Secret Sharing for NP

Ilan Komargodski    Moni Naor   Eylon Yogev


A computational secret-sharing scheme is a method that enables a dealer, that has a secret, to distribute this secret among a set of parties such that a “qualified” subset of parties can efficiently reconstruct the secret while any “unqualified” subset of parties cannot efficiently learn anything about the secret. The collection of “qualified” subsets is defined by a Boolean function.

It has been a major open problem to understand which (monotone) functions can be realized by a computational secret-sharing schemes. Yao suggested a method for secret-sharing for any function that has a polynomial-size monotone circuit (a class which is strictly smaller than the class of monotone functions in P). Around 1990 Rudich raised the possibility of obtaining secret-sharing for all monotone functions in NP: In order to reconstruct the secret a set of parties must be “qualified” and provide a witness attesting to this fact.

Recently, Garg et al. (STOC 2013) put forward the concept of witness encryption, where the goal is to encrypt a message relative to a statement "x in L" for a language L in NP such that anyone holding a witness to the statement can decrypt the message, however, if x is not in L, then it is computationally hard to decrypt. Garg et al. showed how to construct several cryptographic primitives from witness encryption and gave a candidate construction.

One can show that computational secret-sharing implies witness encryption for the same language. Our main result is the converse: we give a construction of a computational secret-sharing scheme for any monotone function in NP assuming witness encryption for NP and one-way functions. As a consequence we get a completeness theorem for secret-sharing: computational secret-sharing scheme for any single monotone NP-complete function implies a computational secret-sharing scheme for every monotone function in NP.

The paper: PDF. Slides: PDF.


Related On-Line Papers:

Back to On-Line Publications

Back Home