β)| ≤ Kk.

(V)
k

min
α=1

|i(α) − i(ηk(α))| > 3Kk.

(VI) For α = 1, . . . , k we have i(α) ∈ Q
(N)
K .

(VII) For all A ∈ π and α, β ∈ A, the numbers i(α)
N and i(β)

N belong to the same
interval of the partition I.

If conditions (I,II,III) hold we say that i is distinguished, in which case i automati-
cally also satisfies conditions (IV,V,VI,VII).

4.2.4. Strategy. We will show that the only nonnegligible contributions to

(20) lim
N→∞

N−k/2−1
∑

i: (N, k)-word

EX
(N)
i = lim

N→∞
N−k/2−1E trace((X(N))k)

come from distinguished (N, k)-words. Then we will evaluate EX
(N)
i for distin-

guished i. Finally, we will calculate the limit on the left with the summation
restricted to distinguished i.

4.3. Negligibility of nondistinguished (N, k)-words.

Lemma 4.3.1. Let π be a set partition of k. There exists Cπ > 0 such that for

every positive integer N the sum
∑

iE|X(N)
i | extended over (N, k)-words i such

that π = πi does not exceed CπN
|π|.

Proof. By Assumption 2.2.1(Ib) and the Hölder inequality, it suffices simply to
estimate the number of (N, k)-words such that π = πi. A crude estimate of the
latter is (1 + 2Kk)k−|π|N |π|. �

Lemma 4.3.2. Let π be a set partition of k. Let i be an (N, k)-word such that

π = πi. If |π| ≥ k/2 + 1 and EX
(N)
i 6= 0, then π ∈ Wk (and hence |π| = k/2 + 1).
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Proof. Let Gπ = (Vπ , Eπ) be the graph associated to π. For each α ∈ {1, . . . , k}
put e(α) = {π(α), π(α + 1)} ∈ Eπ. Now fix e ∈ Eπ. It is enough to show that
e = e(α) for at least two α ∈ {1, . . . , k}, for then, since Gπ is connected, we have

k/2 + 1 ≤ |π| = |Vπ | ≤ |Eπ | + 1 ≤ k/2 + 1,

and hence π is a Wigner set partition. To derive a contradiction, suppose rather
that e = e(α) for unique α ∈ {1, . . . , k}. For every γ ∈ {1, . . . , k} let i(γ) ≤ j(γ) be
the integers i(γ) and i(ηk(γ)) rearranged. Then for every β ∈ {1, . . . , k} \ {α} we
have max(|i(α)− i(β)|, |j(α)− j(β)|) > K, for otherwise e(α) = e(β). It follows by

Assumption 2.2.1(IIb) that the random variable X
(N)
i(α),i(ηk(α)) is independent of the

rest of the random variables appearing in the product X
(N)
i , and hence EX

(N)
i = 0

by Assumption 2.2.1(Ia). This contradiction proves the lemma. �

Lemma 4.3.3. Let π be a Wigner set partition. There exists C′
π > 0 such that

for every positive integer N the sum
∑

iE|X(N)
i | extended over (N, k)-words i such

that π = πi but i is not distinguished does not exceed C′
πN

k/2.

Proof. The proof is similar to that of Lemma 4.3.1. We omit the details. �

4.4. Evaluation of EX
(N)
i for distinguished i.

4.4.1. Definitions of τπ and σπ. Let π be a set partition of k. Enumerate π and its
parts thus:

π = {I1, . . . , I|π|}, min I1 < · · · < min I|π|,

Iα = {iα1 < · · · < iα,|Iα|} for α = 1, . . . , |π|.
Put

τπ = (i11 · · · i1,|I1|) · · · (i|π|,1 · · · i|π|,|I|π||) ∈ Sk, σπ = η−1
k τπ ∈ Sk.

By construction

π(τπ(i)) = π(i)

for i = 1, . . . , k.

Lemma 4.4.2. Let π ∈ Wk be a Wigner set partition. Then the permutation
σπ is fixed-point-free and squares to the identity. Furthermore, for all distinct
i, j ∈ {1, . . . , k}, we have {π(i), π(i+ 1)} = {π(j), π(j + 1)} ⇔ j = σπ(i).

Proof. Let Gπ = (Vπ, Eπ) be the graph (tree) associated to π. For each e ∈ Eπ,
there are by Lemma 3.1.5(ii) exactly two indices i such that e = {π(i), π(i + 1)},
and σπ swaps them by Lemma 3.1.5(iii). �

Lemma 4.4.3. Let π ∈ Wk be a Wigner set partition. Put σ = σπ and τ = τπ.
Then we have

EX
(N)
i =

∏

α∈{1,...,k}
s.t. α≤σ(α)

EX
(N)
i(α),i(τ(σ(α)))X

(N)
i(σ(α)),i(τ(α))

for every (N, k)-word i such that πi = π.

Proof. Put η = ηk. By definition we have ησ = τ . By the previous lemma we have
τσ = η. Therefore after rearranging the product

X
(N)
i =

∏

α∈{1,...,k}

Xi(α),i(η(α)),
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we have

X
(N)
i =

∏

α∈{1,...,k}
s.t. α≤σ(α)

X
(N)
i(α),i(τ(σ(α)))X

(N)
i(σ(α)),i(τ(α)).

It suffices to prove enough independence to justify pushing the expectation under
the product. For every γ ∈ {1, . . . , k} let i(γ) ≤ j(γ) be the integers i(γ) and
i(η(γ)) rearranged. By definition of πi and the preceding lemma, for all distinct
α, β ∈ {1, . . . , k}, if max(|i(α) − i(β)|, |j(α) − j(β)|) ≤ K, then β = σ(α). By
Assumption 2.2.1(IIb) we deduce the desired independence. �

4.4.4. The difference operator associated to a set partition π. Let π be a set par-
tition of k. Let τ = τπ ∈ Sk be the canonically associated permutation. Let
f : {1, . . . , k} → Z be a function. We define ∂πf : {1, . . . , k} → Z by the formula
(∂πf)(i) = f(i) − f(τ(i)) for i = 1, . . . , k. Given a function g : {1, . . . , k} → Z, the
equation ∂πf = g has a solution f : {1, . . . , k} → Z if and only if

∑

α∈A g(α) = 0
for all parts A ∈ π, and f is unique up to the addition of a function {1, . . . , k} → Z

constant on every part of π.

Lemma 4.4.5. Let π ∈ Wk be a Wigner set partition. Put σ = σπ, τ = τπ and
∂ = ∂π. Fix α ∈ {1, . . . , k} such that α ≤ σ(α). We have

(21) EX
(N)
i(α),i(τ(σ(α)))X

(N)
i(σ(α)),i(τ(α)) = s(∂i)(α),(∂i)(σ(α))

(

i(min π(α))
N , i(min(π(σ(α))))

N

)

for every distinguished (N, k)-word i such that πi = π.

In particular, the expectation in question vanishes unless |∂i| ≤ K by Assump-
tion 2.2.1(IIa).

Proof. Let E(α) be the left side of (21). Assume at first that i(α) ≤ i(τ(σ(α)).
Then i(α) + 3Kk < i(τ(σ(α)) by property (V) of a distinguished (N, k)-word, and
hence i(τ(α)) +Kk < i(σ(α)) by property (IV) of a distinguished (N, k)-word. So
we have

(22) E(α) = EX
(N)
i(α),i(τ(σ(α)))X

(N)

i(τ(α)),i(σ(α)) = s(∂i)(α),(∂i)(σ(α))

(

i(α)
N , i(τ(σ(α)))

N

)

by Assumption 2.2.1(IIc) and property (VI) of a distinguished (N, k)-word. Then
we deduce that the desired formula holds by Assumption 2.1.4(III) and property
(VII) of a distinguished (N, k)-word. Assume next and finally that i(α) ≥ i(τ(σ(α)).
Reasoning as above we have

E(α) = EX
(N)
i(σ(α)),i(τ(α))X

(N)

i(τ(σ(α)),i(α) = s(∂i)(σ(α)),(∂i)(α)

(

i(σ(α))
N , i(τ(α))

N

)

.

Now we apply the symmetry (1), and then continue to reason as above. We deduce
the desired formula just as before. �

4.5. Contribution of EX
(N)
i to the limit for distinguished i.

Lemma 4.5.1. Let π ∈ Wk and an (N, k)-word i be given such that the following
hold:

• For all A ∈ π we have i(minA) ∈ Q
(N)
(k+1)K .

• For all distinct A,B ∈ π we have |i(minA) − i(minB)| > 5Kk.
• |∂i| ≤ K.

Then πi = π and (hence) π is distinguished.
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No proof is needed, but this point bears emphasis as an important step in the proof
of Proposition 4.1.

Lemma 4.5.2. Fix a Wigner set partition π ∈ Wk. Then we have

(23) EMπ = lim
N→∞

N−k/2−1
∑

i

EX
(N)
i ,

where the sum is extended over distinguished (N, k)-words i such that πi = π.

Proof. Let ∂ = ∂π, σ = σπ, and τ = τπ . Let {tA} (resp., {zA}) be an i.i.d. family of
random variables uniform in [0, 1] (resp., S1), indexed by finite nonempty sets A of
positive integers. We further suppose that the families {tA} and {zA} are defined
on a common probability space and are independent. We denote expectations with
respect to these variables by E. We have by Lemma 4.4.2 and the definitions that

EMπ = E
∏

i∈{1,...,k}
s.t. i≤σ(i)

(

∑

m∈Z

∑

n∈Z

smn(tπ(i), tπ(σ(i)))z
m
π(i)z

n
π(σ(i))

)

=
∑

f :{1,...,k}→Z

E
∏

i∈{1,...,k}
s.t. i≤σ(i)

sf(i),f(σ(i))(tπ(i), tπ(σ(i))) ·
∏

A∈π

z
P

i∈A f(i)

A

=
∑

f :{1,...,k}→Z∩[−K,K]
∀A∈π,

P

i∈A f(i)=0

E
∏

i∈{1,...,k}
s.t. i≤σ(i)

sf(i),f(σ(i))(tπ(i), tπ(σ(i))).

At the last step we integrate out the z’s and take into account Assumption 2.2.1(IIa).
We then have

EMπ =
∑

f :{1,...,k}→Z

|∂f |≤K
∀A∈π f(minA)=f0(A)

E
∏

i∈{1,...,k}
s.t. i≤σ(i)

s(∂f)(i),(∂f)(σ(i))(tπ(i), tπ(σ(i))),

where f0 : π → Z is any fixed function defined on the parts of π. After some
straightforward bookkeeping which we omit, it follows by the preceding two lemmas
that (23) holds with the summation on i restricted to distinguished (N, k)-words
such that πi = π and |∂i| ≤ K. But then by Assumption 2.2.1(IIa), the limit does
not change if we drop the restriction |∂i| ≤ K (the further terms all vanish), whence
the result. �

4.6. Completion of the proof of Proposition 4.1. The suite of lemmas proved
in §4.3 shows that the limit on the left side of equation (20) does not change if we
restrict attention to distinguished (N, k)-words. The last lemma above evaluates
the limit on the left side of (20) with i restricted to distinguished (N, k)-words, and
gives the desired value. The proof of Proposition 4.1 is complete. �

5. Completion of the proof of Theorem 2.5

Fix a positive integer k. As in [AZ06, pf. of Thm. 3.2, Section 6, p. 305], Theorem
2.5 will follow as soon as we can prove that

(24) Var(〈L(N), xk〉) →N→∞ 0 .
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We will prove this by lightly modifying the arguments of §4.3. Now

(25) Var(〈L(N), xk〉) = N−k−2
∑

(i,j)

(

E[X
(N)
i X

(N)
j ] − E[X

(N)
i ]E[X

(N)
j ]

)

where the sum is extended over pairs (i, j) of (N, k)-words. By Assumption 2.2.1(Ib)
and the Hölder inequality, it is (more than) enough to show that the number of
pairs (i, j) making a nonzero contribution to the sum on the right side of (25) is
O(Nk+1). Now fix a pair (i, j) of (N, k)-words indexing a nonzero term in the sum
on the right side of (25). Let ij be the (N, 2k)-word obtained by concatenating i
and j, i. e.,

ij(α) =

{

i(α) if α ∈ {1, . . . , k},
j(α− k) if α ∈ {k + 1, . . . , 2k}.

Consider the set partition π = πij defined in §4.2.2. We need also to consider a
graph associated to π. The relevant graph is no longer Gπ , but rather a slightly
modified version G̃π = (Ṽπ, Ẽπ), where Ṽπ = π and

Ẽπ = {{π(1), π(2)}, . . . , {π(k), π(1)}}∪{{π(k+1), π(k+2)}, . . . , {π(2k), π(k+1)}}.
By construction G̃π comes equipped with two walks, namely

π(1), . . . , π(k), π(1) and π(k + 1), . . . , π(2k), π(k + 1).

Arguing as in the proof of Lemma 4.3.2, we find that nonvanishing of the term on
the right side of (25) indexed by (i, j) implies that the walks jointly visit every edge

of G̃π at least twice, and moreover there must exist some edge of G̃π visited by
both walks. Thus |Ẽπ| ≤ k and G̃π is connected. It follows that |π| = |Ṽπ | ≤ k+ 1.
Finally, arguing as in the proof of Lemma 4.3.1, we find that the number of nonzero
terms on the right side of (25) is indeed O(Nk+1). The proof of Theorem 2.5 is
complete. �

6. An algebraicity criterion

In this section, which is completely independent of the preceding ones, we de-
velop a “soft” method for proving that a holomorphic function is algebraic under
hypotheses commonly encountered in random matrix theory.

6.1. Formulation of an algebraicity criterion.

6.1.1. Notation. Let {Xi}∞i=1 be independent (algebraic) variables. Let
C[X1, . . . , Xn] denote the ring of polynomials in X1, . . . , Xn with coefficients in C.
We view C[X1, . . . , Xn] as a subring of C[X1, . . . , Xn+1]. Given F ∈ C[X1, . . . , Xn],
let F (0) ∈ C be the result of setting X1 = · · · = Xn = 0. Let C(X1, . . . , Xn) be
the field of rational functions in the variables X1, . . . , Xn, i. e., the ring consist-
ing of fractions A/B where A,B ∈ C[X1, . . . , Xn] and B does not vanish identi-
cally. We say that F ∈ C(X1, . . . , Xn) is defined at the origin if F = A/B with
A,B ∈ C[X1, . . . , Xn] such that B(0) 6= 0, in which case we put F (0) = A(0)/B(0).

6.1.2. DIRE families. Let ϕ1, . . . , ϕN be a finite family of holomorphic functions
each defined in a connected open neighborhood of the origin in Cn; the domains
need not be the same. We will say that ϕ1, . . . , ϕN are defined implicitly by rational
equations (DIRE for short) if there exist Φ1, . . . ,ΦN ∈ C(X1, . . . , Xn+N) such that

(I) Φi is defined at the origin and Φi(0) = 0 for i = 1, . . . , N ,

(II) (detN
i,j=1

∂Φi

∂Xj+n
)(0) 6= 0, and
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(III) Φi(z1, . . . , zn, ϕ1(z)−ϕ1(0), . . . , ϕN (z)−ϕN(0)) = 0 for i = 1, . . . , N and
z = (z1, . . . , zn) ∈ Cn sufficiently near the origin.

The relationship between this definition and the implicit function theorem for holo-
morphic functions [Ca63, Proposition 6.1] is close. Indeed, given Φ1, . . . ,ΦN ∈
C(X1, . . . , Xn+N ) with properties (I,II) above, the implicit function theorem for
holomorphic functions says that there exist holomorphic functions ϕ1, . . . , ϕN each
defined in a connected open neighborhood of the origin such that (III) holds, and the
theorem further asserts uniqueness of these functions in the sense that if ψ1, . . . , ψN

are holomorphic functions each defined in a connected open neighborhood of the
origin in Cn and also satisfying (III), then for i = 1, . . . , N there exists a neighbor-
hood of the origin in which ψi and ϕi differ by a constant.

In the sequel, for brevity, when we say “ϕ1, . . . , ϕN is an n-variable DIRE fam-
ily”, this is short for the assertion that “ϕ1, . . . , ϕN are holomorphic functions each
defined in some connected open neighborhood of the origin in Cn which together
have the property of being defined implicitly by rational equations”.

6.1.3. Algebraic functions. A holomorphic function ϕ defined in a nonempty open
subset D ⊂ Cn is called an n-variable algebraic function if there exists a not-
identically-vanishing polynomial F = F (X1, . . . , Xn+1) ∈ C[X1, . . . , Xn+1] such
that F (z1, . . . , zn, ϕ(z)) = 0 for all z = (z1, . . . , zn) ∈ D. If D is connected and
U ⊂ D is any nonempty open subset, then algebraicity of F in U implies algebraic-
ity of F in D by the principle of analytic continuation.

The main result of Section 6 is the following.

Theorem 6.2. Let ϕ1, . . . , ϕN be an n-variable DIRE family. Then each ϕi is an
n-variable algebraic function.

The proof takes up the last several subsections of Section 6. Before turning to the
proof we give key examples of DIRE families, and describe techniques for construct-
ing new DIRE families from old.

Proposition 6.3. Fix a positive integer ℓ and put L = 2ℓ+1. For z = (z1, . . . , zL) ∈
CL such that

∑L
i=1 |zi| < 1 and integers j = 1, . . . , L, consider the quantity

(26) ϑj(z) = −δj,ℓ+1 +
1

2π

∫ 2π

0

exp(−i(j − ℓ− 1)x)dx

1 −
∑L

k=1 zk exp(i(k − ℓ− 1)x)
,

which depends holomorphically on z and vanishes for z = 0. Then the family
ϑ1, . . . , ϑL can be extended to an L-variable DIRE family ϑ1, . . . , ϑN .

Proof. Fix z = (z1, . . . , zL) ∈ CL such that
∑L

i=1 |zi| < 1. Let p = [pij ]i,j∈Z be the
unique matrix of complex numbers with rows and columns indexed by Z with the
following properties:

• pij = 0 for all i and j such that |i− j| > ℓ.
• pij = zj−i+ℓ+1 for all i and j such that |i− j| ≤ ℓ.

Let |p| be the Z-by-Z matrix with entries |pij |. We have the crude estimate

(27) (|p|t)ij ≤
(

L
∑

i=1

|zi|
)t

holding for all positive integers t.
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Now supposing p were a Markov matrix (which of course it is not), we could
view each entry pij as a transition probability

P (St+1 = j | St = i) = pij ,

for a random walk {St}∞t=0 on Z with step-length bounded by ℓ and we would have,
for any subset M ⊂ Zt, an equality

P ((S1, . . . , St) ∈M | S0 = i0) =
∑

(i1,...,it)∈M

pi0i1 · · · pit−1it
.

Because it is a valuable aid to intuition, we will make the line above a definition.
Notice that by (27) the sum on the right is absolutely convergent, and that the sum

of the absolute values of the terms is ≤ (
∑L

i=1 |zi|)t. We will be able to calculate
using the usual rules of probability, provided we never invoke positivity pij ≥ 0 or
the Markov property

∑

j pij = 1. We are interested in functions of z describable
in the language of random walk because, as we explain presently, the functions ϑj

belong to this class, and moreover within this class we can easily find the “extra”
functions needed to extend ϑ1, . . . , ϑL to a DIRE family.

Let U, V,A,B,C be ℓ-by-ℓ matrices with complex entries defined as follows:

Uij =
∑∞

t=1 P (St = j,mint
u=0 Su > 0|S0 = i),

Vij =
∑∞

t=1 P (St = j,maxt
u=0 Su < ℓ+ 1|S0 = i),

Aij = P (S1 = j + ℓ | S0 = i),
Bij = P (S1 = j | S0 = i),
Cij = P (S1 = j − ℓ | S0 = i).

Let W,D be L-by-L matrices with complex entries defined as follows:

Wij =
∑∞

t=1 P (St = j|S0 = i),
Dij = P (S1 = j | S0 = i).

By (27), all the series in question here converge absolutely and define functions of

z holomorphic in the domain
∑L

i=1 |zi| < 1. Notice that A,B,C,D depend linearly
on z, and that all matrices A,B,C,D,U, V,W vanish for z = 0.

Consider the expansion of the integrand of (26) by geometric series and then
integrate term by term. One finds in this way a series expression for ϑj identical
to the series expression defining some entry of the matrix W . In short, every ϑj

appears in W .
By breaking paths down according to visits to the sets {−ℓ, . . . ,−1}, {0} and

{1, . . . , ℓ}, we obtain in the usual way recursions

(28)

0 = −U +B +A(1 + U)C(1 + U),
0 = −V +B + C(1 + V )A(1 + V ),

0 = −W +D +





C(1 + V )A 0 0
0 0 0
0 0 A(1 + U)C



 (1 +W ).

Extend the given family ϑ1, . . . , ϑn to an enumeration ϑ1, . . . , ϑN of all entries of
U , V and W . Rewrite the system of equations (28) as a system of N polynomial
equations in z1, . . . , zL, ϑ1, . . . , ϑN , in order to find polynomials

Φi(X1, . . . , XL+N) ∈ C[X1, . . . , XL+N ] for i = 1, . . . , N

such that

Φi(0, . . . , 0, XL+1, . . . , XL+N) = −Xi+L, Φi(z1, . . . , zL, ϑ1, . . . , ϑN ) = 0.
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Note that part (II) of the definition of DIRE family holds because ∂Φi

∂Xj+L
(0) = −δij .

Thus ϑ1, . . . , ϑN is indeed a DIRE family. �

6.4. Natural operations on DIRE families. We write down some lemmas
which will be helpful in applying the notion of DIRE family. The first three are
trivial but deserve being stated for the sake of emphasis. The last is the trick
decisive for the application of Theorem 6.2 to the proof of Theorem 2.6.

Lemma 6.4.1. Let ϕ1, . . . , ϕN and ψ1, . . . , ψM be n-variable DIRE families. Then
the concatenation ϕ1, . . . , ϕN , ψ1, . . . , ψM is an n-variable DIRE family.

Lemma 6.4.2. Let ϕ1, . . . , ϕN be an n-variable DIRE family. Let ϕN+1 be a C-
linear combination of ϕ1, . . . , ϕN . Then the extended family ϕ1, . . . , ϕN+1 is an
n-variable DIRE family.

Lemma 6.4.3. Let ϕ1, . . . , ϕN be an n-variable DIRE family. Let A be an n by
m matrix with complex entries. Identify Cn and Cm with spaces of column vectors.
Then there exists an m-variable DIRE family ψ1, . . . , ψN such that for i = 1, . . . , N
we have ψi(z) = ϕi(Az) for all z ∈ C

m sufficiently near the origin.

Lemma 6.4.4. Let ψ1, . . . , ψn be a family of holomorphic functions defined in an
open disk centered at the origin in C. Let ϕ1, . . . , ϕN be an n0-variable DIRE
family, where N ≥ n ≥ n0. Assume that

ψi(z) = zϕi(zψ1(z), . . . , zψn(z))

for i = 1, . . . , n and z ∈ C sufficiently near the origin. Then ψ1, . . . , ψn can be
extended to a 1-variable DIRE family.

Proof. By the preceding lemma we may assume without loss of generality that
n = n0. For i = n+ 1, . . . , n+N the formula

ψi(z) = ϕi−n(zψ1(z), . . . , zψn(z)) − ϕi−n(0)

defines a holomorphic function ψi in some open neighborhood of the origin in C. We
will prove that the extended family ψ1, . . . , ψN+n is a 1-variable DIRE family. Note
that all the functions ψi vanish at the origin. Let Φ1, . . . ,Φn+N ∈ C(X1, . . . , XN+n)
be with respect to ϕ1, . . . , ϕN as called for by the definition of an n-variable DIRE
family. For i = 1, . . . , N + n define Ψi ∈ C(X1, . . . , XN+n+1) by the formula

Ψi(X1, . . . , Xn+N+1)

=

{

Xi+1 −X1(Xi+n+1 + ϕi(0)) if 1 ≤ i ≤ n,
Φi−n(X1X2, . . . , X1Xn+1, Xn+2, . . . , Xn+N+1) if n+ 1 ≤ i ≤ n+N .

Then:

(I) Ψi is defined at the origin and Ψi(0) = 0 for i = 1, . . . , N + n,

(II) (detN+n
i,j=1

∂Ψi

∂Xj+1
)(0) 6= 0, and

(III) Ψi(z, ψ1(z), . . . , ψN+n(z)) = 0 for i = 1, . . . , N +n and z ∈ C sufficiently
near the origin.

In other words, Ψ1, . . . ,Ψn+N are with respect to ψ1, . . . , ψn+N as called for by the
definition of 1-variable DIRE family. �

We next formulate a purely algebraic result and explain how to deduce Theo-
rem 6.2 from it.
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Theorem 6.5. Let n and N be positive integers. Let

F1, . . . , Fn+N ∈ C[X1, . . . , XN+n]

be given with the following properties:

(29) Fi(0) = 0 for i = 1, . . . , N.

(30)

(

N

det
i,j=1

∂Fi

∂Xj+n

)

(0) 6= 0.

Let I ⊂ C[X1, . . . , XN+n] be the ideal generated by F1, . . . , FN . Then there exist
polynomials G ∈ C[X1, . . . , Xn+1] and H ∈ C[X1, . . . , Xn+N ] such that G 6= 0,
H(0) 6= 0 and GH ∈ I.

Remark. The important point here is that G is a polynomial involving only the
variables X1, . . . , Xn+1; the variables Xn+2, . . . , Xn+N are uninvolved. The proof
of Theorem 6.5 is a routine application of the theory of noetherian local rings, and
will be given in §6.8 after we review in §6.7 the needed material from commutative
algebra.

6.6. Deduction of Theorem 6.2 from Theorem 6.5. By symmetry it is enough
to show that ϕ1 is algebraic. Let Φ1, . . . ,ΦN ∈ C(X1, . . . , Xn+N ) be as required to
exist by the definition of n-variable DIRE family with respect to ϕ1, . . . , ϕN . Write

Φi = Fi/Di (Fi, Di ∈ C(X1, . . . , Xn+N), Di(0) 6= 0).

Without loss of generality we may simply assume that Di = 1 and hence Φi = Fi.
Then conditions (I,II) are precisely the hypotheses (29,30) of Theorem 6.5. Let G
andH be as provided by Theorem 6.5. ThenH(z1, . . . , zn, ϕ1(z), . . . , ϕN (z)) is non-
vanishing for z = (z1, . . . , zn) ∈ Cn sufficiently near the origin, hence
G(z1, . . . , zn, ϕ1(z)) vanishes for z ∈ Cn sufficiently near the origin, and hence
ϕ1 is indeed algebraic. �

6.7. Review of dimension theory of noetherian local rings. The material
reviewed here is developed in detail in the texts [AM] and [Mat].

6.7.1. The setting. In our review rings are always commutative with unit. A ring
R is noetherian if every ideal is finitely generated. All rings to be considered below
are assumed to be noetherian. A local ring is a ring possessing a unique maximal
ideal. For the rest of the discussion we fix a noetherian local ring R with maximal
ideal M and denote the residue field R/M by k. We urge the reader to keep the
following key example of triples (R,M, k) in mind:

• R = {F ∈ C(X1, . . . , Xd) | F is defined at the origin},
• M = {F ∈ R | F (0) = 0}, and
• k = C.

6.7.2. Dimension of a noetherian local ring. For each integer n the quotient
Mn/Mn+1 is a finite-dimensional vector space over k. (HereMn stands for the ideal
generated by all n-fold products of elements of M , and by convention M0 = R.)
Consider the nonnegative-integer-valued function

χ(n) =

n−1
∑

i=0

dimk M
i/M i+1
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of nonnegative integers n. There exists a unique polynomial F (t) in a variable t
with rational coefficients such that χ(n) = F (n) for all n≫ 0. (See [Mat, 12.C] or
[AM, Cor. 11.5].) The polynomial F (t) is called the Hilbert-Samuel polynomial of
R. The degree in t of F (t) is by definition the dimension of R, and denoted d(R).
In the example discussed in §6.7.1, d(R) = d.

6.7.3. Regular local rings. We say that R is regular if d(R) = dimk M/M2, in which

case necessarily χ(n) =

(

n+ d(R)
d(R)

)

for all n, and R is an integral domain.

(See [Mat, (17.E) Thm. 35 and (17.F) Thm. 36] or [AM, Thm. 11.22 and Lemma
11.23]. In the case of the example in §6.7.1, this can be verified directly, noting
that dimM/M2 = d in that case). Suppose for the rest of this paragraph that R
is regular of dimension d. Elements f1, . . . , fd ∈ M forming a basis over k for the
quotientM/M2 are said to form a regular system of parameters forR. By a standard
argument employing Nakayama’s lemma (for the latter see [Mat, (1.M) Lemma] or
[AM, Prop. 2.6]) any regular system of parameters for R necessarily generates the
maximal ideal M . In the key example of §6.7.1, the variables X1, . . . , Xd form a
regular system of parameters.

6.7.4. Cutting down regular local rings. Again suppose that R is regular of di-
mension d. Given a regular system of parameters f1, . . . , fd in R, and also given
i = 0, . . . , d, the ideal (f1, . . . , fi) ⊂ R generated by f1, . . . , fi is prime and the
quotient R/(f1, . . . , fi) is a regular local ring in which the images of fi+1, . . . , fd

form a regular system of parameters. (See [Mat, (17.F) Thm. 36].) One should
think of this fact as an algebraic version of the implicit function theorem.

6.7.5. Algebraic independence of regular systems of parameters. Again assume that
R is regular of dimension d, and further assume that R contains a field k0. Then
every regular system of parameters f1, . . . , fd in R is algebraically independent over
k0, i. e., for every polynomial F (X1, . . . , Xd) in independent variables X1, . . . , Xd

with coefficients in k0, if F (f1, . . . , fd) = 0, then F = 0. (See [AM, Cor. 11.21] or
[Mat, (20.D) App. 1].) In the example of §6.7.1, we may take k0 = C.

6.7.6. Relation of dimension to transcendence degree. Assume now that (R,M, k)
is of the form of the example from §6.7.1. Let P be any prime ideal of R. The
quotient R/P is again a noetherian local ring (but maybe not regular). (The ring
R/P admits interpretation as the local ring at a point, perhaps singular, of an
algebraic variety in C

d.) Let e be the transcendence degree of R/P over C, i. e., the
supremum of the set of integers m ≥ 0 such that there exist m elements of R/P
algebraically independent over C. Then we have e = d(R/P ). (See [AM, Thm.
11.25].) One has this equality whether or not R/P is regular.

6.8. Proof of Theorem 6.5. We are ready to move rapidly through the proof.
We will flag the relevant paragraphs above at each step. Consider the ring R ⊂
C(X1, . . . , Xn+N ) consisting of all fractions A/B where A,B ∈ C[X1, . . . , Xn+N ]
and B(0) 6= 0. Then R, see §6.7.3, is a regular local ring of dimension n + N .
Hypotheses (29,30) imply that X1, . . . , Xn, F1, . . . FN form a regular system of pa-
rameters for R. Let P be the prime ideal of R generated by F1, . . . , FN and let
x1, . . . , xn+N be the images in the quotient R/P of X1, . . . , Xn+N , respectively.
By §6.7.4, the quotient R/P is a regular local ring of dimension n for which
x1, . . . , xn forms a regular system of parameters. Necessarily, by §6.7.5, x1, . . . , xn
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are algebraically independent over C and furthermore, see §6.7.6, no set of ele-
ments of R/P algebraically independent over C can have cardinality exceeding n
(we emphasize that equality to 0 is taken here in R/P , not R). So there exists
0 6= G = G(X1, . . . , Xn+1) ∈ C[X1, . . . , Xn+1] such that G(x1, . . . , xn+1) = 0 and
hence (equivalently) G ∈ C[X1, . . . , Xn+1] ∩ P . Now every element of P can be
written A/B where A ∈ I and B ∈ C[X1, . . . , Xn+N ] is such that B(0) 6= 0. In
particular we may write G = A/B in such fashion. Taking H = B, we have
GH = A ∈ I, as desired. �

7. Proof of Theorem 2.6

Let ℓ be a large positive integer. Let {Zm}M
m=1 be an enumeration of all complex-

valued functions f on color space of the form

f(c) = 1I(x)ξ
j/
√

length of I; (c = (x, ξ) ∈ C = [0, 1]×S1, I ∈ I, j = −ℓ, . . . , ℓ).
Note that {Zm}M

m=1 is an orthonormal system in L2(C). We suppose ℓ is chosen
large enough so that we have an expansion

s(c, c′) =
M
∑

i=1

M
∑

j=1

ρijZi(c)Zj(c
′)

for some complex constants ρij . Also write

1 =

M
∑

m=1

ρmZm

(

ρm =

∫

Zm(c)P (dc)

)

.

With Ψ(c, λ) as defined in the color equations (15), put

wm(z) =

∫

Ψ(c, 1/z)Zm(c)P (dc) (m = 1, . . . ,M), wM+1(z) = S(1/z).

The functions wm(z) are defined and holomorphic for |z| small and positive, and
moreover are O(|z|), and hence extend to holomorphic functions in a small disk
about the origin which vanish at the origin. Consider the functions

Fm(z) =
M
∑

j=1

ρmj

∫

Zj(c)P (dc)

1 −
∑M

m=1 zmZm(c)
(m = 1, . . . ,M),

FM+1(z) =
M
∑

j=1

ρj

∫

Zj(c)P (dc)

1 −
∑M

m=1 zmZm(c)

defined and holomorphic for z = (z1, . . . , zM ) ∈ CM sufficiently near the origin. The
family F1, . . . , FM+1 may be extended to a M -variable DIRE family by Proposi-
tion 6.3 along with Lemmas 6.4.1, 6.4.2, and 6.4.3. Now the general color equations
can be rewritten in the form

(31) wm(z) = zFm (zw1(z), . . . , zwM (z)) for m = 1, . . . ,K + 1 and |z| small.

By Lemma 6.4.4 the family w1, . . . , wM may be extended to a 1-variable DIRE
family, and hence each function wm is algebraic by Theorem 6.2. Finally, S(λ) =
wM+1(1/λ) is algebraic. �
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