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Abstract

We discuss regularization by noise of the spectrum of large random non-
Normal matrices. Under suitable conditions, we show that the regularization
of a sequence of matrices that converges in∗-moments to a regular element
a, by the addition of a polynomially vanishing Gaussian Ginibre matrix,
forces the empirical measure of eigenvalues to converge to the Brown mea-
sure ofa.

1 Introduction

Consider a sequenceAN of N×N matrices, of uniformly bounded operator
norm, and assume thatAN converges in∗-moments toward an elementa
in a W∗ probability space(A ,‖ · ‖,∗,ϕ), that is, for any non-commutative
polynomialP,

1
N

trP(AN,A∗
N) →N→∞ ϕ(P(a,a∗)) .

We assume throughout that the tracial stateϕ is faithful; this does not rep-
resent a loss of generality. IfAN is a sequence of Hermitian matrices, this
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is enough in order to conclude that the empirical measure of eigenvalues of
AN, that is the measure

LA
N :=

1
N

N∑

i=1

δλi(AN),

whereλi(AN), i = 1. . .N are the eigenvalues ofAN, converges weakly to
a limiting measureµa, the spectral measure ofa, supported on a compact
subset ofR. (See [1, Corollary 5.2.16, Lemma 5.2.19] for this standard
result and further background.) Significantly, in the Hermitian case, this
convergence is stable under small bounded perturbations: with BN = AN +
EN and‖EN‖ < ε, any subsequential limit ofLB

N will belong toBL(µa,δ(ε)),
with δ(ε) →ε→0 0 andBL(νa, r) is the ball (in say, the Lévy metric) centered
at νa and of radiusr.

Both these statements fail whenAn is not self adjoint. For a standard
example (described in [6]), consider the nilpotent matrix

TN =




0 1 0 . . . 0
0 0 1 0 . . .
. . . . . . . . . . . . . . .
0 . . . . . . 0 1
0 . . . . . . . . . 0




.

Obviously,LT
N = δ0, while a simple computation reveals thatTN converges

in ∗-moments to a Unitary Haar element ofA , that is

1
N

tr(Tα1
N (T∗

N)β1 . . .Tαk
N (T∗

N)βk) →N→∞

{
1, if

∑k
i=1 αi =

∑k
i=1βi ,

0, otherwise.
(1)

Further, adding toTN the matrix whose entries are all 0 except for the bot-
tom left, which is taken asε, changes the empirical measure of eigenvalues
drastically - as we will see below, asN increases, the empirical measure
converges to the uniform measure on the unit circle in the complex plane.

Our goal in this note is to explore this phenomenun in the context of
small random perturbations of matrices. We recall some notions. Fora∈A ,
theBrown measureνa on C is the measure satisfying

logdet(z−a) =

∫
log|z−z′|dνa(z

′), z∈ C,

where det is the Fuglede-Kadison determinant; we refer to [2, 4] for defini-
tions. We have in particular that

logdet(z−a) =

∫
logxdνz

a(x) z∈ C ,
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whereνz
a denotes the spectral measure of the operator|z−a|. In the sense

of distributions, we have

νa =
1
2π

∆ logdet(z−a) .

That is, for smooth compactly supported functionψ onC,
∫

ψ(z)dνa(z) =
1
2π

∫
dz∆ψ(z)

∫
log|z−z′|dνa(z

′)

=
1
2π

∫
dz∆ψ(z)

∫
logxdνz

a(x) .

A crucial assumption in our analysis is the following.

Definition 1 (Regular elements). An elementa∈ A is regular if

lim
ε→0

∫

C

dz∆ψ(z)
∫ ε

0
logxdνz

a(x) = 0, (2)

for all smooth functionsψ onC with compact support.

Note that regularity is a property ofa, not merely of its Brown measure
νa. We next introduce the class of Gaussian perturbations we consider.

Definition 2 (Polynomially vanishing Gaussian matrices). A sequence of
N-by-N random Gaussian matrices is calledpolynomially vanishingif its
entries(GN(i, j)) are independent centered complex Gaussian variables, and
there existκ > 0, κ′ ≥ 1+ κ so that

N−κ′ ≤ E|Gi j |2 ≤ N−1−κ .

Remark 3. As will be clear below, see the beginning of the proof of Lemma
10, the Gaussian assumption only intervenes in obtaining a uniform lower
bound on singular values of certain random matrices. As pointed out to us by
R. Vershynin, this uniform estimate extends to other situations, most notably
to the polynomial rescale of matrices whose entries are i.i.d. and possess a
bounded density. We do not discuss such extensions here.

Our first result is a stability, with respect to polynomiallyvanishing
Gaussian perturbations, of the convergence of spectral measures for non-
normal matrices. Throughout, we denote by‖M‖op the operator norm of a
matrix M.
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Theorem 4. Assume that the uniformly bounded (in the operator norm) se-
quence of N-by-N matrices AN converges in∗-moments to a regular element
a. Assume further that LAN converges weakly to the Brown measureνa. Let
GN be a sequence of polynomially vanishing Gaussian matrices,and set
BN = AN +GN. Then, LBN → νa weakly, in probability.

Theorem 4 puts rather stringent assumptions on the sequenceAN. In
particular, its assumptions are not satisfied by the sequence of nilpotent ma-
tricesTN in (1). Our second result corrects this defficiency, by showing that
small Gaussian perturbations “regularize” matrices that are close to matrices
satisfying the assumptions of Theorem 4.

Theorem 5. Let AN, EN be a sequence of bounded (for the operator norm)
N-by-N matrices, so that AN converges in∗-moments to a regular element
a. Assume that‖EN‖op converges to zero polynomially fast in N, and that
LA+E

N → νa weakly. Let GN be a sequence of polynomially vanishing Gaus-
sian matrices, and set BN = AN +GN. Then, LBN → νa weakly, in probability.

Theorem 5 should be compared to earlier results of Sniady [6], who
used stochastic calculus to show that a perturbation by an asymptotically
vanishing Ginibre Gaussian matrix regularizes arbitrary matrices. Compared
with his results, we allow for more general Gaussian perturbations (both
structurally and in terms of the variance) and also show thatthe Gaussian
regularization can decay as fast as wished in the polynomialscale. On the
other hand, we do impose a regularity property on the limita as well as on
the sequence of matrices for which we assume that adding a polynomially
small matrix is enough to obtain convergence to the Brown measure.

A corollary of our general results is the following.

Corollary 6. Let GN be a sequence of polynomially vanishing Gaussian
matrices and let TN be as in(1). Then LT+G

N converges weakly, in probability,
toward the uniform measure on the unit circle inC.

In Figure 1, we give a simulation of the setup in Corollary 6 for variousN.
We will now define class of matricesTb,N for which, if b is chosen cor-

rectly, adding a polynomially vanishing Gaussian matrixGN is not sufficient
to regularizeTb,N +GN. Let b be a positive integer, and defineTb,N to be an
N by N block diagonal matrix which eachb+1 by b+1 block on the diag-
onal equalTb+1 (as defined in (1). Ifb+1 does not divideN evenly, a block
of zeros is inserted at bottom of the diagonal. Thus, every entry of Tb,N is
zero except for entries on the superdiagonal (the superdiagonal is the list of
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(a) N = 50

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(b) N = 100

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(c) N = 500

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(d) N = 5000

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 1: The eigenvalues ofTN +N−3−1/2GN, whereGN is iid complex Gaussian
with mean 0, variance 1 entries.

entries with coordinates(i, i + 1) for 1≤ i ≤ N−1), and the superdiagonal
of Tb,N is equal to

(1,1, . . . ,1︸ ︷︷ ︸
b

,0,1,1, . . . ,1︸ ︷︷ ︸
b

,0, . . . ,1,1, . . . ,1︸ ︷︷ ︸
b

,0,0, . . . ,0︸ ︷︷ ︸
≤b

).

Recall that the spectral radius of a matrix is the maximum absolute value of
the eigenvalues. Also, we will use‖A‖ = tr(A∗A)1/2 to denote the Hilbert-
Schmidt norm.

Proposition 7. Let b= b(N) be a sequence of positive integers such that
b(N) ≥ logN for all N, and let Tb,N be as defined above. Let RN be an
N by N matrix satisfying‖RN‖ ≤ g(N), where for all N we assume that
g(N) < 1

3b
√

N
. Then

ρ(Tb,N +RN) ≤ (Ng(N))1/b +o(1),

whereρ(M) denotes the spectral radius of a matrix M, and o(1) denotes a
small quantity tending to zero as N→ ∞.

Note thatTb,N converges in∗-moments to a Unitary Haar element ofA
(by a computation similar to (1)) ifb(N)/N goes to zero, which is a regular
element. The Brown measure of the Unitary Haar element is uniform mea-
sure on the unit circle; thus, in the case where(Ng(N))1/b < 1, Proposition 7
shows thatTb,N +RN does not converge to the Brown measure forTb,N.

Corollary 8. Let RN be an iid Gaussian matrix where each entry has mean
zero and variance one. Set b= b(N) ≥ logN be a sequence of integers, and
let γ > 5/2 be a constant. Then, with probability tending to 1 as N→ ∞, we
have

ρ(Tb,N +exp(−γb)RN) ≤ exp

(
−γ+

2logN
b

)
+o(1),
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(a) N = 50

−0.05 0 0.05

−0.05

0

0.05

(b) N = 100

−0.1 −0.05 0 0.05

−0.05

0

0.05

(c) N = 500

−0.1 −0.05 0 0.05 0.1

−0.05

0

0.05

(d) N = 5000

−0.05 0 0.05

−0.05

0

0.05

Figure 2: The eigenvaules ofTlogN,N + N−3−1/2GN, whereGN is iid complex
Gaussian with mean 0, variance 1 entries. The spectral radius is roughly 0.07, and
the bound from Corollary 8 is exp(−1) ≈ 0.37.

whereρ denotes the spectral radius and where o(1) denotes a small quantity
tending to zero as N→ ∞. Note in particular that the bound on the spectral
radius is strictly less thanexp(−1/2) < 1 in the limit as N→ ∞, due to the
assumptions onγ and b.

Corollary 8 follows from Proposition 7 by noting that, with probability
tending to 1, all entries inRN are at mostC logN in absolute value for some
constantC, and then checking that the hypotheses of Proposition 7 are sat-
isfied forg(N) = exp(−γb)CN(logN)1/4. There are two instances of Corol-
lary 8 that are particularly interesting: whenb = N−1, we see that a expo-
nentially decaying Gaussian perturbation does not regularize TN = TN−1,N,
and whenb = log(N), we see that polynomially decaying Gaussian pertur-
bation does not regularizeTlogN,N (see Figure 2).

We will prove Proposition 7 in Section 5. The proof of our mainresults
(Theorems 4 and 5) borrows from the methods of [3]. We introduce notation.
For anyN-by-N matrixCN, let

C̃N =

(
0 CN

C∗
N 0

)
.

We denote byGC the Cauchy-Stieltjes transform of the spectral measure of
the matrixC̃N, that is

GC(z) =
1

2N
tr(z−C̃N)−1 , z∈ C+ .

The following estimate is immediate from the definition and the resolvent
identity:

|GC(z)−GD(z)| ≤ ‖C−D‖op

|ℑz|2 . (3)
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2 Proof of Theorem 4

We keep throughout the notation and assumptions of the theorem. The fol-
lowing is a crucial simple observation.

Proposition 9. For all complex numberξ, and all z so thatℑz≥ N−δ with
δ < κ/4,

E|ℑGBN+ξ(z)| ≤ E|ℑGAN+ξ(z)|+1

Proof. Noting that

E‖BN −AN‖k
op = E‖GN‖k

op ≤CkN
−κk/2, (4)

the conclusion follows from (3) and Hölder’s inequality.
We continue with the proof of Theorem 4. Letνz

AN
denote the empirical

measure of the eigenvalues of the matrix̃AN −z. We have that, for smooth
test functionsψ,

∫
dz∆ψ(z)

∫
log|x|dνz

AN
(x) =

1
2π

∫
ψ(z)dLA

N(z) .

In particular, the convergence ofLA
N towardνa implies that

E
∫

dz∆ψ(z)
∫

log|x|dνz
AN

(x)→
∫

ψ(z)dνa(z)=

∫
dz∆ψ(z)

∫
logxdνz

a(x) .

On the other hand, sincex 7→ logx is bounded continuous on compact subsets
of (0,∞), it also holds that for any continuous bounded functionζ : R+ 7→R

compactly supported in(0,∞),

E
∫

dz∆ψ(z)
∫

ζ(x) logxdνz
AN

(x) →
∫

dz∆ψ(z)
∫

ζ(x) logxdνz
a(x) .

Together with the fact thata is regular and thatAN is uniformly bounded,
one concludes therefore that

lim
ε↓0

lim
N→∞

E
∫ ∫ ε

0
log|x|dνz

AN
(x)dz= 0.

Our next goal is to show that the same applies toBN. In the following, we
let νz

BN
denote the empirical measure of the eigenvalues of̃BN −z.

Lemma 10.

lim
ε↓0

lim
N→∞

∫
E[

∫ ε

0
log|x|−1dνz

BN
(x)]dz= 0
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BecauseE‖BN−AN‖k
op→ 0 for anyk> 0, we have for any fixed smooth

w compactly supported in(0,∞) that

E|
∫

dz∆ψ(z)
∫

w(x) logxdνz
AN

(x)−
∫

dz∆ψ(z)
∫

w(x) logxdνz
BN

(x)|→N→∞ 0,

Theorem 4 follows at once from Lemma 10.
Proof of lemma 10:Note first that by [5, Theorem 3.3] (or its generalization
in [3, Proposition 16] to the complex case), there exists a constantC so that
for anyz, the smallest singular valueσz

N of BN +zI satisfies

P(σz
N ≤ x) ≤C

(
N

1
2+κ′

x
)β

with β = 1 or 2 according whether we are in the real or the complex case.
Therefore, for anyζ > 0, uniformly inz

E[

∫ N−ζ

0
log|x|−1dνz

BN
(x)] ≤ E[log(σz

N)−11σz
N≤N−ζ]

= C
(

N
1
2+κ′−ζ

)β
log(Nζ)+

∫ N−ζ

0

1
x
C
(

N
1
2+κ′

x
)β

dx

goes to zero asN goes to infinity as soon asζ > 1
2 + κ′. We fix hereafter

such aζ and we may and shall restrict the integration fromN−ζ to ε. To
compare the integral for the spectral measure ofAN andBN, observe that for
all probability measureP, with Pγ the Cauchy law with parameterγ

P([a,b]) ≤ P∗Pγ([a−η,b+ η])+Pγ([−η,η]c) ≤ P∗Pγ([a−η,b+ η])+
γ
η

(5)
whereas forb−a > η

P([a,b]) ≥ P∗Pγ([a+ η,b−η])− γ
η

. (6)

Recall that

P∗Pγ([a,b]) =

∫ b

a
|ℑG(x+ iγ)|dx. (7)

Setγ = N−κ/5, κ′′ = κ/2 andη = N−κ′′/5. We have, wheneverb−a≥ 4η,

Eνz
BN

([a,b]) ≤
∫ b+η

a−η
E|ℑGBn+z(x+ iγ)|dx+N−(κ−κ′′)/5

≤ (b−a+2N−κ′′/5)+ νz
AN

∗PN−κ/5([a−N−κ/10,b+N−κ/10])+N−κ/10

≤ (b−a+2N−κ/10)+ νz
AN

([(a−2N−κ/10)+,(b+2N−κ/10)])+2N−κ/10,
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where the first inequality is due to (5) and (7), the second is due to Proposi-
tion 9, and the last uses (6) and (7). Therefore, ifb−a = CN−κ/10 for some
fixedC larger than 4, we deduce that there exists a finite constantC′ which
only depends onC so that

Eνz
BN

([a,b]) ≤C′(b−a)+ νz
AN

([(a−2N−κ/10)+,(b+2N−κ/10)]) .

As a consequence, as we may assume without loss of generalitythat κ′ >
κ/10,

E[

∫ ε

N−ζ
log|x|−1dνz

BN
(x)]

≤
[Nκ/10ε]∑

k=0

log(N−ζ +2CkN−κ/10)−1E[νz
BN

]([N−ζ +2CkN−κ/10,N−ζ +2C(k+1)N−κ/10]) .

We need to pay special attention to the first term that we boundby noticing
that

log(N−ζ)−1E[νz
BN

([N−ζ,N−ζ +2CN−κ/10])]

≤ 10ζ
κ

log(N−κ/10)−1E[νz
BN

([0,2(C+1)N−κ/10])]

≤ 10ζ
κ

log(N−κ/10)−1(2C′N−κ/10+ νz
AN

([0,(C+2)N−κ/10]))

≤ 20C′ζ
κ

log(N−κ/10)−1N−κ/10+C′′
∫ 2(C+2)N−κ/10

0
log|x|−1dνz

AN
(x)

For the other terms, we have

[Nκ/10ε]∑

k=1

log(N−ζ +2CkN−κ/10)−1E[νz
BN

]([N−ζ +2CkN−κ/10,N−ζ +2C(k+1)N−κ/10])

≤ 2C′
[Nκ/10ε]∑

k=1

log(CkN−κ/10)−1CN−κ/10

+

[Nκ/10ε]∑

k=1

log(CkN−κ/10)−1νz
AN

([2C(k−1)N−κ/10,2C(k+2)N−κ/10]) .

Finally, we can sum up all these inequalities to find that there exists a finite
constantC′′′ so that

E[

∫ ε

N−ζ
log|x|−1dνz

BN
(x)] ≤C′′′

∫ ε

0
log|x|−1dνz

AN
(x)+C′′′

∫ ε

0
log|x|−1dx
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and therefore goes to zero whenn and thenε goes to zero. This proves the
claim.

3 Proof of Theorem 5.

From the assumptions, it is clear that(AN + EN) converges in∗-moments
to the regular elementa. By Theorem 4, it follows thatLA+E+G

N converges
(weakly, in probability) towardsνa. We can now removeEN. Indeed, by (3)
and (4), we have for anyχ < κ′/2 and allξ ∈ C

|GN
A+G+ξ(z)−GN

A+G+E+ξ(z)| ≤
N−χ

ℑz2

and therefore forℑz≥ N−χ/2,

|ℑGN
A+G+ξ(z)| ≤ |ℑGN

A+G+E+ξ(z)|+1.

Again by [5, Theorem 3.3] (or its generalization in [3, Proposition 16]) to
the complex case), for anyz, the smallest singular valueσz

N of AN +GN +z
satisfies

P(σz
N ≤ x) ≤C

(
N

1
2+κ′

x
)β

with β = 1 or 2 according whether we are in the real or the complex case.We
can now rerun the proof of Theorem 4, replacingAN by A′

N = AN +EN +GN

andBN by A′
N −EN.

4 Proof of Corollary 6

We apply Theorem 5 withAN = TN, EN theN-by-N matrix with

EN(i, j) = { δN = N−(1/2+κ′), i = 1, j = N
0, otherwise,

whereκ′ > κ. We check the assumptions of Theorem 5. We takea to be
a Unitary Haar element inA , and recall that its Brown measureνa is the
uniform measure on{z∈ C : |z| = 1}. We now check thata is regular.
Indeed,

∫
xkdνz

a(x) = 0 if k is odd by symmetry while fork even,

∫
xkdνz

a(x) = ϕ([(z−a)(z−a)∗]k/2) =

k/2∑

j=1

(|z|2 +1)k− j
(

k
2 j

)(
2 j
j

)
,
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and one therefore verifies that fork even,
∫

xkdνz
a(x) =

1
2π

∫
(|z|2 +1+2|z|cosθ)k/2dθ .

It follows that
∫ ε

0
logxdνz

a(x)=
1
4π

∫ 2π

0
log(|z|2+1+2|z|cosθ)1{|z|2+1+2|z|cosθ<ε}dθ→ε→0 0,

proving the required regularity.
Further, we claim thatLA+E

N converges toνa. Indeed the eigenvaluesλ
of AN +EN are such that there exists a non-vanishing vectoru so that

uNδN = λu1,ui−1 = λui ,

that is
λN = δN.

In particular, all theN-roots ofδN are (distinct) eigenvalues, that is the eigen-
valuesλN

j of AN are

λN
j = |δN|1/Ne2iπ j/N, 1≤ j ≤ N .

Therefore, for any bounded continuousg function onC,

lim
N→∞

1
N

N∑

i=1

g(λN
j ) =

1
2π

∫
g(θ)dθ ,

as claimed.

5 Proof of Proposition 7

In this section we will prove the following proposition:

Proposition 11. Let b= b(N) be a sequence of positive integers, and let Tb,N

be as in Proposition 7. Let RN be an N by N matrix satisfying‖RN‖ ≤ g(N),
where for all N we assume that g(N) < 1

3b
√

N
. Then

ρ(Tb,N +RN) ≤
(

O

(√
Nb
(

2N1/4g1/2
)b
))1/(b+1)

+
(
b2Ng

)1/(b+1)
.
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Proposition 7 follows from Proposition 11 by adding the assumption that
b(N)≥ log(N) and then simplifying the upper bound on the spectral radius.

Proof of Proposition 11: To bound the spectral radius, we will use the fact

that ρ(Tb,N + RN) ≤
∥∥(Tb,N +RN)k

∥∥1/k
for all integersk ≥ 1. Our general

plan will be to bound
∥∥(Tb,N +RN)k

∥∥ and then take ak-th root of the bound.
We will take k = b+ 1, which allows us to take advantage of the fact that
Tb,N is (b+1)-step nilpotent. In particular, we make use of the fact that for
any positive integera,

‖Ta
b,N‖ =

{
(b−a+1)1/2

⌊
N

b+1

⌋1/2
if 1 ≤ a≤ b

0 if b+1≤ a.
(8)

We may write

∥∥(Tb,N +RN)b+1
∥∥≤

∑

λ∈{0,1}b+1

∥∥∥∥∥

b+1∏

i=1

Tλi
b,NR1−λi

N

∥∥∥∥∥

=

b+1∑

ℓ=0

∑

λ∈{0,1}b+1

λ hasℓ ones

∥∥∥∥∥

b+1∏

i=1

Tλi
b,NR1−λi

N

∥∥∥∥∥

Whenℓ is large, we will make use of the following lemma.

Lemma 12. If λ ∈ {0,1}k hasℓ ones andℓ ≥ (k+1)/2, then

∥∥∥∥∥

k∏

i=1

Tλi
b,NR1−λi

N

∥∥∥∥∥≤
∥∥∥∥T

⌊ ℓ
k−ℓ+1⌋

b,N

∥∥∥∥
k−ℓ+1

‖RN‖k−ℓ .

We will prove Lemma 12 in Section 5.1.
Using Lemma 12 withk= b+1 along with the fact that‖AB‖≤‖A‖‖B‖,
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we have

∥∥(Tb,N +RN)b+1
∥∥≤

⌊ b+2
2 ⌋∑

ℓ=0

(
b+1

ℓ

)
‖Tb,N‖ℓ ‖Rn‖b−ℓ+1

+

b+1∑

ℓ=⌈ b+2
2 ⌉

(
b+1

ℓ

)∥∥∥∥T
⌊ ℓ

b−ℓ+2⌋
b,N

∥∥∥∥
b−ℓ+2

‖RN‖b−ℓ+1 .

≤
⌊ b+2

2 ⌋∑

ℓ=0

(
b+1

ℓ

)
‖Tb,N‖ℓ gb−ℓ+1 (9)

+
b+1∑

ℓ=⌈ b+2
2 ⌉

(
b+1

ℓ

)∥∥∥∥T
⌊ ℓ

b−ℓ+2⌋
b,N

∥∥∥∥
b−ℓ+2

gb−ℓ+1, (10)

where the second inequality comes from the assumption‖RN‖ ≤ g = g(N).
We will bound (9) and (10) separately. To bound (9) note that

⌊ b+2
2 ⌋∑

ℓ=0

(
b+1

ℓ

)
‖Tb,N‖ℓ gb−ℓ+1 ≤

⌊ b+2
2 ⌋∑

ℓ=0

(
b+1

ℓ

)(
(b+1)

⌊
N

b+1

⌋)ℓ/2

gb−ℓ+1

≤ b+4
2

(
b+1

⌊(b+1)/2⌋

)
N(b+2)/4gb/2

= O
(√

Nb(2N1/4g1/2)b
)

. (11)

Next, we turn to bounding (10). We will use the following lemma to
show that the largest term in the sum (10) comes from theℓ = b term. Note
that whenℓ = b+1, the summand in (10) is equal to zero by (8).

Lemma 13. ; If

∥∥∥∥T
⌊ ℓ+1

b−ℓ+1⌋
b,N

∥∥∥∥> 0 andℓ ≤ b−1 and

g≤ 2

e3/2N1/2b
,

then
(

b+1
ℓ

)∥∥∥∥T
⌊ ℓ

b−ℓ+2⌋
b,N

∥∥∥∥
b−ℓ+2

gb−ℓ+1 ≤
(

b+1
ℓ+1

)∥∥∥∥T
⌊ ℓ+1

b−ℓ+1⌋
b,N

∥∥∥∥
b−ℓ+1

gb−ℓ.

We will prove Lemma 13 in Section 5.1.
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Using Lemma 13 we have

b+1∑

ℓ=⌈ b+2
2 ⌉

(
b+1

ℓ

)∥∥∥∥T
⌊ ℓ

b−ℓ+2⌋
b,N

∥∥∥∥
b−ℓ+2

gb−ℓ+1 ≤ b
2
(b+1)

∥∥∥∥T
⌊ b

2⌋
b,N

∥∥∥∥
2

g1

≤ b
2
(b+1)(b−⌊b/2⌋+1)

N
b+1

g

≤ b2Ng. (12)

Combining (11) and (12) with (9) and (10), we may use the fact that
(x+y)1/(b+1) ≤ x1/(b+1) +y1/(b+1) for positivex,y to complete the proof of
Proposition 11. It remains to prove Lemma 12 and Lemma 13, which we do
in Section 5.1 below.

5.1 Proofs of Lemma 12 and Lemma 13

Proof of Lemma 12: Using (8), it is easy to show that
∥∥Ta

b,N

∥∥∥∥Tc
b,N

∥∥<
∥∥∥Ta−1

b,N

∥∥∥
∥∥∥Tc+1

b,N

∥∥∥ for integers 3≤ c+2≤ a≤ b. (13)

It is also clear from (8) that
∥∥Ta

b,N

∥∥≤
∥∥∥Ta−1

b,N

∥∥∥ for all positive integersa. (14)

Let λ ∈ {0,1}k haveℓ ones. Then, using the assumption thatℓ ≥ k− ℓ+
1, we may write

k∏

i=1

Tλi
b,NR1−λi

N = Ta1
b,NRb1

N Ta2
b,NRb2

N · · ·Tak−ℓ

b,N Rbk−ℓ
N Tak−ℓ+1

b,N ,

whereai ≥ 1 for all i andbi ≥ 0 for all i. Thus
∥∥∥∥∥

k∏

i=1

Tλi
b,NR1−λi

N

∥∥∥∥∥≤ ‖RN‖k−ℓ
k−ℓ+1∏

i=1

∥∥∥Tai
b,N

∥∥∥ .

Applying (13) repeatedly, we may assume that two of theai differ by more
than 1, all without changing the fact that

∑k−ℓ+1
i=1 ai = ℓ. Thus, some of the

ai are equal to
⌊

ℓ
k−ℓ+1

⌋
and some are equal to⌈ ℓ

k−ℓ+1⌉. Finally, applying
(14), we have that

k−ℓ+1∏

i=1

∥∥∥Tai
b,N

∥∥∥≤
∥∥∥∥T

⌊ ℓ
k−ℓ+1⌋

b,N

∥∥∥∥
k−ℓ+1

.

14



Proof of Lemma 13: Using (8) and rearranging, it is sufficient to show that

ℓ+1
b− ℓ+1

(
b−
⌊

ℓ

b− ℓ+2

⌋
+1

)1/2⌊ N
b+1

⌋1/2

g≤
(

b−
⌊

ℓ+1
b−ℓ+1

⌋
+1

b−
⌊

ℓ
b−ℓ+2

⌋
+1

) b−ℓ+1
2

Using a variety of manipulations, it is possible to show that
(

b−
⌊

ℓ+1
b−ℓ+1

⌋
+1

b−
⌊

ℓ
b−ℓ+2

⌋
+1

) b−ℓ+1
2

≥ exp

(
−(b− ℓ+2)(b− ℓ+1)

(b+2)(b− ℓ+2)− ℓ
− b+2

(b+2)(b− ℓ+2)− ℓ

)

≥ exp(−3/2).

Thus, it is sufficient to have

b
2

N1/2g≤ exp(−3/2),

which is true by assumption.

References

[1] Anderson, G. W., Guionnet, A. and Zeitouni, O.,An introduction
to random matrices, Cambridge University Press, Cambridge (2010).
Brown’s spectral measure in

[2] Brown, L. G., Lidskii’s theorem in the type II case, in “Proceedings
U.S.–Japan, Kyoto/Japan 1983”, Pitman Res. Notes. Math Ser. 123,
1–35, (1983).

[3] Guionnet, A., Krishnapur, M. and Zeitouni, O.,The single ring theo-
rem, arXiv:0909.2214v1 (2009).

[4] Haagerup, U. and Larsen, F.,Brown’s spectral distribution measure for
R-diagonal elements in finite von Neumann algebras, J. Funct. Anal.
2, 331–367, (2000).

[5] Sankar, A., Spielman, D. A. and Teng, S.-H.,Smoothed analysis of the
conditioning number and growth factor of matrices, SIAM J. Matrix
Anal. 28, 446–476, (2006).

[6] Sniady, P.,Random regularization of Brown spectral measure, J. Funct.
Anal. 193(2002), pp. 291–313.

[7] Voiculescu, D.,Limit laws for random matrices and free productsIn-
ventiones Mathematicae104, 201–220, (1991).

15


	Introduction
	Proof of Theorem 4
	Proof of Theorem 5.
	Proof of Corollary 6
	Proof of Proposition 7
	Proofs of Lemma 12 and Lemma 13


