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Abstract We provide a mild mizing condition that carries the C.L.T. for normalized empirical
means of centered stationary sequence of bounded random variables to the whole range of moderate
deviations. It is also key for the exponential convergence of the laws of empirical means. The mo-
tivating example for this work are iterates of expanding maps, equipped with their unique invariant
measure.

1 Introduction

Let {X;} denote a realization of a centered stationary process with values in the unit ball of IR%. Let

S, = Y™, X;. Suppose that the normalized empirical means S,, = S,,/v/n converge in distribution

to a Gaussian law of zero mean and covariance matrix V and define

1) = sup {(\,7) — 5\ VX)) 1)
A€R4

We say that S, satisfies the Moderate Deviation Principle (MDP) with the above rate function if

for every Borel set I and any a,, | 0 such that na, — oo,

— xiélrfo I(z) < linn_l)icgf an log P(v/a, 5, €T) (2)
< limsupay, log P(va,S, € T') < — inf I(z) (3)
n—00 zel
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Our goal is to provide an MDP for S, under the following mixing condition.

(M) There exist ¢ > 0 and cp, £y < oo, such that for any £ > £y and /-separated intervals I; there

exist independent random variables {S;}, such that for every 6 € (0,q) and m < oo

E(ee 2111 |Zj57i Xj_gi') < 6960m . (4)

Our main result is:

Theorem 1 If (M) holds in addition to the C.L.T. then S, satisfies the MDP with the rate function

I(:) of (1).

Suppose {X} is a realization of a discrete time Markov process of transition kernel 7 on the

unit ball of IR¢, with X distributed according to x which is an invariant measure for 7. The next

lemma provides a simple sufficient condition for (M) in this case.

Lemma 1 The condition (M) holds if there exist ¢ > 0, co,ly < oo and N C IR? such that

u(N) =0 and for every u > cy/2

~ ~ N 1 _
sup P [¥j — )| > ulYy = y, ¥ = §) < Feoge ", (5)

where {Y;} and {Y;} are coupled realizations of the Markov process of transition kernel m such that

Y, € a(?k,l,Yk,Yk,l, Uy) for an independent sequence {Uy} of independent variables.

Proof: Fix the /-separated intervals I; = [s;,t;) such that s; > t;_1 + £y for all i setting to = 0
without loss of generality. Choose f/tl for s =0,...,m—1 independently according to law u and let
{17]} evolve for j € [t;_1,;) according to the kernel 7. Set X = Yy andfori =1,...,m let X;=Y;,

J € (ti—1,t;) be the Markov process realization coupled to {17] : § € [ti1,ti)}, with Xy, arbitrarily



chosen according to 7(-|Xy_1). Then, {X;} is a realization of the Markov process of transition
kernel # with X distributed according to u. Moreover, this construction ensures the independence

of S; = E?;sli 17'] Since with probability one {Y,, 17}1 :1=0,1,...,m} and N are disjoint, it follows

by the uniformity of (5) with respect to y,y ¢ N that for every u; € R, i =1,...,m,

= ) 1 oqu;
P({‘ Z Xj — Sz‘ > U; 1 1= 1, e ,m}) < H (Ecoqe QquzluiZCO/Q + 1Ui<60/2) . (6)
]'Ei; =1

By Fubini’s theorem, for any § > 0 and any random vector v = (v1,...,vy) € R™,
E [eoE:’:l ”"] = /GmeazgluiP({vi >u;i=1,...,m})dus - dup, , (7)
Moreover, for any 6 € (0, q),

S 1
/ fedv (Ecoqe_Qqulcho/z + 1u<00/2) du < 6060/2(1 +0¢p/2) < edeo ,
—00

using which (4) follows from (6) and (7). U
We say that n=1S,, — 0 with exponential tails if for every 5 > 0

limsupn~'log P(jn"1S,| > 1) <0, (8)

n—oo

that is, if the law of n~1S,, converges exponentially rapidly to its limit. This property holds for the
empirical means n~'S,, of a ¢-mixing bounded process {X;} (c.f. [3, Section 5] and the references

therein). While (M) does not imply that {X,} is ¢-mixing, we show that
Proposition 1 If (M) holds then n='S, — 0 with ezponential tails.

In contrast with the strong mixing condition (S) of [2] and the mixing assumptions of [8], the

condition (M) involves approximation by independent random variables instead of approximation



of laws by the product measure. This is apparent in our motivation for the assumption (M) which
comes from the study of iterates of expanding maps. The latter result with discrete time Markov
processes on the compact space [0,1] which fail to satisfy the uniform mixing assumptions of [4],
needed for a Donsker-Varadhan type LDP. Indeed, for some atomic initial measures they satisfy
neither LDP nor MDP. Nevertheless, as we show in Section 2 they satisfy the condition (5) hence
the MDP for the normalized empirical means of such processes is a direct corollary of Theorem 1

and the convergence with exponential tails of the empirical means follows from Proposition 1.

The regeneration structure of iterative expanding maps is discussed in [7] and sufficient condi-
tions for MDP to hold for Markov processes are provided in [9]. However, we do not see how these

works may provide the MDP in the case dealt with here.

In Section 3 we provide the proof of Theorem 1. Its proof relies on the next lemma which uses

(M) to control exponential moments in the convergence in distribution of S,,.

Lemma 2 The condition (M) implies that for any A € IR?

limsup E((\, 8,)?) < oo = limsup E(eM) < o0.

n—oo n—oo

The proof of Lemma 2 is provided in Section 4, and that of Proposition 1 in Section 5.

2 Application to iterates of expanding maps

Let h: I = [0,1] — I be piecewise monotone, C' and uniformly expanding: that is, there is a finite
set U = U(h) of points

O=uwy<ur <---<um=1



in I such that, for each interval J; = J;(h) = (u;—1,u;), both h restricted to J;, and its continuous

extension to [u;_1,u;] are C' and monotone, satisfying

1 < inf |W(z)|], supl|h'(z)|<oc.
TE€J; z€J;

The iterates of h are denoted by h, and Lebesgue measure on I by A. Following [1] assume that
A1 \(T') € {0,1} whenever A(I'Ah,(I")) = 0 for some r > 1;
A2 for some r > 1, |h, }(z)| > 4 for all z ¢ h,(U(h,));

A3 h' is piecewise Holder continuous with some positive exponent.

Then, there is exactly one invariant measure y for h which is absolutely continuous with respect
to A\. Consider the stationary centered process X; = h;j(Xo + &) — & for £ = [adp and Xo + ¢

distributed according to p. Let {Y};} be the corresponding time reversal Markov process. Note that
the law of Sy is identical to that of —~ Y-7_; ¥; and the C.L.T. for S, follows as in [6, Theorem 5].
Moreover, assuming A1-A3, by [1, Theorem 3.4] there exist ¢ > 1, >0, K < o0, aset N C [

with 4(N) = 0 and coupled realizations of the reversal Markov process {Y;}, {¥;} such that for

every y ¢ N, § ¢ N and every non-negative integers ¢, k,

POY Y-V > 2k+(1—c 1) Yo =y, Yo = §) < P(supd|YV;-Yj| > Yy = 3, ¥ = §) < Ke PR
7>t 320

Consequently, (5) holds for ¢ = glogc >0, cog = 2/(1 —c 1) < oo and £y such that %coq >

KP(teo/4=to) - Applying Lemma 1 and Theorem 1 we conclude that S, satisfies the MDP with

rate function I(z) = z2/(2v) for v = lim,_,o, Var($,). Similarly, by Lemma 1 and Proposition 1

we conclude that n~1S,, — 0 with exponential tails.



3 Proof of Theorem 1

Fix ay, | 0 such that na,, — co. Fix € > 0 and a large integer K, let t = 2K /e and

o= KU, =[]

ta,

(whereas any K shall do for the upper bound (3) we need K — oo for the lower bound (2)). Let
I for i = 1,...,my, denote the intervals of length [tna,| each, separated by the intervals J* of

length +,, each, with J* = {1,...,v,} immediately followed by I}, J3, etc. Note that the intervals

I, Iy, I, cover {1,...,n}. Lowering the value of m, and shortening the length of I},
and Jy,  if needed, we shall assume hereafter that the union of I* and J* is exactly {1,...,n}. Let

g >0, ¢g < oo and £y < co be as in condition (M). Considering the intervals I7, for 7, > £y the

condition (M) then ensures the existence of the independent random variables {S'Z”}, 1=1,...,my,

for which (4) holds.

Upper bound. By Chebycheft’s inequality, suffices for the upper bound (3) to show that for every
A e R?

lim sup a,, log M, (X) <

n—oo

AV, 9)

N —

where
My (3) = B(eM5/Vem)
(c.f. [5, Proof of Theorem 2.3.6(a)] for such an application of Chebycheff’s inequality). Since

| 30 2 jen Xj/v/nan| < |A|Kmy, it follows by the choice of ¢ = 2K /e that

lim sup ay, log My, (\) < lim sup a,, log My, (A) + |Ale, (10)

n—o0 n—oo

where

Mo(\) = B (eXa™0) =T 0) = (A, Y Xj)/Vnan.

JEIP



Defining

Vi=|), X; =8¢, T =TP0) = (\S7)/Vnan, (11)

jEIP
by (4) form =1 and 0 = 6, = |A|/(e(1 — €)y/nay,) — 0, we see that
E (eT,-"/(l—f)) < E (eTi"/(l—f)e\AlVi/(l—G)\/m)

< E€ (eanVi) E(l—e) (eTin (1—5)2) _ (1 + 0(1))E(1—€) (eTi"/(l—e)2) - (12)

Using (4) again, now for m = my, and 8 = 6,, = |\|/(ey/nay) — 0, the independence of T implies

that

IN

M,()\) E (eZ, " (O Vit T ))

IN

e (ean Oy lv,) Jole 80 (e(l—e)—lzg Tl")

IN

e€Oncomn p(1—e) (e(l_f)_l S ’fln)

IN

1—e
o(1)/an lHE( T )(1—e )] ) (13)
Since a,m, — t~!, combining (12), (13), by the stationarity of {X;} we have that
J

1imSUPGn10gMn()\) < 711 —€)? limsupm,, 1ZlogE (/0= 6)2)

n—oo n—o0 i=1

= t (1 —¢)?limsuplog E(e\/f()\,grtnanﬂ/(l*)z) )

n—oo

By the C.L.T. for S‘[m a,] @nd Lemma 2 we thus have

1
lim sup a,, log My, (\) <

msu SN

which in view of (10) establishes (9) by taking € — 0.



Lower bound. Recall that I(z) < oo only if z = V\ for some A € R, in which case I(z) =

(A, VA)/2. Hence, fixing z = VA, A € R? and ¢ > 0, suffices for the lower bound (2) to show that
liminf ay log P(|v/a, Sy — z| < 4¢) > —I(z) (14)
(c.f. [5, inequality (1.2.8)]). For all n large enough, |\/a, > ;2" Yjen X;/+/n| < e, implying for V;

as in (11) that

P(|Va,5, — x| <4€¢) > P (\\/an/ni Y Xj—3|< 36)

i=1jelp

> P(Y. \fan/nS? o] < 20) — P(yfan/nY Vi > o)
i=1 i=1
> T P(mafan/ns — 2| < 2¢) — P(Jan/nS Vi>¢),  (15)
=1 =1

where the last inequality follows by convexity of {y : |y — 2| < 2¢} and the independence of S?. By

the stationarity of {X,} and since mp\/TtnayJan/n — 1/v/t while yymp/an/n — €/2, for all n

large enough,
~ 1 4
P(Impy/an/nS; — x| < 2¢) > P(|%S[tnan] —z| <€) —P(Vi>v).

Applying (4) for m =1 and 0 = 1/,/7, — 0 we see that sup; P(V; > 7,) — 0. Thus,

mMn

~ 1 1 .
PP n P SN 1 _
hgégfhnlg&lfan logi:r[lP(|mn an/nS; — x| <2) > hggégft lim inflog P(| \/Esftnaﬂ z| <)
1
> _§<>‘a V)‘> = _I($) ) (16)

where the last inequality follows by the C.L.T. for S ltna,) and the large deviations of the Gaussian

law of zero mean and covariance matrix V. By Chebycheff’s inequality and (4) for m = m,, and



0 =0, =2t/\/na, — 0,

P(\/an/nZVi >¢) < e K/ p(ehn 2 Vi) < g K/angncomn — g=(K+o(1))/an (17)
i=1

Combining (15), (16) and (17) we establish (14) by first taking n — oo followed by K — oo (hence

t =2K/e — oo as well). O

4 Proof of Lemma 2

Let ¢ > 0, co, £y < 0o be as in condition (M) and fix A € R? for which C(\) = sup,, E((\, Sin)?) <
oo. Let J* = {1,...,4y} followed by the interval IT" of length m followed by the interval J§* of
length ¢j etc. defining
Mn(N) = B (e2im 70 L mm = 1m(0) = (A, 3 X;)/m.
JEIM
Since | X;| < 1 and M,,,(\) > 1, for any m > £y + 1 and any n € [m? + mly, (m + 1)? + (m + 1)4;]

we have

E(eMSn)) < eAEt3) jr () .

Hence, suffices to show that

lim sup M, (\) < oo (18)

m—0o0

Fixing ¢ > 0 and m > |A|/(e(1 — €)g), the condition (M) ensures the existence of independent

variables S for which (4) holds. Let

Vi=| > X;= 8", I =TV = (A 8")/m.
JEI™



Then, by (4) for 6,, = |A|/(me) < ¢ and the independence of {7},

=
e
A

~ < E (ezj;l T pebm Y0, v,)

IN

E(0-9 (6(1_6)71 i fim) E¢ (eam Yo V¢)

IN

m B 1—e€
(H E(e(le)lTim)> elAeo (19)

=1

By stationarity of {X;} the law of 7" is independent of 7. Hence, similar to the derivation of (19)

we get,

NGO N9
<H E(e(17€) Tim)> <H E(eme(l—e)Vi)>

=1 =1

N
—3
&

a
o
|
Ko
L
o
3
N——
—
-
IN

IN

[E (6(1—6)_2Tm):|m(1_5)2 e|/\\co . (20)
Note that |T™| < |A|, while E(T™) = (A, EX) = 0 and

m sup E ((Tm)Ze‘ng) < MNE(), 5,)?) <o) .
£e(0t]

Consequently, for all m and ¢ > 0,

E (etTm) <1+4+tE(T™)+ ﬁ sup E ((Tm)Qeme) <1+ ﬁetwo()\) ,
- gefo.) - 2m
impling that
—2rm 1—¢€)?
lim sup [E (e(lfe) T )]m( ) <00 (21)
m—0o0
Combining (19), (20) and (21) we establish (18). 0

10



5 Proof of Proposition 1

For every A € IR? let

An(A) = n " log E(e™M%)), A(X) = limsup A, (), DA(A):leiﬁ)lO_lA(GA).

n—0o0

With ¢ > 0, ¢p,4p < oo as in (M) fix £ > 1 integer, setting m, = [n/(k + £)|. Let {I}* :
i = 1,...,my} be fy-separated intervals of size k within {1,...,n} and S’z” the corresponding

independent variables. Applying (4) and Cauchy-Schwarz, by the independence of S¥ and the

stationarity of { X}, for |A| < ¢/4
T o088 N 2(7,87) 1 4(X,Sk)
logE(e 1 ) ;logE(e ) S?co\)\|mn+2mnlogE(e & ) .

Applying yet again (4) and Cauchy-Schwarz,
An(N) < 0 (lomn + k + o + comp)|A| + (2n) ' log E (6221"1 2<A,s":‘>) .
With m,, /n — k™1, it follows that
AN < k™Ml + 2¢0)|A| + (4k) ' log E (e4<’\’5’°>) . (22)
Since |Si| < k and ESj, = 0, (22) implies that for every A € IR%,

DA(N) < k(8 + 2¢o)|A| + &1 1ti¢%1t*1 log E (et<’\’s’°>) =k (o + 2¢0)|A| = ro00 0. (23)

Let {uy: £ =1,...,2d} be vectors of unit norm such that |z| < d'/? max,(uy, z) for every z € IR%.

By Chebycheff’s inequality, for any 6§ > 0,

P(In"18,| > 1) < Qd%ch(dl/Q(ue,Sn) >nn) < 2dr§_zlilx en(An(8d!/ue)—bn)

11



By (23), maxy A(6d"/?uy) < 65/2 for all @ > 0 small enough. Using such a value of 6,

limsupn ™' log P(|n"'S,| > 1) < I?Q_étil)cA(Gdl/QUg) —6n< —6n/2<0,

n—0o0
and n~!'S,, — 0 with exponential tails since 5 > 0 is arbitrary. L]
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