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Abstract

Suppose that the integers are assigned i.i.d. random variables {w,} (taking values in the unit
interval), which serve as an environment. This environment defines a random walk {X,,} (called a
RWRE) which, when at z, moves one step to the right with probability w,, and one step to the left
with probability 1 —w,. Solomon (1975) determined the almost-sure asymptotic speed v, (=rate of
escape) of a RWRE. Greven and den Hollander (1994) have proved a large deviation principle for
X,,/n, conditional upon the environment, with deterministic rate function. For certain environment
distributions where the drifts 2w, — 1 can take both positive and negative values, their rate function
vanishes on an interval (0,v,). We find the rate of decay on this interval and prove it is a stretched
exponential of appropriate exponent, that is the absolute value of the log of the probability that
the empirical mean X,,/n is smaller than v, v € (0,v,), behaves roughly like a fractional power of

n. The annealed estimates of Dembo, Peres and Zeitouni (1996) play a crucial role in the proof.

We also deal with the case of positive and zero drifts, and prove there a quenched decay of the form

exp(—cn/(logn)?).
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1. Introduction

In this paper, we continue the study, initiated in [4] and [2], of tail estimates for a nearest-neighbor

random walk on Z with site-dependent transition probabilities.

Let w = (wg)zez be an i.i.d. collection of (0, 1)-valued random variables, with marginal distribution
a such that supp o C (0, 1). For every fixed w, let X = (X,,),,>0 be the Markov chain on Z starting

at Xo = 0 (unless explicitly stated otherwise), and with transition probabilities

Wy fy=z+1
P,(Xpri=y|Xp=2)=q 1l—w, ify=a—-1 . (1)
0 otherwise

The symbol P, denotes the measure on path space given the environment w, and is referred to as
the “quenched” setting. The process (X, w) is an example of a random walk in random environment
(RWRE), and X has law P = [ oZ (dw)P,, referred to as the “annealed” law. When no confusion
arises, we use P also to denote the law of (X,w). We use in various places, when confusion does

not occur, P to denote the probability of events constructed from random variables unrelated to

the RWRE.

For a discussion of the different regimes that the RWRE X, exhibits, we refer to the introduction
in [2].

Abbreviate p = p(z,w) = (1 — wy)/wg and (f) = [ f(w)aZ(dw) for any function f of the environ-
ment. Let pmax denote the maximum of p over the closed support of «, and let ppin denote the
corresponding minimum. We will be interested here in the case (p) < 1 and pmax > 1, in which
case (c.f. [7]) the RWRE is transient and, P-a.s.,
I 1—{p)
1 — -

nh_)lrolon Xp =vq = T (o) (2)
Tail estimates for X, /n have been derived for the quenched setting in [4]. In particular, it was shown
there that, P-a.s, the random variables X, /n satisfy with respect to P, a large deviation principle
of speed n and explicit, deterministic, rate function I(v), defined as follows (see [4, Theorem 2 and

Corollary 1]). Let f(r,w),r > 0 denote the continued fraction function

1] p(0,w)| p(1,w)|

I = G e~ erptw)

and let A\(r) = exp(log f(r,w)) . Let r(v) = 0 for v < vy, and for v € (vq, 1], let r(v) be the unique



solution of the equation v=1 = —\'(r)/A(r). Then,

—r(v) —vlogA(r(v)), wve€]l0,1]
I(v) = I(—v) + v(log p), v € [-1,0]
00, v¢[-1,1].

Furthermore, I(v) = 0 for v € [0,v,] and I is strictly positive elsewhere.

Our goal in this paper is to study in greater details the regime v € (0, v,) under P,,. In the annealed
setting, i.e. when one is interested in P(X,, < nv), v € (0,v,), sub—exponential rates of decay were
derived in [2]. We summarize now the main results of [2] relevant to us. Recall (c.f. [2]) that when

(p) < 1, there exists a unique s > 1 satisfying (p®) = 1.

Theorem 1 (see [2]) Let v € (0,v,).
(a) Positive and negative drifts Suppose that (p) < 1 and pmax > 1. Then,
nll)IEOIOgP(X" <nv)/logn=1-s.

(b) Positive and zero drifts Suppose that (p) < 1 but pmax = 1 and a(1/2) > 0. Then, with

C, = %‘Wlogg(l/m 12/3 Cy = |7r(10§(P>) |2/3,

and

01— )3 < liminf ilogP(Xn < nw)

Va - n—00 n1/3
1
< limsup —=<log P(X,, < nv) < —Cs(1 — 1)1/3. (3)
n—oo nl/3 Vo,

Maybe surprisingly, it turns out that the annealed estimates are key to understanding the quenched
asymptotics. The next theorems are our main results. They quantify the fact that the annealed
probabilities of large deviations are of bigger order than their quenched counterparts, due to the

possibility of rare fluctuations in the environment which may slow down the RWRE.

Theorem 2 (Positive and negative drifts) Suppose that (p) < 1, pmax > 1, and let v € (0, vy).
Then, for P-a.a. w, the following statements hold:

1. For any § > 0,

) 1
llr:rlri)sgp ey log P, (X, < nv) = —c0. (4)
2. For any 6 > 0,
1
liminf ————— log P, (X,, <nv)=0. (5)

n—00 n1—1/5—|—5



Furthermore,

1
limsup ——- log P, (X, <nv) =0. (6)
n—oo T~ /s
One should compare the rate of decay obtained in Theorem 2 with the annealed polynomial rate

of decay (see Theorem 1) P(X,, < nv) ~ nl~%.

As in [2], tail estimates are different when the drift cannot be negative:

Theorem 3 (Positive and zero drifts) Suppose that (p) < 1, pmax = 1, and a({1/2}) > 0.
Then, for P-a.a. w, and for v € (0,v,),

1 2 1 2
—01(1—1) < lim inf (logn) log P, (X, < nv) < limsupmlog P,(X, <nv) < —02(1—1)2.

Va n—00 n n—oo n Va

(7)

Here, c; = |mloga({1/2})|?/8 and ca = |mlog(p)|?/243.

Again, the rate in Theorem 3 should be compared with the annealed rate (c.f. Theorem 1) P(X,, <

nv) ~ exp(—Cin'/?).

Remarks

1. As in [2], we have not covered the case of (p) < 1, pmax = 1, while a({1/2}) = 0. The tail
estimates in the annealed case were conjectured in [2, pg. 681] to be of the form exp(—D;nP), i =
1,2, for some 3 € (1/3,1) determined by the tails of a(:) near 1/2. The same proof as in Theorem
3 then shows that the upper quenched estimates in Theorem 3 become exp(—dn/(logn)7), with

v=1/8-1.

2. In the setting of Theorem 2, we conjecture that actually

o 1
liminf ——- log Py (Xn < nv) = —o0,

In fact, the derivation of the lower bound in (6) hints at such a limit.
In the setting of Theorem 3, we conjecture, as in [2], that the lower bound is sharp, that is

1 2
lim (logn) log P, (X, < nv) = —c1(1— i)

n—00 n Vo

In fact, it was shown recently (see [6]) that the lower bound is sharp in the annealed setting,
that is one may replace Cs in the right hand side of (3) by C;. This however does not suffice for

closing the gap in our Theorem 3, see the comment following the proof of the theorem.



3. In the setting of Theorem 2, it is natural to attempt to improve on (4), (5) by allowing for
dn —*n—oo 0. Such improvement is possible if in Theorem 1.1 of [2], one refines the convergence,

that is one proves bounds of the form

lim sup g,n* " 'P(X, < nv) < co

n—oo

for appropriate g, —n— 00 0 sub—polynomialy , which is possible albeit tedious. It seems however
impossible by this way to completely close the gap between the upper and lower bounds exhibited
in (4) and (5).

We conclude this introduction with two technical lemmas, borrowed from [2], whose proof follows
readily from the explicit computations for inhomogeneous random walk of [1, pg 66-71]. Let X,

denote a RWRE and let X,, denote a RWRE with wy = 1. Let 7, = min{n : X, = k}, let
Ry =k~ ¥ log p(i), and let Ly = max,>o{—Xy}

Lemma 1 ([2], Lemma 2.1) For all n,k,

P, (7y >n) > (1 — e *k-DE-1)n

Lemma 2 ([2], Lemma 2.2) For any k > 1,

P(Ly > k) <

2. Proofs

Proof of Theorem 2. Since the lower bound of Theorem 2 is relatively simple, and the key ideas
are already explained in [2], we postpone the discussion of it and begin by providing a sketch of

the proof of the upper bound leading to (4), that is, with
T = inf{t: Xy = n}, (8)
we will explain why
nli)nolo # log P, (Tn > n/v) = —00.
The required upper bound follows readily.
We will omit subsequences, etc. in this sketch, and thus the reader interested in a complete proof

should take the next few paragraphs with somewhat of a grain of salt. The precise statement of

the required estimate is contained in the statement of Proposition 1.



Divide the interval [0, nv] into blocks of size roughly k = ky, := n!/*T9. Let XZ denote the RWRE

started at z, and define
TV =inf{t >0: X* =i+ 1)k}, i=0,%1,.... (9)

By slight abuse of notation, we continue to use P, for the quenched law of the {X?*}. By using the
annealed bounds of [2], see Theorem 1, one knows that P (7, > k/v) ~ k!~%. Hence, taking appro-
priate subsequences, one applies a Borel-Cantelli argument to control the probability, conditioned

on the environment, of the time spent in each such block being large, i.e. one exhibits a uniform

estimate on Pw(Tk(i) > k/v), c.f. Lemma 5.

The next step involves a decoupling argument. Let
T = inf{t > 0: X% = (i + 1)k or X* = (i — 1)k} . (10)

Then, using Lemma 2, and the Borel-Cantelli lemma, one shows that for all relevant blocks, that

isi=+1,4+2,...,+n/k, PW(TS) # Tk(i)) is small enough. Therefore, we can consider the random

variables T,(j) instead of Tk(,i), which have the advantage that their dependence on the environment

is well localized. This allows us to obtain (c.f. Lemma 7) a uniform bound on the tails of Tg), for

all relevant 1.

The final step involves estimating how many of the k-blocks will be traversed from right to left

before the RWRE hits the point nv. This is done by constructing a simple random walk (SRW)

S; whose probability of jump to the left dominates P, (T,Ei) # Tg)) for all relevant 7. The analysis
of this SRW will allow us to claim (c.f. Lemma 9) that the number of visits to a k-block after
entering its right neighbor is negligible. Thus, the original question on the tail of 7, is replaced by
a question on the sum of (dominated by i.i.d.) random variables Tf), which is resolved by means

of the tail estimates obtained in the second step.

A slight complication is presented by the need to work with subsequences in order to apply the
Borel-Cantelli lemma at various places. Going from subsequences to the original n sequence is

achieved by means of monotonicity arguments.

Turning now to the complete proof, we first note that it is actually enough to prove a weaker
statement. For § € (0,1 —1/s), let C,, = n® and let n; = [j?/%]. Recall that 7, = inf {t : X; = n},
and let g := v~ > v;! . The key to the upper bound is the following proposition, whose proof is

postponed.



Proposition 1.
Ch.
lim —2— logP, (Tnj > nju) =—00. (11)

i 1-1/s
j—oo nj /

Assuming the proposition holds true, let us show how to complete the proof of the upper bound

G+ +1 —> 1. Let jp be such that n;, <n <n;, .

(4). Note that, for j large, nji1/nj < P _1 o

Then, for any n,
P, (Tn > n,u) <P, (Tnjn+1 > njn,u) =P, (Tnjn+1 > Ny ,u(")) ,

(n) = Fn

njn+1

where p

Let N be large such that inf,> a2 > Uq, and consider only » > N. One concludes from
T M

Proposition 1 that for all § > 0, P a.s.,

1
lim sup ——is log P, (1 > np) = —0. (12)

n—00 n
To prove (4), let v < v’ < v, and define L™l = max{[nv'] — X,[cm”]; k > 0}. Then,

P, (Xn <nv) <Py(Tpey >n) + P, (L™ > [nv'] — nw) . (13)
By Lemma 2,
P(LM™] > [no'] — nv) = B(P, (L™ > [nv'] — nv)) < <

Hence, one may find some € > 0,6 > 0 such that

P(P, ("] > [nv'] — nv) > e ") < e .

Applying now the Borel-Cantelli lemma, one concludes that P-a.s.,

1 ,
lim sup — log Py, (L] > [no'] — nv) < —e < 0. (14)

n—oo

(4) follows from (13), (14) and (12).

As mentioned before, the proof of the lower bounds (5) and (6) follows the ideas of [2] (see in
particular Remark 4, pg. 682). Indeed, it is already explained there why, for any § > 0

. 1 X,



In order to see the refined estimate in (6) , we recall the following notations from [2]. Let Ry(m) =

m—+k
L 3" logp(i). Define 7f = inf{t: Xf = k+x} and 7 = inf {t : X = k + z}, where X is the
i=m-+1

RWRE with w(z) = 1, initiated at z. It follows from Lemma 1 that

P, (181> 1) > Py(7h > n) > (1- e—kRk(“”))n . (15)
For n=1,2,..., define
My(z) = max kRg(m).
z<m<z+n
k<z4+n—-m

In particular, it follows from (15) that for any ¢ > 0 and I = [n/(],

Py(1fy > n) > Py(fy 2 n) > (1—e M@)", (16)
We recall the following exceedence bounds, due to Iglehart. For this version, see [5], Theorem A.

Lemma 3. There exist constants K1, Ko, such that for any z € R,

exp(—K1 exp(—sz)) < lillginf P(Ml(:c) - % §z)
< li}gigp P(Ml(m) — % < z) < exp(—Kg exp(—sz)) .

A corollary of Lemma 3 and (16) (taking y = €?) is the following:

Lemma 4. For any y > 0 there exists a ¢y > 0 such that, for any v’ < vq,

nl—1/s

liminf P(Py (18, > n) > e w7") > ¢,

n—oo nv'] -

and the convergence is uniform in x.

Equipped with Lemma 4, we have completed all the preliminaries required for proving (6). Indeed,

fix y > 0, and let ng = 22" Note that

logP, (X, < logP, (X, <
lim sup 0g Py, (Xn < nv) lim sup 08 Py (Xny, < ng0)

n—»00 nl-1/s o k—oo nllsfl/s




log P (70, 1 > i)

> [ngv
> limewp ——
ClogPy(rE >y
> limsup T
k—o00 nk_ /s
. log P, (7_[7;1;;’1] > ng)
> limsup 11
k—o0 n - /5

k
where v' = v — ¢ for arbitrary ¢. By Lemma 4, and the Borel-Cantelli lemma, for any z > 0

1-1/s
_ Dk
Pw(Tnk H> nk) >e =

[ngv']

infinitely often. The conclusion follows by taking z — 0o. This completes the proof of Theorem 2,

except that we still have to show Proposition 1. ]
e

Proof of Proposition 1 Let k = k; = ;’ . for some 1 > ¢ > 0. For X2 the RWRE started
—€

at z, recall that
T =inf{t > 0: X[ = (i+ 1)k}, i=0,+1,....

By slight abuse of notation, we continue to use P,, for the quenched law of the {X?}.

Finally, let by = C;® and I; = {—[2] =1, [B] +1}. Fix p' > .

Lemma 5. For P — a.e. w, there exists a Jy(w) such that for all j > Jo(w), and all i € I},

W
P, o M < by, .

J

Proof of Lemma 5. By Chebycheff’s bound,

0 ¥
T, 1 T
P(Pw( > ) >bnj) < —P(L>u)
J nj J
1 1-st0(1)
=5

where the last inequality follows from Theorem 1(a), and o(1) % 0.



Hence,

(4)
T ' w11
P (Pw( k; > N') > by, for some i € Ij> < 3 [_J] e plosto())

and the conclusion follows from the Borel-Cantelli lemma. [l
Let 0 < 6 < — o840 db = e—bn'/* Cn_ and recall that

l—e

TW —inf{t > 0: X% = (i + 1)k or X = (i — 1)k} .
Lemma 6. For P — a.e. w, there is a J1(w) s.t. for all j > J1(w),

(E) i ;
Pw<T,:j % T,g;) , some ¢ € Ij) < dgj .

Proof of Lemma 6. Again, we use the Chebycheff bound:

P(Pw (T;:j) %+ T,g) , some i€ Ij) > dzj)

1 3nj (=0 , 1(0)
< dTw‘k—jP(Tkj A13)
J
1 3n; (p)¥

< a8 (g )

where the second inequality follows from Lemma 2. The conclusion follows from the Borel-Cantelli

lemma. [l

We actually need to iterate the estimates of Lemma 5.

Lemma 7. For P - a.e. w, for all j > Jy(w), and each i € I;, and for z > 1

)
P, ( kkj > ,UILE) < (2bnj)[a:/2]vl )
J

10



Proof of Lemma 7. For 1 <z < 4, the claim follows from Lemma 5. Assume thus that x > 4.

Then,

Tl(cz') Tg)
P J 2] <P J e —2
w(kj >,Ux>_ w( kj >;u'(x )7

(i = Dkj < Xy (gozys1 < (0 + 1)k,
min{t: ¢ > [p'kj(z — 2)] + 2, XM = (i+ 1)k} > ;r:u'kj) :

Hence, by the Markov property,

(0) =(0)
Pw( kj” >u’w) < P, ( k,-J >,u'(m—2))

X sup P, (inf {t: X} =(i+1)k;} > 2,u'kj)
(i=1)k;j <y<(i+1)k;

Ty

R 1 . (?) (i-1) .
< P ldaC 2)) Py (T + T > 24k )
(1)
< P, Thi o @z —2) [Pw (T(") > #’k-) +P, (T("‘” > #'k-)]
o k?] K J kj J
T

< 2b,. P, > ul(z-2)),

J k]

where the last inequality is a consequence of Lemma 5. The lemma follows by induction. L]

We need one more preliminary computation related to the bounds in Lemma 7. Let {Zg,)}, i =

1,2, ... denote a sequence of i.i.d. positive random variables, with

70 70
kj 1) kj ! . [z/2]v1
P(kj <u)—0, P(kj>ux _(2bnj) . oz>1.

Lemma 8. For any X\ > 0, and any € > 0,

where g; J?O 0.

11



Proof of Lemma 8.

k; o0 Z/Ej.) log u
E(exp ,\kj ) - /0 P(kj > = )du

log u
' > [2,\ "1 ]Vl
< M (1+5)_|_/ (anj) w(1+e) du
e’ (1+¢)

= e)‘/‘l (1+E) + g]

where g; A 0. L]

In order to control the number of repetitions of visits to kj—blocks, we introduce an auxiliary

random walk. Let Sy, t =0,1,..., denote a simple random walk with Sy = 0 and

P(S,§+1 :5t+1\5t) = 1—P(St+1 zst—1‘5t) =1-d°.

@ |

1 1
Set Mnj = an]

j
Lemma 9. For @ as in Lemma 6, and n large enough,

P(inf{t 1 S = [%]} > Mn].) < exp (—% n]-) .
J

Proof of Lemma 9.

) S . S|
. n; [Mp,] n; [Mn,] —Mp b, (1—¢)
. = |/ . < = . —_ <
P(lnf{t S [kj]}>MnJ>_P<Mnj <ijnj> P(MTLJ‘ <l—-¢]| <2e 7M™ ,

where the last inequality is a consequence of Cramer’s theorem (c.f. [3]), and the fact that d% < e.
Here,

hn(l—2)=(1—2x)log (ﬁ) + zlog

z
1-—d? dé -

Using h,(1 — ) > —% —zlogd?, we get

SM . 0 €
P (—J[Wn]] <1l- 6) < 9 ¢>Mnj/e e+€Mnj log dn; < e~ 20n
nj

12



We are now ready to prove (11). Note that, for all j > Jy(w), and all ¢ € I, we may, due to Lemma 7,
construct {Z,E;)} and {T,(:])} on the same probability space such that P, (Z,(cj) > ng) Viel j) =1

Fix po < p' < p and € > 0 small enough. Recalling that, under P, the Tg) are independent, we

obtain, with {S;} defined before Lemma 9, and j large enough,

My,

Pw(Tnj >nip) < (mf{t Sy = [k]]} >MnJ) -I-P(Z Z > nju)
i=1

< eomi g p(-L z’k_k u(1 <))
nj =1
7@

< et oo (355 ) o]

J

< e 0emi/2 (e/\(u’+2€u—u) + gje—f\u(l—s)) g

< e7fmi/2 4 (e—)\sﬂ)MnJ ,

where Lemma 9 was used in the second inequality and Lemma 8 in the fourth. Since A > 0 is

arbitrary, (11) follows. U

Proof of Theorem 3. We begin by giving a quick sketch of the lower bound in (7), based on [2].
By the Erdos-Renyi strong law for longest run of heads, (or the asymptotics for long rare segments
in random walks, see e.g. [3, pg. 69]), there is a segment I = (imin, tmax), With imin > n(v — €),
imax < MU and imax — imin = logn/(—loga({1/2}))(1 + o(1)), such that w; = 1/2 for i € I. Let
X,, denote the RWRE started at (Ymin + %max)/2. Let 7 = min{¢ : Xy = iy or X; = imax }- Then,
T possesses the same law as the exit time, denoted 7, of simple symmetric random walk from the

interval [—(¢max — %min)/2, (fmax — ¢min)/2]- As before, we let 7, = min{t : X; = k}. We have,

Pu(Xp <nv) > Pu(tpe) > n- - SYP, (T > n(l — Ui n ve))
v—2¢ v 2
= Pw(Tn(v—s) >n Ve )P( (1 - E + Ua)) (17)
By Solomon’s law of large numbers, c.f. (2),
. v— 2
lim Py, (Tpp—e) =70 )=1. (18)

n—00 Va

13



By standard eigenvalue estimates for simple random walk (c.f. [8, p. 243]),

lim (logn)”
n=oo n(1 — L — 2)(log (1/2))?

Vo

log P(7 > n) = —7%/8. (19)

Combining (19), (17), and (18), the lower bound in (7) follows.

The proof of the upper bound in (7) follows the proof of part 1 of Theorem 2, except that there is
no need for subsequences here. With g = v=! > v;! = s and t € (0,1) , define i = tuq + (1 —t)pu.
Fix 1/2>¢ > 0,8 > 2, b, = n~9/2) and

logn)®(1+6)3
k= k(n) = 008" AT
C5 (B — pa)(1 —¢)
where C> was defined in Theorem 1. We define I,, = {— [%] —-1,---, [%] + 1}, and use T,Ei) as in
(9). Then, following the outline of the proof of Lemma 5,

exp(—Ca(fi — pa)*k' /3 (1 —€))

P(P, (T > fik) > b,) < ; ,
n

where we have used the bound
P(1{" > jik) < exp(—k'/*Co(f — pa)'/?),
which follows from Theorem 1 using the inequalities
P(T) > k) < P(Xju < k) < P(Xayg < (k] + 1)/).
Thus, by the Borel-Cantelli lemma, for P-a.e. w, there exists an Ny(w) such that for all n > Ny(w),
P, (T > ik ,some i € I,,) < by,. (21)

Define T\ as in (10). Set 0 < v < (1 + 8)3|log(p)|/C3(is — pta). With dy, = exp(—7(logn)?®), the
Borel-Cantelli lemma yields, as in the proof of Lemma 6, that for P-a.e. w, there exists an N;(w)

such that for n > Ny(w),
Pw(TISi) # Tg) ,some i € Ip,) < d, . (22)

Using (21), one concludes as in Lemma 7 that for P-a.e. w, for n > Ny(w), and each i € I,,,

P, (T > kfiz) < (2b,)@/2V1. (23)

14



Let Z,(j) , 1 =1,2,... denote a sequence of positive, i.i.d random variables with

P(% < ﬂ) =0, P(%(i) > ﬂa:) = (2bp)/2VY 2 >1.

The following Lemma, takes the place of Lemma 8 in the proof of Theorem 2:

Lemma 10. For each £’ > 0, we have, for A, = —log(2b,)/2i(1 + ¢'),
Eexp (/\n z /k) <eME g,

where g, =2 0.

Proof of Lemma 10. Exactly as in the course of the proof of Lemma 8, for n large enough,

Bexp (M 20 /k) = /Ooo P(%m> l(;\iu)du

_ oo logu _
< 8)‘"” + s (2bn)2>‘"’7 du = 6)‘"” + gn ,
eAnk

where
0 log 2by o0 '
9n Z/ U Pnk du:/ vt gy — 0.
eAnf e nf n—oo
Let S;, t =0,1,..., denote the simple random walk with Sy = 0 and
P(St_H = St + 1|St) =1- P(St+1 = St - I‘St) =1- dn,

and let

_ 7103(/.7 — po)(1 — 6)2
Mo = logm)¥(1 1 37

Mimicking the proof in Lemma 9, we obtain that
P(inf{t : Sy = [n/k]} > M) < exp(—nbe),
where 6 = yC3(i — pa)(1 — €)?/(3(1 + 6)?).
Following the proof of Theorem 2, we have
My,
Py >nu] < P(inf{t: 5 = [%]} > My) + P(; 72 > nu)
i—
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—né
< e P X T > -9)

< e ey (E exp ()‘n Z,(j)/k) e—,\nuu—a))Mn

< e—n05+e—AnMn(u(1—s)—ﬁ—e)

where the second inequality is due to (24) and the last due to Lemma 10.

Plug in the definition of M, and A, to get

3 /- 24 T
o Cogn)? O3 (p = pa)1 =" § (w1 —¢) ~7i—)

A= v < - :
hrl;ri)sgp - logP,, (1, > nu) < 21+ a(l 1 &)

Letting € and ¢’ — 0 and § — 2, one gets

. log n)? B 1 u—2g
lim sup (logn) logP, (1, >np) < — S(H—Ha)—3u
1 t(1—1t)
— 3 _ - _ 2

where we used the definition of i in the last equality. Optimizing over ¢ € (0,1) yields

lim sup
n—oo

log n)? 1 1
% long(Tn > n,u) < _Cg ﬁ (:u - /‘a)Z =L \2

(Vi + i)

To prove the upper bound in (7), observe that for v < v’ < v,, by the same argument as in (14),

1 2 X 1 2 1
lim sup (log ) log Pw(—n < v) < limsup (logn)” log P, (T[m,/] > [nv'] _/)
n—00 n n n—00 n v
T ! (log[nv'])2 n 1
= h,ILIi)S;p v ] log P, (T[nvl] > [nv'] U)
1 1 1,2 1
R e
2:33 \v o, ( 1, 1 )
Vol Ve
1 v'\2 v
3 [’
_ 1-— —
> 2 2.33 ( Ua) (\/17 n m)2
Letting v’ — v, and using v, /(v/v + /)% > 1/4, we get
) (logn)? X, ;3 1 v \2
h;n_)s;pT IOng(T < v) < -C5 E (1 — E) , (26)
completing the proof of the upper bound in (7). L]
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Remark: Even when one uses the results of [6] and replaces Cy by Cp in the right hand side
of (26), the behaviour of the exponent in the upper bound is quadratic in (v, — v), which is far
from the linear behaviour exhibited by the exponent of the corresponding lower bound. While the
constant in the upper bound can be slightly further improved (e.g., by using subsequences in the

proof), it seems that a new approach is needed to completely close the gap.

References

[1] K. L. Chung, Markov chains with stationary transition probabilities, Berlin, Springer, 1960.

[2] A. Dembo, Y. Peres and O. Zeitouni, “Tail estimates for one-dimensional random walk in

random environment”, Commun. Math. Phys. 181 (1996) pp. 667—683.

[3] A.Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Jones and Bartlett,
Boston (1993).

[4] A. Greven and F. den Hollander, “Large deviations for a random walk in random environment”,

Ann. Probab. 22 (1994) pp. 1381-1428.

[56] S. Karlin and A. Dembo, “ Limit distributions of maximal segmental score among Markov

dependent partial sums”, Advances in Applied Probability, 24 (1992), pp. 113-140.
[6] A. Pisztora, T. Povel and O. Zeitouni, in preparation.
[7] F. Solomon, “Random walks in random environment”, Ann. Probab. 3 (1975), pp. 1-31.

[8] F. Spitzer, Principles of random walk, Springer, Berlin (1976).

17



