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Abstract

We consider a nearest-neighbor, one dimensional random walk {X,,},>0 in a random i.i.d.
environment, in the regime where the walk is transient but with zero speed, so that X, is of order
n® for some s < 1. Under the quenched law (i.e., conditioned on the environment), we show that
no limit laws are possible: there exist sequences {n} and {z;} depending on the environment
only, such that X,, — zx = o(lognk)? (a localized regime). On the other hand, there exist
sequences {t,,} and {s,,} depending on the environment only, such that log s,,,/logt,, — s <1
and P, (X, /sm <z) — 1/2 for all z > 0 and — 0 for < 0 (a spread out regime).

KeEy WorDS: Random walk, random environment.
AMS (1991) subject classifications: Primary 60K37, Secondary 60F05, 82C41, 82D30.

1 Introduction and Statement of Main Results

Let Q = [0,1]%, and let F be the Borel o—algebra on Q. A random environment is an Q-valued
random variable w = {w; }iez with distribution P. In this paper we will assume that P is a
product measure on ().

The quenched law PZ for a random walk X,, in the environment w is defined by

Pr(Xo=12)=1, and P%(Xp41 =X, =1i)= {“’Z fy=i+l,

1—w; ifj=14—-1.
7N is the space for the paths of the random walk {X,},en, and G denotes the o—algebra
generated by the cylinder sets. Note that for each w € Q, P, is a probability measure on G, and
for each G € G, P%(G) : (Q,F) — [0,1] is a measurable function of w. Expectations under the
law P2 are denoted E7.
The annealed law for the random walk in random environment X, is defined by

]P””(FXG):/Pj(G)P(dw), FeF,Geg.
F
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For ease of notation we will use P, and P in place of PO and P° respectively. We will also use
P* to refer to the marginal on the space of paths, i.e. P*(G) = P*(Q x G) = Ep [PZ(G)] for
G € G. Expectations under the law P will be written E.

A simple criterion for recurrence and a formula for the speed of transience was given by Solomon
in [14]. For any integers ¢ < j define

1— w;i J
pi = — and II; ; :== Hpk, (1)
t k=i

and for « € Z define the hitting times
T, :=min{n >0: X, =x}.

Then, X, is transient to the right (resp. to the left) if Ep(log po) < 0, (resp. Eplogpg > 0) and
recurrent if Ep(logpp) = 0 (henceforth we will write p instead of pg in expectations involving
only po). In the case where Eplogp < 0 (transience to the right), Solomon established the
following law of large numbers

Xn ) 1
vp = nlggo7 = nlirrgo% = ET,’ P—a.s.

For any integers ¢ < j define
J
Wiﬁj = anﬁj, and Wj = ZHk’j . (2)
k=i k<j
When Eplogp < 0, it was shown in [14],[15] that
EiTiy =1+2W; <00, P—a.s., (3)

and thus vp = 1/(1 + 2EpW)). Since P is a product measure, EpWy = > 77| (Epp)*. In
particular, vp =0 if Epp > 1.

Kesten, Kozlov, and Spitzer [10] determined the annealed limiting distribution of a RWRE
with Eplogp < 0, i.e. transient to the right. They derived the limiting distributions for the
walk by first establishing a stable limit law of index s for T;,, where s is defined by the equation

Epps =1.

In particular, they showed that when s < 1 there exists a b > 0 such that

T,
1im]P’< T §x>—st(a:),
nl/s ’

n—oo

and x
lim P <—" < 3:) =1—Ley(zY9), (4)

n— o0 n

where L, is the distribution function for a stable random variable with characteristic function

“ t
Lsp(t) = exp {—b|t|S <1 - zm tan(ﬂ's/2)> } . (5)
The value of b was recently identified [4]. While the annealed limiting distributions for transient
one-dimensional RWRE have been known for quite a while, the corresponding quenched limiting
distributions have remained largely unstudied until recently. Goldsheid [7] and Peterson [13]
independently proved that when s > 2, a quenched CLT holds with a random (depending on the



environment) centering. Previously, in [12] and [15] it was shown that the limiting statement
for the quenched CLT with random centering holds in probability rather than almost surely. No
other results of quenched limiting distributions are known when s < 2.

In this paper, we analyze the quenched limiting distributions of a one-dimensional transient
RWRE in the case s < 1. One could expect that the quenched limiting distributions are of
the same type as the annealed limiting distributions since annealed probabilities are averages
of quenched probabilities. However, this turns out not to be the case. In fact, a consequence of
our main results, Theorems 1.1, 1.2, and 1.3 below, is that the annealed stable behavior of T,,
comes from fluctuations in the environment.

Throughout the paper, we will make the following assumptions:

Assumption 1. P is a product measure on ) such that
Eplogp <0 and Epp® =1 for some s > 0. (6)

Assumption 2. There exists pmax < 00 such that P(p < pmax) = 1, and the distribution of
log p is non-lattice under P.

Note: Since Epp? is a convex function of «y, the two statements in (6) give that Epp? < 1 for all
v < sand Epp? > 1 for all v > s. Assumption 1 contains the essential assumption necessary for
the walk to be transient. The main results of this paper are for s < 1 (the zero-speed regime).
The technical conditions contained in Assumption 2 simplify our argument; we recall that the
non-lattice assumption was also invoked in [10].

Define the “ladder locations” v; of the environment by

I/QZO,

inf T, g < 1), P> 1,
and Vi_{ln{n>u 1 -1 <1} i )

B sup{j < Vjq1 - Hkﬁjfl <1, Vk < j}, 1< —1.

Throughout the remainder of the paper we will let v = v1. We will sometimes refer to sections
of the environment between r;_1 and v; — 1 as “blocks” of the environment. Note that the
block between v_1 and vy — 1 is different from all the other blocks between consecutive ladder
locations. Define the measure @) on environments by Q(-) := P(:|R), where the event

Ri={weQ:I_,_1<1, Vk>1}.

Note that P(R) > 0 since Eplogp < 0. @ is defined so that the blocks of the environment
between ladder locations are i.i.d. under @, all with distribution the same as that of the block
from 0 to v — 1 under P. In Section 3 we prove the following annealed theorem:

Theorem 1.1. Let Assumptions 1 and 2 hold, and let s < 1. Then there exists a b’ > 0 such
that

BT,
lim Q< 1 Sn S .I) = Lsﬁb/(x).

n—oo n /
We then use Theorem 1.1 to prove the following two theorems which show that P — a.s.

there exist two different random sequences of times (depending on the environment) where the
random walk has different limiting behavior. These are the main results of the paper.

Theorem 1.2. Let Assumptions 1 and 2 hold, and let s < 1. Then P-a.s. there exist random
subsequences ty, = tm(w) and wy, = wm(w), such that for any 6 > 0,

X - Um
lim P, (St e 5,6 = 1.
m—00 (logtm)?
Theorem 1.3. Let Assumptions 1 and 2 hold, and let s < 1. Then P-a.s. there exists a random
subsequence ng,, = ng, (W) of n = 22" and a random sequence ty, = ty,(w), such that

. logt,, 1

lim = -

m—oo logny, 8

3



and

lim P, (Xt’" §:17> —{(1) %foO .
m— oo Nk, 5 f0<z<oo

Note that Theorems 1.2 and 1.3 preclude the possiblity of a quenched analogue of the an-
nealed statement (4). It should be noted that in [6], Gantert and Shi prove that when s < 1,
there exists a random sequence of times t¢,, at which the local time of the random walk at a
single site is a positive fraction of ¢,,. This is related to the statement of Theorem 1.2, but we
do not see a simple argument which directly implies Theorem 1.2 from the results of [6].

As in [10], limiting distributions for X, arise from first studying limiting distributions for T,.
Thus, to prove Theorem 1.3 we first prove that there exists random subsequences x,,, = z, (w)
and vy, ., in which

T, — BT, L
lim P, (7"‘ m < y) :/ e 2t = D(y) .
m—00 vV Um,w —oo V2T

We actually prove a stronger statement than this in Theorem 5.7 below, where we prove that
all z,,, “near” a subsequence ng, of ny = 22" have the same Gaussian behavior (what we mean
by “near” the subsequence ng, is made precise in the statement of the theorem).

The structure of the paper is as follows: In Section 2 we prove some introductory lemmas
which will be used throught the paper. Section 3 is devoted to proving Theorem 1.1. In Section
4 we use the latter to prove Theorem 1.2. In Section 5 we prove the existence of random
subsequences {ny} where T,,, is approximately gaussian, and use this fact to prove Theorem
1.3. Section 6 contains the proof of the following technical theorem which is used throughout
the paper.

Theorem 1.4. Let Assumptions 1 and 2 hold. Then there exists a constant K, € (0,00) such
that
QET, > x) ~ Kooz™®

The proof of Theorem 1.4 is based on results from [9] and mimics the proof of tail asymptotics
in [10].
2 Introductory Lemmas

Before proceeding with the proofs of the main theorems we mention a few easy lemmas which
will be used throughout the rest of the paper. Recall the definitions of IT; , and W; in (1) and

2).

Lemma 2.1. For any ¢ < —Eplogp, there exist 6., A. > 0 such that
1k
P11y > eka) =P (E ;logpi > —c) < Ape %k, (8)

Also, there exist constant C1,Co > 0 such that P(v > z) < C1e~% for all x > 0.

Proof. First, note that due to Assumption 1, logp has negative mean and finite exponential
moments in a neighborhood of zero. If ¢ < —FEplogp, Cramér’s Theorem [3, Theorem 2.2.3|
then yields (8). By the definition of v we have P(v > z) < P(Ily,|;)—1 > 1), which together
with (8) completes the proof of the lemma. O

From [9, Theorem 5], there exist constants K, K1 > 0 such that for all 4
PW;>z)~Kzx™® and P(W;>zx)< Kz °. 9)

The tails of W_1, however, are different (under the measure @), as the following lemma shows.



Lemma 2.2. There exist constants C3, Cy > 0 such that Q(W_1 > x) < C3e~%* for all x > 0.

Proof. Since Il; 1 <1, @ —a.s. we have W_y <k+ 3, II; 4 for any £ > 0. Also, note
that from (8) we have Q(II_j, 1 > =) < A.e™%F/P(R). Thus,

QW_1>z)<Q g + Z eF >zl +Q (H,kﬁl > ¢~ for some k > g)

k=%

Sley 4 ) QI 1 >e ) <1,

l—e—¢ l—e—¢

>z + @ (6_601/2) .

k=3
O
We also need a few more definitions that will be used throughout the paper. For any ¢ < k,
k 0o
Ri,k = Zni’j’ and Rz = Zni’j' (10)
j=i j=i

Note that since P is a product measure, IR;; and R; have the same distributions as W; ; and
W; respectively. In particular with K, K the same as in (9),

P(Ri>x)~Kzx™® and P(R;>z) < Kjz~°. (11)

3 Stable Behavior of Expected Crossing Time

Recall from Theorem 1.4 that there exists Ko, > 0 such that Q(E,T, > ) ~ Kox~*°. Thus
E,T, is in the domain of attraction of a stable distribution. Also, from the comments after the
definition of @ in the introduction it is evident that under @, the environment w is stationary
under shifts of the ladder times v;. Thus, under Q, {E. T, }icz is a stationary sequence of
random variables. Therefore, it is reasonable to expect that n='/*E, T, =n"'/*3"  EJ'T,
converge in distribution to a stable distribution of index s. The main obstacle to proving this is
that the random variables E.'~'T), are not independent. This dependence, however, is rather
weak. The strategy of the proof of Theorem 1.1 is to first show that we need only consider the
blocks where the expected crossing time E.'~'T,, is relatively large. These blocks will then be
separated enough to make the expected crossing times essentially independent.

For every k € Z, define

My =max{Il,, ,;:vk—1 <J <} (12)
Theorem 1 in [8] gives that there exists a constant Cs > 0 such that
QM > x) ~ Csx™°. (13)

Thus M; and E,T, have similar tails under . We will now show that E, T, cannot be too
much larger than M;. From (3) we have that

v—1 v—1
ET,=v+2Y Wj=v+2W_ 1Ry, 1+2) Ri, 1. (14)
i=0 1=0

From the definitions of v and M; we have that R; ,_1 < (v — )My < vM; for any 0 < i < v.
Therefore, E,T, < v + 2W_1vM; + 2v2M;. Thus, given any 0 < o < $ and § > 0 we have

Q(E,T, > 6n” My <n®) < Qv+ 2W_1vn® 4 2v°n* > 6n”) (15)
<QW_1 > n(ﬁ—a)/2) +Q (y2 > n(ﬁ—a)/2) — 0 (e_nw—a)/s) 7



where the second inequality holds for all n large enough and the last equality is a result of
Lemmas 2.1 and 2.2. We now show that only the ladder times with M > n(!=%)/% contribute
to the limiting distribution of n_l/szTyn.

Lemma 3.1. Assume s < 1. Then for any e > 0 and any § > 0 there exists an n > 0 such that

lim Q <Z(E5¢1Tyi)1Mi§n<1s)/s > 5n1/s> =o(n".

i=1

Proof. First note that

Q (Z(EZ“TMMZSHM/S > 5n1/s> <Q <Z(E:“Tw>1E;HTW§nu;W > 6n1/5>

i=1 i=1

+nQ (Ele, > n(=3)/s M < n(lfs)/s) .

By (15), the last term above decreases faster than any power of n. Thus it is enough to prove
that for any §,e > 0 there exists an n > 0 such that

Q <Z(E(ZiITUi)lEZilTui<n(ls)/s > 5n1/s> = O(nin) :

=1

Next, pick C € (1, %) and let Joe kn = {z <n: n(1=C*e)/s ~ EJ7'T, < n(l_ckfla)/s}. Let
ko = ko(C, €) be the smallest integer such that (1 — C¥¢) < 0. Then for any k < ko we have

i s s—(1—C*k~ s
Q| > ErT >t | <Q(#Jceka > /00T

ieJC,s,k,n

_ck s
QT > i) K oo

~

- dnCrre/s J ’

where the asymptotics in the last line above is from Theorem 1.4. Letting n = 5 (% — C) we
have for any k < ko that

Q| >, BT, >t =o(n). (16)
1€JC e k,n
Finally, note that
¢ (Z(EzilTw)lEZilTuﬁn(lC’“Ols)/s 2 5n1/5> = 1n1+<1—0’“0*1s)/525n1/s' (17)
i=1

However, since C*e > 1 > Cs we have C¥o~1lz > s, which implies that the right side of (17)
vanishes for all n large enough. Therefore, combining (16) and (17) we have

n kofl
1)
Q <Z(E5ilTw)1EZil<n(1s)/s > 5n1/s> < Z Q Z EZFITW > k_onl/s

i=1 k=1 i€lc.ckm

t 5 1 _
+Q <Z(EW1lTl’i)lE:ilT,/,<n(1cko15)/5 Z k_onl/ ) = O(TL 77).

=1

O



In order to make the crossing times of the significant blocks essentially independent, we
introduce some reflections to the RWRE. For n =1,2,..., define

b, == [log?(n)]. (18)

Let Xt(n) be the random walk that is the same as X; with the added condition that after reaching
vy the environment is modified by setting Wyy_y, = 1, 1.e. never allow the walk to backtrack

more than logz(n) ladder times. Denote by Tén) the corresponding hitting times. The following
lemmas show that we can add reflections to the random walk without changing the expected
crossing time by very much.

Lemma 3.2. There exist B,6' > 0 such that for any z > 0

@ (E“’T” - BT > x) < Bz *V1)e 9.

Proof. First, note that for any n the formula for E“,T,S") is the same as for E,T), in (14) except
with p,_, = 0. Thus E,T, can be written as

E,T, =E, 0™ +2(1+W,_, _1)IL,_, _1Ro,_1. (19)
Now, since v_;, < —b,, we have
oo (o] 1
HV _ —cby < o —ck < - pP(I_._ —ck )
QWi )< 2 Qo= D = 3 (v )

Applying (8), we have that for any 0 < ¢ < —FEplogp there exist A’,§. > 0 such that
Q (HV—bn7_1 > e_Cb“) < A’e=9%bn  Therefore, for any x > 0,

Q (EwTy - EleSn) > x) S Q (2(1 + Wyfbn*l)HV—bn,*lRO,u—l > I’)
<Q (2(1 + WV—bn—l)RO,V—l > xer“) + Ale0cbn
=Q (2(1 +W_1)Rop-1 > :CGCb") + Ale%bn (20)

where the equality in the second line is due to the fact that the blocks of the environment are
i.i.d under Q. Also, from (14) and Theorem 1.4 we have

Q (2(1 +W_1)Ro,—1 > xed’") <Q (EwTV > xed’") ~ Kooz Se ¢, (21)
Combining (20) and (21) finishes the proof. O
Lemma 3.3. For any x > 0, € > 0, and any integer n > 1,
_ 1
Q (EMTIE") > ant/* My > n(l_g)/s> ~ Kox™%—, asx — oo. (22)
n

Proof. Since adding reflections only decreases the crossing times, we can get an upper bound
using Theorem 1.4, that is

Q (EleEn) > xnl/s, My > n(lfs)/s) < Q(E,T, > xnl/s) ~ Kooafs%, as x — 00. (23)
To get a lower bound we first note that for any § > 0,
0 (EWTI, > 1+ 5)1777,1/5) <Q (EWTIE”) > zn'/* My > n<1*5>/5) +Q (EWT,, — B, T™ > 5m1/5)
+Q (EWTV > (14 (5):vn1/s,M1 < n(lfs)/s)
<Q (E“,T,E") > znl/s, My > n<1—€>/8) +o(1/n), (24)

where the second inequality is from (15) and Lemma 3.2. The asymptotics in (22) then follow
from (23) and (24) by using Theorem 1.4 and then letting § — 0. O



Our general strategy is to show that the partial sums

n

1 _
1/ D EFAT g na-os
k=1

converge in distribution to a stable law of parameter s. To establish this, we will need bounds on
the mixing properties of the sequence E."~ 1T,5n)1Mk>n<175)/s. As in [11], we say that an array
{&nx : k € Z,n € N} which is stationary in rows is a—mixing if limy_,o limsup,, . an(k) = 0,
where

an(k) :==sup{|P(ANB) - P(A)P(B)|: A€o (....6n-1,&n0) B €0 (&nk:&nkt1y---)}-
Lemma 3.4. For any 0 <e < —, under the measure Q, the array of random variables
{ES~ IT(")IMk>n<175)/S}kez,neN is a-mizing, with

sup  an(k) =o(n™1t2%),  an(k) =0, Vk>log®n.
ke[1,log? n]

Proof. Fix € € (0,3). For ease of notation, define &, := ELZ’“”T,ES)IMPW(FEW. As we

mentioned before, under @) the environment is stationary under shifts of the sequence of ladder
locations and thus &, ; is stationary in rows under Q).

If k > 10g2(n), then because of the reflections, o (..., & —1,&,0) and o (§n .k, En k1, - - ) are
independent and so o, (k) = 0. To handle the case when k < log*(n), fix A€ o (..., &.—1,&n0)
and B € 0 (&n.5,&n k41, - - -), and define the event

Cre = {M; <n1=9/% for 1 < j < b} = {€,; =0,for 1 < j <b,}.
For any j > b,,, we have that &, ; only depends on the environment to the right of zero. Thus,
Q(A nBN Cn,a) = Q(A)Q(B N Cn,s)

since BNC,, . € o(wo,w1, .. .). Also, note that by (13) we have P(Cy; ) < b,Q(M; > n1=e)/s) =
o(n~112¢). Therefore,

QAN B) —Q(A)Q(B)| < |Q(ANB) — QAN BN Cy)l
+|QANBNC,,) —Q(A)Q(BNC )|

QA)QBNCre) - Q(B)| < 2Q(C ) = o(n™7)

Proof of Theorem 1.1.
First, we show that the partial sums

nl/s ZEU'“ BN SV

converge in distribution to a stable random variable of parameter s. To this end, we will apply
[11, Theorem 5.1(IIT)]. We now verify the conditions of that theorem. The first condition that
needs to be satisfied is:

lim n@ (n_l/szT,E")lMQn(lfs)/s > ;E) =Koz °.

n—oo
However, this is exactly the content of Lemma 3.3.
Secondly, we need a sequence m,, such that m,, — oo, m, = o(n) and nay,(m;) — 0 and such
that for any § > 0,

Tim S nQ (EWT,§">1M1>M175>/3 > oMo BYT) Lap, snieore > 5n1/5) —0. (25
k=1



However, by the independence of M; and My for any £ > 1, the probability inside the sum
is less than Q(M; > n(1=9)/%)2_ By (13) this last expression is ~ Csn~2t2¢. Thus letting
m, =n'/?7¢ yields (25). (Note that by Lemma 3.4, na,(m,) = 0 for all n large enough.)
Finally, we need to show that

lim lim supn Eq [EWT,S")I Mysna-ave L o 6} ~0. (26)

—0 n—co

Now, by (23) there exists a constant Cs > 0 such that for any x > 0,
— 1
Q (EWT,E") > xnl/s, My > n(l_a)/s) < Cgxr™°—.
n

Then using this we have

5
nEqg [EWTLS")IMQnufs)/le T(")<5] = n/ Q (EleSn) > xnl/S,Ml > n(lfs)/s) dzx
w v = O

5 1—s
Cesd
SC@‘/ 5 dy = =2 ,
0 1—5

where the last integral is finite since s < 1. (26) follows.
Having checked all its hypotheses, [11, Theorem 5.1(IIT)] applies and yields that there exists
a b’ > 0 such that

1 « _
@ <n—/ S BTy 0 < ) = Low(2), (27)
k=1

where the characteristic function for the distribution L is given in (5). To get the limiting
distribution of —=E,T,, we use (19) and re-write this as

1 1 . v (n
meTun = m ;EwkilTIEk)]']Wk>n(1*€)/s (28)
1 — _
+ 7 2B T Ly <o (29)
n k=1
1 7(n)
+ 7 (BT, - BTSY) . (30)
n

Lemma 3.1 gives that (29) converges in distribution (under Q) to 0. Also, we can use Lemma
3.2 to show that (30) converges in distribution to 0 as well. Indeed, for any § > 0

0 (EwTyn ~ BT > 5n1/5) <nQ (EWT,, — BT > 5n1/5*1) 0 (nse*‘?’bn) .

Therefore n~/*E,T,, has the same limiting distribution (under Q) as the right side of (28),
which by (27) is an s-stable distribution with distribution function Ly p . g

4 Localization along a subsequence

The goal of this section is to show when s < 1 that P-a.s. there exists a subsequence t,,, = t,,(w)
of times such that the RWRE is essentially located in a section of the environment of length
10g2(tm). This will essentially be done by finding a ladder time whose crossing time is much
larger than all the other ladder times before it. As a first step in this direction we prove that with
strictly positive probability this happens in the first n ladder locations. Recall the definition of
My, c.f. (12).



Lemma 4.1. Assume s < 1. Then for any C > 1 we have

liminf @ | 3k € [1,n/2]: My > C Z EVi- 1T(") 0.

n—oo
J:k#j<n

Proof. Recall that ngn) is the hitting time of x by the RWRE modified so that it never backtracks
b, = |log®(n)| ladder locations.

To prove the lemma, first note that since C' > 1 and E_*~ 1T,5:) > Mj, there can only be at most
one k <n with M, >C3>7 ., EJ- lT,E?). Therefore

n/2
QIkeln/2:Mc>C Y ETM|=>Q(M.>C Y EyT" (31)
k#j<n k=1 k#j<n

Now, define the events
Fo={v;—vj_1 <bp, VYje(=bp,nl}, Grne:={M; < n( =95 ie (kk+ by}, (32)

F,, and Gy, are both typical events. Indeed, from Lemma 2.1 Q( ) < (bp +n)Qv > by) =
O(ne=C2bn ), and from (13) we have Q(G km)a) < b, Q(M; > n1=9)/3) = o(n=1%2¢). Now, from
(3) adjusted for reflections we have for any j that

vi—1
EY- 1T(n)—( Vi) +2 E Wo, 10
l=v;_1
=(v; —vj_1)+2 E IL,; + 2 E I, Il
uj,1§i§l<vj Vji—1—by, <'L‘<l/j71§l<1/]‘

< vy —vjm1) + 2 (v — vjm1)® My + 2(vj — vj—1)(vj—1 — vi—1-b,)Mj,

where we used the fact that I, -1 <1 for all ¢ < vj_1 in the last inequality. Then, on the
event F,, N G, we have for k+1 < j <k + b, that

Ev-1 T < by, + 2020179/ opd p1=9)/s < ppdpi=e)/s)

where for the first inequality we used that on the event F;, N Gy 5, . we have v; —v;_; < b, and
M, < n(1=9)/s_ Then, using this we get

Q Mz 3 BT | 2Q (M2 O (BT, +56n 0 4 BT F G
k#j<n

>Q (Mk >0n'*, v —vpg < bn)

< Q (E T 4 pbin(=2)/s 4 gEenTin) < nl/S,Fn,Gk,n,s) :

Vg—1

where F,, := F,\{vx — vx_1 < b,}. In the last inequality we used the fact that E./~ lT(n)
independent of My for j < k or j > k + b,. Note that we can replace Fn by F, in the last line
above becuase it will only make the probability smaller. Then, using the above and the fact

that B T\, + BT\ < E,T,, we have
Q(M.>c > Ey-TM
k#j<n
> Q (M= Cn'l*, v — vy <0,) Q (BT, <0 = 56,m 9% By G

> (Q(My = Cn'/*) = Qv > b)) (QUELTL, < nM/*(1 = 5byn™*/")) = Q(FS) = Q(G.0))

1
~ C5C’75LS(1)E ,

10



where the asymptotics in the last line are from (13) and Theorem 1.1. Combining the last
display and (31) proves the lemma. O

In Section 3, we showed that the proper scaling for E,T,, (or E,T") was n=/s. The
following lemma gives a bound on the moderate deviations, under the measure P.

Lemma 4.2. Assume s < 1. Then for any é > 0,
P (EwTvn > nl/s+6) _ O(TFJS/Q)_
Proof. First, note that
P(EuT,, 2 n'**) < P(E,Topn 2 n'/**?) + P(vy, > 20m), (33)

where 7 := Epv. To handle the second term on the right hand side of (33) we note that since v,
is the sum of n i.i.d. copies of 11 and since v has exponential tails we have that from Cramér’s
theorem [3, Theorem 2.2.3] that P(v,/n > 20) = O(e~9") for some &' > 0.

To handle the first term on the right hand side of (33) we note that for any v < s we have
Ep(E,T1)Y < oo This follows from the fact that P(E,Ty > z) = P(1 +2Wy > z) ~ K2%z7°
by (3) and (9). Then, by Chebychev’s inequality and the fact that v < s < 1 we have

E 2un Ek—lT K _
P k=1 Fw k < QI/nEp(Ele)’Y

B 1/s+6
P (EwTZVn >n ) < n'y(l/erJ) - n7(1/5+5)

(34)

Then, choosing ~ arbititrarily close to s we can have that this last term is o(nf‘ss/ ). [l
Throughout the remainder of the paper we will use the following subsequences of integers:

ng = 22k, dk =N — Nkg—1 (35)

Note that ny_1 = /nx and so d, ~ ni as k — oo.
Corollary 4.2.1. For any k define

[ = max {EZJ*IT,E?‘) tnp—1 <J < ”k} :

If s < 1, then
lim EZ”FITISZ:) L 1, P—a.s.
k—o0 EWTISZ:) — bk 7
Proof. Let € > 0. Then,
» (E:"k_l T - m _5> B P( B, ) 6
E“,T,Sf:) — g EwT,Sf:) — Mk

Wty

<P (BT = n/ 50 4 P (BT - <=7/

Lemma 4.2 gives that P E“,T,Sffk) >n/*) > P(E,T, >n,/* ) = 0(7?765/2)- To
k—1 k—1 g _ k—1

1 k—1
handle the second term in the right side of (36), note that if § < 3—15, then the subsequence
ny grows fast enough such that for all k large enough n,lc/ 50 > 5‘1n,1€/7 S;r ’ Therefore, for k

sufficiently large and § < % we have

P (BT < e ml7) < P (BT - < oif"7).

k
Vny

11



However, EleSj:) — g < n,lc/s_[s implies that M; < Ezj’lf,s;i’“) < n,lc/s_é for at least ny — 1 of
the j < ng. Thus, since P(M; > n,lc/s_é) ~ C5n,;1+55, we have that

P (E“,T< ) < a*ln,ﬁ/jl*‘*) <y, (1 e (M1 > n,ﬁ/s“;))nkfl o™y, (37)

dy
Vny

Therefore, for any € > 0 and 6 < 31—5 we have that

E:"k—l Tlsdk) .
P( Ck ukgl—s :o(n,;fslﬂ).

Ew T(dk) — Mk

Vny,
By our choice of ng, the sequence n,:fsl/ ? is summable in k. Applying the Borel-Cantelli lemma
completes the proof. O

Corollary 4.2.2. Assume s < 1. Then P—a.s. there exists a random subsequence jm, = jm (w)
such that o
M;,, >m*E, TV

Vim—1"

Proof. Recall the definitions of ny and dj in (4). Then for any C' > 1, define the event
Dy.c = {3] S (nk_l,nk_1 + dk/2] tM; > C (Eznkflfﬁffz + EZJTISZ:)) }

Note that due to the reflections, the event Dy, ¢ depends only on the environment from Unje—1—bn,
t0 Vp,—1. Then, since ny_1 — by, > ny—o for all k > 4, we have that the events { Doy ¢ }7°, are
all independent. Also, since the events do not involve the environment to the left of 0 they have
the same probability under @) as under P. Then since @ is stationary under shifts of v; we have
that for k& > 4,

P(Dyc) = Q(Dic) = Q (Hj € [1,dp/2]: M; > C (Ewﬂffz + Egﬂjﬁ)) .

Thus for any C' > 1, we have by Lemma 4.1 that liminfy_,o P(Dj,¢) > 0. This combined with
the fact that the events { Doy, c}32 5 are independent gives that for any C' > 1 infinitely many of
the events Doy ¢ occur P — a.s. Therefore, there exists a subsequence k,, of integers such that
for each m, there exists jn, € (nk,, —1, 7k, —1 + dk,, /2] such that

M;,, = 2m? (B Tin) o B T ) = 2m? (B Tke) — )
where the second equality holds due to our choice of j,,, which implies that iy, = Eo'™ " T,S;:fm ),
Then, by Lemma 4.2.1 we have that for all m large enough,

Yrkm "k,

M, > 9m?2 (Ezkm,lf(dkm) _ #km) > m2 (Ewigdkm) _ /Lkm) > szijflﬂi:m)’

where the last inequality is because ug,, = Ezjm’ITIEZ:’"). Now, for all k large enough we have

nk—1 + di/2 < di. Thus, we may assume (by possibly choosing a further subsequence) that
Jm < dg,, as well, and since allowing less backtracking only decreases the crossing time we have

Mj,, > m*E TS > m2E, T .
O

The following lemma shows that the reflections that we have been using this whole time
really do not affect the random walk. We prove a slightly more general version than we need
for this section because we will use this lemma again in Section 5.

12



Lemma 4.3. Let m,, be a sequence of integers such that n" = o(my,) for some n > 0. Then

lim P, (Tl,n ”] ngfn)) —0, P-as.

n—oo

Proof. Let e > 0. By Chebychev’s inequality, P (Pw (Tl,n #* T,ET“) > 5) <e P (T,jn #* T,Eln")).
Thus by the Borel-Cantelli lemma it is enough to prove that P (T,,n # TLST")) is summable. Now,

the event {71, # T,S;n ")} implies that there is an ¢ < v, such that after reaching 7 for the first
time, the random walk then backtracts a distance of b,,,. Thus, again letting # = Epv we have

2om
i (Tun ”] T,Sgw) < P(vn > 20m) + 3 P(Tiy
=0

< 00) = P(vy, > 20n) + 2onP(T_y,, < 00)

mp

As noted in Lemma 4.2, P(v,, > 2im) = O(e~%"), so we need only to show that nP(T_y,, <o)
is summable. However, [6, Lemma 3.3] gives that there exists Cy such that for any k > 1,

P(T_}, < 00) < e~k (38)

Thus nP(T_,, < oo) < ne~“Emu) which is summable by our assumptions on m,,. O

Moy,

We define the random variable N; := max{k : In < ¢, X,, = v} to be the maximum number
of ladder locations crossed by the random walk by time ¢.

Lemma 4.4.
VN, — Xt

lim 5 =0, P-a.s.
t—o0 log (t)

Proof. Let § > 0. If we can show that 50 P(|N; — X;| > dlog®t) < oo, then by the Borel-
Cantelli lemma we will be done. Now, the only way that N; and X; can differ by more than
8log®t is if either one of the gaps between the first ¢ ladder times is larger than 6 log? ¢ or if for
some i < t the random walk backtracks log® ¢ steps after first reaching i. Thus,

P(|N: — X¢| > 6log®t) < P (Fj € [Lit+ 1]t vy —vj—1 > log®t) + tP(T 510211 < T1)  (39)

So we need only to show that the two terms on the right hand side are summable. For the first
term we use Lemma 2.1 we note that

P(3jelt+1]:v—v 1 >log’t) < (t+1)P(v > log?t) < (t +1)CreC2log"t
which is summable in ¢. By (38) the second term on the right side of (39) is also summable. [

Proof of Theorem 1.2:
By Corollary 4.2.2, P-a.s there exists a subsequence j,,(w) with the property that M, >

m2E,TY™) . Define t,, = tm(w) = 2M;, and uy, = up(w) = vj,,—1. Then,

Jm —1° ~m

Xt — Uy .
P, <% ¢ [—5,5]> < Po(Ne,, # jm — 1) +Pw(|VNtm - X, | > 510g2tm)'
og Um

From Lemma 4.4 the second term goes to zero as m — oo. Thus, we only need to show that

lim P,(Ny,, = jm—1)=1. (40)

To see this first note that

Po (Ni,, <jm —1) = P, (Tujm—l > tm) < PRy (T”jm—1 # Tlsg]::L) + P (T’Sf:nnzl > tm) '

13



By Lemma 4.3, P, (Tl,jnﬁ1 #+ Tm) ) — 0 as m — o0, P — a.s. Also, by our definition of ¢,,

Jm —1

and our choice of the subsequence j,, we have

EJI™,  mBJTIM, 1

tm o M;. ~ m m—oo

P (157, > tn) <

Vijm —

It still remains to show lim,, .o P (NVt,, < jm) = 1. To prove this, first define the stopping
times 7, := min{n > 0: X,, = z}. Then,

Py (Niy, < jm) = Pu(Ty, > tm) > Pom (Tyjm > %Mjm) > plm-t (T;;mfl < T,,jm) o
Then, using the hitting time calculations given in [15, (2.1.4)], we have that
o l—wy, _
Therefore, since M;,, < R, _, ., —1 we have
. 1—w,  Mim, 1\ mMim
Fo (N < 4m) 2 (1 - Rl’jml-,:/jmll) - (1 - Mjm> oo b
thus proving (40) and therefore the theorem. O

5 Non-local behavior on a Random Subsequence

There are two main goals of this section. The first is to prove the existence of random subse-
quences x,, where the hitting times 73, are approximately gaussian random variables. This
result is then used to prove the existence of random times t,,(w) in which the scaling for the
random walk is of the order t2, instead of log”t,, as in Theorem 1.2. However, before we can
begin proving a quenched CLT for the hitting times T;, (at least along a random subsequence),
we first need to understand the tail asymptotics of Var, T, := E, (T, — E,T,)?), the quenched
variance of T),.

5.1 Tail Asymptotics of Q(Var,T, > z)

The goal of this subsection is to prove the following theorem:

Theorem 5.1. Let Assumptions 1 and 2 hold. Then with Ko, > 0 the same as in Theorem
1.4, we have

Q (Var,T, > z) ~ Q (E.T,)* > z) ~ Kooz /% asx — oo, (41)
and for any e > 0 and x > 0,
= 1
Q (Vaer,En) >an?/*, M, > n(lfs)/s) ~ Koz ™= asn — co. (42)
n

Consequently,
Q (Vaerl, > ont/*, My < n(l_a)/s) =o(n™h). (43)

A formula for the quenched variance of crossing times is given in [7, (2.2)]. Translating to
our notation and simplifying we have the formula

Var,Ty = Ey(Ty — E,T1)? = 4(Wo + W§) +8) i1 o(W; + W7). (44)
1<0

14



Now, given the environment the crossing times T; — 7T;_; are independent. Thus we get the
formula

v—1
Var,T, _42 (Wi + W) +8> > i j(W; + W)
7=0 j=0i<j
v—1
= 4Z(Wj + Wj2) + 8Ry,,—1 <W_1 + ng + Z Hi—‘,—l,—l(Wi + Wf))
§=0 i<—1
+8 Z Hi-l—l,j(Wi —l—Wf)

0<i<j<v

In particular, Var,T, 7™ < Var,T,, because the same expansion for Vaer( ™ is obtained by
replacing W; by Wo_,, +1. and restricting the final sum in the second line to v_; < i < —1.
We want to analyze the tails of Var,T, by comparison with (E,T,)?. Using (14) we have

2

v—1 v—1
(BELT,)* = 1/+2ZW =2 A Y W4 WPH8 Y WiW.
j=0 j=0 0<i<j<v
Thus, we have
v—1
(BLT,)? = Var,T, =2 + 4w —=1)Y W +8 > Wi(W; =Ty — i ;Wi) - (45)
j=0 0<i<j<v
—8Ro—1 (W_1 W2 4> Mg, 1 (Wi + Wf)) (46)
i<—1
= D" (w) -8Ry, 1D (w). (47)

The next few lemmas show that the tails of D*(w) and Ry ,—1D~ (w) are much smaller than
the tails of (E,T),)%.

Lemma 5.2. For any € > 0, we have Q (D1 (w) > x) = o(x~5T¢).
Proof. Notice first of all that that from (14) we have 12 +4(v —1) >ico "W, < wE,T,. Also we

can re-write W; —IL;4q j — ;41 j;W; = Wigo ; when i < j —1 (this term is zero when i = j —1).
Therefore,

v—3 v—1

Q (D*(w) > ) < Q(2vE,T, > z/2) + Q Z Z WiWiso,; > x/2

i=0 j=i+2

Lemma 2.1 and Theorem 2.1 give that Q (2vE,T, > z) < Q(2v > log*(2))+Q (E Ty > o5 (I)) =

o(x~*1t¢) for any ¢ > 0. Thus we need only prove that @ (Z ZJ o WilWitaj > x) =

o(x~*1¢) for any € > 0. Note that for ¢ < v we have W; = Wy, + o, W_1 < Iy, (i + W_1),
thus

v—3 v—1 v—3 v—1
Q Z Z WiWi+2)j >z | < Q (V + W_l) Z Z HO)iWiJ,_Q)j >x
i=0 j=i+2 i=0 j=i+2
< Qv > log*(2)/2) + Q(W-1 > log*(z)/2) (48)

log?(x)—3 log?(z)—1

4 Z 3 (Hol APPES @) ;o (49)

Jj=i+2
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where we were able to switch to P instead of @ in the last line because the event inside the
probability only concerns the environment to the right of 0. Now, Lemmas 2.1 and 2.2 give that
(48) is o(x~*1¢) for any € > 0, so we need only to consider (49). Under the measure P we have
that IIp; and W;io ; are independent, and by (9) we have P(Wii1o,; > x) < P(Wiys > ) <

Kyx~%. Thus,
Ho,i>

Then because Epllj ; = (Epp®)" = 1 by Assumption 1, we have

X
P (T Wiyo; > —=—— ) =E S < Ky log® (z)z*Ep[II5,] .
(M0:Wisay > 5= ) = e Mo )| < Kalos (@)a B

P (Wi+2,j >

log?(x)—3 log?(x)—1

§ : x
Z (HO iVita,; > T) < Ky log*t% (z2)z™* = o(z—*%%).
log” (z)

Jj=i+2
O
Lemma 5.3. For anye > 0,
Q (Df(w) > x) = o(z~519), (50)
and thus for any v < s,
EqgD™ (w)? < 0. (51)

Proof. Tt is obvious that (50) implies (51) and so we will only prove the former. Write

D (w) =W+ W2 + > Ty (W + W) = ZZHk1<1+Hk1+ZH“>.

i<—1 i<—1k<i <k
Next, for any ¢ > 0 and n € N consider the event
E., = {Hj_,i < efc(iﬁ*l), V-n<i<-1,Vj<i— n} = ﬂ ﬂ {II;; < efc(iﬁ*l)}.
—n<i<—1j5<i—n

Now, under the measure () we have that II; _; < 1 for all £ < —1, and thus on the event E. ,
we have

ZZHk—1<1+sz+Zle><n +%1;1+(1+n) Z Wi+Z€CiW
i<—1k<i

<k —n<i<—1 i<—n

Applying Lemma 2.1 with ¢ < —Ep log(p), we have that for all ¢ < j,

o 1
ety < L
Q(HLJ > € )— P(R)

o A o
P(I1; —c(i—itl)y < € _o=0c(i—it1)
( sJ > e )— P(R)e

Therefore,
o A eféc(n+2)
E)< Y Y QU > ety < 0 (e 02, 4
Q( c,n) — Q( 5] > € ) — P(R)(l —6_60) 0(6 ) (5 )

—n<i<—1j<i—n

Then, using (53) with n = [log® | =: b, we have

Z ZH[C’,l <1 + Hk,i + ZHM> > (55)

i<—1k<i 1<k

c ci €
SQ(BL,) 4l e Q| DD Wi o (1+b) +Q<Ze Wi>§>-

—1)3
(e€=1) b, <i<—1 i<—1
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If we choose 0 < ¢ < —FEplogp, then applying (54) we have that the first two terms are
decreasing in x of order o(e=%%+/2) = o(x *SJFE). To handle last two terms in the right side of
(55), note first that from (9), @ (W; > x) < P(R)P(W > ) = I(%)x_s for any x > 0 and any
i. Thus,

T
Ql >, wi> < > Q@ (Wi > 7) = o(z~51),
b k1 3(1 + bs) b k1 3(1+ by)by
and since Y50, e7/2 = (e/2 — 1)1, we have

S e, > S e s el Ze—m/z
d ) ( )

i<—1

uMg

(W—z c/2 1)eci/2)

o0

K,3° _ esi -
< s csi/2 O sY .
= PR)(e/2 1)596 ;e C

Corollary 5.3.1. For anye >0, Q (Ro—1D™ (w) > z) = o(z~5"¢).
Proof. From (11) it is easy to see that for any v < s there exists a K, > 0 such that P(Ro,,—1 >
z) < P(Rp > z) < K,x~ 7. Then, letting F_1 = o(...,w_2,w_1) we have that

Q (RO,Ulei(W) > I) = EQ |:Q (Ro v—1 > ‘.7: ):| < K.Yxi’yEQ (Di(w))'y .
Since v < s, the expectation in the last expression is finite by (51). Choosing v = s — § finishes

the proof. O

Proof of Theorem 5.1:
Recall from (47) that

(E.T,) — D¥(w) < VaryT, < (E,T,)’ +8Ro,—1D~ (). (56)
The lower bound in (56) gives that for any § > 0,
QVar,T, >z)>Q ((E.T,)* > (1+6)z) —Q (D" (w) > oz).
Thus, from Lemma 5.2 and Theorem 1.4 we have that

lim 2Q(Var,T, > ) > Koo(140)7%/2. (57)

xTr—00

Similarly, the upper bound in (56) and Corollary 5.3.1 give that for any § > 0,
QVar,T, > z) <Q ((E.T,)* > (1 -8)z) +Q (8Roy—1D~ (w) > 6z) ,
and then Corollary 5.3.1 and Theorem 1.4 give

lim %2Q(Var,T, > ) < Koo (1 — 8)™%/2275/2 (58)

xr—00

Letting § — 0 in (57) and (58) finishes the proof of (41).
Essentially the same proof works for (42). The difference is that when evaluating the difference
(EUJT,En))2 — Var,T\" the upper and lower bounds in (45) and (46) are smaller in absolute
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value. This is because every instance of W; is replaced by W,_, +1,; < W; and the sum in (46)
is taken only over v_; < ¢ < —1. Therefore, the following bounds still hold:

_ 2 _ _ 2
(BTM) = D* () < Var T < (BJTM) 48R, 1D~ (w). (59)

The rest of the proof then follows in the same manner, noting that from Lemma 3.3 we have
_ 2
Q <(EwT,5n)) > xn2/s, My > n(ls)/s) ~ Kooz /21 as n — . O

n’

5.2 [Existence of Random Subsequence of Non-localized Behavior

Introduce the notation:
_ _ 2 _ _
Hin,w = Ef*szEin)a Uzz,n,w = E5i71 (TISZZ) - /Li,n,w) = Var, (TISI") - T;E:z)l) . (60)

The first goal of this subsection is to prove a CLT (along random subsequences) for the hitting
times T,,. We begin by showing that for any € > 0 only the crossing times of ladder times
with M, > n17=9)/% are relevant in the limiting distribution, at least along a sparse enough
subsequence.

Lemma 5.4. Assume s < 2. Then for any €,0 > 0 there exists an n > 0 such that for any
nteger m

Q (Z O-,L'21m7w1Mi§n(l—5)/s > 5”2/S> =o(n™").

=1

Proof. First, we need an bound on the probability of VaerlSm) being much larger than M;.
Note that from (56) we have Var,T, < (E,T,)? + 8Ro,,—1 D~ (w). Then, since Ry, 1 < vM;
we have

B B—a
Q (VCLTWTU >n? M, < na) <Q (EWT,, > %,Ml < na> +@Q <8VD(w) > L 5 > )
By (15), the first term on the right is o(e’”(ﬂw)/s). To bound the second term on the right we
use Lemmas 2.1 and 5.3.1 to get that for any a <

B—a

2 - n? e N —5(36-a)
)SQ(V>10g n)—I—Q(D (w)>m>—o(n ).

Q (SVD(w) >0
Therefore, similarly to (15) we have the bound
Q (Var,T, > n* My <n®) = o(n"3B0=)y (61)
The rest of the proof is similar to the proof of Lemma 3.1. First, from (61),

n n
2 2 2 2
Q <§ Ui,m,wlMiﬁn(lff)/S > on /S> <@ (E Ui,m,wloi,m,wﬁn(l’i)/s > on /S>

i=1 =1

+nQ (Vaer,Em) > p2(=32)/5 Mp< n(l—a)/S)

n
:Q ( Uim,wlgimw<n(1,i)/s >5n2/5> _'_0(”75/8)

i=1 T
Therefore, it is enough to prove that for any d, > 0 there exists 7 > 0 such that

n
Q <Z Uzm,wlai,m,wﬁn(lfs)/s > 5n2/5> =o(n™").

=1
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We prove the above statement by choosing C € (1, %) and then using Theorem 5.1 to get bounds
€ (nz(l’sck)/s, nz(l’sckfl)/s]} for all k£ small enough so that

eC* < 1. This portion of the proof is similar to that of Lemma 3.1 and thus will be omitted. O

i,m,w

the size of the set {z <n:o?

Corollary 5.4.1. Assume s < 2. Then there exists an i’ > 0 such that for any m < n and any
6 >0,

Z (Ulz,m,w - /J’zz,m,w)

> 5n2/s> =o(n").

Proof. For any € > 0

d

Wl >

n
Z (O—im,w - /J’zg,m,w)
=1

n
> 6n2/5> <Q (Z Uiz,n,wlMiSH(l’E)/s 2

i=1

n? ) (62)

- 1)
+ Q (Z ,uzz,n,wlMign(l*E)/S 2 §n2/8> (63)

=1

n
0
+Q (Z ‘Uimw — ,uim)w‘ 1y sna-a/s 2 §n2/s> .
=1
(64)

Lemma 5.4 gives that (62) decreases polynomially in n. Also, essentially the same proof as in
Lemmas 5.4 and 3.1 can be used to show that (63) also decreases polynomially in n. Finally
(64) is bounded above by

Q (# {z <n:M; > n(l_a)/s} > nza) +nQ <’Vaer,5m) — (EWT,EW))2’ > gnz/s—za) ,

and since by (13), @ (# {z <n:M;> n(l’s)/s} > nzs) < nQUL>nCTI) Csn™° we need

n2e
only show that the second term above is decreasing faster than a power of n. However, from (59)

we have ‘Varw I — (EleSm))Q‘ < D*(w)+48Rp,,—1 D~ (w). Thus, Lemma 5.2 and Corollary
5.3.1 give that @ (’Varwf,sm) - (EWT,EW))Q} > :z:) = o(x~5+¢") for any ¢’ > 0. Thus, for & < e

’IIQ <’Va7"wT,§m) _ (EwT,Sm))2’ > gn2/s2s) _ 0(n71+465)7

which finishes the proof. O

Since T,,, = > (T,, — T),_,) is the sum of independent (quenched) random variables, in
order to prove a CLT we cannot have any of the first n crossing times of blocks dominating
all the others (note this is exactly what happens in the localization behavior we saw in Section
4). Thus, we look for a random subsequence where none of the crossing times of blocks are
dominant. Now, for any § € (0,1] and any positive integer a < n/2 define the event

Ssna = {# {z <én: uin)w S [nQ/S, 2n2/5)} = 2a, ,u?)mw < 2n?/s Vi < 5n} .

On the event Ss.p,,q, 2a of the first én crossings times from v;_; to v; have roughly the same size
expected crossing times p; , «, and the rest are all smaller (we work with M?,n,w instead of 4 .
Z n.w are slightly easier). We want a lower bound on the probability of
Ss.n,a- The difficulty in getting a lower bound is that the 7, . are not independent. However,
we can force all the large crossing times to be independent by forcing them to be separated by

at least b,, ladder locations.

so that comparisons with o
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Let Zs.n,q be the collection of all subsets I of [1,dn] N Z of size 2a with the property that
any two distinct points in I are separated by at least 2b,. Also, define the event

A o= {1 € [02°,20%) .

Then, we begin with a simple lower bound.

Sz U (NAw N {iae<n*)

IeI{F,n,a icl je[l,zsn]\l
= Y e(N4an N {ae<w?}). (65)
I1€Zs n,a el JE[1,6n]\1

Now, recall the definition of the event G; ., . from (32), and define the event
Hine:= {Mj <n(1=9/5 for all j € [i — bn,i)} .

Also, for any I C Z let d(j,I) := min{|j — | : i € I} be the minimum distance from j to the set
I. Then, with minimal cost, we can assume that for any I € Z5,, , and any € > 0 that all j ¢ I
such that d(j,I) < by, have M; < n(1=e)/s Indeed,

Q(mAm N {2 <)

el JE[L,0n\I
> Q () (Ain N Gine N Hin) (1800 <n?°)
el J€[1,6n]:d(4,1)>by,
o U (i < ator)

J&1,d(5,I)<bn
Z H Q(Az,n N Hi,n,s)Q ﬂ Gi,n,s ﬂ {:uﬂ?,n,w < n2/s}
el el J€[1,6n]:d(5,1)>by

— 4ab,Q (EWTI, >nl/s My < n<1—8>/5) . (66)

From Theorem 1.4 and Lemma 3.3 we have Q(4;,) ~ Koo (1 —27%/2)n~1. We wish to show
the same asymptotics are true for Q(Ai, N Hine) as well. From (13) we have Q(H{,, .) <
b Q(M; > n(1=2)/s) = o(n=1+2¢). Applying this, along with (13) and (15), gives that for ¢ > 0,

QAin) € QAin N Hine) +Q (My > n09/) Q(HE,, ) + Q (BT, > n'/*, My < n17/*)
= Qi N Hin ) + o(n™27) 4 o(e").
Thus, for any € < % there exists a C; > 0 such that
Q(Ain NHipe)>Con™t (67)

To handle the next probability in (66), note that

o] oL s I AR ) R Y R AR ) BT (VN

icl J€[1,6n]:d(4,1)>bn, JE[1,0n] icl
>Q (EWT,,n < nl/S) —2aQ(G5,,.)
=Q (Ele,n < nl/s) —ao(n~112). (68)
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Finally, from (15) we have 4ab,Q (E.,T, > nt/s M, < n(lfs)/s) = ao (e’”s/(ﬁs)). This, along
with (67) and (68) applied to (65) gives

Q (Ss,n,a) = #(Lsma) {(Can_l)h (Q (EwTun < nl/s) - ao(n_1+28)) —ao (e‘"i/(ﬁs)” .

omy < G To get a lower bound T
9a) < "G+ To get a lower bound on #(Zsm,a) We

note that any set I € Zs , o can be chosen in the following way: first choose an integer i1 € [1, 0n]
(0n ways to do this). Then, choose an integer i € [1,0n]\{j € Z : |j — i1| < 2b,} (at least
on — 1 — 4b,, ways to do this). Continue this process until 2a integers have been chosen. When
choosing i, there will be at least én — (j — 1)(1 + 4b,,) integers available. Then, since there are
(2a)! orders in which to choose each set if 2a integers we have

An obvious upper bound for #(Zs.,.q) is (

(571)211 1 2a . (5n)2a (2&— 1)(1+4bn) 2a
(2a)! > #(Tsna) > (2a)!j1;[1(5n—(J—1)(1+4bn))2 2a)] (1_ - ) .

Therefore, applying the upper and lower bounds on #(Zs.q) we get

Q (Ss,n.a) = (605;% (1 _ a1+ 4b")>2a (Q (EMT% < nl/s) _ ao(n_1+2€))

Recall the definitions of dj, in (4) and define
ar = |logloghk] V1, and 0k :=a;" . (69)

Now, replacing é,n and a in the above by 0, di and ay respectively we have

) Ca 2ap _ 2ag . -
Q (s duan) = & ’(“2%))! (1 _ {20 Z(dl: 4bd’“)) (Q (BT, < d/*) = arold; %))

2ak e/ (6s
()
ag ):
(6kC€)2ak
(ZCLk)!

(1+0(1)) (Lsp (1) = o(1)) = o(1). (70)

The last inequality is a result of the definitions of dx,ax, and dj (it’s enough to recall that

di > 22]671, ay ~ loglogk, and 0y ~ m), as well as Theorem 1.1. Also, since & = a;l we

(8KCe)**k _ (Cee/2)%%
(2a)! V2rmay

T=o0 (%) This, along with (70), gives that Q (Ss,,ay,0,) > # for all k large enough.

We now have a good lower bound on the probability of not having any of the crossing times of
the first didy blocks dominating all the others. However for the purpose of proving Theorem
1.3 we need a little bit more. We also need that none of the crossing times of succeeding blocks
are too large either. Thus, for any 0 < § < ¢ and n € N define the events

cn cn
U&n,c = { Z M, n,w < 2711/5} 5 ﬁé,n,c = { Z M, n,w < nl/s} .

i=0n-+1 1=0n-+b,+1

get from Sterling’s formula that

. Thus since a; ~ loglog k, we have that

Lemma 5.5. Assume s < 1. Then there ezists a sequence ¢, — o0, ¢, = o(logay) such that

o0
Z Q (Ssi,d,an N Ul5k7dk,0k) = 00.
k=1
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Proof. For any § < ¢ and a < n/2 we have

bn
Q (Sé,n,a N Ué,n,c) > Q (Sé,n,a) Q (ﬁé,n,c> - Q (Z Hin,w > nl/s)
=1

/s
> Q8100 @ (BT, <n77) ~0,0 (B, > 50

> Q (Ssina) @ (BT, <n'/7) —o(n™'72), (71)

where the last inequality is from Theorem 1.4. Now, define ¢; = 1 and for k£ > 1 let

1/s 1
¢ 1= maX{CEN:Q(EWTVCdk Sdk/ ) = @}V1

Note that by Theorem 1.1 we have that ¢}, — oo, and so we can define ¢ = ¢, A loglog(ag).
Then applying (71) with this choice of ¢; we have

ZQ S5k,dk,ak N Uék,dk,ck 2 Z |: S6k,dk,ak Q (EMTVdek < dllg/s) - O(dlzl/2):| = 00,
k=1 k=1

and the last sum is infinite because d,;l/ ? is summable and for all k large enough we have

s 1
Q (S§k,dk,ak) Q (E“"Tl’ckdk = dllc/ ) 2 klogk

O

Corollary 5.5.1. Assume s < 1, and let ¢, be as in Lemma 5.5. Then, P-a.s. there exists
a random subsequence ny,, = ng, (W) of ng = 22" such that for the sequences auy, Bm, and v,

defined by
O 7= N, —1, Bm = Ng,,—1 + Ok, Ak, s Ym = Ny —1 + Chyy Ay, s (72)

we have that for all m

B’V?‘L
2 2/s
ma. - <2d)" < — 73
iG(Ocm,)ém] Nz,dkm, km — ar,, . az+1 /’L’L dk ( )

and

TYm
1
Z Hidy,, ,w < 2dkfns'
Bm~+1

Proof. Define the events
S,IC = {# {Z S (nk_l,nk_l + (5kdk] : uzz,dk,w S [di/s,Qdi/s)} = 2ak}

{Mg dpw < 2d2/s Vj € (ng—1,np—1 + 5kdk]} ,

ng—1+crdg

! 1/s
Uk = Z Wiydy, o < 2dk
Np—1+0kdr+1

Note that due to the reflections of the random walk, the event S; N U depends on the en-
vironment between ladder locations ny—1 — bg, and ni_; + cxdr. Thus, for kg large enough
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{85 N U3, 172, 1s an independent sequence of events. Similarly, for k large enough S; N Uy
does not depend on the environment to left of the origin. Thus

P(Sl/e N Ullc) = Q(Sl/e N Ullc) = Q (85k7dk7ak N U6k7dk7ck)

for all k large enough. Lemma 5.5 then gives that > -, P(S}, NUj,) = oo, and the Borel-
Cantelli lemma then implies that infinitely many of the events S5, NUJ, occur P —a.s. Finally,
note that S, ~implies the event in (73). O

Before proving a quenched CLT (along a subsequence) for the hitting times T;,, we need one
more lemma that gives us some control on the quenched tails of crossing times of blocks. We
can get this from an application of Kac’s moment formula. Let T}, be the hitting time of y when
we add a reflection at the starting point of the random walk. Then Kac’s moment formula [5,

(6)] and the Markov property give that E%(T,) < j! (Ef,Ty)j. Thus,

B (T < U7 (T, < U (BS T  T,) < U S T, + pine) - (T4)

Lemma 5.6. For any € < %, there exists an n > 0 such that
Q (Hi <n, jeN:M;>nl"9/ EZi*I(T,SZl))j > j!2jugyn1w> =o(n™").
Proof. We use (74) to get
Q (Hi <n, JEN:M;>nt=9/  EEy(TM) > j!zmg,nyw)
<Q (Hi <n:M;>n178/s R, > ui,n,w)
< nQ (M1 > n(lfs)/s, EV Ty > n(lfs)/s)
—nQ (M1 > n(lfs)/s) o) (Eﬁ’b" Ty > n(lfs)/s) :

where the second inequality is due to a union bound and the fact that p; ». > M;. Now, by
(13) we have nQ (M; > n(1=5)/*) ~ Csn®, and by Theorem 1.4

(1—e)/s
Q(ES™ Ty >n079/*) <b,Q (EwTy >

> ~ Ko pltsy—lte
by e '

Therefore, Q (Eli <n, jEN:M;>n1=9/s  EIHTMY > j!Qng,n,w) =o(n=1t3). O

Theorem 5.7. Let Assumptions 1 and 2 hold, and let s < 1. Then P — a.s. there exists a
random subsequence ny, = nk, (w) of ng = 22" such that for am, Bm and Y as in (72) and
any sequence T, € [Vg,,,V,,], We have

T, — BTy,

i 7, ( = <v)

=2(y), (75)

where

Bm
R 2
Um,w = :ui,dkm ,w*
1=am+1

Proof. Let ny,, (w) be the random subsequence specified in Corollary 5.5.1. For ease of notation,
set ap, = ag,, and d,,, = di,, . We have

Bm Ym
~ 1 ) ~
max  p’; < 2d%/° < — E u? = and E g, < 2dY5.
a sy

iE(amvﬁm] dm W Am i=am+1 Z)dM)w m i_ﬁ +1
=Qm —Mm
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Now, let {z, }5o_; be any sequence of integers (even depending on w) such that z,, € [vg,,, Vy,.]-
Then, since (Ty,, — ETy,,) = (T, — BT, )+ (Ts,, — Tv., — Eo*™Ty,.), it is enough to
prove

T,

Vo,

Vo
Txm - Tvam - Ew " Ty Dy,

De =% Z ~ N(0,1) (76)

- E,T,
—m———m % (), and
vV Um,w VvV VUm,w

where we use the notation Z,, Do, 7 to denote quenched convergence in distribution, that is
limy,— o0 Py(Zy,, < z) = P,(Z < 2),P — a.s. For the first term in (76) note that for any £ > 0,

we have from Chebychev’s inequality and vy, ., > (fn{ *. that
p Ty, —E,T,.,,, S < Var,T,,. < Var,T,,.
) N w2l

Thus, the first claim in (76) will be proved if we can show that Var,T,,
we need the following lemmas:

am

= O(CZ%S). For this

Lemma 5.8. Assume s < 2. Then for any 6 > 0,
P (Vaerl,n > nz/”‘s) = o(n=%/%).
Proof. First, we claim that
Ep(Var,T1)” < oo for any v < % . (77)
Indeed, from (44), we have that for any v < § <1

Ep(Var,T1) < 47Ep(Wo + W) +87 Y " Ep (I}, o(W; + W2)7)
<0

=4 Ep(Wo + W5)Y + 87> (Epp) Ep(Wo + W5)?,

i=1

where we used that P is i.i.d. in the last equality. Since Epp} < 1 for any v € (0, s), we have
that (77) follows as soon as Ep(Wy + Wg)? < oco. However, since W has the same distribution
as Ro, we get the latter from (9) when v < 3.

As in Lemma 4.2 let 7 = Epv. Then,

P (Vaerl,n > nz/”‘s) < P(Var,Tapm > n2/5+5) + P(vy, > 20n).

As in Lemma 4.2, the second term is O (ef‘s,") for some ¢’ > 0. To handle the first term on

the right side, we note that for any v < 5§ <1

2vn v
Ep ( vy Vary (T, — qu)) _ 2omEp(Var,Ty)

_ 2/s+6
P(VaTwT2vn >n ) < n(2/s+9) nv(2/s+9)

(78)

Then since Ep(Var,T1)? < oo for any v < 3, we can choose ~ arbitrarily close to § so that the

last term on the right of (78) is o(n=%/4). O
As aresult of Lemma 5.8 and the Borel-Cantelli lemma, we have that Var,T,, = o(ni/ S+5)
for any 6 > 0. Therefore, for any § € (0,2) we have Var,T,, = o(a?[*T) = o(ni{fff) =

o(ci,zn/ *) (in the last equality we use that di ~ ng to grow much faster than exponentially in k).
For the next step in the proof, we show that reflections can be added without changing
the limiting distribution. Specifically, we show that it is enough to prove the following lemma,

whose proof we postpone:

24



Lemma 5.9. With notation as in Theorem 5.7, we have
i) — BT
v Vm,w

Assuming Lemma 5.9, we complete the proof of Theorem 5.7. It is enough to show that

. Vo,
lim P,

m—00

< y) =0(y). (79)

lim Pl (T £ T, ) =0, and lim EL (T,

m—00 m— 00

— d‘m .
L~ T o,
However, since PLZQ’"(Tm(i"‘) # T, )= P> (sz — Tw(i"‘) > 1) < B (T, — ngi’")), and

Tm < Ym = Nk, —1 + Ck,, dm < ng,,+1 for all m large enough, it is enough to prove

Jim L (T — () ) =0, P-as. (80)

Vnp41 Unpi1

Now, from Lemma 3.2 we have that for any € > 0

Q (Bl (T, — TS

Vnk+1 Vn 41

) > a) < ng41@Q <EWT1, — EWT,Ed’“) > L) = ng4+10 (nZJrle*‘s/bdk) .
Nk+1

Since ny ~ di, the last term on the right is summable. Therefore, by the Borel-Cantelli lemma,

. O _
lim B I(TMH T(d )_0, Q- as. (81)

Yrngia

This is almost the same as (80), but with @ instead of P. To use this to prove (80) note that
for ¢ > by, using (19) we can write

BT, — B T = Ajn(w) + Bin(@)Wor,

where A; ,,(w) and B; ,,(w) are random variables depending only on the environment to the right
of 0. Thus, E,"** (T — T ) = Ag, (w) + By, (w)W_1 where Ay, (w) and By, (w) only

Vnjgi1 Vnjgiq
depend on the environment to the right of zero (so Ag4, and Bg, have the same distribution under
P as under Q). Therefore (80) follows from (81), which finishes the proof of the theorem. [

Proof of Lemma 5.9. Clearly, it suffices to show the following claims:

i) — T g i)
Y. P20, (82)

Um,w

and (dm) _ p(dim) (dn)
Tiin) Tl _ glom g
B om om Do 7L N(0,1). (83)

Um,w

To prove (82), we note that

P, (
2/s

where the last inequality is because x,, < 7, and vp, o > Gmdy, . However, by Corollary 5.4.1
and the Borel-Cantelli lemma,

dm) _ Vo ldn)

w Tm

&m d~m Ym 2
>e| < Vary (T4, Tlsam)) < Ll 41 Tidin
= = EQUm,w — EQdmd‘fr{s

Tm(&’") _ 7l =

Vs

)
Um,w

TYm TYm
2 _ 2 7 \2/s
Z Ui,d~m,w - Z ’ui,d~m,w to ((Ckmdm) ) :
1=Bm+1 1=Bm+1
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The application of Corollary 5.4.1 uses the fact that for £ large enough the reflections ensure
that the events in question do not involve the environment to the left of zero and thus have the
same probability under P or . (This type of argument will be used a few more times in the
remainder of the proof without mention.) By our choice of the subsequence ny,, we have

Ym Tm 2 _
2 Mw S| D M | AT
i=Bm+1 i=Bmt1
Therefore,
=(d ~(d Vo (d 2/s ] )2/s
Tz( m) _ TIE m) _ EmeTz( m) 4d,y,” + o (Ckmdm)
lim P, = B =1 >e| < lim =0, P—a.s.
m— oo \/m m—o00 Ededﬂn{S
where the last limit equals zero because ¢, = o(log ag,).
It only remains to prove (83). Since re-writing we express
. . . Om . .
7 (dm 7(dm Vam mi(dm) _ 7 (dm 7 (dm ~
TIEBm) - Tlsam) —Eo TISBWL) - Z ((TIEI '- Tlgz’—l)) - Mi,dmw)
i=am+1

as the sum of independent, zero-mean random variables (quenched), we need only show the
Lindberg-Feller condition. That is, we need to show

ﬁm
1
lim o2 =1, P —a.s. 84
m—00 Um . w l_g—kl &y W ( )

and for alle > 0

Bm
1 _ = 2
3 Vi— (dM)_ - . — _
A 2 B @ <) Vi ] =0 P 9

To prove (84) note that

Bm 2 2
1 - 2 Zi:aerl (O-i;‘im;w B Mi#im#—d)
Um.w 4y dm W Um.w
’ i=am+1 ’
However, again by Lemma 5.4.1 and the Borel-Cantelli lemma we have Zf;"am H(a? A

i,(im,w
To prove (85) we break the sum up into two parts depending on whether M; is “small” or
“large”. Specifically, for ¢’ € (0, ) we decompose the sum as

pr. Y=o ((5kmdm)2/8). Recalling that v, . > dmda” we have that (84) is proved.

ﬁm

~ 2
Vi1 p(dm) _ - - ’
. > E [(Tw “ivdva) Lizgim ., w|>s\/m>} Lari<agmenrs (86)
=0+ o
R F(d) ’
Evi-1 (T dm) _ 1y - ) 1 _.- 1 (1—el) /s 87
* Um,w i:;—i—l N |: v Hid o Tlgfyn)“i,dm,w|>5\/m:| Mi>diy = ( )

We get an upper bound for (86) by first omitting the indicator function inside the expectation,
and then expanding the sum to be up to ng,, > Gp,. Thus (86) is bounded above by

B ng
1 = 9 1 < 1 = 2 1
o ) Tisdn o™ My<d 3= = ) T M <diE =
T i=au, +1 T i=ng,, —1+1
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However, since dj, grows exponentially fast, the Borel-Cantelli lemma and Lemma 5.4 give that

N

2/s
Z UidkwlMiSdg*El)/s = O(dk/ ). (88)

i=nk—1+1

Therefore, since our choice of the subsequence ny,, gives that v, , > an/ ® we have that (86)
tends to zero as m — oo.

To get an upper bound for (87), first note that our choice of the subsequence ng,, gives
that €,/Um o > E@Nz‘,&m,w for any ¢ € (ayn, Bm]. Thus, for m large enough we can replace

the indicators inside the expectations in (87) by the indicators of the events {T,E:i m s (1+
eVam)i; gt Thus, for m large enough and i € (auy, B, we have

~ 2
Vi1 7(dm) _ _ _
E(_u |:(Tl/l ui,dm,w) 1|Tlgjm)7#i,d-m,w|>5 /7'Um,w:|

~ 2
Vi— _(dnl) _ - -
S Eu.) ! |:(TI/1 Mz’,dm,w) 1T§?m)>(1+5 /_&m)#in_mYW]

:/ Pyt (T,Sfm) >, g w) 2(x — 1);1?(2 Ldr.
1+5m sAmyy ylom,

We want to use Lemma 5.6 get an upper bound on the probability inside the integral on
the last line above. Lemma 5.6 and the Borel-Cantelli lemma give that for k£ large enough,

) _ J . . —/s
E;? (T,Sidk)) < 25l 4 for all ng_y < i < ny such that M; > al,(c1 s, Multiplying by

. )

4415 4, )7 and summing over j gives that EZ"’leT”ik /(Aniay,w) < 2. Therefore, Chebychev’s
Hi,dy, g J g y

inequality gives

) = _ ) 7(dE) ) _
pYi-1 (Tlsidk) > xﬂi,dk,w> <e 90/4E51716ka VACTITR Y| < 2 z/4

Thus, for all m large enough we have for all a,,, <@ < 8y, < ny,, with M; > dﬁ*')/s that

/ Py (T80 > apy g, ) 20 = D2y do < / 272 — Vpif; do
I4evam o o I+evam
= 16(4 + £y/@p e Va2 L
Recalling the definition of vy, = ZZ e 1 u .» We have that as m — oo, (87) is bounded
above by )
Bm
m V. Z 16(4+ /@y e (HHeVE) M“fd wlagsd=<"r
i=am 1
< lim 16(4 + ey/@p)e” VA = 0.
This finishes the proof of (85) and thus of Lemma 5.9. O

Proof of Theorem 1.3:
Note first that from Lemma 4.2 and the Borel-Cantelli lemma, we have that for any ¢ > 0,

E.T,,, = o(n,(clﬁ)/s), P — a.s. This is equivalent to
limsup ———* <~ P —a.s. (89)

We can also get bounds on the probability of E, T, being small. Since E,'~'T,, > M; we have

P (BT, <n@9) < P(M; <009 vi<n) < (1-P (0> n0-97))",
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and since P(M; > n(1=9)/%) ~ Csn'=¢, see (9), we have P (E,T,, <n(l=9)/%) < e=""". Thus,

by the Borel-Cantelli lemma, for any € > 0 we have that Ele,nk > ng_g)/s

enough, P — a.s., or equivalently

for all k large

log E,T,,
liminf ——*%

1
2 )
k—o0 10g ng S

P —a.s. (90)
Let ny,, be the subsequence specified in Theorem 5.7, and define t,,, := E, T}, . Then, by (89)
and (90), lim,, oo n2Btm. =1 /s,

Tog 1k,

For any ¢ define X, := max{X,, : n <t}. Then, for any = € (0, 00) we have

X *
P, ( b < x) =P (X; <ank,) =P, (Ton,, > tm)
nkm
_ P Txnkm - Esznkm > Eankm - Emenkm
¢ VO VO '

Now, with notation as in Theorem 5.7, we have that for all m large enough vg,, < xni,, <v,,,

(note that this also uses the fact that v,/n — Epv, P — a.s.). Thus Doy 7~

Tmnkm _Esznkm

oo
N(0,1). Then, we will have proved that lim,, . P, (Xt’" < x) = 1 for any z € (0,00) if we

Nk

can show

. Ew Tnk - Ew Tmnk
lim 1 1
m— o0 /Um,w

For m large enough we have ny,,, xng,, € (vg,,,V,). Thus, for m large enough,

=0, P-a.s (91)

VBm _ Ym
Eu_)Txnkm - Eankm ‘ < Ew Tv'ym _ 1 Ellgm (T _ T(dm)) + W,
— w Vym Ve § : by ,w
vV VUm,w \/vm,w \/vm,w i=Bm+1

Since @ < B < Ym < ng,, 41 for all m large enough, we can apply (80) to get

lim B (T, —Ti0) < Tim B (T, 14l Y=o,

v
m—oo m— oo Mk 41 Yk 41

Also, from our choice of ng,, we have that ngﬁmﬂ Hid w < 2&,17{5 and Uy, > dmd?n/s. Thus
(91) is proved. Therefore

X7 1
lim P, (ﬂ Sx) =5 v € (0, 00),

m—oo ng,,

and obviously lim;, . P, (f;m < O) = 0 since X,, is transient to the right P — a.s. due to

Assumption 1. Finally, note that
X —-Xy X/—-vn

t

_ VNt — Xt < maxigt(l/i — Vi—l) VNt — Xt
log?t log? t log?t ~ log?t log?t

However, Lemma 4.4 and an easy application of Lemma 2.1 and the Borel-Cantelli lemma gives
that

X —-X
lim t72t =0, P—a.s.
t—oo  log“t
This finishes the proof of the theorem. O
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6 Asymptotics of the tail of £ T,

Recall that E,T, = v +237") Wy=v42Y I1; j, and for any A > 1 define

1<7,0<5<v
o=o0a=inf{n>1:1ly,—1 > A}.

Note that o — 1 is a stopping time for the sequence Iy ;. For any A > 1, {c > v} = {M; < A}.
Thus we have by (15) that for any A > 1,

QE,T, > x,0>v)=Q(E, T, >z, M; < A) =o(z™%). (92)

Thus, we may focus on the tail estimates Q(E,T, > z,0 < v) in which case we can use the
following expansion of E,T,:

B,y =v+2 > Ii;+2 > M;+2 > I;+2 Y I

i<0<j<o—1 0<i<j<o—1 o<lilj<v i<o—1<j<v
o—2 v—1
=v+2W 1 Roo 2 +23 Wo;+2> Riy1+2Wo1(1+ Rop1). (93)
3=0 1=0

We will show that the dominant term in (93) is the last term: 2W,_1(1 + Ry,,—1). A few easy
consequences of Lemmas 2.1 and 2.2 are that the tails of the first three terms in the expansion
(93) are negligible. The following statements are true for any 6 > 0 and any A > 1:

Qv > dzx) =P > dz) =o(z™?), (94)

Q(2W_ 1Ry s_o > 0z,0 <v) < Q(W_1 > Vox) + P(2R0,5_2 > Vox,0 < 1)
< QW_1 > Véx) + P(2vA > Vix) = o(z™), (95)

o-2 o—1
QZWOJ >dx,o<v| <P QZjA>6:E,U<V < P(WPA> 6x) =o(x™*). (96)
Jj=0 j=1

The fourth term in (93) is not negligible, but we can make it arbitrarily small by taking A large
enough.

Lemma 6.1. For all 6 > 0, there exists an Ay = Ao(0) < oo such that

> Riya>dx| <dat, VA= Ap(5).
oa<i<v
Proof. This proof is essentially a copy of the proof of Lemma 3 in [10].

Pl2 Y Ri,a>d0|<P| ) R>gx _P<ZIUA<Z<1,R> x—z )

oa<i<v oa<i<v i=1 i=1
oo
30
<Y Pllo,<icoRi>a=i72).
—; ( gali<vily 71-2
i=

However, since the event {o4 < i < v} depends only on p; for j < ¢, and R; depends only on
p; for j >4, we have that

Pl2 Y Riyi1>dx §ZP(JA§i<u)P<Ri>xi—gi2).

oa<i<v =1
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Now, from (11) we have that there exists a K7 > 0 such that P(Ry > z) < Ky2~* for all z > 0.
We then conclude that

T2

:Kl (35) ,TiSEp

35 —S oo
P Z Ri7y_1>5$ SKI( ) ‘T_SZP(O—ASi<V)Z.2S
i=1

oa<i<v

T2

[e'S)
-2s
E 1<7A§i<1/7f

i=1

T2

<K (35 ) r o EpA 1, .. (97)

Since Epv?*t!1 < 0o and lima_o P(04 < v) = 0, we have that the right side of (97) can be
made less than dz~° by choosing A large enough. O

We need one more lemma before analyzing the dominant term in (93).

Lemma 6.2. Eq [W}

o

,110<,,} < oo forall A>1 and all t > 0.

Proof. Since Wy_1 = Wy 5—1 + Iy ,—1W_1, we need only to show that Eq [W§707110<,,] < 00
and EQ[IT§ , W' 15<,] < 0.
By Assumption 2 we have IIp ;1 < pmax4, and Lemma 2.1 gives Epv' < co. Thus,

EQIW§ g—110<] < Ep[o'Tl ;1 15<u] < placA EpV] < 0.
Similarly, since Lemma 2.2 gives EqW!; < oo we have
EQIly 1 Wi1cu] < plraxA'EQ[W!y] < co.
|

Finally, we turn to the asymptotics of the tail of 2W,_1(1+ R, 1), which is the dominant
term in (93).

Lemma 6.3. For any A > 1, there exists a constant K4 € (0,00) such that

lim 2°Q (Wo—1(1+ Ro,p—1) > 2) = K4,

Tr— 00
where we use the convention that We_1 = Ry ,—1 = 0 when o > v.

Proof. The strategy of the proof is as follows. First, note that on the event {oc < v} we have
Wo_1(14Rs) = Wo—1(14 Ry p—1)+Ws_1ll, -1 R,. We will begin by analyzing the asymptotics
of the tails of W,_1(1 + Ry) and W,_111,,_1R,. Next we will show that W,_1(1 + Ry 1)
and W,_11l, ,_1 R, are essentially independent in the sense that they cannot both be large.
This will allow us to use the asymptotics of the tails of W,_1(1 + R,) and W,_11II, ,_1R, to
compute the asymptotics of the tails of Wy_1(1 + Ry ,—1).

To analyze the asymptotics of the tail of W,_1(1 + R, ), we first recall from (11) that there
exists a K > 0 such that P(Ry > ) ~ Kx~°. Let F,—1 = 0(...,ws—2,ws—1) be the oc—algebra
generated by the environment to the left of . Then on the event {0 < oo}, R, has the same
distribution as Ry and is independent of F,_1. Thus,

fa’l):|

- KWOS._110-<V. (98)

lim 2°Q(Wy—1(1+ Ry) > z,0 <v)= lim E {xSQ <1 + R, > WL,U <v
T—00 r—00 -1
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A similar calculation yields

lim 2°Q (Wy_111y, 1Ry > 7,0 <v) = lim Eg [:cSQ (RV >— % o<vw f,j_lﬂ
T—00 T—00 Wa'flna',ufl
= Eq [Wiflnfy,vflldCJ] K. (99)

Next, since I, ,_1 < % on the event {o < v} we have for any € > 0 that

Q (Wa'fl(l + Rcr,vfl) > EX, Wd*lna,ufle > Ex, 0 < V)
<Q(Wooi1(l4+ Rop1) > ex, Wo_1R, > Acx,0 < V)

= Fo [Q (1 +Rop1 > %,a < V|]-"01) Q (R,, > A%,a < y|fc,1>}

EXT ET
< EQ |:Q (1 + R, > m,a < I/|]:01> Q <Ry > AWg_l |.7:(,1>:| , (100)

where the inequality inequality on the third line is because R, ,_1 and R, are independent
when o < v (note that {o < v} € F,_1), and the last inequality is because R,,—1 < R,. Now,
conditioned on F,_1, R, and R, have the same distribution as Ry. Then, since by (11) there
exists a K1 > 0 such that P(1 4+ Ry > z) < K12~°, we have that (100) is bounded above by

EqQ [W2 1,0, K§A%e 25072

g

Since Eg [W2§110<,,} < 00 by Lemma 6.2, we have that

o

lim st(Wa—l(l + RU,V—I) > Ex, WG'—IHG',U—IRU >ex, 0 < 7/) =0. (101)

Therefore, since R, = R,,,—1 + Il ,—1 R, we have that for any € > 0
QWo—1(1+ Ry) > (1 +e)x,0 <v) < QWyo_1(l+ Ry 1) > ex, Wo_11l, 1R, > ex, 0 < V)

+ Q(Wa—l(l + Ra’,u—l) >x,0 < V)
+ Q(Wa’*lna’,ufle >x,0 < I/) .

Applying (98), (99) and (101) we get that for any € > 0

liminf 2°Q(Wo—1 (14 Ro,—1) > 2,0 <v) > KEQ[W; 11,5, |(14+€) *~KEQ[W; 115 , 11,<.].
o (102)
Similarly, for a bound in the other direction we have
QWsr—1(1+ Ro) > x,0 <v) > QWo—1(1 + Rp 1) >z, ot Wy_11ll; 1R, > z,0 < V)
=QWo_1(14+ Rop—1) > 2,0 <V)
+QWyo_11ly 1R, > x,0 <)
—QWo1(1+ Ro 1) > 2, Wy1Il, ,_1R, > 2,0 < V).

Thus, again applying (98),(99) and (101) we get

limsup 2°*Q(Wy—1(1+ Ry 1) > x,0 <v) < KEQW; _11,<,] — KEQIW, 11T, ,_115<,].

(103)
Finally, applying (102) and (103) and letting £ — 0, we get that
lim 2°QWo—1(1+ Rop—1) > z,0 <v) = KEg[W7_,(1 - Hg)V_1)10<V] =: K4,
and K4 € (0,00) by Lemma 6.2, and the fact that 1 —II,, 1 € (1 — %, 1). O

Finally, we are ready to analyze the tail of E,T, under the measure Q.
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Proof of Theorem 1.4:
Let § > 0, and choose A > Ay(d) as in Lemma 6.1. Then using (93) we have

Q(ELT, >x)=Q(E,T, >x,0>v)+ Q(E,T, >x,0<V)
< QELT, >z,0>v)+ Qv > dt) + Q2W_1Rp,5—2 > 0t, 0 <v)

o—2
+Q 2ZWQ7j>5t,U<I/ +Q 2 Z Ri)l,_1>5t
7=0 o<i<v

+ Q(2WU_1(1 + RO’,V—l) > (1 - 46)$, o< V) .
Thus combining equations (92), (94), (95), and (96), and Lemmas 6.1 and 6.3, we get that

limsup2®Q(E,T, > x) <0+ 2°K4(1 —40)"°. (104)

Tr—00

The lower bound is easier, since Q(E, T, > x) > Q(2W,_1(1 + Ryp—1) > z,0 < v). Thus

liminf 2°Q(E,T, > x) > 2°K4 . (105)

Tr—00

From (104) and (105) we get that K := limsup,_ . 2°K4 < oo. Therefore, letting K :=
liminfa_ o 2° K4 we have from (104) and (105) that

K <liminf2°Q(E,T, > v) <limsupx*Q(E,T, > z) < 6 + K(1 —48)~*°

xr—00 T — 00

Then, letting 6 — 0 completes the proof of the theorem with K., = K = K. O
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