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ABSTRACT. Consider the massless free field on the d-dimensional lattice Z<¢,d > 3; that is
the centered Gaussian field on RZ? with covariances given by the Green function of the simple
random walk on Z% We show that the probability, that all the spins are positive in a box
of volume N¢, decays exponentially at a rate of order N4~ 2log N and compute explicitly the
corresponding constant in terms of the capacity of the unit cube. The result is extended to a
class of transient random walks with transition functions in the domain of the normal and a-
stable law.

§1. INTRODUCTION AND RESULT

Let Q@ = {Q(k,j),k,j € Z%} be the transition matrix of a symmetric transient random
walk on the d-dimensional lattice Z®. More specifically we will be interested in two types of
situations:

(a) d > 3, Q is the transition function of the simple random walk:
L if li—kl=1,
Qi =1 -
0 otherwise.
(b) d > 1, q, is the density of the symmetric isotropic a-stable law on R¢ for some

0<a<2Ad, see (A.1),
QUi k) = /V Gaz + (i — k)*) da,

where V = [_%7 %]da (.7)+ = (|.71|7 |j2|7---7 |.7d|)
Let G = Y77 , Q™ be the corresponding Green function. Then it is well known that

—_— = ]_,
lk—j| =00 ga(j — k)

where g, (Z) = wa,d|z| ?** is the Riesz kernel, w, 4 is a normalizing constant, cf. [1] and

Lemma A.2, below. (In case (a), we set a = 2).
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The object of this paper will be the stationary centered Gaussian field {X (j)};czq of

law P on Q = RZ” with covariances G. The relation between the transition matrix Q
and the Gaussian field P is best explained by the following Gibbsian description of P: let
Py (+|Fxye) be the conditional distribution of X (k) given Fyy0 = (X (j) : j # k), then

Pe(-|Fpyo) = N(X(k);1) with X (k) =) Q(k,5)X
J#k
where N (a; 02) denotes the normal distribution with mean a and variance o2, cf. pages 262—
263 of [8]. In particular, case (a) corresponds to a Markovian field, known in the literature

as the (discrete) massless free field. Let Vy = {k € Z¢: £ € V}; the aim of this paper is
to prove the following

Theorem 1.1. Let G = G(0,0) and C = cap, (V) be the capacity associated with g:

capa (V) = sup{2u(V / / Jo(z — dz)p(dy) : p positive Radon measure on'V },

then

1
. > - _ )
]\}1_13(1)0 NiologV log P(X (k) >0 for k € Vn) aGC

Theorem 1.1 answers a question raised for the case (a) by Lebowitz and Maes on page
47 of [11], where they prove a decay of the order exp(—o(N?)) and suggest the order
exp(—O(N?92)) (see also [6] for related questions dealing with quasi-locality of the field

{o(k) = sign(X (k)) : k € Z9}).
Actually we will prove a slightly more general result: let {by : N € N} C R be such that

. by =
(12) J\}gnoo ngv =be (— 2aG,oo),
then ) c
lim o log P(X (k) > by for k € Vi) = —(V2aG + b)?=

N-oo Nd—2log N
Also, (a) and (b) can be generalized to
(a') d>3,Q(,k) =Q(k,i) = Q@i — k,0) > 0 is irreducible and of finite range R > 1:
Q(i k) =0, li — k| > R.
(b") d>1, Qi k) =Q(k,i) = Q(i — k,0) > 0 is strongly aperiodic and satisfies

lim |k —j|*"*Q(k,j) = ca > 0.
lk—jl—o00

Of course, in case (a’), g2 and caps have to be adapted to the corresponding kernel and
capacity, cf. (0.6) and (0.9) of [1].

The presence of the log IV factor in the exponent of Theorem 1.1 is best explained by the
fact, that, under the condition

Qn ={X(k) >0 for k € Vn},
most of the X (k), k € Vv, will be at the level 1/2aG log N:
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Proposition 1.3. Let a < 2aG, b > 2aG and € > 0, then
(1.4) lim sup P(X(k) <+/alogN | Q) =0,

N—oco kEVN,e

and

(1.5) lim sup P(X(k) > +/blogN | Qn) =0,

N—o0 keVN,e

where Vi . = {k € Vn : dist(k,V3) > eN}.

Proposition 1.3 suggests that, under the conditioning 2y, the field P converges weakly
to Py, the stationary Gaussian field with mean /2aG log N, that is

(1.6) P(- —v/2aGlogN | X(k) >0 for k€ Vy) = P(-).

This is connected with the so-called entropic repulsion. The long range correlations make
the field relatively stiff, but the local fluctuations push the random “surface” to infinity in
the presence of a hard wall, i.e. the conditioning that the fields stays positive on V.

Theorem 1.1 is closely related to the theory of large deviations. More precisely, let
M;i(R) be the set of probability distributions on R endowed with the weak topology and
set A={v e Mi(R): v([0,00)) =1}. Ais a closed set with empty interior. Next let

1
Ive = —— 3" bx0 € Ma(R
v |VN|keZVN X (k) 1(R)

be the empirical distribution of the box Vy, then
Qn = {Ly, € A}.

Using the N9~2 large deviation principle derived for Po (Ly, )~! in case (a’), Theorem 0.10
of [1], one sees that

li]{]njllop % log P(Qn) = li;njouop # log P(Ly, € A) < —oo,
since the corresponding rate function is infinite on 4. Unlike the weakly dependent case
(see below), Theorem 1.1 cannot be proved by standard large deviation techniques.

The proof of Theorem 1.1 is divided into two parts. The lower bound based on a condi-
tioning and entropy argument is given in Section 2, the upper bound in Section 3. Here we
follow a conditioning argument as in the proof of the upper bound in [1]. Proposition 1.3 is
proved in Section 4.

We conclude this section with a quick survey of the weakly dependent situation with fast
decaying covariances. More precisely, let 0 < € < 1 and consider the Green function G€¢ of
the random walk with constant killing probability e:

oo

G =) (1-omQ™

n=0
Next, let P¢ be the centered Gaussian field with covariance G¢, (in case (a) the so-called
discrete free field with positive mass €). P¢ is hypercontractive and P¢ o (Ly, )~ ! satisfies
a volume order large deviation principle with the good rate function h(-|P€), the specific
entropy, cf. [1]. Let M7 (2) be the set of stationary probability measures on Q and denote
by I : M5 (Q) — M;(R) the projection to the one dimensional coordinate.
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Proposition 1.7. Assume (a’). There exists a unique Q* € M5 (Q) with TI(Q*) € A such
that

h(Q*|P¢) = inf{h(Q|P¢) : Q € M5 (Q), TI(Q) € A} € RT
and

1
lim —

€ = —h(Q*|P°).
Jim_ o log P(@) = ~h(Q"|P)

Moreover, P¢(-|Qn) converges weakly to @* as N — oco.

The proof of Proposition 1.7 together with the Gibbsian characterization of Q* is given
at the end of §3.

§2. PROOF OF THE LOWER BOUND
The aim of this section is to prove the following lower bound:

Proposition 2.1. Let {by : N € N} satisfy (1.2) and set Qn = {X (k) > by for k € Vx}.
Then, under (a’) or (b’°),

C

(2.2) liminf — log P(Qn) > —(V2aG + b)z?

N—oo Ni—alogN

We will always be working under (a’) or (b’). As a warming up we start with a simpler
result which misses the correct constant but illustrates quite well the essence of the argument

Lemma 2.3.

1
. iminf — > — .
(2.4) lzlvnlyloréf Nialog NV log P(2y) > —dGC

Proof. For any a > 2dG let Py be the Gaussian field on 2 with mean /alog N and
covariance G. Let Fy, = o(X(k) : k € V) and set Fy = dde;" . Then

Fvy

alog N _
7g<]‘VN7GN1]-VN>VN

HN(PN|P) = / IOgFN FN dP =
Q
where (-, '>VN is the L?(Vy)— scalar product, G is the covariance matrix restricted to
Vn and G is the inverse of Gn (beware that (G~1)x # G'!) Note that capn (V) =
<1VN, G;,llvN>VN is the capacity of Vy with respect to the random walk generated by @,
cf. §25 of [13]. We have

(2.5) lim

m g capn (V) = capa(V) =C
In case (a’), this is proved in Lemmas 2.1 and 2.2 of [1]. We give a proof of (2.5) for
0 < a < 2Ad in Proposition A.9 below. Thus

1 aC
. im ———_Hy(Py|P) = &2,
(2.6) M Nd*alogNHN( NIP) =5
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Also we have

P (%) = Pn(Ukevy {X (k) < 0}) < |Viv|Pn (X (k) < 0)

= N4P(X (k) < —y/alogN) = Né¢(—+/alog N/G),
where ¢(z) = (2m) /2 [*_ e /2 dt < Le=*/% for z < 0. Thus

a

1
Py(Q}) < 5N — 0
as N — oo and therefore
(27) lim PN(QN) =1
N—o0

Now (2.4) follows from (2.6) and (2.7) by the usual change of measure argument: since
x — log z is concave, we have by Jensen’s inequality

P(Q P, P,
QN

Py (Qn) On Py(Qn) ~ Py (Qn)
1 1
= — log Fiy FindP > —— log Fiy Fiy dP -1
PN(QN)/QN ogFiy Iy AP = PN(QN)(/Q°g wFydP+e)
1

= P (HN(PN\P) + e*l),

where in the last inequality we have used the fact that © — zlogz > —e~!. Taking the
liminf on both sides, we get (2.4) by (2.6) and (2.7). O

The major obstacle in getting the correct constant for the lower bound with the above
method, is the rather poor estimate of PN(Q?\,) which forces a > 2dG. In order to overcome
this difficulty and prove Proposition 2.1, let us consider the auxiliary centered Gaussian
field {X (i,a) : i € Z%a € {1,..., L}} with covariances

(2.8) E[X (i,a) X (4,b)] =
G(Of)_l + 6ap 1=17.

Remark that the covariance matrix is also the Green function of a random walk {&o, &1, ...}
with transition probabilities
Q(, )

Q((i,a), (b)) = =

We denote by P(; 4) the law of this random walk with start £ at (i,a). Let

Y (i)

1]

L
% S X(,a)  2() = X(,1),

and set Fz = 0(Z(i),i € Z%. Note that E[Y (:)Y (j)] = G(3, j), thus

LAY () }ieza) = LEX () }ieza)-
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We calculate the conditional law of Y given F following the technique of the Appendix of
[1]: Let 7 =inf{n > 0: ¢, € Z% x {1}} and

¢"((4,a),5) = P(ia) (& = (4, 1))-

Obviously ¢%((i,1), ) = 6; ;, and, for a > 2, ¢¥((4,a), j) does not depend on a. We denote
its value by G~ (i, 7). By the random walk representation

E[X(i,a)|Fz] = Y ¢"((3,a),5) Z(j)-

jezd
Next, let n(i) = E[Y(i)|fz], then
1
n() ZZq i,a),5)Z(j) —Z + —=Z().

\/_Jezda / VL =, VL

The covariances of Z are given by
Gz(i,j)={ "
1-p+F2 =i
We can represent the Z-field as
) U(7) L—-1__ .
Z(1) = —F= +14/ ——V(1),
where L(U(-)) = L(Y(-)) and the {V ()} are i.i.d. N(0;1), independent of {U(i)}. Thus
1 - 1 3/2 L-1_,.
n(i 1—— ) D @ HHUG) + UG + > § v V().
jEZ4 jEZD

Lemma 2.9. 0% = var(n(i)) — 0 as L — oo.

Proof. The only problem is the first and third summation in the previous expression for

n(3):

(2.10) var(Zq (5,5))U ) Zq i,7)G G~ (k,i) = 0 as L — oo,

and

(2.11) vaur(Ll/2 Z qa“@,7)V ) L Z 2 50as L — oo.
jezd jezd

Note that, starting at any a > 2, &, is a random walk until the first (geometrically dis-
tributed, independent) time in which ¢ = 1 is hit. Let {¢,} and {¢/,} be independent
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random walks on Z¢ generated by Q, and let 7,7' be independent random variables, inde-
pendent of {(,},{(,}, with geometric distribution of parameter +. Let Py denote the joint
law of 7,7',{¢x}, {¢},}- Then

QL(%J) = HD('i,a,)(g'l' = (.7) 1)) = ]PO(CT =j- Z)

and

(@ G,5)2 = Po(Cr = §)Po(¢l = )

JEZ? FA
= ]PO(CT = C—:—') = IPO(CT+T’ = 0)

o0

= Z Po(Cnant = 0)Po(T = n)Py(r =n').

n,n'=1

Further we have Po(Cpins = 0) < c(n + n')~%/<, for some ¢ > 0 ( this follows from local
central limit theorem, cf. [13], §26 in case (a’), and Lemma A.1 below in case (b’)), and
Po(r = n) < e~/ for some K > 0. This yields

00 00
]P)O(Cr—i-‘r’ — 0) < K2c Z (’I’L + nl)—d/ae—n/Le—n’/LL—Z < k' Z n—d/a—l—le—n/LL—Z,
n,n'=1 n=1

for some k' > 0. The later is of order L2 for 0 < a < d/2, L 2logL for a = d/2, and
L=%*for 2 Ad > a > d/2. This proves (2.11). As for (2.10), note that

ZQ'L(i,j)G(j, k)i]'L(k,i) = Z ZPZ'(CT =7 C‘r-i—m =k, C‘r-i—m-i—‘r’ = z)
J.k m=0 j,k
= Z Pi(Crmsr =1) = Z Po($ntmint = 0)Po(T = n)Po(r = n')
m=0 n,n',m

S ch Z (n_+_nl+m)—d/ae—n/Le—n’/LL—2 S Klzn—d/a+2e—n/LL—2

n,n',m n=1

for some K’ > 0. This is of order L2 for 0 < a < d/3, L 2log L for a = d/3 and L~ %/a+1
for 2 A d > a > d/3. This shows (2.10). O

Lemma 2.12. Let x > 0, then

1 zC
e N> . 5 _%C
erggfl}&géf NialogV log P(n(i) > v/zlogN,i € Vi) > >

Proof. We follow the proof of Lemma 2.3: Choose 2’ > z, let P denote the law of (U (i), V (i));cz4,
and let Py be the law of (U(2),V (¢));cz« where U(7) has mean /z'log N and V(i) is un-
changed. Then

. 1 PN z'C
N0 NTatog N (EN|P) = 5=
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Also Ep [n(i)] = V'log N, and

~

Py(n(i) > V/zlogN,i € Vi) = P(n(i) > \/log N(v/z — Va'),i € V)
> 1—|Vn|P(n(i) < —/log N(Va' — /7))
_VREN (/4 ~ /3),
oL

=1—[Vn|g(

If L is so large that (‘/_:61;72\&)2 > 2d, we have limpy_, o |VN|¢(——W) =0, cf.
L

(2.7), and therefore
lim Pn(n(i) > +/zlogN,i € Vi) = 1.

N—o0

We proceed from here as in the proof of Lemma 2.3. O

Conditionally on Fz, (Y (i));czq is Gaussian with mean 7(i). We need some information
about the conditional covariances:

Lemma 2.13. Let

GZ(i,4) = E[(Y (1) = n(0))(Y (§) — n(4))| 2],

then

(2.14) G%(5,5) >0

and

(2.15) GE =G%(0,0) = G(0,0) = G as L — oo.

Proof. By the random walk representation

7—1
cov(X (i,a), X (j, )| Fz) = Eia) [ > Len=(i)s
n=0

cf. Lemma A.6 of [1], which does not depend on the Z-field. (2.14) is immediate. Next note
that

G%(i§) = G(i,j) = cov(n(3),(5)),
this implies (2.15) by Lemma 2.9. O

Proof of Proposition 2.1. For each § > 0, let Ny be such that \/lbo’jﬁ < b+ 46N > Np.
Choose z > (v2aG + b+ §)?, then

P(Y (i) > by,i € Vi) > E[P(Y (i) > bn,i € Vv |Fz);n(i) > /zlog N,i € Vn].
On {n(i) > vzlogN,i € Vn},

P(Y (i) > bn,i € Vy|Fz) > P(Y (i) —n(i) > —y/zlog N + by, i € Vn|Fz).
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Next, by (2.14), using Slepian’s inequality,
P(Y (i) = n(i) > —v/zlog N + by,i € Vv|Fz) > [ P(Y () —n(i) > —v/zlog N + by|Fz)

i€EVN

= (1 — ¢(—(\/zlog N — bx)/ G%))N

Since GL < G, (‘/_zéib,__d)z > 2a + 2¢ for some € > 0 independent of L. Thus for large
z
N > Ny

1
P(Y (i)-n(i) > —\/zlog N+by,i € V| Fz) > (1—5 exp(—

2 d
(Vz - b—f) log N )N S - kN
2Gy
In view of the above this shows
P(Y (i) > by,i € V) > e 2N " "P(y() > \/zlogN,i € Vy), N > N,.
Using Lemma 2.12 and the fact that z > (v/2aG + b+ §)2 and 6 > 0 were arbitrary, gives
the claim. O

§. 3 THE UPPER BOUND

In this section we give a proof of
Proposition 3.1. Let {by : N € N} satisfy (1.2) and set Qn = {X (k) > by for k € Vy}.
Assume (a’) or (b’), then

1
li —_—
N N7 ologN

The major tool in the derivation of the upper bound, will be a conditioning argument on
the lattice LZ% Let L € 2Nt be fixed and set

A=(L/2,...,L/2)+ L7 An =ANVy.
Next let Fr, = o(X () : i € LZ9),

X@) = EX@)|Fl= Y ¢"@GNXG) G, 4) = cov(X (3), X (4)|Fr)-

- 2
log P(ly) < — (\/2aG + b) %

By the random walk representation, we have
7—1
¢"(6,5) =Pil&r =3),  G"(i,5) = Ei[D_ lea=g],
n=0

where {£, : n € N} is a random walk generated by @ and 7 = inf{n > 0: ¢, € LZ%}. In
contrast to the original covariance G, G is fast decaying. More precisely, in case (a’) we
have an exponential decay:

(3.2) G™(i,4) < crexp(—cali — §|L™Y?),

for some c1,c2 > 0, ¢f. Lemma A.7 of [1], whereas in case (b’), we have a fast algebraic
decay:

(3.3) GE(i,§) < esL(log |i — g2+ — j|=47%, |i—j|> 1.

for some c3,cq4 > 0, cf. Proposition A.10 in the Appendix. Also in both cases, if Gt =
GT(i,i), i € A, then

(3.4) lim G* =G.

L—oo

Our first step is the following hypercontractive estimate
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Lemma 3.5. There exists K > 0 such that

P(X(i) > bn,i € AN|}'L) < H P(X (i) > bN|fL)KL_
i€An

Proof. The proof follows from Proposition A.16 below applied to the Fr, conditioned field
by using the function f(-) = 15453 O

For fixed A € N consider a partition of Vy into boxes {V}, : i € Va} of side [N/A]:
Vlfj = V[N/A] + Z[N/A] and let AL, = AN Vlfj,i € Va.

Proof of Proposition 3.1. First note that, by Lemma 3.5,

P(X(j) > bn,j € Vn) < E[P(X (k) > by, k € AN|FL); X(§) > bn,j € Vv N LZI]
<E[ [[ P(X(k) > bn|FL)*; X (§) > bn,j € Vn N LZY
kEAN
= B[ [] (1-6(—(X(k) - bw)/VGE) ;X (j) > by, € Vi N LLT,
keAN

For a >0, let
Iy, ={j e Ay : X(j) < ValogN + by}, i € Va,
and, for each 0 < § < 1, define

Fy ={lIy| 2 s|Ax [}

Note that ¢(z) > ﬁ6_22/2, for some k > 0 and z < —1. Then, on U;cv, FY,

IT (1 - #(=(X (k) = bw) /VGE) ™ < (1 - 6(—y/alog N/GL)) 14N

keVn
k

E ——
valog N/GL
< exp(_LNdfa/2G"),

- v1og N

where k; = k(6, L, A) = ﬁ&KLL_dA_d.

Choose now a < 2aGY, then

dy—da—d
exp(—alog N/ZGL))éKLN LA

B[] (1= ¢(=(X (k) = bw)/VGE) ™ Uicva Fi] < ko exp(=ki N*=+7),
kEVN

for some k2,8’ > 0, and can therefore be neglected.

Once we know that, on Qy, most of the X (j),j € A¥;, are at the level vV2aGL, we can
estimate the upper bound with computations related to averages on Aﬁv. This is particularily
simple since we are dealing with a Gaussian field. Thus, let

) 1 , s

fﬁ'
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\C
Then, on (UievA F}V) N{X(j) > bn,j € Vy N LZ%}, for each i € Va,

Gi 1
SN‘WZ I’IZX

JEWIL,)E JEIL
|A > XG |A' X X dGhx® Az MY X dGhXK
J€})" JEI kELZINVN JEIi, keLZA\Vy

8)(v/alog N +by) +8(by A O) + ZNa

where

|A,|Z > a0 k)X (k).

JEI, keLZN\Vy
In Lemma 3.7 below we show that, for each x > 0,
1
li ——— log P(U Zi1 5 > log N})
M SUp o IV 18 (Uieva{Zn1q 1 | <oini, )y > VElog N}) =

This together with the above yields

li ———log P(X(¢) > bn,t €V,
0 SUP oo IV 108 (X (i) > bn,i € VN)
) 1
S I%nj;pWIOgP(QZEVA{SN \/alogN+bN +5 bN /\0)})

for any 0 < § < 1 and a < 2aGY. Set ay = (1 — 6)(v/alogN + bx) + 6(bnx A 0),then

(3.6) lim ‘(’)f; = =(1-8)(Va+1b)+35(bA0).

Since {S% : 4 € Va} is centered Gaussian, for each {f;,i € Va} non-negative

P(Oieva{Sy > ax}) < P(Y Sy > an 3 £ < L exp( 2 Zieva £V
i€EVA - <S i > ) < = _ _
: i€Va " iCVa 2 2var(y,ey, fiSn)

)

Next, by the linearity of the conditional expectation and Jensen’s inequality,

var( ) fiSy) < var( ) fiSk)-

1€EVA i€EVA

Define now o
=) filgi(@) with VAi=i/A+V(1/A)CV,

i€Va

where V(1/A) = [— 5k, 5%, then

> fisk = Z hG/NXG), Y fi= (z) da,
|A |

i€VA JEAN i€EVA
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and therefore A2
var( ) fiSy) = TANE > h(i/N)h(i/N)G(, j).

i€Va i,jEAN
Thus by Lemma 2.2 of [1] in case (a’), respectively Lemma A.8 below in case (b),

L S P (Jy h(z) do)?
N N var(L ey, FSK)  Jy Jy P@)h(0)ga(a — v) dady

C(h).

As a consequence we get, by (3.6) with a = 2aGT,

2C(h
—

~—

log P(X (i) > bx,i € Viv) < —((1 = 8)(V2aGE + b) + 5(b A 0))

1
li —_
Voo Ni-logN

Taking first § — 0, then L — oo and A — oo yields the constant (v2aG + b)z%’, cf. (3.4),
where

C' = sup{C(h) : h piecewise constant on a uniform grid } = cap, (V)
by Lemma A.5 in case (b), respectively, Lemma 2.1 of [1] and (A.4), in case (a). O
Lemma 3.7. For each k >0

. 1 i
hmsupm log P(Uicva{ZNn1{1i | <siai, )} > V K1log N}) = —oo.

N—o0

Proof. Throughout this proof, ¢ will denote a constant, which depends only on L, k but not
on N, whose value may change from line to line. Let

Pi = P(Znlqn,|<omyly 2 VrlogN).
Note first that since |Va| is bounded independently of N, it is enough to show that for each
i,

1
li —_
Noroo No-logN

We will show that there exists ¢/ > 0 such that

logP; = —o0.

lim N9 logP; = —00

N—o0
To this end, let Iz denote a set of |3| < §|A%| indices in A};. Note that the number of
admissible 3 is bounded by 2/A~1. Let

Zg= AP YT 4G RX(R).

jeIﬂ kELZd\VN
For fixed Ig, Zg is Gaussian, then

klog N

i i 1
; < 2lAnl P(Zg > \/klog N) < 2AN/_ —_—
Pi < max (Zg > /klogN) < 5 exp ( Smaxs (7]

)
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The lemma thus follows if we can show that there exists an € > 0 such that

(3.8) max E[Z3] < cN™4c.

We show (3.8) in case (b’), the proof in case (a’) is similar. To see (3.8), note that, by
(A.11) below, for all &' < a,

E[ZF]<eNT2 Y7 3 d"(G R KGR K

§,j'€lg k,k' €eLZ\Vy

(3.9) < cN~—24 Z Z lj — k|—d—a’ |JI _ k/|—d—a'|k _ kll—d-‘ra
J:J' EAN k,k' €LZN VN k#£k'
d_2d j kg ond K i k' 1
— ¢N—d9-20'+a J k4o ) _Fi—a@a | F _F —dta ]
¢ 2 2 v By Aty v B bl v By e

3,4 EAN k,k' €LZN\Vy k#k’

By Riemann integration

: J k —d—a' J! k' —d—a' k K’ —d+a 1
1 2 : J_ = J _r r_r
NS DR b G b bl v I v
J,J' EAN k,k' €LZN\ VN k#£k'

=/ /u/n/ |1 —a:2|_d_a’|$2—$3|_d+°‘|$3—$4|_d_°" dz1 dzo dzs dzy < 00.
vJ/veJyeJy

In order to verify that the last integral is finite, we may replace V = [1/2,1/2]? by the unit
ball B = {z € R? : |z| < 1} and use the inequality

7a,
/ |a:1—932|_d_°"da:1< c||x2|—1| 1< |z2] <3
B I e 3 < |z2| < 0.

Choosing now a — o' small enough and using (3.9), the lemma follows. O
We conclude this section with the proof of Proposition 1.7:

Proof of Proposition 1.7. We begin with a Gibbsian description of P¢: Let P (-|f'{k}u) be
the conditional law of X (k) given F;,0. Then

Pi(+|Frpe) = N((1 - €)X (k); 1)

where X (k) = >z @K, 7)X (j). We can view P¢ as the unique Gibbs state to the inter-
action potential Y = {Ur : 0 # F CC Z%}

xqr F= )
Ur(X) ={ —(1-¢)Q(k,5) X (k)X (5) F={k,j}
0 |F| > 2,
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with reference measure the Lebesgue measure dz on R. Consider now the new interaction
potential Ut = {Uf : 0 # F CC Z4}

X + ool xqp <o) F ={k}
Ug(X) =1 -1 - )Q(k,j)X (k)X (5) F ={k,j}
0 |F| > 2.

Let Go(UT) be the associated set of translation invariant tempered Gibbs states on QT =

(RY)Z%. Go(U+) # O since UT is superregular and superstable, cf. Definition 1.7 and
Example 1.12 of [9]. We claim that Go(U™) consists of a unique point {Q*}. This follows
from Dobrushin’s uniqueness criterion: let

exp(—2®/2 + (1 — ) X (k)z)
Jo exp(=y2/2+ (1 - )X (k)y) dy
be the conditional law of X (k) given ;10 for any Gibbs’ state in Go(U™*). Next let W :

M1 (R) x M1(R) — [0, 00] be the Wasserstein metric with respect to the Euclidian norm
| - | on R, that is

Pt (da|Figo) = v (da| X (k) =

W) =su{ [ f@)otdo)- [ 1o fGC(R+)5(f)=iiEW§1}-

Set

Dikg) = sup( LI O v e @ with X0 =05}

Then, if vt (fly) = [p+ f(2)vT(dz|y), respectively vt (z|y) = [, zv (dz|y), we get by the
Cauchy Schwarz 1nequa11ty

|%V+(f|y)\ =(1-¢ /R+(f(z) — v (fly)(z — v (2ly))vT (dzly)

<=9 [ ¢ -rumrvEm) ([ -t e )
< (1= 8(Fvar(v* (- ).

1/2

This yields

D(k,j) < (1— 6)Q(k,j)zggvar(v+(- lv)),

with

®(p — p)2e—(z-1)?/2 4 gy —y)2e—(z-v)?/2 4
var(v*(-|y)) = jnf Jo_(EZ WV Rde [y (@ —y)e 0 Rda
b>0 fO e—(2=9)%/2 dp fo e—(2=9)%/2 dp

Thus

sup (k,j) <(1—¢) <1,
keZd#Zk
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and we have uniqueness by Dobrushin’s criterion, cf. Theorem 4 in [5]. Using the standard
variational principle, one then verifies that Q@* minimizes the specific entropy h(-|P¢) under
the constrain II(Q) € A, cf. [9]. Also the upper bound large deviations yields

1
limsup ——log P*(2n) < — inf h(Q|P°) = —h(Q*|P°).
meup - log P(Qy) <~ inf  h(Q[PY) = ~h(Q"|P)
Hypercontractivity shows that h(Q|P¢) > cH; (II(Q)|II(P¢)) for some constant ¢ > 0, cf.
§5.4 [3], and hence h(Q*|P¢) > 0. We cannot apply directly the large deviation principle
for the lower bound, since .4 has a void interior. However Q*(2x) = 1 and this implies

.. 1 . | pe
lb%lo%fwlogP (Qn) > —h(Q*|P°),

cf. Proof of Lemma 2.3. Finally, the convergence of P¢(-|Q2y) follows along the same
pattern as the proof of Theorem 3.5 in [4]. O

§4. ENTROPIC REPULSION

In this section we give a proof of Proposition 1.3. Our main technique is the monotonicity
or FKG property of the measure P. Our starting point is Proposition 4.1 below. Note that
only (4.2) will be actually needed in the proof of Proposition 1.3.

Proposition 4.1. Let a < 2aG, b > 2aG and § € (0,1), then

(4.2) Jim P(Lyy[0,v/alog N] > 5[ Q) =0,
—00

and

(43) th P(LVN[VbIOngoO) 25|QN)=0
—00

For fixed L € 2N*, define Fr, An, X (i),GX(i,5),i,j € An as in Section 3 and set

1
Loy = 57— Z Ox (k) -
|AN| keEAN

The crucial step in the proof of (4.2) is the following
Lemma 4.4. Let a < 2aGY, then for each § > 0,

Jim P(Lay[0, ValogN] > 4§ |Qy) =0.
—o0

Proof. Set
In(a) = {j € An s X(j) < y/alog N},
Tw(@) = {j € Aw : X(G) < Valog N}, Tw(a) = {j € An : X(j) > v/alog N}.

Following the argument of the proof of Proposition 3.1, we know that for each § > ¢’ > 0
and a < a’ < 2aGY,

P(|In(a")| > 8'|An]; Qn) < exp(=cN972F¢)
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for some ¢, e > 0. By (2.2), this implies

lim P(|Iy(a')| > &'|An||QN) = 0.

N—oco

Since

{Lay[0,+/alog N] > 6} = {|In(a)| = 6[An[}
= {lIn(a)| Z 6|An|, |In(a")| < &'|An} U{|In(a)| = 6|An], [In(a)| = &'| AN}

C {lIn(a) N In(a")®] > (6 — &) An} U{|In(a")| > &'|An]},
all we have to show is

(4.5) lim P(|In(a) N In (')’ > (6 - §')|An||Qn) = 0.

N —oo

Let k € In(a) N Iy(a')C, then

X (k) — X (k) > (Va' — Va)/logN.

Thus on {|Ix(a) N Ix(a’)¢| > (5 — 6')|AN|}, we have

keEAN

Note that G*(k,j) = cov(X(k), X (j)|Fr) = E[(X (k) — X (k))(X(j) — X(5))] is rapidly
decaying, cf. (3.2), but this implies

lim sup NdligN logP(lAlNl 31X (k) = X (k)| > (5— 6)(Va' - Va)y/logN) < —c

N—oo kEAN

for some ¢ > 0 depending on L,§ — &' and va' — v/a. This together with (2.2) proves (4.5)
and concludes the proof. [

Proof of (4.2). For £ € Vi, define Fr(£) = o(X (k+¢),k € LZ%, A({) = (L/2+4,...,L/2+
0) + L74% An(£) = A(f) NV and

In(a,0) = {j € An(0) : X(j) < /alog N},

Using the argument of the preceeding lemma, one shows that for each £ € Vi, a < 2aGY
and 6 >0
lim P(|Ty(a,6)] > 5|An ()] | x) = 0.
N—oco

Also
{Lvy[0,ValogN] > 6} = {|{k € Vn : 0 < X (k) < /alog N}| > 6|Vn[} C Usev, {[In(a,£)| > 6AN(£)}.

This implies (4.2) for each a < 2aGY, and the result follows with L — co by (3.4). O
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Proof of (1.4). Let us recall (1.4):

(1.4) lim sup P(X(k) < +/alogN |Qy) =0.

N—ro0 kEVN e

Consider a small cube, Vy (k) centered at k& with side length < (¢/3)N. Let Wx({) be a
cube centered at £ with size length (2¢/3)N. Then, for k € Vn,

Vn(k) C Neevn yWN (),  UrevwmyWn (€) C Va,

and by the FKG property, for each £ € Vy (k):

P(X(k) < ValogN |Qy) < P(X (k) < Valog N |X(j) 2 0,j € Wn(k))
P(X(k+4) < ValogN|[X(j) 20,5 € Wn(k + 1))
P

(X(k+£) < v/alog N|X(j) > 0,5 € Vi (k).

Il

IA

Thus, for any 6 > 0,

P(X(k) < ValogN|X(j) >0,j € Vn) < Y. P(X(k+4) <+/alogN|X(j) > 0,j € Vn(k))

Vv (k)] LeViv (k)

= E[Lyy#)[0,valog N]| X(j) > 0,5 € V()]
<6+ P(Lvy ([0, valog N] > 6| X(j) > 0,5 € Vn(k)).

Using (4.2), we have
Jim_ P(Ly,[0,v/alogN] > 6] X(7) > 0,5 € Vi (k)
— 00
= Jggan(Lw(e,s)N] [0,/alog N] > 6| X(j) > 0,5 € Vj(¢/3n)
Jim P(Ly,[0,+/alog((3/€)N)] > 6 |Qn) = 0.
—00

Since § > 0 is arbitrary, we have the result. [

Remark 4.6. One could wonder, what may happen with k closer to the boundary of V.
For1>¢e>0, let 8.V = Uj_{z = (21,...,za) € R : |zj] = 1/2,]z] < (1 —€)/2,k # j}
and set OVy,. = {i € Z?:i/N € 8.V}, the "interior” of the boundary of Vi. An adaptation
of the above argument shows, for any 1 < a <2Ad and a < 2(a — 1)G,

lim sup P(X(k) <+/alogN | Qn)=0.

N—ookeovy,.
Next, we are going to show first (1.5), and then (4.3). Our first step in the proof of (1.5)
is the following
Lemma 4.7.

(4.8) lim sup sup M

< vV2aG.
Nooo keVy  VIogN =
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Proof. Again, we use FKG: for fixed m € N, and any £ € V;,,n, k € Vi,
E[X(k)|Qn] = E[X(k+€) | X(j +£) > 0,j € Vn]
< E[X(k+£) | Qms1)n],

since Vimy1)n = Utev,.y (VN +£) and Viun +k C Vi y1)n- Next for any A > 0 with support
in V,,n and 8 > 0, we have

B(W,nsh)y, (EIX(R)[QN]<B D AOEX(k+£) | Qminyn] = E[FN | Qmiayn],
LEVimN
where Fiy =33,y h(€)X(k +£) . Using the entropy bound

2
E[FN | Qms1)n] < Himy1)n (P(- [Q(m41)n)|P)+Hlog Elexp(Fy)] = —IOgP(Q(m+1)N)+%<h, Gh)y,

N

we get, by taking the best 3,

(h,Gh)

VinN
" ny

E[X (k)| Qn] < J_210gP(Q(m+1)N
VmN

Further, note that

2
sup <1VmN7 h>VmN

= o = _ o d—apd—a
n>o0 (h,Gh) = (Wons Gry W )y, = €@PmN (Vian) = m®“N9"%(capa (V) +0(1)),

Vinn

and by Theorem 1.1
—log P(Q(m+1)n) = (m + 1)4=* N9 log N (aGcaps (V) + o(1))

and therefore

E[X (k)| Q]
limsup sup —————— < 1/2aG(1 + 1/m)d-,
N—>oopk€‘£1)v ViogN  — \/ ( /m)

Now (4.8) follows with m — co. O
Proof of (1.5). We want to show that

(1.5) limsup sup P(X(k) > +/blogN|Qn) =0

N—o0 kEVN,e

for all b > 20G. Choose 0 < § < v2aG and set y = v2aG—3, then, writing X (k) = LUk,

we have
E[X(k)|Qn] = yP(y < X (k) < V) + VBP(X (k) > Vb|Qx)
=7(1— P(X (k) > VblQn) — P(X (k) <+|9n)) + VBP(X (k) > BIQn).

Thus . N
E[X(k)|Qn] —v +yP(X (k) <v|Qn)

Vb= |

P(X (k) > VbQn) <
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Since, by (4.8),
limsup sup E[X(k)|Qn] < V2aG

N—oo k€VNn
and, by (1.4), X
lim sup P(X(k) <1|Qn) =0,
N —o0 kEVnN,e
we get

)
limsup sup P(X (k) > +/blogN|Qy) < —————
N—>oopk€V1€,e (X(k) 2 gN|fn) < Vb —2aG

which yields the result with § \, 0. O
Proof of (4.3). Let b > +v/2aG and 0 < § < 1, then for any € > 0,

§P(Lyy[y/blog N,00) > §| Qn) < E[Lyy[y/blog N, 00) | Qn]
- ﬁ S P(X(k) > v/blog NV | Q)
N keVn

< sup P(X(k) > 4/blog N|Qn) + cqe?

kEVn,«
for some constant ¢z > 0. Thus by (1.5)
lim sup P(Lyy [v/blog N,00) > § | Qn) < %
N—s00
and (4.3) follows with e 0. O
APPENDIX

In this appendix we show the convergence of the capacity and derive the estimates of the
conditional covariances for the a-stable case.

Let o € (0,d A2) and let g, be the density of the isotropic symmetric a-stable law on R?
with characteristic function given by

(A1) / et (z) dz = e7P1t°, t € RY,
R4

for some p > 0. Define @ as in the introduction and let Q™ be the n-th product of Q.
Lemma A.2. Assume (b) or (b’), then

(A.3) lim |k|*"*Q(k,0) = cq
|[k|—o0

and

(A4) sup Q"(j,k) < en~ Y/
j,k€Z4

for some c,cq > 0. Also

: d—a _ — fRd ¢(93)|93|_°‘ dz
A8 TR0 =t = G = @ T d
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with Y(z) = % 2?21 COS T;.

Proof. The first equality, (A.3), follows from the definition of @) and (A.1). As for the proof
of (A.4) and (A.5), we use harmonic analysis as in §7, §8 of [13], cf. in particular the proof
of P6, see also [12], Propositions 2.3, 2.4 and 5.2: Let

Q) = > Q(0,k)e™*?, 6 (—mm?,

kezd

be the Fourier transform of @), then

i, 16]%(1 = Q(6)) =10 = o | (1 = b(a))lal*~* dz,

|6]—0

cf. Example 2 §8 of [13]. Note that ¥(8) = |Q(8)|? is the Fourier transform of Q2. Since Q
is strongly aperiodic by assumption, ¥(¢) = 1 if and only if § € (27)Z4, cf. P8 of §7 of [13].
Also the above shows

N

lim 16]~%(1 - (9)) = lim |6]7*(1 = Q(6))(1 + Q(6)) = 2¥a,a.

|6|—0 |6]—0
Thus there exists A > 0, such that
0<TMO)<1-Ag|*<e M fe(—mm

But
(2m)9Q (j, k) = / =ik 03 (9)n dp < / e=MIf1” 4o < op=d/,
(_7ra7r]d (_7rv7r]d

and the same bound holds if Q>"(j, k) is replaced by @>"*1(j, k). This proves (A.4). Next
note that, if G denotes the Fourier transform of G, then G/(0) = (1 — Q(6)) ! with

lim [6]°G(8) = ——

6—0 Ya,d

and

_ A —ik6
i /( Goa

1
lim |k|%"*G(k,0) = —————
|k|—>oo| | ( ) (27r)d'ya,d R4

This yields

Y(z)|z|7% de = wa,q.

O

Let 9o () = wq,a|z|~9t* be the Riesz kernel and define the integral operators K and Ky
on L%(R?) and L2(V)

Ko() = [ oale— 00 dy,  Kvola) = | gula -0 dv.
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Ky is a positive definite, compact self-adjoint operator with (L?(V)- normalized) eigenfunc-
tions {e,} and eigenvalues {\;(V) > X2(V) > ...}. For ¢ € C%(R?) N L2(R?) let

K700 = [ (60) = )z’ (@ =) dy

where

9o () = calz|~*7"

Finally consider the Dirichlet forms £ and £y on L%(R%) and L2(V):

_ %/Rd /Rd(¢(x) —o)9x (z—y)dzdy, Ev(g, ) Zﬂ:/\i 5 en

n

Let G,Gy be the extended domains of £ and &y. Both Dirichlet forms are regular, cf.
Example 1.5.1 of [7]. £ is the Dirichlet form associated with the symmetric a-stable process
on R?, whereas £y is the Dirichlet form of the symmetric a-stable process imbedded in the
unit cube V. Using the positivity and continuity of Ky on L%(V'), we have, for each dense
subset D(V) of L2(V),

Ev (6, 0) = sup{2(¢, f)y, — (/,Kv )y : f€DV)}

(. )y

L Kvi), : feD(V)}.

(A4) =sup{———— {

Lemma A.5.

(A.6) Ev(ly,ly) =inf{E(h,h): he C*(RY)NLA(R%),h>0,h=1 on V} = capa (V).

Proof. By Lemma 3.1.1, Problem 3.3.2 and Example 3.3.1 of [7], (see also [10], Theorem
2.3, page 138)

capo (V) = inf{&(h,h): h€ G,h>0,h=10n V}
=inf{€(h,h): he C*(RY) NL*(RY),h>0,h=1o0nV}.

Also
capa(V) = sup2u(V) = [ [ gu(e — p)udoutay)
u positive Radon measure on V' with finite energy }

For each u with finite energy, we can find a sequence {f,} C L*(V), such that

A7) lim 21y, f)y — (fu Kvfa)y = 20(V / / Ga — v)u(d) (),
cf. Example 3.2.1 of [7]. Thus, by (A.4)

capa(V) = sup{2(ly, f), — (/,Kvf), : f € L*(V)} = Ev(lv,1v).
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Lemma A.8. Let f be Riemann integrable on V and let h € C*(R?*)NL?(R?). Set fx(k) =
JU5/N), by () = h(k/N) then

Nli_rfloo N-(fn, GNfN>VN ={f, va>V

lim N™*(hy,G 'hy), e = E(h, D)

N—oco
Proof. This follows from Lemma A.2 and Riemann integration:
: —d— — T . d—a AN E(a —2d
Jim N7(fx,Gnfv)y, = lim lim > f(R/N)NG(k—j5)f(i/N)N
kﬂ]EVNv‘J_k|>M

=lim Y f(k/N)ga(i/N —k/N)f(j/N)N >

k,jEVN ,j#k

<fa KVf>v7

and

1
: —d+a -1 I F :
N N e G )z = 3 i im0
k.jEZ,|j—k|>M

(h(k/N) = h(§/N))*N*+eQ(k — j)N ¢

- %A}im > (r(k/N) = h(j/N))’9,*(i/N — k/N)N >
Tk jed i
= &(h, ).
O

Proposition A.9. Let f € C'(V). Set fn(k) = f(k/N), then
lim N (fy, Gy )y, = Ev(f, -

N—o0

In particular if f = 1y, then fy = 1y, and

lim N {1y, Gy lvy) im N~ capn (Viv) = capa (V).

N—oo Vv Nl—>oo
Proof. First note that for any ¢ € C(V)

N-dre(fy, GEIfN>VN > N~%2(fn, ¢N>VN - N~*(¢y, GN¢N>VN-
Thus in view of Lemma A.8 and (A.4)

lnint N, G )y 2 sup {2(,8)y — (8, Kvo)y } = Ev (1, ).
Next for each h € C*(R?) N L%(R?), with h=f on V
<fNaG;11fN>VN = sup {2<hN,¢N>VN - <¢N,GN¢N>VN}

¢~ EL2(VN)

< sup {2<hNa¢>Zd_<¢’G¢>Zd}

$peL?(Z9)

= (b, G ) = 5 3 (AG/N) = h(E/N))QU — )

J,k€Z?
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Using Lemmas A.5 and A.8, we see that

lim supN_d+a<fN, GJ_\,lfN>

N—o0

v <inf {E(h,B): e CHRONI*(RY),h = f on V} = Ev(f, ).

O

Finally, let {¢, = Y1 + ... + Y,,} be a random walk generated by @ and 7 = inf{n > 0:
&, € LZ%}. Remember that, by the random walk representation, we have

7—1
¢“(i,4) = Bi(& = 4),  G"(,5) = B[ le,=j].
n=0
Proposition A.10. Assume (b’), then there ezists cs > 0, such that, for |i — j| > 1,
G*(i,9)
(A.11) q" (i, )

with ¢4 = (d+ a)(d + 2 + ). Also, for eachi € A

< gL (logi — j|)4?*e(i — j| =%
<

(A.12) lim G*(i,i) = G(i,1).

L—o0

Proof. First remark that, for 7 € A,

Gyd) =GP (1,0) =B [Y_ 1)l = D ¢"(6,5)G(,5) < _max  G(i,5) =0,

T i€eA,jeLzd
jeLzd J

as L — oo.
Next let 7; = inf{n > 0: &, = j}, then, referring to the proof of Lemma A.7 in [1],

< G(0,0)(Pi(r; < T) +Pi(r > T)),
Pi(&r =) <Pi(r; <7) <Pi(1; <T)+Pi(7 > T)

for any T' > 1. We claim that

(A.13) Pi(r > T) < e BT

(A.14) Pi(rj < T) < kT2 — 47472,
for some k1, ks > 0. (A.11) follows from these estimates by choosing T' = d,j—laLdJra log |7 —1|-
Proof of (A.13). Simply note that
Pi(r > T) =P;(& ¢ LZ%,...,é7 ¢ LZ%) < (1 — p)"
where

pr = minP;(& € LZ% > min Q(i,0) > kL™%472,
i€Z4 1€VL /2
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for some k£ > 0.

Proof of (A.14). The crucial step is to show that, for each |j| > 1,
(A.15) Po(én = j) < ksn™1He|j| 707

Once (A.15) is shown, (A.14) follows from

T
Pi(r; S T) <Y Po(én = j —i) < kT4 — j=4—2,

n=1

In order to prove (A.15), note that,

Folén = J) = Poln = 5: U1 (1% > 1)) < nbo(e = 5130 > )

=n Y Po(Yn =4[V, > LZ}—')Po(gnfl =j-9),
ez

and use the fact that, for £ > Fl

n
Po(Y, = £) < k3|j| "9 2ndte,

O

We conclude this Appendix with a proof of the hypercontractive estimate :
Proposition A.16. Let {{;}iczq be a Gaussian field of zero mean and summable covariance
R(i,j) = R(|i — j|). Assume that
(A.17) |R(li — i)l < Cli — 412,

for some 6,C > 0. Then there exists a constant Cgr > 1, independent of N, such that for
any bounded measurable function f(-),

B[] fen <A,

1€VN

1/C

where ||fllca = (BIIf (&)(°%]) /"

Proof. Let I, I, two disjoint sets of indices in V. For any two vectors {a; }icvy, {8 }icv
let (a,8) = >, jevy @iBiR(i, j), with the obvious definition of ||a||. Following [2] (see page
648, last line, and work in the time domain instead of in the frequency domain), let

e = sup{(a, B) : [lo]| = [|B|| = 1,0 = OVi & I, B; = OVi & I}

By an adaptation of Nelson’s hypercontractive estimates similar to [2], lemma in page 645,
for any two bounded functions fi, fo measurable respectively on Fy, = o(&;: i € I), F1, =
(& :j € ),

E[lfl(f)f2(€)|] S ||f1||1+7_511,12 Hf2||1+TEIIJ2 .



ENTROPIC REPULSION OF THE LATTICE FREE FIELD 25

Note that
(@B =1 > aiBiRE5)| <D (oF +B)R(i - j])l
i€ly,j€l> iJ
< (1/2)lal3(sup Y |R(li — j])I) + (1/2)[|8][3 sup > _ |R(ji — 5])]),
€h ey, Jel2 e,

with ||a||2 denoting the £; norm of @. On the other hand,

lll|* = [l 3R(0) + ) aiej R(li — ),

3,J€I1

where R(z) = R(z) if z # 0 and R(0) = 0. Hence,

lladl? > |l 5(1 — 2 sup D |R(Ji — 5])]),

i€l jel
with an analogous expression for ||3||. It follows that, with ||a|| = ||8|| = 1,

L (supjer, Xjer, B = 1) L SUPjen, Yien, [R(li —4)I)
27 (1 = 2sup;ey, Zje]l |R(li —jDI) (1 —2sup;eg, EjeIZ [R(li — 7))

Let now V@ (VE) denote the odd (respectively, even) points in V. Then, using the
above,

(A-18) BT sen <l 1 #@ll, vevs I TL £EN, v -

i€EVN ieVy i€EVE

7",511’12 <1A

).

One may now iterate this inequality, partitioning in each stage the “odd” and the “even”
parts again to two subsets. To keep track of the partitioning, we use the multi-index
2, € {0,1}* to denote the partition history of each of the 2% sets in the k — th iteration,
denoted V]f,’“’k, with O representing “odd” and 1 representing “even”. Note that

sup > [R(i=jDD < D IR —rosoo O-

I
iEVyEF jevas® |5]>2Lk/d]

Let l,’gfl denote the truncation of the last coordinate in ¢;. Using the above, it holds that
for all k > ko (with ko depending on R only), and all ¢, Z satisfying £8~" = ZF—1,

Vek,k7vzk,k _
TN N <4 Y |R(G)]
jE(2LR/alyVy

Let vy = 4Zje2(Lk/dJ)VN |R(|5])| - Tterating the basic inequality (A.18) yields now

BT @) <A@y parora viss y 4y < I 500 e, (1 = Il

i€EVN

where Cg = 2k 4 720 ko (1 +7%) < 0o and the last inequality follows from the fact that
Y hek, Tk < 00 due to (A.17). O
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