LATE POINTS FOR RANDOM WALKS IN TWO DIMENSIONS

AMIR DEMBO* YUVAL PERES' JAY ROSEN! OFER ZEITOUNIS

ABSTRACT. Let 7, (x) denote the time of first visit of a point = on the lattice torus Z2 = Z?/nZ>
by the simple random walk. The size of the set of a,n-late points L,(a) = {& € Z2 : To(z) >
a(nlog n)?} is approximately n>*~%), for a € (0,1) (Ln() is empty if @ > 1 and n is large
enough). These sets have interesting clustering and fractal properties: we show that for 8 € (0,1) a

disc of radius n” centered at non-random z typically contains about n*#(~%/ 5% points from £, (a)
(and is empty if 8 < /&), whereas choosing the center z of the disc uniformly in £, (a) boosts the
typical number o, n-late points in it to n?? (1=2) " We also estimate the typical number of pairs of
a, n-late points within distance n® of each other; this typical number can be significantly smaller
than the ezpected number of such pairs, calculated by Brummelhuis and Hilhorst (1991). On the
other hand, our results show that the number of ordered pairs of late points within distance n® of
each other, is larger than what one might predict by multiplying the total number of late points by
the number of late points in a disc of radius n® centered at a typical late point.

1. INTRODUCTION

Consider simple random walk (SRW) on an n x n square with periodic boundary conditions (also
called a lattice torus), run until the “cover time”, when it has visited every point of the square. Our
focus will be on the set of uncovered points shortly before coverage, which we call “late points”.
In an important paper, Brummelhuis and Hilhorst [1] pointed out that in two dimensions, this set
has an interesting fractal structure. The main finding of the present paper is that the set of late
points has an even more subtle fractal structure than that suggested in [1]. A significant reason
for this is that a key random variable measuring the structure of late points, namely the number
of pairs of late points within distance n® of each other, has a median and mean of different orders
of magnitude.

As noted in [1] this fractal structure is not present in three or higher dimensions, where at the
scale of power laws the set of uncovered points resembles a uniformly sampled random set of the
same size.

We proceed to a more quantitative discussion. Consider the SRW on the lattice torus Z2 =
72/nZ? starting at the origin. If x € Z2, we let T,(z) denote the time it takes the walk to first

n?

visit z. Let T, = max,cz2 Tn(7) denote the time it takes the walk to completely cover Z2. In [4,
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Theorem 1.1] we showed that

(1.1) lim T

AL Crogm)z — 4/ in probability.

(contrast this with the typical hitting time of a fized point = € Z2, which is of order n?logn).

We say that x € Z2 is a,n-late for some 0 < a < 1 if
4
Ta(2) > a—(nlogn)?,
™

and set L, () to be the set of o, n-late points in Z2. An adaptation of the arguments in [4], reveals
that |£,(a)| =~ n? 2% in the following sense.

Proposition 1.1. For any 0 < a < 1,

(1.2) lim log | £n(a)] = 2(1 — «) in probability.

n—»00 logn

If £, (c) were spread out uniformly in Z2, one would expect that for any z € Z2 and o < 8 < 1

we would have |£,(a) N D(z,n%)| = n?$=2%, The next two theorems make precise the idea that the

set L, () does not look like an independent uniform drawing of n2~2% points in Z2, in the sense
that |£,(a) N D(z,nP)| = n?’~22/8 for a typical z, whereas it is ~ n?$(1-) for most z € L, (a).

Theorem 1.2. For any 0 < a < 32 <1 and § > 0,

(Il"glﬁn(a) ND(z,nP)|

(1.3) lim max P logn

n—00 geZ2

— (28 —2a/B)] >5) —0.

In particular, for any 0 < a, 8 < 1 and any non-random sequence z,, € Z2

1 D p
n—o0 logn

= max (203 — 2a/3,0) in probability.

As stated already, the fractal nature of | £, ()| is described by the next theorem that shows the
clustering of late points; in the neighborhood of a ‘typical’ a,n-late point there is an ‘unusually
large’ number of «, n-late points.

Theorem 1.3. For any 0 < o, <1 and 6§ > 0,
P(|10g |Ln(a) N D(z,n’)|
logn

1. Li — — =0.
(1.5) nglgoze%l??éO} 268(1 —a)| > 6 ‘x € Ln(a)) 0
Further, choosing Yy, uniformly in Ly(a),

1 D(Yy,,n”
(1.6) lim 1981£n(@) 0 DXy, n7)
n—00 logn

=26(1 — a) in probability.

The predictions of [1], which motivated our work, are related to another description of the
clustering properties of £, (), obtained by focusing on pairs of late points.

Theorem 1.4. Let 0 < o,8 < 1. Then

1 ,y) € L2 s d(z,y) <nf
(1.7) lim o {(z.9) n(@) : d(z,y) <nl}| = p(a, B) in probability,
n—00 logn
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where

_ [ 2+28—40/2— ) i 8 <2(1- va)
(18) ”W”{&hﬁ%m—ﬁM3mum—@

For the mean number of pairs of «, n-late points within distance n? of each other, Brummelhuis
and Hilhorst in [1, (3.36)] obtain different growth exponents

~ B 2420 —4a/(2 - p0) ifﬁ§2—\/2_a
(1-9) P(aaﬁ)—{6_4m ifﬂ22—\/2_a

As we explain below, the functions

1—p)?
(1.10) Fra) = S 4 i,
of v > 0, with h a non-negative integer, play an important role in the study of late points. It can
be easily checked that

(1.11) pla,B) =242 —2a inf F;z(y)
'yEFa,ﬂ
where
(1.12) Ta = {72 0: 228 2R 4(y) > 0)
(see Section 9). It is also easy to verify that
(1.13) pla, B) = sup sup{2 + 23’ — 2aF, g (7)},
B'<By20

so the difference between p(«, 8) and p(a, B) is that the supremum in (1.13) is not subject to the
constraint that v € I', 5. As explained below, this constraint differentiates the median number of
pairs of , n-late points within distance n® of each other, easily obtained from (1.7), from its mean
(found already in [1]).

The key to our approach lies in the following heuristic picture relating the lateness property to
certain excursion counts for the random walk: fix an appropriate sequence of increasing radii rg,
k=1,...,ky with rg41/rg ~ 7 /Tk—1, 70 = 1, and r, << n, and count the number of excursions
N, (k) between D(z,7;_1) and D(z,r;). A point that has much fewer than the typical number of
excursions between these levels, by time 4a(nlogn)?/x, is also extremely likely to be o, n-late (see
Lemma 4.1). Further, a typical © € L,(«) has an atypical profile of excursion counts, determined
approximately by considering a one dimensional simple random walk on the set {1,... ,k,}, started
at k,, and conditioned not to hit 1. Thus, not only is the point £ not hit by the random walk, but
in fact a neighborhood of it is visited less often than it would have been otherwise, and this creates
a large cluster of a,n-late points in a neighborhood of such z.

Large deviations estimates for this one dimensional walk imply that certain «,n-late points
z have a much smaller number of excursions N (k,) between discs in an intermediate scale k,,
forcing an accumulation of many «, n-late points in D(z,7j ). In more details, for r; ~ nB, the
probability of N,(k,) being near the value typically associated with av?,n-late points is about
n=20F0,6(7) . Given such a value of N, (ky), the probability that z is an «,n-late point is about
n=207"8 Consequently, the probability of z being «,n-late with N, (k,) near the value typically
associated with an ay?, n-late point is about n =2 0,8(Np—207"8 = p—2aF 160" and if we require
that also a specific y of distance = n? from z is o, n-late, the probability is further reduced to about
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n=20FLs(Mp=2076 — p~20F25(7)  The constraint y € I'ap in (1.11), which is missing in (1.13),
represents the range of values of N (k,) possibly found when examining all O(n?~2%) centers z of
discs of radius n? that cover the torus Z2. Indeed, due to this constraint, the median of number
of pairs of «, n-late points within distance n? of each other is about n?(®f) whereas the mean of
this variable is of the different order of magnitude n”(®#).

The value of p(«, 8) is obtained by taking v € T'y g for which the probability of locating specific
pairs of «, n-late points is maximal. This value of y coincides with the unconstrained minimizer of
F, 5(-) if and only if 8 < 2(1 — /), thus explaining the jump of d?p/dB? at B = 2(1 — /). It is
never the same as the typical v = 1 (i.e. the minimizer of F 5(:)), which one finds in most discs
of radius n® centered at «,n-late points. Hence, v = 1 controls the exponent of Theorem 1.3. In
contrast, the exponent of Theorem 1.2 is controlled by v = 1/ (that is, the minimizer of Fp 4(-)),
found in most of the O(n?~2%) discs of radius n? that cover Z2.

Organization. After a short section which collects some facts about the SRW, our paper is divided
into three parts. The first part is about “global” properties of the set of «, n-late points. It consists
of Sections 3-5, where adapting the arguments of [4, Sections 2,3,6,7] to the context of simple
random walk we prove Proposition 1.1 and lay the groundwork for all other results. The second
part deals with clustering of late points. It starts with the large deviation probability bounds of
the form n—2¢Fns07) given in Section 6, which are key to our upper bounds, and moves on to the
proofs of Theorem 1.2 and Theorem 1.3. The third part of the paper deals with Theorem 1.4 about
pairs of a, n-late points. Applying the bounds of Section 6 we derive the upper bound in Section 9,
where we also solve the variational problem (1.11), with the complementary lower bound derived
in Section 10 by a refinement of the construction of Section 4. In the final Section 11 we describe
possible extensions of our results. We note that the arguments in this paper are based on direct
analysis of the random walk, rather than a strong approximation argument with Brownian motion.

2. RANDOM WALK PRELIMINARIES

Let S, n > 0 denote a simple random walk (SRW) in Z2 and X,,, n > 0 denote a simple random
walk (SRW) in Z%. In this section we collect some facts about S, n > 0 and X,, n > 0. We adopt
here and throughout the paper the:

Convention. Throughout, a function Z(z) is said to be O(z) if Z(z)/x is bounded, uniformly
in all implicit geometry-related quantities (such as K). That is, Z(z) = O(z) if there exists a
universal constant C' (not depending on K) such that |Z(z)| < Cz. Thus z = O(z) but Kz is not
O(z). A similar convention applies to the symbol o(z).

Let D(z,r) = {y € Z% : |y — x| < r} where |z| denotes the Euclidean norm of z. For any set
ACZ?welet 0A = {y € Z? : y € A° and infyea|y — x| = 1} and A = AU OA. For any set
BCZ?let Tg=inf{i >0 : S; € B} and Ty = inf{i > 1 : S; € B}. For z,y € A define the
truncated Green function

o
Ga(wy) =D E (Si=y, i< Tha).
i=0

We have the following result which is Proposition 1.6.7 of [7]. For any x € D(0,n)

_ log(n/|z]) + O(|z|~" + (logn)™")

(2.1) P? (T < TaD(O,n)) Togn
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and
(2.2) Gp(on)(7,0) = log(| |)+0(|ﬂvl P+nTh.

We next note formula (1.21) of [7]: Uniformly for z € D(0,n),
(2.3) n? — |z|* < E*(Top(o,m) < (n+1)° - |a]*
We also have the result of Exercise 1.6.8 of [7]: Uniformly in r < |z| < R,

log(R/|z) + O(r™")

(2.4) P* (Top(o,r) < Top(o,r)) = log(R/T)

Define the hitting distribution of the boundary of A by
Hya(z,y) = P*(S1,, = y).
We have the following Harnack inequality.
Lemma 2.1. Uniformly for z,z' € D(0,6n) and y € 0D(0,n),

(2.5) Hapom(@,y) = (14 0(8) + O(n™1)) Hyp(om (@, y)-

Furthermore, if 6' < § are such that
inf  P*(Tap(on) < Tap(osn)) = 1/4,

z€9D(0,0n)
then uniformly in x € 0D(0,6n) and y € 0D(0,n),
(2.6) P*(STyp0m =Y Tonom) < Top(0,'n))

= (14 0(8) + O(n™ 1) P*(Typ(o,n) < Top(0,m)) Han(o.m) (%, y)-

Proof of Lemma 2.1: By Lemma 1.7.3 of [7], for any y € 0D(0,n) and § < 1/2
Hapon)(z,y) = Z PY(Sq

8D (0,n/2)U8D(0,n) )GD(O n) (z a:)
z€0D(0,n/2)

But

G p(o,(1-8)n) (2 — 2,0) < Gp(o,n)(2,7) < Gp(o,(148)n) (¢ — 7,0)
and by (2.2), with |z — z| =n(1/2+ O(6 ))
(1

+ 2 144
G p(o,(12aym) (2 = 2,0) = _log( Iz 32| ) +0( ) = Y eIt

) +0(n™)
and (2.5) now follows.

Turning to (2.6), we have

(2.7) P*(S1yp0m = ¥> Tonom) < Ton(o,6m))
= Hyp(om)(%,Y) = P (STyp0.m =Y Ton(o,n) > Toap(0,6m))-
By the strong Markov property at Typ(o,sn)

(2.8) P*(S15p0.. = ¥> Tonom) > Ton(,6m)) = E* (Hop0,n) (S0 51my> ¥)5 Ton(0,n) > Ton(0,6m))-
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Since 9D(0,én) separates 0D(0,n) from AD(0,d'n), by the strong Markov property and (2.5),
uniformly in w € dD(0, §'n),

Hyp(om)(w,y) =E* (Hap(o,n) (STop05m)0 Y) = (14+0(5) + O(”_l)) Hypom) (2, ) -
Substituting back into (2.8) we have
P (S1yp0.m = Y Top(0,n) > ToD(0,5'n))
= (14 0(8) + O(n™ ) P*(Typ(o,n) > Ton(o,5m)) Han(o.m) (@ y)-

Combining this with (2.7) and the assumptions of the lemma, used to control the error terms,
we obtain (2.6) which completes the proof of the lemma. O

Combining the above with Lemma 1.7.4 of [7] we see that if u, denotes uniform measure on
0D(0,n), then for all § < 1/2 and some constants 0 < ¢ = ¢(d) < C = C(J) < oo we have that
uniformly for z € D(0, dn)

(2.9) cpin(-) < H@D(O,n)(wa ) < Cun(-)-

Let ﬁA(z,a:) = P*(X7 = z) be the hitting measure on A C Z% by X, with T4 and T:’L‘ the
A
corresponding hitting times. When dealing with X,, sets such as D(z,7) and 0D(z,r) are defined
with respect to the distance d(-,-) in Z%.

Lemma 2.2. Uniformly in K, z,2' € 0D(0,R) and z € 0D(0,r) with 4r < R < K/2,
~ r R~
(2.10) Hyp(on(z,2) = (1+0( 1og ) ) Hapgo (7, 2).

Furthermore, if 4r < R < R' < K/2 are such that
inf = P*(Typ0 < Topo,r)) = 1/4,

2€8D(0,R)
then uniformly in z € D(0, R) and z € dD(0,r),
(211) PZ(X 6D(0 . =T, TéD(O,T) < TéD(O,R’))

R\, ~
= (1 + O(E log ?))P (TéD(O,T) < TéD(O,R’))HaD(O,r) (Z,.’E),
and if in addition r—' = O(%) then uniformly in z,2' € 0D(0,R) and z € 8D(0,r),

(2.12) Thpom = %3 Tonr) < Tap,r))

P* (X,
( log ))Pz (X170, = T, < Toap(o,r))-

Proof of Lemma 2.2: The bounds of (2.10) will follow immediately from the fact that uniformly
in z € 9D(0, R) and z € 0D(0,r),

P* (T}, > T,
log R ( aD(o r) aD(0, R/Z))

~ T
(2.13) Hap(o,r)(2,2) = (1+O(5 )
(0.r) ( r )Zw’EOD(O,T) P (Typ0. > Tapo,rs2)

R

This is the equation above Theorem 2.1.3 of [7]. However, since that equation deals with the
simple random walk in Z? and Hyp(o,r) (2, ) involves paths for which the difference between 72
and Z2 might be significant, we next explain why the same proof works for ZZ.
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The proof of Lemma 2.1.1 of [7] shows that, with A = 9D(0,r), B = dD(0,R/2) and z €
8D(0, R),

ﬁ (z q;) — ZUEB éﬁ(o,r)c(zav)ﬁAuB(v,x)
A\Z, ZveB GE(O,T)C(Z,'U)P’U (fﬁ < flla)’

with aﬁ(o,r)c (z,v) the Green’s function for D(0,7)¢, the complement of D(0,r) in Z%. But this
gives

(2.14) inf H‘L‘EB—(U’E) < fIA(z,av) < sup HA/L\JB—(U’E).

veB PY(T) < T}) veB PY(T)) < T})

Note that B = 0D(0, R/2) separates A = 8D(0,r) from the complement of D(0,R/2) in Z%.
Hence, the above sup and inf, involve expressions that are determined by paths confined between
A = 0D(0,r) and B = D(0,R/2), which are thus the same for the simple random walks in Z2
and in ZZ%.. Consequently, (2.14) is precisely the top inequality in page 49 of [7], from which (2.13)
follows. This completes the proof of (2.10). The bounds of (2.11) follow from (2.10) in the same
way that (2.6) follows from (2.5). Finally, combining (2.10), (2.11) and (2.4) leads to (2.12). [

We next show that for R’ > R > r > 1, the o-algebra of excursions of the path from 9D(0,r)
to 0D(0, R) prior to Typ(o,r'), is almost independent of the initial point z € D(0, R) and the final
point w € 9D(0, R').

Lemma 2.3. For 4r < R < R' < K/2 and a random walk path starting at z € D(0,R'), let H
denote the o-algebra generated by the excursions of the path from 0D(0,r) to dD(0,R), prior to
Typ(o,rr)- Suppose r—' = O(%) and log(R'/R) > (1/4)1log(R/r). Then, uniformly in K, z,7' €
0D(0,R), w € dD(0,R'), and B € H,

(2.15) P*(B| X1y, 0y =w) = (1+ O(%))PZ(B) ,
and
(2.16) P*(B) = (1+ 0(%1og§))PZ’(B).

Proof of Lemma 2.3: Fixing z € dD(0, R) it suffices to consider B € H for which P*(B) > 0.
Fix such B and a point w € 0D(0, R'). Let 79 = 0 and for i = 0,1,... define

T2i+1 — inf{t Z T94 * St S BD(O,’F) U 8D(O,RI)}

T2i42 = inf{t > T2i41 S; € 6D(0,R)} .
Abbreviating 7 = Typ(g, /) note that 7 = 17,1 for some (unique) non-negative integer I. For any
i > 1, we can write {B,I =i} = {B;, 72 < 7}N({I =0}08;,,) for some B; € F,,,, so by the strong
Markov property at 7o;,

E*[X; = w; B,I =4] = B [EX2 (X; = w, ] =0); Bj, m9; < 7] ,
and
P*(B,I =4) =E* [EX2i (I =0); By, 7 < 7] -

Consequently, for all 2 > 1,

2.17 F*[X; = w; B, =i] > P*(B,I =i) inf T
(2.17) [ s i 2 P*( ) zealzr)l(o,R) Ez
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Necessarily P*(B|I = 0) € {0,1} and is independent of z for any B € H, implying that (2.17)
applies for i = 0 as well. By our assumptions about r, R, R', (2.4), (2.5) and (2.6) there exists
¢ < oo such that for any z,z € 0D (0, R) and w € dD(0, R'),

E? (X, = w; I = 0) > (1 — cR/R)E® (I = 0) Hyp(o (2 w).
Hence, summing (2.17) over I =0,1,..., we get that
F* (X, = w, B] > (1 — cR/R'YP*(B) Hyp(o ) (2,w) .
A similar argument shows that
E* [X7 = w, B] < (1 + cR/R")P* (B) Hap(o,r)(2,w) ,
and we thus obtain (2.15).

By the Markov property at 71, for any z € 0D(0, R),
P*(B) =P*(B,I1=0)+ Z Hypo.muano,r) (2, 7)P® (B)
z€dD(0,r)

The term involving {B,I = 0} is dealt with by (2.4) and (2.16) follows by (2.12) and our assump-
tions about 7, R and R’ values. O

Building upon Lemma 2.3 we quantify the independence between the o-algebra G of excursions
from 0D(z,R') to dD(z, R) and the o-algebra H*(m) of the first m excursions from 0D(z,r) to
0D(z, R). To this end, fix 4r < R< R' < K/2 and z € Z%, let 7o = 0 and for i = 1,2,... define

T, = mf{t >Ti1: X € BD(w,R)},

T; = inf{t >T1: Xt € 8D(.’II,R,)}
Then G® is the o-algebra generated by the excursions {e(/),j = 1,...}, where el) = {X; : 7;_; <
t < 7;} is the j-th excursion from dD(z, R') to 0D(z, R) (so for j = 1 we do begin at ¢t = 0). We
denote by #H(m) the o-algebra generated by all excursions from 0D(z,r) to dD(z, R) from time
71 until time 7,,. In more detail, for each j =1,2,... ;m let (;, = 7; and for s = 1,... define

(i = mf{t>(;,0q: Xy € 9D(x,7)},

Gy = inf{t > (50 Xy €0D(z, R)}.
Let vj; = {X; : ¢ <t < ¢} and 279 = sup{i > 0 : {;; < 7;}. Then, H*(m) is the product
o-algebra generated by the o-algebras H} = o(vjii=1,...,27) of the excursions between times

Tjand 75, for j =1,... ,m.

Lemma 2.4. There erists C < oo such that uniformly over VR < 4r < R < R' < K/2 with
log(R'/R) > (1/4)log(R/r), all m < R/(rlog(R/T)), =,v0,y1 € Z% and A € H*(m),

(2.18) (1 - Cmlog ?)Pyl (4) < P0(A[G) < (1 + COm 7 log %)Pyl (4).

Proof of Lemma 2.4: Applying the monotone class theorem to the algebra of their finite disjoint
unions, it suffices to prove (2.18) for the generators of the product o-algebra H*(m) of the form
A=A x Ay x---x Ay, with A; € 7-[;” for j = 1,... ,m. Conditioned upon G% the events A;
are independent. Further, each A; then has the conditional law of an event B; in the o-algebra
#H of Lemma 2.3, for some random z; = X, —x € dD(0, R) and w; = X7, —z € dD(0, R'), both
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measurable on G*. By our conditions on 7, R and R', the uniform estimates (2.15) and (2.16) yield
that for any fixed 2’ € D(0, R),

m
PY(A; x Ay X -+ X Am |G%) = [ P%(Bj| X1yp 0 o, = w5)
j=1
“ R
(2.19) =JJa+ O(F))P(B)) = (1+ log )™ H P? (B
j=1

Since m < R/(rlog(R/r)) and the right-hand side of (2.19) neither depends on yo € Z2 nor on the
extra information in G, we get (2.18) by averaging over G*. L

Remark: Lemma 2.3 which deals with the path of the walk in D(0, R') applies for the simple
random walk S, in Z2. Consequently, by the same argument as above, the bounds of (2.18) also
apply for S,.

3. HITTING TIME ESTIMATES AND UPPER BOUNDS

For any first hitting time T we set ||T|| = sup, E¥(T'). By Kac’s moment formula for the strong
Markov process X, (see [5, Equation (6)]), we have for any n and y

(3.1) B (T") < n!BY (T)||T||™ .

Throughout this section, fix x € Z%( and constants r, R such that 0 < 2r < R < %K . Let

(3.2) 7O = inf{t >0 : X, € 0D(z,r)}

(3.3) o) =inf{t >0 : X,, o € dD(z,R)}

and define inductively for j = 1,2, ...

(3.4) ) = inf{t > ¢\ : Xiyz,_, € 0D(z,7)},

(3.5) oUt) =inf{t >0 : Xy5, € 9D(z, R)},

where T; = g:o 7@ for j = 0,1,2,.... Thus 79, j > 1, is the length of the j’th excursion &;

from 8D (z,7) to itself via D (z, R), and /) is the amount of time it takes to hit dD(z, R) during
the j’th excursion &;. Hereafter, we set 7 = 7(1) and use the abbreviation or = dD(z,r).

The following lemma will be used repeatedly.

Lemma 3.1. There ezists ¢y < oo such that for all1 >n > ci(1/r +r/R) and R < K/6,

(36)  (1—n)2K’log(Rjr) < inf B/(r) < sup B () < (1+n)>K2log(R/r),
T TYELY z,YEL T

(3.7) sup  sup EY(Typz,)) < ciK%log(R/r),
z€Z2 yedD(x,R)
and for all ™ > cq,

(3.8) sup [|Topenll < c1K?log(K/r).
IEZ
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Proof of Lemma 3.1: Let X, be distributed uniformly on Z%. Then {X;} is a stationary and
ergodic stochastic process. By Birkhoff’s ergodic theorem we then have that

1
5 T Z Loy (&) = 330 @5
Thus, with ¥ 1 =0,

1 ()
(3 9) lim n Z;L:O ZZ 0 1{1}( z+‘1j_1) _ 1 as
. n—oo % Zj:O T - K2 ’ -S.

For j > 1set Z; = 7U) —Fp ('r(j) ‘]-7;]._1> = 70) —E¥%j (1), where p is uniform measure on Z%..
By the strong Markov property we see that {Z;} is an orthogonal sequence. Since any irreducible
Markov chain with finite state space is positive recurrent, we have that ||Ts.||, |[Tor| < oo, and
using (3.1) we see that the sequence {7(/)} and hence {Z;} has uniformly bounded second moments.
It follows from Rajchman’s strong law of large numbers, see e.g. [2, Theorem 5.1.2], that

- ) - —
(3.10) nli)n;o s { 1(t )} 0 a.s.
Similarly, set 6(® = 79 and for j > 0 let
) o)
= Xz,
Y=Y 1 (Xivs, ) = Y 1 (Kivs, ), V=Y — B (Y| Fr, ) =¥ B9 (),
i=0 =0

By the strong Markov property {?J} is also an orthogonal sequence, and since Y; < 7)), the

sequence {f’]} also has uniformly bounded second moments. Thus, by Rajchman’s strong law of
large numbers,

1 ¢ Xz.
(3.11) nlglgoﬁz;{yg ~E' (V)} =0 as.
J

It follows from (2.2) that for some finite universal constant ¢y > 1 and all 1 <r < R/3 < K/6,

2 2 R
(3.12) — log(E) — ¢or~! < inf inf EY(Y;) < sup sup BY (Y1) < Zlog(=) + cor™*
s r T yeor T yedr s r

With 7(%) finite, we get by combining (3.9), (3.10) and (3.11) that almost surely,

X. .
lim - Z;L 1 Ti-1 (T) K2
e I B ()

Consequently, in view of (3.12), for some finite universal constant ¢; and all1 > n > ¢;(1/r+r/R),
2

.\ -2 R . 2 .\ -2 R
1 21— DHK?10g(2) < 15 fEY (1) < 2(1 + 2)K?log(Z).
(3.13) ﬂ( 3) og(T)_;ég; (1), nf (T)—w( +3) og(T)

For y € dr, we have 7(9) = 0 and by the strong Markov property at the stopping time o,

(3.14) B (r) =T (Tor) + Y, Hor(y, 2)E* (To).
2EOR
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Thus, enlarging ¢ as needed, it follows from (2.3) and Lemma 2.1 that for all 1 <r < R/cy,

(3.15) sup 'Y () < (1 + co—) inf B (1)
yedr R’ yeor

Taking also ¢; > 3¢y, we get (3.6) by combining the inequalities (3.13) and (3.15).

Turning to prove (3.7), consider (3.14) for y € dr and 3R instead of R. Then, by equations (3.6)
and (2.9),

(3.16) c(1/3)EH3R (Tp,) < 2K?log(3R/r).

Using the strong Markov property, (2.3), (2.9) and (3.16), we thus have that for any y € OR,
B (Tor) < E(Tosr) + B (Tor — Tosr; Tor > Tosr)

(3.17) < (BR+1)2+C(1/3)E*R (Ty,) < ;K log(R/r),

for some universal ¢ < oo and any 7, R as in the statement of (3.7). Making sure that ¢; > co this
completes the proof of (3.7).

To prove (3.8) we use the bound (3.17) when the distance of y from z is between Ry = r/c; and
K/6, and that of (2.3) when y € D(z,r). As for y € D(z,Ry) \ D(z,r), since

Y (Tar) < (T(')Ro) + sup E? (T(')T)
2€EORy
we get the stated bound by combining (2.3) (for the first term above) and (3.17). Finally, fixing
y € Z2\D(z, K/6), we establish the bound of (3.8) by noticing that EY(Tp,) is then non-decreasing
in K, and adjusting ¢; accordingly (to accommodate the use of say, Z?2;). ]

The following lemma, which shows that excursion times are concentrated around their mean,
will be used to relate excursions to hitting times.

Lemma 3.2. With the above notation, we can find 6y > 0 and C > 0 such that if R < K/2 and
§ < 8 with § > 6¢1(1/r +1/R), then for all z,zo € Z2,

N 2 0, T
(3.18) pwo(ZT(j) <(1- 5)%]\[) < & OOV
; 0
7=0
and
N 2 og(R/7)
(3.19) Pwo(ZT(J) > (1+ 5)%1\[) <e 052(;o§(§/r))N
=0 i

Proof of Lemma 3.2: With 7 = 7() = {Tyr + Tj, o 01y, } © O3, , clearly

supE! (7)< sup B ({Tor + Tor 0 01, }")
Y yET

n n
n - s n
E ( ) sup Ey(TgR Tgr Tobr,,) < ( ) sup Y ( aR) sup E* (T pl J).
=0 J/ yeor j=0 J/ yeor z€0R
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Let v = ¥log(R/r) and u = ¥log(K/r). Thus, by (3.1) and (3.7), there exists a universal
constant c3 < oo such that for all z € Z%{,

n—1
supEY (1) < sup B (Tog)||Torl™ * +2¢1 Y n!l|Tor|l7ol|Tor |7
Y year =0
(3.20) < wesu) " H(n +1)!,

where we also used (2.3) and (3.8) in the last inequality. Taking n = ¢/6 > 0, with our choice of r
and R, it thus follows by (3.6) that for p = c4uv and all 8 > 0,

92
sup sup EY(e™?) < 1—@inf inf EY(r)+ —sup sup FEY(r?)
T yedD(z,r) T yedD(z,r) z yedD(z,r)
(3.21) < 1—60(1—n)v+ pb? < exp(pf? — (1 — n)v) .

Since 7(9 > 0, using Chebyshev’s inequality we bound the left hand side of (3.18) by

Po (i 0 < (1- Gn)vN) < f(1=3nvNfzo (e—ezjv:”(j)>
j=1

N
(3.22) < e—GvNé/S[ee(l—n)v sup Ey(e_gT)] ’
y€dD(z,r)

where the last inequality follows by the strong Markov property of X; at {¥;}. Combining (3.21)
and (3.22) for 8 = dv/(6p), results in (3.18) with C = 1/(36¢4).
Since 70 = T}, by (3.1) and (3.8) there exist universal constants cs,cg < oo such that
sup EY (eT(O)/c5“> <cg,
Y B
implying that
0
po (7(0) > évN) = Pm(ﬁ > iEN) < cgemBes) TGN
-3 csu — 3cs u -

Thus, the proof of (3.19), in analogy to that of (3.18), comes down to bounding

N
. N
PZo (Z 7—(]) > (1 + 4’/7)’UN> < 6—05UN/3 (6—0(1+2n)v sup 1% (607))
j=1 y€dD(z,r)

Noting that, by (3.20) and (3.6), there exists a universal constant cg < oo such that for p = cguv
and all 0 < 0 < 1/(2c3u),

o0
971.
sup sup () < 1401 +n)v+sup sup Z — (")
T yedD(z,r) zZ y€dD(z,r) ,_o n.
< 1+46(1+2n)v + pb* < exp(6(1 + 2n)v + pb?).
Taking §y < 3cg/c3, the proof of (3.19) now follows that of (3.18). (

We next apply Lemma 3.2 to bound the upper tail of Tk (z), the first hitting time of z € Z%..

Lemma 3.3. For any § > 0 we can find ¢ < co and Ky < oo so that for oll K > Ky, y > 0 and
Z,To € Z%(,

(3.23) P (Ti(z) > y(Klog K)?) < ek~ (1-9m/2
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Proof of Lemma 3.3: Fix § € (0,09). Set R = K/7 and r = R/log K, noting that Lemma 3.2
then applies for all K > Kj and some Ky = K((d) < oo. Fixing y > 0 and such K, let

L 7y (log K)?
ng = (1 6)7210g(R/7‘) .
Then,
nK ' nK '
(3.24) P* (Tk(z) > y(Klog K)?) < P* (TK(.’L') > ZT(])) + Pw()(ZT(J) > y(K log K)2) .
j=0 §=0
It follows from (3.19) that
ni
j=0

for some C' = C'(§) > 0. Moreover, the first probability in (3.24) is bounded above by the
probability of not hitting z during nx excursions of SRW in Z2, each starting at some point in
0D(z,r) and ending at dD(z, R), so that by (2.1)

nK R 1
(325) p*o (TK(.T) > ZT(])> < (1 — log r ]—:;gofglogK)>nK < 67(1726) log(K)my/2
7=0

and (3.23) follows. O

We next provide the required upper bounds in Proposition 1.1. Namely, for any « € (0,1] and
v > 0, we have by Lemma 3.3, that for y/2 > § > 0 small enough,

Tk (x) —a)+y
Riog i > 10/7}| = K477)
Tk (z)

< K—2(1—a)—7E(‘{x € 7% : KlogK)? > 4a/7r}‘)

_ gm0 3 p(ﬂ > dajr) < K¥ s 0.
(K log K)? K—00

(3.26) P(‘{w €72

2
TE€ELY

4. LOWER BOUNDS FOR PROBABILITIES

Fixing a < 2, we prove in this section that for any § > 0 there exists ng(d) < oo such that
. Tk, ()
" (Kplog Ky)?

for all integers K, = n7(n!)? with n > ng and ¥ € T = [b,b + 4] for some universal b > 10
(determined in Lemma 4.2). Because such K, cover all large enough integers, it follows from (4.1)

that T (@)
: 2 m\T 2—a—0
: > > =
lim P(‘{xezm (mlogm)? _2a/7r}‘ >m ) 1,

(4.1) P(‘{m € 72 > 2a/7r}‘ > Kf;a—é) >1 - 25,

m—r00

which in view of (3.26) results with Proposition 1.1. Hereafter, any estimate involving the fixed
sequence K, = n7(n!)? holds uniformly in 4 € Z (even if this is not stated explicitly). Consequently,
we may and shall prove each of our results only for this sequence, which already implies that they
hold true for all integers large enough.
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We start by constructing a subset of the set appearing in (4.1), the probability of which is
easier to bound below. To this end, let 7o = 0 and 7 = (k!)3, k = 1,.... For any a > 0 set
ng = ni(a) = 3ak®logk and for z € Z%(n and k = 3,...,n, let RY = R7(a) denote the time
until completion of the first ng(a) excursions from 0D (z,rg—1) to 0D(z, 7). (In the notation of
Section 3, if we set R = 7, and r = 74—y, then RY = Z?io 7). For z € Z%(n, 2<1<k-1
let Ny, = Ni/,(a) denote the number of excursions from 0D(z,ri—1) to 0D(z,r;) until time Rf(a).
Let Ni/o = Nj(a) denote the number of visits to z prior to time Ri(a).

Fix p < (2 — a)/2. Writing m L ong if Im — ng| < k, we will say that a point z € Z% is
n-successful if
(4.2) NZg=0, NI, &ng VeE=pn,...,n—1

In particular, if z is n-successful then 7g, (z) > R, hence the next lemma relates the notions of
n-successful and first hitting times.

Lemma 4.1. Let
Sp={z € Z%{n : Tk, () > Ry}
Then, for some ¢ > 0 independent of ¥ and all n > 10,

Tk, () —1_—cn?/1
n < N en®/logn
P(wlesl {7(1{” Tog K, )2 = 2a/m —2/logn ) <c e

Proof of Lemma 4.1: We have that for some C' > 0 and ng < oo, both independent of 7, all
n > ng and any z,xy € Z%(n

P, = P* (TKn(CC) < (2a/7 —2/logn)(Kylog K,)?, Tk, (z) > Rﬁ)
3an?logn
. 2
< Pmo( Z ) < (2a/7 — 1/logn)K5(3nlogn)2) < g~ COn*/logn
3=0

where the last inequality is an application of (3.18) with R = r,, r = r,_1 (so log(R/r) = 3logn)
and § = 7/(2alogn). To complete the proof of the lemma, sum over z € Z%{n and let ¢ < C/2 be
such that ¢~ le=¢"% > 1. [l

For any z € Z% _let Y (n, ) be the indicator random variable for the event {x is n-successful}.
In view of Lemma 4.1, we have (4.1) as soon as we show that

(4.3) P( ) Y(nz)>K, ") >1-4,
mEZ%{n

for any ¢ > 0, all n sufficiently large and 5 € Z.

Adopting hereafter the convention that o(1,) terms are uniform in ¥ € Z, the key to the proof
of (4.3) is the next lemma (whose proof is deferred to Section 5).

Lemma 4.2. Fiz p< p' < (2—a)/2 and let [(z,y) = max{k : D(z,r,+1)ND(y,rx+1) = 0} An.
There exist b > 10 and g, > TEHO(I”) such that
(4.4) P(z is n-successful) = (1 + o(1,))qn,
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uniformly iny € Z =[b,b+ 4] and = € Sk, := Z%{n \ D(0,7,). Furthermore, for any ¢ > 0 we can
find C = C(b,e) < 0o such that for all n and any z,y € Sk, with p'n <I(z,y) < n,

+
(4.5) B(Y (n, )Y (n,y)) < g@nbCm 0 (o)™
"i(z,y)
while for all n and z,y € Sk, with l(z,y) =n,
(4.6) E(Y (n,2)Y (n,9)) < (1+0(14))d -
Let
Ve= Z E(Y(n,a:)Y(n,y)), £=0,1,... ,n.

T,YESKy (z,y) =L
Since, by (4.4),
E( Y Y(n,a)) = (1+0(1)K2gn > K270,
wESKn

by (4.6) and the Paley-Zygmund inequality (see [6, page 8]), the inequality (4.3) is a direct conse-
quence of the bound

n—1
(4.7) > Vi< o(ln)Knda -
=0

Turning to prove (4.7), the definition of I(,y) implies that d(z,y) < 2(ryz4)41 + 1), and there are
on Z%ﬂ at most C'Orl? 1 points y in the disc of radius 2(rgy1 + 1) centered at z, where in the sequel
we let C,, denote generic finite constants that are independent of n. Since 2p' < 2 — a,

p’n—1
(4.8) Y V< > E(Y (n,2)) < C1nKpr, < o(1n)Kndy -
£=0 w,yEZ%(n,d(:c,y)Swpln
Choose € > 0 such that 2 —a — € > 0 and fix £ € [p'n,n). Then, by (4.5), we have that
a+
Ve < CQKthgﬂqunbcn_e(r_n) -
Te
Consequently,
n—1 n—1 N
S Vi < KM Y o (T
{=p'n l=p'n Te
242b6n_1 efTe\* e 2 ot —2 0 (2—a—¢)
! — 9~ — ! — ] —(Z2—a—¢€
(4.9) < CogaKpn~ 2 In’t Z cn <r_> < Chq,K,n Z C'r; .
l=p'n n j=1
Combining (4.8) and (4.9) we establish (4.7), and hence complete the proof of (4.3). L

5. FIRST AND SECOND MOMENT ESTIMATES

For y € Z%{n and n > [ > 3 let g;’ denote the o-algebra generated by the excursions of the
random walk from 8D (y,r;) to 0D(y,r;—1) as defined in Lemma 2.4 (for R' = r; and R = r;_1).
We start with the following corollary of Lemma 2.4 which plays a crucial role in the proof of Lemma
4.2.
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Corollary 5.1. Let I} = {Ng,k =mg;k =0,2,...,1 —1}. Then, uniformly over all n > 1 > ny,
YyETL, my rlvnl, {mk:k=0,2,...,01 -1}, yEZ%{n and xg,T1 EZ% \ D(y,m1),
(5.1) P?(Ty | NY, = my,G}) = (1+ 0@ (log1)?))P™ (T | N} | = my)

Proof of Corollary 5.1: For j = 1,2,... and k = 2,...,[ — 1, let Z,Z denote the number of
excursions from 0D(y,r;—1) to 0D(y,r;) by the random walk during the time interval [7;,7;].

Similarly, let Z] denote the number of visits to y during this time interval. Clearly, the event
my
A=) Zl=mp:k=0,2,...,1-1}
j=1

belongs to the o-algebra HY(m;) corresponding to r = r;_s in Lemma 2.4. It is easy to verify
that starting at any = ¢ D(y,r;), when the event {N?, = my} € G} occurs, it implies that

NY, =3 Z] for k=0,2,... ,1 — 1. Thus,
(5.2) P (I |giy)1{Nfi,l:ml} =P%(4 |gly)1{N5,1:ml} :
For some universal constant ng < oo and all [ > ng the conditions of Lemma 2.4 apply for our
choice of R' = r;, R = r;_; and r = r_y with (r/R)log(R/r) < 41731logl. With m;/(I%logl)
bounded above, by (2.18) we have, uniformly in y € Z%(n and zg, 1 € Z%(n \ D(y,r),
(5.3) P™(A|GY) = (1+ O(l ' (log1)?))P*1 (A).
Hence,
P> (T \gg/)l{Ng,l:ml} = (14 0(I"'(log1)?))P** (A)l{Ng,lzw} .
Taking zg = 1 and averaging, one has
(5.4) PPy [Ny =my) = (1+ 0@ (log1)*))P™ (4) = (1 + O™} (log1)?))P™ (A|G}),
where the second equality is due to (5.3). Using that {N? ng =M} C G/, (5.2) and (5.4) imply (5.1).

O
Proof of Lemma 4.2: We start by proving the first moment estimate (4.4). To this end, let m =
(Mpn, Mpn+1, - - - ,My) be a candidate value of N7, k= pn,... ,n, and set [m| = 22:] i — L.
Let H,(m), be the collection of maps (‘histories’),
s:{1,2,...,|m|} = {pn —1,pn,... ,n}

such that s(1) =n—1, s(|m|) =n, |s(j +1) — s(j)| = 1 and the number of up-crossings from £ — 1
to £

w(l) = {G,d + D[ (s(),s(G +1)) = (£ = 1,0} = my

The number of ways to partition the u(#) up-crossings from £ — 1 to £ before and among the
u(f + 1) up-crossings from £ to £+ 1 is

(u(e + 1)1;6)1;(4) - 1)_

Since the mapping s is in one to one correspondence with the relative order of all its up-crossings,

n—1
_ myy1 +my—1
ool =TT ("5,

{=pn
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To each path w of the random walk X. we assign a ‘history’ h(w) as follows. Let 7(1) be the
time of the first visit to D(z,r,_1), and define 7(2),7(3),... to be the successive hitting times
of different elements of {0D(z,7,,-1),...,0D(z,ry)}. If y € 0D(z,ry) for some k, let ®(y) = k
and set h(w)(j) = ®(w(7(j))). Let h|, be the first k& coordinates of the sequence h. Let p, =
log(re41/re)/ log(res1/re1) and o = log(re/re_1)/1ogrs. Note that log(d(y, z)/r) = 1+ O(—)
for any 7, uniformly in z and y € dD(z,r). So, applying the Markov property successively at the
times 7(1),7(2),... ,7(Jm| — 1) and relying on (2.4) except for up-crossings from pn — 1 to pn, for
which (2.1) applies, or for down-crossings from n to n — 1, which occur with probability one, we
get that uniformly for any s € H,(m) and z € Sk, ,

P {hhfm =s,Tk,(z) > T(|m|)}

il {per o)} {r=pe+ 002D} {1 g + O((m10gn) ™)}

{=pn
Taking m,, = n,, we see that uniformly in z € Sk, and y € Z,
(5.5) P(z isn-successful) = Y. P {hhml € Mo (1), Tk, (z) > T(|m\)} — (14 0(1,))Gn,

Mpn .- My 1
Imy—ny|<L

which is (4.4) for

n—1

_ m +my—1
(5'6) qn = Z (1 - Qpn)mpn H ( e ¢ )p:{nl(l _pé)m“_l -

m
Mpn,-- My 1 {=pn ¢
Img—ng|<E

Since p; = 1/2 — O((£log£)~1'), by the proof of [3, Lemma 7.2] we have that uniformly in m, A

£+1
g, Myy1 ~ N4l

Clef3a71 Myg1 + myg — 1 Cgf?,afl
5.7 - < me(] — ) < S
-0 A R

with 0 < C’, C' < oo independent of £. Further, with gy = £~! 4+ O(1/£log £) we have that uniformly
in my, < Npn

(5.8) (1 = gpn)™m = rptolin),

Putting (5.6)—(5.8) together we see that g, = r;a“(l”), with the o(1,) term independent of 7, as
claimed.

Setting M; := {l,l+1,... ,n—1} note that the same analysis gives also for any [ > pn, uniformly
inx € Sk,,, ¥ and my < k!,

n—1
—1
(5.9 P (N, =my, ke M) =(1+0(1) [[ (mk“ :rm:n'“ )pz"’”(l — pr)EH
k=l

Recall that n(a) = 3ak?logk and that we write N b ng if [N —ng| <k for pn <k <n-—1 and
N =0 when k = 0. Relying upon the first moment estimates and Corollary 5.1, we next prove the
second moment estimates (4.5) and (4.6). To this end, fix z,y € Sk, with 2r;41 +2 > d(z,y) >
2r;+2 for some p'n <1 < n—1. Since rj49—1; > 27741, it is easy to see that D(y,r;)NOD(z, 1) =0
for all k¥ # [ + 1. Replacing hereafter [ by [ A (n — 3), it follows that for k # [+ 1, k # | + 2,
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the events {N X nk} are measurable on the o-algebra G/. With J; := {0,pn,... ,l — 1} and
I :={0,pn,... ,l,l+3 — 1}, we note that

{z,y are n-successful} C {N; k ng, k € I} ﬂ{Nny’k k ng, k€ Jip1}-

Applying (5.1), we have that for some universal constant C3 < oo,

P (z and y are n-successful) < Z IE[ ok 3 ng, k € Ji ‘N = =my,GY); N, g rli ng, k € Il]
ml~nl
(5.10) < OGP (Nzy A, ke L) S P(NY, Ko, k€ | NY, = my)
!
mp~n;

Using Corollary 5.1 once more, we have that

(1+0(1,))@ = P (y is n-successful)

k
= Z E[P(Ny, Nnk,kGJl| l—ml,gl) nl—ml,Ny, Nnk,kEMH_l]
mlfLTLl
k k
(5.11) > Cy Z (Ngl = my, NV nk ™ ks ke MH—I) P(Ng,k ~ng, k€ Jp | Ngl =my),
!
mp~n;

for some universal constant Cy > 0. Hence by (5.9) and (5.7), for some universal constant C5 < 0o,

n—1
(5.12) > P, A, k€ Ji| NY, = mi) < CE (T K/logh)
l k=l
my~ng

Similarly using Corollary 5.1

P(Ng,Am, kel) < Z E[P(NZy & g, b€ Jy | N2y = mi, G7)s Ny & i, b € Mg
mlwnl
(5.13) < CsP ( ok Ky, ke Ml+3) Z P(Ny k. L, ke | N7y = my).
l
my~mn;

Comparing (5.13) and (5.11), and applying once more (5.9) and (5.7) we get that,

+2
(5.14) 3 (N;f,k 5oy, k€ Il) < 071(1'[ k39 /log k) dn
k=l

Putting (5.10), (5.12) and (5.14) together prove (4.5).
In case d(z,y) > 2(r, + 1), the event {z is n-successful} is Gj, measurable, hence
P (z and y are n-successful) = E({P(y is n-successful | G¥)} , z is n-successful)

= IE({P(N;{},c X ng, k € Jp | NY = i, g};)} , T is n-successful) ,

and (4.6) follows from Corollary 5.1. ]
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6. LARGE DEVIATION BOUNDS

In this section we establish large deviation bounds which are used in the proofs of Theorems 1.2,
1.3 and 1.4. As a first step, in the next lemma we bound certain moment generating functions.

Fix 0 < 8 < 1. Fixing z € Z%ﬁ, n > n, we abbreviate dy for dD(z, 7). Consider a path of the
simple random walk starting at a fixed y € 0,-1. Let Z denote the number of excursions of the
path from 0g,_1 to 0g, until Ty, and A(x) = {Ts, < Tp}. Let \; =1/(1-B)+h/B for 0 < h < 2.

Lemma 6.1. Uniformly in z € Z%(ﬁ, n>mn,y € 0D(z,rn_1) and x, 2" € D(z,73y—2) such that
d(z,3") > Tgpn/2-3

1 A c(0,\)
Y ( AL/ < = 5
(6.1) (e )_1+n(1—(1—ﬁ))\)+nlogn’
for some ¢(0,\) < 0o and all A < A,
1 BA—1 c(1,N)
2 BY (M1 4(0) <14 — :
(6.2) (€ aw) < +n<ﬁ—(1—ﬁ)()\ﬁ—1))+nlogn’
for some ¢(1,\) < oo and all A < A}, and
1 B\—h c(h, A)
Y ( AL/ ) < - >
(6:3) B @ la@) <1+ n(ﬁ— 1-B)(\3— h)) t logn’

for some c(h,\) < oo and all A < X}

Proof of Lemma 6.1: Recall that by (2.4), for some ¢; < 00, all n > ngy and any z:

(6.4) q- < inf PY(Ty, <Tp,,_,) < sup P"(Ty, <Tp,, ,) < g+,
’Ueaﬂn 'Uealgn

(6.5) g- < inf PY(Ty,,_, <Tp,) < sup PY(Ty,,_, <Tp,) < gy,
’Uean_l ’Ueanfl

where g+ = (1 — 8)"n~1(1 £ ¢;/logn). By (6.5), for any y € 0,1,
(6.6) PY(Z=0)=PY(Ty,, , >Ts)<1-q,

and for j = 1,2,... we have Z = j if we first visit 93,1 prior to d,, then have exactly j — 1 cycles
consisting of visits to dg, and back to dn—1, prior to the first visit to 0,. Hence, by (6.4), (6.5)
and the strong Markov property, for any y € 9,1 we have that P¥(Z = j) < (1 — ¢_)7"'¢%. The
bound (6.1) then follows from the h = 0 case of the inequality

BA—h ) c(hy \)

(6.7) (1—q_)+Ze”/"(1—ph)j(l—Q—)j‘1QiSH%(ﬁ_(l_g)(Ag_h) nlogn’

i=1
where in general p, = ﬁin(l —c/logn) and X < A}.

To see (6.7) let v = 1/(1 — B) + h/B — A. Then, for some finite C and ny (both depending on
c,c1, A\, h and B), we have that g2 (1—pp,)e*™ < (n(1—8))"2(1+C/logn) and 1 —eM™ (1 —pp,) (1 —
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q-) > n tv(l — C/logn), for all n > ng. Consequently, for some ¢ = c¢(h,\) < oo and all n > nyg,
A/n

(1—-q-)+ i (1 —pp)i (1—q Y2 = (1—q_) + ¢4 (1 —ppe

< 1= (1 —pn)(1— )

1,1 1 c 1 BA—h ¢
= 1+ﬁ((1—ﬁ)2v a 1—ﬁ)+nlogn _1+ﬁ(ﬁ+h(1—ﬁ)—ﬁ(1—ﬁ)/\)+nlogn'

which gives (6.7).

We next turn to (6.2). Enlarging c¢; as needed, by (2.1) we have that for all n > ng, z and
z € D(2,78n-2),

C1

. . 1
(68) inf PU(Tw < Taﬂn) Z inf Pv(Tw < TaD(z,Oﬁrgn)) Z %(1 ) =p.

vEIGn—1 vED(x,2r35,—1) logn

We have Z1,(,;) = j > 1 if we first visit Jg,, 1 prior to Jy, then have j — 1 cycles consisting of
visits to dgp, and back to dgn—1 without hitting z or 0,, and finally, a visit to 0, without hitting
z. Hence, by (6.4), (6.5), (6.8) and the strong Markov property, for any z, y and x as above,

(6.9) PY(Z = j,Alz)) <(1-p) (1—g-) "¢}
Note that A(z) occurs when Z = 0, so that (6.6), (6.9), and the h = 1 case of (6.7) give (6.2).
We then turn to (6.3). By the strong Markov property at min(7},7y), for v € 0g,-1 and
z, 2" € D(z,r8n-2),
(6.10)
PY(max(Ty, Ty) < Tp,,) < PY(Ty < Taﬁn)P‘”, (T < Tay,) +PU(Ty < Ta,, )P (T < Tpy,) -

Enlarging c; as needed, since logrgp,,/2—3/logrgn = h/2 + O(1/logn), similarly to the derivation
of (6.8) we have by (2.1) that for all n > ng and z,2’ € D(2,7p,—2) such that d(z,z") > rgpn/2—3,

P (T, < Taﬁn) sup PY(T, < Taﬂn)
Ueaﬂn_l

1 h C1
< Px(TI < TaD ’ sup PY(T, < T@D < — —

T (z ,QTﬁn)) d(0,0)>0.57 51 ( T (ac,2r5n)) ﬂn( 2 )
The same bound applies to the other term in the right hand side of (6.10). When combined with
(6.8) which applies for both z and z’, these bounds yield that for all n > ng, uniformly in z,z, 2’
as above,

logn

2 h C1
6.11 PY(T, > Ty, Ty >Ty, ) <1—2p+ —(1— =
(6.11) Uesagf_l (T > Toy,, T > Tay,,) < p + ﬁn( 5 T Tog

):=1—Dh

with pp, = ﬂ%(l —c/logn). Note that Z1 441 4() = § > 1 if we first visit 9,1 prior to Oy, then
J — 1 cycles consisting of visits to dg, and back to dg,_1, without hitting z, 2’ or 8y, finally, a visit
to 8, without hitting z or z’. Hence, by (6.4), (6.5), (6.11) and the strong Markov property, for
any z, y, ¢ and z' as above,

PY(Z = j, A(z), A(z')) < (1 —pn) 1 —q ) 'q3,

)
and (6.3) now follows as in the derivation of (6.2). This completes the proof of the lemma. L
Recall the definition Fj, 5(v) = (1 —v8)2/(1 — B) + 28 of (1.10). Fixing 0 < 8 < 1 it is easy to

check that for any i > 0 the unique global minimum of F}, 3(y) is at v, = v, (8) = 1/(h(1—5) + B).
For 0 < a <2, with N7, = N7, (a) and R = Rj(a) as in Section 4, we establish large deviation
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bounds away from -~y for the random variables Jv;f,ﬂn(a) = Ny g,(a)/ngn(a) together with the
events {Tx, (z) > Ri(a)} and {7k, (z') > Ri(a)} for n > n and z,z’ not too far from z. These
bounds, expressed in the next lemma in terms of the functions Fj, 5(-), are key to the proof of

Theorem 1.3 and for the upper bounds in Theorem 1.2 and in Theorem 1.4.

Lemma 6.2. Let In(y) = [0,7%] for v < 7, In(y) = [v*,00) for v > yn and In(y) = [0, 00).
Fizing 0 < h < 2 and a,7,0 > 0, for all m > n > ny we have the bounds:

(6.12) max P(J/\}Tf ﬁn(a) € Iy(y)) < Kn*aFO,ﬂ(”YHJ’
zEZKﬁ ’
(6.13) max  P(Ti,(2) > R;(a), N} ga(a) € 1i(3)) < K007,
ac,zGZK~

n
d(.’L‘,Z)STBn_Q

(6.14) max  P(Ti,(@') > R; (@), Tz (2) > Ri(a), N7 o (0) € Tn(3)) < K "0,

z,2!,2€Z2
Kz
w,m’ED(z,an_Q)
d(z,x')>T8hn/2—3

Proof of Lemma 6.2: A straightforward calculation shows that for any A > 0 and v > 0,

By — b _BrRQ-B -1y .
== B) O, =) " 1T M = <A

AL -7)
and Ay, <0 if and only if y < 4.

(6.15)  Fy5(7) = Anp7° % —

Let 20 denote the number of excursions from 0g,_1 to dg, before X; first hits 9,1 and Ag(z)

the event that x is not visited during this time interval. For any j > 1 let Ej denote the number
of excursions from g, —1 to dsy, during the j-th excursion of X; from 0,1 to 9, and A;(z) denote
the event that z is not visited during this excursion. With these notations,

3an?logn

N’rzL,ﬂn(a) = Z ZJ ’

J=0

and the event {7k, (z) > RZ(a)} is the intersection of events A;(z) for j = 0,...,3an?logn.
Consequently, using Chebyshev’s inequality and the strong Markov property (at the start of the
3an?logn excursions from 8, 1 to 9,), for any § > 0 > X and all 7 > n > ng, uniformly in z,

P(N:(a) <77) < e man/mE(e/m Kt Zi)

(6.16)

AN

2
e
Y€ 1
Per v < 7o consider (6.16) for A = Ao, < 0, applying (6.15) and (6.1) to obtain (6.12) in case
¥ < 7. Turning to deal with v > o, note that P¥(Z = j) < (1 —¢_) "¢y for all j > 1,
even if y € Ogp_1. Thus, for any A < Aj, similar to the derivation of (6.1) we get that for some
¢5 = ¢5(A) < 0o and all i > n > ng, uniformly in z,

(6.17) E(%/m) < sup EY(4/M) < 5.
yeaﬂn—l
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In analogy with (6.16) we also have that for any 6 > 0, A > 0, 7 > n > ng and z,

(6.18)  P(N; g () 2 7)< e mon BN X207y < ok DI sup B (M)
YEDn_1

Considering (6.18) for A = Ao, > 0 (as v > <), and applying (6.1) and (6.15) we complete the

proof of (6.12).

Similarly, we have that for any 6 > 0> X\, n > n > ng, z and = € D(2,7g,—2),
N N
P(Tk, (z) > Ri(a), N7 g,(a) <v%) < 67’\72”5"/"151( 11 S(A/”)Zlej(x))
j=1

3an?1lo
yean—l
Given v < 7, consider (6.19) for A = A; 4 <0, and apply (6.15) and (6.2) to get (6.13) for v < 1.
Further, the same argument leading to (6.17) shows also that supyeg,. EY (er/m1 A(z)) < ¢s for
all A < A]. Consequently, for 6 > 0, A >0, n > n > ng, z and z € D(z,78,—2),

P(Tica (0) > Ria), Nign(a) > 7)< es K000 (sup B/(A/"14) ™
YEdn—1

and since A, > 0 for v > 1, we complete the proof of (6.13) by using again (6.15) and (6.2).

Using (6.3) and A = A ,, the proof of (6.14) proceeds along the same lines, thus completing the
proof of the lemma. O

7. LATE POINTS IN A SMALL NEIGHBORHOOD

We devote this section to the proof of Theorem 1.2, as the basic large deviation bounds needed
are already in place.

Proof of Theorem 1.2: We actually show that for 0 < o < 82 < 1, some b < o0, any &, 68,7 > 0,
and all n > ng, y € Z and z = z, EZ%(R

(7.1) P (|£Kn(04) N D(z,rpn-b)| > Kﬁﬂ_(m_w““) < 27,

(7.2) P (|£k, (@) N D(@, rpnss)| > K2I-EotO/I=0) > 1 gy,

Since log rgn4s/log K;, — [ and the set of K,, values cover all large integers, the theorem follows
by considering 1 | 0 and adjusting the values of 3, § > 0 and £ > 0.

Starting with the upper bound (7.1), recall the notations Rj(a) for the time until completion of
the first ng(a) = 3ak? log k excursions from 8D(z, 7y, 1) to dD(x,7%), k = 3,... ,n, then Ni o(a) for
the number of visits to z until time R{(a), and Ny (a), 2 <1 <k —1 for the number of excursions
from 0D(x,r;—1) to 0D(x,r;) until time R} (a). Let ¢ = %(Kn log K;,)? and

(7-3) Li, (@) = {y € Z%, : Tk, (y) > max Rp(@)},
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taking hereafter £ € (0,2c) and @ = 2a — & > 0 (in the remainder of the paper we always have
a < 2a < a). Applying (3.19) with R = r,, 7 = r,_1 and N = 3an?logn, we see that for some
c=c(a,€) >0 and all n,

(7.4) max P (RZ(d) > at’) < ¢ le=elogn
zEZ%(n

resulting with

(7.5) lim P(Lk,(a) C Lk, (@) =1.
n—o0
Hence, to establish (7.1) it suffices to show that
(7.6) P(|Zk, (@) N D(z,rgn 2)| > KP785+10) <
Since Fy g(7y) > 0 for v < 9 = 1/, it follows from (6.12) that for any ¢’ > 0,
(7.7) lim sup P(Ny g,(a) < (1 —0")n,(a)) =0.
n—>00 zEZ%( ’

Recall that F; g(1/8) = 1/8 and rg, < K¥ for all n. Moreover, (1—6")n, > Y2ngy, fory = (1-¢8")/8
and all n. Hence, if v > ; then by (6.13) we have that

(7.8) P (1, (@) N D(w,rgn )| > K200 N2 s (@) > (1— ') (@) )

< K, @UH8:2 0 sup P(Tk, (y) > RE@), N2 4, (@) > +2)
yED(x,rgn—2)

a(F1,5(5)—F1,5(7))—36

With 8 < 1, for ¢’ > 0 small enough we have both v > v = 1 and Fl,g(%) — F1 () < 4. Thus,
considering (7.7) and (7.8) for such ¢’ completes the proof of (7.6), hence also of (7.1).

Turning to prove the lower bound (7.2), fixing 0 < ¢ < 2(8% — @) so @’ = (2a +¢)/B? < 2 and
0 < p<(2—a')/2 we say that a point y € Z%(n is fn-successful if

Ngn,o(a’) = O, Nﬂyn,k(al) rlf.; ’]’I,k(a’) Vk = p/@n, .. ’/Bn _ 1

In particular, if y is Bn-successful then Tk, (y) > R%n(a’ ). Let ﬁﬂKn (a', Bn) be the set of points in
Z%(n which are Bn-successful. A rerun of the proof of (4.3), this time with n replacing n, shows
that for some b > 10, any § > 0, 7> 0, alln > ng, ¥ € Z and z € Z% ,

(7.9) P (|5, (a', 6n) N D(a,mpnp)| > KEE=70) > 1.
Consequently, (7.2) follows once we show that uniformly in z,

7.10 P( in  RY (d) < t*)—>0.
(7.10) yepion ) Ran(@) < ofr

To see this, let ,, be a minimal set of points in D(z,735,4s) such that
D(z,r5n+5) € |J D, 7pn—2).
YyEYn

Let ﬁ%n(a' ) denote the time until completion of the first ngy(a’) excursions from D(y,rg,—1 +
7gn—2) to 0D(y,Tpn — Tgn—2). For any z € D(y,r3,—2) we have that

D(z,rgn—1) € D(y,rgn—1 + 7gn—2) € D(y,7pn — Tn—2) € D(2,78n),
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implying that each excursion from 0D(z,7,-1) to 0D(z,7sy) requires at least one excursion from
0D(y,rpn—1 + Tpn—2) to OD(y,7pn — rpn-2). Thus, R, (a') > Rj, (a') and consequently,
(7.11) P( min R, (a)) < at;;) <P (ﬁ%n(a') < at;;) .

2€D(y,r8n—2)
Applying (3.18) with R = rg, —Tgn_2, T = Tgn_1 + rgn—2 and N = ng,(a’) = 3(2a + £)n? log(Bn),
the right hand side of (7.11) is bounded by

_ log(R/T) _
1 _ 2 < 1 —_
C™ " exp{ C(ilog(Kn/r))n logn} <c¢ " exp{—cnlogn},

for some C, ¢ > 0 that depend only on «, & > 0, yielding (7.10) (recall that |Y,| < Cn'0?). ]

8. CLUSTERS OF LATE POINTS

Fixing 0 < a, 8 < 1, this section is devoted to the proof of Theorem 1.3. As usual, it suffices to
establish (1.5) and (1.6) for the subsequence K,, = n7(n!)3, provided all our estimates are uniform
in v € Z. To this end, set

(8.1) W(B2, 1) = {y € Lk, (@) : Tgon—3 < d(z,y) <rgin—3},
with W% = W?(0, 5). We actually prove that:
Lemma 8.1. For each § > 0 there exists € € (0,6/2) such that

(8.2) Pni= K2 sup P (3 € Ly, (a), W* < KZPE750) —, 0

Lemma 8.2. For each § > 0 there exists € € (0,6/2) such that

(83) Dp = K2a+€ sup P (x € EKn(Ol),Ww > Kzﬂ(l—a)+5§) 0.

2 n—00
mEZKn

By (1.2), we have P(| Lk, (a)] > Kz(lfa)feﬂ) — 1 for n — oo, and with logrg,—3/log K, = £,
the bounds (8.2)-(8.3) imply that (1.6) holds (adjusting 8 as needed). These bounds also imply
that (1.5) is a consequence of the uniform lower bound P(z € Lk, (o)) > K, 22=¢/2 }6lding for
any n large enough and all z € Z%(n, z # 0. Applying Lemma 4.1 we get the latter bound as soon
as

(8.4) min P (Tx, (z) > R%(a)) > K;207¢/3
zezy \{0}

holds for a = 2a+¢/7 and all n sufficiently large. Since Tk, (z) > R¥(a) whenever z is n-successful,

by (4.4) and translation invariance of the SRW we have that

(8.5) min min PY(Tk, () > Ri(a) > K, 2*7/5.
zEZ%{n y&D(z,rn)

For any finite r > 0 there exists ¢ = ¢(r) > 0 such that P(T;; > Typ(y,) > c for all n sufficiently

large and all z # 0. Consequently, by (2.1) we have that P(T; > Typ(s,)) > ¢'/logrn, > Ky /®
for some ¢ > 0, all n sufficiently large and all x # 0. Combining this with (8.5) and the strong
Markov property at Typ(z,r,) Tesults with (8.4), thus completing the proof of Theorem 1.3.
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Proof of Lemma 8.1: Let é\rf,ﬂ ={z € Z\n,ﬁ 12 #0,d(z,2) <0.5rg,_3}, where fn’gz denotes for

each 0 < 3’ < 1 a subgrid of Z%{n of spacing 4rgr,_4 such that 0 € é\nﬁu Fixing ¢ € (0,2a) and
n € (0,1) to be chosen later, let a = 2a + &, o' = (1 + 27)3a and

=Ky € D(2,76n-6) : Tk (v) > Ry a(a)}-

Note that W? > W? for any z € Z“ such that N7 5 ,(a) < ngp-4(a’) and R (a) > aty.
Set @ = 2a — £ noting that if z € [,Kn( ) then either R7(a) > at} or Tk, (z) > Ri(a). With
|fo,6| < Kf, for all € > 0 and n sufficiently large, we thus have that

pn < K,QLO‘HP( ma2X RZ(a) > at*) +K§a+eP( min ’Rz( ) < at;)
2€ELY z€7%,

+ KZ2*T¢ max P( max W?* < Kgﬂ(l_a)_w)

+ K2 max P (Tk,(2) > Ri(@), Ny gn-a(a) > ngn-a(a) :=pno+Pn1+Pn2+Pn3s -
z,zEZﬁ,B

By (7.4) we have that p,o — 0 as n — co. With a > 2a, by (3.18), similar to the derivation of
(7.4) we get also that p, 1 — 0 as n — oo.

Turning to deal with the term pj, 2, consider the o-algebra G = G*, for G# corresponding

zEZAzB
to R' = T4 and R = rgp_5 in Lemma 2.4. Since D(2',rg,_4) C D(z, T 1) \ D(z,7gp—4) for any

2,2 € Zz n.g» it follows that conditional upon G, the random variables {WZ} are independent

2€23

n,8
with W# measurable on the o-algebra H* (ngn—a(a’)) corresponding to r = rg,_g in Lemma 2.4.
With [Z7 5| > n? for all n sufficiently large, it follows from the latter lemma that,

KT%OH_E max lE( H P Wz Kgﬂ(l—a)—55|g))

Pn2 =
’ mEZ2

zegw

2

< K2H((1+ o(1n)) max P(W? < K2H1-) 55))" 0,

- zEZ2 n—>00
provided that for some universal constant ¢ > 0

(8.6) min P(W? > K26(1-2)=50) >

zEZ%(n

Applying (3.19) for R = rgp—4, 7 = Tgn—5 and N = ngp_4(a’) we have that for o/ = (1+ 2n)a’(?/2
and n large enough,

(8.7) sup P(Rﬁn L) > a't;) — 0.

Z€Z2 n—oo

Further, if R, ,(a') < o/t;, then W? > |Lk, (/)N D(z,78n—¢)|- Thus, taking n > 0 and £ > 0
small enough for o/ < 82 and 26(1 — a) — 46 < (28 — 2a//B), we get (8.6) by combining (8.7) and
Theorem 1.2.
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It thus remains only to show that p, 3 — 0 in order to complete the proof of the lemma. To this
end, let @ = (1 + 2n)a noting that

pns < KRV max P (Tio,(x) > Ri (@) N (@ 1] 2 )
d(xaz)§:;7:7,72

A~

L K2 iy P (A;;ﬁn(a) <14n, Nig(a)>1+ 2n)

zEZ%n
+ K2t max P (Nén,gn_4(5) > (1+ 277)2) := pn(B) + Pna +Pns,
2€ly,

where
N pn-4(@) = Njp gn—4(a) /nipn—a(@)
and the bound above (and in particular the last term py, 5) follow from the inclusion
{NV;: pn—s(@) > ngn_a(a’), Nj; gn(a) < (L+20)} C {NG, go_s(@) > (1+29)%},
that is obtained by unraveling the definitions.

Since a = 2a— ¢ and y1(8') = 1, we have by (6.13) that for any 8’ € [6(1 — «), 3],
2a—(2a—&)Fy g (7)+3e

(8-8) m(B) < sup Ky — 0,
B(1—a)<B'<pB n—oo
[v2=1|>7

for € = €(a,B,n) and & = &(a, B,n) sufficiently small, using the fact that (y,0') — Fig(y) is
continuous and Fy g (y) > Fy (1) =1 for v # 1.

By the strong Markov property of the simple random walk at RZ(a) and the bound of (6.12) at
v=((1+2n)a—(1+mn)a)/(a —a), we have that

69)  pas <KX max PV (R0 a) 2 ) < KITCODRO g

zGZ%{n n’ﬁn n—0oo
yEBD(z,rn)

for ¢ = £(«, B,n) small enough, since y — oo and (a—a)Fp g(y) = 2£F0,g(% +147n) 2> ocasf 0.

We complete the proof of the lemma by showing that p, 5 = O(e‘"2). To this end, first note
that by (2.4), the probability that the number of excursions from 0D(z,7g,—5) to 0D(z,rgn—4)
until time Tpp(,r,,) exceeds 2nng,—4(@) is bounded for large n and all z by (9/10)Mmsn-a(@) —

0(6_2"2). Hence, using the strong Markov property at Typ( and translation invariance of the

2,T8n)
simple random walk, it suffices to show that Pz(]/\\fgn,ﬁn%(ﬁ) > 1+ 2n) = O(e~2""), uniformly
in z € 0D(0,rg,). Let P, denote probabilities with respect to the random walk in Z%(n. Then,
uniformly in z € dD(0,74,), by conditioning on the o-algebra G° of excursions from dD(0,rs,) to
0D(0,7g,—1) and twice using Lemma 2.4 (for r = rg,_5, m = ngy(a), first with K = K, and then
with K = Kg,), we see that

(8.10) pT (Ngn,ﬁn,4(a) >1+ 2n) — (14 o(1,))P%, (Ngn’ﬁn_4(5) >1+4 277).

Then, for @ = (1 + n)a/2, uniformly in = as above P%_(RY, (a) > ath) = 0(e~2"") by (3.19)
and P (RS, _,((1+2n)a) <at},) = O(e=2"") by (3.18). So, the right hand probability in (8.10)
which can be rewritten as P§, (RY, (@) > R%n%((l +2n)@)) is uniformly in z at most O(e~2*). 0
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Proof of Lemma 8.2: With gn’ﬂ: as in the proof of Lemma 8.1, let zg (z) denote the point
n é\n,g/ closest to z, and Zg, = {z € é\n,ﬂ: |N7: grn(@) — 1| < n}. Taking b < 2, to be
chosen below, set §; = ((h/2)? for j = 0,1,... and let £ be the smallest integer so that 8, <
B(1 — a). Let W“”(,) be as in (8.1), but with the set ZKn('d) of (7.3) instead of Lk, (). Note
that if RZ(@) < atf for all z € Z% then Ly, (a) C L, (@) and W*(,,-) < W*(-,-). Also,
automatically W?(0, 5;) < Kp 26 (lfa), so for all n sufficiently large the event W% > K2 (1-a)+50
implies that W*(8;41,06;) > Kw](1 )40 for some j=0,...,£—1. Thus, we bound the event
{z € Lk,(a), W® > K2P0-e +56} in the definition of p,, by the union of the events {R7?(a) > at}

for some z} and {z € ZKn(a) W*(Bj+1,8) > KMJ(1 * +46} for j = 0,...,£— 1. Splitting the
latter events according to whether 25, (z) € 25, ; or not, we get that

—1 -1
Po <Pno+ Y Puj+ Y 5n(B)),
=0 =0

where

p oy 28:(1—a)+46
P = Ko™ Sug) P (x € Li, (@), 23, (2) € 2y, W (By11,8) > K07 ) :
:CEZ

By (7.4) we know that p, o — 0 and by (8.8) also p,(8;) = 0 for j =0,... ,£—1.

Turning to deal with p, ;, let Dy j(z) denote the annulus D(z,7,n3) \ D(z,75,,,n 3)- Since,
foranyw>()and;1:€Z2

P(z € Lk, (@), 23, (z) € 25,3, W(Bj11,65) > w)

< w™! Z P( 7y€£Kn( ) ﬂ( )ezﬂj,n)a
YEDy, ;(x)
while log 75,3/ 1log Ky, — B; and y4(8;) < +/1 —n, which we may assume by taking 7 sufficiently
small, it follows from (6.14) that for all n large enough
20(1+6;)—20

pn,j < K, w,yengiii(w)P( Y € ‘CKn( ) 2B; ( )e Zﬂj,’fl)
e

B(l—a)<p'<p
Then, p,, ; — 0 as n — oo for 7, ¢ sufficiently small and h < 2 sufficiently close to 2 using the fact

that (v, h, 8) — Fp g (7y) is continuous and F g (1) =1 + ['. Possibly decreasing ¢ and ¢ for (8.8)
to hold we complete the proof of (8.3). ]

9. UPPER BOUNDS FOR PAIRS OF LATE POINTS

Recall that F, g(y) = % + hy?. We begin by showing that

2+ 26— 4a/(2 - ) if 6 <2(1— va)
@1 24220 it Faply) = {8(1—\/5)—4(1—\/5)2/ﬂ if 8> 2(1 - v/a)

where T’y g = {y > 0: 2 — 208 — 2aF; g(y) > 0}, thereby establishing the equivalence of (1.8) and
(1.11). Indeed, as noted before, F5 5(y) is quadratic, with minimum value F g(y2) = 2/(2 — )
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achieved at y2(8) = 1/(2 — B) < 1. It is easy to check that Ty g is the interval [y_,~,] for

(9.2) v =ys(a, ) = B max{1 + o~ /2(1 — j3),0}.
Since v2 < 1 < vy we see that v € I'y g if and only if y_ < 7y, leading to the explicit formula
(93) p(aa ﬂ) =2+ 2ﬂ - QOAFQ,ﬁ(ma‘X{’Y—a '72})

(where we denote hereafter the left hand side of (9.1) as p(«, 8)). Combining this with the fact that
v—(a, B) > v2(B) is equivalent to 8 > 2(1 — \/a), we obtain the identity (9.1). Clearly, 8 — p(«, 3)
is continuous on (0,1) and by (9.1) it is also monotone increasing in 8 (for 8 > 2(1 — y/a) by
inspection, while for 8 < 2(1 — y/a) we have that dp/dg > 1).

We prove in this section that for any 0 < o, 8,0 < 1,

(94 Jim P ([{(z.9) : 2, € Lic(a), d(z,y) < K} 2 KF@DH) .
—00

To this end, let
(9.5) Va,8s,81,m = {($ay) : z,y € Lk, (), TByn—3 < d(z,y) < Tﬁln—3}'
It suffices (as usual) to prove that (9.4) holds for K, = n7(n!)?, uniformly in 4 € Z. Further,
log rgn—3/log K, — B, so fixing 0 < a, 3,0 < 1, it is enough to show that
(9.6) lim P (|@q0,60 > K@) <0,

n—oo

Note that [, 0 3(1—a)nl < be’g(l_a)|£1{n(a)| for some universal ng = np(a,§) < oo and all
n > ngy, while
pla; B) > 2+ 20 = 2aF5(1) = 2(1 — ) +26(1 — ),
so that it follows from (1.2) that
97 lim P (|Pagp0 apnl > KL < lim P (£, (0)] > K- =,

n—0o0

The following lemma will be proven below.

Lemma 9.1. We can choose h < 2 sufficiently close to 2 and a < 2« sufficiently close to 2« such

that for any B € [B(1 — ), 5]
A~ ] 6
(9.8) Gn,p =P (|‘I'a,h,ﬂ’,n| > Kpef)+s ) —2 0,

where

~

Gangn={(@9): 2,y € L, @), rgnnprs < d(z.y) < g3}

Fix h < 2, @ < 2« according to Lemma 9.1. We then set 3; = 8(h/2)? and £ as the smallest
integer such that 5y < f(1—a). By Lemma 9.1 we have that qn,p;—0,asn — ooforj =0,... /-1
Combining this with (7.5), the monotonicity of 8 — p(a, 3), and (9.7) we establish (9.6).

Proof of Lemma 9.1: Let D, g (z) denote the annulus D(z,75n-3) \ D(Z,7gpn/2-3)- Fix 0 <
n < 1 to be chosen below, abbreviating v- = v_(a, '), 7« = (1 — n)v-(a/2,0") and v, = y(0')-
We will argue separately depending on whether or not <, < 7. Consider first the case where
Y« < yp- Applying (6.14) at y = -y, we conclude that for all n large enough,

~ ~ —a ' é
max max P(z,y€ Lk, (a)) <K, g M)

IEZ%(‘” yEDn’ﬁ/ (z)
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By the formula (9.3) at ', this implies that if v, <, then,

! ~ ~ Ggr(n,a,h)—0
G < KPP0 3~ S~ Py e Lk, @) < Ko

weZ%{n y€D,, 5 ()

where g (1, @, h) = 20Fy g (max{y-,72}) — @) g (max{ys, 7). (Here max{y., 74} = 7). Note
that gg (0,2c,2) = 0 for all #', hence for any § > 0 we can and shall take h sufficiently close to
2, a < 2o sufficiently close to 2« and 1 > 0 sufficiently small so that gg (n,a,h) < 6/2 for all
B' € [B(1—a),p]. Clearly, this choice of parameters guarantees that g, g hed 0 whenever v, < yp.

Keeping this choice of h, @ and 7, we turn to deal with the case where 7, > ,, denoting by
Zn,p the sub-grid in Z%(n of spacing 4r4,_4. Let zg (x) denote the point closest to = in Z, g so

200 (T) . =5 ~
P(N, %, (@) < 77) < P( min {Nf 5,(@)} < 72) =t qu(5) -

ZEZ,L,EI

Then, using again (9.3) at 8’ and the bound (6.14), now for v = 7, > v, we get that

_ n_ =~ — zgr(T) -
gy < wd)+EK, p(e,B')—30 Z Z P(z,y € EKn(a),an;ﬂ,n (@ > +?)
werKn yeD,, 5 (x)
Fy a1 — —26 =< ~ <> ~
< (@) + KD e max P(a,y € L, (@), N7 5, (@) 2 1)
zEZ%(n :v,yED(z,rB,n_Z) )
d(zay)zrﬁ’hn/2—3

Ggr(n,a,h)—0
< (B + K2

(Here max{vy,,yn} = 7x). As we have seen, our choice of parameters guarantees that gg (1, a,h) <
§/2. Moreover, since 7, < 1 < g (for any g’ € (0,1)), it follows by (6.12) that for any ¢ > 0 and
all n large enough,

(9,9) C]n(,B,) < |§nﬁ’|K;aFO,B/(7*)+e < KZ—ZB —O,FO’BI(’Y*)+2€‘

Note that for h < 2 we have v, > 1/2. Hence, using our assumption that v, > 7, and the definition

of ., we have that v_(a/2,8') > 1/2 > 0. This guarantees that y_(a/2,') is the lower boundary

of {y: 2—20'—aF, g (y) > 0}. It follows that 2—25" —aFj g (7«) < 0 uniformly in 8’ € [3(1—«), 3]

for which v, > ;. Hence we can find € > 0 so that g,(3") —2 0 uniformly in this set of values of
n—oo

@', implying in turn that g, 3 — 0. This completes the proof of Lemma 9.1. ]
n—oo

10. LOWER BOUNDS FOR PAIRS OF LATE POINTS

Fix 0 < @, 8 < 1. Recall the notation K,, = n7(n!)® and the sets U, g 5., of (9.5). We show that
ify_(a,f) <y<land1l—a>d>¢&>0 aresuch that 2 — 26 — (2a + &) Fy g(y) > 26, then

(10.1) limsup P (a5 > K 77O g,
n—oo

uniformly in 4 € Z. In view of (9.3), taking &,6 | 0 followed by v € (y—(a,3),1) that converges

to max(y_(a, 3),72(8)) we get the lower bound in Theorem 1.4 for the subsequence K,. By the

uniformity in 4 this bound extends to all integers.
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Fixing v, § and & as above, set a = 2a + ¢, recall the notations ry, n(a), Rf(a) and Ni (a) of
Section 4 and let

2
(10.2) g = 3a* (k - %n) log k, on<k<n,

where a* = a(1 —v8)%/(1 — ()2, so that 7,, = n,(a) and 7igy, = ¥*ngn(a).
Let Z, C Z3 be a maximal set of points in Z% \ D(0,r,) which are 4rﬂn+4 separated, such that

(0,2ry,) € Z,. We will say that a point z € Z,, is (n, §)-qualified if N* s X ngforall fn < k< n-—1
and in addition

= ‘{y € D(z,m8n-4) : Tk, (y) > RZ(G)}‘ > K5(2—0/72)—25

(compare with the definition of n-successful points in Section 4). If min, 7> : RZ(a) > at}, then
V08| > Z (W?)? > |{z € Zy:zis (n,B)—qualiﬁed}|K3Lﬂ(2_‘”2)_4‘5 )
2EZ,
Since P(mlnzezz Ri(a) < at}) — 0 as n — oo (see the term py, ; in the proof of Lemma 8.1), and

(1—p)a* =akFy g( ), we thus get (10.1) as soon as we show that

(10.3) Tlim P (|{z € Zn:zis (n, ﬂ)—qualiﬁed}| > K,gl—m(?—a*)—é) — 1.

The following analogue of Lemma, 4.2 whose proof is defered to the end of this section, is the key
to the proof of (10.3).

Lemma 10.1. For any z,y € 2, let l(z,y) = max{k : D(z,rpx + 1) N D(y,rx + 1) = 0} An (note
that I(x,y) > Bn+4). There exist b > 10 and @y, > (rn/7pn)~* T°Un) such that

(10.4) P(z is (n, B)-qualified) = (1 + o(1,,))Gn,

uniformly in ¥y € Z and z € Z,. Furthermore, for any € > 0 we can find C = C(b,e) < 0o such
that for all n and any x,y € Z, with l(z,y) <n,

*+€
(10.5) P(z,y are both (n,3)-qualified) < (/anC”_l(m’y)nb(r—n)a ,
Ti(z,y)
while for all n and x,y € Z, with l(z,y) =n,
(10.6) P(z,y are both (n,B)-qualified) < (14 0(1,))q,” -

The proof of (10.3) then proceeds exactly as the proof of (4.3), where the condition 2 — 23 —
aFy () > 26 implies that a* < 2 and by (10.4) the expected number of (n, §)-qualified points is
(1-8)(2—a*)+o(1n) :
Ky . So, with

Vi= Z P(z,y are both (n, 8)-qualified) , L=0n+4...,n
z,y€Zn,l(z,y)=L
it suffices by (10.6) to show that

(10.7) Z Ve < o(1,)| 2,7,
{=pn+4
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Indeed, with C,,, denoting generic finite constants that are independent of n, for any £ € [n+4,n)
and z € Z, there are at most C’or§+1/r§n+4 points y € Z, N D(z,2(ry11 + 1)). Consequently, we
have by (10.5) and the definition of [(z,y) that for any £ € [fn + 4,n),

r 2/\ -~ r a*+e
Ve < Oyl 2l (5L ) G mbomt(T)"
TBn+4 T

Similar to the derivation of (4.9), taking € < 2 — ¢* and summing over £ results with (10.7), hence
completing the proof of (10.3).

Proof of Lemma 10.1: Let R%n,m denote the time until completion of the first m excursions from
0D(z,rgn—1) to 0D(z,7,), and set Az = (W7 > K5(2_a72)_25} for W7 = |{y € D(z,7pn—4) :
Tk, (y) > Rf, - Recall that fig, = ngn (V2 (2a+ €)), so applying (3.19) with R =rg,, 7 = 181
and N = nig, + On, we see that for all m < ng, + fn,

P(Wy, > |D(2,7pn-4) N L, (@ + V%)) 2 PRy m < (@ +E)7*F°4) =1~ o(1n).
Hence, by Theorem 1.2 we have that
(10.8) P(Kin) =1-o0(1p), uniformly in m 2 Mg,
Starting at 0 ¢ D(z,r3,) we see that the event Kfn belongs to the o-algebra H?(m) corresponding
to 7 = rgp—2, R = rgp—1 and R’ = rg, in Lemma 2.4. Further, if the event {Ng,ﬂn =m} € Gon
occurs then law of A = (W > Kg(Q_MZ))_%} conditioned upon G, is the same as the law of

Kfn conditioned upon G,,. Consequently, by Lemma 2.4 and (10.8), uniformly in m 2 Tgn,
With M; = {l,... ,n —1}, by (10.9) and the fact that {N} KA,k € Mg} € G, we get that

P(z is (n,f) — qualified) = P(NZ , & fig, k € Mgy ; Aj,)

n

k ~
= Y B(Ni ARk € Manias Ny gy = miP(AG [ Ghn s Nign =m)

B~
m~Tngn

= (14 0(1))P(NZ, & 7ig, k € Mgy,).

n

Therefore, taking my, = n, = ny(a), by (5.9) we get (10.4) for

n—1
N Z mep1 +me— 1\ o, m
(10-10) in = MBgysee My 1 el_b[n ( my )pz (L =pg)™e -
|m[*ﬁg|§f

It is not hard to check that our choice (10.2) implies that for some C' < oo and all k¥ € Mgy, if
|m —7ng| <kand [l +1—7gy1| <k+1 then

m 2 C

|__1_ |S ’

l _ (B=B) klogk
k= {om ©8

which by adapting the proof of [3, Lemma 7.2] shows that uniformly in my, 3 1y, and myyq e ki1,

Clk—?,a*—l Mpt1 +my — 1 k—Sa*—l
10.11 ———< TR (1 — pp) ™R <
1oLy < (M e < S
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with 0 < C',C < oo independent of k. Putting (10.10) and (10.11) together we see that g, =
(rn/rsn) "% ToUn) as claimed.

It suffices to prove the upper bounds of (10.5) and (10.6) with the events {zis (n, 5)-qualified}

replaced by the larger events A(z,n, 8) =: {N} X Nk, k € Mg, }. The proof is a rerun of the argu-
ment used in Section 5 to prove (4.5) and (4.6) respectively, replacing the events {zis n-successful}
by A(z,n,3), taking p = 8 and fBn + 4 instead of p'n, excluding 0 from the sets J; and I; and
replacing everywhere there g, with g, n; with 75 and a with a*. Indeed, the effect of the values
N is in the application of (10.11) whenever (5.7) is used in Section 5. L

11. COMPLEMENTS AND UNSOLVED PROBLEMS

e Let LZ denote the number of times that z € Z? is visited by the simple random walk in Z? up to
the time Typ(g ) of exit from the disc of radius n. For any 0 < a < 1, set

L(E
(11.1) U, (a) = {:v € DO, : o s > 404/7r},
Since log Typ(o,n)/ logn — 2 almost surely as n — oo (see for example, [8, Equation (6)]), our result
[3, (1.3)] is equivalent to

(11.2) lim 1281Zn(2)]

R P =2(1—a) as.

Following the line of reasoning of this paper, we expect that for any 0 < «,8 < 1, choosing Y,
uniformly in ¥, (a),

log | ¥ D(Yy,n?
(11.3) lim sup 08 [¥n(2) 0 D(¥n, )| =206(1 — a) as.
n—00 logn

We also expect that the analysis in this paper can be extended to yield

(11.4) i 108 @,y € Un(a) : d(z,y) < nf}  p(a.f). as

n—o00 logn

e Our study of planar random walk suggest that the analogous results hold for the planar Wiener
sausage. Let S.(t) = {z € T? : 3s < t,|W; — z| < €} denote the set covered by the Wiener sausage
up to time ¢, where W; is the Brownian motion on the two-dimensional torus T?. Consider the
uncovered set U (a) = T? \ S:(2a(loge)?/7) for 0 < @ < 1 (in [4] we show that U.(«) is empty if
a > 1). We then expect that

lim log Leb(U. ()
£—0 loge

and for any z € T?, 1 > 38 > V/a,

(11.6) iy 108 Leb(Us (@) N D(z, el=h))
' £—0 loge

(11.5) =2(1—a), as.

=20 —2a/B, as.

We also expect that for 0 < o, 8 < 1 and Y; chosen according to Lebesgue measure on U, (a),

(11.7) lim log Leb(Us(e) N D(Yz,e'=F))

=261 — 8.
£—0 log e fll—a), as
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and that

Io Leb(U () N D(z,e'=P))dz
(11.8) lim ngs(a) (Ue(a) ( )

£—0 loge = pla.f), as.

We believe that these results can be derived by arguments similar to those used here, but have not
verified it.
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