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Abstract

We consider the maximum of the discrete two dimensional Gaussian
free field in a box, and prove the existence of a (dense) deterministic
subsequence along which the maximum, centered at its mean, is tight;
this still leaves open the conjecture that tightness holds without the need
for subsequences. The method of proof relies on an argument developed by
Dekking and Host for branching random walks with bounded increments
and on comparison results specific to Gaussian fields.

1 Introduction and main result

We consider the discrete Gaussian Free Field (GFF) in a two-dimensional box of
side N +1, with Dirichlet boundary conditions. That is, let VN = ([0, N ]∩Z)2,
V o

N = ((0, N)∩Z)2, and let {wm}m≥0 denote a simple random walk started in VN

and killed at τ = min{m : wm ∈ ∂VN} (that is, killed upon hitting the boundary
∂VN = VN \ V o

N ). For x, y ∈ VN , define GN (x, y) = Ex(
∑τ

m=0 1wm=y), where
Ex denotes expectation with respect to the random walk started at x. The GFF
is the zero-mean Gaussian field {XN

z }z indexed by z ∈ VN with covariance GN .
Let X∗

N = maxz∈VN XN
z . It was proved in [5] that X∗

N/(log N) → c with

c = 2
√

2/π, and the proof is closely related to the proof of the law of large
numbers for the maximal displacement of a branching random walk (in R).
Based on the analogy with the maximum of independent Gaussian variables
and the case of branching random walks, the following is a natural conjecture.

Conjecture 1 The sequence of random variables YN := X∗
N − EX∗

N is tight.
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To the best of our knowledge, the sharpest result in this direction is due to [7],
who shows that the variance of YN is o(log N); in the same paper, Chatterjee
also analyzes related Gaussian fields, but in all these examples, does not prove
tightness. We defer to Section 4 for some pointers to the relevant literature
concerning the Gaussian free field and the origin of Conjecture 1.

The goal of this note is to prove a weak form of the conjecture. Namely, we
will prove the following.

Theorem 1 There is a deterministic sequence {Nk}k≥1 such that the sequence
of random variables {YNk

}k≥1 is tight.

More information on the sequence {Nk}k≥1 is provided below in Section 3.
It is of course natural to try to improve the tightness from subsequences to

the full sequence. As will be clear from the proof, for that it is enough to prove
the existence of a constant C such that EX∗

2N ≤ EX∗
N + C. This is weaker

than, and implied by, the conjectured behavior of EX∗
N , which is

EX∗
N = c logN − c2 log log N + O(1), (1)

for c = 2
√

2/π and an appropriate c2, see e.g. [6] and Remark 3.
Finally, although we deal here exclusively with the GFF, it should be clear

from the proof that the analysis applies to a much wider class of models.

2 Preliminary considerations

Our approach is motivated by the proof of tightness of branching random walks
(BRW) with independent increments, in the spirit of [9] (see also the argument
in [3]). We will thus first introduce a branching-like structure in the GFF.
Unfortunately, this structure is not directly suitable for analysis, and so we
later modify it.

2.1 The basic branching structure

We consider N = 2n in what follows, write Zn = X∗
N and identify an integer

m =
∑n−1

ℓ=0 mi2
i with its binary expansion (mn−1, mn−2, . . . , m0). For k ≥ 1,

introduce the sets of k-diadic integers

Ak = {m ∈ {1, . . . , N} : m = (2l + 1)N/2k for some integer l}.

Note that if m ∈ Ak then mi = 0 for i ≤ n− k and mn−k = 1. Then, define the
σ-algebras

Ak = σ(XN
z : z = (x, y), x or y ∈ ∪i≤kAi).

Finally, for every z = (x, y) ∈ V o
N , write zi = (xi, yi) with xi, yi denoting as

above the ith digit in the binary expansion of x, y. We introduce the random
variables

ξz1,...,zk
zk+1,...,zn

= E[XN
z |Ak]. (2)
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We then have the decomposition

XN
z = ξz1

z2,...,zn
+ Xz1

z2,...,zn
, (3)

where, by the Markov property of the GFF, the collections {Xz1
· }z1∈V1

are i.i.d.
copies of the GFF in the box VN/2, and are independent of the collection of
random variables {ξz1

· }. Iterating, we have the representation

XN
z = ξz1

z2,...,zn
+ ξz1,z2

z2,...,zn
+ . . . + ξz1,z2,...,zn−1

zn
, (4)

where all the summands in the right side of (4) are independent, and the ith
summand is a sample from a GFF in VN/2i . Recall that X∗

N = maxz∈VN Xz.
We can now explain the relation with branching random walks: should the

random variables in the right side of (4) not depend on the conditioning (that
is, the superscript), (4) would correspond precisely to a branching random walk
(on a four-ary tree). For such BRW, a functional recursion for the law of X∗

N can
be written down, and used to prove tightness (see [4] and [1]). Unfortunately,
no such simple functional recursions are available in the case (4). For this
reason, we first modify the representation (4), and then adapt an argument of
[9], originally presented in the context of BRW. To explain our goal, note that
we have for (4) that

X∗
N = max

z∈V1

((X∗
N/2)

z + Dz,N ), (5)

where the variables {(X∗
N/2)

z}z are four i.i.d. copies of X∗
N/2, and the Dz,N

are complicated fields but Dz,N
z2,...,zn

≥ minz2,...,zn ξz
z2,...,zn

. Unfortunately, the

Dz,N variables are far from being uniformly bounded, and this fact prevents the
application of the argument from [9].

2.2 A modified recursion

We continue to take N = 2n. Let ∆N < N be a given sequence, to be determined
below. We introduce the set V ∆

N = {z ∈ V o
N : d(z, ∂VN ) ≥ ∆N}. We define

X̄∗
N = max

z∈V ∆
N

XN
z .

Clearly, X̄∗
N ≤ X∗

N . In fact, writing Zn = X∗
N and Z̄n = X̄∗

N , we have the basic
inequality

Zn ≥ max
z∈V1

(Z̄z
n−1 + D̄z

n), (6)

where the {Z̄z
n−1}z∈V1

are i.i.d. of the same law as Z̄n−1 and

D̄z
n = min

(z2,...,zn)∈V ∆

2n−1

ξz
z2,...,zn

are identically distributed (but not independent!).
Let un = ED̄z

n ≤ 0. The main result of this section is the following.
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Proposition 1 Assume that there exists a constant C independent of n such
that

EZn−1 ≤ EZ̄n−1 + C, (7)

un ≥ −C, (8)

EZn ≤ EZn−1 + C. (9)

Then,
E|Zn−1 − Z ′

n−1| ≤ 10C, (10)

where Z ′
n−1 is an independent copy of Zn−1.

Proof By (6),

EZn ≥ E max
z=(0,0),(0,1)

(Z̄z
n−1 + D̄z

n)

≥ E max
z=(0,0),(0,1)

(Z̄z
n−1) + 2un

= E
1

2
(Z̄

(0,0)
n−1 + Z̄

(0,1)
n−1 + |Z̄

(0,0)
n−1 − Z̄

(0,1)
n−1 |) + 2un

≥ EZ̄(0,0)
n1

+ 2un +
1

2
E|Z̄

(0,0)
n−1 − Z̄

(0,1)
n−1 |.

Using (7), it follows that

C + EZn ≥ EZn−1 + 2un +
1

2
E|Z̄

(0,0)
n−1 − Z̄

(0,1)
n−1 |.

Applying (9) one then gets

2C − 2un ≥
1

2
E|Z̄

(0,0)
n−1 − Z̄

(0,1)
n−1 |.

Using again (7) and the fact that Zn−1 ≥ Z̄n−1, one gets

2C − 2un ≥
1

2
E|Z

(0,0)
n−1 − Z

(0,1)
n−1 | − C.

Together with (8), this completes the proof. �

3 Verification of assumptions and proof of The-

orem 1

Fix ǫ ∈ (0, 1/2) and set ∆n = ǫ2n. We recall the following consequence of the
Sudakov–Fernique inequality [10].

Lemma 1 Suppose Gα and gα, α ∈ T , are zero mean Gaussian fields, inde-
pendent of each other. Then,

E sup
α∈T

(Gα + gα) ≥ E sup
α∈T

Gα .
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Proof Write Ḡα = Gα + gα. Note that

E(Ḡα − Ḡβ)2 = E(Gα − Gβ)2 + E(gα − gβ)2 ≥ E(Gα − Gβ)2.

Now apply the Sudakov–Fernique inequality. �

Lemma 1 immediately implies that for all n,

EZn ≥ EZn−1. (11)

We can now verify (9).

Lemma 2 There exists a sequence nk → ∞ and a constant C such that

EZnk
≤ EZnk−1 + C , EZnk−1 ≤ EZnk−2 + C . (12)

Proof From [5] there exists a constant c > 0 so that EZn/n → c. Fixing
arbitrary K and defining In,K = {i ∈ [n, 2n] : EZn+1 > EZn + K}, one has
from (11) and the existence of the limit EZn/n → c that

lim sup
n→∞

|In,K |

2n
≤

c

K
.

In particular, choosing K = 3c it follows that for all n large, there exists an
n′ ∈ [n, 2n] so that

EZn′ ≤ EZn′−1 + K , EZn′−1 ≤ EZn′−2 + K,

as claimed. �

We can now check (7).

Lemma 3 With the sequence nk as in Lemma 2, it holds that

EZ̄nk−1 ≥ EZnk−1 − C.

Proof Again with N = 2n, let FN = σ(XN
z : d(z, ∂VN ) ≤ N/4). We have, for

z ∈ (N/4, N/4) + VN/2, XN
z = E(XN

z |FN ) + G
N/2
z , where {G

N/2
z }z is a copy of

the GFF in (N/4, N/4) + VN/2 and is independent of {E(XN
z |FN )}z. Then,

EZ̄n = E max
z∈V ∆

N

XN
z ≥ E max

z∈(N/4,N/4)+VN/2

XN
z ≥ EZn−1

where the last inequality follows from Lemma 1. In particular, it follows from
this and (12) that

EZ̄nk−1 ≥ EZnk−2 ≥ EZnk−1 − C,

as claimed. �

Proof of Theorem 1 We still need to check (8). Toward that end, let t =
((0, 0), z2, . . . , zn) ∈ V ∆

2n−1 . We have the representation

ξt := ξ(0,0)
z2,...,zn

=
∑

y∈Sn

πn−1(t, y)XN
y ,
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where Sn = ∂V2n−1 and, with τn−1 = min{m : wm ∈ ∂V2n−1}, πn−1(t, y) =
P t(wτn−1

= y). Setting fn(t, t′, y) = [πn−1(t, y) − πn−1(t
′, y)], it follows that

E(ξt − ξt′)
2 =

∑

y,y′∈∂V
2n−1

fn(t, t′, y)fn(t, t′, y′)GN (y, y′), (13)

where again N = 2n. Standard estimates for simple random walk on VN , see
[15, Proposition 1.6.7 and Theorem 1.7.1], give that there exists a constant
C1 = C1(ǫ) such that, uniformly for t, t′ ∈ V ∆

2n−1 ,

GN (y, y′) ≤ C1 log

(

N

|y − y′| + 1

)

, |fn(t, t′, y)| ≤ C1
|t − t′|

N2
. (14)

It follows from (13) and (14) that

E(ξt − ξt′)
2 ≤ C3

1

(

|t − t′|

N

)2

. (15)

Using now Fernique’s criterion, see [11] or [2, Theorem 4.1], with the uniform
measure on VN/2 as majorizing measure, we conclude that

E sup
t∈V ∆

N/2

|ξt| < C2

for some constant C2 = C2(ǫ). This proves (8).
Combining Lemmas 2, 3 and Proposition 1 together with the last estimate,

we conclude the existence of a constant C such that two independent copies
of Z ′′

nk
, Z ′

nk
satisfy E|Z ′′

nk
− Z ′

nk
| ≤ 10C, with the subsequence nk provided by

Lemma 2. This implies that the sequence {Znk
}k is tight, and completes the

proof of Theorem 1. �

Remark 1 The subsequence nk provided in Lemma 2 can be taken with density
arbitrary close to 1, as can be seen from the following modification of the proof.
Fixing arbitrary K and ǫ and defining In,ǫ,K = {i ∈ [n, n(1 + ǫ)] : EZn+1 >
EZn}, one has from (11) and the existence of the limit EZn/n → c that

lim sup
n→∞

|In,ǫ,K |

nǫ
≤

c

K
.

It is of course of interest to see whether one can take nk = k. Minor modifica-
tions of the proof of Theorem 1 would then yield Conjecture 1.

Remark 2 Minor modifications of the proof of Theorem 1 also show that if
there exists a constant C so that EX∗

2N ≤ EX∗
N + C for all integer N , then

Conjecture 1 holds.

Remark 3 For Branching Random Walks, under suitable assumptions it was
established in [1] that (1) holds. Running the argument above then immediately
implies the tightness of the minimal (maximal) displacement, centered around
its mean.
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4 Some bibliographical remarks

The Gaussian free field has been extensively studied in recent years, in both its
continuous and discrete forms. For an accessible review, we refer to [16]. The
fact that the GFF has a logarithmic decay of correlation invites a comparison
with branching random walks, and through this analogy a form of Conjecture 1 is
implicit in [6]. This conjecture is certainly “folklore”, see e.g. open problem #4
in [7]. For some one-dimensional models (with logarithmic decay of correlation)
where the structure of the maxima can be analysed, we refer to [12, 13]. The
analogy with branching random walks has been reinforced by the study of the so
called thick points of the GFF, both in the discrete form [8] and in the continuous
form [14].
Acknowledgment We thank Sergey Bobkov for a useful discussion concerning
the Sudakov–Fernique inequality.
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