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Abstract We investigate, by means of an example, the large deviations principle for the empirical
measure of a Markov chain when Feller continuity properties are not assumed. Using the weak
convergence approach, we explicitly compute the resulting rate function, and find that it is not of
the Donsker-Varadhan form.

1 Introduction

Let X, denote a discrete time Markov chain, with Polish state space A and transition kernel
p(z,da),andlet L, = n~! > j=1 0z, denoteits induced empirical measure (also called the occupation

measure). One of the outstanding successes of the theory of large deviations has been the derivation,
by Donsker and Vardahan [6], of a general large deviation principle for L,, with the rate function
given explicitly by the solution of a variational problem. Let M;(X’) be the space of probability
measures on X with the weak topology, and let H(uq|u2) denote the relative entropy between
probability measures pq, po: H(p1|p2) = oo if pq is not absolutely continuous with respect to g,
and H(p|p2) = [log((dus/dps)(x))u1(da) otherwise. Under appropriate conditions, it was proved
in [6] that
— inf I(p) <liminf P(L, € A) <limsup P(L, € A) < —inf I(p),
nEA®° n—00 n—00 HEA

where A° and A denote, respectively, the interior and closure of a (measurable) set A C M;(X).
The rate function [ is defined by

1) = inf H(u(de ), da)(da)p(z, da)).
{r(z,da):f w(dz)m(z,da)=p(da)}

(We refer the reader to [3, 4, 7] for definitions and terminology related to the theory of large
deviations).
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Besides exponential tightness assumptions, which we will avoid in this paper by restricting X’
to be compact and hence forcing M;(X’) to be compact, this basic result is usually obtained under
either an assumption of Feller continuity of the kernel p(z, da), or assumptions on the uniformity of
the kernel with respect to z, in the sense of the existence of a dominating measure (see [4, 2, 9, 3] for
partial references). It has also been obtained under what can be thought of as a “with probability
one Feller condition” in [7]. This assumption requires neither the Feller property nor a dominating
measure, but instead assumes that the set of points where the Feller property fails is negligible in an
appropriate sense. The rate function in this case is the same as under the Feller condition. On the
other hand, under appropriate mixing hypotheses one can prove that a large deviations principle
is valid, although in this case the rate function is not explicitly identified (see the exposition in [4]
and, for weaker conditions, the paper [1]). This gap is a nontrivial gap, as the examples in [2, 5]
amply demonstrate. Our goal in this paper is to further explore this gap by means of an example,
which illustrates some new phenomena one should expect when Feller continuity is violated, even
for very mixing chains. Qur main vehicle is the weak convergence approach to large deviations [7],
whose main advantage in the present context is that it allows one to understand intuitively how
the Donsker-Varadhan rate function must be modified.

The example we give can easily be extended and generalized. However, our goal in this paper
is to simply illustrate some of the possibilities, and in particular to examine the role that the
Feller property plays in determining the form of the rate function. In the absence of any specific
applications, we have forsaken the development of a general result.

2 The Example

We consider the Markov chain on the state space X = [0, 1], with initial position Xy = z € [0, 1]
and transition probability

[ Ul0,1)(da), z € [1/2,1]
p(z,da) = { UlZ+ 13- 2)(da), z€0,1/2).

Here and in the sequel, Ulec,d] denotes the uniform distribution on [¢,d]. As long as this process
stays to the left of the point 1/2, the distribution of the next step of the process looks more and
more like a point mass concentrated on 1/2. However, as soon as the process visits [1/2, 1], the next
step is distributed according to a uniform distribution. The Markov chain generated by p(z,da)
is readily seen to be strongly mixing, with a unique invariant measure. On the other hand, on an
exponential scale, one can tilt the transition kernel when 2 < 1/2 in such a way that the Markov
chain remains confined to the interval [0,1/2), and thereby force the empirical measure to converge
to é; /5. Since the cost of such tilting is (in exponential terms) finite, it is clear that such a possibility
should be reflected in the LDP. More precisely, let X1, Xo,... denote a realization of the Markov
chain generated by p(z,da), and let L, = %Z?:l 0x,. Our goal is to prove the following:
Theorem 1 For p € My(X), let ¢ € [0,1] be such that p = céyj3 + (1 — c)v, where v € M;(X)
satisfies v({1/2}) = 0. Define

I{p)=(1-¢) inf H(v(dz)n(z,da)|v(dz)p(z,da)) + c2log 2. (1)
{ﬂ(m,da):f v(dz)m(z,da)=v(da)}



Then L, satisfies the LDP with good rate function I.

Of course, in view of the results on the LDP for Markov chains described in the introduction, the
interest in this particular Markov chain stems from the discontinuity of the statistics at z = 1/2.
The explicit computation of the rate function, and the difference between the standard Donsker-
Varadhan rate function and (1) are best explained in terms of the weak convergence approach to
large deviations theory.

Proof of Theorem 1 : We recall the following known facts. A detailed discussion may be found
in the book [7].

1. Laplace principle Assume that for each f € Cy(M71(X)),
1
—Zlog Ege ™ Wn) o inf (I(p)+ f(p) .
n

and that I(-) is lower semicontinuous with respect to the weak topology on M;(X’). Then
(c.f. [7, Theorem I1.2.4]) L,, satisfies the LDP with the good rate function I(-).

2. Representation formula Let {v7(da|z, (), € X, L € M, (X),j = 1,2,...,n} denote a
family of conditional probability distributions on X', where M, (X") denotes the space of
non-negative Borel measures on A’. Define the Markov chain X" by the relation Xg§ = z,
Po(XF,y € AIXT, ..., XP) = vr(A|XP, LY), where L} = £ 5:1 bxn, and L, = L. Then
(c.f. [7, Theorem V.2.2])

1 _ 1 n—1 _ _ _ _
_= —nf(Ln) _ ; il S| XD TR T
n log Eze {1%% E; (n ]Z_;) H(VJ ( |XJ s L] )|p()(] )+ f(Ln)) .

Here E, denotes expectation with respect to the measure P.. In the sequel we will not
explicitly denote the dependence of 77" on X and L7.

For convenience, and since the proofs of the two parts are essentially different, we note that
proving the LDP for L, is equivalent to proving the lower semicontinuity of I and the following
two bounds:

n—1
lim inf {i%lf} E, (% X H(()p(XT, ) + f(Ln)) > int () + f(1)) (2)
. oo (1= n . = .
lim sup {1%{’} E, (EFOH(%‘ ()lp(XF, )+ f(Ln)) < ﬂeﬂfm (I(p) + f(p)) - (3)



Note that under the lower semicontinuity of I the lower bound (2) is equivalent to the large
deviations upper bound, whereas the upper bound (3) is equivalent to the large deviations lower

bound [7].

As a preliminary step, we define an auxiliary Markov chain which will be needed later. Since
p(z,{1/2}) =0 for all z, X; # 1/2 for all ¢ > 0, w.p.1. Let Z = [0,1]?, let {X;} be as before, and
define

}/;I{()’ Xi—121/2

X;—-1/2 (4)
FoUE L, X <1/2.

As explained above, we expect that with a probability that is not negligible in an exponential scale,
the empirical measure L, will have a component that approximates an atom at the point 1/2. In
order to understand how likely this phenomena is from the large deviation perspective, we must
examine in some detail the behavior of the chain near this point. To do this we follow a time honored
method in weak convergence theory, that is, we simply tack on to the state vector the quantity of
interest, and study the joint distributions when we take limits. It is easy to see that conditioned on
Xi_1 < 1/2, the marginal law of Y; is U[0, 1]. Because the transition function p(z,da) approaches a
point mass as z tends to 1/2 from below, the detailed behavior about this point of the X; process is
obscured. The process Y; magnifies the behavior when X is in a neighborhood of 1/2, and analysis

of the corresponding variable Y;* will allow us to understand the details of how mass can pile up

around this point. Define f(z,a)= 0 when 2 > 1/2 and f(z,a) = (a — 1/2)/(z —1/2) 4+ 1/2 when
¢ < 1/2. Then in fact {Z;} = {(X;,Y;)} forms a Markov chain with transition probability

q((z,y),da x db) = q(z,da x db) = p(z,da)és(z q.)(db). (5)

Proof of the inequality (2), and the large deviation upper bound. Let v7(da) be a family
of conditional laws as described above, and let X}L, 7 = 1,...,n, denote the associated Markov

chain. Let a”(da x db) denote an induced conditional law on Z defined by
af(da x db) = v} (da)d sz .)(db). (6)

Let the random vector generated by a7(da x db) be denoted by Z%,, = (X7, Y1), j=1,...,n.
Thus Pp(Z}, € A|XF,...,X]) = a}(A|X}, L7}). Define the random measures g™ = n~' )7, (5251,
Lm = a1y, 6);7;1, and §"(de x da x db) = n™' Y0, 6X;1(dw)&;?(da x db). (We will also omit
in the sequel the conditioning argument in 07?.) Then by compactness of Z, one has, at least on
subsequences,

B" = B, A" —poeo b, and L™ —, o L

where all convergence is in distribution with respect to weak convergence of probability measures.

The definitions above imply 3"(dz x [0,1]?) = L™(dz). Since the mapping that takes a measure
into its first marginal is continuous, 3(dz x [0,1]®) = L(dz). An analogous argument shows that
i(dz x [0,1]) = L(dz). The same argument as the one used to show the existence of regular
conditional probabilities shows that with probability one there is a regular conditional distribution

B(da x db|z) such that B(dz x da x db) = L(dz)B(da x db|z). We claim that:



Lemma 1

/ﬂ(dw x dy)B(da x db|z) = i(da x db) a.s.,

and therefore

/i(dm)ﬁ(da % [0,1]]e) = L(da) as.

Proof of Lemma 1 : The proof is a rerun of the arguments in [7]. Let ¢ : Z — IR be a bounded
measurable function. Note that with 77 = o({X],..., X"}),

Eug(Zl77) = [ g(a,b)ai(da x db)

Owing to the boundedness of g and the conditional independence of the summands,

/ (a,b)pin(da x db) — // (a,b)8"(dz x da x db) =

~(9(Z5) - 9(Z7) + Z (9(Z31) = Bulg(Z0)1 7)) —nmsoo 0,
where the limit holds in probability. We conclude that for each such g, we have

/g(a,b)ﬂ(da x db) = //g(a,b)ﬁ(d.r x da x db) = //g(a,b)ﬂ(d.r x dy)B(da x db|z)

except on a set of measure zero. If we observe that the last equality holds with probability one for
all g in a separating family of continuous functions, we obtain the first conclusion of the lemma.
The second conclusion follows from the first by integrating out the b variable. L]

Let p(-) denotes the uniform density on [0, 1]. We next define

~ (z,da x db), x#1/2
G(z,da x db) = { gl/Q(da)p(db), r=1/2.

The transition function ¢ is essentially the “left continuous regularization” of ¢. This is the function
that should be relevant in any calculation involving weak limits, since all the mass at 1/2 in the
limit must come from the left. Recall that g™ is the empirical distribution of the pair (X, Y), and
that 4™ — p in distribution. We will see that the new term in the rate function can be expressed
in terms of the relative entropy of the conditional law of the second variable in g (given that the
first variable equals 1/2) with respect to the distribution p. In order for the mass to accumulate at
the point 1/2, it will be necessary that this conditional distribution not equal p. In fact, we will see
shortly that this measure must be entirely supported on [0, 1/2]. Consequently, the contribution of
this new term will be non-zero.

We now claim:

Lemma 2 Assume that sup, E,H(3"|L" ® q) < K < co. Then

L"(dz)q(z,da x db) —, oo L(dz)d(z,da x db).



Proof of Lemma 2 : By the continuity of ¢(z,da x db) in z away from z = 1/2, it is obvious
that one needs only check the behavior at z = 1/2. Let A° = [1/2—§,1/2+ ¢] and C® = A® x {0}.

Mass will “pile up” at the point 1/2 if lims_qlim sup,,_, ., g"(A® x [0,1]) > 0. We now prove that,
in probability,
lim lim sup @"(C°) = 0. (8)

§—0 n—oo

According to equation (4), the set X x {0} is given a positive mass by (X[, Y;") if and only if
X?P > 1/2. Thus the last display implies that all the mass that piles up at 1/2 comes from the left.
Since ¢(z,da X db) — ¢(1/2,da x db) when = /" 1/2, this will imply the lemma. It is easy to check
that for all z > 1/2, q(m,C5) < 26. By using the Skorokhod representation [8], we can assume
that @ — i and 3" — (3 with probability one for purposes of calculating the limit of expectations
involving these quantities. We see from equation (7) that

—Za (da x db) = 3™([0,1] x da x db) — j(da x db)

7=1

w.p.1 in the weak topology. This implies that

lim P, ( Z a(Cct?) - 6) =1.

Hence if (8) does not hold, then for § small enough there exist an N and positive constants g, po
independent of 6 such that for all n > N,

( Z C(S > ;0) > po -
Let Np(n)={j=1,2,...,n: X}fb > 1/2}. Then, forn > N,

P (|IVR(TL)|/7Z > Yo, m Z Ef(C‘S) > "/0) > po-
)

JENR(n

Let H(u(C%)|v(C?)) denote the relative entropy between the restrictions of u,v to C%,(C%)°. By
the nonnegativity and convexity of H, for n > N,

HEW @0 = Fo| S H@OMK )

It _
> B |53 H(@)(C)lg(X;,C%)
7=0
[ 1¥&(m) 1 s |1 s
Z El‘ H - a” C q X ,C
L " |AR(")|]‘eJ%<) N T J'E%(n) e
> pokyolog(vyo/26) —



where in the last inequality the boundedness below of the function zlogz is used, and k is some
constant independent of §. Taking 6 small enough, the last display contradicts the assumption
sup,, B, H(3"|L" ® q) < K < co. We conclude that equation (8) holds. 0

We next consider an important property of the measures 3(da x db|z). The property is another
expression of the fact that all the mass at 1/2 in the limit arrives from the left.

Lemma 3 Assume that sup, E, H(B"|L"®q) < K < 0o, and let 3* — 3. Then for some (random)
probability measure ¥ on [0,1] with ¥((1/2,1]) = 0, B(da x db|1/2) = 6§, 5(da)¥(db) w.p.1.

Proof of Lemma 3 : We again invoke the Skorohod representation and assume that the
convergences are all w.p.1. We have the following inequalities, each of which is explained below.

B{1/2} x [0,1] x (1/2,1]) = B({1/2} x {1/2} x (1/2,1])

< lim B([o, 1x (1/2-6,1/246) x (1/2,1])

< lim limsup 57([0, 1] % (1/2 = 6,1/2 + ) x (1/2,1])
= lim lim sup 57([0,1] % (1/2,1/2+ 6) x (1/2,1])

= lim lim sup " ((1/2,1/2 4 8) x (1/2,1])

< lim i sup ((1/2,1/24.6) x 0.1)

< lim lim sup iz*(C*)

5—0 n—oo

= 0.

The lower semicontinuity of H(:|-), Lemma 2, and the assumption that sup, £, H(8"|L" ® q) <
K < oo together imply H((|L ® G) < oo and therefore 3 << L ® ¢ w.p.1. Since §(1/2,da x[0,1]) =
81 /5(da), we see that 3(da x db|1/2) takes the form 6, ,(da)¥(db), which gives the first equality. The
next inequality is obvious, and the second inequality follows from the weak convergence 3% — .
The second equality is due to the fact that ¢(z,[0,1/2] x [1/2,1]) = 0 for all z € [0,1]. The third
equality is due to (7), and all succeeding inequalities are obvious given the limit (8). The lemma

now follows from the fact that 3(da x db|1/2) has the form 6, jo(da)¥(db). U

We now put these facts together. Suppose that L = cbyjg + (1 — ¢)v, where both v and ¢ may
be random, ¢ € [0,1], and v({1/2}) = 0. Using the lower semicontinuity of H we obtain

liminf E,H(B"|L" ® q) > E,H(BIL® §) = E, /H B(da x dblz)|§(z,da x db))L(dz).

We consider the last integral over the sets {1/2} and [0,1]\{1/2}. According to Lemma 3 ((da x
db|z) = 81/5(da)¥(db) w.p.1, where W(db) is supported on [1/2, 1] w.p.1. The infimum of H(-[p) over
all such measures occurs at the measure U[1/2,1], with relative entropy H(U[1/2,1]|p) = 2log2.
Thus

/ H(B(da x dble)|d(z, da x db))L(dz) > e2log?2.
(1/2)



]| ). Then

We next consider = # 1/2. Define the random transition kernel 7(z,da) = 3(da x [0,
a) L—as., w.p.1).

B(da x dblz) << p(x,da)§y, q\(db) implies (da x [0,1]|z) = 7(x,da)d (s, q)(db)

We can therefore w.p.1 write

X
(

/[0’1]\ a /2}H (B(da x db|z)|¢(z,da x db))L(dz) = /[0’1]\{1/2}H(7r(x,da)|p($,da))L(dac)
= (1 —-c¢)H(v(dz)r(z,da)|v(dz)p(z,da)).

Recall that by Lemma 1, L is an invariant measure for 7. Because of the definition 7(z,da) =
B(da x [0,1]|z) and the equality B(da x db[1/2) = &;/5(da)¥(db), we see m(1/2,da) = é;5(da).
Hence m decomposes X into [0,1/2)U (1/2,1] and {1/2}. When combined with the fact that I is
invariant under m and v({1/2}) = 0, this implies that both ¢/, and v are invariant under 7. The
definition (1) then implies

(1 - o) H(v(d)n(z, da)|v(da)p(a, da)) + cH(¥|p) > I(L),

w.p.1. It follows from (5) and (6) and the convexity of the relative entropy function that

1 = =T Y 7 1 = ~n Y QN TN
- Z; H(v}(da)|p(X},da)) = - Z; H(aj(da x db)|q(X],da x db)) > H(B"|L" @ q) .
i= i=

Hence the continuity of f and the last five displays allow one to calculate

lim inf | fE( EH L)+ (T ))zml(mw(m)z il (I(u)+ J()) ,

n—00 {1/ ;LEMJ(X)

which completes the proof of (2).

Proof of the lower semicontinuity of I(-). We next prove that I defined on M;(&X’) in (1) is
lower semicontinuous. As always with the weak convergence approach, the proof of lower semicon-
tinuity is essentially a deterministic version of the proof of the large deviation upper bound. Let
pt = = (1 —c)v+ céyjy with v({1/2}) = 0, and for simplicity assume that p"({1/2}) = 0. (The
general case poses only notational difficulties). Assume that I(p") < K, i.e.,

K > inf H (" (e (2 da) (42 )z, da) )
{ﬂ(m,da):f p(dz)m(z,da)=p"(da)}
= inf H(:un(dw)ﬂ-(w7da)éf(z,a)(db)|:un(d‘r)p($7da)éf(z,a)(db))

{W(w,da):f p*(dz)m(z,da)=p"(da)}
(We recall the definition f(z,a) =0if 2 > 1/2 and f(z,a) = (a—1/2)/(z —1/2)+1/2if z < 1/2.)
By essentially the same argument as in the proof of Lemma 2, one sees that

w(dz)p(@, da)d(zq)(db) —n—co p(dz)g(z,da x db).



Next let 7" be an approximate minimizer in (9). By this we mean that for some sequence €, —,
0 we choose 7"(z, da) to satisfy

inf H(p(d2)r(z, da)(de)p(s, da)
{ﬂ(x,da):f p(dz)m(z,da)=p"(da)}
> H(p"(dz)r"(z, da)|p"(dz)p(z, da)) = & ,
where [p"(dz)n"™(z,da) = p"(da). Let 6"(dz X da) = p*(dz)r"(z,da). By compactness, at
least along a subsequence we will have 0"(dz x da) —,_s 6O(dz X da) = p(dz)r(z,da), with
6(A x [0,1]) = 6([0,1] x A) = p(A) for all measurable A C [0,1]. Thus g is invariant under 7.
Moreover, again by compactness, 0, (dz X da)ds(; q0)(db) —n— oo B(dz x da x db) for some probability

measure 3. By the lower semicontinuity of H(|-),

liminf H (0, (dz x da)é s q0)(db)|p" (dz)p(@, da)é sz q0)(db)) > H(B(dz x da x db)|u(dz){(z, da x db)).

If ¢ = p({1/2}) > 0, then 3({1/2},da x db) must be absolutely continuous with respect to & ;5(da)
p(db). Hence, B({1/2} x dax db) = c6; 5(da)¥(db) where W is a probability measure. By essentially

the same argument as that used in the proof of Lemma 3, ¥((1/2,1]) = 0. It follows by convexity
that

H(p(dz x da x db)|p(dz)g(z,da x db)) > (1 — ¢)H(v(dz)n(z,da)|v(dz)p(z,da)) + cH(¥|p).

Now since # equals the first two marginals of 3, 3({1/2} x da x db) = 61/2(da)¥(db) implies
m(1/2,da) = 61/5(da). Now we use the facts that u is invariant under 7 and that v({1/2}) = 0 to
conclude that v is also invariant under 7. According to the definition (1), this implies

(1= ) H (v(da)(x, da)|v(da)p(z, da)) + cH (¥]p) > (1),

and the lower semicontinuity follows.

Proof of the inequality (3), and the large deviation lower bound. Let f € C,(My(X)) be
given. We assume that the right hand side of (3) is finite, for otherwise there is nothing to prove. Let
p = cb1/3+ (1 — ¢)v be a minimizer in the right hand side of (3), with v({1/2}) = 0 and I(u) < oc.
It is easy to check that v is absolutely continuous with respect to Lebesgue measure. Indeed,
suppose that 7(z, da) has v as an invariant measure and that H(v(dz)n(z,da)|v(dz)p(z,da)) < .
Then 7(z,-) is absolutely continuous with respect to p(z,-), and hence also Lebesgue measure, for
v—almost every z. If the Lebesgue measure of A is zero, then v(A) = [ (2, A)v(dz) = 0, which
shows that v is absolutely continuous with respect to Lebesgue measure.

To simplify the notation, we assume 1 > ¢ > 0. The general case is quite similar. For § > 0 let
ms(x, dy) be a transition kernel such that v is invariant under 75 and

H(v(dz)ms(z,da)|v(de)p(z,da)) < (I(p) — 2¢clog2) /(1 —¢) + 6.
A slight difficulty is that v is not necessarily an ergodic measure for 75(z,da), and hence the

Markov chain generated by the latter might not have empirical measure converging to v. Consider
the family of transition kernels and measures v and 7§ defined by

v(da) = (1 — e)v(da) + ev*(da),



v (de)m§(z,da) = (1 — e)v(de)ms(z,da) + ev™(dz)p(z, da),

where ¢ € [0,1] and »* is the unique invariant measure of p(z,da). Note that because the z
marginals of both sides of the last equality are equal, such a 7% is well defined for Lebesgue-almost
all z, and the definition is extended to all  in such a way as to make 7§(z,da) dominate p(z,da)
for all z. The following facts are easily shown. For full details the interested reader can consult [7,
Lemma IX.6.3]. The first item is true because p(z, da) is ergodic, while the second follows from the
convexity of H(-|-).

e For each ¢ > 0, the kernel 75(z,da) is ergodic, with unique invariant measure v°.

e For each ¢ € [0,1], H(v*(dz)7mi(z, da)|ve(dz)p(z,da)) < H(v(dzx)ms(z, da)|v(dz)p(z,da)).

We now fix ¢ > 0 such that d(v,v*) < 6. If we choose the measures #7(-) to equal T§(X7,),
then the L! ergodic theorem implies that there exists an N such that for all € [0,1] and all

n>(1-¢)N,
_ 1z R
d(Ea; (;]:EI(SX;)’V) <67

E, (% Y B, -))) < b+ H(u(da)ms(e, da) w(de)p(e, da) .

and moreover

Next, let
i [ vo,1/2], € [1/2,1]
Pz, da) = { UlZ+1/4,1/2], « €[0,1/2).

If we choose the measures v7(-) to equal ]’)(X’Jn, -), then by increasing N if need be, we obtain for
all z € [0,1] and all n > (1 — ¢)N

_ 1 &

E, (lz H(u;<->|p<x;z->>) = 2log2.

and the cost

We next define a time inhomogeneous Markov chain. If j is of the form j = k(N 4+ 2) 4+ ¢, where
te{l,...,N+2}and £ =0,1,..., then we set

U[1/2,3/4—X7/2] if X <1/2,

U[1/2,1] it X7 > 1/2, £=0, phase 1,

vi(da) = ¢ U[0,1], L=1, phase 2,
(X7, da), 0=2,...,24(1—¢)N, phase 3,

p(XT, da), =24 (1-¢)N,...,N+1, phase4.

10



(We have assumed ¢N to be an integer, the modification required if it is not is straightforward).
During phase 1, the chain is positioned somewhere in [1/2,1] at a cost of 2log 2. During phase two,
the chain is redistributed according to U0, 1] at zero cost. Let 5} denote the occupation measure
of the chain during the third phase of the kth cycle:

1 24(1—c)N

ny = ——-——— 6771 .
Tk (1-¢)N Z; Xe(N42)4e

Because phase 2 guarantees that during each cycle phase 3 is started from the uniform distribution,
the random variables {n},k = 1,...,[n/(N+2)]} are independent and identically distributed, where
[a] denotes the integer part of a. By the law of large numbers,

1 [n/(N+2)] 1 [n/(N+2)]
limsupd | ———— g, v° | <limsupd | ———— e, Ent | +d(Ent,v°) <

in probability. The chain spends a period of length ¢/N in phase 4 of the kth cycle, during which
the empirical measure is controlled by p and hence converges to within 6 of é;/,, w.p.1.

By taking N large, we can guarantee that the contributions due to phases 1 and 2 to L, are
smaller than ¢ in the total variation norm. Thus for sufficiently large N, limsup,,_, . d(L,,p) < 36
in probability. When combined with the given bounds on the costs, we obtain

n—oo fizd(f,1) <36

lim sup (%iH(V?(-)Ip(Xf"))Jrf(Ln)) <I(u)+6+2l0g2/N+ sup  f(7).

Inequality (3) follows since N < oo and 6 > 0 are arbitrary. This completes the proof of the
theorem. L]
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