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Abstract

The influence of noise on a class of discrete time systems arising from models of density
dependent branching processes is investigated. By considering iterates of the basic map, the
time to escape from a stable orbit is investigated as a (nonstandard) problem of exit from a
domain.

1 Introduction

This paper deals with small random perturbations of certain one dimensional maps of the form

ZTpy1 = f(zn)- (1.1)

Here, f :[0,1] — [0, 1] is such that (1.1) possesses a single stable periodic orbit. The much studied
logistic model with f(z) = rz(1 — z), 3 < r < re < 4 serves as a representative example, where
rer denotes the onset of chaos. It is used to describe various real life populations such as insect
populations and predator-prey situations, see [10, 11, 12]. Models of population dynamics of the
form (1.1) are used to model situations where due to lack of resources, individual reproduction
declines as population density increases. Populations, however, grow by a basic branching mech-
anisms, but classical branching models are not suitable for modeling such a situation as they do
not allow dependence of offspring distribution on the population size. In population dependent
branching models such dependence is allowed, consequently they can serve as stochastic analogues
of the models of population dynamics.
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Our main motivation for introducing random noise into the system (1.1) is a study of density
dependent branching processes which are defined inductively as

1 Kz,
Intl = 7 D &izn) (1.2)
=1

where K is the threshold, Kz, denotes the number of individuals in the nth generation, and ¢;,
j=1,---,Kz,, denote the number of offsprings of individuals in the nth generation. The law of
€;j(zn) is assumed to depend only on the population density z,. Such models can be put into the
form

el =K+ vk, (1.3)

where K is a large parameter and given zX, the noise V,IL{H is independent of the past (see section

3). Tt is easily seen that X = 2, satisfy (1.3) with f(z) = zm(z), m(z) = E{(z).

It follows from general Markov chains theory that integer valued models (1.2) in which the
individual reproduction declines to 0 as the population density increases, and the only absorbing
state is 0, eventually become extinct. In [7] a LLN and CLT, when K — oo, were shown for density
dependent branching processes, and it was also observed from simulations that for large values of K
the perturbed system tracks the corresponding deterministic system for long periods of time prior
to extinction. Estimates for the time to extinction, as the parameter K becomes large, may be
obtained from the version of the Freidlin-Wentzell estimates for discrete time systems due to Kifer
[6], and we comment on those below. Here, we are interested in a somewhat different phenomenon.
We show that if the deterministic system has a stable periodic orbit, then the perturbed system will
follow approximately a limit cycle for an exponentially in K long time before switching to another
cycle (which actually represent a “phase”, or initial condition, change for the cycle).

The key to our analysis is the following observation. Note that if f possesses a stable limit cycle
consisting of k points, then its kth iterate f(¥) possesses k stable fixed points. Thus, by looking at
f®) the problem of tracking a stable trajectory transforms into a problem of exit time from a basin
of attraction of a stable fixed point of f*). On the other hand, investigating f(¥) complicates the
analysis of the effects of noise, due to the action of the iterations on the noise, and due to the fact
that one has now to analyse exit from stable basins of attraction. In particular, the assumptions
of [5] and [8] do not directly apply to this analysis, and some technical modification of their results
is required.

The organization of the paper is as follows: in section 2, definitions and basic large deviations
estimates are presented. We also comment on the relation of these estimates with [5] and [8]. In
section 3, we check that the assumptions of section 2 are satisfied for a class of noise perturbed
periodic systems which includes independent additive noise or noise created by density dependent
branching processes. We remark that the latter model does not, in general, satisfy the conditions
in either [5] or [8].



2 Notations and basic estimates

Let :E,If ,m=0,1,2... be a time-homogeneous Markov chain, indexed by a parameter K, with state
space G, a convex closed subset of IR, and with Markov transition kernel PX(-). Let EX(-) denote
the conditional expectation E(-|zX = z). Let f&(z) = EX(2X). We assume throughout that for
each z € G, fK(x) 2, f(z), and both f¥(-) and f(-) are Lipschitz continuous and bounded.

Consider next the dynamical system 2,11 = f(2,). We say that z* is a stable point of the
dynamical system generated by f(-) if z* = f(z*) and there exists a neighborhood B of z* such that
if z, € B, then f(z,) € B and z, — z*. The largest such neighborhood is called the fundamental
basin of attraction of z* and is denoted B,«. Note that one may well have z, ¢ B,« and still
2z, — z*. The basin of attraction of z*, which consists of all points = such that f(™(z) — 2*, is
denoted B,+. Since we need to consider functions f whose associated systems possess more than
one stable point, we denote such points by z7, - - - z, and their basins of attraction by B,:,- - By

Our interest lies in the problem of exit from a basin of attraction. Specifically, suppose zX € B 2

If the system were propagated according to the dynamical system associated with f, then the chain

wnK would stay in Bz;. But there are random perturbations, and thus we define

Tf’K:inf{n>03$nKng;axfzweBzZ}'

We will show below that, under suitable conditions on the chain X, one has, for any § > 0,
_ K —
Plexp(K (7 — 8)) < 78K < exp(K (7 +9)) =2 1, (2.1)

where 7;, which we characterize, does not depend on the particular z € BZ; used. A similar limit
also holds for the exit from a union of basins of attractions, but we will not deal with that here.

Fix w.l.o.g. some ¢, and denote by B* the basin of attraction of z* = 2. Define now

A1 |
g (@,1) 2 2 log Bo(¢"™ );g(a,t) = lim — log Ey(e' 1) (2.2)
A
I(x,y) = suplty —g(x,1)] (2.3)
teR
where in (2.2) we assumed that both expressions exist and are finite. Following [5, 8], let [u]r stand
for a specific path (u,,uy, -+, ur),T < co. Define next
=
S(T,[ulr) = Y I(ui,uis1) (2.4)
i=0
V(z,y) 2 inf{S(T,[u]r) : up =2, ur =y, T < o0} (2.5)
A
V(z) = inf V(a, 2.6
(@) £ inf V(z,p) (2:0)



A sequence of probability measures PX indexed by z will be said to satisfy the large deviations
principle (LDP) with rate function (a nonnegative, lower semicontinuous function in y) I(z,y) if,
for every measurable set A,

1 1
— Jof I(z,y) < liminf - log P;* (A) < lim sup 7- log P;* (A) < —yiggf(m,y),

where A° (A) denote the interior (closure) of A. I(z,y) is called a good rate function if its level
sets (in y) are compact.

Definition 2.1 {PX} satisfies uniformly in G the LDP with rate function I(z,y) if, for every
measurable sets A and compact B C G,

. P . 1 e
—sup St 1 (#,9) < liminf inf — log P (4) < 11}1{11 SUpSUp 7 log P;(A) < ~ Inf 5161%1 (z,9).

The following assumptions are used in the sequel. As usual, A° denotes the §-blow-up of a set A,
ie, A ={z: |z—y|<d forsomey € A},and A0 ={x c A: |z —y| > 6 Vy € A°}. G denotes
a compact, closed set which is the closure of its interior. Finally, §, > 0 is some constant to be
chosen below.

(A1) V =V(z*) < o0.
(A2) I(-,y) is lower semicontinuous in G%.

(A3) For each § > 0 and € > 0 small enough, there exists a function C(e,T,d), such that any
path [u]r with ug € (G)7%, u; € G and |u; — 2*| > € Vi, satisfies S(T, [u]r) > C(e, T, 6), and
C(e,T,6) 2, oo

(A4) For all § > 0 small enough, and for all z € B*\(B*)™?, there exists a y € [(B*)°]°
with I(z,y) < g1(6), and g1(6) ;=3 O independently of z. Further, Py (jz¥ —y| < §) >

e K(91(9)+e(1) "yniformly in such z.

(A5) Uniformly in z € G%, P, (¢ € -) satisfies the LDP with the good rate function I(z, y).
Our main result is the following:

Theorem 2.1 Assume (A1)—(Ab) holds for every n > 0 with G = (B*)™" and some &, < 7.
Then (2.1) holds, with 7; = V.

Remarks 1) It is useful at this point to compare our results with those of [5] and [8]. Motivated by
the analysis of small noise in the case of diffusions due to Freidlin and Wentzell, Kifer [5] essentially

works with the assumption that, for open sets U, % log PX(U) Fan e infycy I(x,y), uniformly in

z. This assumption is actually stronger than (A5), and in particular does not seem to be satisfied



(in general) for the branching mechanism of (1.2). If I(z,y) is assumed to be jointly continuous in
x, 9y, then our assumptions essentially reduce to Kifer’s. However, such an assumption is somewhat
restrictive and, in particular, does not allow for dealing with the case of &;(z) in (1.2) of bounded
support. Moreover, when dealing with the problem of exit from a domain, Kifer also uses the
assumption that the orbits of the deterministic dynamical system enter the domain (see (4.3) in
[6]). This precludes looking at the exit from basins of attraction as we do here.

A more direct approach to the exit problem is used in [8], relying on an analysis of the moment
generating function. Owur proof borrows from their techniques, however their assumptions fail
to hold for the iterates of density-dependent branching processes that are of concern to us. In
particular, one needs to get away from their contraction condition (1.15).

2) As in the case of the standard Freidlin-Wentzell theory, Theorem 2.1 may be extended to the
analysis of the exit from a domain which may include several basins of attraction. Under somewhat
different assumptions, such an extension is presented in [5].

The proof of Theorem 2.1 follows directly from the sequence of lemmas below. Although many
steps in the proof are similar to those in the above references, due to its technical nature we present
it in some details for completeness.

For the sake of shorter notations, we let 7% = Tf’K. In both parts (a) and (b) of Lemma 2.1 below,
0(1) means a function g(K,T') such that g(K,T)/K —k_c0 0.

Lemma 2.1 (Large Deviations Bounds) Assume (A1), (A2), (A5), and fiz T < oo indepen-
dently of K.
(a) For every path [u]r with u; € G%, where 8, is as in (A2), and every & > 0,

inf P,( sup |:c,If —up| < 6) > e~ K (8(T,[ulr)+o(1))
el 1<n<T

(b) Let BT = {[u]r : S(T,[u]r) > a,u; € G% for all i < T'}. Then, for any closed set A C B*T,
sup Pp([z¥]r € A) < e~ K(ate(l),
zEGoo

Klp = (aX ) 2f N 7

where [z

The proof of Lemma 2.1 paraphrases the proof of [6, Theorem 5.2 and Corollary 5.2] and is therefore
omitted.

Lemma 2.2 Assume (A1)—(A5) for every n > 0 with G = (B*) . Then, for all § > 0 and all
z € B* there exists a constant o such that Py(r® > eX(VH)) < ¢=Ka

Lemma 2.3 Assume (A1)—(A5) for every n > 0 with G = (B*)™". Then, for all § > 0 and all
x € B* there exists a constant o such that P,(7° < eK(V_‘S)) < e Ke,

Proof of Lemma 2.2
Define

VT= inf V(z%v).
yg(B*)~n (="9)



Then V7 ——4 V by (A4). Choose now 7 small enough such that [V — V| < §, g1(n) < §/8, and

>

sup ‘I(.’B,y) _I(x,’yl)| < 5/8
z,2' Y,y €GO |z —a!|<n,ly—y'|<n

9n

Let T" be the maximal T" such that C(n, T —1,n7) <V +1, (see (A3)), and let [u|r be a path with
up =2 u; € (B*) Mforalli <T, ur € B*\ (B*)"" and S(T,[ulr) <V + %. (Such a path exists
for small enough 7 by (A1)). We now show that

miean* P, (exit up to time T) > e~ K(V+%) | (2.7)

where T = T" + T + 1. By the Markov structure of the chain, it then follows that

P, (no exit up to time eK(V+5))
1KV T
< [1 — inf P, (exit up to time T')
r€eB*
K(V+8) /T
< [1-ex+)° /T  oKa

for some o > 0.

We thus turn to the proof of the basic estimate (2.7). First, note that for x € B*\(B*)™", by
(A4),
P, (exit in one step) > e K911 > =K /8 (2.8)

whereas, for ¢ ¢ B*\(B*)™" and K large enough, by (A3) and part (b) of Lemma 2.1,

sup  Py(zX satisfies #X € (B*)7", |zX — z*| > p for all n > 1 up to T") < e K (VH1=o(1))
zgB*\(B*)~"

Hence, by the union of events bound,

ziean* P, (exitupto T) > ir;f P, <|wn+1 —Up| < g, T>n> O) -chB*i\rg;*)w P.(z¥ € (B*)9)
|lz—2z*|<2n
K : K *\—1 K *
— sup  Py(z, satisfies z,, € (B*) ", |z,, — 2| >nforalll<n<T" )
zg¢B*\(B*)™"
oK (V4+a1(n)+gn+§+o(1)) _ ,—K(V+1-0(1))

e K(V+3+0(1)) (2.9)

AVARAY

where we used part (a) of Lemma 2.1 and (2.8) in the second inequality. L

Proof of Lemma 2.3
Note first that, again by an application of (A3),

P, (zX hits (B*)¢ before hitting a given neighborhood of z*) — 0

K—o00



exponentially fast. Hence, one may assume that |zX — 2*| < 5 for any given fixed 5. Choose 7 as
in the proof of Lemma 2.2. Let

ron 2 inf{t > 0: 2K ¢ (B*)™"}.
Note that 77 < 7%, and define the stopping times

O — 0
e = inf{t>7_14+1: X ¢ (B) " or |z, — 2*| <n}.
We show below that

sup  Pp(zE ¢ (B*)™) < e E(V—g+o)) (2.10)
@: [e—z*|<n

Hence, again by the Markov property, and taking |zX — 2*| < 7,

Py(r® < KV=0y < p (720 < K (V-0))
< Polwn & (BY) ) + Bo(Pox (r° < XV — 1)1, ¢ (5y-n)
< Polen € (BY) ™M+  sup  Po(r® <XV 1)
@z |z—2%|<n
< KV sup  P(ef ¢ (BY)™)
z: [z—2*|<n
< eK(V—zS)e—K(V—%) < o Kb/4

We return now to the proof of (2.10). Let T be as in the proof of Lemma 2.2. Then, since to exit
(B*)~" before returning to a neighborhood of z*, either zX remains away from this neighborhood
up to 71 or zX hits ((B*)~")¢ before T,

sup P(zX ¢ (B)™) < sup  Pp(|zK —2*| > n, 2K € (B)™ VI >n>1)

T1

z:|z—2*|<2n zi|lz—2*|<2n
+  Py(zX ¢ (B*) " for some T" >n > 1)
sup < e—K(V+§+o(1)) +e—K(V—§+o(1))
z:|z—2z*|<2n

where we used the definition of 77 in the first inequality and the upper bound of Lemma 2.1,
coupled with (A3), in the second. 0

Remark: As is obvious from the proof, the exit from B,« occurs, with probability approaching 1,
at a neighborhood of the endpoints of the minimizing paths in (2.5) and (2.6). Such paths exist
(maybe not uniquely) due to the lower semicontinuity of I(z,y) on the minimizing paths, which is
ensured by (A2).

We conclude this section with the following lemmas, which are borrowed, respectively, from [8]
and [3]. Their main usefulness lies in checking the uniformity and continuity assumptions (AZ2)
and (A5).



Lemma 2.4 Assume that, for some compact set K,

limsup sup (tz — g(z,t)) = —oc0. (2.11)

lt|—oo z,2€K
Further, assume that for all s,t € [—M, M| and z,z’ € K,
l9(z,t) — g(«', 8)| < emc(|z — 2’| +[s —¢)), (2.12)
where cpr . depends only on M, K. Then, for each z,z',y,y’ € K,

[I(z,y) — Iz, ") < ec(ly—y'| + |z — 2|),
where ¢ depends only on M, K.

Proof: Note first that since, by Holder’s inequality, g(z,t) is continuous in ¢ in the interior
of its domain, (2.11) implies that for every z € K, there exists a to(x,z) such that I(z,z) =
(to(z,2)z — g(z,to(z, 2)), and, furthermore, |to(x,2)| < k for some k independent of z,z € K.
Therefore,

I(z,y) — I(z',y) < to(e,y)y — g(z,to(z,y)) —to(z,y)y" + g(z', to(z, ) < kly — | + e x|z — 2| .

Since the same inequality holds also when reversing the role of (z,y) and (z,y’), the assertion
follows. .

Lemma 2.5 Let K be a compact set. Assume that the convergence in (2.2) is uniform in z € K.
Further assume that g(x,t) < oo for each t € R, that it is differentiable in t and continuous in
x € K. Then Py(x¥ € .) satisfies the LDP uniformly in x € K.

Proof: Due to our assumptions on g(z,t), the LDP holds for each fixed = by an application of the
Gértner-Ellis theorem (Theorem 2.3.6 in [3]). By the same argument as in the proof of Corollary
5.6.15 in [3], in order to prove the uniformity of Definition 2.1, it is enough to show that, for each
x € K and measurable set A,

1 1
— inf I(z,y) < liminf — log P,(zX € A) < limsup — log P,(zX € A) < — inf I(z,y).

yEA° K—o0,z—z K—o00,2—x yeA

To this end, enough to show that for any sequence zx — z, Py, (z¥ € ) satisfies the LDP with
the rate function I(z,y). But, by the continuity in = of g(x,t) and the uniform convergence,

1
lim - log By (1) = g(x,1),

K—o00

and the conclusion follows by another application of the Gartner-Ellis theorem. L]

Lemma 2.6 Let G be an open set. Assume that for every sequence {rk} such that zx — ¢ € G
one may construct probability measures PX on G x G such that PX(X; € -) = Py(z¥ € ) and
PE(X5 € ) = P, (2K € ). Further, assume that for all § > 0,

.1 K
KlgnooglogP (| X1 — X2| > 6) = —o0.

Finally, assume that Py(xX € ) satisfy the LDP with rate function I(z,y). Then, it satisfies the
LDP uniformly in x € G in the sense of Definition 2.1.



Proof: The proof paraphrases the proofs of Theorem 5.6.12 and Corollary 5.6.15 in [3]. ]

3 Applications

In this section, we assume that the dynamical system (1.1) possesses a unique stable periodic orbit
of period k. Our prototype example is the logistic equation f(z) = f,(z) = rz(1 — x)1,¢[01)- For
this equation, depending on the value of r, the stable orbits of the system are either isolated points
or stable orbits of period 2¢, integer i-s, up to 7 = r.;, where the nature of the stable attractor
changes (see [11, 13]). To each value of r in the range r < r¢;, one may attach an integer k = k, = 2°
which is the period of the stable orbit. In particular, it follows that the k,.-th iterate of f,, denoted
fr(kr), possesses k;, stable fixed points. Thus, the question of transition from one orbit to the other
may be phrased in terms of the exit from the stable points of fr(k’).

We describe below two types of random perturbations of the dynamical system governed by f.
In the first, which is the simpler, independent noise is added at each step. In the second, whose
motivation comes from population dynamics and is described in the introduction, the noise comes
from the fact that the actual value of the next iterate is a function of the current value via a
random, population dependent, branching mechanism.

Throughout this section, f is a smooth function on [0,1], with f(0) = f(1) =0, f(z) > 0 for
z € (0,1), and, whenever it is necessary to extend f(z) for z ¢ [0, 1], we take f(z) = 0. Finally, we
assume that the fundamental basin of attraction of each stable point z* of the map f (k) is separated
from 0 by a positive quantity.

3.1 Additive noise

We consider the system
Tns1 = f(zn) + 05, (3.1)
where {6X} is, for each K, a sequence of zero mean, i.i.d. random variables such that

A()) = limg 0o K 1log EeX M0 is finite for each ) and non-trivial. A particularly important case
is when 6X is a sequence of i.i.d. zero mean, variance 1/K, Gaussian random variables, in which

case A()\) = \2/2.

Define zX 2 Zkn. We now check that, under suitable conditions on A()), assumptions (A1)—
(A5) hold for the chain zX, and hence the results of section 2 apply to estimate the time of switch
between stable points of the chain £, which is closely related (and equals asymptotically) the time
between switches of orbits for the chain z,,.

Note first that if g(z,t) exists then

. 1 K . 1
g(z,t) = lim —log By(e"*1) = A(t) + lim —log By(e/!/(%-1)) (3.2)



from where it follows, by the boundedness of f, that g(z,t), if existing, takes values in (—o0, c0) as
soon as the same applies for A(-). The following assumptions are sufficient to ensure the convergence
of g(z,1).

(B1) A(t) < oo forallt € R.
(B2) For allt >0,
1 ¢K min(|6X|,2)2y _
K}E)noo e log E(e 1 )=0. (3.3)

(B3) liminfy_,q A(t)/|t| = co.

Note that (B1) implies that A(t) is infinitely differentiable. Note also that (B2) is satisfied if 6%
is Gaussian, zero mean, variance 1/2K. We now claim:

Lemma 3.1 Assume (B1)—(B2). Then

k-1

g(z,t) = A@t) +tf P (@) + 3 ARFDY (FE (). (3.4)

i=1

Moreover, g(x,t) is differentiable in t and, for every bounded M, uniformly Lipschitz continuous
in [0,1] x [-M, M].

Proof: Due to the fact that f = 0 outside [0, 1], when expanding the rightmost term in (3.2), the
random variables 8%, i = 1,...,k — 1 may all be truncated such that |#X| < 2. Thus,
Ez(eth(wk—ﬂ) _ Ew(eKt(f(f(ﬂ?k—z))+9;£1))

— Ew(eKt(f(z)(Ek—z)+f’(f($k—2))0£{71+c(wk_1,0{6{71)(0?—_1)2)) ’

where (-, -) is bounded, and 8K | is the truncation of 85 | as described above. It follows from (3.3)
and Holder’s inequality that

lim ilogEz(eth(wk—l)) = lim %logEw(eKt(f(z)(wk*2)+fl(f(wk*2))ef—l)). (3.5)

K—o0 K—o0

Iterating this equality and using (3.2), one obtains both (3.4) and the differentiability and Lipschitz
continuity of g(z,t) asserted in the lemma. ]

We are now ready to claim:

Theorem 3.1 Assume that A satisfies (B1)—(B3). Then the system (3.1) satisfies (A1)—(A5)
(with G = (B*)~%, any § > 0 and 6, < 6), and Theorem 2.1 applies, with g(z,t) given by Lemma
3.1.

10



Proof: By Lemma 3.1, g(z,t) is bounded and differentiable in ¢ for each fixed z. It follows from
the Géartner-Ellis theorem (see [3, Theorem 2.3.6]) that for each fixed z, P,(z¥ € -) satisfies the
LDP with rate function I(z,y) given by (2.3).

To see the uniformity, note that z¥ may be constructed in a deterministic fashion from x and
the random vector 01-K ,t=1,2,... k. Let X1, X5 be thus constructed on the same probability space
as in Lemma 2.6. Note that, due to the uniform continuity of f(-), | X1 — Xa| < g(|z — zk|), where
g(+) is a deterministic function satisfying g(x) — 30 0. It thus follows from Lemma 2.6 that the
LDP for zX actually holds uniformly as well, and (A5) holds.

Next, assumption (B3) implies the goodness of the rate function I(z,y). Coupled with Lemma
2.4, it also yields the continuity of I(z,y) in z. Thus, (A2) and (A1) follow.

We next turn to proving (A4). Since f*) is continuous, one may find a function g(6) such
that d(f*)(z), B* \ (B*) %) < go(8) for all € B*\ (B*) ¢, and g3(6) —4_,0 0. Using Lemma 3.1,
one obtains for such z and some y € ((B*)?)¢ with |f*)(z) —y| < 24,

I(z,y) = sup{ty —g(z,t)} <sup{t(y — f¥(2)) - A®)}
teR teR

< max{sup{t(26 + g2(9)) — A(t)},sup{—t(26 + g2(8)) — A(¢)}}. (3.6)
teR teR

Let A*(z) 2 sup,cg{tr — A(t)} be the Fenchel-Legendre transform of A(t). Since E(6X) =0, it
follows that A*(0) = 0. Moreover, (B3) implies that A*(-) is finite in a neighborhood of the origin.
Hence, due to its convexity, it follows that A*(-) is continuous in a neighborhood of the origin. This,
combined with (3.6), yields the first part of (A4), while the second part follows from the bound,
valid for small enough m,

Po(laf —y| < 8) > P(I0F| < 6/m Vi < k)P(16F —y — fP ()| < 6/2).

We finally turn to checking (A3). Let tyax > 0 be arbitrary (to be specified below). Since A(:)
is infinitely differentiable, |8%g(x,t)/0t?| < ¢ = c(tmax) for all z € B* and |t| < tmax. It follows that

I(z,y) = sgp(ty —g(z,t)) > ws;;p (ty — g(z,1)) (3.7)
_ _89 829 2
= |t|551;£ax(ty —9(z,0) — E(-’E,O)t - W(fv,Ct)t /2)
> sup (ty— f®(z)) —ct?/2)
[t| <tmax

> (y— f®(x))?/2c,

where |(¢| < tmax In the second equality, and the last inequality is obtained by taking ¢ = (y —
F®)(2))/c(tmax) for some large enough ty., such that [ < tyay.

Next, let € and § be given. Then there exists a ks large enough, with ks = ksk and k; integer,
such that for every & € (B*)~%, and for some a > 0,

[f*) (@) — 2" < (1 - )@ — 2| (3.8)
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Indeed, since z* is attracting, it follows that for each x € (B*)™® there exists a k, such that
|7k=)(z) — 2*| < e. Let € be small enough if necessary such that

7B (y)] < (1 —a) for ly—2*| <e (3.9)

(this is possible since |f(k)l(z*)| < 1 and f(k)l(-) is continuous). Since f(*+)(.) is continuous, it
follows that |f(*s)(z) — 2*| < € holds with the same k, for an open neighborhood G, of #. Using
compactness, one may thus find one ks such that |f(*s—#)(z) — 2*| < € holds for all z € (B*) 9.
Using now (3.9), (3.8) follows for all  such that |z — z*| > e. Finally, (3.8) follows for x satisfying
|z — z*| < e by iterating (3.9).

We prove (A3) by contradiction. Assume that there is some c(e, d) such that for arbitrary large
T, there exists some [u]r with |u; — 2*| > ¢, and u; € (B*)™? satisfies

T
Z I(ui_l, u,) < c(e, (5) . (3.10)
i=1

In what follows we use ¢;, 1 = 0,1,... to denote various constants which may depend on ¢, §, k but

not on [u]r or T'. Then by (3.7) and (3.10),

T

S lui — F B (ui 1) < ep. (3.11)
i=1
Note that
lun — FE (un—1)| + |F® (un—1) — F®) (un—2)| > |un — F®) (un—2)| .
Hence,
1
Jun — F B (up_y)[> > o lun = FOO) (una)® = |F®) (up—1) — F@F) (up_s)?
1
> §|un - f(2k)(un—2)|2 —ci|up—1 — f(k)(un—2)|2 )

where we have used the Lipschitz continuity of f(*) in the last inequality. Iterating this inequality,
we arrive at

ks
[ = fE (un-1)? > ealun — FE) (u, ) — e3> Jun—i = FE (un—i-1)[* (3.12)
=1

Summing both sides of (3.12) over n, one concludes that (3.11) implies that

T
Z |ty — f(k‘S)(Un,ESN2 <c4. (3.13)
n:l_cﬁ—l
Now,
[ty = 21 < gy = £ (wn)| 4 1759 (wn) = 2% < g, = FE () 4 (1= @) — 2

12



where we have used (3.8) in the last inequality. Using the inequality (z + (1 — a)y)? < z2/a+ (1 —
a)y?, one gets, for any 0 < a < 1,

+ (1 —a)|u, — 2* 2.

k 2
. Z*|2 S |un+E5 - f( 6)(un)|

‘UTH—E,; a

Summing over n, it follows that

T-1 T-1
S lun— 2P < o5 3 fup g, — 109 ()P < s,

where we have used (3.13) in the last inequality. Note however that by assumption, |u, — 2*| > ¢,

and hence
T—1

Z lup — 2*|2 > €T,
n=0

a contradiction if T' is large enough. ]

Remark: Due to the strict convexity of the rate function, and the fact that B,+ is separated
from 0, the endpoint of the minimizing paths in (2.5),(2.6) actually belong to B,«. Hence, cycle
slip occurs before extinction with overwhelming probability.

3.2 Branching systems

As in the introduction, we take
Kzn

fi =2 Y &(en) (314)
j=1

where {;(z) are i.i.d., integer valued, random variables whose law, denoted P,, depends on the
parameter . Expectations with respect to P, are denoted E,. To fit in the model (1.3), it is
assumed that E €;(z) = f(z)/z, with §;(z) =0 for = ¢ (0,1) (which corresponds to extinction).

K A

As in the case of additive noise, let k£ denote the period of the stable orbit. Define z;; = zu.
Let A(z,t) = log E,(e%1(*)). Note that, if all limits exist,
) 1 K . 1 Kag—1g ()
g(z,t) = Kh—1>noo K log Ea:(eKtzl ) = Kh_IPOO K log Ea:(EZk—1et L=t &G 1)))
1
—  lim — log E.(eKz-1A(zk-1,t)} 1
i - log By (e ) (3.15)

The following assumptions are used to ensure the convergence in the definition of g(z, t).

(C1) A(z,t) <ooforallt € R and z € (0,1).

(C2) A(z,t) is continuous in z and differentiable in ¢.

Define A*(z,y) = sup;cg (ty — zA(z,t)) > 0.

13



Lemma 3.2 Assume (C1)—(C2). Define

g1(z,t) = zA(z,t) (3.16)
g2(z,t) = Szp(gl(y,t)—f\*(x,y))
gi(z,t) = Sl;p(gj—l(y,t)—A*(x,y))-

and assume that g;(x,t) is continuous in x, j < k. Then g(z,t) = gi(x,t). Moreover,

g(z,t) > FE V(@) A (), 0). (3.17)
Proof: Asin (3.15), note that
Ez(eKtw{{) — Ew(ngl(zkflat))
= Eaz(Ezk_2(ngl(zk_l’t))) = Ex(ngz(zk_z’t)+o(K))

where o(K) is uniform in # and we used in the last equality the continuity of g1(z,t) in  and a
version of Varadhan’s lemma (see [3], Theorem 4.3.1). It follows that go(z,t) is bounded and is
also continuous by assumption. Iterating this procedure, the first part of the lemma follows. To
see the second part, note that A*(z, f(z)) = 0. Hence, ga(x,t) > g1(f(z),t), and the claim follows
by iterating this inequality.

O

Remark: Note that A*(z,y) is convex and lower-semicontinuous in y, and hence continuous in y in
the interior of its domain. In addition, g;(x,t) # 0 only for € (0,1). Thus, if one knows also that
A*(z,y) is continuous in = € (0,1), one could deduce from the continuity of g;(z,t) in (x,t) the
same continuity for go(z,t). Iterating this yields the continuity of g;(x,t) required in the lemma.
Thus, a sufficient condition for the applicability of Lemma 3.2 is the continuity in  of A*(z,t)
throughout [0, 1].

We need the following assumptions in order to have the analogue of Theorem 3.1.

(C3) g(w,t) is Lipschitz continuous in (z,t) and twice differentiable in ¢.

(C4) A*(z,y) < oo for all y € [0,00) and z € (0, 1).

Remarks: 1) As we have seen in Lemma 3.2, (C3) is implied by (C1)—(C2) and a smoothness
assumption on the g;(z,t) defined in (3.16).

2) Note that A*(z,y) = oo for y € (—00,0). Assumption (C4) implies, in particular, that the
support of £;(z) is not bounded for all z € (0,1).

We are now ready to claim:
Theorem 3.2 Assume that A(z,t) satisfies (C1)—(C4). Then the system generated by =X satisfies

(A1)—(A5) (with G = (B*)~%, any 6 > 0 and 6, < &), and Theorem 2.1 applies, with g(z,t) given
by Lemma 3.2.
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Proof: The proof parallels that of Theorem 3.1. Note first that the boundedness of g(z, t) obtained
in Lemma 3.2 implies, again by the Gartner-Ellis theorem, that X satisfy the LDP with the good
rate function I(z,y). The continuity of g(z,t) in z implies the lower semicontinuity of I(z,y)
needed for (A2). Furthermore, by (3.17), g(z,t) > c¢(x)A(c(z),t) and, in particular, I(z,y) <
AN (c(z),y/c(x)) < oo for all z € (0,1) and y € (0,00). The boundedness of V' needed for (A1)
follows immediately. To see the uniformity of the LDP, consider first the case k = 1. Let zx — x.
Fix M large, and note that P(¢;(z) > Mor&(zx) > M) < 2 K9 where gy — 500 00 by
Chebycheff’s bound and the continuity of g(z,t) in x (here, gasr does not depend on zg!). Construct
a sequence of random variable zX taking values in Z such that, for all integer j, P,(&i(z) + 25 =
J) =Py, (&i(zx) =7), j =1,2,... (this can always be acomplished since &;(x) takes only countably
many values). Moreover, since M is finite, due to the continuity of g(z,t), one can construct these
2K such that

P(zf #0) < 2].21{1?_XM |Pp(&i(x) = j) — Poy (&i(xx) = J) = ch K00 0.

(| (1 4(2| > 5) < ze :91\4 + e tOK 2(tM—f—lOg cli )K

Taking K — o0, t — o0 and M — oo in such a way that M + log cﬁ/t — K —o00 0 allows Lemma 2.6
to be applied, and concludes the proof of uniformity for £ = 1. The case of general k is obtained
by iterating the above argument. This concludes the proof of (A5).

The proof of (A4) is identical to the one given for the additive noise case, while the proof of
(A3) relies on the explicit expression for g(x,t) provided in Lemma 3.2 and on assumption (C3)
in the same way that it relied on Lemma 3.1 in the additive noise case. ]

Remark: An alternative proof of theorem 3.2 could proceed by using Lemma 2.5 instead of
Lemma 2.6, and showing uniform convergence in the definition of g(z,t). In particular, Theorem
3.2 holds true if (C4) is replaced by the assumption that &;(x) take values in the finite set 1,..., M.

4 An open problem

Consider the logistic model f.(z) = rx(1 — z). A direct consequence of Theorem 3.2 is that as
T — Ter, one has that sup,..o, V(2*) — 0, where O}, denotes the set of stable points of the map

ngk,«)‘ Thus, as expected, at the onset of chaos the noisy system does not follow closely the path
of the unperturbed system. On the other hand, as long as r < 4, the positive distance between
the atractor and 0 lead to the conclusion that the time to extinction still grows exponentially with
K. We conjecture, but have been unable to show, that as » — 4, the time to extinction becomes
shorter and eventually, at » = 4, does not grow exponentially in K . Motivated by [1, 2, 14], it is
expected that the extinction time in this regime grows with an exponent K?, some 3 < 1.
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