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Abstract

We discuss regularization by noise of the spectrum of laagam non-
Normal matrices. Under suitable conditions, we show thatdégularization
of a sequence of matrices that converges-imoments to a regular element
a, by the addition of a polynomially vanishing Gaussian Gieilonatrix,
forces the empirical measure of eigenvalues to convergest@town mea-
sure ofa.

1 Introduction

Consider a sequendg; of N x N matrices, of uniformly bounded operator
norm, and assume tha&f converges ink-moments toward an elemeat
in aW* probability spac€4, || - ||,*,$), that is, for any non-commutative
polynomialP,

%trP(AN,A*N) —N-w O(P(a,@)).

We assume throughout that the tracial stite faithful; this does not rep-
resent a loss of generality. My is a sequence of Hermitian matrices, this
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is enough in order to conclude that the empirical measurégehealues of
Ay, that is the measure

A . 1 .
L .:N26)\i(AN),
i=1

whereAi(An),i = 1...N are the eigenvalues @y, converges weakly to
a limiting measurgy,, the spectral measure af supported on a compact
subset ofR. (Seel[l, Corollary 5.2.16, Lemma 5.2.19] for this standard
result and further background.) Significantly, in the Heiani case, this
convergence is stable under small bounded perturbatioitb: By = Ay +
En and||En|| < €, any subsequential limit dff will belong toBy ([, 3(€)),
with 8(€) —¢_0 0 andBy_ (va,r) is the ball (in say, the Lévy metric) centered
atv, and of radius.

Both these statements fail wheé is not self adjoint. For a standard
example (described inl[6]), consider the nilpotent matrix

0O 1 0 .. 0
0 0 1 0
TN=| oo
0 ... .0 1
0 ... ... ... 0

Obviously, L}, = &, while a simple computation reveals th&f converges
in x-moments to a Unitary Haar element.af that is

£k k
N TP T e { & B =2
Further, adding tdy the matrix whose entries are all 0 except for the bot-
tom left, which is taken as, changes the empirical measure of eigenvalues
drastically - as we will see below, &¢ increases, the empirical measure
converges to the uniform measure on the unit circle in theptexmplane.

Our goal in this note is to explore this phenomenun in the exandf
small random perturbations of matrices. We recall somenstiFora € 4,
the Brown measur®, on C is the measure satisfying

Iogde(z—a):/Iog\z—z’\dva(z’), zeC,

where det is the Fuglede-Kadison determinant; we refer,td][r defini-
tions. We have in particular that

logdet{z—a) :/Iogxdvg(x) zeC,
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wherev; denotes the spectral measure of the operateral. In the sense
of distributions, we have

1
Va = ETAIOQ de{z—a).
That is, for smooth compactly supported functipron C,
Jv@wa@ = o [dzwe [logiz-Zlava(2)
1
= ﬁ/dquJ(z)/logxdvg(x).

A crucial assumption in our analysis is the following.

Definition 1 (Regular elements)An elementa € 4 is regular if

e—0

Iim/(cdzAlp(z)/oslogxdvg(x)zo, 2

for all smooth functiongp on C with compact support.

Note that regularity is a property af not merely of its Brown measure
Va. We next introduce the class of Gaussian perturbations wsider.

Definition 2 (Polynomially vanishing Gaussian matrice®) sequence of
N-by-N random Gaussian matrices is callpdlynomially vanishingf its
entries(Gn(i, j)) are independent centered complex Gaussian variables, and
there exisk > 0, k' > 1+ K so that

N <E|Gij[? <N,

Remark 3. As will be clear below, see the beginning of the proof of Lemma
[IJ, the Gaussian assumption only intervenes in obtainingifarm lower
bound on singular values of certain random matrices. Ast@ediaut to us by

R. Vershynin, this uniform estimate extends to other sibugt most notably

to the polynomial rescale of matrices whose entries ark iand possess a
bounded density. We do not discuss such extensions here.

Our first result is a stability, with respect to polynomialkanishing
Gaussian perturbations, of the convergence of spectrasumes for non-
normal matrices. Throughout, we denote|W||op the operator norm of a
matrix M.



Theorem 4. Assume that the uniformly bounded (in the operator norm) se-
guence of N-by-N matricegy/onverges ir-moments to a regular element
a. Assume further thatf.converges weakly to the Brown measuge Let

Gn be a sequence of polynomially vanishing Gaussian matriaed, set

Bn = Ay +Gn. Then, I — v, weakly, in probability.

Theorem¥ puts rather stringent assumptions on the sequgnceén
particular, its assumptions are not satisfied by the seguefwilpotent ma-
tricesTy in [@). Our second result corrects this defficiency, by singvthat
small Gaussian perturbations “regularize” matrices thathse to matrices
satisfying the assumptions of TheorEm 4.

Theorem 5. Let Ay, Ex be a sequence of bounded (for the operator norm)
N-by-N matrices, so thatpdconverges irk-moments to a regular element
a. Assume thaffEn||op converges to zero polynomially fast in N, and that
Lﬁ*E — v, weakly. Let (g be a sequence of polynomially vanishing Gaus-
sian matrices, and set\B= Ay + Gy. Then, lﬁ — Vg Weakly, in probability.

Theorem[b should be compared to earlier results of Sniadyw&p
used stochastic calculus to show that a perturbation by wmgtstically
vanishing Ginibre Gaussian matrix regularizes arbitragyrinoes. Compared
with his results, we allow for more general Gaussian pedtiobhs (both
structurally and in terms of the variance) and also show ttiatGaussian
regularization can decay as fast as wished in the polynosaeke. On the
other hand, we do impose a regularity property on the laras well as on
the sequence of matrices for which we assume that addingyaquulally
small matrix is enough to obtain convergence to the Brownsuea

A corollary of our general results is the following.

Corollary 6. Let Gy be a sequence of polynomially vanishing Gaussian
matrices and letJ be as in). Then LT,"© converges weakly, in probability,
toward the uniform measure on the unit circleln

In Figure[d1, we give a simulation of the setup in Corollgry 6variousN.
We will now define class of matriceg, y for which, if b is chosen cor-
rectly, adding a polynomially vanishing Gaussian ma@jxis not sufficient
to regularizeT, n + Gn. Letb be a positive integer, and defifigy to be an
N by N block diagonal matrix which eadin+ 1 by b+ 1 block on the diag-
onal equally, 1 (as defined in[{1). Ib+ 1 does not dividéN evenly, a block
of zeros is inserted at bottom of the diagonal. Thus, evetyyaf Ty is
zero except for entries on the superdiagonal (the supend#gs the list of



(a) N =50 (b) N =100 (c) N =500 (d) N =5000

-1 -05 0 0.5 1 -1 -05 0 0.5 1 -1 -05 0 0.5 1 -1 -05 0 0.5

1

Figure 1: The eigenvalues f + N—3-1/2Gy;, whereGy is iid complex Gaussian
with mean 0, variance 1 entries.

entries with coordinate§,i + 1) for 1 <i < N —1), and the superdiagonal
of Ty is equal to

(1,1,...,1,0,1,1,...,1,0,...,1,1,...,1,0,0,...,0).
b b b <b

Recall that the spectral radius of a matrix is the maximunolaibs value of
the eigenvalues. Also, we will ugg|| = tr(A*A)Y2 to denote the Hilbert-
Schmidt norm.

Proposition 7. Let b= b(N) be a sequence of positive integers such that
b(N) > logN for all N, and let § be as defined above. LefRe an
N by N matrix satisfying|Rn|| < g(N), where for all N we assume that
g(N) < ﬁ Then

P(Ton+Rn) < (Ng(N)YP+0(1),

wherep(M) denotes the spectral radius of a matrix M, and pdenotes a
small quantity tending to zero as-N .

Note thatT, y converges ink-moments to a Unitary Haar element af
(by a computation similar td1)) i(N)/N goes to zero, which is a regular
element. The Brown measure of the Unitary Haar element iumimea-
sure on the unit circle; thus, in the case whiig(N))Y/? < 1, Propositiofil?
shows thafl, y + Ry does not converge to the Brown measureTgy.

Corollary 8. Let Ry be an iid Gaussian matrix where each entry has mean
zero and variance one. Setbb(N) > logN be a sequence of integers, and
lety > 5/2 be a constant. Then, with probability tending to 1 as-N»o, we

have 2loaN
p(Tonv -+ exp IR < exp —y-+ 28 ) +o(1),
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(a) N =50 (b) N =100 (c) N =500 (d) N =5000

0.05 0.05 0.05 0.05

0 0 0 0

005 -0.05 -0.05 -0.05

-0.05 0 0.05 -0.1 -0.05 0 0.05 -01 -0.05 0 005 01 -0.05 0 0.05

Figure 2: The eigenvaules Giognn + N~3"Y/2Gy, whereGy is iid complex
Gaussian with mean 0, variance 1 entries. The spectralg@&lioughly 007, and
the bound from Corollarll8 is exp-1) ~ 0.37.

wherep denotes the spectral radius and whefé)odenotes a small quantity
tending to zero as N~ o. Note in particular that the bound on the spectral
radius is strictly less thaexp(—1/2) < 1 in the limit as N— o, due to the
assumptions ogand b.

Corollary[8 follows from Propositiohl 7 by noting that, withgbability
tending to 1, all entries iRy are at mos€logN in absolute value for some
constaniC, and then checking that the hypotheses of Propodiion 7ade s
isfied forg(N) = exp(—yb)CN(logN)¥/4. There are two instances of Corol-
lary[8 that are particularly interesting: wher= N — 1, we see that a expo-
nentially decaying Gaussian perturbation does not regeldy = Ty-_1N,
and wherb = log(N), we see that polynomially decaying Gaussian pertur-
bation does not regulariZBygn n (See Figurél2).

We will prove Propositioii]7 in Sectidd 5. The proof of our megsults
(Theorem§M anld 5) borrows from the method$ bf [3]. We intcedotation.
For anyN-by-N matrixCy, let

~ (0 Cy

“-(a 7)
We denote byGc the Cauchy-Stieltjes transform of the spectral measure of
the matrixCy, that is

Gc(z) = itr(z—éN)‘l, zeC,.

2N
The following estimate is immediate from the definition ahd tesolvent
identity:
|IC—Dllop
G -G < —. 3
’ C(Z) D(Z)‘ = ‘DZ‘Z ()




2 Proof of Theorem[(4

We keep throughout the notation and assumptions of thegheor he fol-
lowing is a crucial simple observation.

Proposition 9. For all complex numbe€, and all z so thatlz > N2 with
O < K/4,
E|0Gg, 1£(2)| < E|0Gay¢(2)] +1

Proof. Noting that
E||Bn — Anll§p = ElIGnll§p < N2, (4)

the conclusion follows fronf{3) and Holder’s inequality. O
We continue with the proof of Theordm 4. L\eﬁN denote the empirical

measure of the eigenvalues of the matk/'bzk\—/z. We have that, for smooth
test functiong,

/dquJ(z)/Iog\x]dvAN /L|J 2)dLy(z

In particular, the convergence bf; towardv, implies that

E/dquJ(z)/Iog|x|dv,§N(x)—>/ljJ(z)dva(z):/dzAlp(z)/Iogxdvg(x)

Onthe other hand, sinee— logxis bounded continuous on compact subsets
of (0, ), it also holds that for any continuous bounded funcfjoriR ; — R
compactly supported if0, «),

e [ dzu(z) [ 2loguang, (9 — [ daua) [ L loguav(x

Together with the fact thad is regular and tha#y is uniformly bounded,
one concludes therefore that

I|m I|m E// log[x|dvj, (x)dz= 0.

Our next goal is to show that the same applie8ito In the following, we
let véN denote the empirical measure of the eigenvalueB\of z

Lemma 10.

€
lim fim / El A log[x|~XdvZ, (x)]dz=0

€10 N—oo



Becausede||By — Ay H'(‘,p — 0 for anyk > 0, we have for any fixed smooth
w compactly supported if0, ) that

E\/dquJ / x) logxadvy (x) /dquJ / x) logxdvg, (X)| —=N-w 0,

Theoren{H follows at once from Lemrhal 10.

Proof of lemmalT0: Note first that by([b, Theorem 3.3] (or its generalization
in [3, Proposition 16] to the complex case), there existsrstntC so that
for anyz the smallest singular valus, of By + zI satisfies

P(of, <x) <C (N%“('x)B

with B = 1 or 2 according whether we are in the real or the complex case.
Therefore, for any > 0, uniformly inz

N—¢
3 A log|x “dv, (x)] < Eflog(of) My oy o
N—¢
o ikt 6 4 } 3K ¥
= C<N2 ) Iog(N)+/O XC(N2 X) dx

goes to zero abl goes to infinity as soon &> %+ k’. We fix hereafter
such aZ and we may and shall restrict the integration froin¢ to €. To
compare the integral for the spectral measur&pbndBy, observe that for
all probability measur®, with P, the Cauchy law with parametgr

P([a,b]) < PxR/([a—n,b+n])+P([-n,n]°) < F’>'<F’y([a—n,b+n])+X
(5)
whereas fob—a > n
P([ab)) > PxR([a+n.b—n))— Y. (6)
Recall that o
P+R,([a,b]) :/a I0G(xX+iy)[dx 7)

Sety=N"/5 k” = k/2 andn = N~"/5. We have, whenevés—a > 4n,
b+r] "
Evg,([ab]) < / E|0Gg, 4 2(X+ iy)|dx+ N~ (k=¥")/5
a-n
(b—a+ 2N"‘"/5) +v/§N * Py—ss ([a— NK/10 4 N—K/lo]) | NK/10
(b—a+2N"¥10) £ vZ ([(a—2N"¥/10),  (b+2N"*/10)])) 4 2N—*/10,

AN VAN
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where the first inequality is due tbl(5) arid (7), the secondiéstd Proposi-
tion[d, and the last useS (6) afd (7). Therefore-ifa=CN*/10 for some
fixed C larger than 4, we deduce that there exists a finite con§fawhich

only depends of® so that

EVg ([a,b]) <C'(b—a)+Vj ([(a— 2N/ (b+2N"*/10))).

As a consequence, as we may assume without loss of genehality’ >
K/10,

€
e[| log < ~av, ()
N-—¢
[NK/los]
< > log(N~¢ 4 2CKN /10 TE[VE J(IN~¢ 4+ 2CKN™/10 N4+ 2C(k+ 1)N
k=0
We need to pay special attention to the first term that we bdwymabticing
that
log(N~¢) *E[Vg, (IN~%, N~ 4 2CN /29
lOZ

< =log(N"10)1E[E ([0,2(C+ 1)N*/1)]
< glog( K/lO)fl(ZC/NfK/lo_i_V'ZAN([O C—|-2 K/lO]
Z 2(C+2)N*/20
< log(N K/10)‘1N‘K/10+C”/ log|x|~*dvZ (x)
0

For the other terms, we have

[N</10]
> log(N ¢+ 2CKN /1% ~2E[VZ J(IN~¢+2CKN/20 N~¢+2C(k+ 1)N
k=1
[NK/lOE]
< ¢! Z Iog(CkN—K/lo)—1CN—K/1O
k=1
[N</10]
+ ) log(CKN*/10)~v2 ([2C(k—1)N~/10,2C(k+2)N /1)),
k=1

Finally, we can sum up all these inequalities to find thatdhexists a finite
constanC"” so that

€ € €
E[/ ZIog\xyfldvéN(X)] SC”’/ |Og‘X’ldVi\N(X)+CW/ log|x| ~tdx
N- 0 0

9
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and therefore goes to zero whemnd there goes to zero. This proves the
claim. O

3 Proof of Theorem[5.

From the assumptions, it is clear th@#y + En) converges in-moments
to the regular elemers. By Theoren H, it follows thaty"E*C converges
(weakly, in probability) towards,. We can now removey. Indeed, by[(B)
and [3), we have for any < k’/2 and all§ € C

N-—X
‘G§+G+E(Z) N G§+G+E+E(Z)‘ < 02
and therefore foflz > N—X/2,

’DG§+G+E(Z)’ < ‘DG§+G+E+E(Z)‘ +1

Again by [5, Theorem 3.3] (or its generalization Ir [3, Prspion 16]) to
the complex case), for arg the smallest singular valug of Ay + Gy +z
satisfies

/\B
P(of, <X) SC(N%“‘ x)

with B = 1 or 2 according whether we are in the real or the complex délse.
can now rerun the proof of Theordih 4, replackgby Ay = A+ En + Gn
andBy by A\ — En. O

4  Proof of Corollary

We apply Theorerfil5 witlhy = Ty, En the N-by-N matrix with

C O =N"W2K) =1 =N
En(i ) =1 0, otherwise

wherek’ > k. We check the assumptions of TheorEm 5. We take be
a Unitary Haar element i, and recall that its Brown measuvg is the
uniform measure ofz e C : |z = 1}. We now check thaa is regular.
Indeed, [ x€dvZ(x) = 0 if k is odd by symmetry while fok even,

k/2

/ Xdv2(x) = 0 ([(z—a)(z—a) ¥2) = Y (|22 + 1)< < 51 > ( J?j > ’

=1
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and one therefore verifies that foeven,
/xkdvg(x) = %T/(|z|2 +1+2|z|cosB)¥/%de.

It follows that

€ 1 21
/Ologxdvg(x):ET/0 Iog(]z]2+1+2\z\cose)l{‘z‘zﬂﬂmCose<£}d9—>g_,o0,

proving the required regularity.
Further, we claim thatﬁ*E converges tw,. Indeed the eigenvalues
of Ay + En are such that there exists a non-vanishing veetw that

UNON = AUg, Ui—1 = AU,

that is
AN = on.

In particular, all theN-roots ofdy are (distinct) eigenvalues, that is the eigen-
values)\'j\' of Ay are

A = [y YNPTN 1< j<N.

Therefore, for any bounded continuagifunction onC,

as claimed. O

5 Proof of Proposition[{

In this section we will prove the following proposition:

Proposition 11. Let b= b(N) be a sequence of positive integers, and jgf T
be as in Propositiofil]7. LetiRbe an N by N matrix satisfyingRy || < g(N),

1
where for all N we assume thatN) < BN Then

b\ \ ¥+ 1/(b+1)
P(Ton +Rn) < <o <¢Nb(2N1/4gl/2) >> + (b’Ng) .

11



Propositiorl follows from Propositidnll1 by adding the asption that
b(N) > log(N) and then simplifying the upper bound on the spectral radius.

Proof of Proposition[I1: To bound the spectral radius, we will use the fact
that p(Ton +Rn) < ||(Ton+ RN)k||1/k for all integersk > 1. Our general
plan will be to bound| (T + Ry)¥|| and then take k-th root of the bound.
We will take k = b+ 1, which allows us to take advantage of the fact that
Ton is (b+ 1)-step nilpotent. In particular, we make use of the fact tbat f
any positive integea,

(8)

1/2 .
Tl = (b—a+1)V2 |7 if1<a<b
| 0 ifb+1<a

We may write

b+1

[ITonm ™

i=1

[(Ton+ROP < D
Ac{0,1}b+1
b+1
£=0 Ac{0,1}b+1

A has/ ones

b+1

e

i=1

When/ is large, we will make use of the following lemma.
Lemma 12. If A € {0,1}¥ has/ ones and > (k+1)/2, then

k
A pl—A
[Tk
i=1

We will prove LemmaR in Sectidn3.1.
Using Lemm&TIR wittk = b+ 1 along with the fact thatAB|| < ||A|| ||B||,

e k—¢+1 ,
TLk—HlJ HRNkaI('

< (| Ton

12



we have

b+1 )
[Tt RoPH < 3 (75 Il IR0
b

+1 ) b—(+2
b+1 £ _
w3 (T mER T iR
=1252]
22
b+1 ' b
<> (77 Imonll e ©
(=0
b1 . b—t+2
I <b—£ 1) TbITWJ gbf[erl7 (10)
b+2

=[]

where the second inequality comes from the assumiffal] < g=g(N).
We will bound [®) and[{T0) separately. To boulH (9) note that

12%] <b—|— 1> TonlfgP 4 < LZJ <b-;l> ((b_q- 1) {%J)Z/Zgbzﬂ

L
b+4 < b+1 > N(b+2)/4gh/2
2 \|(b+1)/2]

—0 (\/ma(zml/“glﬁ)b) . (11)

o
N

(=0

IN

Next, we turn to boundind(10). We will use the following lerarto
show that the largest term in the suml(10) comes fron¥ theéb term. Note
that wher?/ = b+ 1, the summand ifi{10) is equal to zero Bl (8).

(41
Lemma 13. ; If HTbH\‘jT“J >0and/<b—1and

2

then

)

We will prove LemmdB in Sectidn'§.1.

b—¢+1
g

T b—/éllj
—rr
b,

ez
Ton N

b—¢+2
" Pt < <b+ 1>

b—¢
(41 '

13



Using LemmdII8 we have

b+1 b—¢+2 2
b+1 _ b ]
< > |J3 i+2J gb (+1 < é(b‘i‘ 1) Tb|:l\21J gl
5]
b
< Z
<30+ D(b-[b/2] +1)5

<b’Ng. (12)

Combining [11) and[{12) witi19) an@{[10), we may use the fhat t
(x+y) /(01 < x1/(b+1) 4 y1/(b+1) for positivex,y to complete the proof of
PropositiorTIL. It remains to prove Lemina 12 and Leriimia 13;hwvie do
in Sectio &L below. O

5.1 Proofs of LemmdIPR and Lemmal3

Proof of Lemmal[l2: Using [8), it is easy to show that
i Tall < [T

It is also clear from[{8) that
[Toin]l <

LetA € {0,1}% havel ones. Then, using the assumption thatk — ¢+
1, we may write

T°+1H forintegers < c+2<a<h. (13)

T""ﬁlH for all positive integers. (14)

K

A pl-Ai _ a1 phiTa pb2 B¢ kT Bk—r 11
HTbJ\JRN "= TonRN TonRN - Ton R Ton
i1

whereg; > 1 for alli andb; > 0 for all i. Thus

k k—¢+1
A pl—A k—¢ i
TTmonR™ | < IRl TT [l
i=1 i=1

Applying (I3) repeatedly, we may assume that two ofahdiffer by more
than 1, all without changing the fact th@k‘z+1 = /. Thus, some of the

a are equal to| ;= /+1J and some are equal ﬁqﬁl. Finally, applying
(@), we have that

k—(+1

[T s <

o k=1
wd

14



O

Proof of Lemmall3: Using [8) and rearranging, it is sufficient to show that

b—(+1

041 (b_{ ¢ JH)”T N J1/29<<b—[bf}fid+1> ?
b—¢+1 b—(+2 b+1 b— ] +1

Using a variety of manipulations, it is possible to show that

b—|gig) +1 A (b—¢+2)(b—(+1) b+2
<—b—t ;J+1 = eXp<_(b+2)(b—€+2)—€_(b+2)(b—£+2)—£>

b—0+2
> exp(—3/2).

Thus, it is sufficient to have
b
éNl/zg < exp(—3/2),

which is true by assumption. O
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