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Abstract

We study the empirical measutg,, of the eigenvalues of non-normal
square matrices of the ford, = U,D,V,, with Up,V, independent Haar dis-
tributed on the unitary group and, real diagonal. We show that when
the empirical measure of the eigenvaluedDgfconverges, an®, satisfies
some technical conditiond,s, converges towards a rotationally invariant
measure on the complex plane whose support is a single mngarticular,
we provide a complete proof of Feinberg-Zee single ring teeo[5]. We
also consider the case whelg,V, are independent Haar distributed on the
orthogonal group.

1 The problem

Horn [15] asked the question of describing the eigenvalfiasquare matrix with
prescribed singular values. Afis an x n matrix with singular values; > ... >
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s, > 0 and eigenvaluek;, ..., A, in decreasing order of absolute values, then the
inequalities

k k n n
H gH sj, if k<n and [ I=]]s 1)
j=1 j=1 j=1 j=1

were shown by Weyl [25] to hold. Horn established that thesesvall the rela-
tionships between singular values and eigenvalues.

In this paper we study the natural probabilistic versionto$ tproblem and
show that for “typical matrices”, the singular values altndstermine the eigen-
values. To frame the problem precisely, $x> ... > s, > 0 and considen x n
matrices with these singular values. They are of the férea PDQ, whereD is
diagonal with entries;j on the diagonal, anB Q are arbitrary unitary matrices.

We makeA into a random matrix by choosing and Q independently from
Haar measure ofi/(n), the unitary group oh x n matrices. Lef\1,..., A, be the
(random) eigenvalues @& The following natural questions arise.

1. Are there deterministic or random s¢t}, for which one can find the exact
distribution of {Aj}?

2. Letls=%>"" ;85 andLa = 7, 8, denote the empirical measures
of S= {sj} andA = {Aj}. Supposes, are sets of siz& such thatlg,
converges weakly to a probability meas@rsupported orR ;. Then, does
L converge to a deterministic measyren the complex plane? If so, how
is the measur@ determined byp?

3. For finiten, for fixed S, is La concentratedn the space of probability mea-
sures on the plane?

In this paper, we concentrate on the second question andeaiitsin the affir-
mative, albeit with some restrictions. In this context, vaeenthat Fyodorov and
Wei [, Theorem 2.1] gave a formula for the mean eigenvalaeesidy ofA, yet in
terms of a large sum which does not offer an easy handle on@syimproperties
(see alsol]6] for the case whelteis a projection). The authors dfl[7] explicitely
state the second question as an open problem.

Of course, questions 1-3. above are not new, and have betedsin various
formulations. We now describe a partial and necessarilgflnistory of what is
known concerning questions 1. and 2.; partial results aomoeg question 3. will
be discussed elsewhere.



The most famous case of a positive answer to question 1. i&ithibre en-
sembleseel[8], and its asymetric variant, s2el[17]. (There areespitfalls in the
standard derivation of Ginibre’s result. We referltol[16] éodiscussion.) Another
situation is the truncation of random unitary matrices ctiégd in [26].

Concerning question 2., the convergence of the empiricalsore of eigen-
values in the Ginibre ensemble (and other ensembles refatgdestion 1.) is
easy to deduce from the explicit formula for the joint distition of eigenvalues.
Generalizations of this convergence in the absence of sqyglicie formula, for
matrices with iid entries, is covered undgirko’s circular law, which is described
in [9]; the circular law was proved under some condition&2jignd finally, in full
generality, in[[10] and]22]. Such matrices, however, do patsess the invari-
ance properties discussed in connection of question 2. siffgge ring theorem
of Feinberg and Zee [5] is, to our knowledge, the first exanwghere a partial
answer to this question is offered. (Various issues of cagerece are glossed over
in [B] and, as it turns out, require a significant effort to mame.) As we will see
in Sectior B, the asymptotics of the spectral measure aimggarquestion 2. are
described by the Brown measureRfliagonal operators. (The Brown measure is
a continuous analogue of the spectral distribution of nonval operators, intro-
duced in[3].)R-diagonal operators were introduced by Nica and Speicrajrifl
the context of free probability; they represent the weaktil (or more precisely,
the limit in x-moments) of operators of the forthD with U unitary with size
going to infinity andD diagonal, and were intensively studied in the last decade
within the theory of free probability, in particular in coaction with the problem
of classifying invariant subspaces [12] 13].

2 Limiting spectral density of a non-normal matrix

Throughout, for a probability measupesupported oR or onC, we write Gy, for
its Stieltjes transform, that is

Gu(z) — / H(dx)

Z—X

G, is analytic off the support of. We let #; denote the Haar measure on the
n-dimensional unitary grougi(n). Let {P, Qn}n>1 denote a sequence of inde-
pendent H,-distributed matrices. LdD, denote a sequence of (possibly random)

diagonal matrices with real positive entri&s= {si(”)} on the diagonal, and intro-



duce theempirical measuref thesymmetrizedersion ofD,, as

1 n
L _ 6n 6 ni -
S 2niz_;[ o+ _§<>]

We write Gp,, for G . For a measurgt supported oriR ., we write {1 for its
symmetrized versiomhat is, for any 0< a < b < oo,

f([—a, ~b)) = i(fa.b]) = SH([a.b).

Let An = P.DnQn, letAn = {)\i(”)} denote the set of eigenvaluesAy, and set

1 n
i=

We refer toLa, as the empirical spectral distribution (ESD) &f. Finally, for
any matrixA, we set||A|| to denote th&? operator-norm of, that is, its largest
singular value.

The main result of this paper is the following.

Theorem 1. Assume{Lp, }n converges weakly to a probability meas®@eom-
pactly supported ofR .. Assume further

1. There exists a constant M0 so that

fim (D] > M) = 0. @

2. There exist a sequence of evefia } with P(G5) — 0 and constants, & >
0 so that for any z C, with o7 the minimal singular value of zt A,

E(15,1(6zn-s)(logaf)?) < & (3)

3. There exist constants K, k' > 0 such that, for all n large,

~ _ < 1 —k’ .
G5(2) = G0,(2)| < g 0@ >n (4)
4. There exists a constaki such that
|Gs(2)] <k1 on CT . (5)
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Then the following holds.

a. La, converges in probability to a limiting measurg, potationally invariant
in C.

b. The measuregipossesses a radially-symmetric dengitywith respect to
the Lebesgue measure @i which is characterized as follows. ForzC,
let v2:= O WAy, whereA; = %(6|Z| +0_|z) is the symmetric Bernoulli
measure with atoms dt—|z, |z|}, andEB denotes free convolution. Then,
pa(z) = %[Az(f log|x|dv?(x)), whereA, denotes the Laplacian with respect
to the variable z.

c. The support of pis a single ring: there exist constan®s< a < b < o so
that _
suppua = {re'® :a<r <b}.

Further, a= 0if and only if [ X 2d@(x) = .

See Remarkl6 for an explicit characterization of the freevolution appearing
in Theorentd, and]1, Ch. 5] for general background. A difféi€haracterization
of pa, borrowed from[[11], is provided next.

Remark 2. We provide, following[[1ll, Theorem 4.4 and Corollary 4.5}, ater-
native characterization qfa and its support. Recall th&({0}) = 0 by Assump-
tion[H. Let®* denote the push forward @ by the map — 72, i.e. © is the
weak limit of { LD%}. Let.s denote theStransform of@? (see [T1, Section 2] for
the definition of theStransform of a probability measure dnand its relation to
the R transform). Defind=(t) = $(1/v/t—1) on D = (0,1]. Then,F maps? to

the interval 1

(a,b] = (<fxzde(x))l/z,(/dee(x))l/z],

and has an analytic continuation to a neighborhoo®péndF’ > 0 onD. Fur-
ther, withpa(re'®) = pa(r), it holds that

1
_ ) wEEmy re@b),
Pa(r) {O, otherwise ©)

Finally, pa has an analytic continuation to a neighborhoodaob.



Theorentll is generalized to the case whéyg/, follow the Haar measure on
the orthogonal group in Theordml16.

As a corollary of Theorerfil1, we prove the the Feinberg-Zeedlsi ring the-
orem”.

Corollary 3. LetV denote a polynomial with positive leading coeffici¢et. the
n-by-n complex matrix xbe distributed according to the law

Ziexp(—ntrV(XX*))dX,
n

where % is a normalization constant and dX the Lebesgue measure lmpm-
complex matrices. Lety be the ESD of X Then{Lx, }n satisfies the conclusions
of Theorent]l witl® the unique minizer of the functional

Jvo@iaux — [ [1ogh - yPlduxdic

on the set of probability measures p&n.

Corollary[3 will follow by checking that the assumptions dfidoreniL are
satisfied for the spectral decompositiin= U,DnV,,, see Sectiohl6.

The second hypothesis in Theor€in 1 may seem difficult towarifeneral;
we show in the next corollary that adding a small Gaussiamixngiarantees it.

Corollary 4. Let (Dn)n>0 be a sequence of matrices satisfying the assumptions
of TheorentIl except fqB) and assume thatD 1| is uniformly bounded. Let

Nn be a nx n matrix with independent (complex) Gaussian entries aj r@gan

and covariance equal identity. LeklY/, follow the Haar measure on unitary-nn
matrices. Then, the empirical measure of the eigenvalués efU,DnV,+n"YN,
converges weakly in probability toyjas in Theorerfill for anye (%, ).

Example 5. An exemple of sequend®,)n>o satisfying the hypotheses of Corol-
lary [ is given as follows: tak§r a compactly supported probability measure
on R**. Assume the inversé ! of the distribution functiorF (x) = p([0,x])
is Holder continuous and thathas a uniformly bounded Stieltjes transform on
C*. Then the diagonal matri®,, with entries

s =inf{s: u([0,9]) > ln}, 1<i<n,

satisfies the hypotheses of Corolléty 4.
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The main difficulty in studying the ESD,, is thatA, is not a normal matrix,
that isAnA; # ALAn, almost surely. For normal matrices, the limit of ESDs can
be found by the method of moments or by the method of Stiéltjeasforms.
For non-normal matrices, the only known method of proof iseniadirect and
follows an idea of Girko[[B] that we describe now (the details a little different
from what is presented in Girkdl[9] or Bail[2]).

From Green'’s formula, for any polynomiBlz) = H?:l(z—)\j), we have

%[/Alp(z) log|P(z)|dm(z) = ;w(h), for anyy € CZ(C),

wherem(-) denotes the Lebesgue measure(an Applied to the characteristic
polynomial ofA,, this gives

Jw@dia@ = o [ Bu()log|detzi— Ayldmiz
C

- %m/Al]J(Z) logde{zl — An)(zl — An)"dm(z).
C

It will be convenient for us to introduce tha&a % 2n matrix

z. 0 zl - Aq

It may be checked easily that eigenvaluedigfare the positive and negative of
the singular values dfl — A,. Therefore, if we levj denote the ESD dfi7,

1 1 _
[ 5900 = et (=D
then
1 * 1 y4 z
n logde{zl — An)(zl — An)* = o logdetH;| =2 [ log|x|dvy(X).
R

Thus we arrive at the formula
[v@dLa@ =5 [owa [ / Iogxdvﬁ(x)] amz). @
C R

This is Girko’s formula in a different form and its utilityds in the following
attack on finding the limit oL, .



1. Show that for (Lebesgue almost) every C, the measuresj converge
weakly in probability to a measur¢ asn — o, and identify the limit.
SinceHf are Hermitian matrices, there is hope of doing this by Heenit
techniques.

2. Justify that[ log|x|dvj(x) — [log|x|dvZ(x) for (almost everyy. But for
the fact that “log” is not a bounded function, this would héakowed from
the weak convergence of, to v%. As it stands, this is the hardest technical
part of the proof.

3. A standard weak convergence argument is then used in tardenvert the
convergence for (almost evergpf v to a convergence of integrals over
Indeed, settind(z) := [ log|x|dv?(x), we will get from [8) that

[w@dLa@ — 5. [ 842 @iz, ©

C

4. Show thah is smooth enough so that one can integrate the previous equa-
tion by parts to get

[ w@dLa@ - 5. [ W@ sn@dna). (10
C

which identifiesAh(z) as the density (with respect to Lebesgue measure) of
the limit of La,,.

5. Identify the functiorh sufficiently precisely to be able to deduce properties
of Ah(z). In particular, show theingle ring phenomenon which states
that the support of the limiting spectral measure is a sirgleulus (the
surprising part being that it cannot consist of severabdsjannuli).

Girko’s equation[{B) and these five steps give a general edoipfinding limiting
spectral measures of non-normal random matrices. Whetigetan overcome the
technical difficulties depends on the model of random matni& chooses. For the
model of random matrices with i.i.d. entries having zero maad finite variance,
this has been achieved in stages by Bhi [2], Gotze and TikioerfiL0], Pan and
Zhou [19] and Tao and VU [22]. While we heavily borrow from tisequence, a
major difficulty in the problem considered here is that noependence between
entries of the matriXd, is present here. Instead, we will rely on properties of the
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Haar measure, and in particular on considerations borrdveed free probability
and the so calle&chwinger—Dysofor master-loop equations. Such equations
were already the key to obtain fine estimates on the Stigfgesform of Gaussian
generalized band matrices [n]14]. [n [4], they were usedudysthe asymptotics
of matrix models on the unitary group. Our approach combideas of [14]
to estimate Stieltjes transform and the necessary adapsatd unitary matrices
as developped iri_[4]. The main observation is that one cancesdttention to
the study of the ESD of matrices of the forf + U )(T +U)* whereT is real
diagonal andU is Haar distributed. In the limit (i.e., wheh andU are replaced
by operators in £*-algebra that are freely independent, withbounded and self
adjoint andJ unitary), the limit ESD has been identified by Haagerup andém
[11]. The Schwinger—-Dyson equations give both a charaagan of the limit
and, more important to us, a discrete approximation thatoeansed to estimate
the discrepancy between the pre-limit ESD and its limit. Sehestimates play a
crucial role in integrating the singularity of the log in $tewo above, but only
once an a-priori (polynomial) estimate on the minimal slagwalue has been
obtained. The latter is deduced from assumgdilon 3. In theexoof the Feinberg—
Zee single ring theorem, the latter assumption holds du@ tadaptation of the
analysis of[[21].

Notation

We describe our convention concerning constants. Throutghy the wordcon-
stantwe mean quantities that are independeni ¢br of the complex variables
z, z1). Generic constants denoted by the let@ys or R, have values that may
change from line to line, and they may depend on other paemheConstants
denoted byC;, K, k andk’ are fixed and do not change from line to line.

3 An auxiliary problem: evaluation of v* and con-
vergence rates

Recall from the proof sketch described above that we aredsted in evaluating
the limitvZ of the ESDL{, of the matrixHj, seel(¥'). Note that far# 0, L7 is also



the ESD of the matrixiZ given by

o 12 0 WDyl
" (Wg—Du/lz)* 0

0 Qn 0 zl - A, 0 Py
Pr 0 ||zI-A: O Q, O
_ | 0 QnijLz| O Py
- [W O}W{% 0}’ ()

whereWs = zQyP,/|2| is unitary and#;, distributed. We are thus led to the study
of the ESD for a sequence of matrices of the form

0 Bp
(e 7) 42

with B, = Un + Ty, Ty being a real, diagonal matrix, at a #, unitary matrix.
We denote in short

0O u N 0 O 0 T,
n

3.1 Limit equations

We begin by deriving the limiting Schwinger-Dyson equatidor the ESD of
Y n. Throughout this subsection, we consider a non-commutgtiobability space
(4,*,) on which variable a variablg lives and whereu is a tracial state satis-
fying the relationgi((UU* — 1)%) = 0, u(U3) = 0 fora € Z\ {0}. pis the unique
non-commutative law of bounded variables which is invariamder unitary con-
juguation, and therefore corresponds to the asymptotitseoHaar measure. In
the sequel, 1 will denote the identity 1. We refer to[[1, Section 5.2] for defini-
tions.

LetT be a self-adjoint (bounded) elementdnwith T freely independent with
U. Recall the non-commutative derivativgedefined on elements &(T,U,U*)
as satisfying the Leibniz rules

PQ=0Px10Q+P®1xdQ, (14)

oU=U®1,dU*=-1U" dT =0x0.

10



(Here,® denotes the tensor product and we wAte Bx C® D = (AC) ® (BD).)
0 is defined so that for ang € 4 so thatB* = —B, anyP € C(U,U* T),

P(UEEB e ®By* T) = P(U,U* T)+€dP(U,U*, T)tB+o0(e),

where we used the notatign BfC = ACB.
By the invariance oft under unitary conjuguation, seie [24, Proposition 5.17]
or [1, (5.4.31)], we have the Schwinger-Dyson equation

H® U(OP) = 0. (15)

We continue to use the notatidfy U,U* andT in a way similar to [TR) and
@3). So, we lety = U +U*+T with

0 U i 0 0 0T
UZ(O o)’ UZ(U*O)’ T:(T o)' (16)

We extenduto the algebra generated byU* andT by putting for anyA,B,C,D €

A,
1((& 5)) =3+ uo.

Observe that this extension is still tracial.

The non-commutative derivativieextends naturally to the algebra generated
by the matrix-valuedJ, U*, T, using the Leibniz rule{14) together with the rela-
tions

ou=U®p, odU"'=-pxU", a7

00
01
functions ofU 4+ U* and T such as products of Stieltjes functionals of the form
(z—bU — bU* —aT) ! with ze C\R anda, b € R. Such an extension is straight-
forward; 0 continues to satisfy the Leibniz rule and

where we denoteg = In the sequel we shall apply to analytic

d(z—bU—bU*—aT) 1=
b(z—bU—bU*—aT) ' (Uo p— poU*)(z—bU —bU* —aT)*

11



Introduce the notation, far;,zo € C,

G(z1,2) = u((z— Y)fl(Zz ~-T) !

Gu (21,22) M (U(
Gu(z1) H( (z—-Y )
u-(21,22) pU(z-Y) Y z-T) ), (18)
GT(Zl 2) HT(z-Y) Y z-T)1),
Gz) = u((m-Y)~ )
Gr(z) = u(z-T)™).

We apply the derivativé to the analytic functior® = (z, — Y) (z — T)~1U,
while noticing that, by[(T4) and(17),

P=PRp+(z-Y) WU pP—(z2—Y) poUP (19)
For any smooth functio,

MU™QU) =u((1-p)Q)

due to the traciality oftandUU* = 1—p. Furtheer P and thugu(pP) = u(P),
and by symmetry (note thal — p)(z; —Y) 3(zz—T) L andp(zz - Y)Yz -
T)~! are given by the same formula up to replacig U*) by (U*,U), which
has the same law)

M(1-p)(@-Y) (2-T) )= H((Zl— ) Hz-T) ).

The same equality holds without the last factey — T) %, and so we get from

@)

%GU (z1,20) = -Gy (z1,22) Gy (z1) + %G(zl,zz)G(zl). (20)

Noticing thatGy (z;) is the limit of Gy (z1,22) asz, — «, we find by [20) that

1 1
EGU (z1) = —Gu(z1)*+ ZG(Zl)Z’

and therefore, aGy (z1) goes to zero ag — oo,

Gu(m) = 5(5+1/ 32 +6(@)?) = ;(-1+\/1+46@).  (21)

12



Here, the choice of the branch of the square root is detedriyehe expansion
of Gy (z) at infinity and the fact that botB(z) andGy (z) are analytic infC*. This
equation is then true for aty € C™.

Moreover, by [[ZD) and{21), we get

Gy (21 Zz) _ :_LG(Zl,Zz)G(Zl) _ G(Zl,Zz)G(Zl)
’ 2 1+2Gy(z1)  1++/1+4G(z)?
(Again, here and in the rest of this subsection, the propandir of the square root
is determined by analyticity.) LéR denote theR-transform of the Bernoulli law
A1:=(0_14+0:1)/2, thatis,
R(Z)_\/1-1-422—1_ 2z
2z V1i+4a2+1’

seel[l, Definition 5.3.22 and Exercise 5.3.27], so that we hav

(22)

Gu(z1,2) = %G(zl,zz)R(G(zl)). (23)

Repeating the computation with,+, we haveGy- = Gy. Algebraic manipula-
tions yield
Gr(z,2) = z6(z,2)-G(z), (24)
26y (21,22) + Gr1(21,22) = z16(z1,2) — Gr1(22). (25)
Therefore, we get by substituting{23) ahdl(24) iid (25} tha
G(Zl, Zz) R(G(Zl)) + ZzG(Zl, 22) — G(Zl) = ZlG(Zl, Zz) — GT (Zz) , (26)
which in turns gives, for ang;,z € CT,
G(Zl, Zz) (R(G(Zl)) +2— Zl) = G(Zl) -Gt (Zz) . (27)

Thus,
Gr(z) =G(z1) whenz =27 —-R(G(z)). (28)

The choice of, as in [28) is allowed for ang € C* becausé& : Ct — C~ and
we can see th®: C~ — C~. Thusz > Oz > 0, implying that suclz, belongs
to the domain of5t.

The relation [ZB) is the Schwinger-Dyson equation in ounpgetit gives an
implicit equation forG(-) in terms ofGr(-). Further, forz with large modulus,

13



G(z) is small and thug— z— R(G(z)) possesses a non-vanishing derivative, and
further is close t@. Becausédst is analytic in the upper half plane and its deriva-
tive behaves like 1 at infinity, it follows by the implicit function theorem that
(Z8) uniquely determineS(-) in a neighborhood ob. By analyticity, it thus fixes
G(-) in the upper half plane (and in fact, everywhere except inrapgart subset

of R), and thus determines uniquely the law\af

Remark 6. Let pr denote thespectral measuref T, that is [ fdpr = p(f(T))
forany f € Cp(R). We emphasize th&r is not the Stieltjes transform of the law
of T; rather, it is the Stieltjes transform of the symmetrizedsi@n of the law of
T, that is of the probability measugg .~ With this convention,[{28) is equivalent
to the statement that the law ¥f, denoteduy, equals thdree convolutiorof fir
andAy, i.e. ty = fir A1, whereh; = (3_j +9|,)/2 is the Bernoulli law that puts

mass3 at£|z.
In the next section, we will need the following estimate.
Lemma 7. If |Gy (-)] < kg 0onC™ then|G(-)| < ki onCT.

Proof Recall that iz C* thenG(z) € C~ and alsdR(G(z)) € C~ becausd
mapsC~ into C~ (regardless of the branch of the square root taken at eaah) poi
Thus,y =z—R(G(z)) € C*. Therefore|G(z)| = |Gt (y)| < K1. O

3.2 Finite n equations and convergence

We next turn to the evaluation of the law ¥f,. We assume throughout that the
sequencd, is uniformly bounded by some constavit thatLt, — pr weakly

in probability, and further tha{4) an@(5) are satisfiedhai} and the spectral
distribution of T replacingD, and®. Recall first, see’]1, (5.4.29)], that by in-
variance of the Haar measure under unitary conjuguatiat, ve C(T,U,U*) a
noncommutative polynomial (or a product of Stieltjes fuoctls),

1.1 o
E [T ® 5 tr(9P(Tn, Un, Uy))] = 0. (29)

This key equality can be proved by noticing that for amy n matrix B such that
B* = —B, for any (k,¢) € [1,n], if we letUp(t) = U,e® and constructn(t) and
Un*(t) with this unitary matrix,

0=0tE[(P(Tn, Un(t), Un(t)))y o] = E[(OP(Tn, Un,Up)tB)y /] (30)

14



with B = < 8 g ) Letting A(k,¢) be then x n matrix so thatA(k,¢)i ; =

1i—x1j—,, we can choose in the last equalty= A(k, £) —A(¢,k) orB=1i (A(K,£) + A(Z,K)).
Summing the two resulting equalities and then summing keerd/ yields [Z9).

We denote byG" the quantities as defined in{18), but WElhz—lntr] replacingp
and the subscript attached to all variables, so that for instance

G"(z) = E[2—1ntr ((z—Yn) ).

We get by takind® = (z. — Yn) (22 — Tn) ~tU, that
1 1
QGG (z1,22) = —G() (21, 2) G} (zw) + ZGn(ZlaZZ>Gn(Zl) +0(n,z1,22), (31)
with
Oo(n,z1,22) =E (itr—E[itr])®(itr—E[itr])a(z —Yn) Yz—-Tn) U
s £1,£2) — on n on n 1 n 2 n n| -

Further, by the standard concentration inequality/gr seel[l, Corollary 4.4.31],
for any smooth functiod® : U(n) — C,

1 1 2

) E [(%tr(P) - E[%tr](m)

with ||P||_ the Lipschitz constant d? given by
[Pl = [|DP]|o

1
< SIPIR, (32)

if D is the cyclic derivative given bfp = mod with m(A® B) = BA. Applying
B2) to each term adP (recall formula [ID)), we get that fdf(z;) > 0,

C
O 21.22)| < I B AT

Multiplying by z, and taking the limit ag, — c we deduce from{31) that
(G"(z1))? = 2G{} (z1) (1 +2G{}(z1)) — Ox(n, 1), (33)

where

O1(n,zy) = 4E {(intr— E[intr]) ® (2—1ntr— E[Z—lntr])a(zl —Yn) U,

1
- O(HZD(Zl)Z(D(Zl)M))'
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In particular,

1
Gl (21) = 5(~1+1/1+4G"@)2 +401(n. 1)), (34)
with again the choice of the square root determined by aicthyt

Recalling that[[24) and_(25) remain true when we add the sigtst and

combining (31) and(24), we get

a2 (B ) — G (z) - GMz) + Oz z), (35)
1, £2 (1+ZGB(Z]_)) 2 1 1 T\£L2 y£1,82)
with 20( )
= - N,2,,2
%) = (1 26 o)
Hence, if we define
- o G"(z1)
2 =Wn(2)=2- G 5 o) (36)
then N
Gn(Z]_) = G-T— (Zz) + O(n, Z, 22) ,
and therefore N
G"(z1) = Gt (Wn(z1)) +O(Nn, z1, Yn(z1)) - (37)

Equation[[3F) holds at least whétz, > 0 for z; as in [36). In particular, fol(z)
large (say larger than son), it holds thaiG"(z;) andG{j (z1) are small, implying
thatz is well defined withC)(z,) > 0. Assume.t, converges towardst so that
Gf converges tdst on C*. Then, the limit points of the sequence of uniformly
continuous functiong$G"(z),G{(z)) on {z: 0z > M} satisfy [Z1) and[{28) and
therefore equalG(z),Gy(z)) on{z: 0z > M} by uniqueness of the solutions to
these equations. Hence, takimg- o then implies thaG" — G in a neighborhood
in the upper half plane close to. SinceG" andG are Stieltjes transforms of
probability measures, we have now shown the following (seea&K5).

Lemma 8. Assume f, converges weakly in probability to a compactly supported
probability measuretL Then, ly, converges weakly, in probability, te j= fir 8

A1. In particular, if Lp, converges weakly in probability to a probability measure
O, then for any = C, v§ converges weakly in probability ©H Az-
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(Recall that® is the symmetrized version @ and note that for = 0, the state-
ment of the lemma is trivial.)

LemmalB completes the proof of Step one in our program. To lhe tab
complete Step two, we need to obtain quantitative inforomefiom the (finiten)
Schwinger-Dyson equationg_{37): our goal is to show thatefteside remains
bounded in a domain of the fordz € C* : Oz > n~°} for somec > 0. Toward
this end, we will show that in such a regiapg is analytic,0Wn(z) > 0z/2AC
for some constar@ andO(n, z1, Pn(z1)) is analytic and bounded there. This will
imply that [3T) extends by analyticity to this region, and agsumption on the
boundedness d&} will lead to the conclusion.

As a preliminary step, note th&"(-) andG} (-) are analytic inC*. We have
the following.

Lemma 9. There exist constants;(C, such that for all ze C* with 0(z) >
Cin~Y/3 and all n large, it holds that

11+ 2G]} (2)] > C2[0(2)3 A ). (38)

Proof SinceG[) (z) is asymptotic to 1z at infinity, we may and will restrict atten-
tion to some fixed baBBr C C, whose interior contains the supportYof But

: i,
16"@) = -0 [ et

and therefore, af1(z) — x)? + 0(2)? < 4R? for all z x € B(0,R)

0(2)]
4R2

Moreover, sinceG(j (z)| < 1/|0(z)|, for some constartindependent ofi and all
nlarge, we deduce froni.(B3) that

) 2|1+ 2G! (2)| c
G"@F <551 * Po@ao@ D

Combining this estimate an{39), we get that

211+2G}(2)| _ |0 c 0@))?
O(z)] = 16R* n20(22(0(z) A1) — 32R

G'(29)] = |0(G"(2)| = (39)

(40)

as soon asl(z) > Cin~1/3 for an appropriate&C;, and|z] < R. The conclusion
follows.
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As a consequence of Lemrih 9 and the analyticitEbfand G} in C*, we
conclude thatpy is analytic in{z: 0(z) > C;n~*/3}, for all n large.

Our next goal is to check the analyticity bt~ O(n, z, Pin(2)) for ze C* with
imaginary part bounded away from 0 by a polynomially decgyim n) factor.
Toward this end, we now verify that,(z) € C* for zup to a small distance from
the real axis.

Lemma 10. There exists a constang@uch that if(z) > Can~1/4, thend(n(2)) >
O(z)/2.

Proof Again, we may and will restrict attention fd(z) < Rfor some fixedR. We
divide the proof to two cases, as follows. legt= n~1/2, and sef\, = {zeCt:
G"(2) +i/2| > en}.

Then, for anyz € A, and whatever choice of branch of the square root made in
@), if a?l/zol(n, z) is small enough (smaller tha/2 is fine), then that choice
can be extended to include a neighborhood of the ppiatG"(z) such that with
this choice, the function(w) = 7(—1+v/1+4w2) is Lipschitz in the sense that

G} (2) ~1(G"(2))] < Cen204(n.2).. (41)
On the other hand, again from{34),
‘ G2  2G)(2) Ox(n.2)
1+2G(z) G"(2 |~ 1G"@(1+2G{(9)

Combining the last display with the relati&{6) = 2r(8)/6, @1) and [3B), one
obtains that foz € Ap,

G"(2) n 2r(G"(z)) 2G(2) G"(2) 2G|} (2)
g e (Z))' = 7o G#(z) '1+2GB(2)_ G#(z)
01(n,2)] 01(n,2)]
= TR0 g o)
01n,2)] | _|0:(n,2)]
< ce%/2|D(Z)‘+c S
< C 1 1
= WOeF\ &2 0P
1
= e <”1/4+|D<z>|3)‘ (42)

18



Since the above right hand side is smaller tha(z)/2 for 0(z) > n~%* and
O(R(G"(2))) < 0, we conclude that far € AyN{0(z) > n~ 4}

G"(2) 1
. (1+2G[‘,(z)) <35tz

as, regardless of the branch taken in the definitioR(ef, R(G"(z)) < 0.
On the other hand, whene C*\ A, and(z) > n~%/4, then we have from

B4) that
IGl)(2) +1/4] < %\/aq—i— |01(n,2)|.

Thus, under these conditions,

D<ﬂ) - 2DG”(Z)+D< 2G(z) )

1+2Gl}(2) 1+4(G (2 +1/4)
< 0(@2) +Cy/Et 1012 <~ +Cy/an T 01 2]
< Cn_1/4,

where we finally used that ak,,, G"(z) is uniformly bounded and so tha{G"(z)) <
—1/4 forze C* andn > 2. We thus conclude from the last display and (42) the
existence of a consta@g such that if(z) > Csn~1/* then

(Wn(2)) = O(2) 0 (1:527((;3(2)) > 02)/2,

as claimed. O
From LemmaID we thus conclude the analyticityzof> O(n,z Wn(2)) in
{z: 0O(2) > Cen~¥4}, and thusG"(2)/(1+ 2G[}(2)) is also analytic there. In
particular, the equality(37) extends by analyticity tasthégion.
We have made all preparatory steps in order to state the reairtrof this
subsection.

Lemma 11. There exist positive finite constantg, C7,Cg such that, for > Cg
and all ze &, = {z: 0(2) > n~%},

|G"(2)| < Cg. (43)

Proof This is immediate from Lemm@ 9, Lemnal 10, the definitionjgf the
assumption oG] and the equality[(37). O
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4 Tail estimates forvy

Our goal in this short section is to prove the following prejpion.

Proposition 12. (i) Fix z € C. Under the assumptions of Theorgm 1,

€
IiinlimsupE[lgn/ log|x|dv3(x)] = 0. (44)
e 0

Nn—oo

Consequently, for anyz C,

/ log |X|dvZ(x) — / log|X|dvZ(x) (45)

in probability.
(ii) For any smooth compactly supported deterministic tiorcd on C,

/ 5(2) / log |x|dvZ(x)dm(z) — / 5(2) / log X|dvi(x)dm(z),  (46)

in probability.

Before bringing the proof of Propositi¢nl12, we recall thédaing elemen-
tary lemma.

Lemma 13. Let 1 be a probability measure @ For any real y> 0, it holds that
H((=y,Y)) < 2y|G(iy)] - (47)

Proof We have

~o(G(y) - [

y 1
b0 > [ Lo = puyy),
from which (47) follows. O

We can now provide the
Proof of Proposition[12

Let R be large enough so thBk C C contains the support @f. Throughout
this proof, we may and will restrict attention tsatisfying|z| < R.

(i) By (B), we can replace the lower limit of integration Ywith n—2. Let
Gf, denote the Stieltjes transform Bfvy]. Forz+# 0, by Lemmdll and Lemma
[4, there exist positive constantg(R), cz(R) such that whenever(u) > n~, it
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holds tha{GZ(u)| < c,. Forz=0, L8 is simply the ESD oDy, once symmetrized,
and hences) is also uniformly bounded byi(4) and (5).

Therefore, sinc&y, is the Stieltjes transform dE[v7], by Lemmé&B, for any
y >0,

ENVA((—y,¥)] < ENVA((=yvnyvn=))] < 2coyvn .
Thus, we get that for any< Br and witha € [1,2],

E| / (I1l0gx|)@dvz(x))

-3
nfcl\/5 I3

el (log)avi+ [ (llogx) cv(x)
< ((e1v8)logn) EVE((—n~*n~%))

IA

J
+Y EVA((—2Unme 20+ n=e))j(log(2in~))? |
=0

where 271n"% < ¢ < 2)n~%. Note that by Lemm&13 and the estimateG@fy
for j >0, . . .
EVA((—2'n,2In7%))) < 21 gn o,
It follows that .
e[, llogxavi(x)] < Cellog(e) . (48)
nfé

where the constan® does not depend on The estimate[{44) follows when
consideringn = 1.
Moreover, by[(B), foro < 2,

-3

n
E[lgn/o [logx|*dvi(x)]

< E[LGVA([=n"° )1 gz -5y |log o]
=

25 a
e | (va(-n 2 )|l gpeqs 00058

IN
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by Holder’s inequality. The first factor goes to zero beeaus
2
e | (vE(-n 2 2) 7| <€ [vi(n S0 %) < 2en

We thus getl{44) froni{48). By Chebychev’s inequality, thevaygence in expec-
tation implies the convergence in probability and therefimr anyd, & > 0 there
existse > 0 small enough so that

€
lim P(/ [logX|dvi(x) > ) < &
—> 00 O
On the other hand/;”log|x|dv(x) converges tof." log|x|dv*(x) by the weak
convergence off, to vZ in probability for anye > 0. Hence, we gef{45).

(i) Define the functiond): B — R, i = 1,2 by

-3

n
@) = Lpdoyew [ 000X,
7@ = lglipm [ 000X,
.
and setf,(z) = f1(2) + f2(z). Becaus@? is supported irBr v on ||Dy|| < M, f,

is bounded above. BY#8E[|f2(-)|%] is bounded, uniformly ire € Br. On the
other hand, by[{3), again uniformly im E(f}(2)?) < &, and therefore

£ [ (13@)dmz) <o,
Br
Thus,E fBR | fn(2)]2dm(z) < o, and in particular, the sequence of random variables

/)1gn1|D|n§M/'09XdVﬁ(X)‘2dm(Z)

is bounded in probability. This uniform integrability andetweak convergence
@3) are enough to conclude, using dominated convergere€ 28, Lemma 3.1]
for a similar argument). O
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5 Proof of Theorem

By Propositio IR, sed_{#6), we have, whte) := [log|x|dv*(x), that for any
smooth compactly supported functignon C,

[ w@dLad ~ 5 [ dw( hzdm),

C

in probability. Since the sequentg, is tight, it thus follows that it converges, in
the sense of distribution, to

1
E{Azh(z) .
From RemarkR (based on |11, Corollary 4.5]), we have thalithi¢is actually a
function. The statement of the theorem follows. O

6 Proof of Corollary Bl

We let X, be as in the statement of the corollary and witte= P,D,Qn with
Pn, Qn unitary andD,, diagonal with entries equal to the singular valye$} of
Xn. Obviously,{P,, Qn}n>1is a sequence of independeff,-distributed matrices.
The joint distribution of the entries @, possesses a density Bff which is given
by the expression

Za[J10? - o?2e "=V [T oidoi,
i

i<j

whereZ, is a normalization factor, see e.@] [1, Proposition 4.1T3lerefore, the
squares of the singular values possess the joint density

2T I - 2e "=tV T s,

i< i

onR". In particular, it falls within the framework treated in JeBy part (i) of
Theorem 2.1 there, there exist positive constdhiS;; such thaP(o; > M —1) <

e C11" and thus point 1 of the assumptions of Theofém 1 holds. Pafti8 as-
sumptions (withk < 1/4 andk’ = 1/2) is an immediate consequence of equation
(2.26) there. Point 4 of the assumptions is an immediateamprence of equation
(2.32) there. Thus, it remains only to check point 2 of theuagstions. Toward
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this end, defings, = {0] < M + 1} and note that we may and will restrict atten-
tion to|z| < M + 2 when checking{3). We begin with the following proposition
due to [21].

Proposition 14. LetA be an arbitrary n-by-n matrix, and let & A+ oN where

N is a matrix with independent (complex) Gaussian entrieead mean and unit
variances. Leti,(A) denote the minimal singular value of A. Then, there exists a
constant G, independent o\, o or n such that

P(an(A) <x) <Ci2vn (g) g (49)

The proof of Proposition4 is identical ta 21, Theorem 3v@ih the required
adaptation in moving from real to complex entries. We omittfar details.

On the event;,, all entries of the matrixX, are bounded by a constant multiple
of v/n. Let N, be a Gaussian matrix as in Propositioh 14. With- 2 a constant
to be determined below, set

Gy = {all entries ofn~%/2Ny, are bounded by } .

Note that because > 2, ongy, we have tha(n~*Np) < 1. DefineA, = zl — Xy,
An = Aq+n"%Nplg andA, = Ay +n~%Np. Then, by [4B), witho,(An) denoting
the minimal singular value d4,, we have

P(On(An) < X; Gn) < C12xnt/2+20 (50)

If the estimate[{30) concerndg instead ofA,, it would have been straightforward
to check that point 2 of the assumptions of Theorém 1 hold$@vi appropriately
chosend, which would depend on). Our goal is thus to replace, ib_ (50, by
A,, at the expense of not too severe degradation in the rigkt sTdis will be
achieved in two steps: first, we will replagg by A,, and then we will construct
on the same probability space the ma¥pand a matrixy, so thaty;, is distributed
like Xq+n—¢ Nnlg; butP(Yy # Xn) is small.

Turning to the construction, observe first that frdml (50),

P(0n(An) < X; Gn) < C12X2nY272 1 P((Gh)©) < Cpo[Pnt/2+20 4 n2e="/2],
(51)
Let x.S‘” = Xn+n""Nplg. Let {6} and{l} denote the eigenvalues o, =

XX and of WL = (X{™)(%\*)*, respectively, arranged in decreasing order.
Note that the density of, is of the form

Zn—le— ntr (v (xx*)) dx

)
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where the variablex = {X j }1<i j<n is matrix valued andix = [ ], ;<,d%,j,
while that ofX\* is of the form

ZrTlEN [e—ntr(V((x—i—lgﬁn*“Nn)(x+1gr/1n*°‘Nn)*))]dx7

whereEy denotes expectation with respect to the lavwNgf andZ, is the same
in both expressions. Note thai(X,ﬁ“)) € [01(Xn) —1,01(Xn) +1]. Becaus&/(-)

is locally Lipschitz, we have that if either; (Xp) <M +1 orol(X.ﬁa)) <M-+1,
then there exists a constabis independent oft so that

tr(V (Wh) — VWD) < STIVO) ~ V(W) <Ciz > (6 — ]
i=1 i=1

IA

1
n 2
Cyan'/? <Z 16 — L |2> (52)
i—1

| 1

2

< Cign®2 (w((Wa—W4*)?))
< Cyan®/Z 14 tr((n"%/2Ny)?) Y2 < nC=a (53)

where the Cauchy-Schwarz inequality was used in the thiediuality and the
Hoffman-Wielandt inequality in the next (see e.gl [1, Lem2aA 19]). We em-
phasize that the consta@i, does not depend om. In particular, ifa > (Ci4+

1) V2 we obtain that onG,, the ratio of the functionsf,, = e "f(V(%)) and

gn = e MVW™) s bounded e.g. by 4+ nC4+1-9: in particular, it holds that

P(o1(X\") < M) (1+nC4t -0 p(gy (X,) < M)

<
< (1402 02p(gy (V) < M).

Therefore, the variational distance between the laX,afonditioned oro1 (X,) <
M and that oX\") conditioned oro1(X\")) < M, is bounded by

4nC14+ 1-a

It follows that one can construct a mathix of law identical to the law o)i(r(,a)
conditioned oro1(XY) < M, together withX,, on the same probability space so
that

P(Xn 7£Yn; gn> S 4nC14+1—C1 S n015—a‘
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Note that this estimate does not depend.o@ombined with[(5l1), we thus deduce
that
P(On(ﬂn) <X gn) < C12X2n1/2+20( + nC]_GfC( < nC17X2/3,

wherea was chosen as function of This yields immediately point 2 of the
assumptions of Theorefmh 1,8f> 3Cy7/2.

We have checked now that in the setup of Corol@ry 3, all treumptions
of Theoren{dl hold. Applying now the latter theorem complétesproof of the
corollary. O

Remark 15. The proof of Corollary(B carries over to more general sitbiasi
indeedV does not need to be a polynomial, it is enough that its growitfiaity
is polynomial and that it is locally Lipschitz, so that theués of [20] still apply.
We omit further details.

7 Proof of Corollary &

We takeD,, satisfying the assumptions of Corollddy 4 and consilet U,DV,, +
n—YN,, with matrix of singular value®,. Note thatY, = UnDnV, with Up,V,,
following the Haar measure. We first show tlix also satisfies the assumptions
of Theorentll whery > % except for the second one. Since the singular values of

N, follows the joint density of Corollar/l3 with (x) = %xz, it follows from the
previous section thd?(Hn*%NnH > M) < e %" and therefore|Dy|| < ||Dn|| +

n¥+2||n~2Ny|| is bounded with overwhelming probability. Moreover, sitite=
|Dn+n~YUANLVE,

C(IIDn 1)

1
__y
‘ |

1Gp,(2) —Gp, (2)| < E[H[iaz_‘anH]

<

with C(||Dr?||) a finite constant depending only diD;;|| which we assumed
bounded. As a consequence, the third condition is satisfiee s

CD )y, K K

Ga(2) —Gg (2)| < <
‘ e( ) Dn< )‘ = |DZ|2 nK|Dz| - nV|Dz|

with y = min{k,1(y— 2)} and 0z > n-ma3(-2)€}. Hence, the results of
LemmalTIl hold and we need only to check as in Proposlfion 12 itheZ the
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singular values ol — Y,

=Y

n
In = E[lgn/o log [X|dV§(X)]

vanishes as goes to infinity for somé > 0 and some s&f, with overwhelming
probability. ButA, = z| — Yp = zI — UpDyVa + N~ YN, with N, a Gaussian matrix,
and therefore we can use Proposition 14 to obtam (49) with nY, and the
desired estimate olR. O

Proof of Example[3

Indeed, the first and the fourth hypotheses of Thedrem 1 aiiegesincep
is compactly supported and we assumed its symmetrizedovehsis a bounded
Stieltjes transform. For the third, note thafif 1 is Holder continuous with index
a,

n|0z|2 n|Dz|2

n .
— F— H—l i _a
}Gé(Z)—GDn(Z>}SZ|Sin+1 ol ZI Wl _en
i—1
where we finally used thd ! is Holder continuous with indea. 0

8 Extension to orthogonal conjuguation

In this last section, we generalize Theorlgm 1 to the caseenkierconjuguat®,
by orthogonal matrices instead of unitary matrices.

Theorem 16. Let D, be a sequence of diagonal matrices satisfying the assump-
tions of Theorerl1. Let p@n be two nx n independent matrices which follow
the Haar measure on the orthogonal group and sgtA0,D,On. Then, la,
converges in probability to the probability measuredescribed in Theoreid 1.

Proof. To prove the theorem, it is enough, following Sectidn 5, toverthe
analogue of LemmB11 which in turn is based on the approxiiBatevinger-
Dyson equation{35) which is itself a consequence of equd#8) and concen-
tration inequalities. To prove the analogue [0fl(29) whgnfollows the Haar
measure on the orthogonal group, observe {hdt (30) remaiasatith Bt = —B
which only leaves the choid® = A(k, /) — A(4,k) possible. However, taking this
choice and summing ovér/, yields, if we denotenA® B) = AB',

1 1 . N \
E [5tr ® 5o tr(0P(Tn, Un, U))) = 5 E[S-tr (M0 0P) (Tn, Un, Uy))l-

27



The right hand side is small aaodP is uniformly bounded. In fact, taking
P=(zz1—Yn) Yz —Tnh) U, we find thatnio dP is uniformly bounded by
2/(|0z|(|0z1| A 1)?) and therefore[[31) holds once we add@gn,z;,z) the
above right hand side which is at most of ordgn[[1z|(|0z| A 1)%. Since our
arguments did not require a very fine control on the error tex® see that this
change will not affect them. Since concentration ineqigalialso hold under the
Haar measure on the orthogonal group, §ée [1, Theorem 4ahd@d{1, Corollary
4.4.28], all the proof of Theoref 1 can be adapted to thisget u O

Acknowledgments: We thank Greg Anderson for many fruitful and encour-
aging discussions. We thank Yan Fyodorov for pointing oatghper([15].

References

[1] Anderson, G. W., Guionnet, A. and Zeitouni, G\n introduction to ran-
dom matricesCambridge University Press, Cambridge (200®).appear.
http://www.math.umn.edu/ zeitouni/technion/cupbodk.p

[2] Bai, Z., Circular law, Ann. Probab.25, 494-529, (1997).

[3] Brown, L. G., Lidskii's theorem in the type Il casén “Proceedings U.S.—
Japan, Kyoto/Japan 1983”, Pitman Res. Notes. Mathl28r1-35, (1983).

[4] Collins, B., Guionnet, A. and Maurel-Segala Asymptotics of unitary and
orthogonal matrix integralsto appear in Adv. Math., (2009).

[5] Feinberg, J. and Zee, ANon-Gaussian non-Hermitian random matrix the-
ory: phase transition and addition formalisiNuclear Phys. B501, 643—
669, (1997).

[6] Fyodorov, Y.V and Sommers, H.Bpectra of random contractions and scat-
tering theory for discrete-time systend& TP Lett.,72, 422—-426, (2000)

[7] Fyodorov, Y.V and Wei, Y.On the mean density of complex eigenvalues for
an ensemble of random matrices with prescribed singulareslPhys. A.,
41, 502001,(2008).

[8] Ginibre, J.,Statistical ensembles of complex, quaternion, and reatioes
Jour. Math. Phy$, 440-449, (1965)

28



[9] Girko, V. L., The circular law Teor. Veroyatnost. i Primener29, 669-679,
1984.

[10] Gotze, F. and Tikhomirov, A.The circular law for random matrices
arXiv:0709.3995v3 [math.PR] (2007).

[11] Haagerup, U. and Larsen, Brown'’s spectral distribution measure for R-
diagonal elements in finite von Neumann algebtag=unct. Anal2, 331—
367, (2000).

[12] Haagerup, U. and Schultz, Ahe Invariant subspace problem for von Neu-
mann algebrasarXiv:math/0611256v1 [math.OA] (2006).

[13] Haagerup, U. and Schultz, ABrown measures of unbounded operators
affiliated with a finite von Neumann algebnsiath. Scand100, 209-263,
(2007).

[14] Haagerup, U. and Thorbjgrnsen,Snew application of random matrices:
Ext(C%4(F2)) is not a group Ann. of Math. (2)162 711-775, (2005).

red

[15] Horn, A., On the eigenvalues of a matrix with prescribed singular esglu
Proc. Amer. Math. Socj, 4-7, (1954).

[16] J. B. Hough, M. Krishnapur, Y. Peres and B. Vir&gros of Gaussian Ana-
lytic Functions and Determinantal Point ProcessEsovidence, RI, Ameri-
can Mathematical Society, (2009).

[17] N.Lehmann and H.-J. SommeEigenvalue statistics of random real matri-
ces Phys. Rev. Lett67, 941-944, (2001).

[18] Nica, A. and Speicher, RZ -diagonal pairs —a common approach to Haar
unitaries and circular element§ields Inst. Communl2, 149-188 (1997).

[19] Pan, G. and Zhou, WCircular law, extreme singular values and potential
theory, arXiv:0705.3773v2 [math.PR], (2007).

[20] Pastur, L. and Shcherbina, MBulk universality and related properties of
Hermitian matrix models]. Stat. Physl30, 205-250, (2008).

[21] Sankar, A., Spielman, D. A. and Teng, S.-Bmoothed analysis of the con-
ditioning number and growth factor of matriceSIAM J. Matrix Anal. 28,
446-476, (2006).

29



[22] Tao, T. and Vu, V.Random matrices: the circular lau@ommun. Contemp.
Math. 10, 261-307, (2008).

[23] Tao, T. and Vu, V., with appendix by M. KrishnaptRandom matrices:
Universality of ESD’s and the circular lavwarXiv:0807.4898v5 [math.PR]
(2008).

[24] Voiculescu, D.,The analogues of entropy and of Fisher’s information mea-
sure in free probability theory. VI. Liberation and mutuedd information
Adv. Math.146, 101-166, (1999).

[25] Weyl, H.,Inequalities between the two kinds of eigenvalues of a fitraas-
formation Proc. Nat. Acad. Sci. U. S. A35, 408-411, (1949).

[26] Zyczkowski, K. and H.-J. Sommer$runcations of random unitary matri-
ces J. phys. A: Math. Ger33, 2045—-2057 (2000).

30



	The problem
	Limiting spectral density of a non-normal matrix
	An auxiliary problem: evaluation of z and convergence rates
	Limit equations
	Finite n equations and convergence

	Tail estimates for nz
	Proof of Theorem ??
	Proof of Corollary ??
	Proof of Corollary ?? 
	Extension to orthogonal conjuguation

