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Abstract

Let Λ be the limiting smallest eigenvalue in the general (β, a)-Laguerre ensem-

ble of random matrix theory. That is, Λ is the n ↑ ∞ distributional limit of the

(scaled) minimal point drawn from the density proportional to
∏

1≤i<j≤n |λi − λj |β
∏n
i=1 λ

β
2
(a+1)−1

i e−
β
2
λi on (R+)n. Here β > 0, a > −1; for β = 1, 2, 4 and integer a, this

object governs the singular values of certain rank n Gaussian matrices. We prove that

P (Λ > λ) = e−
β
2
λ+2γ

√
λλ

− γ(γ+1)
2β

+ 1
4
γ
e(β, a)(1 + o(1))

as λ ↑ ∞ in which γ = β
2 (a + 1) − 1 and e(β, a) is a constant (which we do not

determine). This estimate complements/extends various results previously available

for special values of β and a.

1 Introduction

The shape of the distribution of the smallest singular value of a “typical” matrix is a deeply

studied question. An overview of the varying motivations for this problem may be found

in [11]. In the case of Gaussian matrices, many exact formulas are available both at finite

dimension and asymptotically [4, 13]. Only quite recently has it been shown that the asymp-

totic laws are universal beyond the Gaussian case (in the sense of being insensitive to the

statistics of the matrix entries), see [12].

Here we consider the “general beta” analogues of the classical Gaussian ensembles. These

are defined by placing a measure on n nonnegative real points λ1, λ2, . . . , λn with density
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function (a normalization constant times)

∏

1≤i<j≤n

|λi − λj|β
n

∏

i=1

λ
β
2
(a+1)−1

i e−
β
2
λi. (1.1)

When β = 1, 2, 4 and a = 0, 1, 2, . . . this is the joint square-singular value law of an n×n+a

real, complex, or quaternion Gaussian matrix. It is however a sensible law for any β > 0 and

a > −1, and, what is more, still a joint singular value law for a certain random bi-diagonal

matrix ensemble [3]. Further, the least order statistic λmin satisfies a limit law: as n ↑ ∞,

n2λmin converges (in distribution) to a well defined random variable, denoted here by Λ

(= Λ(β, a)). There are several proofs of this for special values of β and a; [10] contains a

proof (making use of the bi-diagonal representation of [3] and substantiating a conjecture of

[5]) valid for all values of those parameters.

Our starting point is a relation between the law of Λ and the explosion/non-explosion of

the diffusion process: with b a Brownian motion,

dx(t) = db(t) +

(

β

4
(a +

1

2
) − β

2

√
λe−βt/8 cosh x(t)

)

dt. (1.2)

In particular, a corrected version of Theorem 2 of [10] (see also the derivation leading to

(2.3) below) implies that

P (Λ > λ) = P∞,0(t 7→ x(t) never hits −∞). (1.3)

Here Pc,s indicates the law on paths induced by x, begun from position c at time s. Our

main result reads:

Theorem 1. Let pλ = pλ,β,a denote the right hand side of (1.3). For large values of λ it

holds

pλ = e−
β
2
λ+2γ

√
λλ−

γ(γ+1)
2β

+ 1
4
γ
e(β, a)(1 + o(1)). (1.4)

Here γ = β
2
(a + 1) − 1 and e(β, a) is an undetermined constant.

There has already been a great deal of work in this direction, though focussed on deal-

ing directly with the statistics (1.1) rather than our passage time description (1.3). The

fundamental treatment of Tracy-Widom [13] for β = 2 produced the correct λ→ ∞ asymp-

totics of pλ,2,a up to a multiplicative constant and provided a conjecture for that constant,

e(2, a). This has recently been verified by Ehrhardt [7], for |a| < 1, by operator theoretic

techniques, and for all a > −1 by Deift-Krasovsky-Vasilevska [2] using Riemann Hilbert

Problem machinery. A non-rigorous argument in [1] predicted all factors in the asymptotics

save the constant for all (β, a). Making use of integral identities available at special values

of β and integer a, Forrester has a sound conjecture for the value of the general constant
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e(β, a), see [6]. The method employed here leaves e(β, a) in opaque form, as a somewhat

involved expectation over diffusion paths; an explicit determination of this object for all β

and a remains an open problem.

In many ways, the chief insight of this paper is to cast the diffusion (1.2), which encodes

the desired probability distribution, in the present form. (The process which appears in

[10] is related by a change of variables.) In fact, t 7→ x(t) is remarkably similar to the

process studied by Valko-Virág in estimating the probability of large gaps in the general

beta “bulk” [14]. They showed that the probability of a gap being larger than λ is equal to

the non-explosion, again to −∞, of

dz(t) = db(t) +

(

1

2
tanh z(t) − β

8
λe−βt/4 cosh z(t)

)

dt,

begun again at +∞. It is no surprise then that their basic argument, which involves esti-

mating the Cameron-Martin-Girsanov factor produced by a well-chosen change of measure,

may be followed in this case.

The proof of Theorem 1 occupies sections 3 and 4; section 2 gives a self-contained expla-

nation of the identity (1.3).

2 Passage time description for Λ

Without pointing the reader to [10] and the subsequent erratum, it is easy enough to give a

brief derivation of the relevance of the diffusion (1.2) to the distribution function P (Λ > λ).

The main result of [10] shows that Λ−1 is the maximal eigenvalue of the almost surely trace

class integral operator

Lβ,aψ(t) :=

∫ ∞

0

(
∫ t∧s

0

e
au+ 2√

β
b(u)

du

)

ψ(s)e
−(a+1)s− 2√

β
b(s)

ds, (2.1)

acting on L2[R+, µ], µ(dt) = e
−(a+1)t− 2√

β
b(t)

dt. Here t 7→ b(t) is a standard Brownian motion.

Any nonnegative L2 solution of ψ(t) = λLβ,aψ(t) satisfies ψ(0) = 0 and ψ′(t) ≥ 0 for all

t > 0, as can be seen by taking derivatives of both sides of the eigenvalue equation:

ψ′(t) = λe
at+ 2√

β
b(t)

∫ ∞

t

ψ(s)e
−(a+1)s− 2√

β
b(s)

ds.

This converts to a differential system:

dψ(t) =
2√
β
ψ(t)db(t) + [(a+

2

β
)ψ′(t) − λe−tψ(t)]dt, dψ(t) = ψ′(t)dt (2.2)

which can be used to test whether a fixed λ is at or below an eigenvalue. Specifically, λ

is strictly below the groundstate eigenvalue Λ if the solution to (2.2) begun at ψ(0) = 0
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(and ψ′(0) = 1 say) satisfies ψ(t) > 0, ψ′(t) > 0 for all time (note that solutions of (2.2) are

decreasing in λ). It is now the standard trick to translate this condition onto the diffusion

q(t) := ψ′(t)/ψ(t) which solves

dq(t) =
2√
β
q(t)db(t) + [(a +

2

β
)q(t) − q2(t) − λe−t]dt,

started from +∞ at time t = 0. In particular, if τc is the passage time of q to a level c, the

event {Λ > λ} coincides with {τ0 = ∞}. Now the change of variables,

x(t) := log(q(βt/4)) + βt/8 − log λ/2, (2.3)

explains the identity (1.3).

As a bit of amplification, we remark that for q = q(·; a, β, λ) with a ≥ 0,

P(τ−∞(q) <∞|τ0(q) <∞) = 1. (2.4)

So, at least for a ≥ 0, one can replace the condition of q never vanishing with the (more

familiar) condition that q never explodes to −∞. Furthermore, a change of variables similar

to (2.3) shows that the event that q(·; a, β, λ) started from 0 never hits −∞ is the same as

the event that q(·;−a− 1, β, λ), started from +∞ never hits 0. Note here that for all t > τ0,

q(t) < 0. One concludes that lima↓−1 P (Λ > λ) = 0 for any λ > 0, as would have been

guessed ahead of time.

To prove (2.4), on the event {τ0 < ∞} introduce the simpler change of variables u(t) =

log(−q(t+ τ0)). This process satisfies

du(t) =
2√
β
db(t) + [a+ eu(t) + λe−τ0e−te−u(t)]dt, u(0+) ∈ (−∞,∞),

to which we compare the homogeneous process defined by

dv(t) =
2√
β
db(t) + [a + ev(t)]dt, v(0) = u(0+) ∈ (−∞,∞).

As u(t) > v(t), q explodes to −∞ in finite time if v explodes to +∞ in finite time (we

continue to work on the event {τ0(q) <∞}).
Now apply Feller’s test, in the form given by Proposition 5.32 (part (ii)) of [9]. In

particular, bring in the Lyapunov function

m(x) =

∫ x

0

s(y)

∫ y

0

1

s(z)
dzdy where s(x) = exp

(

−β
2

∫ x

0

(a+ ez)dz

)

(s(x) is the derivative of the scale function for v). Since

lim
x→∞

m(x) <∞, while, if a ≥ 0, lim
x→−∞

m(x) = −∞,

the cited form of Feller’s test implies that S =
∫

{t : v(t) /∈ (−∞,∞)} is finite with proba-

bility one. However, it is impossible that v(t) ever hits −∞ (it is easily bounded below by

a Brownian motion with constant drift a). This completes the proof.
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3 Change of measure

Hereafter it is convenient to put the time index in subscripts, i.e., x(t) becomes xt and the

like. To begin, introduce the notation

pλ(c) = Pc(xt never explodes).

Then, by the strong Markov property,

pλ = pλ(∞) = E∞

[

p1(xT ), xt > −∞ for t ∈ (0, T ]
]

, (3.1)

upon choosing

T =
4

β
log λ. (3.2)

The change of measure is now enacted on the expectation (3.1).

Proposition 2. Let h(t, x) be C1 in both variables and bounded for t ≤ T . Then, the law

on paths up to time T induced by

dyt = dbt +

(

h(t, yt) −
β

2

√
λ e−βt/8 sinh(yt)

)

dt, y0 = ∞

is absolutely continuous with respect to that of t 7→ xt, x0 = ∞, subject to xt > −∞, 0 ≤ t ≤
T . Moreover,

pλ = E∞[p1(yT )RT (y·)], (3.3)

in which, for s ≤ T ,

logRs(y.) =

∫ s

0

(f(t, yt) − g(t, yt))dyt −
1

2

∫ s

0

(f 2(t, yt) − g2(t, yt))dt,

f(t, y) = β
4
(a+ 1

2
) − β

2

√
λ e−βt/8 cosh y and g(t, y) = h(t, y) − β

2

√
λ e−βt/8 sinh y.

This is just the formula of Cameron-Martin-Girsanov, applied to the particular case of a

diffusion with explosion for which it is important to point out that the test function p1(xT )

in question vanishes when T is larger than the explosion time. One also notes that the

general form of the y-drift, g(y, t) = a bounded function plus sinh y, allows yt to be started

at +∞ and prevents yt from exploding on [0, T ]. To then carry out the standard proof of

Cameron-Martin-Girsanov in the present context, it must be checked that R−1
t (x), which is

a local martingale by construction, is actually a martingale. But again by the general form

of the y-drift, both f − g and f 2 − g2 are bounded when the path is bounded below, keeping

R−1
t (x) bounded prior to the explosion time of xt. Plainly, R−1

t (x) = 0 at and after the

explosion time.

The first ingredient of the proof of Theorem 1 is the following. Throughout the below,

[x]− denotes the negative part of x ∈ R. Also recall that γ = β
2
(a + 1) − 1.
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Lemma 3. There exists a choice of h in Proposition 2 so that, for appropriate ν, φ satisfying

|ν(t, y)| ≤ κ1 +κ2[y]
− for all t ≥ 0 and constant κ1, κ2, and |φ(t, y)| ≤ φ̂(t) with

∫ ∞
0
φ̂(t)dt <

∞, it holds that

logRT (y·) = −β
2
λ+ 2γ

√
λ+

(

γ(γ + 1)

2β
− 1

2
(a+

1

2
)γ

)

log λ (3.4)

+
β

2
e−yT + ν(T, yT ) +

∫ T

0

φ(T − t, yt)dt.

Once h is in hand, the lemma is readily verified. In particular,

h(t, y) =
β

4
(a +

1

2
) + h1(y) + e−

β
8
(T−t)h2(y) (3.5)

where

h1(y) = − γ

1 + ey
, (3.6)

h2(y) =
1

β sinh(y)

(

(h2
1(y) − h2

1(0)) +
β

2
(a+

1

2
)(h1(y) − h1(0)) + (h′1(y) − h′1(0))

)

.

That both h1 and h2 are uniformly bounded, h1 being integrable at +∞ while h2 is integrable

at both ±∞ figure into the bounds on ν and φ in the lemma.

It is more instructive however to describe how h is discovered, each step achieving suc-

cessive order in λ,
√
λ, etc., and the various bounds claimed in the lemma seen along the

way.

Step 1 begins by expanding out the exponential RT factor with a generic h:

logRT (y·) = −β
2

8
λ

∫ T

0

e−βt/4dt+
1

2

∫ T

0

h2(t, yt)dt−
β2

32
(a+

1

2
)2T (3.7)

−β
2

√
λ

∫ T

0

e−βt/8h(t, yt) sinh(yt)dt+
β2

8
(a +

1

2
)
√
λ

∫ T

0

e−βt/8 cosh(yt)dt

−β
2

√
λ

∫ T

0

e−βt/8e−ytdyt −
∫ T

0

[h(t, yt) −
β

4
(a +

1

2
)]dyt.

By the choice of T , the first term equals −β
2
(λ − 1) which already gives the leading order

and explains the particulars of the sinh y term in the choice of the y-drift. The last term,

coupled with the fact that y0 = ∞, prompts a natural shift of h by the factor β
4
(a+ 1

2
). That

is, h is replaced with h+ β
4
(a+ 1

2
).

Step 2 enacts the above shift, and also introduces the obvious Itô substitution in the

second last term of (3.7),

β

2

√
λ

∫ T

0

e−βt/8e−ytdyt = −β
2
e−yT + (

β

4
− β2

16
)
√
λ

∫ T

0

e−βt/8e−ytdt
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to write:

logRT (y·) = −β
2

8
λ

∫ T

0

e−βt/4dt (3.8)

+
β

2

√
λ

(

γ

2

∫ T

0

e−βt/8e−ytdt−
∫ T

0

e−βt/8h(t, yt) sinh(yt)dt

)

+
1

2

∫ T

0

h2(t, yt)dt+
β

4
(a+

1

2
)

∫ T

0

h(t, yt)dt−
∫ T

0

h(t, yt)dyt +
β

2
e−yT .

This draws attention to line two of (3.8), which should produce the final constant times
√
λ

term. This may be achieved most easily by introducing a deterministic integrand in that

line via the substitution

h(t, y) =
γ

2

e−y − 1

sinh(y)
+ h̄(t, y) := h1(y) + h̄(t, y), (3.9)

so that

γ

2

∫ T

0

e−βt/8e−ytdt−
∫ T

0

e−βt/8h(t, yt) sinh(yt)dt

=
γ

2

∫ T

0

e−βt/8dt−
∫ T

0

e−βt/8h̄(t, yt) sinh(yt)dt.

Evaluating all deterministic factors thus far, step 2 is summarized by

logRT (y.) = −β
2
λ+ 2γ

√
λ+

β

2
e−yT − (β(a+

1

2
) + 2) (3.10)

−β
2

√
λ

∫ T

0

e−βt/8h̄(t, yt) sinh(yt)dt

+
1

2

∫ T

0

h2(t, yt)dt+
β

4
(a+

1

2
)

∫ T

0

h(t, yt)dt−
∫ T

0

h(t, yt)dyt.

The first two terms above exhibit the proposed order λ and order
√
λ factors in the statement

of the lemma, showing that there was not much flexibility in the choice of the (uniformly

bounded) function h1 in (3.9).

Step 3 is to pin down the log λ factor in the exponent (or, equivalently, the T factor). A

look at line two of (3.10) suggests a prescription for h̄:

h̄(t, y) =
2

β
√
λ
eβt/8h2(y) =

2

β
e−(β/8)(T−t) h3(y)

sinh(y)
, (3.11)

in which h3 must be chosen so that h2 is bounded (and more).

With η(t) = 2
β
e−βt/8, we employ Itô’s lemma once more to write the final term in (3.10)

as in
∫ T

0

h(t, yt)dyt =

∫ yt

0

h1(y)dy

∣

∣

∣

∣

T

0

+ η(T − t)

∫ yt

0

h2(y)dy

∣

∣

∣

∣

T

0

(3.12)

−1

2

∫ T

0

h′1(yt)dt−
∫ T

0

η′(T − t)h2(yt)dt−
1

2

∫ T

0

η(T − t)h′2(yt)dt.
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Note that the boundary terms necessitate that our choice of h2, like that of h1, is integrable

at +∞ (= y0). Now expand out the last two lines of (3.10) to read:

∫ T

0

[

1

2
h2

1(yt) +
1

2
h′1(yt) +

β

4
(a+

1

2
)h1(yt) − h3(yt)

]

dt (3.13)

+H1(yT ) +H2(yT )

+

∫ T

0

[

1

2
η2(T − t)h2

2(yt) + η(T − t)

(

h1(yt)h2(yt) +
β

4
(a+ 1)h2(yt) +

1

2
h′2(yt)

)]

dt.

Here H1 and H2 are shorthand for the anti-derivative factors in (3.12). Line one of (3.13)

prompts a choice of h3, namely be

h3(y) =
1

2
h2

1(y) +
β

4
(a+

1

2
)h1(y) +

1

2
h′1(Z) − Γ,

for a constant Γ. And, since h2(y) = h3(y)/ sinh(y) is to be bounded, we find that

Γ =
1

2
g2
1(0) +

β

4
(a+

1

2
)g1(0) +

1

2
g′1(0) =

γ(γ + 1)

8
− β

8
(a+

1

2
)γ,

compare (3.6). In other words, with this choice line one of (3.13) equals 4
β
Γ log λ, the

advertised log λ contribution in Theorem 1.

To finish the proof of the lemma we identify

ν(t, y) = −(β(a+
1

2
) + 2) +H1(y) +H2(t, y), (3.14)

and φ(T − t, y) with the integrand in line three of (3.13). One now checks that h1 and h2 are

indeed uniformly bounded (with constants depending on a and β of course) and integrable

over the positive half-line. This implies that |H1(y)|+ |H2(y)| ≤ κ1 + κ2y
−, and the claimed

bound on ν follows. For the bound on φ, that both h′2 (in addition to h2) and η(T − t) for

t ∈ [0, T ] are bounded implies that |φ(T − t, y)| is less than a constant multiple of η(T − t),

which certainly suffices.

4 Constant term

The conclusion of the previous section is that

pλ = e−
β
2
λ+2γ

√
λλ

γ(γ+1)
2β

− 1
2
(a+ 1

2
)γ

eλ

with

eλ = E∞

[

p1(yT )e
β
2
e−yT +ν(yT )+

R T
0 φ(T−t,yt)dt

]

, (4.1)

and ν and φ satisfying the bounds outlined in Lemma 3. It remains to show that the existence

of a (non-zero) constant e = e(a, β) such that limλ→∞ eλ = e. This is again structurally

identical to [14].
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The first observation is that the E∞ integration is performed over paths that are mono-

tonically decreasing in T . The nicest way to see this is to replace the integration over

yt, 0 ≤ t ≤ T with that over

yTt = yt+T , −T ≤ t ≤ 0

which satisfies

dyTt = dbt + (h(t+ T, yTt ) − β

2
e−t sinh yTt )dt, yT−T = ∞.

If this family of processes is run on the same Brownian motion, t 7→ bt, it follows that

yT1
t ≤ yT2

t for t ≥ −T2: by definition yT1
−T2

< yT2
−T2

and the evolution maintains the ordering.

Denote this sequence of corresponding expectations simply by E and record that

eλ = E[p1(y
T
0 )eψ(yT )], ψ(yT ) =

β

2
e−y

T
0 + ν(T, yT0 ) +

∫ T

0

φ(t, yT−t)dt. (4.2)

Next, pick a constant h0 such that

inf
−∞<y<∞,−T<t<0

h(t+ T, y) > h0

(a look at (3.5) and (3.6) shows this is possible), and introduce the stationary diffusion t 7→ zt

on the negative half-line with generator

L =
1

2

d2

dz2
+ f(z)

d

dz
, f(z) = h0 −

β

2
sinh z,

and reflected (downward) at the origin. In particular, for all t ≥ −T , P(zt ∈ dz) = m(dz)

where

m(dz) = κ0e
2h0z−β cosh z dz, z ∈ (−∞, 0], (4.3)

and κ0 is the appropriate normalizer. This is the well-known formula for the speed measure

(see for example [8]), or one may check that
∫ 0

−∞Lφ(z)m(dz) = 0 for all smooth φ satisfying

φ′(0) = 0.

Again running zt on the same Brownian motion, it holds that yTt ≥ zt > −∞ for all

t ∈ [−T, 0]. This is plain at the starting time, and continues by the domination (from below)

of the yT -drift by that of z. It follows that there exists a random variable y∞t > −∞ such

that

lim
T→∞

yTt = y∞t almost surely for each t ∈ (−∞, 0]. (4.4)

To pass this convergence under the E-expectation we prepare the following (and defer the

proof to the end of the section).

Lemma 4. The function x 7→ p1(x) is continuous, strictly positive on x > −∞ and satisfies

p1(x) ≤ κ3e
−β

4
e−x

(4.5)

for a constant κ3.
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Courtesy (4.4) and the first statement in Lemma 4 we have that

lim
T→∞

p1(y
T
0 )eψ(yT ) = p1(y

∞
0 )e

β
2
e−y∞0 +ν(∞,y∞0 )+

R ∞

0 φ(t,y∞−t)dt (4.6)

:= p1(y
∞
0 )eψ∞(y∞),

using continuity (for the first three factors) and dominated convergence (for the last factor).

The evaluation ν(t, y)|t=∞ simply has the effect of setting of one H2-terms of which ν is

comprised to zero, recall (3.14).

Next, by the estimates on ν, φ from Lemma 3 and (4.5), there are the bounds

κ−1
4 p1(y

T
0 )e−κ5[yT

0 ]− ≤ p1(y
T
0 )eψ(yT ) ≤ κ4e

κ5[yT
0 ]−+(β

2
−β

4
)e−[yT

0 ]−

, (4.7)

with positive constants κ4, κ5.

Note that both bounds in (4.7) depend only on the marginal of the process at time 0,

and denote the left and right hand sides by p−(yT0 ) and p+(yT0 ) respectively. Invoking again

the path-wise control, yTt ≥ zt, t ∈ [−T, 0] we have that

p1(y
T
0 )eψ(yT ) ≤ p+(z0), E[p+(z0)] =

∫ 0

−∞
p+(z)m(dz) <∞,

where m is defined in (4.3). Returning to (4.1), (4.6) and dominated convergence now

produce

lim
λ→∞

eλ = lim
T→∞

E[p1(y
T
0 )eψ(yT )] = E[p1(y

∞
0 )eψ∞(y∞)] := e,

defining the constant e in the statement of Theorem 1. That e is not equal to zero follows

from

e ≥ lim inf
T→∞

E[p1(y
T
0 )eψ(yT )] ≥

∫ 0

−∞
p−(z)m(dz) > 0.

Here we have used that z 7→ p−(z) is decreasing in order to replace yT -paths with z-paths,

along with the fact that p1(z) (and so too p−(z)) is strictly positive (Lemma 4). This

completes the proof of Theorem 1, granted the below.

Proof of Lemma 4. The continuity follows from that of the transition density p(·, x, y) in

both space variables (the corresponding generator is hypo-elliptic).

To see that p1(x) > 0, first note that the operator Lβ,a defined in (2.1) which encodes

the point process of eigenvalues is positive and compact. A proof that Lβ,a is in fact (almost

surely) trace class is contained in Lemma 6 of [10]. Its maximal eigenvalue, Λ−1, is therefore

almost surely bounded above, and so there exists a small enough λ0 > 0 such that pλ0 =

pλ0(∞) > 0. Next, by the Markov property,

pλ0(∞) =

∫ ∞

∞
p(t,∞, x)pλ0e−βt/4(x)dx,

10



and it follows that for every t > 0 there is a x0 such that pλ0e−βt/4(x0) > 0. Applying the

same formula once again, we find that for any z ∈ R

p1(x) ≥
∫ ∞

z

p(s, x, y)pe−βs/4(y)dy ≥ Px(xs ≥ z)pe−βs/4(z).

To finish, choose s = t− 4
β

log λ0 and then set z to be the appropriate x0.

For the bound (4.5) we can restrict to x less than some large negative constant, and note

that p1(x) is bounded by the probability of non explosion for the following process

dỹt = dbt +
β

4

(

a +
1

2

)

− β

4
e−βt/8e−ỹt .

since the downward drift on ỹ is weaker than that of x. Next make the change yt = ỹt +
βt
8

to obtain the homogenous process

dyt = dbt +
β

4

(

a+ 1 − e−yt
)

,

to which we can apply a version of Feller’s test, similar to what was done at the end of

Section 2. A scale function for the y-process is

s(y) =

∫ y

0

exp{−β
2

[

(a+ 1)ξ + e−ξ − 1
]

} dξ,

and the probability that this process exits through +∞ is exactly the probability of not

exploding. This follows by checking the conditions of now Proposition 5.22 of [9]. According

to that same proposition, the exit probability equals

s(x) − s(−∞)

s(+∞) − s(−∞)
=

1

Z

∫ x

−∞
exp{−β

2

[

(a+ 1)ξ + e−ξ
]

} dξ,

from which the required bound easily follows.
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